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Abstract 
 

Component-Specific Developmental Trajectories of ERP Indices of Cognitive Control in 
Early Childhood 

 
by Amanda Peters for the partial satisfaction of the requirements for the degree of Master 

of Arts in Psychological Sciences University of California, Merced 2023 
Dr. Elif Isbell, Chair 

 
 
 

 
Early childhood is characterized by robust developmental changes in cognitive 
control; however, our understanding of intra-individual change in neural indices 
of cognitive control during this period remains limited. Here, we examined 
developmental changes in event-related potential (ERP) indices of cognitive 
control from preschool through first grade, in a large and diverse sample of 
children (N = 257). We recorded ERPs during a visual Go/No-Go task. N2 and 
P3b mean amplitudes were extracted from the observed waveforms (Go and No-
Go) and the difference wave (No-Go minus Go, or ∆). Latent growth curve 
modeling revealed that while N2 Go and No-Go amplitudes showed no linear 
change, P3b Go and No-Go amplitudes displayed linear decreases in magnitude 
(became less positive) over time. ∆N2 amplitude demonstrated a linear increase in 
magnitude (became more negative) over time whereas ∆P3b amplitude was more 
positive in kindergarten compared to preschool. Younger age in preschool 
predicted greater rates of change in ∆N2 amplitude, and higher maternal 
education predicted larger initial P3b Go and No-Go amplitudes in preschool. Our 
findings suggest that observed waveforms and difference waves are not 
interchangeable for indexing neurodevelopment, and the developmental 
trajectories of different ERP indices of cognitive control are component-specific 
in early childhood.  
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Introduction 
Cognitive control (executive function) skills support goal-directed behaviors, 

especially in the face of distractions or irrelevant behavior choices (Cohen, 2017; Gratton 
et al., 2018). The development of these skills in early childhood is essential for school 
readiness and academic success (Schmitt et al., 2017). In contrast, cognitive control 
difficulties are implicated in various neurodevelopmental disorders, including attention-
deficit/hyperactivity disorder and obsessive-compulsive disorder (Yang et al., 2022). 
Given the educational and clinical significance of early cognitive control development, 
many studies have investigated the neural underpinnings of cognitive control (for a 
review, see Fiske & Holmboe, 2019).  
 In particular, the event-related potential (ERP) technique has commonly been 
used to examine neural indices of cognitive control given its ability to capture the rapid 
temporal dynamics of cognitive control (Gratton et al., 2018). Further, the ERP technique 
is non-invasive and child-friendly, making this neuroimaging method well-suited for 
developmental research (Coch & Gullick, 2011). However, the developmental ERP 
literature primarily consists of cross-sectional studies, limiting our understanding of the 
longitudinal characteristics of ERP components across childhood. Thus, the overarching 
goal of this study was to delineate the potentially distinct developmental trajectories of 
two widely studied neural indices of cognitive control, namely the ERP components N2 
and P3b, across early childhood – a period of critical importance for cognitive control 
development.  
Development of cognitive control in early childhood 

According to the developmental model of cognitive control proposed by 
Munakata and colleagues (2012), three key transitions occur in early childhood that 
support improvements in cognitive control skills. Specifically, children transition from 
perseverating on habits to engaging control in response to environmental demands, from 
reactive to proactive control, and from externally-driven to self-directed control. These 
developmental transitions are paralleled by improvements in accuracy and increases in 
response speed across various cognitive control tasks (Reilly et al., 2022; Schmitt et al., 
2017; Willoughby et al., 2012). Taken together, cognitive control develops substantially 
during preschool and the early school-aged years.  

In addition to these behavioral changes, there are marked structural and functional 
changes in brain regions subserving cognitive control during this period (for a review, see 
Fiske & Holmboe, 2019). Notable structural changes within the prefrontal and posterior 
cortices occur in addition to the maturation of white matter microstructure in tracts 
connecting these regions (Goddings et al., 2021; Houston et al., 2013). Additionally, with 
age, there are changes in the activation patterns of frontal and posterior regions as well as 
the strengthening of frontoparietal functional connectivity (Buss et al., 2014; Fiske & 
Holmboe, 2019). Given the pronounced development of brain regions supporting 
cognitive control across early childhood, it is plausible that this maturation would be 
paralleled by developmental changes in ERP indices of cognitive control. 
ERP components N2 and P3b 

Two of the most commonly studied ERP indices of cognitive control are the N2 
and P3b components. The N2 is a negative deflection in the ERP waveform that is 
commonly observed during competing response tasks. The N2 is generally found to be 
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enhanced (more negative) for infrequently presented trials that elicit competing response 
representations compared to frequently presented trials that elicit more automatic 
responses (Folstein & Van Petten, 2007; Hoyniak, 2017). Investigators have interpreted 
the N2 as indexing response inhibition (e.g., Bokura et al., 2001). However, there is 
evidence that the N2 is larger for infrequent responses, regardless of whether a motor 
response is inhibited, leading others to argue that the N2 may reflect the monitoring of 
conflict between competing response representations (e.g., Botvinick et al., 2001). The 
N2 occurs over frontal electrodes around 200-300 ms post stimulus in adults (Bokura et 
al., 2001; Folstein & Van Petten, 2007). In children, N2 is typically observed around 250-
500 ms post stimulus, and can have a broader scalp distribution over the anterior and 
central electrodes (Abdul Rahman et al., 2017; Lahat et al., 2010). ERP work combined 
with source localization techniques have identified the anterior cingulate, ventral and 
dorsal prefrontal, and orbitofrontal cortices as N2 generators in children and adults 
(Bokura et al., 2001; Lahat et al., 2010; Lamm et al., 2006). 

The P3b is a positive deflection in the ERP waveform that tends to be elicited 
during tasks in which participants must discriminate between and respond differently to 
frequent and rare stimuli (Polich, 2011). The hallmark of the P3b is that its amplitude 
tends to be larger (more positive) for infrequent compared to frequent stimuli (Polich, 
2011). In terms of its functional significance, the P3b is considered to reflect context 
updating and information processing associated with attentional and memory 
mechanisms (Polich, 2011). The P3b is maximal over posterior electrodes and occurs 
around 300-600 ms post stimulus in adults (Kappenman et al., 2021; Polich, 2011) and 
around 300-700 ms post stimulus in children (Abdul Rahman et al., 2017; Riggins & 
Scott, 2020; St John et al., 2019). Neural generators of the P3b have been identified as the 
inferior temporal and posterior parietal cortices (Bledowski et al., 2004; Polich, 2011). 
Given that N2 and P3b differ in the cognitive processes they are considered to reflect, as 
well as in their timing, scalp distribution, and neural generators, these components may 
display distinct developmental trajectories in childhood. 
Development of N2 and P3b 
  Several researchers have successfully adapted the classic visual Go/No-Go task 
to elicit N2 and P3b in children (e.g., Lahat et al., 2010; Ruberry et al., 2017). Generally, 
in this task, participants are instructed to respond to frequently presented targets (Go) and 
withhold responses to rare non-targets (No-Go), and enhanced amplitudes are typically 
observed for the No-Go compared to Go trials (e.g., Lahat et al., 2010; St. John et al., 
2019). ERPs elicited during Go/No-Go tasks can be quantified using observed waveforms 
(Go and No-Go) or the difference wave (No-Go minus Go, or ∆). Observed waveforms 
consist of a mixture of underlying brain components, reflecting underlying 
neurophysiology, whereas difference waves eliminate concurrent neural processes across 
conditions, reflecting experimental effects on ERP components (Luck, 2014). Given that 
observed waveforms and difference waves diverge in the neural activity that they reflect, 
they may show different developmental trajectories.  

Cross-sectional studies using visual Go/No-Go tasks have reported somewhat 
contradictory results regarding age-related changes in N2 amplitudes extracted from both 
observed waveforms and difference waves. N2 No-Go amplitude has been found to 
linearly decrease in magnitude (become less negative) with age (Hoyniak, 2017; Lo, 
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2018), while N2 Go amplitude has been found to show no change across childhood and 
adolescence (Hoyniak, 2017). Correlational studies have reported that P3b Go and No-Go 
amplitudes show no change with age (St. John et al., 2019; Willner et al., 2015). Studies 
examining ∆N2 amplitude have reported both increases and decreases across 
development (Cragg et al., 2009; Jonkman, 2006). It is unclear how ∆P3b amplitude 
changes with age as P3b amplitudes have primarily been examined using observed 
waveforms. The somewhat inconsistent findings reported in previous research may stem 
from differences in age groups of interest, task characteristics across studies (e.g., task 
paradigm, types and frequency of visual stimuli, task difficulty), and whether ERP 
components are quantified with observed waveforms or difference waves.  
Individual differences in cognitive control development  

Beyond the need for delineating average change in different ERP indices of 
cognitive control in early childhood, it is also important to examine what factors may 
contribute to individual differences in these trajectories. Although age-related differences 
in ERP indices of cognitive control have been less consistent, children’s age has 
consistently been found to relate to concurrent behavioral measures of cognitive control, 
such that older children outperform but demonstrate slower rates of growth in cognitive 
control, compared to younger children (Davidson et al., 2006; Lensing & Elsner, 2018). 
Although widely studied, gender differences in cognitive control have not been 
consistent. While there is some evidence that compared to boys, girls demonstrate greater 
accuracy and slower response times during cognitive control tasks (Clark et al., 2013), 
other studies have reported no gender differences in behavioral performance or N2 and 
P3b amplitudes (Lahat et al., 2010; St. John et al., 2019; Willner et al., 2015).   

Among family-level factors, socioeconomic status (SES) has consistently been 
found to relate to cognitive control in early childhood (Merz et al., 2018; Ursache & 
Noble, 2016). However, for N2 and P3b amplitudes, findings have been less consistent. 
While some studies reported smaller N2 and P3b amplitudes in children from lower 
compared to higher SES backgrounds (Kishiyama et al., 2009; St. John et al., 2019), 
others did not find SES-related disparities (Rubbery et al., 2017). It remains to be 
investigated to what extent these child- and family-level characteristics contribute to the 
neurodevelopment of cognitive control in early childhood. 
Current study 
  In the current study, we examined developmental changes in neural indices of 
cognitive control, specifically, ERP components N2 and P3b, in early childhood. ERPs 
were recorded during a visual Go/No-Go task from a large sample of children (N = 257) 
from diverse socioeconomic and racial/ethnic backgrounds across 3 time points: 
preschool, kindergarten, and first grade. N2 and P3b mean amplitudes were extracted 
from observed waveforms (Go and No-Go) and the difference wave (No-Go minus Go). 
We used latent growth curve modeling to delineate the longitudinal characteristics of N2 
and P3b amplitudes. 

Based on previous research demonstrating that N2 and P3b differ in the cognitive 
processes they are considered to reflect, and in their timing, scalp distribution, and neural 
generators, we expected N2 and P3b amplitudes to demonstrate unique developmental 
trajectories. Further, given that observed waveforms reflect underlying neurophysiology, 
whereas difference waves reflect experimental effects on ERP components (Luck, 2014), 



4 

 

we predicted that amplitudes extracted from observed waveforms and difference waves 
would display distinct developmental trajectories.  

After characterizing the developmental trajectories of N2 and P3b amplitudes, we 
examined whether child- and family-level sociodemographic characteristics related to the 
initial starting values and rates of change in N2 and P3b amplitudes. Specifically, we 
examined links between age, gender, and family SES, and N2 and P3b amplitudes. 
Previous inconsistent findings precluded us from having a priori hypotheses regarding 
the links between these sociodemographic factors and the longitudinal characteristics of 
N2 and P3b amplitudes.     
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Method 
Participants 

Participants were part of a longitudinal study examining school readiness and 
early academic success. The initial sample consisted of 278 children (55% girls) between 
the ages of 3.75 and 5.83 years (Mean = 4.70, SD = 0.39) who were recruited from 
daycare centers, public establishments, and via participant referral in the Southeastern 
United States. The study consisted of three waves of data collection: preschool, 
kindergarten, and first grade. At the preschool laboratory visit, none of the participants 
had started kindergarten. The kindergarten laboratory visit took place approximately 1 
year after the preschool visit and was proceeded approximately 1 year later by the first 
grade visit. The present study included children for whom we had usable 
electroencephalogram (EEG) data for at least one time point (n = 257; 54% girls). 
Children who had ERP data for at least one time point did not differ from children who 
did not have ERP data at any time point (n = 21) in terms of age at the beginning of the 
study, gender, maternal education, or income-to-needs ratio (all ps > .056).  

According to parent reports of child race, 59% of children were White, 30% were 
African American, 9% were multiracial, and 2% were Asian. This sample broadly 
represented the diversity of the county from which the children were recruited (U.S. 
Census, 2010). Children who participated in all visits (84%) did not differ from children 
who participated in only one or two visits in terms of age at the beginning of the study, 
gender, maternal education, or income-to-needs ratio (all ps > .085).  
Procedure 
 Upon arrival to the laboratory, informed written consent was obtained from 
parents and verbal assent was obtained from the child prior to beginning data collection. 
Each laboratory visit took approximately 2 hours and consisted of a battery of tasks 
assessing cognitive, social, and emotional development and academic readiness. At the 
beginning of the testing session, the child’s head circumference was measured, and an 
appropriately sized EEG net was fitted. During the Go/No-Go task, children were seated 
in front of a computer monitor; the distance and alignment to the monitor were kept 
consistent across children. To reduce motor artifacts, children were instructed to sit still 
during the task. Parents received monetary compensation and children selected a toy at 
the completion of the visit.  
Measures 
 Demographics. Information about children’s age, gender, race and ethnicity, and 
family SES was obtained via a questionnaire filled out by parents at the preschool time 
point. Income-to-needs ratio and maternal education were used as measures of family 
SES. Parents reported monthly family income on an item that consisted of 15 income 
ranges. The midpoint of each range was used as an estimate of total monthly income, and 
this value was multiplied by 12 to obtain an estimate of total yearly income. The 
appropriate poverty threshold was assessed based on U.S. Census Reports for the year in 
which annual income was earned, the number of individuals living in the home, and the 
number of children living in the home. Income-to-needs ratio was computed by dividing 
the annual family income by the poverty threshold. Maternal education level was rated on 
an ordinal scale ranging from 10 (some high school, no diploma) to 18 (graduate or 
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professional degree). The values approximately correspond to the number of years of 
schooling. Descriptive statistics for the demographic variables are presented in Table 1.  

Cognitive control. A computerized Go/No-Go task (Lahat et al., 2010; see Figure 
1 for a schematic of task structure) was used to assess children’s cognitive control. The 
task was presented using E-Prime version 2.0 (PST, Pittsburgh, PA, USA) while EEG 
data was collected. At the beginning of each trial, a fixation point accompanied by a 
“ding” sound appeared in the middle of the screen and was shown for 1,500 ms. This was 
followed by an animal stimulus that was displayed on the screen for 1,500 ms or until a 
response was made. Task stimuli were colored animal pictures (cow, horse, bear, pig, or 
dog). Children were instructed to respond by pressing a button as soon as they saw an 
animal (Go trial), except for when they saw a dog (No-Go trial). Feedback was displayed 
for 500 ms after each trial. A yellow smiley face followed a correct response, and a red 
frowning face followed an incorrect response or a response that occurred after the 1,500 
ms stimulus window. Before beginning the task, children completed 10 practice trials (6 
Go). The practice block was repeated until children responded correctly on at least 9 out 
of 10 trials. The task itself consisted of 144 trials (75% Go) divided into 4 blocks, with 
breaks offered between blocks. No-Go trials were preceded by two, three, or four Go 
trials to avoid predictability.  
EEG recording and analyses 
 EEG was recorded using a 64-channel HydroCel Geodesic Sensor Net, a 
NetAmps 300 Amplifier, and the NetStation 4.5.4 software (Electrical Geodesics Inc., 
Eugene, OR, USA). Following an advisory notice released by EGI on anti-alias filter 
effects on timing, event latencies were re-coded by adding 8 ms to the original event 
latencies. Prior to data collection, the sensor nets were customized for the study by 
removing four face electrodes. Electrodes approximating the international 10-20 locations 
were renamed and clusters were defined around these electrodes (Vanderwert et al., 
2016), as shown in Figure 2. EEG data were sampled at 250 Hz and referenced online to 
a single vertex electrode (Cz). Channel impedances were kept at or below 80 kΩ. 
 EEG preprocessing and ERP analyses were conducted in MATLAB using 
customized EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & 
Luck, 2014) scripts, as well as scripts adapted from the ERP CORE (Kappenman et al., 
2021), ICLabel (Pion-Tonachini et al., 2019), and Mass Univariate Toolbox (Groppe et 
al., 2011). 

EEG data were band-pass filtered from 0.1 to 30 Hz with a linear finite impulse 
response (FIR) filter. Upon initial inspection of the data, electrodes E23, E29 (LM), E47 
(RM), and E55 were found to be artifact-laden across participants. These four electrodes 
were excluded from further processing and not included in the final analyses. Electrodes 
E1, E5 (FP2), E10 (FP1), and E17 were used only for the detection of ocular movements. 
For the remaining 52 electrodes, bad electrodes were detected with the 
pop_clean_rawdata function in EEGLAB and replaced using spherical interpolation. 
After interpolation, the EEG data were re-referenced to the average.  

Next, recording periods with no event codes (defined as no events for 5000 ms or 
longer, with 2500 ms before and 2500 ms after any codes) were removed. Data segments 
with extreme artifacts were rejected from the continuous data with the ERPLAB moving 
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window peak-to-peak threshold algorithm (across a 500 ms window, moving at 250 ms 
increments, with a +/- 300 µV threshold) applied to all electrodes except E1, E5, E10, 
and E17. ICA was then conducted on all electrodes. The computed ICA weights were 
then applied to the preprocessed data files (after interpolation and re-referencing). For the 
removal of eye components, we used the ICLabel classifier (Pion-Tonachini et al., 2019). 
Each independent component that was associated with the “eye” label with at least 80% 
probability and associated with the “brain” label with less than 5% probability was 
selected as an ”eye component”. Only the first 3 “eye” components listed for each 
participant were removed to prevent losing too much non-artifactual activity.  
 After the removal of the eye components, the EEG data were epoched offline 
between 200 ms prior to and 1000 ms after stimulus onset, using the first 200 ms as the 
pre-stimulus baseline period. Artifact rejection was run on a sample group of channels 
(E1, E5, E10, E12, E17, E20, E28, E42, E50, E60) with a simple voltage threshold of 200 
µV to determine channels that might cause large amounts of ERP data loss. Channels that 
caused at least 10% of ERP trials to be rejected and had a rejection percentage of at least 
3.29 SD (Tabachnick & Fidell, 2007) above the within-participant mean were marked as 
bad. The channels marked as bad for each participant were excluded from artifact 
detection and data analyses. The final artifact rejection step was run on all channels of 
interest, shown in Figure 2, using a simple voltage threshold of 200 µV for all 
participants.  

To reduce the number of factors used in the statistical analyses, electrode clusters 
were used instead of single electrodes (Luck & Gaspelin, 2017). Given that larger N2 
amplitudes for the No-Go versus Go trials have been observed over the anterior right 
(Lahat et al., 2010) and left hemispheres (Abdul Rahman et al., 2017), we created frontal 
and central electrode clusters separately for the right hemisphere (F4 and C4 clusters) and 
left hemisphere (F3 and C3 clusters). Larger P3b amplitudes in children have been 
reported over midline posterior electrodes (St. John et al., 2019; Willner et al., 2015), but 
hemisphere differences have also been found, with larger P3b amplitudes observed over 
parietal right and midline electrodes compared to the left hemisphere (Abdul Rahman et 
al., 2017). Therefore, we created posterior electrode clusters separately for the midline 
region (PM and OM clusters), right hemisphere (P4 cluster), and left hemisphere (P3 
cluster). For the electrodes included in each cluster, see Figure 2. 

An initial data quality check was done via visual inspection of the individual ERP 
plots, for each participant at each time point. ERP data of children were excluded if there 
were not clear visual evoked potentials (visual P1 and N1, for the frequent, i.e., Go trials) 
in the PM and OM clusters. Only correct trials were included in the analyses. ERP data of 
children who did not have at least 10 artifact-free trials per probe type were excluded 
from analyses. For information on exclusion criteria, see Table 2. 
 Based on previous research using similar paradigms with a similar age group, we 
planned to measure the N2 component between 250-450 ms post stimulus onset (Lahat et 
al., 2010; Ruberry et al., 2017) and the P3b component between 300-600 ms poststimulus 
onset (Abdul Rahman et al., 2017; Ruberry et al., 2017; St. John et al., 2019). The Mass 
Univariate ERP Toolbox (Groppe et al., 2011) was used to check the appropriateness of 
the ERP measurement time windows we selected a priori, as well as to examine the scalp 
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distribution of the N2 and P3b. As recommended, to isolate the experimental effects, 
difference waves were used in these analyses (Groppe et al., 2011). Specifically, we used 
the t-max permutation, conducting repeated-measures two-tailed permutation tests for the 
difference waves (No-Go minus Go) at every time point at each selected channel cluster 
(F3, F4, C3, C4, P3, P4, PM, OM) from 200 to 800 ms post stimulus (i.e., 1208 
comparisons), while controlling for the family-wise error rate. Separate permutation tests 
were performed for the preschool, kindergarten, and first grade ERPs. The mass 
univariate analyses supported the use of the time windows selected for N2 and P3b a 
priori. Additionally, based on the results from the permutation tests (see Figure 3 for 
raster diagrams), we collapsed across the F4 and C4 clusters and used a single right 
frontocentral cluster in subsequent analyses of N2. We also collapsed across the PM and 
OM clusters and used a single midline posterior cluster in subsequent analyses of P3b 
(see Figure 4 for channels included in the final clusters).  
 After selection of the channel clusters to be used in the analyses, two more 
exclusion criteria were applied separately for N2 and P3b and for preschool, 
kindergarten, and first grade ERP data before the statistical analyses were conducted. 
First, we conducted visual inspection of the individual average ERP plots across 
participants for the clusters of interest to identify any cases in which data quality was 
poor (e.g., excessive drift in observed waveforms). These ERP data were excluded from 
the final analyses. Second, an objective data quality measure, namely the analytic 
standardized measurement error (aSME; Luck et al., 2021), was computed for Go and 
No-Go mean amplitude, using a window of 250-450 ms for N2 and 300-600 ms for P3b. 
An aSME outlier was defined as a value at least +/- 3.29 SD (Tabachnick & Fidell, 2007) 
or more extreme than the between-participant mean for each component at preschool, 
kindergarten, and first grade. Given that higher aSME values indicate lower measurement 
precision and worse data quality, ERP data were excluded from the final analyses if there 
was an aSME outlier for either the Go or No-Go condition. Counts for all exclusion 
criteria are provided in Table 2.  

The final analyses included ERP mean amplitudes extracted from observed 
waveforms (Go and No-Go) and the difference wave (denoted as ∆), between 250-450 ms 
over the right frontocentral cluster for N2, and 300-600 ms over the midline posterior 
cluster for P3b.  
Analytic strategy 
 To examine the average trajectories of N2 Go, N2 No-Go, ∆N2, P3b Go, P3b No-
Go, and ∆P3b across preschool, kindergarten, and first grade, we conducted an 
unconditional latent growth curve model for each outcome separately. The latent intercept 
factor, representing outcome values at the first data collection point (preschool), was 
estimated by constraining the paths of each data collection point to 1. The latent slope 
factor, representing the linear change in the outcome across the three data collection 
points, was estimated by constraining the paths for preschool, kindergarten, and first 
grade to 0, 1, and 2, respectively. The intercept and slope were allowed to covary. 
Bonferroni correction was applied per ERP component to control for the family-wise 
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error rate1. Poor fit between an unconditional model and the observed data was addressed 
by conducting post-hoc pairwise comparisons, applying Bonferroni correction to control 
for the type I error rate. 
 To evaluate whether the trajectories of the outcomes of interest varied as a 
function of sociodemographic factors, we examined whether age at the beginning of the 
study, gender, maternal education, and income-to-needs ratio predicted the intercept and 
slope of each outcome. These factors were added as time-invariant covariates to the 
unconditional models that provided good fit to the observed data. Maternal education and 
income-to-needs ratio were significantly correlated, r = .49, p < .001, thus, we allowed 
these variables to covary in the conditional models. Bonferroni correction was applied 
per ERP component to control for the family-wise error rate2. 

Missing data were handled using full information maximum likelihood (FIML) 
estimation to reduce potential bias in the parameter estimates (Enders & Bandalos, 2001). 
Model fit was evaluated using a combination of fit indices, including c2, CFI (≥ .90), and 
RMSEA (≤ .06; Hu & Bentler, 1999). All data analyses were done in R (Version 4.2; R 
Core Team, 2022) and RStudio (Version 7.2; RStudio Team, 2022) using the lavaan 
package (Version 0.6; Rosseel, 2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
1Given that observed waveform and difference wave amplitudes were extracted using the same cluster of 
electrodes per ERP component as well as the relatively high multicollinearity among the amplitude 
measures per ERP component (see Table 4 for bivariate correlations), we used a stringent multiple 
comparison correction method. 
2 Prior to applying this correction method, younger age at preschool related to larger (more negative) ∆N2 
amplitudes in preschool (p = .037). All other relations between sociodemographic factors and the intercepts 
and slopes did not change in terms of significance when Bonferroni correction was applied. 
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Results 
Preliminary analyses 
 Descriptive statistics for all study variables are reported in Table 1. Bivariate 
correlations among sociodemographic factors and the outcomes of interest are reported in 
Tables 3 and 4. Skewness and kurtosis were within the limits of moderate normality (+/- 
3); however, first grade ∆P3b kurtosis was 3.05. Scores at or more extreme than +/- 3.29 
SD were considered univariate outliers (Tabachnick & Fidell, 2007). The following 
outliers were identified: 2 children for kindergarten N2, 3 children for preschool P3b, and 
2 children for first grade P3b3. All analyses were conducted with children’s original 
scores as well as with outliers set to missing. The direction and strength of the results 
remained consistent across the analyses. The subsequent results reported here include all 
children to reflect the true range of scores. The grand average ERP plots for the No-Go 
versus Go conditions over the right frontocentral cluster and the midline posterior cluster 
are shown in Figures 5 and 6, respectively.  
Developmental trajectories of N2 amplitude  

The unconditional models examining the trajectories of N2 Go, N2 No-Go, and 
∆N2 amplitudes demonstrated good fit to the data (see Table 5 for fit indices). Results 
suggested that N2 Go and No-Go amplitudes showed no significant linear change 
whereas ∆N2 amplitude linearly increased in magnitude (became more negative) across 
time (see Table 6 for model estimates). Specifically, the initial average value of N2 Go 
amplitude during preschool was -4.61 µV which did not change across time. The initial 
average value of N2 No-Go amplitude was -7.42 µV and also did not change across time. 
Finally, the initial average value of ∆N2 amplitude was -2.81 µV, which declined 0.53 µV 
on average across each time point. There was significant variability in the initial levels of 
all three outcomes, however, there were no significant individual differences in the rate of 
linear change. 

Next, we examined whether sociodemographic factors were associated with the 
intercepts and slopes. The conditional models demonstrated good fit to the data (see Table 
5 for fit indices). None of the sociodemographic factors were associated with the 
intercepts or slopes of N2 Go or No-Go amplitudes (all ps > .090). None of the 
sociodemographic factors were associated with the intercept of ∆N2 amplitude (all ps > 
.037). Initial age predicted the slope of ∆N2 amplitude (b = 1.08, p = .004). That is, for 
children who were younger in preschool, on average, ∆N2 amplitude became more 
negative at a faster rate over time, compared to older children. Gender, maternal 
education, and income-to-needs ratio did not predict the slope of ∆N2 amplitude (all ps > 
.179; see Table 7 for model estimates). 
Developmental trajectories of P3b amplitude  

The unconditional models examining the trajectories of P3b Go and No-Go 
amplitudes resulted in negatively estimated slope variances, producing non-positive 
definite covariance matrices for the latent growth factors. As recommended by Chen and 
colleagues (2001), for each model, we conducted a Wald test for the null hypothesis that 

 
3 Outliers were identified per ERP component using mean amplitude values extracted from the difference 
wave. When conducting analyses without outliers, the same cases were excluded for all other ERP 
measures (i.e., Go and No-Go amplitudes) to keep the final analytic sample consistent across statistical 
models per ERP component.  
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the slope variance is zero versus the alternative that it is smaller than zero. The 
statistically non-significant Wald test results (W(1) = 0.000121, p = .995 for P3b Go and 
W(1) = 0.0484, p = .900 for P3b No-Go amplitudes) suggested that negative slope 
variance estimates may be due to sampling fluctuations rather than model 
misspecification. As suggested, we fixed the slope variances to zero (Chen et al., 2001). 
These models demonstrated good fit to the data (see Table 5 for fit indices). Results 
suggested that P3b Go and No-Go amplitudes linearly decreased in magnitude (became 
less positive) across time (see Table 6 for model estimates). Specifically, the initial 
average value of P3b Go amplitude during preschool was 16.38 µV, which on average 
declined 1.53 µV across each time point. The initial average value of P3b No-Go 
amplitude was 21.67 µV, which declined 1.27 µV on average across each time point. 
There was significant variability in the initial levels of both outcomes. 

The unconditional model examining the trajectory of ∆P3b amplitude 
demonstrated poor fit to the data (see Table 5 for fit indices). Poor model fit may be due 
to the non-linear trend of ∆P3b mean amplitude (see Table 1 for descriptive statistics). 
Model estimates are provided in Table 7. Given that we only had data from three time 
points, we could not test for non-linear growth models. To address the poor model fit, we 
conducted post-hoc pairwise comparisons across data collection time points (see Table 8 
for pairwise comparison results). Results demonstrated a significant difference in ∆P3b 
amplitude only between preschool and kindergarten such that larger (more positive) ∆P3b 
amplitudes were observed in kindergarten (p = .011).  

Following the approach used in Verstaen et al. (2020), in instances where we set 
the slope variances to zero, we did not include slope covariates. Thus, we only examined 
whether the sociodemographic factors predicted the intercepts of P3b Go and No-Go 
amplitudes. The conditional models demonstrated good fit to the data (see Table 5 for fit 
indices). Maternal education predicted the intercept of P3b Go (b = 0.60, p = .004) and 
P3b No-Go amplitudes (b = 0.82, p = .004). Specifically, on average, higher maternal 
education predicted larger (more positive) P3b Go and No-Go amplitudes during 
preschool. Age, gender, and income-to-needs ratio did not predict the intercepts of P3b 
Go or No-Go amplitudes (all ps > .166; see Table 7 for model estimates). Given the poor 
fit of the unconditional model for ∆P3b amplitude, we did not conduct a conditional 
growth model. 
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Discussion 
 The current study aimed to delineate the longitudinal characteristics of two 
commonly studied neural indices of cognitive control, ERP components N2 and P3b, 
from preschool through first grade. We found that for both N2 and P3b, observed 
waveforms and difference waves displayed disparate developmental trajectories. Further, 
the developmental trajectories of ERP amplitudes extracted from both observed 
waveforms and difference waves were component specific. Similarly, the links between 
children’s sociodemographic characteristics and ERP amplitudes partly depended on 
whether observed waveforms or the difference wave was used and the ERP component of 
interest. Together, these findings emphasize that observed waveforms and difference 
waves are not interchangeable for indexing neurodevelopment and different neural 
indices of cognitive control have distinct developmental trajectories in early childhood.  
Observed waveforms versus difference waves 

In line with our expectations, our results demonstrated that both N2 and P3b 
amplitudes displayed unique developmental trajectories depending on whether observed 
waveforms or difference waves were used. We found that N2 amplitudes extracted from 
observed waveforms displayed no linear change as children transitioned from preschool 
to first grade. Previous meta-analyses have reported that N2 No-Go amplitude linearly 
decreases in magnitude (becomes less negative) across childhood and adolescence 
(Hoyniak, 2017; Lo, 2018). However, the studies included in these meta-analyses varied 
based on task characteristics and examined age-related changes in N2 amplitudes across a 
wider developmental period, specifically, from ages 2-12 years (Hoyniak, 2017) and 3-17 
years (Lo, 2018). To speculate, the lack of change we observed in N2 Go and No-Go 
amplitudes may suggest that the underlying neurophysiology reflected by these 
waveforms displays more robust changes later in development.  

In contrast, we found that N2 amplitude extracted from the difference wave 
linearly increased in magnitude (became more negative) over time. Difference waves 
isolate task-specific neural activity, reflecting experimental effects on ERP components 
(Luck, 2014). Thus, compared to N2 observed waveforms, ∆N2 is a closer estimate of 
neural processes involved in cognitive control. Developmental changes in ∆N2 amplitude 
may coincide with the substantial neurodevelopment of cognitive control as well as 
behavioral improvements in cognitive control during preschool and the early school-aged 
years (Fiske & Holmboe, 2019; Goddings et al., 2021; Willoughby et al., 2012). 

While previous correlational studies have reported no age-related differences in 
P3b Go and No-Go amplitudes (St. John et al., 2019; Willner et al., 2015), in our 
longitudinal study, we found that P3b Go and No-Go amplitudes linearly decreased in 
magnitude (became less positive) over time. There are several plausible explanations for 
this finding. Developmental changes in P3b amplitudes extracted from observed 
waveforms may reflect a combination of maturational changes occurring throughout the 
brain that affect the magnitude of ERPs recorded at the scalp, such as changes in synaptic 
density, myelination, and cerebral blood flow (Coch & Gullick, 2011).  

Contrary to P3b Go and No-Go amplitudes, which displayed linear decreases in 
amplitude over time, our results suggested that ∆P3b amplitude may show a nonlinear 
trajectory of change. Specifically, we found that ∆P3b amplitude was larger (more 
positive) in kindergarten compared to preschool only. Behavioral studies have reported 
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unique effects of kindergarten on the growth of cognitive control skills, over and above 
the effect of age (Kim et al., 2020). Thus, it is possible that the transition to kindergarten 
may also contribute to ∆P3b development. Interestingly, we did not observe a difference 
in ∆P3b amplitudes between preschool and first grade nor between kindergarten and first 
grade. The lack of linear change observed in ∆P3b amplitude emphasizes the importance 
that future studies use more than three time points to explore potential nonlinear 
trajectories of ERP amplitudes. Overall, our findings indicate that observed waveforms 
and difference waves may capture different aspects of neurodevelopment.    
Component-specific developmental trajectories  

In addition to developmental differences based on whether observed waveforms 
or difference waves were used, we also found component-specific differences in the 
developmental trajectories of ERP amplitudes, which is consistent with our predictions. 
Specifically, for both observed waveforms and the difference wave, N2 amplitudes 
displayed different trajectories of change, compared to P3b amplitudes. When extracting 
amplitudes from observed waveforms, we found that N2 amplitudes displayed no linear 
change whereas P3b amplitudes linearly decreased in magnitude (became less positive) 
over time. The anterior cingulate, ventral prefrontal, and orbitofrontal cortices are 
proposed neural generators of N2 observed waveforms (Lahat et al., 2010; Lamm et al., 
2006), whereas inferior temporal and posterior parietal cortices are suggested neural 
generators of P3b observed waveforms (Bledowski et al., 2004; Polich, 2011). These 
regions have been found to show different patterns of structural and functional brain 
development across childhood (Fiske & Holmboe, 2019; Houston et al., 2013). Thus, it is 
possible that the underlying neurophysiology reflected by N2 and P3b observed 
waveforms demonstrated disparate developmental trajectories given the distinct 
developmental changes observed in the proposed neural generators of N2 and P3b 
observed waveforms. 

Similarly, the developmental trajectories of amplitudes extracted from the 
difference wave were component specific. We found that ∆N2 amplitude linearly 
increased in magnitude (became more negative) over time while ∆P3b amplitude was 
larger (more positive) in kindergarten compared to preschool only. The N2 and P3b 
components differ in their timing and in the cognitive processes they are thought to 
reflect, which may have contributed to the component-specific longitudinal trajectories 
observed in the current study. In line with this, it has been suggested that different 
developmental trajectories of ERP components may stem from differences in the 
complexity of the cognitive processes the components reflect and the development of 
brain structures and functions involved in the components (Coch & Gullick, 2011; Taylor 
& Baldeweg, 2002). Taken together, these findings demonstrate that the development of 
different ERP indices of cognitive control are not uniform in early childhood.  
Links between sociodemographic factors and ERP amplitudes 
 Another aim of the present study was to examine whether children’s 
sociodemographic characteristics contributed to individual differences in N2 and P3b 
development. We found that age at the beginning of the study did not relate to the 
longitudinal characteristics of N2 or P3b amplitudes extracted from observed waveforms. 
However, for children who were younger in preschool, ∆N2 amplitude became more 
negative at a faster rate over time, compared to children who were older in preschool. To 
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speculate, greater rates of change in brain development and plasticity observed in 
younger compared to older children across the transition from preschool to formal 
schooling (Tooley et al., 2021) may have contributed to the greater rate of change in ∆N2 
amplitude across this period. Similarly, previous behavioral studies that have reported 
greater rates of improvement in cognitive control in younger compared to older children 
(Lensing & Elsner, 2018). Gender did not relate to any of the ERP measures which is 
consistent with previous studies that reported no gender differences in N2 or P3b 
amplitudes (Lahat et al., 2010; Willner et al., 2015).  

Additionally, we found that income-to-needs ratio did not relate to the initial 
starting value or rate of change of any of the ERP measures. This finding is consistent 
with Ruberry et al. (2017)’s findings that family income did not relate to N2 or P3b 
amplitudes extracted from observed waveforms or difference waves in 4.5-5.5-year-olds. 
However, there is evidence that higher SES, based on parental education and family 
income, relates to larger N2 amplitudes in 7-12-year-olds (Kishiyama et al., 2009). Thus, 
it is possible that the contributions of family SES on N2 development may become more 
apparent later in childhood.  

We also found that maternal education was associated with P3b but not N2 
amplitudes. Specifically, higher maternal education was related to larger (more positive) 
P3b Go and No-Go amplitudes during preschool. Contrary to our findings, income-to-
needs ratio, but not parental education, has been found to predict P3b Go and No-Go 
amplitudes in 4.5-5.5-year-olds (St. John et al., 2019). Our findings suggest that 
compared to family income, maternal education may more strongly contribute to the 
underlying neurophysiology reflected by P3b observed waveforms. This interpretation is 
similar to the argument that compared to family income, parental education is a stronger 
predictor of children’s cognitive and academic development (Davis-Kean et al., 2021). 

Because of the model constraints placed on slope variance estimates, we were 
unable to examine relations between the sociodemographic factors and the rate of change 
in P3b Go and No-Go amplitudes. Additionally, given that our results suggested that 
∆P3b amplitude may display a nonlinear trajectory of change, we were unable to examine 
the associations between sociodemographic characterisitcs and linear change in ∆P3b 
amplitude. Future work is needed to examine how these factors contribute to P3b 
development across childhood. Nevertheless, our findings suggest that the contributions 
of child- and family-level sociodemographic characteristics on neurodevelopment may 
depend on whether observed waveforms or difference waves are used and the ERP 
component of interest.  
Limitations and future directions 

One limitation of our study is that the findings may be limited in their 
generalizability to other task paradigms. Task characteristics such as types of stimuli, task 
complexity, and modality (e.g., visual or auditory) can greatly moderate the magnitude of 
ERP amplitudes (Lo, 2018; Riggins & Scott, 2020). In addition, even if an ERP 
component exhibits the same polarity and timing as ERP components elicited during 
similar experiments, these components may not necessarily reflect the same underlying 
neural processes (Luck, 2014). It is possible that N2 and P3b elicited during different 
experiments display developmental trajectories that differ from the trajectories observed 
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in the current study. Future research is needed to assess how task characteristics may 
modulate the development of ERP components.  

Another limitation of our study is the inability to test for potential nonlinear 
developmental trajectories of ERP amplitudes. Although our results suggested that ∆P3b 
amplitude may demonstrate a nonlinear rate of change from preschool to first grade, we 
were unable to include nonlinear growth factors in the latent growth curve models given 
that we only had three data collection points. The transition to formal schooling 
encompasses major qualitative changes in children’s environments, such as greater 
expectations for social and self-regulation skills, increased demands on children’s ability 
to control attention, and an emphasis on academic achievement (Bassok et al., 2016). It is 
plausible that the rate of change in neural indices of cognitive control is not constant 
across this period. Longitudinal behavioral studies examining early childhood provide 
evidence for nonlinear growth rates in children’s cognitive control skills (Reilly et al., 
2022; Willoughby et al., 2012). Thus, longitudinal ERP studies that utilize more than 
three time points are necessary to provide a more comprehensive understanding of the 
development of ERP indices of cognitive control across childhood.  
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Conclusion 
In summary, our study contributed to the characterization of the developmental 

trajectories of N2 and P3b, two commonly-studied neural indices of cognitive control, in 
early childhood. The disparate developmental trajectories of amplitudes extracted from 
observed waveforms versus difference waves suggest that observed waveforms and 
difference waves capture unique aspects of neurodevelopment and cannot be used 
interchangeably. Further, for both observed waveforms and difference waves, the 
longitudinal characteristics of ERP amplitudes were component-specific, which suggests 
that different ERP indices of cognitive control do not develop in a uniform manner in 
early childhood.  

The methodological- and component-specific differences in developmental 
trajectories reported here may have important clinical implications. ERP amplitudes have 
consistently been found to be implicated in various neurodevelopmental disorders; 
however, there are inconsistencies in the direction of the effects which may stem from 
variability across studies in terms of task characteristics and whether observed 
waveforms or difference waves were used (Downes et al., 2017; Lo, 2018; Riggins & 
Scott, 2020). Distinguishing between the development of ERPs extracted from observed 
waveforms versus difference waves could help to inform how neurodevelopmental 
disorders manifest. In sum, our study is among the first to examine the longitudinal 
characteristics of ERP indices of cognitive control in early childhood in a large and 
socioeconomically and racially/ethnically diverse sample of children. Our findings 
highlight the importance of longitudinal ERP studies in order to better understand the 
nuances of the neurodevelopment of cognitive control in early childhood.  
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Table 1 
Descriptive Statistics 
Variables n Mean SD Min Max 
Demographics      

Age in years (Pre) 256 4.70 0.39 3.75 5.83 
Maternal education 256 15.34 2.24 10 18 
Income-to-needs 251 2.14 1.44 0.10 6.40 

N2 Go Amplitude (μV)      
Preschool 209 -4.66 3.03 -13.62 1.37 
Kindergarten 200 -4.45 2.68 -11.84 2.34 
First Grade 204 -4.29 2.84 -12.78 5.60 

N2 No-Go Amplitude (μV)      
Preschool 209 -7.45 4.19 -18.21 4.46 
Kindergarten 200 -7.94 3.95 -16.67 3.07 
First Grade 204 -8.09 3.93 -25.95 1.27 

ΔN2 Amplitude (μV)      
Preschool 209 -2.79 3.57 -12.53 7.23 
Kindergarten 200 -3.49 3.49 -18.45 4.84 
First Grade 204 -3.80 3.28 -14.18 5.42 

P3b Go Amplitude (μV)      
Preschool 212 16.93 7.65 -0.03 36.90 
Kindergarten 201 14.74 7.10 -6.24 39.63 
First Grade 209 13.69 7.49 -9.22 35.38 

P3b No-Go Amplitude (μV)      
Preschool 212 21.84 10.72 -1.33 50.01 
Kindergarten 201 20.97 9.85 -3.57 48.65 
First Grade 209 19.10 9.97 -8.44 52.44 

ΔP3b Amplitude (μV)      
Preschool 212 4.92 7.31 -19.76 39.81 
Kindergarten 201 6.24 6.15 -6.94 25.24 
First Grade 209 5.41 6.65 -27.96 30.06 

Note. ∆: No-Go minus Go difference wave; Pre: preschool; Maternal education: years of 
education. Mean maternal education of 15.34 corresponds to slightly below a bachelor’s 
degree (coded as 16); μV: microvolts. 
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Table 2 
ERP Data Exclusion Criteria and Counts 
Initial ERP data  Description Count 
     Preschool  250 
     Kindergarten  234 
     First Grade  237 
Exclusion Criterion   
Equipment error EEG data were unusable due to a malfunction 

in the EEG equipment  
 

     Preschool  6 
     Kindergarten  6 
     First Grade  0 
Trial numbers ERP data were excluded if a participant had 

less than 10 correct Go trials and/or less than 
10 correct No-Go trials 

 

     Preschool  16 
     Kindergarten  10 
     First Grade  6 
PM and OM data quality 
check 

Visual inspection of the posterior electrode 
clusters (PM and OM) of each individual ERP 
plot was done to identify and exclude cases in 
which no visual evoked potentials were present 
for the frequent Go trials 

 

     Preschool  8 
     Kindergarten  8 
     First Grade  5 
Data quality check for 
the N2 channel cluster 
used in the final 
analyses 

Visual inspection of the right frontocentral 
cluster for each individual ERP plot was done 
to identify and exclude cases in which data 
quality was poor (e.g., excessive drift) 

 

     Preschool  7 
     Kindergarten  7 
     First Grade  8 
Data quality check for 
the P3b channel cluster 
used in the final 
analyses 

Visual inspection of the midline posterior 
cluster for each individual ERP plot was done 
to identify and exclude cases in which data 
quality was poor (e.g., excessive drift) 

 

     Preschool  4 
     Kindergarten  5 
     First Grade  4 
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aSME outliers for N2 
measures 

ERP data for the N2 component was excluded 
if the aSME value for either the Go or No-Go 
condition was at or more extreme than +/- 3.29 
SD of the between-participant mean as it 
indicates poor data quality  

 

     Preschool  4 
     Kindergarten  3 
     First Grade  8 
aSME outliers for P3b 
measures 

ERP data for the P3b component was excluded 
if the aSME for either the Go or No-Go 
condition was at or more extreme than +/- 3.29 
SD of the between-participant mean as it 
indicates poor data quality  

 

     Preschool  4 
     Kindergarten  4 
     First Grade  7 
Usable ERP data 
included in final 
analyses 

  

Usable N2 data  Number of participants for whom we had 
usable N2 data after the exclusion criteria was 
applied 

 

     Preschool  209 
     Kindergarten  200 
     First Grade  204 
Usable P3b data Number of participants for whom we had 

usable P3b data after the exclusion criteria was 
applied 

 

     Preschool  212 
     Kindergarten  201 
     First Grade  209 

Note. This table provides a description and count for each ERP data exclusion criterion, 
listed in chronological order of how they were applied during data processing and 
analysis. PM: parietal midline channel cluster. OM: occipital midline channel cluster. 
aSME: analytic standardized measurement error.  
 
 
 
 
 
 
 
 
 
 



25 

 

Table 3 
Zero-Order Correlations Among Sociodemographic Factors and Outcome Variables 
 1 2 3 4 
1. Age (Pre) --    
2. Gender  -0.10 --   
3. Mat Edu  0.00 -0.04 --  
4. INR 0.09 0.09 0.49 -- 
5. N2 Go Pre  0.06 0.00 -0.04 -0.03 
6. N2 Go K  -0.03 0.07 -0.05 0.10 
7. N2 Go 1st  -0.08 0.05 0.08 0.04 
8. N2 NG Pre -0.06 -0.02 -0.10 -0.10 
9. N2 NG K  -0.04 0.03 -0.13 -0.07 
10. N2 NG 1st  0.03 0.05 -0.08 -0.15 
11. ∆N2 Pre  -0.12 -0.02 -0.09 -0.09 
12. ∆N2 K  -0.03 -0.02 -0.11 -0.16 
13. ∆N2 1st  0.11 0.02 -0.16 -0.21 
14. P3b Go Pre  0.03 -0.03 0.17 -0.02 
15. P3b Go K  -0.02 -0.10 0.17 0.01 
16. P3b Go 1st  0.04 -0.07 0.03 -0.04 
17. P3b NG Pre 0.03 -0.01 0.22 0.03 
18. P3b NG K 0.03 -0.11 0.20 0.07 
19. P3b NG 1st -0.03 -0.10 0.03 -0.02 
20. ∆P3b Pre 0.01 0.01 0.15 0.06 
21. ∆P3b K 0.08 -0.07 0.13 0.10 
22. ∆P3b 1st -0.10 -0.07 0.01 0.01 

Note. Pre: preschool; K: kindergarten; 1st: first grade. Mat Edu: years of maternal 
education; INR: income-to-needs ratio; Gender: 0 = male, 1 = female. NG: No-Go; ∆: 
No-Go minus Go difference wave. For N2, more negative values correspond to a larger 
neural index. For P3, more positive values correspond to a larger neural index. Boldface 
type indicates p < .050. 
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Table 4 
Zero-Order Correlations Among Outcome Variables  

 1 
N2 
Go 
Pre 

2 
N2 
Go 
K 

3 
N2 
Go  
1st  

4 
N2 
NG 
Pre 

5 
N2 
NG  

K 

6 
N2 
NG 

1st 

7 
∆N2 
Pre 

8 
∆N2 

K 

9 
∆N2 

1st 

10 
P3b 
Go 
Pre 

11 
P3b 
Go 
K 

12 
P3b 
Go  
1st 

13 
P3b 
NG 
Pre 

14 
P3b 
NG 

K 

15 
P3b 
NG 

1st 

16 
∆P3b 

Pre 

17 
∆P3b 

K 

18 
∆P3b 

1st 

1  --                  
2  0.48 --                 
3  0.36 0.43 --                
4 0.55 0.27 0.24 --               
5  0.32 0.50 0.30 0.47 --              
6  0.33 0.34 0.57 0.41 0.45 --             
7  -0.20 -0.10 -0.02 0.71 0.28 0.20 --            
8  0.00 -0.20 0.00 0.32 0.75 0.26 0.38 --           
9  0.08 0.04 -0.18 0.27 0.28 0.70 0.26 0.30 --          
10  -0.50 -0.44 -0.33 -0.43 -0.29 -0.30 -0.09 0.00 -0.08 --         
11  -0.24 -0.54 -0.34 -0.26 -0.50 -0.36 -0.10 -0.14 -0.13 0.60 --        
12  -0.15 -0.31 -0.60 -0.22 -0.22 -0.50 -0.13 -0.01 -0.11 0.57 0.58 --       
13 -0.36 -0.40 -0.30 -0.56 -0.38 -0.35 -0.36 -0.12 -0.16 0.73 0.53 0.55 --      
14 -0.27 -0.42 -0.31 -0.32 -0.60 -0.39 -0.14 -0.35 -0.20 0.55 0.78 0.50 0.59 --     
15 -0.27 -0.31 -0.53 -0.35 -0.34 -0.65 -0.19 -0.16 -0.31 0.49 0.49 0.75 0.58 0.56 --    
16 0.00 -0.13 -0.10 -0.38 -0.26 -0.20 -0.45 -0.19 -0.15 0.03 0.16 0.22 0.70 0.31 0.35 --   
17 -0.16 -0.05 -0.12 -0.22 -0.38 -0.23 -0.11 -0.39 -0.18 0.20 0.10 0.14 0.35 0.70 0.35 0.32 --  
18 -0.24 -0.12 -0.18 -0.30 -0.27 -0.45 -0.15 -0.22 -0.38 0.13 0.08 -0.01 0.28 0.28 0.66 0.28 0.36 -- 

Note. Pre: preschool; K: kindergarten; 1st: first grade. NG: No-Go; ∆: No-Go minus Go difference wave. For N2, more 
negative values correspond to a larger neural index. For P3, more positive values correspond to a larger neural index. Boldface 
type indicates p < .050. 
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Table 5 
Model Fit Indices of Latent Growth Curve Models 
 Outcome Chi-square (df) CFI RMSEA (90% CI) 
Unconditional 
Models 

N2 Go amplitude 0.01 (1) 1.00 0.00 (0.000 – 0.069) 
N2 No-Go amplitude 1.23 (1) 1.00 0.03 (0.000 – 0.172) 

 ∆N2 amplitude  1.01 (1) 1.00 0.01 (0.000 – 0.166) 
 P3b Go amplitudea 2.18 (2) 1.00 0.02 (0.000 – 0.127) 
 P3b No-Go amplitudea 1.27 (2) 1.00 0.00 (0.000 – 0.108) 
 ∆P3b amplitude 6.56 (1)* 0.88 0.15 (0.057 – 0.262)* 
Conditional 
Models 

N2 Go amplitude 6.84 (5) 0.98 0.04 (0.000 – 0.101) 
N2 No-Go amplitude 4.31 (5) 1.00 0.00 (0.000 – 0.081) 

 ∆N2 amplitude  1.73 (5) 1.00 0.00 (0.000 – 0.041) 
 P3b Go amplitudea,b 12.70 (11) 0.99 0.03 (0.000 – 0.072) 
 P3b No-Go amplitudea,b 15.89 (11) 0.97 0.04 (0.000 – 0.083) 

Note. ∆: No-Go minus Go difference wave; CI: confidence interval; aSlope variance fixed 
to [0]. bSlope covariates were not included in the model. * p < .050. 
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Table 6 
Estimates for Unconditional Latent Growth Curve Models 
Outcome Parameter b b SE p 
N2 Go amplitude Intercept -2.09 -4.61 0.20 < .001* 

Slope 0.25 0.19 0.12 .104 
 Di  4.88 1.14 < .001* 
 Ds  0.58 0.57 .313 
 Ris -0.54 -0.91 0.67 .176 
N2 No-Go amplitude Intercept -2.52 -7.42 0.27 < .001* 

Slope -0.43 -0.34 0.16 .033 
 Di  8.69 2.31 < .001* 
 Ds  0.62 1.14 .589 
 Ris -0.42 -0.98 1.34 .466 
∆N2 amplitude Intercept -1.16 -2.81 0.23 < .001* 
 Slope -0.51 -0.53 0.15 < .001* 
 Di  5.89 1.82 .001* 
 Ds  1.09 0.91 .232 
 Ris -0.60 -1.52 1.09 .161 
P3b Go amplitudea Intercept 2.85 16.38 0.49 < .001* 

Slope  -1.53 0.26 < .001* 
 Di  33.02 5.49 < .001* 
 Ds  0.00   
 Ris     
P3b No-Go amplitudea Intercept 2.67 21.67 0.68 < .001* 

Slope  -1.27 0.35 < .001* 
 Di  65.93 10.56 < .001* 
 Ds  0.00   
 Ris     
∆P3b amplitude Intercept 1.41 5.39 0.46 < .001* 
 Slope 0.18 0.19 0.30 .530 
 Di  14.69 7.04 .037 
 Ds  1.12 3.60 .757 
 Ris -0.27 -1.07 4.25 .801 

Note. ∆: No-Go minus Go difference wave; Di: intercept variance; Ds: slope variance; Ris: 
covariance between intercept and slope. Bonferroni correction was applied to correct for 
multiple comparisons per ERP component (alpha level = 0.05 / 3 tests). aSlope variance 
fixed to [0]. * p < 0.017.  
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Table 7 
Estimates for Conditional Latent Growth Curve Models 
Outcome  Intercept  Slope 
 Predictor b b SE p  b b SE p 
N2 Go 
amplitude 

Age (Pre) 0.06 0.32 0.50 .516  -0.23 -0.44 0.31 .149 
Gender 0.04 0.16 0.40 .688  0.04 0.06 0.24 .802 

 Mat Edu -0.11 -0.11 0.10 .298  0.21 0.07 0.06 .249 
 INR 0.02 0.03 0.16 .843  0.07 0.04 0.10 .696 
N2 No-Go 
amplitude 

Age (Pre) -0.13 -0.97 0.68 .154  0.36 0.63 0.41 .122 
Gender -0.02 -0.11 0.54 .842  0.17 0.24 0.32 .455 

 Mat Edu -0.18 -0.23 0.14 .090  0.35 0.11 0.08 .182 
 INR -0.05 -0.09 0.22 .663  -0.29 -0.14 0.13 .276 
∆N2 
amplitude 

Age (Pre) -0.19 -1.21 0.58 .037  0.43 1.08 0.38 .004* 
Gender -0.05 -0.24 0.47 .608  0.09 0.17 0.29 .573 

 Mat Edu -0.11 -0.12 0.12 .307  0.05 0.02 0.07 .768 
 INR -0.08 -0.13 0.19 .471  -0.24 -0.16 0.12 .179 
P3b Go 
amplitudea,b 

Age (Pre) 0.03 0.45 1.04 .667      
Gender -0.06 -0.68 0.81 .401      

 Mat Edu 0.24 0.60 0.21 .004*      
 INR -0.12 -0.45 0.33 .166      
P3b No-Go 
amplitudea,b 

Age (Pre) 0.02 0.42 1.41 .767      
Gender -0.06 -0.97 1.09 .375      

 Mat Edu 0.24 0.82 0.28 .004*      
 INR -0.07 -0.38 0.44 .389      

Note. Pre: preschool; Mat Edu: years of maternal education; INR: income-to-needs ratio; 
To correct for multiple comparisons per ERP component, Bonferroni correction was 
applied. aSlope variance fixed to [0]. bSlope covariates were not included in the 
conditional model. * p < corrected alpha level (.017 for N2 models; .025 for P3b models).  
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Table 8 
Paired Samples T-Tests Results for Unconditional Models with Poor Fit 
Pair n Mean 

Difference 
SE 

Difference 
t df Two-sided p Cohen’s d 

∆P3b amplitude Pre -  ∆P3b amplitude K 171 -1.51 0.58 -2.59 170 .011* -0.20 
∆P3b amplitude K - ∆P3b amplitude 1st 173 0.92 0.56 1.66 172 .099 0.13 
∆P3b amplitude Pre - ∆P3b amplitude 1st 167 -0.33 0.67 -0.49 166 .626 -0.04 

Note. ∆: No-Go minus Go difference wave; Pre: preschool; K: kindergarten; 1st: first grade; To correct for multiple 
comparisons, Bonferroni correction was applied. Specifically, we used an alpha level of 0.017 for each measure (0.05 / 3 
comparisons). * p < .017. 
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Figure 1. Schematic of Go/No-Go task structure. Reprinted from Lahat et al. (2010), 
retrieved from doi: 10.3389/neuro.09.072.2009, © 2010 Lahat, Todd, Mahy, Lau, and 
Zelazo. 
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Figure 2. 64-channel net with electrodes renamed to approximate 10-20 locations, 
following the configuration reported by Vanderwert et al. (2016). Frontal, central, and 
posterior clusters for each hemisphere were created as well as two posterior midline 
clusters (PM and OM). Channels of interest are colored.  
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Figure 3. Raster diagrams showing results for the preschool 
(a), kindergarten (b), and first grade (c) permutation tests. 
Each box represents the result of a t-test. A temperature scale 
is used to represent the graded degree of significance at each 
time point and electrode cluster. If the box is colored, the 
difference wave is significantly different from zero at that 
time point and electrode cluster (even after effectively 
correcting for multiple comparisons). Electrodes on the left 
and right sides of the head are grouped on the figure's top and 
bottom, respectively. Midline electrodes are shown in the 
middle. Within those three groupings, y-axis top-to-bottom 
corresponds to scalp anterior-to-posterior. Across time points, 
the N2 effect (more negative No-Go amplitude compared to 
Go) is observed over the right frontocentral hemisphere only. 
The P3b effect (more positive No-Go amplitude compared to 
Go) is observed over midline and left posterior electrodes. 



   
34 

   
 

 

 

Figure 4. Final channel clusters of analysis, following the configuration reported by 
Vanderwert et al. (2016). Blue-colored channels make up the right frontocentral cluster 
used in the final analyses of the N2 component. Red-colored channels make up the 
midline posterior cluster used in the final analyses of the P3b component.  
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Figure 5. Right hemisphere grand average ERP plots for Go (black waveform) and No-
Go (red waveform) conditions over the frontocentral channel cluster. By convention, 
negative is plotted upward. The measurement window is shown with a dotted rectangle 
(250-450 ms post stimulus onset). Preschool: n = 209; Kindergarten: n = 200; First grade: 
n = 204.  
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Figure 6. Midline grand average ERP plots for Go (black waveform) and No-Go (red 
waveform) conditions over the posterior channel cluster. By convention, negative is 
plotted upward. The measurement window is shown with a dotted rectangle (300-600 ms 
post stimulus onset). Preschool: n = 212; Kindergarten: n = 201; First grade: n = 209.  
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