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The Relationship Between the Human Immunodeficiency 
Virus-1 Transmission Network and the HIV Care 
Continuum in Los Angeles County
Adiba Hassan,1 Victor De Gruttola,2,3 Yunyin W. Hu,4 Zhijuan Sheng,4 Kathleen Poortinga,4 and Joel O. Wertheim1

1Department of Medicine, University of California, San Diego, California, USA, 2Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA, 3Department 
of Family Medicine, University of California, San Diego, California, USA, and 4Division of HIV and STD Programs, Los Angeles County Department of Public Health, Los Angeles, California, USA

Background.  Public health action combating human immunodeficiency virus (HIV) includes facilitating navigation through 
the HIV continuum of care: timely diagnosis followed by linkage to care and initiation of antiretroviral therapy to suppress viral rep-
lication. Molecular epidemiology can identify rapidly growing HIV genetic transmission clusters. How progression through the care 
continuum relates to transmission clusters has not been previously characterized.

Methods.  We performed a retrospective study on HIV surveillance data from 5226 adult cases in Los Angeles County diagnosed 
from 2010 through 2014. Genetic transmission clusters were constructed using HIV-TRACE. Cox proportional hazard models were 
used to estimate the impact of transmission cluster growth on the time intervals between care continuum events. Gamma frailty 
models incorporated the effect of heterogeneity associated with genetic transmission clusters.

Results.  In contrast to our expectations, there were no differences in time to the care continuum events among individuals in 
clusters with different growth dynamics. However, upon achieving viral suppression, individuals in high growth clusters were slower 
to experience viral rebound (hazard ratio 0.83, P = .011) compared with individuals in low growth clusters. Heterogeneity associated 
with cluster membership in the timing to each event in the care continuum was highly significant (P < .001), with and without ad-
justment for transmission risk and demographics.

Conclusions.  Individuals within the same transmission cluster have more similar trajectories through the HIV care continuum 
than those across transmission clusters. These findings suggest molecular epidemiology can assist public health officials in identifying 
clusters of individuals who may benefit from assistance in navigating the HIV care continuum.

Keywords.   HIV; care continuum; molecular epidemiology; transmission network; cluster; Cox proportional hazard; gamma 
frailty.

Key to successful control of human immunodeficiency virus 
(HIV) is ensuring that individuals newly diagnosed with HIV 
are linked to care, achieve viral suppression via antiretroviral 
therapy (ART), and remain in care to prevent recurrence of vi-
remia. Successful navigation through this HIV continuum of 
care [1, 2] ensures that people living with HIV have greatly re-
duced risk of transmitting the virus [3, 4]. Rapid linkage to care 
and adherence to ART improves individual long-term health 
prognosis [5], and achieving viral suppression virtually elimin-
ates risk of onward viral transmission [6, 7]. These tenets guide 
HIV public health activities worldwide [5, 8–10].

Molecular epidemiology can identify and characterize ge-
netic clusters of HIV transmission [11, 12], which can assist 
in prioritizing cases for public health services (e.g., linkage or 

re-linkage to care to help individuals achieve sustained suppres-
sion of viral replication) [13–15]. These clusters are comprised 
of individuals whose HIV is sufficiently genetically similar as 
to imply direct or indirect epidemiological connections among 
their members [16, 17]. The frequency of clustering is most 
strongly associated with reported transmission risk and de-
mography [17–20]; however, other factors such as sampling 
density and time between infection and diagnosis can substan-
tially influence clustering propensity [21–23]. Nonetheless, in 
the US surveillance setting, HIV genetic clusters with evidence 
of recent transmission are disproportionately likely to give rise 
to subsequent cases of HIV [18, 19] and can have transmission 
rates 8 times the national average [24]. Furthermore, people in 
these growing transmission clusters with unsuppressed viral 
replication are associated with future incident HIV infections 
[25]. We hypothesize that individuals most likely to be associ-
ated with future cluster growth (i.e., those in rapidly growing 
clusters at the time of HIV diagnosis) will take longer to prog-
ress through the HIV care continuum.

Here we incorporate molecular HIV surveillance data 
from Los Angeles County (LAC) in analyses of predictors 
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of time to events in the care continuum employing both 
semiparametric and parametric frailty survival models.

METHODS

Data Source

The Division of HIV and STD Programs (DHSP) in LAC 
Department of Public Health (DPH) has been conducting 
mandatory named-based HIV surveillance since 2006, which 
includes reporting results of viral load (VL) and CD4+ T-cell 
count laboratory tests, as well as human immunodeficiency 
virus type 1 protease and reverse transcriptase (pol) genetic 
sequences generated during routine antiretroviral drug resist-
ance testing [26]. All reported HIV cases in LAC are stored in 
the Enhanced HIV/AIDS Reporting System (eHARS); approx-
imately 10–14% of people living with HIV in LAC are undiag-
nosed [27]. Additional case-level metadata in eHARS include 
date, age, and ZIP code at diagnosis, current ZIP code, vital 
status, race/ethnicity, sex at birth, and transmission risk factor. 
HIV transmission risk categories were assigned in a hierarchical 
order: people who inject drugs (PWID), men who have sex with 
men (MSM), heterosexual contact, and unidentified risk. MSM 
who reported injection drug use were grouped with PWID. 
Cases with no reported risk were classified as “unknown risk” 
[28]. Stage of infection at HIV diagnosis was defined using the 
first CD4+ count postdiagnosis: ≥500 cells/mL, 200–499 cells/
mL, and < 200 cells/mL. Socioeconomic status was assessed at 
the level of residential ZIP code at diagnosis: the fraction of the 
population living below the 100% federal poverty level [29].

Inclusion Criteria

We performed a population-based retrospective study using 
HIV/AIDS surveillance data from LAC DPH on 22 398 indi-
viduals who resided or received HIV care in LAC and had a re-
ported HIV pol sequence. We restricted our statistical analysis to 
the 5226 cases diagnosed from January 2010 through December 
2014, representing 75% of all cases diagnosed during these years 
(Supplementary Table 1). This time-period was chosen to min-
imize gaps or delays in reporting prior to 2010 and to ensure at 
least 2 years of follow-up laboratory data. It also predates the era 
of cluster-based investigations in LAC. Included cases also met 
the following criteria: (i) a reported HIV pol genotype; (ii) diag-
nosed in and current resident of LAC; (iii) ≥ 13 years of age at 
HIV diagnosis; (iv) detectable first VL (≥200 copies/mL); and 
(v) complete month and year reported for time of diagnosis and 
VL/CD4+ lab results. Our final data set was enriched for older 
individuals, Latinos, MSM, and individuals with later disease 
stage at diagnosis (Supplementary Table 1).

Transmission Network

A molecular transmission network was constructed using HIV-
TRACE [30] from 22 398 individuals whose HIV pol sequences 
were reported to LAC DPH between 2006 through 2016; 

characteristics of this network were previously described [31]. To 
build the network, cases were linked to each other in the transmis-
sion network if their pairwise genetic distance was ≤ 0.015 sub-
stitutions/site. This threshold is in accordance with the expected 
divergence between sequences within an individual [32] and the 
genetic distance inferred between named HIV risk partners [33]. 
Linked cases were combined into clusters, wherein all members of 
a cluster are linked to at least 1 other member of that cluster.

Cluster Growth

For each individual, on the date of their diagnosis, we deter-
mined the size of their cluster (i.e., only including members 
linked through cases diagnosed at or prior to that date). Cluster 
growth was measured by calculating the number of newly diag-
nosed cases linked in a cluster in the previous year divided by 
the square root of the cluster size. People with a reported HIV 
sequence but unclustered in the network had a cluster growth 
value of 0. This cluster square root growth metric, referred to 
as cluster growth for the remainder of this article, is a reliable 
predictor of future cluster growth in a US HIV surveillance set-
ting [18]. Cluster growth at diagnosis was categorized as high 
(≥75th percentile), medium (>50th to < 75th percentile), and 
low (≤50th percentile).

Outcome Measures

We assessed time to each event in the HIV care continuum and 
potential failure in treatment adherence at the individual level 
using the date of laboratory test as a proxy for medical office 
visit for the following endpoints: (i) months from diagnosis to 
receipt of care (i.e., first VL or CD4+ after diagnosis); (ii) months 
from care to viral suppression (i.e., first VL < 200 copies/mL); 
(iii) months from diagnosis to viral suppression; and (iv) months 
from viral suppression to viral rebound (i.e., first postsuppression 
VL ≥ 1500 copies/mL). Inclusion in statistical analysis required 
having a reported HIV sequence and at least 1 follow-up VL/
CD4+ measurement after reaching a previous continuum event.

Statistical Analyses

Ordinal logistic regression was used to compare cases diag-
nosed in high growth clusters with cases in medium and low 
growth clusters. Parametric and semiparametric models were 
constructed to adjust for covariates in STATA 15.1, College 
Station, TX: StataCorp LP.

Semiparametric Modeling

Separate Cox proportional hazard models [34] with robust 
standard errors were built to analyze times between events in 
the care continuum. All cases were followed until death or the 
administrative censoring date of December 2016. To investigate 
the impact of delayed reporting or interruptions in engagement 
in care, we performed sensitivity analyses that restricted con-
sideration to only individuals who had at least one follow-up 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa114#supplementary-data
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visit within 1  year after initial linkage to care. Viral suppres-
sion can occur any time between last VL ≥ 200 copies/mL and 
first VL < 200 copies/mL, and viral rebound can occur any-
time between last VL < 200 copies/mL and first subsequent 
VL ≥ 1500 copies/mL. Therefore, we repeated the restricted 
analysis using methods that accommodate interval censoring 
[35] to account for our inability to observe exact event dates of 
achieving viral suppression or viral rebound; only the interval 
in which the event occurred is observed. To evaluate whether 
the time interval relationship between cluster growth and time 
to viral suppression was modified by time to linkage to care, 
we tested for interaction between cluster growth and linkage to 
care within 2 months after diagnosis. Model fit for Cox models 
were assessed using Schoenfeld and Cox-Snell residuals.

Parametric Shared Frailty Model

To identify the appropriate survival model and account for 
heterogeneity between transmission clusters, we conducted 
additional parametric analyses using exponential, Weibull, log-
logistic, and log-normal baseline hazard functions in a shared 
gamma frailty [36, 37] framework. The log-normal distribution 
provided the best fit according to Akaike’s information criterion 
(AIC) (Supplementary Table 2). Sensitivity analysis of the frailty 
variance to exclusion of covariates and nonclustered individuals 
were also conducted.

RESULTS

Individuals included in our analysis of the care continuum were 
predominantly male (91%), Hispanic/Latino (51%), and MSM 
(71%) (Table 1). The adjusted odds of being in a high growth 
cluster (≥75th percentile) at date of diagnosis, compared with 
being in a medium or low growth cluster, were higher for males 
and cases with CD4+ ≥500 cells/mL at diagnosis (Table  1). 
Adjusted odds of being in a high growth cluster was lower for 
individuals ≥ 30 years old at diagnosis, blacks compared with 
whites, and cases with unidentified transmission risk compared 
with MSM.

We investigated the time between events in the HIV care 
continuum: (i) diagnosis to linkage to care, (ii) linkage to 
care to viral suppression, and (iii) viral suppression to viral 
rebound. Of cases linked to care, 92% achieved viral suppres-
sion and 26% experienced viral rebound postsuppression 
(Table 2); Median time from diagnosis to care was < 1 month, 
care to suppression was 5 months, and diagnosis to suppres-
sion was 6 months. The majority of individuals achieved sup-
pression within 2 visits after receiving care (Supplementary 
Figure 1). The greater number of consecutive visits prior to 
viral suppression is associated with a longer time to suppres-
sion (Supplementary Figure 2), supporting the belief that 
longer observed times to suppression are not driven prima-
rily by the visit schedule.

Cluster Growth and Time to Care Continuum Events

Investigation of the effect of cluster growth at HIV diagnosis 
on time to events in the care continuum revealed no significant 
differences in the time to each event between cases in medium 
and low growth clusters at time of diagnosis (Cox proportional 
hazards; Figure 1 and Table 3). However, in contrast to our in-
itial hypothesis, cases in high growth clusters at diagnosis were 
more rapidly linked to care (adjusted hazard ratio [HR] 1.06; 
P = .028) and achieved suppression more rapidly after diagnosis 
(HR 1.08; P = .034), compared with cases in low growth clus-
ters. Upon achieving viral suppression, cases in high growth 
clusters were slower to rebound (HR 0.83; P = .011), compared 
with cases in low growth clusters.

The time from diagnosis to suppression was modified by an 
indicator of linkage to care within 2 months of diagnosis (Cox 
proportional hazards model; P < .05). Among the 988 cases 
(19%) not linked to care within 2  months, cases in the me-
dium (HR 1.26, P = .005) and high (HR 1.29, P = .003) growth 
clusters achieved suppression faster than cases in low growth 
clusters (Figure  2). However, there was no significant differ-
ence in the time to viral suppression between individuals who 
were linked to care within 2  months of diagnosis. Therefore, 
the faster average time from diagnosis to suppression for cases 
in high growth clusters is likely attributable to the small frac-
tion of cases not linked to care within 2 months of diagnosis 
(Figure 1).

To assess sensitivity of results to analytical method, we 
compared results from a Cox regression with those from a 
multivariable logistic regression of the odds of being linked to 
care in 2, 6, and 12 months. Results of these models were con-
sistent; among cases not linked to care within 2 months of diag-
nosis, those in high growth clusters at diagnosis had increased 
odds of being linked to care in 6 (P = .007) and 12 (P = .004) 
months compared with cases in low growth clusters at diagnosis 
(Supplementary Table 3).

Excluding Out-of-Care Cases and Interval Censoring

To ensure these results were not primarily driven by cases 
who fell out of care, we repeated the Cox regression but in-
cluding only cases with a follow-up visit within 1  year after 
being linked to care (Table  3). In the restricted analyses, the 
relationships between cluster growth at diagnosis and (i) diag-
nosis to care, (ii) care to suppression, and (iii) suppression to 
rebound were unchanged. However, the time from diagnosis 
to suppression was no longer significant (P = .30). This result 
suggests that the difference in time from diagnosis to suppres-
sion may be driven by cases diagnosed in low growth clusters 
who disproportionately fell out of care. The same pattern was 
observed when we restricted this analysis to only cases linked 
to care within a year of being diagnosed. Furthermore, to ac-
count for the inherent difference between event time (i.e., viral 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa114#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa114#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa114#supplementary-data
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suppression or rebound) and visit time (i.e., the date of labora-
tory test), the analysis was repeated using methods that accom-
modate interval censoring; results of these restricted models 
were unchanged.

Cluster Membership Predicts Time to Care Continuum Event

We then explored the relationship between cluster growth and 
outcomes in the care continuum using parametric models. The 
times from diagnosis to care, care to suppression and diagnosis 
to suppression were, once again, were not significantly different 
among cases diagnosed in low, medium, and high growth clus-
ters in the log-normal gamma frailty model (Table 4). However, 

time from suppression to rebound remained significantly longer 
for cases diagnosed in high growth clusters (adjusted time ratio 
[TR] 1.38; P < .001). These results were robust to inclusion only 
of individuals with at least one follow-up visit within 1  year 
after first linkage to care (TR 1.36; P = .002). For comparison, 
the frailty model was also conducted with the commonly used 
Weibull distribution [38], and the time ratio results were qual-
itatively similar to those obtained from a log-normal baseline 
hazard (Supplementary Table 4).

We then investigated the role of heterogeneity among genetic 
clusters in time to events in the care continuum (i.e., treating 
cluster membership as a random effect) using a shared gamma 

Table 1.  Characteristics of Cases in the Los Angeles County HIV Transmission Network Diagnosed in High, Medium, and Low Growth Clusters Using 
Multivariable Ordinal Logistic Regressiona

Attributes
Total  
n (%)2

Low Cluster 
Growth  
n (%)b

Medium Cluster 
Growth  
n (%) b

High Cluster 
Growth  
n (%) b AORc 95% CI

Total population 5226 (100) 2621 (100) 1301 (100) 1304 (100) – –

Birth sex

  Male 4749 (91) 2317 (88) 1203 (92) 1229 (94) 1.30 1.02–1.67

  Female 477 (9) 304 (12) 98 (8) 75 (6) Ref. –

Age at diagnosis

  13–19 177 (3) 59 (2) 58 (4) 60 (5) 1.25 .94–1.66

  20–29 1813 (35) 730 (28) 482 (37) 501 (46) Ref. –

  30–39 1493 (29) 772 (29) 370 (28) 351 (27) 0.65 .57–.74

  40–49 1100 (21) 645 (25) 266 (21) 189 (15) 0.52 .45–.61

  50–59 521 (10) 329 (13) 102 (8) 88 (7) 0.49 .40–.60

  60+ 122 (2) 86 (3) 21 (2) 15 (1) 0.35 .24–.53

Race/ethnicity

  White 1124(21) 557 (21) 288 (22) 279 (21) Ref. –

  Black/African American 1040 (20) 574 (22) 237 (18) 229 (18) 0.79 .67–.95

  Hispanic/Latino 2655 (51) 1264 (48) 695 (53) 696 (53) 1.07 .92–1.23

  Asian/Pacific Islander 240 (5) 134 (5) 46 (4) 60 (5) 0.80 .61–1.06

  Otherd 167 (3) 92 (4) 35 (3) 40 (3) 0.75 .55–1.04

Poverty level at ZIP code of diagnosise

   25th percentile 487 (9) 249 (10) 115 (9) 123 (9) Ref. –

  50th percentile 989 (19) 474 (18) 246 (19) 269 (21) 1.00 .81–1.24

  75th percentile 1332 (26) 711 (27) 316 (24) 305 (23) 0.83 .68–1.02

  >75th percentile 2418 (46) 1187 (45) 624 (48) 607 (47) 0.97 .80–1.18

CD4+ count at diagnosis

  ≥500 cells/mm3 1561 (30) 681 (26) 438 (34) 442 (34) 1.88 1.62–2.18

  200–499 cells/mm3 2247 (43) 1030 (39) 587 (45) 630 (48) 1.80 1.57–2.06

   <200 cells/mm3 1412 (27) 908 (35) 274 (21) 230 (18) Ref. –

  Missing 6 (<1) 2 (<1) 2 (<1) 2 (<1) 2.36 .55–10.07

Transmission risk 

  MSM 3729 (71) 1741 (66) 979 (75) 1009 (77) Ref. –

  PWIDf 224 (4) 113 (4) 59 (5) 52 (4) 0.96 .74–1.25

  Heterosexual sexual contact 155 (3) 95 (4) 34 (3) 26 (2) 0.86 .59–1.28

  Unidentified 1118 (22) 672 (26) 229 (17) 217 (17) 0.77 .66–.89

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; HIV, human immunodeficiency virus; MSM, men who have sex with men; PWID, people who inject drugs.
aLikelihood ratio test of proportional odds assumption was performed to assess whether the associated log odds is equal to that comparing high and medium growth clusters to low growth 
clusters (P = .187).
bColumn percentages.
cAdjusted odds ratio comparing cases in high growth clusters at diagnosis compared with cases in low and medium growth clusters at diagnosis.
dIncludes American Indian/Alaskan Native, multiracial, or unknown race/ethnicity.
eFraction of population in ZIP code of diagnosis living below 100% of the federal poverty level.
fPWID includes MSM who reported injection drug use.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa114#supplementary-data
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frailty model. Along every event interval in the care continuum, 
the variance of the cluster random effect was highly significant 
(Table 4). This finding was also observed when we restricted the 
analysis to individuals with at least 1 follow-up visit within a 
year of first linkage to care.

To ensure the variance of cluster random effect was not 
driven by the 2035 cases (39%) that did not cluster in the HIV 
transmission network, we performed additional sensitivity ana-
lyses for the outcome of time from diagnosis to suppression. 
These analyses included only cases linked genetically to at least 
one other case diagnosed from 2010 through 2014 (i.e., cluster 
size ≥ 2). The variance remained highly significant using both 
log normal and Weibull baseline hazard models (P < .001; 
Supplementary Table 5).

Even after adjusting for individual level confounders (i.e., 
birth sex, age at diagnosis, race/ethnicity, CD4+ count at di-
agnosis, and transmission risk), the variance of the cluster 

random effect remained significant (P < .001); the magnitude 
of the estimate effect was reduced by a third (Supplementary 
Table 5). For all events in the HIV care continuum, event times 
were more similar within than across transmission clusters 
(Supplementary Figure 3).

DISCUSSION

We characterized the relationship between the HIV transmis-
sion network and the care continuum using HIV surveillance 
data from individuals diagnosed and residing in Los Angeles 
County. The timing of progression to events in the HIV care 
continuum was more similar among individuals who were 
members of the same transmission cluster than among indi-
viduals in different transmission clusters. For example, indi-
viduals in clusters with members that take longer to achieve 
viral suppression are themselves more likely to take longer to 

Table 2.  Proportion of Individuals That Progressed to Each Event in the Care Continuum and the Median Survival Time to Each Event

Continuum Interval

All Cases
Restricted to Cases With Follow-up Visit Within 1 year 

After Initial Linkage to Care

Total Cases 
at Starta

Total Cases 
at Endb

% Reached 
Outcome

Median Months  
to Outcome (IQR)c

Total Cases 
at Starta

Total Cases 
at Endb

% Reached 
Outcome

Median Months to 
Outcome (IQR)c

Diagnosis to care 5,226 5,225 100% 0 (0–1) 4,944 4,944 100% 0 (0–1)

Care to suppression 5,204 4,791 92% 5 (3–10) 4,944 4,604 93% 5 (3–9)

Diagnosis to suppression 5,226 4,791 92% 6 (4–13) 4,944 4,604 93% 6 (4–12)

Suppression to rebound 4,646 1,223 26% 15 (7–28) 4,482 1,176 26% 15 (7–28)

Abbreviation: IQR, interquartile range.
aCases with at least 1 viral load after the beginning of each interval are eligible.
bCases not meeting the end point are censored.
cMedian survival times.

Table 3.  Adjusted Hazard Ratios for Months to Events in the Continuum of Care by Cluster Growth

Cox Proportional Hazard

 All Cases

Restricted to Cases With Follow-up 
Visit Within 1 year After Initial Linkage 

to Care

Continuum Interval
Cluster 
Growth HRa 95% CI P HRa 95% CI P

Diagnosis to care Low Ref. – – Ref. – –

Medium 1.04 .99–1.10 .084 1.05 .99–1.11 .066

High 1.06 1.01–1.12 .028 1.07 1.01–1.12 .024

Care to suppression Low Ref. – – Ref. – –

Medium 0.98 .91–1.05 .489 0.99 .93–1.07 .934

High 1.03 .96–1.11 .357 0.98 .92–1.06 .661

Diagnosis to suppression Low Ref. – – Ref. – –

Medium 1.01 .94–1.08 .749 1.04 .97–1.11 .318

High 1.08 1.01–1.16 .034 1.04 .97–1.11 .302

Suppression to rebound Low Ref. – – Ref. – –

Medium 0.98 .85–1.13 .806 0.99 .86–1.13 .837

High 0.83 .72–.96 .011 0.84 .73–.97 .018

Abbreviations: CI, confidence interval; HR, hazard ratio. 
aAdjusted hazard ratio adjusted for age at diagnosis, race/ethnicity, poverty level at ZIP code of diagnosis, transmission risk category, birth sex, and CD4+ count at diagnosis.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa114#supplementary-data
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achieve suppression. This effect extends beyond what is cap-
tured by demographic, laboratory, and transmission risk sur-
veillance data, which themselves tend to be assortative across 
the transmission network [39]. Therefore, epidemiological con-
nections informed by genetic linkage can potentially inform 

future progression through the care continuum. We suggest that 
public health services related to linkage-to-care, viremia sup-
port, and return-to-care could be prioritized for individuals in 
clusters whose other members have failed to timely reach events 
in the care continuum or have fallen out-of-care.

Cluster
growth at
diagnosis

High

Medium

Low

Time to
linkage to

care

Time to
viral

suppression

Time to
viral

rebound

1.06*

1.03

Ref.

1.03

0.98

Ref.

0.83*

0.98

Ref.

1.08*

1.01

Ref.

Figure 1.  Flow diagram of the human immunodefiency virus care continuum based on cluster growth at diagnosis. Values indiciate adjusted hazard ratios, with low cluster 
growth at diagnosis serving as the reference category. Arrows show path between care continuum events (i.e., diagnosis to care). Thick arrows denote significantly increased 
rate of progression between care continuum events; thin arrows denote significantly slower rate of progression between care continuum events. Asterisks indicate signifi-
cance at P < .05 in the Cox proportional hazards model.
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Figure 2.  Kaplan-Meier survival estimates and adjusted HRs of time from diagnosis to viral suppression by linked to care in 2 months. Median months from diagnosis to 
suppression is 5 (IQR 3–11), 6 (IQR 4–14), and 6 (IQR 4–12) if linked to care in 2 months for low, medium and high growing clusters, respectively. Median months from diag-
nosis to suppression is 19 (IQR 9–36), 16 (IQR 8–28), and 15 (IQR 8–29) if linked to care >2 months after diagnosis for low, medium and high growing clusters, respectively. 
There was no significant difference in hazards for cases linked to care within 2 months. For cases linked to care in >2 months after diagnosis, medium and high growing clus-
ters reached suppression 26–29% faster (P < .01) compared with low growing clusters, after adjusting for age at diagnosis, race/ethnicity, poverty level at ZIP code diagnosis, 
transmission risk category, birth sex, and CD4+ at diagnosis. Abbreviations: HIV, human immunodeficiency virus; HR, hazard ratio; IQR, interquartile range.
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Our results do not support the hypothesis that continued 
expansion of rapidly growing clusters is associated with pro-
longed viremia due to slower progression through the care 
continuum. In fact, we estimated that individuals in rapidly 
growing clusters at diagnosis took 17% longer to experience 
postsuppression viral rebound. Furthermore, among indi-
viduals who took longer than 2 months after diagnosis to be 
linked to care, those in rapidly growing clusters at diagnosis 
became virally suppressed 29% faster. LAC DPH did not in-
itiate cluster investigation and response until after 2016, so 
these findings are not influenced by cluster-based interven-
tions. We acknowledge that cluster growth is influenced by 
access to and engagement with care, including HIV testing: 
a higher proportion of cases in low growth clusters had CD4+ 
count < 200 copies/mm3 at diagnosis. The shorter time to viral 
rebound for cases in low growing clusters may be related to 
this decreased engagement with care.

The HIV care continuum is typically evaluated at a popula-
tion level over a fixed time period (e.g., 51% of people living 
with HIV in the US were virally suppressed in 2015 [1]). 
However, the HIV transmission network comprises individuals 
who may or may not be linked to care or virally suppressed at 
any given time point. This discrepancy informed our study de-
sign: our approach focused on the time from linkage to care to 
virologic suppression, rather than on the proportion of people 
who successfully transition from linkage to suppression in the 

next year. Furthermore, our study design did not permit anal-
ysis of retention in care, which relies on reported laboratory re-
sults whose completeness is around 80% [40]. Hence, missing 
lab results are an unreliable indicator of care status. In addition, 
relocation outside of LAC results in erroneous designation of 
out-of-care status. Therefore, the relationship between out-of-
care status and the transmission network would be better as-
sessed at the state or federal level.

Our conclusions are limited to individuals with reported lab-
oratory data. Cluster growth cannot be assessed for individuals 
without a reported HIV sequence, and characterizing progression 
through the care continuum relies on reported laboratory data. 
Nonetheless, among observable cases, our results demonstrate the 
underlying relationship between shared membership in an HIV 
transmission cluster and progression through the care continuum.

We described the relationship between the HIV transmis-
sion network and the rate of progression through the HIV con-
tinuum of care in Los Angeles County. Planned efforts to reduce 
HIV incidence through the Ending the HIV Epidemic initiative 
[10] would benefit from further study of this relationship.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases on-
line. Consisting of data provided by the authors to benefit the reader, the 
posted materials are not copyedited and are the sole responsibility of the 
authors, so questions or comments should be addressed to the corre-
sponding author.

Table 4.  Adjusted Time Ratios for Months to Events in the Continuum of Care by Cluster Growth Accounting for Genetic Heterogeneity (i.e., Membership 
in Same Transmission Cluster) Using Gamma Frailty Model

Log Normal Gamma Shared Frailty

 All Cases
Restricted to Cases With Follow-up Visit 

Within 1 year After Initial Linkage to Care

Continuum Interval
Cluster 
Growth TRa 95% CI θb P TRa 95% CI θb P

Diagnosis to care Low Ref. …   Ref. …   

Medium 0.98 .85–1.14  .848 0.98 .84–1.14  .770

High 0.91 .77–1.07  .252 0.93 .79–1.09  .355

   0.11 <.001   0.11 <.001

Care to suppression Low Ref. …   Ref. …   

Medium 1.07 .99–1.14  .061 1.05 .98–1.12  .162

High 1.04 .96–1.11  .349 1.07 .99–1.15  .053

   0.28 <.001   0.28 <.001

Diagnosis to suppression Low Ref. …   Ref. …   

Medium 1.04 .97–1.11  .229 1.02 .96–1.09  .473

High 0.99 .92–1.07  .873 1.02 .95–1.10  .519

   0.22 <.001   0.25 <.001

Suppression to rebound Low Ref. …   Ref. …   

Medium 1.10 .91–1.31  .321 1.09 .91–1.32  .345

High 1.38 1.14–1.68  .001 1.36 1.12–1.66  .002

   0.13 .005   0.12 .007

Abbreviations: CI, confidence interval; TR, time ratio. 
aTime ratios > 1 indicate slower time to event, whereas time ratios < 1 indicates accelerated time to event.
bTheta is the variability of the gamma frailty across groups of cluster estimated from the data with a mean of 1.
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