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H. Kolanoski,43 L. Köpke,67 C. Kopper,21 S. Kopper,81 D. J. Koskinen,53 P. Koundal,60

M. Kowalski,43, 86 K. Krings,56 G. Krückl,67 N. Kulacz,55 N. Kurahashi,73 A. Kyriacou,35

J. L. Lanfranchi,83 M. J. Larson,9 F. Lauber,85 J. P. Lazar,66 K. Leonard,66
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9Dept. of Physics, University of Maryland, College Park, MD 20742, USA
10Instituto Nacional de Astrof́ısica, Óptica y Electrónica, Puebla, México
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ABSTRACT

The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophys-

ical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger

joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both

cosmic neutrinos and gamma rays that are produced in photohadronic or hadronic interactions. The

AMON system is running continuously, receiving subthreshold data (i.e. data that are not suited on

their own to do astrophysical searches) from HAWC and IceCube, and combining them in real time.

Here we present here the analysis algorithm, as well as results from archival data collected between

2015 June and 2018 August, with a total live time of 3.0 years. During this period we found two

coincident events that have a false-alarm rate (FAR) of < 1 coincidence yr−1, consistent with the

background expectations. The real-time implementation of the analysis in the AMON system be-

gan on 2019 November 20 and issues alerts to the community through the Gamma-ray Coordinates

Network with an FAR threshold of < 4 coincidences yr−1.

Keywords: multimessenger — gamma rays — neutrinos

1. INTRODUCTION

The coincident detection of gravitational

waves and electromagnetic radiation (Abbott

et al. 2017), as well as the evidence found for

a neutrino coincident with a gamma-ray flare

from the blazar TXS 0506+056 (Aartsen et al.

2018), have shown the potential of multimes-

senger astrophysics. The ability to combine
data from different observatories in real time



Multimessenger gamma-ray and neutrino coincidence alerts 5

or near-real time is driving this new era in as-

trophysics. The Astrophysical Multimessenger

Observatory Network (AMON) has been cre-

ated to facilitate the interaction of different

observatories, create a framework for analyses

with distinct datasets across multiple exper-

iments, and notify the astrophysical commu-

nity of any interesting events worthy of follow-

up (Smith et al. 2013; Ayala Solares et al.

2019a)1.

AMON focuses on using data that are below

the discovery threshold of individual observa-

tories. These events by themselves are heav-

ily background-dominated, which complicates

a search for astrophysical sources. By sta-

tistically combining the temporal and/or spa-

tial information of these subthreshold events

provided by different detectors, AMON aims

to recover the signal events that are hidden

among the background of each single observa-

tory. Two multimessenger analyses were pre-

viously developed combining gamma-ray data

from Fermi-LAT with neutrino data: one anal-

ysis using IceCube data (Turley et al. 2018)

and the other using ANTARES data (Ayala

Solares et al. 2019b).2 The Fermi-LAT and

ANTARES coincidence search started running

in real time in 2019 April and has issued

two alerts to date (see GCN circulars Turley

2020a,b).

In this work, we focus on a new coincidence

analysis combining information from the High

Altitude Water Cherenkov (HAWC) Gamma-

Ray Observatory (Abeysekara et al. 2017) and

the IceCube Neutrino Observatory (Aartsen

et al. 2017a) using the AMON infrastructure.

This new multimessenger channel has been op-

erational as a real-time coincidence search since

2019 December.

The purpose of this analysis is to search

for hadronic accelerators that produce both

gamma rays and neutrinos as secondary par-

ticles, with an emphasis on transient events.

The accelerated cosmic rays can interact with

target material surrounding the environment

of the sources or with radiation fields. These

interactions produce charged and neutral pi-

1 AMON website: https://www.amon.psu.edu/
2 Although what constitutes the data depends on the

groups or collaborations, in general, the position and
time of the events are always used. Other information
is added if available.

ons. Charged pions predominantly decay via

π+ → µ+ + νµ, followed by the decay of the

muon as µ+ → e+ + νe + ν̄µ (and charge con-

jugate). Neutral pions decay into two gamma-

ray photons, π0 → γ + γ. The ratio between

charged pions and neutral pions depends on the

type of interaction of the cosmic rays with the

targets. If the interaction occurs with electro-

magnetic radiation, the interaction will be pho-

tohadronic, which produces charged and neu-

tral pions with probabilities of one-third and

two-thirds, after considering both resonant and

nonresonant pion productions. If the pions

originate from interactions of cosmic rays with

matter, the probability of producing charged

and neutral pions is one-third for each type of

pion (Biehl et al. 2019). A useful relation be-

tween the fluxes of gamma rays (Fγ) and neu-

trinos (Fνα) is expressed as

EγFγ(Eγ) ≈ e−
d
λγγ

2

3K

∑
να

EνFνα(Eν), (1)

where Eγ ≈ 2Eν are the gamma ray and neu-

trino energies; α corresponds to the neutrino

flavor; K is the ratio of charged to neutral pi-

ons, with K = 1 for photohadronic interactions

and K = 2 for hadronuclear interactions; d is

the distance to the source; and λγγ accounts

for the attenuation of gamma rays due to their

interaction with the extragalactic background

light (EBL) (see Murase et al. 2013; Murase &

Ahlers 2014).

In this paper, we present the algorithm

and analysis to search for possible sources

of gamma rays and neutrinos by looking at

HAWC’s and IceCube’s subthreshold data. In

section 2, we describe briefly the detectors and

their data. In section 3, we present the statis-

tical method and provide the false-alarm rate

(FAR), sensitivities and discovery potentials.

In section 4, we present the results obtained

using 3 years of archival data, including upper

limits for the same period of time for the to-

tal isotropic equivalent energy and source rate

density parameter space. Finally, we conclude

and discuss the implementation of the analysis

in real-time using the AMON framework.

2. HAWC AND ICECUBE DETECTORS

AND DATASETS

HAWC and IceCube are two detectors that

focus on high-energy astrophysics, search-

ing for sources that accelerate cosmic rays.

https://www.amon.psu.edu/
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Both detectors use the Cherenkov technique

where photomultipliers are used to detect

the Cherenkov light produced by the passage

of secondary charged relativistic particles—

from gamma ray, neutrinos, and cosmic-ray

showers—through a medium. HAWC uses wa-

ter as the medium, while IceCube uses the

Antarctic ice.

Due to the attenuation of gamma rays on the

extragalactic background photons, the signal

from a source might not be significantly de-

tected above background in the HAWC data.

However, if IceCube neutrino events are found

in spatiotemporal coincidence with a sub-

threshold HAWC hot spot, this might become

an interesting coincidence that could be fol-

lowed up by other observatories. In addi-

tion, the uncertainty region of HAWC events is

generally smaller compared to IceCube events,

which can give a better localization of a poten-

tial joint source.

2.1. High-energy Gamma Rays from HAWC

The HAWC observatory is a high-energy

gamma-ray detector located in central Mexico.

The complete detector has been in operation

since 2015 March. HAWC has a large field of

view, covering two-thirds of the sky every day

with a high-duty cycle in the declination range

from −26◦ to 64◦. HAWC is mainly sensitive

to gamma rays in the energy range between

300 GeV and 100 TeV. It has an angular res-

olution of 0.2◦−1.0◦ (68% containment) that

depends on the energy of the event, its zenith

angle and size of the shower footprint measured

by HAWC (Abeysekara et al. 2017).

We select locations of excess exceeding

a given significance threshold— called “hot

spots” —from the HAWC data to be used as

inputs to the combined search. Hot spots are

defined as locations in the sky with a cluster

of events above the estimated cosmic-ray back-

ground level and measured by the significance

(excess above the background). They are iden-

tified during one full transit of that sky location

above the detector. The main hot-spot param-

eters AMON receives are: the position coordi-

nates and their uncertainty; significance value,

with a minimum of 2.75σ (threshold defined by

HAWC); and the start and stop times of the

transit. The duration of the transits are decli-

nation dependent as shown in Fig. 1. Since we

are searching for unknown sources or sources

Figure 1. Duration of a transit of a point in the
sky as a function of declination above the HAWC
detector, applying a zenith angle cut of < 45◦.

that cannot be significantly detected above the

background, we mask the data from the follow-

ing parts of the sky above HAWC: the Galactic

plane (b < |3◦|), the Crab Nebula, Geminga,

Monogem, Mkr 421 and Mkr 501. The current

rate of these hot spots received by AMON is

∼800 per day.

2.2. High-energy Neutrinos from IceCube

The IceCube observatory is a detector of

high-energy neutrinos located at the South

Pole (Aartsen et al. 2017a). It became fully op-

erational in 2011 after 7 years of construction.

IceCube first observed the high-energy astro-

physical neutrino flux in 2013 (Aartsen et al.

2013).

IceCube can search for neutrinos from the

whole sky, though it is more sensitive to sources

from the northern celestial hemisphere, since

the Earth helps reduce the atmospheric back-

ground in IceCube. This is an advantage in

this analysis since HAWC is primarily sensi-

tive in the northern sky. IceCube is sensitive

to energies that can reach up to 1 EeV near the

horizon (declination of 0◦). The angular reso-

lution depends on the topology of the events in-

side the detector. Two main topologies are ob-

served: track events and cascade events. Track

events are mostly induced by charged-current

muon-neutrino interactions. These tracks can

have a length of several kilometers and most of

the time extend beyond the detector volume.

The track events have a median angular reso-

lution of ∼0.4◦ above 100 TeV. Cascade events

are produced by the other types of neutrinos

or neutral-current interactions of any neutrino

type. They have better energy resolution com-

pared to tracks, since the energy deposited by

the events is completely contained inside the

detector. Their angular resolution, however,
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is >10◦ with current reconstruction methods

(Aartsen et al. 2017b).

The IceCube candidate events sent to AMON

consist of single throughgoing tracks. These

events can have energies above 0.1 TeV for up-

going events, while downgoing events can have

energies above 100 TeV. Lower-energy events

are more probable to be background events.

The parameters consist of the sky position and

its uncertainty, the time of the event, and the

reconstructed energy or boosted decision tree

(BDT)3 score (see Section 3 of Aartsen et al.

2017b), depending on whether the event is in

the northern or southern hemisphere, respec-

tively, and can be used to calculate the back-

ground p-value of the event. The current rate

of the events received by AMON is ∼650 per

day.

3. METHOD

The coincidence analysis is applied to events

satisfying two criteria. The first is a temporal

selection requiring the neutrino events to arrive

within the transit time of the HAWC hot spot.

Second, we select neutrinos that are within a

radius of 3.5◦ from the HAWC hot-spot local-

ization.4 After the neutrino events have passed

the selection criteria, we calculate a statistic to

rank the coincident events. The rate of coin-

cidences after passing the criteria is ∼100 per

day. This ranking statistic is based on Fisher’s

method (Fisher 1938), where we combine all

the information that we have from the events.

It is defined as

χ2
6+2nν = −2 ln[p

λ
p

HAWC
p

cluster

nν∏
i

p
IC,i

], (2)

where the number of degrees of freedom is

6 + 2nν (as described below). The quantity

p
λ

quantifies the overlap of the spatial uncer-

tainties of the events. The value pHAWC is the

probability of the HAWC event being compat-

ible with a background fluctuation. Since we

can expect more than one IceCube candidate

event in the time window (i.e. the HAWC tran-

sit period), we can calculate the probability of

3 The BDT score is used to reduce the atmospheric
muon background as well as separate the astrophysical
signal.

4 The angular distance is motivated from IceCube
multiplet searches (see Aartsen et al. 2017c).

background IceCube events occurring in that

time window. Given that we have at least one

event detected, the p
cluster

5 is the probability of

that one event to be in the same time-window

with the observed number of IceCube events,

nν , or more from background; if there is only

one IceCube event, this value is equal to 1.0.

The value p
IC,i

is the probability of measur-

ing a similar or higher energy/BDT score for

an IceCube event, assuming it is a background

event (calculated using the energy/BDT score

and zenith angle). The p
λ

value is obtained by

a maximum-likelihood method that measures

how much the positions of the HAWC and Ice-

Cube events overlap. This is calculated as

λ(x) =

N∑
i=1

ln(
Si(x)

Bi
), (3)

where N is the HAWC hot spot plus the

number of IceCube candidate events. S

corresponds to a signal directional probabil-

ity distribution function, which is assumed

to be a Gaussian distribution on the sphere

with a width given by the measured posi-

tional uncertainty from each detector, Si(x) =

exp [−(x− xi)
2/2σ2

i ]/(2πσ2
i ). Bi is the back-

ground directional probability distribution

from each detector at the position of the events.

The position of the coincidence, xcoinc, is de-

fined as the position of the maximum likelihood

value, λmax, as shown in Figure 5. The uncer-

tainty of xcoinc is calculated by the standard

error σ2
xcoinc

= 1/
∑N
i (σ−2

i ).

The λmax values are used to make a distri-

bution of the overlap of the coincidences. A

higher λmax value indicates a more significant

overlap of the event uncertainties. This trans-

lates into a smaller p-value p
λ
.

Due to the fact that we can have more than

one IceCube event passing the selection cri-

teria, the degrees of freedom of Eq. 2 vary.

We therefore calculate a p-value of the χ2

with 6 + 2nν degrees of freedom. The rank-

ing statistic (RS) is then simply defined as

− log10(p-value).

3.1. Calibration of the FAR

5 Here p
cluster(nν)

= 1−
∑nν−2
i=0 Pois(i; fν∆T ), where

fν is the IceCube background rate and ∆T is the
HAWC transit time.
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We apply the above-described algorithm to 3

years of scrambled data sets from both observa-

tories. Scrambling consists of randomizing the

right ascension and time values of the events

many times in order to calibrate the FAR. The

result of this process is shown in Fig. 2. For

a specific ranking statistic, we calculate the

total number of coincidences above this rank-

ing statistic value and then divide by the total

amount of scrambled simulation time to get the

rate. The linear fit in Fig. 2 is used to estimate

the FAR in real-time analyses.

3.2. Sensitivity and Discovery Potential

To put the archival results into context, we

look at a simulation for transient events that

can produce both neutrinos and gamma rays.

We quantify the sensitivity and discovery po-

tential for the 1 coincidence per year threshold

for a live time of 3 years of data.

We use the FIRESONG software package

(Taboada et al. 2017), which simulates neu-

trino sources for a given local rate density of

transient gamma-ray and neutrino sources, to-

tal neutrino isotropic equivalent energies, and

timescales. The outcome of the simulation is

a list of simulated neutrino sources with dec-

lination, redshift and neutrino flux normaliza-

tion. This is based on a power-law energy spec-

trum with spectral index of -2 for the flux,

in the energy range between 10 TeV and 10

PeV,6 and a time of the burst of 6 hrs.7 Us-

ing Eq. 1, we can transform the normalization

to a gamma-ray flux assuming photohadronic

interactions. We then simulate the sources

in HAWC, adding EBL attenuation with the

model from Domı́nguez et al. (2011) and in ad-

dition, we draw a Poisson random number of

neutrinos with an expectation value given by

the source flux and IceCube’s background. Fi-

nally, we quantify the coincidence.

We calculate the sensitivity and discovery po-

tential by running simulations for a given pair

6 The simulation was also run with a spectral index
of -2.4. Since the energy range for IceCube’s sensitivity
changes with index, the range was extended from 100
GeV to 10 PeV. The sensitivity and discovery potential
of the analysis are higher by a factor of 3. Figure 3
shows the result for the simulation with a spectral index
of -2.0.

7 Since the information given by HAWC is averaged
over one transit, we use this timescale for the simula-
tions.

of rate density and total neutrino isotropic en-

ergy. We apply the coincidence algorithm and

after finding the signal coincidences, they are

added to a distribution with random coinci-

dences. We keep the total number of coin-

cidences the same as that of the 3 years of

data, so we remove the same number of ran-

dom coincidences as injected sources. We ap-

ply this procedure several times in order to

build a distribution of the number of coinci-

dences that cross the 1 coincidence per year

threshold, N(FAR ≤ 1). If no sources are

injected, N(FAR ≤ 1) is a Poisson distribu-

tion with a rate of rB = 3.0 (B stands for

background) for the 3 years of observations.

For the sensitivity, we find the pair of param-

eters that will give us a rB + rS = 6.0 (where

S stands for signal). This corresponds to a

N(FAR ≤ 1) distribution that crosses the me-

dian of the Poisson background distribution

90% of the time. For the 5σ discovery poten-

tial, we find the pair of parameters that will

give a rate of rB + rS = 15.7 since this distri-

bution will have 50% of its population with a

p-value smaller than 2.87 × 10−7 with respect

to the Poisson background distribution. We fit

the distribution of N(FAR ≤ 1) to a Poisson

function and find the best value for rS . The

pair of rate density and total neutrino isotropic

energy that gives the corresponding rS values

for sensitivity or discovery potential is plotted

in Fig. 3. To put the sensitivity and discov-

ery potential in context, we include diagonal

lines that show the total neutrino isotropic en-

ergy as a function of rate density that would
be required to produce the total observed Ice-

Cube diffuse neutrino flux (assuming a power-

law spectrum with index of -2.5). This assumes

either no evolution or the star-formation evo-

lution following the Madau-Dickinson model

(Madau & Dickinson 2014); it also assumes

a standard candle (SC.) luminosity function.

Based on Aartsen et al. (2018), we marked a re-

gion on Fig. 3 showing the estimated released

neutrino energy of the IceCube event 170922A

related to TXS 0506+056.

4. RESULTS

4.1. Archival Data

We analyzed data collected from June 2015

to August 2018. Fig. 4 shows the distribu-

tion of ranking statistic value of the unblinded

data compared to the expected distribution of
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Figure 2. The FAR as a function of the ranking statistic obtained from the scrambled data sets. The width
of the band (in red) is the 1σ statistical uncertainty. The function in the graph will be used to select alerts
that will be sent to the Galactic Coordinates Network (Barthelmy 1990). A false-alarm rate of 1 per year is
obtained with a ranking statistic value of 7.3.

Figure 3. Sensitivity (red), discovery potential (green) for the 3 years of data as a function of rate density
and total isotropic equivalent energy in neutrinos of transients of the order of 6 hours and assuming a
power-law spectrum with index of -2.0. The number of coincidences below the 1 per year FAR threshold is
used as the statistic. The upper limit (blue) result is explained in Section 4.2. The results are higher by a
factor of 3 if a power-law spectrum with index -2.4 is assumed (See text for more details). The light-blue
horizontal band corresponds to the estimated released neutrino energy of the event IceCube-170922A related
to TXS 0506+056 (Aartsen et al. 2018). The purple lines are the total neutrino isotropic equivalent energy
of the source as a function of rate density that would be required to produce the total observed IceCube
neutrino diffuse emission with neutrino energies between 100 GeV and 10 PeV(Murase & Waxman 2016).
The vertical lines correspond to different source rate densities (Strolger et al. 2015; Wanderman & Piran
2015; Farrar & Gruzinov 2009; Murase & Fukugita 2019). The comparison is valid under the assumption
that the transient phenomena are of the order of hours.
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random coincidences (i.e. scrambled datasets

mentioned in Section 3).

Since we are interested in searching for rare

coincidences, we look for coincidences with an

FAR of less than 1 coincidence per year, which

corresponds to a ranking statistic value of 7.31.

We found two coincidences, one in 2016 and

one in 2018, with ranking statistics of 7.34

(1 coincidence per year) and 9.43 (1 coinci-

dence in 38.5 years) respectively. These co-

incidences are not significant with respect to

the background distribution. Using p-value =

1 − exp (−t · FAR), with t = 3 years, the p-

values are 0.95 and 0.075 respectively. The

skymaps of the two coincident events with the

highest ranking statistic values are shown in

Fig. 5. Table 1 contains the summary infor-

mation on them. Information of the individual

events that form each coincidence can be found

in Tables 2 and 3.

We looked at the SIMBAD catalog (Wenger

et al. 2000) for sources that appear near the

coincidences8, and at the Fermi All-sky Vari-

ability Analysis (FAVA) online tool9 for any

evidence of past flares in the region based on

the light curves provided by FAVA.

For the coincidence of 2016 with FAR of 0.99

per year, there is a radio galaxy in the nearby

region, PKS 0017+026 also known as TXS

0017+026 (Dunlop et al. 1989). This source

is 0.04◦ away from the best-fit position of the

coincidence. Unfortunately, no distance infor-

mation is available to estimate the gamma-

ray attenuation. Other sources that appear

nearby are quasars, but in general these sources

are too distant (redshift above 0.3), resulting

in strong gamma-ray attenuation. With the

FAVA tool, the source from the 3FGL catalog,

J0020.9+0323, was found 0.52◦ away from the

best-fit coincidence position, which is outside

the 50% containment region. The 3FGL cata-

log mentions that this is an unassociated source

(Acero et al. 2015).

For the coincidence of 2018 with FAR of 0.026

per year, several sources appear in the SIM-

BAD catalog. There are nine radio galax-

ies within 0.74 degrees of the best-fit loca-

tion of the coincidence from the NRAO VLA

8 For the SIMBAD catalog search, we focus on
sources in the 50% containment region

9 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/
FAVA/

Sky Survey Catalog. From these, only NVSS

J113719+022200 had some information about

its distance (redshift of 0.19). We did not find

nearby sources in the FAVA monitoring tool for

this coincidence.

Both coincidences found with this analysis

are therefore consistent with background ex-

pectations. Follow-up observations in the opti-

cal and X-ray could be helpful to discern if any

of these sources are related to the coincident

events.

4.2. Upper Limit

Knowing that we observed two coincidences

in 3 years of observations, we calculate an up-

per limit for the parameter space shown in Fig.

3. We apply Poisson statistics to obtain a

90% confidence level by using Equation (9.54)

in Cowan (2002). This equation gives us an

upper limit on the Poisson rate of the signal

based on the observation and assuming that in

3 years of observations we expect three coinci-

dences from background. The result is a signal

Poisson rate rS = 3.5, giving a total Poisson

rate of rB + rS = 6.5. We use the procedure in

Sec. 3.2 to find the corresponding upper limit

values in the parameter space in Fig. 3.

5. REAL-TIME SYSTEM

The real-time implementation of the analy-

sis started on 2019 November 20. As spec-

ified in Ayala Solares et al. (2019a), we use

the amonpy software for the real-time imple-

mentation of the analysis. A major difference

is that the system is now running at Amazon
Web Services (AWS) servers, which will further

improve AMON’s uptime. We set a threshold

for public alerts at an FAR < 4 coincidences

per year. This threshold is set so that there is

a reasonable number of statistically interesting

coincidences that can be followed up during a

year. Alerts are sent immediately to AMON

members, and a GCN notice is generated. A

GCN circular is also written to inform the rest

of the astrophysical community. The first pub-

lic alert of the system was sent out on 2020

February 2. It had an FAR of 1.39 per year.

The reported position is (RA, Dec)=200.3◦,

12.71◦, with 50% radius of 0.17◦ (see GCN cir-

cular, 26963 Ayala Solares 2020). The MAS-

TER Global Robotic Net and the ANTARES

observatory performed follow-up observations

of the coincidence, but no transient event was

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/
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Figure 4. Ranking statistic distribution of the analysis. Blue: background expectation obtained from the
scrambled data sets and normalized to the number of coincidences observed in the unblinded data set. Red:
result from the unblinded analysis. Live-time is 3 years of data. The vertical lines mark 4 and 1 coincidence
per year thresholds. The highest ranking statistic in the 3 year dataset is 9.4 (1 every 38.5 years).
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Figure 5. Skymaps of the coincidences with the lowest FAR found in the 3 years of archival data. Position
of the individual events are marked with the dots. The best-fit combined positions xcoinc, found after
optimizing Eq. 3, are marked with a cross. Circles are the 50% containment region.

Table 1. Summary information on the two coincidences with FAR < 1

Dec [deg] RA [deg] Uncertainty (50% containment)[deg] Ranking Statistic FAR [per year] p-value

2.96 4.93 0.16 7.3 0.99 0.95

2.27 173.99 0.53 9.4 0.026 0.075

observed (see GCN circulars 26973 and 26976

Lipunov 2020; Kouchner 2020).

The largest latency of the analysis comes

from the HAWC analysis of the hot spots, since

the transit needs to complete before sending

that information to AMON. Based on Fig. 1,

the hot-spot duration can last from less than

an hour to a bit more than 6 hours. The la-

tency, once the data are in the AMON server,

is less than a minute to perform the analysis

and send the alert to the public.

6. CONCLUSION

We developed a method to search for coinci-

dences of subthreshold data from the HAWC
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Table 2. Information on the two HAWC “hot spots” that correspond to each of the coincidences
with an FAR< 1 per year in the 3 year Data set.

Dec RA Uncertainty Initial Time Final Time Significance Flux upper limit

[deg] [deg] [deg] [UT] [UT] σ [TeV−1 cm−2 s−1]

2.91 4.96 0.17 2016-12-11 22:11:47 2016-12-12 04:38:41 3.71 3.9e-11

2.38 173.4 0.74 2018-04-12 01:31:21 2018-04-12 07:54:51 2.77 8.3e-11

Note. Flux upper limits are based on a E−2 energy spectrum.

Table 3. IceCube neutrino information for each of the coincidences.

Dec RA Uncertainty Time Background p-value ∆θ

[deg] [deg] [deg] [UT] p
IC

[deg]

3.04 6.86 1.31 2016-12-11 23:20:25 0.944 1.90

2.66 4.35 0.71 2016-12-12 00:24:48 0.055 0.65

5.18 3.00 1.08 2016-12-12 01:37:28 0.391 2.99

5.71 6.92 2.13 2016-12-12 03:22:12 0.993 3.42

0.30 172.77 1.67 2018-04-12 01:57:33 0.222 2.12

4.45 174.88 1.61 2018-04-12 03:53:08 0.860 2.51

1.75 175.88 1.48 2018-04-12 04:36:11 0.001 2.50

2.05 174.42 1.42 2018-04-12 05:19:36 0.005 1.02

Note. The uncertainty corresponds to the 50% containment. ∆θ is the distance
from the best-fit HAWC hot-spot position to the measured neutrino position.

and the IceCube observatories. Using coinci-

dences of subthreshold data allows us to re-

cover signal events that cannot be differenti-

ated from the background in each individual

detector. The method was tested on archival

data taken between the years 2015 and 2018.

We found two coincidences in the archival anal-

ysis that crossed the FAR threshold of one

per year, consistent with the background ex-

pectations of three coincidences in three years.

Although a few sources were found near the

best coincidence positions, these results are

still consistent with the expectation from ran-

dom coincidences. The real-time analysis has

produced one alert so far, with an FAR of 1.39

per year. It was sent out to the community.

We encourage other observatories to perform

follow-up observations of these results and the

real-time alerts in the future.
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