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Abstract 
 
A spatial-temporal model of early complex polities is described in which cycles of consolidation 
and collapse emerged during simulations.  Self-organized criticality (SOC) also was clearly 
observed.  SOC is characteristic of simulations for iterative physical phenomena such as 
earthquakes and forest fires.  Social scientists are interested in SOC as a theoretical framework to 
understand cyclical human cultural processes.  In particular there has been considerable 
speculation that SOC underlies polity cycling.  The current model is an attempt to move beyond 
speculation by demonstrating that: 1) the model unequivocally exhibits SOC, 2) there is a self-
evident correspondence between the model’s structure and actual polities as indicated in the 
archaeological record, 3) hierarchical settlement patterns emerge during simulations, and 4) 
simulated population distributions are consistent with empirical rank-size survey data typical of 
early complex polities. 
 
 
Key words 
 
Rank-size, simulation modeling, self-organized criticality, prehistoric polities, political economy, 
polity cycling 
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1.0 Introduction 
 
Cycles of consolidation and collapse, expansion and decline, rise and fall, growth and 
disintegration.  Variants of these phrases can be found throughout the archaeological and historical 
literature to describe the fusion and subsequent fission of dynamic political entities (polities). 
When viewed at the appropriate macro-level, this iterative pattern has persisted over widely 
varying times, places, and scales: small polities fused into larger and more complex ones that over 
time eventually split into a number of simpler political aggregations. Subsequently they 
recombined in different configurations to begin another similar cycle.  
 
Collapse has often been the focus when the life spans of complex polities were examined (Tainter 
1988).  However the argument has been made that the decline of all polities, regardless of size and 
complexity, could best be understood as the end of one cycle and the beginning of another (Chase-
Dunn 2007).  While embracing the spirit of that notion, the more modest objective here was to 
model a specific class of political entities, referring to them collectively as early complex polities.   
 
1.1 Early Complex Polity Defined 
 
Early complex polities can be characterized by their positions on a continuum of size and 
complexity.  At the upper limit were archaic states: agrarian polities with nascent bureaucracies 
ruling from a primate center settlement through a multi-level hierarchy of secondary centers.  
Joyce Marcus’s (1992) dynamic model originally described the cycling process of Maya archaic 
states, AD 400 to 1500. One of the largest was in the Tikal region which experienced cycles with 
200 to 300 year periods.  At the apogees of these cycles a single polity ruled on the order of 10,000 
sq km.  The dynamic model also has been applied to archaic states in five other world areas from 
the Andean highlands to Mesopotamia (Marcus 1998).    
 
At the small and simple end of the size-complexity continuum considered here were typical 
Mississippian chiefdoms in the American Southeast during the period AD 1100 – 1550.  These 
polities were composed of two to ten settlements, were no more than 40 km in breath, and had 
lifetimes not exceeding one or two human generations (Anderson 1996, Blitz 1999).   
 
Nation states fall outside the defined size-complexity range.  Consistent with this exclusion, 
section 2.0 presents robust emergent patterns that are indicative of early complex polities but are 
not typical for nation states.  Extending the model to account for such differential behavior is 
touched on in 6.2. 
 
1.2 Observing Self-Organized Criticality 
 
There has been considerable speculation that polity cycling is a manifestation of self-organized 
criticality (SOC).  These conjectures span multiple disciplines including: political science (Brunk 
2002, Cederman 2003), geography (Coombes 2005), and archaeology (Brown 2003 p 1629).  
Processes exhibiting SOC were originally modeled by physicists (Bak 1988) to understand 
similarities observed in diverse physical phenomena such as earthquakes, landslides, and forest 
fires (Turcotte 1999).  Social scientists became interested in SOC because of its promise as a 
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unifying theoretical framework to investigate a variety of social and economic processes 
characterized by cyclical collapse and recovery.  
 
SOC is the quasi-steady state of a system in which the impact of small but regularly occurring 
inputs accumulate until there is a sudden collapse.  Occurring at random intervals and with varying 
intensities each collapse is followed by new cycles of growth and decline. Self-organized refers to 
the ability of the system to repeatedly find its way into this state regardless of initial conditions 
(Turcotte 1999, Bak 1988).  Criticality alludes to the system’s persistent location in phase space on 
the cusp between stability and chaos (Brown 2003).  
 
Published descriptions of SOC often use as an example the simplest form of the forest fire model 
(FFM) because it is very intuitive.  The FFM is a cellular-automata (a special case of spatial agent-
based models) that simulates wild fires and subsequent re-growth of trees (Henley 1993, Trucotte 
1999).  Fig. 1, left, shows a screen display from the FFM which was implemented in the NetLogo 
4.0 modeling environment (Wilensky 2009). All the modeling and simulations reported here were 
developed and executed in NetLogo. (Model software is available from the author upon request).   
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Fig. 1 (left) Snapshot of 128 x 128 grid display during single time step of forest fire model simulation.  Healthy trees 
interspersed with empty areas (white).  Cluster of burned trees in darker color. (right) Frequency-size distribution of 
simulated forest fires after 40 million time steps (128 x 128 grid, 150 step spark interval) overlaid by power law with 
exponent of -1 

 
Referring to Fig. 1, left, a forest is represented by a grid of regularly spaced cells, 128 x 128 in the 
case shown.  Each filled cell symbolizes a tree and the interspersed clumps of empty cells 
correspond to cleared areas within the forest.  During a simulation step, one cell is selected at 
random and if empty, a new tree sprouts.  Every TS time steps (TS >> 1) a spark is randomly 
dropped somewhere in the forest grid.  Nothing happens if the spark lands in an empty cell.  If it 
lands on a tree, that tree is set ablaze and in the same step the fire spreads to all trees in the cluster 
of cells connected by the four immediate neighbors (left, right, up, down) shown as the darker 
color in Fig. 1.  Just prior to the next step all cells in the burned cluster become empty spaces in 
which new trees can grow during subsequent steps.   
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An important signature of SOC is illustrated on the right side of Fig. 1  It is a log-log plot for the 
frequency of simulated fires f (number of occurrences) of a given size S (number of grid cells 
burned) after 40 million time steps of the same run as the grid display to the left.  The plotted data 
was overlaid by a straight line that follows the power law function f = f0S

a, where f0 is the 
observed frequency of the smallest fire (size of 1 for the simulation grid) and the exponent a = -1.  
Simulation results closely matched this power law over three orders of magnitude.  (The deviation 
from the power law for large size fires is an artifact of the grid’s finite dimensions. As grid 
dimensions increase so does the largest possible cluster of trees; see Trucotte (1999) for further 
discussion.)   
 
Actual forest fires appear to have similar frequency-size distributions.  For example, data was 
reported for 120 fires in the western United States during AD 1155–1960 based on tree ring 
growth.  A log-log plot of frequency vs. size was well fitted by a straight line with slope of -1.3 
over three orders of magnitude (Turcotte 1999, p 1403).   
 
As with forest fires, empirical data for any naturally occurring phenomenon certainly lends 
credibility to hypotheses that SOC is present.  However, comparable distributions have been 
observed in frequency-size data for any number of non-SOC processes (Solow 2005).  A -1 power 
law fitted to either empirical data or simulation results should be viewed as a necessary but not 
sufficient condition.  Alone, it cannot be taken as proof of the existence of SOC. 
 
Despite its promise as a unifying framework, speculations that polity cycling is an SOC process 
have been unsatisfying to many archaeologists.  That is because SOC describes the state of a 
system rather than a causal explanation of how this macro-level pattern could have emerged in 
actual polities (Bentley and Maschner 2008).  What have been missing from these conjectures are 
clearly recognized correlates between the elements of an SOC model and micro-level constituents 
of actual polities.  In contrast, the analogs of the FFM to forest fires in nature are self-evident: 
Micro-level elements: forests are composed of trees interspersed by empty space; sparks can occur 
anywhere in the forest. Local interactions: fire spreads to trees that are close by but does not easily 
jump empty space.  Fires destroy trees and create empty space in which new trees will grow 
afterward.  Stating the obvious makes the point of how clear the correspondence is between model 
and reality. 
 
1.3 Objectives 
 
Of the published cases that posit the operation of SOC in real-world processes, the most 
compelling are those presenting a constellation of three elements as exemplified by the FFM: 
 

1. A model whose micro-level structure and local agent interactions clearly correspond to 
elements and behavior of the real-world system in question. 

 
2. A model that meets the input/output requirements of an SOC system, and simulations in 

which the frequency-size distribution matches a power law with exponent of -1. 
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3. Empirical data from the real-world system being modeled that exhibit macro-level size 
distributions comparable to those emerging during simulations.  

 
The objective of the work reported here was to develop a model of early complex polities that met 
all three of these criteria. 
 
 
 
2.0 Fission/Fusion Model 
 
It is proposed here that elements of the forest fire model (FFM) can be redefined as a fusion/fission 
model (also abbreviated FFM) of early complex polities.  The result is a simple stylized model 
intended to capture the structural and dynamical essence of these political configurations.  The 
following baseline assumptions have much in common with those at the core of the author’s earlier 
polity model (Griffin and Stanish 2007, 2008).       
  
Complex early polities were assumed to expand in size over time to accommodate population 
growth.  Polities also expanded due to fusion with other polities.  Fusion occurred when adjacent 
polities came into conflict when no empty land separating them remained for expansion.  The net 
result was consolidation, even though many means to that end were likely employed by actual 
polities: overt conquest or intimidation, forming alliances, religious legitimization, rewarding 
loyalty, marriage, etc.  Internally there was competition between factions within each polity.  A 
faction could resist the ruler, which, if successful, caused the entire polity to collapse.  (An 
alternative to the all-or-nothing model of collapse is considered in the Conclusions section.) 
 

 

(ffm08)  
Fig. 2: Grid display of 128x128 fusion/fission model showing polities represented by clusters of same colored cells. 

 
Referring to Fig. 2, cell clusters now represented multi-settlement polities.  To visually distinguish 
one settlement cluster from its neighbor each was randomly assigned a different color.  The empty 
cells correspond to uncontrolled territory separating the polities.   Initially all polities on the grid 
consisted of single cells representing isolated settlements.  When simulations were run, multi-
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settlement polities began to form as more settlements sprang up.  When adjacent polities expanded 
to the point of touching they fused into larger consolidated polities.  Any of these polities could 
collapse at any time leaving behind uncontrolled territory in which new settlements subsequently 
sprang up to begin another cycle.   
Although a multitude of circumstances could have set the stage, the proximate cause of fission was 
assumed to be competition over leadership between internal factions (Stanish 2005).  It also 
seemed reasonable to expect that the larger a polity the greater the number of internal factions and 
hence the more likely resistance would occur. This relationship was modeled earlier by assuming 
that the probability of resistance for any one settlement was constant, so the likelihood of 
resistance somewhere in a polity increased as the number of its settlements grew.  The same effect 
was achieved in the current model by spatially uniform random occurrences of resistance, 
equivalent to the fire-starting sparks. 
 
Assigning different colors to cell clusters was the only difference in the simulation software 
between the grid displays in Fig. 1 and 2.  Thus all of the SOC characteristics of the forest fire 
model remained identical for the fission/fusion model, including its frequency-size distribution that 
matched a power law with -1 exponent. 
 
Fig. 2 also illustrates two emergent patterns that are consistent with early complex polities while 
neither is typical of nation states.  First, there are buffer zones of uncontrolled areas separating all 
polities. Second, the territories controlled by the simulated polities in the figure are notably 
noncontiguous.  Early complex polities could be dendritic in shape as well as surround islands of 
uncontrolled territory.  An example is Tiwanaku, one of the first pristine archaic states in the new 
world.  Located in the Lake Titicaca basin that straddles the border of modern Peru and Bolivia, 
Tiwanaku was at its peak around AD 900.  Its heartland was connected to distant settlements 
throughout the basin by ribbons of territory adjacent to the main trade routes (Stanish 2003).  
Similarly the areas controlled by the Maya polity Tikal were noncontiguous (Marcus 1998 p59) as 
were those of Tenochtitlan, capital of the Aztecs (Smith 2002 p 174).    
 
  
 
3.0 Population Model 
 
The baseline polity model described above was extended to account for changes in settlement 
populations due to fission/fusion and the simultaneous feedback on fission/fusion resulting from 
shifting population patterns.  This was done in a way that assured preservation of the SOC 
exhibited before additions.  The population for each grid cell was updated every time step during 
simulations as a function of: 1) births/deaths, and migration; and 2) the political allocation of 
resources, described below in 3.1 and 3.2 respectively.   
 
Fig. 3 illustrates how population dynamics were visualized on the grid display by a color scale, 
where a higher level was indicated by a darker color.  In the example shown levels were visible in 
cells between polities, and populations of settlements within them could be viewed by hiding the 
colors identifying distinct polities.  The locations of polity centers were marked by white dots in 
the figure, important for determining relative political strength discussed in 3.2.    
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(ffm15)  
Fig. 3: Each polity composed of settlements (square grid cells) with same color.  Polities overlay population color scale 
where higher density shown as darker color.  White dots indicate polity centers (64 x 64 grid). 
 
The settlement population variable was added for two reasons.  The first was to achieve a more 
realistic correspondence to early complex polities as inferred from the archaeological record. This 
was reflected in basic modeling assumptions concerning population growth and resource 
allocation.  Table 1 summarizes these assumptions along with those for the baseline model as 
argued in section 2.0 above. This section presents the model structure and dynamics that manifest 
these underlying assumptions. (See the Appendix for discussion of an interesting, albeit not as apt, 
alternative for modeling population dynamics.) 
 
Table 1: Modeling assumptions define micro-level correlates to early complex polities 
 
Population Growth and Migration 
In the absence of food shortages and migration, population increased in proportion to its then current level. 
People migrated away from economic need over the shortest possible distance without regard to polity 

boundaries. 
 
Fusion 
Single settlement polities continually formed in uncontrolled areas. 
Competition occurred when polities came into contact while expanding into uncontrolled areas separating 

them. 
Competition between polities was ultimately resolved by consolidation, although the means were 

historically contingent. 
When polities consolidated, the strongest center settlement remained primary and the weaker ones 

became subordinated secondary centers. 
 
Fission 
There was competition between factions within each multi-settlement polity. 
A faction could resist its polity’s center. The circumstances leading to and the means of resistance were 

historically contingent.  
Successful resistance ultimately caused the entire polity to fission leaving uncontrolled areas. 
 
Center’s Strength 
A polity center’s strength was its overall potential to influence the population and other centers, be it the 

ability to: persuade, befriend, reward, organize, protect, intimidate, attack, defend, etc., or any 
combination thereof. 
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Each center attempted to maximize its strength, which was: 

directly related to the population size and resources of its own polity, and 
diminished as the distance increased to the target of influence. 
 

Resource Allocation 
Polity leader organized labor to achieve economies of scale which increased productivity. 
Polity leader suppressed overt conflict between settlements increasing safety which also raised 

productivity. 
Resources produced by agricultural settlements were extracted by ruling elites to finance their leadership. 

Producers submitted to extraction in exchange for increased productivity and safety. 
Amount extracted from a settlement close to the polity center was greater than from a more distant 

settlement. 
Secondary centers subordinated by consolidation continued to extract resources from local settlements as 

before but in turn paid tribute to the primary center. 

 
The second motivation for the extension was to allow use of readily available empirical settlement 
rank-size data for model validation.  Variable settlement size was not part of the baseline FFM 
since settlements were represented by grid cells with constant uniform areas. (Even if the model 
included settlement area, it would only provide a proxy of population.)  Rank-size distributions of 
the added population variable could then be compared to distributions of empirical size data 
described in Section 4.0. 
 
 
3.1 Resource Limited Growth and Migration  
 
Two fundamental observations underlie the population model: 1) there are only two ways 
settlement population (N) could change: 1) births/deaths and migration; and 2) population levels 
adjusted over time to carrying capacity (K).  The model to account for both these dynamics was 
based on the Fisher-Skellam equation.  This formulation has been widely used in theoretical 
population biology and other applications including analysis of human population changes during 
the Neolithic transition in Eurasia (Hazelwood 2004, Davidson 2006).  In its basic form, the 
change in population over time is: 
 
 ∂N/∂t = rPN (1 – N/K) + cF∇2N      (1) 
 
     N = population density 
     rP = intrinsic population growth rate (model parameter) 
     K = carrying capacity 
     cF = diffusion constant (model parameter) 
     ∇2 = Laplacian operator  
 
The second term on the right side of the equation accounts for spatial migration of N as a diffusion 
process proportional to constant cF.  The first term on the right models net births and deaths as 
logistic growth.  Growth in population over time, ∂N/∂t, is proportional to its current level N.  The 
growth rate is initially high, close to the intrinsic rate of rP, when population density N is low 
relative to the carrying capacity K, but decreases over time as N approaches the upper limit set by 
K.  In the current model, K is a variable dependent on the political organization of the polity, 
which is detailed in the next subsection.   
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Difference equations implemented in the model software were a discrete version of the continuous 
differential above.  Values of constants in the equations could be set during simulations as model 
parameters summarized in Table 2.   
 
Table 2: Model Parameters 
 
Parameter Sweep** Definition 
girdSize 64, 128 One dimension of square grid (grid cell units) 

  
radius 3 - 10 Radius of area surrounding center settlement within which localized rank-

size was plotted (grid cell units) 
 

TS 50 - 300 Interval between occurrences of satellite settlement resistance to center’s 
leadership (ticks*)  
 

rP 0,  0.0003 – 0.05 Intrinsic population growth rate (per tick*) 
 

cF  0,  0.003 – 0.3 Population diffusion constant (per tick*) 
 

sK 0,  1- 40  Factor by which satellite settlement’s carrying capacity increased over 
uncontrolled area due to greater safety and scale efficiencies  
 

xK 0,  0.03 - 0.6 Portion of satellite settlement’s carrying capacity extracted by center (prior 
to distance attenuation) 

   
rD 0,  0.02 – 0.2 Compounded rate at which center’s influence on satellite is attenuated for 

each unit of grid distance between them 
* tick = simulation time step 
** Sweep= range of values during sweeps of parameter space 

 
Population of each patch was updated each successive time increment by applying (2), (3), and (4) 
below.  Expression (3) was added to prevent N from becoming negative when there was a sudden 
drop in K at the center of a polity when it collapsed, see the next subsection. 
 
       ΔN = rPN (1 - N/K)   when N <   K     (2) 
 
 ΔN = rPN (K/N - 1)     when N >= K     (3) 
 
 N(t) = N(t-1) + ΔN       (4) 
 
In terms of the xy grid of patches, diffusion consists of a simultaneous two-way flow of population 
between neighboring patches. To be consistent with the fission/fusion model a neighborhood of the 
four nearest patches was assumed: left, right, up, and down.  For the patch at grid location (x, y), cF 
portion of its population Nxy flows equally to each neighbor during each time step, so that the 
incremental population change, ΔNxy, and that of its neighbors, ΔNnbr are given by 
 
 ΔNxy = - cF Nxy , where cF = diffusion constant (model parameter)  (5)  
 
 ΔNnbr = - ΔNxy / 4, where nbr = (x, y+1), (x, y-1), (x+1, y), (x-1, y) (6)  
 
At the same time there is a similar reverse flow into patch xy from its neighbors.  The net effect is 
that population always moves away from areas of high density and towards a lower density.  That 
is the appropriate behavior when N > K, in particular at the location of a former center after its 

 10



polity collapsed.  However the model also must allow population to first concentrate in growing 
centers where N < K.  Thus the diffusion term was made conditional so patch xy would forgo the 
out flow if it had a surplus carrying capacity i.e.,     
 
 ΔNxy = 0 if  Nxy <= Kxy      (7) 
 
Rule (7) was recommended by its simplicity after experimenting with a more rigorous alternative: 
active infusion in combination with diffusion to implement pull as well as push forces found in 
traditional models of migration (Dorigo 1983).  However the marginal impact on population flow 
did not warrant the added model complexity. 
 
After (5), (6), and (7) were applied to each patch in the xy grid during a time increment, its 
population was updated by 
 
 Nxy = Nxy + Σ ΔNxy       (8) 
 
 
3.2 Resource Allocation 
 
As in the earlier model (Griffin and Stanish, 2007, 2008), it was assumed that the allocation of 
resources within early complex polities was determined in large part by its political organization 
rather than a market economy. Ruling elites extracted resources from farmers to finance their 
leadership (Earle 1997, Johnson and Earle 2000). The extent of coercion for this purpose certainly 
varied greatly and its importance is still hotly debated.  However the assumption was that 
commoner farmers submitted to elite leadership in exchange for improved security and increased 
productivity due to economies of scale (Stanish and Haley 2005).  This reciprocal exchange was 
modeled as an increase in carrying capacity of a polity’s satellite settlements (Ksat) accompanied 
by a transfer of some portion of the enhanced K to the polity’s center (Kctr).  It was also assumed 
that the more distant a settlement was from the center, the less would have been extracted.  
Specifically: 
 
When a new center settlement sprouted: 
 

Kctr = Ksat = Kout(1 + sK)       (9) 
 
Kout = carrying capacity of an outland patch, i.e., not part of a polity, was initialized to a 

random value. 
sK (model parameter) = factor by which Kout increased due to improved security and 

economies of scale when patch became part of a polity, not including distance discount.  
 

When fusion occurred at tick t:   
 

For all exiting satellites of the fused polity’s center, carrying capacity Ksat was unchanged: 
 

Ksat (t) = Ksat (t-1)       (10) 
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For all new satellites of the fused polity center, including former centers 
 

Rdis = (1 – rD) D       (11) 
 
Rdis = portion remaining after attenuation over distance 
D = distance from satellite to center, in grid units 
rD (model parameter) = compounded rate at which center’s influence on satellite was 

attenuated for each unit of grid distance between them  
 
Kext = xK Rdis Ksat (t-1)      (12) 
 
Kext = carrying capacity extracted from satellite by center 
xK (model parameter) = portion of Ksat extracted by center (not including  distance 

discounting)   
 
Ksat (t) = Ksat (t-1) - Kext      (13) 
 

For the center of fused polity, carrying capacity Kctr after resources were extracted from all 
satellites 

 
Kctr (t) = Kctr (t-1) + Σ Kext from all new satellites in polity  (14) 
 

During model execution, (9) was applied when a new center/settlement pair sprouted in a patch 
with no neighboring polities.   Expressions (10) – (14) were used whenever polities fused, because 
the number of satellite settlements controlled by a single center grows, which increases the total K 
extracted by the center.  For the same reason these expressions were used when a new settlement 
sprouted adjacent to an existing polity.  If a polity collapsed during the current tick, K of each 
former settlement site reverted to Kout. 
 
In order to evaluate the expressions above dependent on distance, the center’s grid location must 
be known. That was determined during polity fusion and provided an important link between the 
carrying capacity expressions (9) – (14) above and the fission/fusion processes.   That linkage 
operated as follows.  Polities came into conflict when a settlement was added that bridged the gap 
between two or more polities.  This corresponds to one or more of these neighboring polities 
attempting to expand into the buffer zone separating them. The center of the prevailing polity 
retained its current location and became the center of the newly constituted fused polity.  The other 
competing centers became satellite settlements in the new larger polity.   
 
The competition’s winner was determined by comparing the effective strengths of two, three or 
four competing centers with the strongest being the winner.  The assumption was that the strength 
of agrarian polities would have been determined by a combination of center’s population size and 
resources discounted by distance.  The form chosen for strength at a center was: sqrt( Kctr·Nctr), 
where Nctr is the center’s population and Kctr is center carrying capacity determined by (14) above 
during the previous tick. (A simpler strength formulation, Nctr alone, was considered but rejected 
for routinely allowing a large polity to be absorbed by a much smaller competitor on its distant 
fringe.) Strength at the respective centers was diminished by the distance it had to be projected to 
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the site of conflict, which was the point of fusion where the new settlement sprouted.  Effective 
strength at the conflict site was the strength at center reduced by distance discounting, the same as 
in (11) above.  This competition model was inspired by political scientist Lars-Erik Cederman’s 
(1997) spatial model of emergent polarity. 
 
It is important to note that the SOC exhibited by the baseline FFM was not altered by these 
population growth and resource allocation extensions.  That is because the occurrences of both 
fusion and fission were not functions of carrying capacity or population, even though fusion 
outcomes were. That is, the relative strength of competing polities determined which one absorbed 
the others during fusion but did not explicitly influence when fusion occurred.  To validate the 
preservation of SOC, the frequency-size distribution was compared from comparable simulation 
runs before and after extending the model.  Fig. 4 demonstrates that the distribution after 
extensions was the same as before.  
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Fig. 4: Frequency-size distribution after model extended with population (N) and carrying capacity (K) variables. Insert 
is distribution from initial forest fire model (copy of Fig. 1).  For both cases: grid size 128x128, resistance interval 125 
steps, and 40 million step simulation length.  

 
 
4.0 Empirical Data 
 
Consider an empirical relationship based on the frequency (1/yrs per cycle) and size (km2) of 
collapses for Mississippian chiefdom and Maya archaic state cited in the Introduction, 1.1.  It is 
interesting to note that these two points (frequency, size) were reasonably well fitted by a power 
law with an exponent of -1.0 expected for an SOC process (-0.84 slope for a straight line through 
the two points plotted on log-log axes). 
 
However these two data points were based on admittedly weak assumptions about the timing and 
magnitude of these prehistoric size variations.  More daunting, there was a dearth of comparable 
data for polities in the size range between the two extremes. 
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Estimating years per fission cycle also can be confounded by climate changes, such as evidence of 
a 200 year drought cycle in Maya regions (Hodell 2001).  This ambiguity was also evident with 
Tiwanaku’s decline around AD 1000 -1100. Although the collapse of Tiwanaku coincided with a 
major drought (Binford et al. 1997), it has also been argued that existing internal social tensions 
were the root causes of the state’s demise (Janusek 2005). 
 
As an alternative to problematic longitudinal data, employing spatial data was motivated by 
another characteristic of the FFM: the distribution of polity areas at one point in time mirrors the 
power law distribution of fission frequency over a long period of time. While not without issues, 
area measures suggested a comparatively reliable and abundant source of empirical spatial data. 
These are rank-size distributions of contemporaneous settlements in which the largest is ranked 1, 
next largest 2, and so on.  Log-log plots of settlement rank-sizes have been published for a number 
of regional surveys world-wide.   
 
Plots of settlement rank-size are characterized by their deviation from the straight line of a power 
law with an exponent of -1.  Plots closely matching this line are said to obey Zipf’s law (or rule) 
named after George Zipf, best remembered for the observation that modern city sizes were thusly 
distributed (Zipf 1949). (See the Appendix for discussion of why it is more appropriate to refer to 
this plot line as Zipf’s law rather than lognormal, the convention often followed in the archaeology 
literature.)    
 
Illustrated in Fig. 5 (left) these plots from field surveys are classified as convex when the highest 
ranked settlement is slightly larger or same size as the second ranked and the remaining points are 
predominately above the line. It is classified as a primate pattern when points fall mostly below the 
line with the first ranked settlement much larger than the second largest. It has become common 
practice for archaeologists to use this classification to compare the settlement patterns from two or 
more time periods or geographic areas and infer differences in political and economic 
organization.  The generally accepted interpretations of these two rank-size patterns are: 
  

- Convex distributions indicate a dispersed and non-integrated region.  However a convex 
pattern also can be expected from a survey area containing more than one primate center. 
Inferring a non-integrated area from this pooled settlement data would be erroneous (Johnson 
1980, Smith and Schreiber 2006). 

 
- Settlement size distributed as a primate pattern is indicative of a politically and otherwise 

culturally dominant center settlement surrounded by much smaller settlements articulated to 
that center but with little interaction between these satellite settlements (Johnson 1980).   

 
Also shown in Fig. 5 are values calculated for the A coefficient defined by Drennan and Peterson 
(2004) to quantify the deviation of rank-size distributions from Zipf’s rule.  This metric is one of 
several that have been proposed (Johnson 1980, Savage 1997, Griffin and Stanish 2007). The A 
coefficient was chosen for use here because of its intuitive correspondence to the difference in area 
enclosed by a rank-size plot above the Zipf line and the area below it. The area difference is 
normalized to range from -1.0 to 1.0.  Hence A equals zero for an ideal Zipf distribution. 
Increasingly positive values for A indicate higher convexity, and more negative values signify an 
increasingly primate pattern.  (A can be < -1.0 for very primate distributions.)   
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Fig. 5: Comparison of empirical and simulated rank-size settlement population (N) surrounding a primate center, 
Dashed lines show Zipf’s rule. A is convexity metric.  (left) Survey data from Tiwanaku valley (assumed N proportional 
to area). Convex lower plot, prior to urban center in Formative Period 1500 BC – AD 100. Primate upper plot, at height 
of urban density in Classic Period, AD 800 – 1000.  (right) Typical simulated transition from primate to convex pattern 
following polity fission for largest center. 
 
 
5.0 Simulation Results 
 
Three macro-level patterns identified from empirical rank-size data were expected to emerge 
during simulations. All three of these patterns were consistently observed during numerous runs 
and were robust over the full range of parameter values listed in Table 2.  The rationale and results 
for each of the three expected patterns are presented below. 
 
Throughout these runs the plots shown in Fig. 4, along with other spatially related plots, were 
monitored to assure that the population model extensions had not distorted SOC confirmed for the 
baseline fusion/fission model.   
 
5.1 Population rank-size distribution for an area surrounding a single dominant center will be 
primate immediately before fission and transition to convex thereafter.   
 
The empirical basis for this expectation is illustrated in Fig. 5 on the left, with survey results from 
the Tiwanaku Valley (McAndrews et al. 1997). The upper plot exhibits a primate rank-size pattern 
for a survey area, about 20 km across, containing the primate center of the Tiwanaku state at its 
height, i.e., a period of high integration.  The convex lower plot covered the same survey area but 
was dated as preceding the location’s growth as an urban center.  Surveys after Tiwanaku’s decline 
indicated that the entire area had reverted to a dispersed, non-integrated settlement pattern.  Other 
instances of alternating primate-convex patterns, also localized around one dominant center, 
include the Valley of Oaxaca in present day Mexico 1500 BC to AD 1520 (Drennan and Peterson 
2004) and the southern Levant during the early and middle Bronze Age (Savage and Falconer, 
2003). 
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The expected rank-size pattern seen in field survey data described above was consistently observed 
during simulations. During each time step the dominant center was chosen as the settlement with 
the largest population (N) over the entire grid.  If the center’s polity fissioned on the next time step 
a rank-size distribution of population was constructed and convexity measure A calculated for a 
circular region of grid cells centered on that dominant center. This was repeated at step intervals to 
create a time sequence of plots to trace the change in convexity following fission.  Fig. 5 (right) 
shows a typical sequence of such plots.  The plot just prior to fission (tick = 0) was clearly primate, 
indicating a high degree of integration between the center and satellite settlements.  Plots from the 
same grid region after the polity fissioned (tick = 1 ... 1300) became progressively convex due to 
population diffusing away from the polity’s center.  These results were robust for varying sizes of 
the surrounding grid region (controlled by radius parameter in Table 2; radius set to 7 grid units 
for the case shown).  The range of variation illustrated in Fig 6 indicated that these results were 
typical for simulated fission occurrences.  Comparing Fig 5 and 6, the congruency between 
simulated and naturally occurring rank-size patterns was evident.   
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Fig. 6: Range of variation and mean convexity measure A. Simulated settlement population (N) rank-size from multiple 
collapses (of largest centers).  At left each plot recorded at fission. Plots at right taken 1300 steps later, time for A to 
reach maximum.  Dashed lines trace Zipf’s rule, drawn at slope of -1 from mean of plot y-intercepts. 

 
5.2 Strengthening each of four integrative processes by adjusting its associated parameter will 
decrease the time averaged rank-size convexity for the entire grid.  
 
In more general terms this expected pattern could be restated as: The impact of changing model 
parameter values will be consistent with corresponding changes in real-world settlement systems 
integration as reflected in empirical rank-size distributions.  Gregory Johnson (1980) defined the 
property of systems integration as the extent to which people, materials, and information flow 
within a system of settlements.  He presented a number of case studies from historical and 
archaeological data in which rank-size convexity decreased when integration was increasing.  
These cases included the Susiana Plain in southwest Iran from 3800 to 3400 BC where the 
centralization of craft production and other micro-level diagnostics were proxies for increased 
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integration.  Similarly, rank-size convexity decreased in inverse proportion to internal shipping 
tonnage per-capita, another proxy for integration, in the colonial United States between 1790 and 
1850.  Each of these integration proxies was actually one of many micro-level processes that 
contributed to integration visible in the area wide rank-size distributions.   
 
In like manner of the empirical rank-size cases above, four simulated integrative processes were 
defined.  The strength of each was directly controlled by one model parameter as listed in Table 3. 
Consider population mobility as the exemplar for arguments made to define all these processes.  
By definition a more mobile population fosters increasing integration.  According to model 
equations (5) and (6) in 3.1, raising the diffusion constant parameter cF increases the micro-level 
population flow between neighboring settlements. That change in turn was expected to lower the 
macro-level convexity measure A for the entire grid.  Increasing the model diffusion parameter 
would be analogous to increasing shipping tonnage in the colonial US case above.  
 
Table 3: Model parameter values used in each of seven simulation runs to progressively strengthen four associated 
micro-level processes contributing to area-wide settlement systems integration.  

 Micro-level Integrative Processes 

Model Parameters(1) 
K Base-
line (2)  

More 
Surplus 
Extraction 

More 
Scale 
Efficiency 

Less 
Distance 
Attenuation 

N 
Base-
line 
(2) 

Increasing Population 
Mobility 

 cF Population diffusion 
constant 

 
-  - - - 0.003  → 0.03  → 00.3 

rD  Distance attenuation 
rate 

  
0.2 0.2 0.2      →     0.02  0.02 0.02 0.02 

 sK Scale/Safety 
Efficiency factor 

  
1.0 1.0    → 10 10 10 10 10 

xK Surplus extraction 
portion 

0.03 → 0.3 0.3 0.3 0.3 0.3 0.3 

(1) Model parameters defined in Table 2. 
(2) N = population, K = carrying capacity 
(3) → marks a step change in parameter value to strengthen integrative process from one simulation run to the next.  

 
Over a series of simulation runs each micro-level integrative process was progressively 
strengthened by stepping the value of its associated parameter while holding the others constant. 
Each column in Table 3 lists the parameter values for each run.  After a run reached steady state, 
rank-size and convexity metric A of either population (N) or carrying capacity (K) for the entire 
grid were sampled every 50 time steps for 1000 samples, from which mean values were calculated. 
(Rank-size plots appeared to reach stasis after 500 samples).  N was sampled for the population 
mobility process.  For the three other processes, differences in rank-size were more clearly 
observed by sampling K since the associated parameters were related directly to K through the 
equations in section 3.2.  Because N always tracked K, with a delay, there was no loss of 
generality over the sufficiently long time-averaging interval. 
 
The expected pattern consistently emerged as the results in Fig 7 indicate.  When each integrative 
process was progressively strengthened, rank-size distribution became less and less convex.  Fig 7 
also shows another characteristic seen in empirical rank-size.  In all cases A was > 0, indicating a 
robust convex rank-size classification consistent with pooling expected for field survey areas 
containing more than one primate center.   
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Fig. 7: Time averaged rank-size plots of population (N, on left) and carrying capacity (K, on right) for full grid (64 x 
64).  Plot and convexity measure A show results of strengthening integrative processes by adjusting associated 
parameters; see Table 3. Averaged from 1000 grid snapshots each taken every 50 steps (started after reaching 
steady state).  Dotted lines indicate Zipf’s rule for highest and lowest A. 

 
5.3 Subordinate population centers articulated to a primate center or another subordinate center 
will be observed within polities.  
 
 By definition the existence of a complex polity is inferred from field surveys indicating a 
hierarchy of secondary centers.  During simulations hierarchies of subordinate population centers 
consistently emerged. This was best visualized just after the collapse of the polity in question; an 
example is shown in Fig. 8.  The relative sizes of the former population centers were visible as the 
extent of diffusion wave fronts streaming away from settlements of the collapsed polity. 
 

 

(ffm28h)  
Fig. 8: Relative size and location of former primate center and secondary centers visualized by the “ghost” of large 
collapsed polity. 
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The internal model dynamics responsible for this pattern occur during polity fusion.  The 
settlement that was the center of the absorbed polity remains intact, albeit no longer a primate 
center.  This former center retains the carrying capacity it had just prior to fusion less the amount 
extracted by the center of the newly consolidated polity.  As a polity expands, each successive 
fusion thus adds another branch to an emerging virtual hierarchy of secondary population centers.  
The model contains no rules or structures to explicitly create or maintain this hierarchy; it is a side 
effect of applying expression (13) above to all settlements in an absorbed polity. 
 
 
 
6.0 Conclusions 
 
Social scientists have been intrigued by self-organized criticality (SOC) as a theoretical framework 
to understand a host of social processes including fusion/fission polity cycling. However 
speculations that this cycling is a manifestation of SOC have been unsatisfying for lack of clear 
correspondence between the elements of SOC simulation models and those of real-world polities.  
The polity model described here is intended to address that issue. Its micro-level structure and 
behavior have clear analogs to early complex polities, particularly the following processes: 

o population growth within and migration between settlements 
o allocation of resources between a polity’s producing population and its ruling elites 
o internal competition between rival factions 
o external competition between expanding polities 

 
Macro-level patterns have emerged during simulations that are consistent with the archaeological 
and historical records for early complex polities: 

o ongoing cycles of polity fusion and fission 
o noncontiguous polities separated by sparsely populated buffer areas 
o distribution of simulated settlement populations matching patterns seen in empirical rank-

size data 
o hierarchy of secondary settlements articulated to a primate center 

 
At the same time, the model described here unequivocally exhibited SOC.  That is because it is 
structurally identical to the forest fire model, which is widely recognized for its SOC 
characteristics.  In particular, simulations with the current model resulted in a fission frequency-
size distribution closely matching a power law with exponent of -1. 
 
Evaluating a model’s usefulness requires knowing what has been left out in addition to what was 
included (Holland 1995). Two potentially significant features not included in the current model are 
discussed along with suggestions for addressing them in the future.  
 
 
6.1 Gradual Collapse 
 
Polities collapse suddenly and completely in the current model that is structurally equivalent to a 
special case of the forest fire model (FFM). Discrete events with catastrophic outcomes are typical 
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in models exhibiting SOC.  Yet the archaeological record indicates that decline of early complex 
polities could be gradual and have many short troughs (Marcus 1998, Stanish 2003, Turchin 2003).  
How can this apparent contradiction be reconciled?   
 
One could reasonably argue that over many trials the distribution of discrete yet temporally 
stochastic collapses is equivalent to a continuous gradual decline.   Perhaps a less abstract 
approach would be to consider the more generalized form of the FFM. The special case of the 
model described up to this point specifies that fire always spreads from a burning tree to its healthy 
neighbors.  However in the more general form there is another model parameter g, the probability 
that a living tree is immune to the spread of fire.  In the special case g=0.  When g > 0 the model 
becomes FFMIT, forest fire model with immune trees (Albano 1994).   
 
For the corresponding polity cycling model, g proportion of settlements would be immune to the 
spread of resistance from neighbors.  Resistance by one settlement would not necessarily cascade 
throughout a polity leading to its immediate collapse.  Rather, the resistance could be extinguished 
after only a few settlements seceded.  This could be implemented in the current model by making 
each new settlement immune with a probability of g.  Simulation experiments could then 
determine the range of g values for which sustained polity cycling and SOC were observed. 
 
 
6.2 Feedback from Population to Fission/Fusion 
 
After extensions to include the impact of fission/fusion on carrying capacity (K) and population 
(N), simulations continued to exhibit SOC, a major objective for the current model.  This 
persistence was assured by limiting the feedback on fission/fusion from changes in N and K to the 
outcome of fusion, i.e., which polity absorbed its competitor.  However the probability of 
fission/fusion events remained independent of N and K.   
 
In an earlier polity model (Griffin and Stanish 2007) the probability of both fusion and fission 
were modulated by more nuanced population feedback.  The occurrences of fusion and fission 
were random functions of both the sizes and distance between opposing populations.  It was 
straightforward to begin further extensions of the current model to complete these additional 
feedback loops.  One effect observed in preliminary experiments was filling in empty spaces 
within polities due to a lower incidence of fusion and fission.  Thus the dendritic shape typical of 
early complex polities transitioned to more contiguous areas separated by increasingly distinct 
borders, suggestive of early nation states.  Further simulations are needed to observe collapse-size 
distributions as an indicator of changing SOC. 
 
It is hoped that the model and simulations presented here suggest useful approaches for realizing 
the promise of self-organized criticality as a framework to understand polity cycling, particularly 
in relation to rank-size analysis of settlement survey data. 
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Appendix 
 
A1. Comparing Zipf’s Law and Lognormal Distributions 
 
Zipf’s law or rule is a rank-size distribution that follows a power law with an exponent of -1.  It is 
so named for George Zipf, remembered for observing that a number of naturally occurring 
phenomena appeared to be distributed as such a power law, most notably the rank-size of cities 
(Zipf 1949).  In the archaeological literature rank-size data that follows Zipf’s law is often called 
lognormal.   The more general usage of lognormal describes data whose log values have a normal 
distribution over their full range.  Although lognormal data can appear linear on a log-log graph 
over a limited range of values it is quite distinct from a -1 power law distribution.  In complexity 
theory distinction between the two is important, because the presence of one or the other implies 
very different underlying processes (Shalizi 2006).    
 
The differences between Zipf and lognormal patterns also have been evident in the continuing 
debate over size distribution of modern cities, towns, and smaller settlements.  Several 
international comparative studies have supported Zipf’s law (Gabaix and  Ioannides 2003) 
although in a recent analysis of multi-country data, the maximum likelihood estimates of  power 
law exponents for cities were reported to be significantly different than -1.0. Further, when the 
smaller settlements were included the best fits were achieved with a lognormal rather than a power 
law function (Decker 2007).  This is consistent with earlier observations that the rank-size plot for 
a number of urban systems displayed a downward curvature characteristic of a lognormal 
distribution (Parr 1976).   
 
 
A2. Proportionate Random Growth 
 
Proportionate random growth is a process in which each entity in a group grows at a random rate 
but in proportion to its current size.  This was considered as the population growth mechanism for 
the current model.  However, the causal correspondence to the assumed behavior of populations in 
early complex polities was judged as too shallow.  Nonetheless, when combined with the basic 
fusion/fission model from 2.0, this growth process produced some intriguing simulation results. 
 
A number of models based on proportionate random growth have received significant attention in 
regional economics and urban studies to explain why city sizes appeared distributed according to 
Zipf’s law. (See (Corominas-Murtra and Sole 2010) for a recent compilation of proposed 
explanations for the universality of Zipf’s law.)  The theoretical underpinning of the random 
growth models was Gibrat’s proportionate effect, which paradoxically results in a lognormal rather 
than a power law distribution (Eeckhout 2004, Batty 2001).  Of particular interest here was the 
Yule-Simon growth model in which new cities of a minimum size were added to the system at a 
constant rate in addition to growth of existing cities by proportionate effect. (Gabaix and 
Ioannides, 2002 p 16; Parr 1976).  The reported result was a Zipf distribution rather than a 
lognormal one as expected from proportionate effect alone.  
 
A similar result was achieved by using polity fusion/fission as implemented in the current model to 
bound proportionate random growth. Collapsing polities effectively acted as an upper limit on 
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population.  Similarly, formation of new settlements at a constant time interval set the lower limit.  
The resulting rank-size distribution closely matched a power law whose exponent varied over the 
domain of the only model parameter, variance of the random growth rate.  Sweeping this 
parameter’s value resulted in a stable plateau in the exponent’s range at -1, the value 
corresponding to Zipf’s law.  
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