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Abstract We describe a simple method for nonparametric estimation of a
distribution function based on current status data where observations of current sta-
tus information are subject to misclassification. Nonparametric maximum likelihood
techniques lead to use of a straightforward set of adjustments to the familiar pool-adja-
cent-violators estimator used when misclassification is assumed absent. The methods
consider alternative misclassification models and are extended to regression models
for the underlying survival time. The ideas are motivated by and applied to an example
on human papilloma virus (HPV) infection status of a sample of women examined in
San Francisco.

Keywords Current status data · Misclassification

1 Introduction

Current status data provides information on the survival status of individuals at various
times rather than standard observation, possibly right-censored, of failure times. Con-
siderable attention has been given to estimation of a survival function based on such
data, and estimation of regression coefficients from a variety of standard models.
Earliest work was motivated by applications in demography (Diamond et al. 1986)
and epidemiology (Becker 1989), followed by carcinogenicity studies, partner studies
of Human Immunodeficiency Virus (HIV) transmission (Shiboski and Jewell 1992),
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216 K. McKeown, N. P. Jewell

age-incidence estimation, and assessment of environmental exposures (Keiding 1991).
Nonparametric estimation in the single-sample setting is based on the well-known
pool-adjacent-violators algorithm of Ayer et al. (1955). Regression analyses have
largely employed techniques from generalized linear models for the current status
outcome and variants of generalized additive models (Shiboski 1998). A brief review
and description of some current open problems can be found in Jewell and van der
Laan (2004).

In many of these applications, ascertainment of an individual’s current status is
based on a screening test which may not have perfect sensitivity and specificity. For
example, tests for the infection status of a viral disease like HIV or HPV are designed
to detect antibodies and may be subject to error particularly when a test is performed
soon after infection. Detection of the existence of uterine fibroids through ultrasounds
(Young et al. 2008) is known to be subject to error. When current status is mea-
sured through a survey instrument, such as studies of the age at onset of menopause
(Grummer-Straun 1993; Jewell et al. 2003), there is potential for misclassification
particularly close to the (unobserved) event time, menopause in this specific example.

We extend the nonparametric maximum likelihood estimator of the distribution
function underlying current status data when there is no misclassification to allow for
time-independent misclassification of both apparent “survivors” and “failures” with
known misclassification rates. Calculation of the proposed estimator uses a simple
modification of the pool-adjacent-violators algorithm. Asymptotic properties therefore
follow straightforwardly. We consider the implication of misclassification rates that
vary over time, in particular when misclassification only occurs in a known time win-
dow surrounding the underlying failure event. We also consider regression models for
current status data subject to misclassification, using the ideas for binary generalized
linear models with outcome subject to misclassification (Neuhaus 1999).

2 Nonparametric estimation of a single distribution function

We assume the standard data structure for current status data with the following
notation. Let T be the survival time random variable of interest with distribution
function F , with the monitoring time denoted by the random variable C . As usual,
we assume that C is independent of T ; in some examples, C is non-random. In either
case, we focus directly on the conditional likelihood, given C . For convenience we
describe the random monitoring time scenario, where current status observation refers
to a sampling scheme where n i.i.d. observations are collected on the random variable
(Y, C) where Y = I (T ≤ C).

Motivated by the examples discussed in the introduction we now consider the pos-
sibility that the random variable Y is observed with error. We focus primarily on the
following constant misclassification model although we discuss alternative error mod-
els in Sect. 2.3. Assume that instead of observing Y we observe the random variable
� where

P(� = 1|Y = 1) = α P(� = 0|Y = 0) = β.

The observed data is thus n i.i.d. copies of (�, C).
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Misclassification of current status data 217

We assume that the true classification probabilities α, β > 0.5, and are the same
for each individual and do not depend on the monitoring time. Let Ci be the i th order
statistic of C1, C2, . . . , Cn and let δi be the observed value of �. Given that the moni-
toring time C is independent of survival time T , and that � is independent of (C, T ),
under this misclassification model, the (conditional) likelihood function is given by:

n∏

i=1

[P(�i = 1|ci )]δi [P(�i = 0|ci )]1−δi , (1)

where ci is the observed value of Ci and

P(�i = 1|ci ) = P(�i = 1|yi = 1, ci )P(yi = 1|ci )

+P(�i = 1|yi = 0, ci )P(yi = 0|ci )

= (α − 1 + β)F(ci ) + 1 − β,

and

P(�i = 0|ci ) = P(�i = 0|yi = 0, ci )P(yi = 0|ci )

+P(�i = 0|yi = 1, ci )P(yi = 1|ci )

= β − (α − 1 + β)F(ci ).

For ease of notation let γ = α + β − 1 > 0. Then the (conditional) likelihood
function allowing for misclassification in the response variable can be written as;

n∏

i=1

[γ F(ci ) + (1 − β)]δi [β − γ F(ci )]1−δi ,

with corresponding log-likelihood:

n∑

i=1

δi log(γ F(ci ) + (1 − β)) +
n∑

i=1

(1 − δi ) log(β − γ F(ci )).

Writing G(ci ) ≡ γ F(ci ) + (1 − β), then the nonparametric maximum likelihood
estimate of the distribution function when the current status outcomes are subject to
misclassification can be found by obtaining a vector z̃ = (z1 = Ĝ(c1), . . . , zn =
Ĝ(cn)) ∈ Rn maximizing

φ(G(ci )) =
n∑

i=1

δi log(G(ci )) +
n∑

i=1

(1 − δi ) log(1 − G(ci )) (2)

under the constraint

1 − β ≤ G(c1) ≤ G(c2) ≤ · · · ≤ G(cn) ≤ α. (3)

Note that G is itself a distribution function.
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218 K. McKeown, N. P. Jewell

Claim The identity zm = min(max(ẑm, 1 − β), α), m = 1, . . . , n, defines the unique
vector, z̃ = (z1, z2, . . . , zn) ∈ R

n maximizing (2) under constraint (3), with G(ci )

replaced by zi , where

ẑm = max
i≤m

min
k≥m

∑
i≤ j≤k δi

k − i + 1

is the unconstrained nonparametric maximum likelihood estimate (NPMLE) of the
distribution function G based on the likelihood (2) but with no additional constraint (3).

Note that the vector {ẑm : m = 1, . . . , n} can be computed using the standard
pool-adjacent-violators algorithm, originally described by Ayer et al. (1955) and char-
acterised by Barlow et al. (1972) and Groeneboom and Wellner (1992) in terms of con-
vex minorants. The vector {zm} modifies any value of {ẑm} less than 1−β to equal 1−β,
and similarly modifies any value of {ẑm} greater than α to equal α. The NPMLE of F
at a monitoring time ci then follows using the relationship F̂(ci ) = [Ĝ(ci )−1+β]/γ .

Proof of Claim First note that, if δi = 0 for i = 1, 2, . . . , k, then maximizing
(2) requires the second term to be as large as possible, in which case, we set
z1, z2, . . . , zk = 1−β without affecting the maximization problem over the remaining
zk+1, . . . , zn . Similarly, if δi = 1 for j ≤ i ≤ n, then to maximize (2) we make the
first term as large as possible, setting z j , z j+1, . . . , zn = α.

Suppose there exists at least one δi = 1 followed by a δ j = 0, for some j > i
(otherwise we are done).

Let k0 be the smallest index i such that δi = 1, and let k1 be the smallest index
k ≥ k0 such that

max
i≤m

min
k≥m

∑
i≤ j≤k δi

k − i + 1
≥ 1 − β.

Analogously, let m0 be the largest index k ≥ k1 such that

max
i≤m

min
k≥m

∑
i≤ j≤k δi

k − i + 1
≤ α,

with m1 being the largest index i such that δi = 0.
Thus, k0 and m1 represent the index of the first δi = 1 and the last δ j = 0 respec-

tively, where j > i . Also, k1 − 1 is the smallest index for which the unconstrained
NPMLE does not fall below 1 − β, and m0 is the largest index for which the uncon-
strained NPMLE does not go above α. Figure 1 shows the positioning of such indices
as they would appear in terms of a hypothetical unconstrained NPMLE of a distri-
bution function. The dashed lines are positioned at 1 − β and α, between which the
constrained NPMLE must lie. ��

Using these definitions, the claim can be written as;

A For all indices m < k1, zm = 1 − β

B For all indices m > m0, zm = α
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Misclassification of current status data 219

Fig. 1 Hypothetical unconstrained NPMLE with the positions of hypothetical α and 1 − β shown on the
vertical axis and the positions of k0, k1, m0 and m1 shown on the horizontal axis

C For all indices k1 ≤ m ≤ m0; zm = maxi≤m mink≥m

∑
i≤ j≤k δi

k−i+1 , the unconstrained
NPMLE.

We prove the claim by establishing each statement separately. First, we show that for
all indices m < k1, zm = 1 − β maximizes the relevant terms in the likelihood (2),
subject to the constraint (3) without affecting the optimization function, or constraint,
based on zi for other indices. Consider indices i for k0 ≤ i < k1. Suppose the values
of zi over this range of indices take values that are increasing and, necessarily, ≥1−β.
Consider the largest of these indices (just to the “left” of k1) where the proposed max-
imizer values of zi assume the value 1 − β + ε where ε > 0. It does not matter here
whether zi assumes this value at one or over a set, S of consecutive indices. Assume
that amongst the set of indices, S, there are p indices i where δi = 1 and q indices
where δi = 0. The contribution to the likelihood (2) over this set of indices is there-
fore p log(1 − β + ε) + q log(β − ε) ≡ h(ε), say. The derivative of this function is
h′(ε) = [p/(1 − β + ε)] − [q/(β − ε)]. Now, by the definition of k1 relative to the
definition of the unconstrained NPMLE, it follows that p/(p +q) < 1−β that in turn
implies that q/p > β/(1 − β). Since ε > 0, β/(1 − β) > (β − ε)/(1 − β + ε), and
it then follows that h′(ε) < 0 so that h is decreasing in ε. Thus without changing the
optimization problem in terms of the other indices and constraints, we can increase
the likelihood by lowering the value of the proposed zi to the next lower value (to the
right) where z j = 1 −β +λ where 0 < λ < ε. However, we can now repeat the same
argument in terms of λ, and thus we keep lowering the relevant zi ’s until they all equal
1 −β. This proves (A). An identical argument also establishes (B). The statement (C)

follows since zm = maxi≤m mink≥m

∑
i≤ j≤k δi

k−i+1 is already the unconstrained NMPLE
and meets the constraints (3) by definition of k1 and m0. The claim is thus proven.
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220 K. McKeown, N. P. Jewell

2.1 Pointwise confidence intervals for the NPMLE

There is by now a growing literature on the non-standard asymptotic properties of
the standard NPMLE of F for current status data with no misclassification. There is
a slower rate of convergence (n1/3 as opposed to the familiar

√
n rate), and the limit

distribution is not Gaussian (Groeneboom and Wellner 1992). We conjecture straight-
forward extensions of these results for the NPMLE for misclassified current status data.
Thus it is not appropriate to focus on the (asymptotic) variance of the NPMLE based
on any form of current status data as a step towards confidence interval construction.
For pointwise confidence intervals for F , various approaches have been developed
for standard current status data (Banerjee and Wellner 2005). Suggested techniques
include the likelihood-ratio method (Banerjee and Wellner 2001), an approach that
can presumably also be adapted to allow for misclassification.

In general, the standard bootstrap yields inconsistent estimates of pointwise
confidence intervals whether data is sampled with replacement from the original data or
generated from the NPMLE estimator (Sen et al. 2010). As a modification, a smoothed
version of the bootstrap is appropriate, as is the m out of n bootstrap (Politis et al.
1999). Practically, this procedure necessarily involves choice of the ‘block’ size m.
Asymptotically, m must be chosen so that m → ∞ and m/n → 0 as n → ∞
although these requirements provide little guidance for a finite sample size. Banerjee
and Wellner (2005) suggest an intricate procedure for choice of m, based itself on
bootstrapping. The method can be adapted to provide symmetric confidence intervals
as these often perform better in finite samples. Banerjee and Wellner (2005) provide
further implementation details. For current status data with misclassification, illustra-
tive calculations of symmetric confidence intervals using the m out of n bootstrap are
provided in Sect. 2.2.

2.2 Illustration and data example

First, Fig. 2a illustrates the unconstrained NPMLE and the NPMLE adjusted for
misclassification for a hypothetical data set with sample size n = 500 generated
from an exponential distribution, F , with mean 2. The monitoring times were selected
at random from a uniform distribution on a set of discrete time values ranging from
0 to 3 at equal increments of 0.1. The classification rates used in generating the data
were α = β = 0.8, and these values were assumed known in calculating the adjusted
NPMLE. Note that, with α = β, the two estimators cross at F̂ = 0.5, the estimated
median time to occurrence; for time points below this value, the adjusted estimate of
F is shifted downwards from the naive estimator as misclassifications are accounted
for, and similarly shifted upwards at values of time above the estimated median.

Current status data on human papilloma virus (HPV) infection among women
motivate and illustrate this work. The study consisted of 827 women aged 13.5–24.2
years examined in San Francisco (Moscicki et al. 1998). The data contained a binary
indicator of whether a woman has HPV infection at the time of the survey (Y ) and
her age at screening (C). Covariates included indicators of current smoking status and
past infection with any other sexually transmitted disease (STD). For more information
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Misclassification of current status data 221

Fig. 2 a Hypothetical data (α = 0.8, β = 0.8). b HPV data (α = 0.73, β = 0.9). Estimated cumula-
tive distribution functions for hypothetical data (F assumed Exponential with mean 2) and the HPV data.
Both the unconstrained NPMLE obtained through the pool-adjacent-violators algorithm and the proposed
adjusted NPMLE are presented

about the dataset see Neuhaus (1999) where it was assumed that HPV testing approach
enjoyed (correct) classification rates of α = 0.8 and β = 0.9. We note that more
advanced screening instruments for HPV are now available.

In this example we first need to consider the definition of the underlying fail-
ure time since HPV infection can sometimes go into remission in the sense that
negative tests can plausibly follow an earlier true positive test. Here we define T
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222 K. McKeown, N. P. Jewell

Table 1 Confidence interval estimation for the adjusted (α = 0.73, β = 0.9) NPMLE at three monitoring
times obtained using the m out of n bootstrap for various values of m ranging from 9 to 423

t0 15.3 years 19 years 22 years
F̂(t0) 0.609 0.763 0.793

m = 9 (n1/3) [0.471 0.747] [0.614 0.912] [0.718 0.868]

m = 29 (n1/2) [0.407 0.811] [0.646 0.880] [0.718 0.868]

m = 88 (n2/3) [0.311 0.907] [0.646 0.880] [0.687 0.899]

m = 154 (n3/4) [0.396 0.822] [0.667 0.859] [0.665 0.921]

m = 216 (n0.8) [0.407 0.811] [0.667 0.859] [0.655 0.931]

m = 423 (n0.9) [0.449 0.769] [0.688 0.838] [0.676 0.910]

to be age at first HPV infection as distinct from the cross-sectional prevalence
interpretation used by Neuhaus (1999). In this case, we allow for additional mis-
classification of apparently negative screens as such individuals may previously have
been infected. We assume that such misclassification applies to 10% of negative
screening results. This additional misclassification reduces the value of α to 0.73
[α = P(� = 1|Y = 1) = P(� = 1|Z = 1, Y = 1)P(Z = 1|Y = 1) + P(� = 1|
Z = 0, Y = 1)P(Z = 0|Y = 1), where Z = 1 if individual has antibodies]. Based
on the HPV data, Fig. 2b displays both the unconstrained NPMLE estimate of age
at onset of HPV, and the NPMLE adjusted for misclassification with the assumed
values α = 0.73 and β = 0.9, which allows for the additional misclassification dis-
cussed above. With these unequal classification probabilities, the two curves cross at
F̂ = 0.270, with the adjusted NPMLE shifted appropriately higher for higher ages. We
do not see the shift downwards for lower ages since the first jump of the unconstrained
NPMLE is to a value higher than 0.270.

95% symmetric confidence intervals were calculated for the adjusted (α =
0.73, β = 0.9) NPMLE using the m out of n bootstrap noted in Sect. 2.1. Table 1
provides the results of such calculations at three monitoring times for various choices
of m ranging from 9 to 423. These values of the block sizes, m, were chosen based
on the block sizes implemented in the simulations of Politis et al. (1999). The results
are quite stable across these choices except perhaps at 15.3 years. It it noteworthy that
15.3 years is close to the smallest monitoring times; in fact, it is at the first jump of
the estimator. In Table 1 slightly more variability is suggested for the central values
of m; however, overall the results provide a clear, consistent and useful assessment of
variability.

2.3 Misclassification that varies over time

We now consider an extension of the simple constant (i.e. time independent) misclassi-
fication model to allow for the misclassification rates to vary over time. In particular,
we consider the situation where one or both misclassifications occur only when the
monitoring time is close to the time of the true event occurrence. This is natural for
screening tests where accuracy may be essentially perfect far from the event time on
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Misclassification of current status data 223

either side but where misclassification is likely when screening is administered just
before or after the event of interest. For example, with current status assessment of
menopause, misclassification is unlikely for a woman of age 30 or 65, but may be
plausible at age 50. In diagnosing HPV infection, the probability of a false negative
possibly decreases with time since infection.

We examine the simple extension where misclassification occurs only in a time
window surrounding the true failure event T given by [T − A, T + A]. Within this
interval we assume that the classification rates α, β > 0.5 are known, that perfect
classification occurs at screening times outside the window, and that the value A is
also known. Using these assumptions we obtain the following log-likelihood;

n∑

i=1

δi log((1 − α)F(ci − A) + (α − (1 − β))F(ci ) + (1 − β)F(ci + A))

+
n∑

i=1

(1 − δi ) log(1 − ((1 − α)F(ci − A) + (α − (1 − β))F(ci )

+(1 − β)F(ci + A))). (4)

Note, when A = 0 and A = ∞, (4) reduces to the conditional log-likelihood of the
unconstrained NPMLE and the conditional log-likelihood with constant misclassifi-
cation rates, respectively. The more complex conditional log-likelihood is still of the
form given in (2) if we define a distribution function G∗(ci ) ≡ (1 − α)F(ci − A) +
(α +β −1)F(ci )+ (1−β)F(ci + A). However, finding the NPMLE of G∗ is compli-
cated here by the fact that the constraint on G∗ (as c → 0) depends on the unknown
value F(A). In addition, even if a reasonable estimator of G∗ is determined, it is not
generally possible to solve for F in terms of G∗. This identifiability issue is most easily
seen when there is but a single monitoring time, C ; in this situation, only G∗(C) is
identifiable from the data and differing values of F(C) (and F(C − A) and F(C + A))
are compatible with any given value for G∗(C). However, this does not address iden-
tifiability when the observed monitoring times cover a much broader range. In the
latter situation, it is possible to make bias modifications to either the unconstrained or
adjusted NPMLE to address an incorrect misclassification assumption. This allows the
proposed and unconstrained estimators to accommodate a different window of mis-
classification than assumed by either estimator; the approach is formally introduced,
discussed and evaluated via simulations in the next subsection.

2.4 Time-varying misclassification: simulations

We carried out a set of simulations to examine the implications of misclassification
rates that vary over time. Data sets of unobserved event times, of sample size 500, were
generated from an Exponential distribution, F , with mean 2. Current status observa-
tions were then created based on monitoring times selected at random from a Uniform
distribution on a set of discrete time values ranging from 0 to 3 at equal increments of
0.2. Finally, the current status data were (mis)classified with classification probabili-
ties of α = β = 0.8 if and only if |Ci − Ti | ≤ A in order to obtain the data set used in
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224 K. McKeown, N. P. Jewell

Table 2 Simulation averages (standard deviations) of two estimators of the distribution function F
(Exponential with mean 2) at 5 monitoring times, when the data generating distribution is either subject
to always being misclassified (A = ∞), or never being misclassified (A = 0)

C 0.4 0.8 1.4 1.8 2.8
F(C) = 0.181 F(C) = 0.330 F(C) = 0.503 F(C) = 0.593 F(C) = 0.753

A = 0

0% (0)%

NPMLE0 0.178(0.055) 0.331(0.063) 0.496(0.059) 0.591(0.056) 0.760(0.049)

NPMLE∞ 0.022(0.043) 0.218(0.104) 0.494(0.098) 0.652(0.094) 0.923(0.068)

A = ∞
100% (20)%

NPMLE0 0.306(0.056) 0.397(0.056) 0.500(0.051) 0.557(0.047) 0.662(0.050)

NPMLE∞ 0.178(0.091) 0.329(0.094) 0.500(0.086) 0.593(0.078) 0.769(0.084)

The resulting % subject to misclassification (average % actually misclassified) are also given for each
simulation. NPMLE0 and NPMLE∞ represent the unconstrained NPMLE and the NPMLE adjusted for
constant response misclassification, respectively

estimation. Outside this window the current status responses were observed without
error. A variety of values of A were examined including A = 0 (no misclassification)
and A = ∞ (constant misclassification).

For each data set, estimates of F̂ were obtained according to both the unconstrained
NPMLE and the proposed estimator of Sect. 2 that assumes constant misclassification
rates at all times (i.e. assumes A = ∞). For non-extreme values of A, these two esti-
mators were compared to determine which approach would be most accurate if it is
suspected that the data is misclassified within a specific window and not misclassified
otherwise. Each simulation consisted of 1000 data sets.

Table 2 shows the results of both estimators of F at a selection of monitoring times,
chosen systematically to depict the overall spread. These monitoring times are eval-
uated assuming windows of length A = 0 and A = ∞. The results are as expected
where the NPMLE of no misclassification performs best for a window of A = 0 (where
no individuals are subject to misclassification) and the proposed NPMLE, adjusted for
constant misclassification, performs best for a window of A = ∞ (where all individ-
uals are subject to misclassification with approximately 20% misclassified). Table 3
provides similar results where the window length varies, allowing approximately 60%
and 82% of individuals to be subject to misclassification, the actual average percent
misclassified also being indicated in the table. The results of Table 3 are perhaps not
as expected where the adjusted NPMLE only outperforms the unconstrained NPMLE
when a very high proportion of individuals are subject to misclassification. Even when
82% are subject to misclassification, evidence in favor of the adjusted NPMLE is not
overwhelming.

In practice, an investigator necessarily does not know the underlying F and so
cannot immediately assess which approximate NPMLE to use, the one that assumes
no misclassification or the one that assumes a constant rate of misclassification over
time. In this situation, it is possible however to carry out a simulation using either
estimator as the assumed ‘true’ F to examine performance. We examine this further
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Misclassification of current status data 225

Table 3 Simulation averages (standard deviations) of two estimators of the distribution function F (Expo-
nential with mean 2) at 5 monitoring times when the data generating distribution is subject to constant
misclassification (α = 0.8, β = 0.8) only within a window of length 2A around the underlying failure time

C 0.4 0.8 1.4 1.8 2.8
F(C) = 0.181 F(C) = 0.330 F(C) = 0.503 F(C) = 0.593 F(C) = 0.753

A = 1.5

60% (12%)

NPMLE0 0.225(0.057) 0.327(0.057) 0.454(0.056) 0.543(0.057) 0.732(0.052)

NPMLE∞ 0.063(0.069) 0.214(0.095) 0.424(0.094) 0.571(0.095) 0.884(0.079)

Bias adjusted

NPMLE0 0.177(0.088) 0.315(0.097) 0.467(0.101) 0.575(0.102) 0.775(0.084)

NPMLE∞ 0.172(0.103) 0.337(0.116) 0.485(0.118) 0.588(0.119) 0.769(0.104)

A = 2.5

82% (16%)

NPMLE0 0.258(0.055) 0.358(0.056) 0.470(0.056) 0.530(0.057) 0.673(0.051)

NPMLE∞ 0.104(0.084) 0.263(0.095) 0.451(0.087) 0.549(0.085) 0.787(0.090)

Bias adjusted

NPMLE0 0.185(0.093) 0.320(0.099) 0.487(0.092) 0.551(0.090) 0.729(0.094)

NPMLE∞ 0.184(0.109) 0.331(0.117) 0.506(0.107) 0.559(0.105) 0.731(0.109)

Window lengths of A = 1.5 and A = 2.5 are evaluated. The resulting % subject to misclassification (average
% misclassified) are also given for each simulation. NPMLE0 and NPMLE∞ represent the unconstrained
NPMLE and the NPMLE adjusted for constant response misclassification, respectively. The corresponding
bias adjusted estimates (standard deviations) for each estimator under the different window lengths are also
presented

in the next simulation with an additional wrinkle to the misclassification model in the
non-extreme simulations.

If there is misclassification due to laboratory error in the (current status) screening
instrument, all individuals will be subject to this error. However, even with constant
laboratory misclassification, there may also be increased (and potentially asymmet-
ric) misclassification rates close to the true failure event. Table 4 presents results of
simulations from the HPV data where the true underlying distribution is assumed to
be the unconstrained NPMLE as obtained through the standard pool-adjacent-viola-
tors algorithm. A constant laboratory error is assumed, giving classification rates of
α = 0.8 and β = 0.9 outside the window and α = 0.73 and β = 0.9 within the
window, indicating an additional deterioration in sensitivity close to the underlying
failure time. In computing the constant misclassification adjusted NPMLE the values
α = 0.73 and β = 0.9 were assumed.

In the simulations for the HPV data it must be noted that unlike the simulations in
Tables 2 and 3, when A = 0 there is still misclassification present, at a constant rate of
α = 0.8, β = 0.9. This explains the lack of accuracy in the unconstrained NPMLE for
A = 0 which assumes no misclassification (and similarly for the constant misclassi-
fication adjusted NPMLE which uses the incorrect misclassification probabilities).
When A = ∞ the results are as expected with the adjusted NPMLE more favorable as
in this instance there is constant misclassification at rates α = 0.73, β = 0.9. Under
the intermediate situations, with complex window misclassifications and non-zero

123



226 K. McKeown, N. P. Jewell

Table 4 Simulation averages (standard deviations) of two estimators of the distribution function F (uncon-
strained NPMLE from the HPV data) at 5 monitoring times when the data generating distribution is subject
to misclassification that varies with time

C 15 years 16.2 years 19.2 years 21.7 years 23.2 years
F(C) = 0.484 F(C) = 0.539 F(C) = 0.581 F(C) = 0.600 F(C) = 0.661

A = 0

0% (0%)

NPMLE0 0.414(0.086) 0.464(0.054) 0.511(0.031) 0.540(0.039) 0.584(0.069)

NPMLE∞ 0.498(0.137) 0.578(0.085) 0.652(0.049) 0.698(0.061) 0.766(0.102)

A = 4.5

43% (7%)

NPMLE0 0.388(0.084) 0.433(0.057) 0.498(0.034) 0.532(0.042) 0.584(0.076)

NPMLE∞ 0.457(0.132) 0.528(0.090) 0.632(0.054) 0.686(0.067) 0.764(0.111)

Bias adjusted

NPMLE0 0.435(0.153) 0.475(0.113) 0.537(0.100) 0.562(0.115) 0.612(0.168)

NPMLE∞ 0.475(0.187) 0.472(0.149) 0.524(0.141) 0.544(0.147) 0.606(0.191)

A = 8

86% (15%)

NPMLE0 0.383(0.081) 0.426(0.054) 0.474(0.030) 0.513(0.045) 0.573(0.078)

NPMLE∞ 0.449(0.129) 0.517(0.086) 0.594(0.047) 0.655(0.071) 0.747(0.114)

Bias adjusted

NPMLE0 0.437(0.153) 0.473(0.113) 0.520(0.090) 0.553(0.114) 0.610(0.172)

NPMLE∞ 0.473(0.189) 0.472(0.150) 0.513(0.132) 0.542(0.154) 0.604(0.203)

A = ∞
100% (20%)

NPMLE0 0.384(0.083) 0.428(0.052) 0.472(0.032) 0.496(0.038) 0.544(0.075)

NPMLE∞ 0.451(0.129) 0.521(0.083) 0.590(0.050) 0.629(0.060) 0.702(0.111)

Classification rates of α = 0.8 and β = 0.9 are assumed outside the window and rates of α = 0.73 and
β = 0.9 are assumed within a window of length 2A around the underlying failure time. Window lengths
of A = 0, 4.5, 8, ∞ are evaluated. The resulting % subject to misclassification (average % misclassified)
are also given for each simulation. NPMLE0 and NPMLE∞ represent the unconstrained NPMLE and the
NPMLE adjusted for constant ( α = 0.73, β = 0.9) misclassification, respectively. The corresponding bias
adjusted estimates (standard deviations) for each estimator in the windows of length A = 4.5 and A = 8
are also presented

and finite values for A, the simulations suggest that there is a slight preference for the
adjusted NPMLE in terms of bias although there is a small price to be paid for addi-
tional variability. Mean squared error gives the nod here to the unconstrained NPMLE
at least with these two possibilities for the window parameter A.

In either case, the simulations suggest a way to remove the bias for either estimator
when A is finite and non-zero. The bias-adjusted algorithm is as follows: (i) compute
a suitable simulation ‘guess’ for the F to be used in the simulations; (ii) simulate data
assuming this ‘guess’ is the truth, with the assumed value for A and the relevant mis-
classification probabilities within and without the window defined by A; (iii) estimate
the bias at all values of C of interest by comparing the simulation average with either
of the original estimators; (iv) remove this estimated bias from the original estimator.
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Either the unconstrained NPMLE or the constant misclassification adjusted NPMLE
could be used for the ‘guess’, although we prefer to hedge our bets by using the aver-
age of these two straightforward estimators since the simulations seem to suggest that
the bias for the two estimators is sometimes in opposite directions, particularly in the
tails where the biases tend to be most severe. Note that this algorithm can be used for
more complex misclassification models that might be anticipated.

To formalize the above steps of the bias adjustment approach, note that the bias in
the unconstrained NPMLE at t0 is bias0(t0) = E(F̂0(t0, F)) − F(t0), where F is the
assumed true data generating distribution, and F̂0 is the unconstrained NPMLE. We
estimate the bias by substituting F̂g for F in each of the terms in bias0(t0) and esti-
mate the expectation through simulations, thus yielding ˆbias0(t0) = Ê(F̂0(t0, F̂g))−
F̂g(t0). This estimate, F̂g , could be the unconstrained estimate, F̂(t0, F) = F̂0(t0, F),
the estimate under constant misclassification, F̂(t0, F) = F̂∞(t0, F), or the average
of both estimates, F̂(t0, F) = (F̂0(t0, F) + F̂∞(t0, F))/2. Finally we produce the
bias-adjusted estimate by F̂ba

0 (t0) = F̂0(t0, F) − ˆbias0(t0). Similarly, for the con-
stant misclassified adjusted NPMLE, ˆbias∞(t0) = Ê(F̂∞(t0, F̂g))− F̂g(t0) where F̂g

is chosen as before; this estimated bias can then be used to ‘correct’ F̂∞ as before.
Tables 3 and 4 provide the simulated performance of these bias adjusted versions

of the original estimators for the same simulations considered before. In constructing
the bias adjusted estimators, a sample size of 500 was used in step (ii) of the algorithm
above and 1,000 simulations of step (ii) were carried out. It is clear from the results
reported in Tables 3 and 4 that the bias adjusted estimators have significantly improved
performance in terms of bias with only modest increases in variability. The improve-
ment is more noticeable in Table 3 as the original bias is much greater. Note that bias
adjustments can also be calculated when A = 0 but are not presented in the table.

2.5 Regression models

We briefly consider the extension of the above ideas to the regression context where
interest focuses on the effects of a (potentially multidimensional) covariate X . Much
of the literature on current status data has exploited the correspondence between stan-
dard regression models for the underlying failure time and generalized linear models
for the observed current status outcome in both the parametric and semiparametric
setting. These ideas are reviewed in Jewell and van der Laan (2004) and extended to
more complex failure time data in Jewell (2007).

To adapt these techniques to accommodate misclassification we use the ideas of
binary generalized linear models with outcomes subject to misclassification (Neuhaus
1999). Focusing on the constant misclassification model, and with the same assump-
tions as before, it follows that

P(� = 1|X, C) = (α + β − 1)P(Y = 1|X, C) + (1 − β)

and so

P(� = 1|X, C) = (α + β − 1)g−1(ηx,c) + (1 − β),
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where g is the link function in the induced generalized linear model for Y . In addition,
in most models, the regression term ηx,c is also additive in x and c. It follows that
the observed outcome � also follows a generalized linear model with a modified link
function, namely;

g∗(P(� = 1|X, C)) = g

{
P(� = 1|X, C) − (1 − β)

(α + β − 1)

}
.

For example, assuming a Weibull regression model for T , the generalized linear
model for Y in X and C involves g, the complementary log–log link function. We fit
regression models to the HPV data (a) assuming no errors in the response variable
(therefore using g directly), and (b) adjusting for errors with constant classification
rates α = 0.73 and β = 0.9 (using g∗). These assumed classification rates allow
both for laboratory error and the possibility that some negative tests fail to detect
prior HPV infection as discussed in Sect. 2.2. Note that the parameter estimates in
both models have proportional hazards interpretations on age at first infection with
HPV, according to the Weibull regression model assumption for T , as distinct from
the simple cross-sectional interpretations discussed in Neuhaus (1999). The results of
both models are presented in Table 5, along with the observed ratio of parameter esti-
mates. The generalized linear model induced by Weibull regression indicates that age
at screening must be included in the model additively on the log scale. The standard
errors were obtained from the observed information matrix and were calculated using
PROC GENMOD in SAS version 9.1.

According to models (a) and (b), respectively, the hazard of first HPV infection are
increased by 6 and 11% for those who currently smoke (Smoke now = 1) to those who
do not smoke (Smoke now = 0), holding other covariates in the model fixed; clearly
this effect is not significant. On the other hand, the hazard of HPV infection is reduced
by 38 and 50% for those who have had any other prior sexually transmitted disease
(STD = 1) compared with those who have not (STD = 0); this effect is quite strikingly
significant, at least when misclassification is accounted for. As reported by Neuhaus
(1999), the ratio of the parameter estimates suggest that ignoring the errors in the HPV
screening test leads to substantially biased estimates of the associations of covariates
with infection status, with the direction of the bias reflecting attenuation towards the
null. Our findings are qualitatively similar to those of Neuhaus (1999) although we

Table 5 Estimates (and standard errors) of the log Relative Hazard (RH) for time to first HPV infection,
which is assumed to follow a Weibull distribution

Covariate Log (RH): Model (a) (β̂∗)
Ignoring misclassification

Log(RH): Model (b) (β̂)
Adjusted for misclassification

β̂∗/β̂

Smoke now 0.056(0.108) 0.103(0.144) 0.544

STD −0.479(0.299) −0.698(0.258) 0.686

Log(age at screening) 0.822(0.455) 1.269(0.552) 0.648

Model (a) ignores misclassification in the response variable and Model (b) incorporates constant misclassi-
fication corresponding to α = 0.73 and β = 0.9
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show a somewhat lower effect for prior STDs, presumably due to our allowance for
additional error.

3 Discussion

We have discussed the NPMLE of a distribution function based on current status data
subject to misclassification. The ideas are also easily extended to regression models for
the underlying survival time. We have illustrated the latter using a parametric regres-
sion model. Alternative methods to allow for misclassification in the current status
response include the simulation extrapolation (SIMEX) method (for the regression
setting, see Hardin et al. 2003, for the SIMEX method applied to standard generalized
linear models). Recently, Küchenhoff et al. (2006) applied SIMEX to binary outcome
data associated with a generalized linear model and compared results to the maximum
likelihood approach espoused by Neuhaus (1999).

Although we considered a parametric regression model, semi-parametric survival
models can also be analyzed using the ideas of Shiboski (1998) on semi-parametric
generalized additive models. In this case, the technique of adjusting the link function
to allow for misclassification, discussed in Sect. 2.5, can also be used. SIMEX pro-
vides an alternative approach. In addition, the bias adjustment algorithm discussed in
Sect. 2.4 can also be applied in the regression context, in particular to allow for more
complex misclassification models.

Throughout we have assumed that the misclassification rates and window of mis-
classification, if appropriate, are known exactly. In some cases, the rates may have to
be estimated from a validation sample where the true response is measurable perhaps
by use of an expensive ‘gold standard’ technique. This data can then be incorporated
into a full likelihood that will then account for the uncertainty in estimation of the
misclassification rates. In principal, a similar approach could be used for validation
data that provided information on the value of A or the size of the misclassification
window. However, estimation of the value of A is itself a much studied non-trivial
estimation problem in detecting the time of transition of binomial classification rates.
We leave these interesting extensions to future work.
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