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Assessment of multiple ecosystem metabolism methods in an estuary

Luke C. Loken ,1,2* Erwin E. Van Nieuwenhuyse ,3 Randy A. Dahlgren ,4 Leah E. K. Lenoch ,5

Paul R. Stumpner ,5 Jon R. Burau ,5 Steven Sadro 2

1U.S. Geological Survey, Upper Midwest Water Science Center, Middleton, Wisconsin
2Department of Environmental Science and Policy, University of California-Davis, Davis, California
3Bureau of Reclamation, Science Division, Bay-Delta Office, Sacramento, California
4Department of Land, Air, and Water Resources, University of California-Davis, Davis, California
5U.S. Geological Survey, California Water Science Center, Sacramento, California

Abstract
Ecosystem metabolism is a key ecological attribute and easy to describe, but quantifying metabolism in estuar-

ies is challenging. Properly scaling measurements through time and space requires consideration of hydrodynam-
ics and mixing water from heterogeneous sources, making any estimation uncertain. Here, we compared three
methods for modeling ecosystem metabolism in a portion of the Sacramento-San Joaquin Delta. Metabolism esti-
mates based on laboratory incubations, continuous in situ buoys, and an oxygen isotope approach all indicated
the system was net heterotrophic, and calculated rates were comparable in magnitude when averaged over the
2-month study. Daily metabolic rates based on in situ buoys were the most variable, likely due to horizontal and
vertical advection and poor portrayal of the dissolved oxygen budget. After temporally averaging in situ buoy esti-
mates or smoothing the dissolved oxygen time series for tidal effects, rates were more comparable to the other
methods, which may be necessary to account for tidal advection and unbalanced contributions from subhabitats
within the metabolic footprint. Incubation-based rates represent the finest temporal and spatial scale and only
account for pelagic processes, which may explain why incubation-based rates were lower than the other two
methods. The oxygen isotope method provided temporally and spatially integrated rates that were bracketed by
the other two methods and may be a valuable tool in systems matching the model requirements. Because uncer-
tainty arises in each method from a number of assumptions and scaling calculations, the resolution of metabolic
rates in estuaries is likely coarser and more variable than in other aquatic ecosystems.

Ecosystem metabolism is a key ecological attribute describ-
ing the total amount of energy flowing through an ecosystem
and its food web. Metabolism has been foundational in the
development of ecosystem science and food web ecology
(Lindeman 1942) and has implications for global carbon bud-
gets and climate change (Cole et al. 2007; Yvon-Durocher
et al. 2010). Generally, metabolism is separated into two com-
ponents, gross primary production (GPP) and ecosystem res-
piration (ER), representing the production and consumption
of organic carbon. Newly produced organic carbon (through
GPP) supports the majority of the global food web, and in
aquatic ecosystems represents the amount of new energy cap-
tured by phytoplankton, macrophytes, and other photosyn-
thetic organisms. As organic carbon is consumed (through
ER), energy is used for growth, movement, reproduction, and

the myriad of biological processes within autotrophic and
heterotrophic organisms. The balance between GPP and ER is
net ecosystem production (NEP), noting whether the system
is a net source or sink of organic carbon. Direct measurements
of ecosystem metabolic rates have been made across aquatic
ecosystems, including lakes, streams, rivers, estuaries, and the
ocean (Caffrey 2004; Solomon et al. 2013; Demars et al. 2015;
Yang et al. 2017). Many inland waters are net heterotrophic
as they receive and respire surplus organic carbon from
upstream ecosystems and terrestrial watersheds (Cole et al.
2007; Hoellein et al. 2013). However, a number of aquatic
ecosystems, including many estuaries, are net autotrophic
(Balmer and Downing 2011; Hoellein et al. 2013; Pacheco
et al. 2014) as they produce more organic carbon than they
respire, and thus either accumulate organic matter (e.g., blue
carbon), stored in sediments or biomass, or export it to down-
stream rivers, lakes, or the ocean.

Our understanding of variation in metabolic rates through
space or time across different types of aquatic ecosystems
comes from nearly a century of measurements made using a
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variety of techniques (Staehr et al. 2012). Chemical measure-
ments of changes in dissolved oxygen (DO) or inorganic car-
bon in light/dark bottle incubations have long been used to
quantify metabolic rates (Gaarder and Gran 1927; Kemp
et al. 1997; Gazeau et al. 2005). The development of the car-
bon isotope (14C) uptake method provided a more direct and
sensitive measurement of GPP (Steemann Nielsen 1952),
though it retained the limitations of bottle incubations,
including scale (Gerhart and Likens 1975). Something closer
to ecosystem scale measurements was introduced with the
application of the in situ mass balance approach, where diel
variation in DO concentrations were used to model metabolic
rates (Sargent and Austin 1949; Odum 1956). Several
approaches relying on the measurement of oxygen isotopes
(18O) now provide both bottle and ecosystem scale estimates
of metabolic rates (Grande et al. 1989; Hotchkiss and
Hall 2014; Bogard et al. 2017). Each of the methods for quan-
tifying ecosystem metabolic rates has different advantages and
disadvantages, capturing slightly different spatial or temporal
aspects of metabolic activity (Staehr et al. 2010). Although a
variety of techniques have been applied across a range of
aquatic ecosystems, few studies compared multiple approaches
concurrently (Bott et al. 1978; Grande et al. 1989; Gazeau
et al. 2005; Song et al. 2016; Murrell et al. 2018; Howard
et al. 2020). Such studies allow for the direct comparison of
metabolic rates and their variability. Moreover, they provide
valuable insight into the efficacy of different approaches when
making comparisons across ecosystems (Cloern et al. 2014), or
when evaluating temporal or spatial variability within individ-
ual ecosystems with complex dynamics and habitat
heterogeneity.

Estuaries are among the most challenging ecosystems in
which to measure metabolic rates (Cloern et al. 2014) given
their hydrodynamic complexity, habitat diversity, and
steep biogeochemical and productivity gradients. Com-
pared to lakes and rivers, estuaries do not have clear ecosys-
tem boundaries and water depths can vary multiple meters
within a daily tidal cycle. Habitat heterogeneity, channel
geomorphometry, and tidal hydrodynamics create gradi-
ents or complex mosaics of water residence time, nutrient
concentrations, salinity, and water clarity/light availability
that affect ecosystem metabolic rates (Staehr et al. 2016;
Shen et al. 2019; Tassone and Bukaveckas 2019; Ganju
et al. 2020; Cloern et al. 2020). Consequently, water and its
metabolic signal at a single location within an estuary rep-
resent a dynamic integration of habitat types (Wang
et al. 2018) that expand/contract at hourly to annual time-
scales in response to ebb/flood and spring/neap tide
dynamics and to river hydrology (Kemp & Boynton, 1980).
The spatial extent and metabolic footprint for a given mea-
surement is difficult to define, and accounting for such
complexity in coupled metabolism-hydrodynamic models
is challenging, not easily generalizable, and often ignored.
Metabolism at the whole-estuary scale integrates the

metabolic signal of all distinct subhabitats and the fluxes
among them (Crosswell et al. 2017), making it difficult to
properly scale point measurements to the whole system.
Coupling simple mass-balance models that incorporate
continually changing physical dimensions of surface area,
volume, and depth, with a basic understanding of hydrody-
namics and spatial heterogeneity can provide useful esti-
mates of metabolic rates; however, interpreting such rates
on their own can be challenging.

Here, we evaluated ecosystem metabolic rates in a compara-
tively hydrologically simple portion of the Sacramento-San
Joaquin Delta using three different but concurrently applied
methodological approaches: continuous in situ measurements
of DO from multiple depths (referred to as “buoy” in the text),
laboratory light/dark bottle incubations of DO (“incubation”),
and measurements of oxygen isotopes (“18O”). Metabolism
was monitored over a 2-month period at multiple locations
arranged in a spatial network across a 7-km segment of a dead-
end slough. Across the study, we measured temporal and spa-
tial variation in hydrodynamics, nutrient concentrations, and
water clarity, all of which may have contributed to variation
in true metabolism, but also to variation in model uncertainty.
Lacking a true measure of ecosystem metabolism, we show
that by comparing estimates using multiple approaches over a
spatial and temporal domain, we can better constrain metabo-
lism in an estuary.

Materials and procedures
Site description

The Sacramento River Deep Water Ship Channel (DWSC)
is located in Northern California and is part of the greater
San Francisco Bay/Sacramento-San Joaquin Delta Estuary
(Fig. 1). The DWSC is ~ 40-km long, is ~ 150-m wide, and
has a mean depth of 7.5 m. The entire DWSC is tidal, where
water levels fluctuate up to 2 m daily. At the northern termi-
nus of the DWSC, a set of decommissioned locks connect
the DWSC to the Sacramento River. Although some water
leaks through the locks during periods of high river flow,
net flows in the DWSC are minimal. Because the system has
minimal off-channel habitat and lacks upstream water
inputs, functionally, the DWSC resembles a large dead-end
slough with a straight and homogeneous channel form
(Feyrer et al. 2017). The channel is organized longitudinally,
where the seaward (southerly) side of the channel
exchanges with the greater Delta with every tidal cycle.
Moving landward (northernly), tidal excursion lengths com-
press (Stumpner et al. 2020), and water becomes increas-
ingly isolated (Gross et al. 2019). Turbidity and dissolved
inorganic nitrogen (DIN) also decrease moving landward in
accordance with dampening flow velocities (Morgan-King
and Schoellhamer 2013) and increasing water residence
time (Downing et al. 2016), respectively.

2

Loken et al. Estuary metabolism



Metabolism data sources
In summer 2019, a whole-ecosystem experiment was con-

ducted in the DWSC to evaluate the effects of nitrogen fertili-
zation on primary production and food web dynamics.
Between 22 July 2019 and 08 August 2019, 1687 kg N
(as calcium nitrate—YaharaLiva—Yara, Tampa, Florida) was
uniformly applied from a crop dusting airplane to a
~ 60,000 m2 area in the upper DWSC. Fertilization of the same
tidally referenced location occurred on eight dates, and
because of advection/dispersion, each day’s fertilized area
expanded in size and nitrate concentrations returned to back-
ground conditions within a few days. The hydrodynamics of

the DWSC and ecosystem response to the experiment will be
presented elsewhere.

As part of our analysis, a number of ecosystem attributes
were monitored at seven sites evenly spaced (~ 1.2 km) in the
upper DWSC (Fig. 1). Sensor data and water samples used in
metabolism calculations were obtained in the morning (08:00
to 12:00 Pacific Daylight Time (PDT)) on 27 dates between 08
July 2019 and 26 August 2019. Vertical profiles of water tem-
perature, DO, and turbidity were measured on a YSI EXO2
sonde (Xylem, White Plains, New York). On calm days, light
extinction was calculated using vertical profiles of photosyn-
thetically active radiation (PAR; LI-1500 Light Sensor Logger,

Fig 1. Sacramento River Deep Water Ship Channel sampling and buoy locations. Sensor arrays were deployed on buoys (yellow half circles) � 30 m from
the western shore. Synoptic sampling occurred in the center of the channel at seven sites (orange diamonds and red squares) evenly spaced longitudi-
nally. Three of the sites are located at Navigation Lights (NL), which are part of a long-term sampling program. Note the inset not drawn to scale.
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LI-COR Bioscience, Lincoln, Nebraska). Because light profiles
were not collected each day, light extinction for each sample
was modeled using turbidity and linear regression (Fig. 2).

On 14 dates (twice weekly), 6 L of surface water (1-m
depth) was collected from each site for laboratory incubations.
Water was sieved through a 150-μM screen to remove zoo-
plankton and collected in low-density polyethylene
cubitainers. Incubation water was stored at ambient tempera-
ture in a dark cooler until processing within 8 h of collection.

On 16 dates (~ twice weekly), water samples were collected
for 18O analyses. Bubble-free water used in DO isotope
(δ18O O2) analysis was collected in new 12-mL exetainers that
were pre-evacuated and pretreated with 10 μL of water satu-
rated with HgCl2. Exetainers were filled by opening them
~ 0.1 m below the water surface. Samples for water isotopes
(δ18O H2O and δ2H H2O) were collected in 2-mL glass vials.
Vials for water isotopes were overfilled for ~ 15 s using a peri-
staltic pump and capped without headspace. 18O samples were
immediately stored on ice, transferred to a 4�C refrigerator
within 6 h of collection, and analyzed within 5 months.
Exetainers for δ18O O2 were processed at the University of
Washington Facility for Compound-Specific Isotope Analysis
of Environmental Samples (http://depts.washington.edu/csia/)
using a ThermoFinnigan Delta V Plus isotope ratio mass spec-
trometer in continuous-flow mode connected to a custom

autosampler interface (Barth et al. 2004; Holtgrieve
et al. 2010). Atmospheric air was used as the working stan-
dard, and δ18O O2 were corrected based on the mass of
16O O2. Vials for δ18O H2O and δ2H H2O were analyzed at
the Stable Isotope Facility at the University of California-Davis
(https://stableisotopefacility.ucdavis.edu/) using a laser water
isotope analyzer. Stable isotopic composition of oxygen and
hydrogen are reported in the text using delta (δ) notation:

δ18Oor δ2H ‰ð Þ¼ Rsample

Rstandard

� �
�1

� �
�1000, ð1Þ

where Rsample and Rstandard are ratios of heavy to light isotopes
(18O:16O or 2H:1H) in samples and Vienna Standard Mean
Ocean Water, respectively.

In addition to boat-based sampling, a network of stationary
sensor arrays was deployed to continually monitor vertical
dynamics of DO, temperature, and conductivity. Five buoy
arrays were anchored in 6–8 m water ~ 30 m offshore at five of
the seven boat-based sampling sites (Fig. 1). Each array
included three optical DO loggers (PME minidot, DO, and
temperature resolution of 0.01 mg L�1 and 0.01�C) positioned
at depths of 1, 2.5, and 4 m that were attached to cable held
vertically. Three temperature (Onset Hobo U22s, temperature
resolution 0.02�C) loggers were positioned at 1.5-, 3-, and
4.5-m depths, and three conductivity loggers (Onset Hobo
U24s conductivity and temperature resolutions of 0.01�C and
1 μS cm�1) were positioned at 0.5-, 2-, and 3.5-m depths. The
DO sensors logged every 5 min, and the temperature and con-
ductivity loggers every 10 min. The pelagic arrays were
deployed from 02 July 2019 to 18 September 2019; sensors
were cleaned every 2 weeks.

Metabolism methods
We estimated GPP, ER, and NEP using three independent

approaches: laboratory bottle incubations, continuous in situ
buoy DO measurements, and a steady-state 18O isotope model.
Each method has unique assumptions, and calculations repre-
sent different spatial and temporal scales (Table 1). For exam-
ple, GPP estimates from laboratory incubations represent an
instantaneous rate from the photic zone during the day. The
incubation method only captures pelagic processes at the time
of sampling, while the other approaches incorporate both
pelagic and benthic metabolism over the entire day. The in
situ buoy approach assumes zero advection and homogeneous
conditions spatially across the metabolic footprint. The
18O method assumes steady-state DO dynamics and reflects
metabolism and gas exchange over a preceding interval of
time (~3 d) depending on the turnover rate of DO (Bogard
et al. 2017). All methods require scaling measurements, rely-
ing on simplification of physical and biological processes
within the channel, but collectively they provide a holistic
perspective of metabolism in a spatially heterogeneous and
dynamic waterbody.

Fig 2. Light extinction coefficient vs. turbidity. Light extinction calcu-
lated for 250 light profiles during the study. Turbidity is measured in For-
mazin Nephelometric Units (FNU). Solid line is the simple linear regression
model (df = 248, p < 0.001, R2 = 0.78, intercept = 0.635, slope = 0.113)
used to predict light extinction based on turbidity.

4

Loken et al. Estuary metabolism

http://depts.washington.edu/csia/
https://stableisotopefacility.ucdavis.edu/


Laboratory incubations
We estimated metabolic rates using repeat DO measure-

ments in water exposed to varying light treatments in an
environmental growth chamber. After each sampling cam-
paign, we poured water from each site into nine 500-mL
glass jars (three light treatments and three replicates per
treatment) that contained a glass marble (to aid in mixing)
and a PreSens oxygen sensor spot installed on the interior
glass surface (https://www.presens.de/). The sensors trans-
mit data optically, allowing contactless and nondestruc-
tive DO measurement without opening the jar. We filled
and capped each jar without headspace and placed jars on
their sides below an array of metal halide and high-pressure
sodium lights in a Conviron growth chamber (https://www.
conviron.com/). We created three light treatments by draping
shade cloth over two thirds of the jars. We measured light
transmission using a Licor PAR meter and the light intensity

reaching each group was ~ 885–960 (100% light), 260–285
(30% light), and 75–91 (10% light) μmol m�2 s�1. The growth
chamber maintained a constant 23�C, which was near ambient
conditions in the DWSC. Jars were placed in the chamber
within 8 h of collection (~ 16:00 PDT). The jars were allowed
to equilibrate overnight in the incubator with lights off, and
the first DO measurement was recorded the following morning
(~ 08:00 PDT). We then turned on the lights and allowed the
jars to incubate for 8–12 h before measuring DO in the after-
noon (~ 17:00 PDT). Respiration was measured in each jar
immediately following the light incubations, so the respiratory
signal reflected autotrophic and heterotrophic activity associ-
ated with the prior period of production. Jars were incubated
in the dark overnight for ~ 12 h until the final measurement
was made (~ 08:00 PDT, approximately 48 h after water was
collected). Before each DO measurement, the jars were shaken
by hand for at least 15 s to homogenize the contents. We

Table 1. Comparison of rate estimates, data requirements, and underlying principles of metabolism estimation methods.

Method In situ buoy (n = 381) Laboratory incubation (n = 98) Oxygen isotope (n = 112)

Mean rate � SD (coefficient of variation)

GPP 4.95 � 3.04 (0.61) 3.31 � 0.90 (0.27) 4.28 � 0.64 (0.15)

ER �6.40 � 3.31 (0.52) �3.91 � 0.60 (0.15) �5.21 � 0.68 (0.13)

NEP �1.28 � 2.13 �0.61 � 0.62 �0.94 � 0.96

Primary data In situ continuous DO at one or more

depths

ΔDO in water incubated under

varying light and environmental

conditions

DO, δ18O O2, δ18O H2O

Ancillary data Mixed layer depth

Gas transfer velocity

PAR

Light extinction

Mixed layer depth

Gas transfer velocity

Fractionation factors

Limitations Cannot resolve horizontal or vertical

water movements. May need a

sensor network or to average

temporally to account for spatial

heterogeneity and tidal phases

Single point in space and time.

Missing benthic and littoral

processes. Reliant on scaling rates to

the ecosystem

Integrated rate over complex scale.

Reliant on physical and isotopic

models. Additional considerations in

stratified or nonpelagic-dominated

systems

Temporal and spatial

scales

Daily integrated rate over water

footprint. Relates to morphometry,

tides, advection, and dispersion

Potential pelagic rate for a single point

in space and moment in time

Integrated rate over previous DO

turnover timescale, which relates to

gas exchange and morphometry.

Spatial scale relates to water

footprint over time scale

Principle components of

uncertainty

Mixing of heterogeneous water

sources. Accurate measurement of

vertically integrated DO signal.

Tidally driven changes in water

height and volume

Scaling up to ecosystem, accounting

for environmental variation in

incubations

Scaling up from a single sample

(similar as incubation). Steady-state

model assumptions. Lack of

validation data. Only appropriate in

systems matching physical

requirements of the model (well

mixed, deep, pelagic-dominated,

homogeneous)

Note: Rates for gross primary production (GPP), ecosystem respiratio (ER), and net ecosystem production (NEP) are in grams oxygen per meter squared
per day (g O2 m

�2 d�1).
n, indicates number of estimates; DO, dissolved oxygen; ΔDO, change in DO over time; δ18O-O2, isotopic composition of DO; δ18O-H2O, isotopic
composition of water oxygen; PAR, photosynthetically active radiation.
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conducted incubations twice per week because each required
~ 48 h from water sampling to termination.

We used a mass balance method to calculate metabolic
rates in each jar. Because the jars were never opened, volu-
metric rates of NEP, ER, and GPP can be calculated as
follows:

NEPjar ¼ΔDOlight � Δt, ð2Þ
ERjar ¼ΔDOdark � Δt, ð3Þ
GPPjar ¼NEPjar�ERjar: ð4Þ

NEPjar is the change in DO concentration (ΔDO) over time (t)
during the light period, and ERjar is the ΔDO over t during the
dark period. If we assume ER is independent of light, GPPjar
can be calculated through subtraction. NEPjar, ERjar, and GPPjar
share a common volumetric unit (mg O2 L�1 d�1). Note that
ERjar is typically negative, so GPPjar should be positive and
greater than NEPjar.

We scaled jar rates to daily, vertically integrated ecosystem
metabolic rates in the DWSC using solar radiation from the
Dixon, CA California Irrigation Management Information Sys-
tem (CIMIS IDs 121; https://cimis.water.ca.gov/) weather sta-
tion located 25 km SW of the study area, modeled light
attenuation in the water column (Fig. 2), and bathymetry.
Essentially, the average metabolic rates from each light treat-
ment represented depths and durations exposed to that
amount of light. Solar radiation (W m�2) was converted to
PAR (μmol m�2 s�1) using the R package LakeMetabolizer
(Britton & Dodd, 1976; Winslow et al., 2016). At 5-min
timesteps (t), we modeled the vertical light field at each site
using PAR and the light extinction coefficient. We calculated
the depth (Z) and volume (V) of four depth strata (s), sepa-
rated at light levels of 600, 175, and 20 μmol m�2 s�1. These
light levels are the approximate midpoints among the incuba-
tion light treatments. We integrated volumes of each strata
through time, producing the volume–time weights for each jar
metabolic rate. In this respect, jars incubated at the 100% light
level (900 μmol m�2 s�1) represented the uppermost portion
of the water column when and where incident light was
greater than 600 μmol m�2 s�1. For the deepest strata (s = 4,
<20 μmol m�2 s�1; <1% of maximum incident light), we
assumed GPP was zero and used ERJar from the lowest light
treatment (ER3). To estimate daily, vertically integrated GPP
(GPP24h), we summed the volume-time weighted GPPjar rates.
For daily ER (ER24h), we performed a similar calculation, but
we doubled the volume–time weighting for the upper three
depth strata to account for ER during the night in the portion
of the water column that had been illuminated during the day
(left side of Eq. 6). We then used subtraction and the total vol-
ume (Vtotal) to calculate the weighting for ER from the aphotic
zone (right side of Eq. 6). Daily NEP (NEP24h) was calculated
through addition.

GPP24h ¼
X4

s¼1
GPPs

X288

t¼1
Vst

� �
, ð5Þ

ER24h ¼2�
X3

s¼1
ERs

X288

t¼1
Vst

� �
þER3

� V total�2�
X3

s¼1

X288

t¼1
Vst

� �
, ð6Þ

NEP24h ¼GPP24hþER24h: ð7Þ

Total mass rates (g O2 d�1) were converted to areal rates by
dividing by surface area. We use this oversimplification of the
water column through time to convert incubation rates to a
common unit (g O2 m

�2 d�1) for methodological comparison.

In situ buoys
We estimated whole-ecosystem GPP, ER, and NEP using

continuous DO measurements and a modified mass balance
approach. This technique was pioneered by Odum (1956)
and has since been used extensively in studies of aquatic
ecosystems (Staehr et al. 2010; Hoellein et al. 2013;
Bernhardt et al. 2018). Using the continuous DO measure-
ments from multiple depths, we calculated vertically
weighted DO concentration for each buoy at 15-min inter-
vals. We divided the water column into three depth strata
(one for each DO sensor) at the midpoint between sensors
(1.75 and 3.25 m). We accounted for tidally driven changes
in water depth and at each timepoint calculated the volume
of each depth strata. Weighting each DO measurement by
volume, we calculated a vertically weighted DO concentra-
tion (Sadro et al. 2011).

In addition to metabolism, changes in DO result from gas
exchange with the atmosphere. Gas exchange was modeled at
15-min intervals using DO concentration, temperature, and
specific conductivity from the uppermost sensors and a gas
transfer velocity (k) model based on water-side frictional veloc-
ity (u*) (Esters et al. 2017). Wind data from the Dixon, CA
CIMIS weather station (CIMIS IDs 121) were used to calculate
u* using the MATLAB “air–sea” package (https://github.com/
sea-mat/air-sea) described in Pawlowicz et al. (2001). We esti-
mated k for carbon dioxide (kCO2) using u* and equations listed
in Esters et al. (2017), which we converted to kO2 using Schmidt
numbers found in Jähne et al. (1987) and Vachon et al. (2010)
and temperature dependence models in Raymond et al. (2012).
We calculated the equilibrium saturation concentration of DO
at the surface using temperature, specific conductivity, and the
R package LakeMetabolizer (Winslow et al. 2016). The concen-
tration gradient (i.e., the difference between equilibrium and
observed DO concentrations at 1 m depth) was multiplied by
kO2 to estimate gas exchange at each timestep.

We modeled free-water metabolism using the bookkeeping
method (Caffrey 2004) after modifying subroutines in
LakeMetabolizer (Winslow et al. 2016). Although there are
more computationally sophisticated metabolism models
(Winslow et al. 2016; Appling et al. 2018), we chose to use the
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bookkeeping model for its simplicity and its inherent sensitiv-
ity to spatial and temporal variability (Tassone and
Bukaveckas 2019). This model has biases and assumptions
(Staehr et al. 2010), but they are consistent through time and
among sites. After accounting for gas exchange based on sur-
face DO concentration, changes in vertically weighted DO
were used to calculate NEP at each timestep. NEP at night was
assumed to equal ER. ER was subtracted from daytime NEP to
calculate GPP. We used solar energy data from the CIMIS sta-
tion (#121) to identify day periods. Periods with
PAR > 20 μmol m�2 s�1 were noted as day, whereas periods
after noon with PAR < 20 μmol m�2 s�1 were noted as night
for ER calculations. We summed GPP, ER, and NEP over each
dawn-to-dawn 24-h period to calculate daily volumetric rates.
We multiplied each by mean water depth over the 24-h period
to convert to aerial rates. In total, buoys were deployed for
2.5 months, and after data quality control, we calculated daily
metabolism on 69–77 d at the five buoy sites.

We explored two smoothing techniques to account for tidal
advection and model error in buoy-based metabolism esti-
mates. First, we calculated rolling averages of daily GPP over
3, 7, and 13 d. Temporal averaging may reduce model error
associated with the rigid start/stop times used in the book-
keeping routine that incorrectly attribute DO dynamics to the
preceding/following day. Averaging over 13 d (~ half the
spring-neap period) would provide a weighted estimate over a
spatially balanced metabolic footprint because it would
include DO dynamics across the full distribution solar-tidal
phasing (Nidzieko et al. 2014). Metabolism was also calculated
after tidally filtering the DO time series at each site. Each verti-
cally weighted DO time series was tidal filtered using the
WtRegDO R package (https://github.com/fawda123/WtRegDO)
and routines described in Beck et al. (2015). This approach uses
weighted regression to smooth the DO time series based on day
of year, time of day, and tide height, allowing the tidal and bio-
logical components of the DO time series to be separated. We
used the half-window widths of 3 d, 1 h, and 0.6 m to weight
DO observations. After tidally smoothing the DO time series,
we used the same bookkeeping routine to estimate daily rates
of GPP, ER, and NEP.

Oxygen isotopes
Finally, we modeled metabolism using an isotopic

approach that is described in detail in Bogard et al. (2017).
The 18O method uses a single measurement of DO, δ18O O2,
and δ18O H2O to approximate whole-ecosystem metabolic
balance. The underlying principle of this approach is that ER,
GPP, and gas exchange all change the DO concentration and
its isotopic signature (Venkiteswaran et al. 2007). ER lowers
DO and fractionates it leaving a heavier DO pool (increases
δ18O O2). GPP has an opposing effect, as it increases DO and
causes the DO pool to become lighter (decreases δ18O O2) as
the newly formed DO molecules match the isotopic value of
water (δ18O H2O). In this system, δ18O O2 is approximately

22‰ and the average δ18O H2O is �6‰; therefore, GPP will
decrease δ18O O2. Lastly, exchange with the atmosphere
drives the system toward equilibrium in both concentration
(100% saturation) and isotopic composition (~ 23.5‰). Note
that the effects of GPP, ER, and gas exchange drive DO and
δ18O O2 along different vectors in the two-dimensional
DO:δ18O O2 state space (Venkiteswaran et al. 2007), which
allows a single sample to approximate all three processes.

While the 18O approach requires minimal sampling for a
spatiotemporally integrated rate, it does require several
assumptions and estimated model parameters to solve a set of
mass balance equations. We used a steady-state 18O metabo-
lism model originally described by Quay et al. (1995) that has
been updated and used in other aquatic ecosystem studies
(Bocaniov et al. 2012, 2015; Bogard et al. 2017, 2019).
Although the model assumes steady-state conditions (neither
mixing among adjacent water parcels nor diel DO dynamics),
it provides meaningful results in systems that violate these
assumptions (Bogard et al. 2019). The same k model used in
the in situ buoy metabolism method (see above) was used to
approximate gas exchange. We used a common respiration
fractionation factor (α) for all calculations. We chose an α of
0.98 from Bogard et al. (2017) because it aligns with expecta-
tions for systems with greater influence of pelagic processes
on ER compared to benthic processes (Hotchkiss and
Hall 2014). Although we lack true knowledge of α in this sys-
tem, we argue that using a common fractionation factor across
this study is valid given the proximity of sampling sites, the
relative homogeneity among them, and the dominance of
pelagic respiration in a deep, well-mixed system. Because we
did not analyze water isotopes for every sampling event, we
calculated the average for each site. Among all samples,
δ18O H2O ranged from �7.7 to �7.1‰, which was much less
variable than the range in δ18O O2 (17.4 to 23.4‰). The 18O
method is most applicable to low-evasion, unstratified, and
deep systems where pelagic processes contribute the majority
of the metabolic signal (Bogard et al. 2017). The DWSC has all
of these features, and samples were collected in the morning
prior to daily stratification occurrences. Under these assump-
tions, we can compare estimates among different sites and
times to evaluate the spatial and temporal dynamics of the
DWSC as it responds to changes in nutrients and other envi-
ronmental conditions.

Assessment
Laboratory incubations

When scaled up to the ecosystem level, the incubation-
based method indicated the study reach was net heterotro-
phic. Averaging across sites and through time, the global
mean (� SD) incubation rates for GPP, ER, and NEP were 3.31
(� 0.90), �3.91 (� 0.60), and �0.61 (� 0.62) g O2 m�2 d�1,
respectively. The coefficients of variation for GPP and ER were
27% and 15%, respectively (Table 1). The incubation-based
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rates of GPP, ER, and NEP were on average 48–75% lower
(i.e., closer to zero) than the other methods (Table 1) and were
consistent through time (Fig. 3b; Supporting Information
Fig. S2).

Averaging incubation-based metabolic rates through time
highlights clear spatial patterns along the channel’s longitudi-
nal axis. The landward sites had higher GPP than the seaward
sites (Fig. 4b), aligning with the spatial pattern of turbidity
(Feyrer et al. 2017). Because light attenuation was used to scale
incubation GPP to the water column, sites with lower turbid-
ity had greater proportions of the water column represented
by jars incubated in the higher light treatments. Incubation-
based ER did not vary spatially as rates were similar among all
sites (Fig. 4c). Combining the spatial patterns of GPP and ER
suggest that NEP increased moving landward (Fig. 4a), and

median NEP at the uppermost site (NL76) was slightly positive
(0.04 g O2 m�2 d�1). Thus, the incubation based approach
suggests a gradual switch from net heterotrophy to net autot-
rophy within the study reach’s pelagic zone and the potential
for longitudinal transport of organic carbon. However, it must
be noted that the incubation rates do not include respiration
from the benthic community or organisms > 150 μM.

In situ buoys
In situ buoy-based metabolic rates also indicated the system

was net heterotrophic, but metabolic rates were larger in

Fig 3. Comparison of gross primary production (GPP) among the in situ
buoy (a), laboratory incubation (b), and oxygen isotope (c) methods.
Each boxplot is the distribution among sites for daily GPP. The upper and
lower edges are the 25th and 75th percentiles, and whiskers are drawn up
to 1.5 times the interquartile range. Vertical dashed lines note days cal-
cium nitrate was added to the channel. Metabolic rates are presented in
grams oxygen per meter squared per day (g O2 m

�2 d�1).

Fig 4. Spatial patterns of net ecosystem production (NEP) (a), gross pri-
mary production (GPP, b) and ecosystem respiration (ER, c) among
methods. Each box represents the distribution through time at each site. y-
Axes have been truncated to improve visualization. The upper and lower
edges are the 25th and 75th percentiles, and whiskers are drawn up to 1.5
times the interquartile range. Sites are ordered from seaward (NL70) to land-
ward (NL76). Buoys were not deployed at Site2 and Site6. Metabolic rates
are presented in grams oxygen per meter squared per day (g O2 m

�2 d�1).
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magnitude and more variable than the other two methods
(Fig. 3a; Table 1). Averaging across sites and through time, the
global mean buoy rates for GPP, ER, and NEP were 4.95
(� 3.04), �6.40 (� 3.31), and �1.28 (� 2.13) g O2 m�2 d�1,
respectively. In contrast to the other methods, there were not
clear spatial patterns in buoy-based GPP, NEP, or ER (Fig. 4),
in large part because of the high variability. The coefficients of
variation for GPP and ER were 61% and 52%, respectively
(Table 1), which are over twice that of the incubation method.
The higher variability in the buoy rates may reflect sample fre-
quency, as each site had ~ 70 d of buoy-based metabolism in
comparison to the incubation and 18O methods. Moreover,
the in situ method is known to be more responsive to
both short time-scale variations in metabolic rates and
physical dynamics affecting DO fluxes within the water col-
umn (Caffrey 2004; Staehr et al. 2010; Tassone and
Bukaveckas 2019).

There are a number of factors that might affect the high
spatial and temporal variability in the buoy metabolic rate
measurements, all related to DO dynamics within the water
column. The most likely explanation is that our DO measure-
ments were made at too coarse of a vertical resolution for our
mass balance model to capture vertical DO dynamics. It is sur-
prising that GPP varied by an order of magnitude among adja-
cent sites and successive days (Fig. 3a) given that there was no
variation in terrestrial inputs, weather during the study period
was very consistent, and the sites are hydrologically con-
nected. Rather, we would expect ecosystem metabolism to be
autocorrelated in time and space, as has been found in other
aquatic systems (Van de Bogert et al. 2012; Solomon
et al. 2013; Dodds et al. 2018; Rodríguez-Castillo et al. 2019).
It is more plausible that DO dynamics were poorly portrayed
in the metabolism model, especially those related to daily
water mixing. Despite our prediction that tidal fluxes would
result in a homogeneously mixed water column, the water
column stratified and de-stratified on most days, temporarily
isolating distinct strata within the water column. Over the
course of each day, the depth of the upper mixed layer could
range over the entire water column (0–8 m). In addition, strat-
ification strength was positively correlated with chlorophyll
a (Chl a) concentrations as well as buoy- and 18O-based rates
of GPP (Supporting Information Fig. S3), suggesting that strati-
fication not only contributes to model error, as has been
found in lakes (Rose et al. 2014), but also influences phyto-
plankton dynamics and metabolism. Accurately accounting
for highly dynamic vertical mixing requires numerous measure-
ments throughout the water column. As we only measured DO
at three depths, and lacked continuous measurements below
4 m, our whole-water-column mass balance may have been
poorly resolved with respect to the scale of variation.

Vertically integrated DO concentrations did not always fol-
low a sinusoidal diel pattern, which added uncertainty to
metabolism calculations. Overall, the amplitude of the daily
DO changes was small, typically less than �0.4 mg O2 L�1

when scaled to the entire water column. Thus, the metabolic
signal was a comparatively small fraction of the total DO mass
in the system, and the metabolism model magnified minor
inaccuracies in the daily DO budget. We often observed sharp
changes in the integrated DO signal and occasional increases
at night, which were often associated with episodic stratifica-
tion and horizontal and (or) vertical mixing. Moreover,
depending on the timing of vertical mixing, some portion of a
given day’s metabolic signal might not be applied to the mass
balance until the following day, causing GPP or ER to either
be overestimated or underestimated (Staehr et al. 2010;
Tassone and Bukaveckas 2019). Thus, daily metabolic rates
from other studies with poorly resolved DO monitoring and
complex stratification dynamics should be interpreted cau-
tiously due to high uncertainty. However, such directional
changes in metabolic signals from mixing or tidal hydrody-
namics at the daily time scale often balance out by averaging
over longer time periods.

Despite high variability in buoy-based daily estimates,
when averaged over longer timescales or after tidally smooth-
ing the DO time series, GPP and ER calculations generally
aligned with the other methods (Fig. 4). Others have docu-
mented reduced uncertainty in continuous DO-based meta-
bolic rates when averaging over longer timescales (Staehr
et al. 2010; Van de Bogert et al. 2012). In other estuary ecosys-
tems, buoy-based metabolic rates may require temporal aver-
aging over longer timescales to account for phase
relationships between tidal and solar cycles and spring-neap
cycles (Nidzieko et al. 2014). In the DWSC, there are consis-
tently two high tides and two low tides per day, advancing
~ 50 min per day (https://waterdata.usgs.gov/nwis/inventory?
agency_code=USGS&site_no=11455095). Averaging daily
rates over 13 d (~ half the spring-neap period) would span the
full distribution of solar-tidal phases, and thus would integrate
across a given location’s metabolic footprint. Fortnightly
cycles in metabolism estimates may be more apparent in estu-
aries with greater spatial heterogeneity. For example, the align-
ment of high tide and high noon can lead to inundation of
distinct habitats during times of high productivity, which
infrequently contribute to the metabolic signal of a seaward
sensor (Nidzieko et al. 2014). In our study, the influence of
spatial heterogeneity on the true metabolic signal may be less
pronounced due to relatively homogeneous conditions longi-
tudinally in the DWSC. Nonetheless, averaging buoy meta-
bolic rates over fortnightly time scales reduced temporal
variability, and the average rates were similar to the 18O
method (Fig. 5).

Alternatively, tidally smoothing the DO time series before
computing metabolism can be used to account for tidal advec-
tion, effectively separating the effects of advection and biology
on the observed DO time series (Beck et al. 2015). Tidally fil-
tered rates of GPP were comparable in magnitude to the 3-d
rolling average, but with reduced short-term temporal variabil-
ity (Fig. 5). Tidally smoothing may lead to reduced uncertainty
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in situations where a single set of sensors is monitoring meta-
bolic activity across vastly different habitats (Kemp and
Boynton 1980). In our study, DO at each of the five buoy
arrays primarily followed the solar cycle and all stations were
highly synchronous (Supporting Information Fig. S4). Further-
more, the cross correlation among the time series did not
highlight notable differences in temporal lags among tidal
phases and/or distance (Supporting Information Fig. S5),
which would indicate relevant tidal advection of DO. In our
study reach, there may be minimal benefit to tidally smooth-
ing as the metabolic signal had relatively low tidal distortion
(Beck et al. 2015). The weighted regression approach did
reduce temporal variability as it uses proximate observations
in time, day, and tide. Tidal smoothing is likely more useful in
locations with greater spatial heterogeneity, but the approach
is not advised on very noisy DO time series or if there is little
evidence that the tides are correlated with DO (Beck
et al. 2015).

Unlike the other two methods, temporally averaged or tid-
ally filtered in situ rates did not highlight a spatial gradient in
metabolism (Fig. 4), which may reflect the higher variability,
coarser estimate resolution, or the fact that the metabolic foot-
prints overlap due to advection/dispersion processes. In other
parts of the Delta or in other estuaries, temporal averaging or
tidally smoothing may be necessary to account for tidal advec-
tion and spatial heterogeneity among habitats. We lack confi-
dence in any buoy-based daily estimate, but aggregating rates
through time and space provides a more realistic approxima-
tion of estuary metabolism across the range of habitats that
contribute to the metabolic signal.

Oxygen isotopes
In agreement with the other two methods, the 18O method

indicated the study reach was slightly net heterotrophic. Aver-
aging across sites and through time, the global mean
18O-based rates for GPP, ER, and NEP were 4.28 (� 0.64),
�5.21 (� 0.68), and �0.94 (� 0.96) g O2 m

�2 d�1, respectively.
The 18O method had similar coefficients of variation as the
incubation-based rates, and the 18O-based rates were between
the other two methods (Table 1; Fig. 4). Overall, the three
methods suggested similar rates when averaged across the
whole study.

The 18O GPP estimates had a clear longitudinal gradient
with higher GPP occurring landward in the lower turbidity
waters. The 18O method suggested the largest spatial differ-
ence in GPP among methods; the uppermost site (NL76) aver-
aged 5.16 g O2 m�2 d�1 and the lowest site (NL70) averaged
3.30 g O2 m�2 d�1. Because ER followed a similar but damp-
ened spatial pattern, ranging between �4.56 and �5.91 g O2

m�2 d�1, the resulting NEP spatial pattern was less dramatic
than for GPP (Fig. 4). Moving landward, the 18O method
suggested that both GPP and ER increase, and the system
becomes slightly less heterotrophic with decreasing turbidity.
In contrast to the incubation method, the median NEP at all

Fig 5. Time series of buoy-based gross primary production (GPP) among
rolling window averages (a–d) and using the tidally filtered dissolved oxy-
gen time series (e). Sites are plotted by thin gray lines and the spatial
average is the thick black line. Oxygen isotope GPP rates are plotted as
blue boxplots (same data as Fig. 3). Metabolic rates are presented in
grams oxygen per meter squared per day (g O2 m

�2 d�1).
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sites based on 18O was negative suggesting the entire 7-km
reach was heterotrophic.

Discussion
Comparisons among methods and scales

Although the spatially and temporally integrated metabolic
rates were consistent among methods, notable differences
existed when comparing daily calculations. Comparing GPP
among methods, the 18O and laboratory incubation estimates
had the best agreement (lowest root mean squared error).
However, in general, there were poor correlations among
methods for GPP (Fig. 6), ER, and NEP (Supporting Informa-
tion Fig. S1). Some of the disagreements among calculations
arise from model uncertainty, as each method has a number
of equations and assumptions to scale measurements to the
whole ecosystem. While the 18O and in situ buoy methods
capture metabolism at the ecosystem level, incubation-based
rates exclude benthic communities and organisms larger than
150 μM (e.g., zooplankton). Each method represents a unique
community assemblage and horizontal, vertical, and temporal
scale (Table 1) contributing to each calculation, thus the three
approaches should not necessarily align if true metabolism dif-
fers along any temporal or spatial dimension.

In situ buoy-based daily metabolic rates should be reflective
of the spatial domain where water originated over the 24-h
period. At our central buoy (NL74), complete longitudinal
mixing over the median tidal excursion length (2.1 km) typi-
cally occurs on the order of a half to full tide cycle (8.4 h).
Thus, the spatial scale of the buoy estimates is on the order of
2–5 km but varied with tidal cycles and actual advection/
dispersion on that day. Because the DWSC is long and rela-
tively homogeneous, each buoy’s metabolic footprint was con-
strained to the DWSC, and the assumptions regarding
consistent ecosystem morphometry are valid. If our buoys
were positioned near the channel mouth, the metabolic foot-
print would include some portion of the greater Delta ecosys-
tem external to the DWSC (Fig. 1), making it challenging to
constrain the physical dimensions of the waterbody in the
model. Mixing water masses from distinct habitats that vary
in depth and biology may cause irregularities in continuous
DO signals and metabolism calculations (Kemp and
Boynton 1980). Daily metabolism estimates may contain sinu-
soidal patterns that simply arise from tidal phase relationships
that affect the timing and proportions of daily metabolism
originating from distinct habitats (Nidzieko et al. 2014; Beck
et al. 2015). By arranging sensors within a spatial network, we
can more confidently account for tidal advection and achieve
a more comprehensive view of metabolism in hydrodynami-
cally complex systems (D’Avanzo et al. 1996).

Laboratory incubation-based rates offer a view of metabo-
lism at a finer spatial and shorter temporal scale than the
other two methods. Because water samples were collected
from a distinct location and moment in time, in reality these

rates reflect the potential metabolic rate of the pelagic zone at
that instance. Our samples were collected in the morning,
prior to the maximum daily Chl a concentration, and the
incubations did not reflect in situ changes in phytoplankton
over the day that could be effected by production, migration,
and (or) grazing dynamics. In the DWSC, Chl a concentra-
tions and phytoplankton densities can vary with depth, which
is most apparent during stratification. The specific conditions
of where and when the incubation sample was collected
should be compared to the conditions throughout the rest of
the waterbody that the incubation rate represents. Thus, a
clear limitation of the incubation method is how to effectively
control for environmental variability in the laboratory and
scale rates to the ecosystem (Cloern et al. 2014; Murrell
et al. 2018). Clearly, continually monitoring Chl a and light
intensity everywhere in any waterbody is not currently realis-
tic, so the incubation-based method should always be consid-
ered cautiously as it only represents one instance in a
dynamic and heterogeneous system.

In addition, the incubation approach does not incorporate
the metabolism of macrophytes, the littoral zone, zooplank-
ton, and benthic processes. Only pelagic water passed through
a 150-μM screen was placed in the incubation jars, and the
contributions of other ecosystem communities were not mea-
sured. This incubation method will not account for produc-
tion from littoral vegetation or benthic algae, nor will it
include sediment, zooplankton, and fish respiration. In our
study, incubation-based GPP and ER were lower than the
other two methods on average by a factor of 1.3 to 1.6 (Fig. 4),
most likely because the method does not account for benthic
respiration nor does it capture periods of higher GPP associ-
ated with aggregate phytoplankton biomass or littoral vegeta-
tion. The buoy and 18O methods incorporate benthic
respiration, which can be of similar magnitude as planktonic
respiration in the greater San Francisco Bay ecosystem (Jassby
et al. 1993). Subtracting incubation-based ER from the buoy-
and 18O-based estimates provides a crude approximation that
the incubation approach missed �2.5 and �1.3 O2 m�2 d�1

(39% and 25%) of ER, respectively, which was most likely
dominated by benthic processes. Overall, we are more confi-
dent that the incubation-based GPP represent the potential
productivity of the pelagic zone, but due to methodology
ecosystem-scaled rates of GPP, ER, and NEP likely underesti-
mate reality.

Lastly, the 18O method reflects a third temporal and spatial
scale that blends aspects of the other two methods. Although
water samples for the 18O approach are collected at a single
moment in time, similar to the incubation method, it repre-
sents a much broader spatial and temporal integration of
metabolism. The 18O samples include information on the his-
tory and mixing of that water parcel, making it reflective over
a preceding interval of time. While the exact timescale repre-
sented by the 18O method is not an easy calculation, a first
order approximation can be made because it is driven
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primarily by gas exchange and depth of the surface mixed
layer. Over the two-month duration of our study, the average
daily k was 1.64 m d�1 (range of 0.43–4.34 m d�1). Dividing
the average depth (7.5 m) by the average k, implies that DO
turnover takes 4.6 d, which is comparable to the timescale
that the 18O method encompasses. However, each individual
estimate had a different timescale based on the actual rates of
k prior to sampling. In addition, this timescale is not equally
weighted as the more recent past contributes a larger propor-
tion of that time weighting. Solving for the distribution of
time represented by the method can be useful to gain insight
into metabolism at finer temporal scales, however for this
study sampling occurred 2–4 d apart, and additional assump-
tions and generalizations are required to investigate finer time
scale questions. The spatial scales reflected by the 18O method
match the movements of water over the timescale and in this
study are on the order of ~ 5 km. Similar to the buoy method,
the spatial scale largely reflects advection and dispersion,
which varied longitudinally in accordance with variations in
tidal excursion lengths and temporally with tidal amplitude
and wind.

A number of processes and assumptions over the spatial
and temporal scales described above contribute to uncertainty
in 18O-based metabolism estimates. Comparatively, the 18O
estimates were less variable than the buoy method, likely
because the method represented a temporally integrated rate
and did not reflect the higher variability inherent in the
shorter time scale buoy method. The 18O method identified
consistent spatial patterns aligning with the incubation-based
approach and the perception of light limitation (Cloern 1987)
without using any assumptions about light extinction or water
clarity (Table 1). The 18O approach incorporates both pelagic
and benthic processes, and it requires less intensive sampling
than the other two methods. The physics and ecology of the
DWSC (e.g., deep, mixed vertically, pelagic dominated, spa-
tially homogeneous) align with the assumptions needed for
the 18O steady-state model (Bogard et al. 2017). Thus, the 18O
approach may be a valuable tool to investigate metabolic pro-
cesses in estuaries or other hydrodynamically complex
waterbodies, but only for questions at the appropriate scale
and for ecosystems matching the physical constraints of the
method.

None of the methods represent true daily metabolism of
the DWSC, but collectively provide a complementary assess-
ment of metabolism in a dynamic system. All methods
suggested low GPP and ER compared to other estuaries and
aquatic systems (Fig. 7; Hoellein et al., 2013), which aligns
with the perception that the greater Delta ecosystem has low
productivity (Jassby 2008). The absolute difference in GPP
among methods was only 1.64 g O2 m�2 d�1, which is small
when considering that production in estuary and coastal sys-
tems can vary over two orders of magnitude (Hoellein
et al. 2013; Nidzieko 2018). The results presented here reflect
the typical mid- to late-summer conditions in the DWSC

when DIN concentrations are near their annual minimum
(< 0.05 mg N L�1), while soluble reactive phosphorus concen-
trations remain plentiful (~ 0.1 mg P L�1). Temporally, GPP
may be greatest in the spring when DIN concentrations are
higher, or GPP may follow seasonal patterns in water tempera-
ture and solar radiation as has been found in other estuaries
(Caffrey et al. 2014; Tassone and Bukaveckas 2019). However,
production and CChl a in this 7-km segment over this study
appears to be mostly controlled by turbidity and hydrodynam-
ics, which can vary at a range of timescales. Further inquiry
into the annual cycle and the contributions from adjacent
portions of the DWSC will likely provide a richer context for
metabolism in this “relatively simple” portion of the greater
Delta ecosystem.

Comments and recommendations
In estuaries, modeling the physical dimensions, hydrody-

namics, and biogeochemical dynamics across the metabolic
footprint or the entire estuary may be necessary when quanti-
fying metabolic rates (Najjar et al. 2018). For example, in a
lagoonal Atlantic estuary, variation in trophic status (hetero-
trophy vs. autotrophy) among habitat types and locations
contributed to near metabolic balance at the estuary scale after
considering fluxes and habitat connectivity (Crosswell
et al. 2017). Metabolic rates have also been shown to vary
along a marsh-dominated estuary’s longitudinal axis (Wang
et al. 2018), which can manifest as temporal variation at a sin-
gle location (Nidzieko et al. 2014) and allows spatial
decoupling of production and respiration within systems that
are highly connected. In our system, both the 18O and incuba-
tion calculations suggested a slight gradient in GPP and NEP
(Fig. 4), with greater production occurring in the landward
DWSC with greater light availability. This spatial heterogene-
ity, combined with advection and dispersion, allows organic
matter produced in one location to fuel respiration elsewhere.
As with any metabolic estimate, these calculations should be
constrained to spatial extent of the method. Further inquiry
across the entire DWSC may reveal nonlinearities as the pri-
mary controls (e.g., light, nutrients, flow) alternate and fluxes
of material, water, and solutes among adjacent habitats
change. Although metabolism estimates based on a limited
number of locations are useful to compare systems and inves-
tigate drivers (e.g., Caffrey, 2004), within-estuary variability
suggests that these spatially limited estimates may not be rep-
resentative of the estuary as a whole.

We demonstrated that three easily applied and commonly
used methods for estimating whole ecosystem metabolism
show relatively good agreement in a largely pelagic freshwater
tidal estuary, and that emergent insight about ecosystem
structure may be gained through a multimethod approach.
While the isotope approach provided perhaps the “best” esti-
mate of ecosystem metabolic rates in this study, the degree to
which it integrates over space and time may vary considerably
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within estuaries depending on factors such as morphometry
and hydrodynamics. Although the buoy method had the
advantage of the highest temporal resolution, it also had con-
siderably higher variability associated with diel variation in
hydrodynamics that affect the DO mass balance. Such limita-
tions can be addressed to some extent by averaging over lon-
ger timescales (Nidzieko et al. 2014) or tidally correcting the
DO time series (Beck et al. 2015), which in this study provided
an estimation that was consistent with the other approaches.
The ability to continuously monitor metabolic activity using

in situ sensors makes their use appealing. However, the
resulting data can be noisy and contain artifacts of horizontal
(and in this case vertical) advection, which collectively add
uncertainty in rate estimates. The incubation approach dif-
fered the most from the other two approaches, in large part
because it did not reflect benthic processes, nonpelagic auto-
trophs, zooplankton, nor temporal dynamics in phytoplank-
ton density within the euphotic zone. We suggest the use of
multiple concurrent approaches for measuring estuarine eco-
system metabolism better constrains and compartmentalizes

Fig 6. Comparison of daily gross primary production (GPP) among methods. Symbols colored by site from seaward (blue) to landward (purple). Dashed
line is the 1 : 1. Metabolic rates are presented in grams oxygen per meter squared per day (g O2 m

�2 d�1). RMSE, root mean squared error.

Fig 7. Gross primary production and ecosystem respiration from this study compared with synthesis by Hoellein et al. (2013). Points on the right panel
(b) are the temporal averages for each site (point color) and the convex hull is colored by method (fill color). Gray polygons of the left panel (a) are
shaded by aquatic ecosystem type. Points above the 1:1 are net autotrophic; points below are net heterotrophic. Both panels plotted on a log scale. Met-
abolic rates are presented in grams oxygen per meter squared per day (g O2 m

�2 d�1).
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metabolic rate estimates (Murrell et al. 2018) and, when used
in comparison with other methods, provides novel insight
into complex hydrodynamics and habitat heterogeneity. Esti-
mates using each method should be considered over their spe-
cific temporal and spatial scales (Table 1) and likely estimation
at multiple locations is needed to fully evaluate the estuary as
a whole. Because estuaries are hydrodynamically complex,
resolving rates to high precision is unlikely as uncertainty
arises from one or more aspects within each method. We are
encouraged that we found general agreement among methods
when averaging over time and incorporating a spatial network
sampling design, which may be even more critical in other
estuaries with increased complexity. Accounting for physical
mixing, stratification, and spatial heterogeneity in physics and
ecology is challenging, but by leveraging multiple methods
one can better constrain estuary metabolism.
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