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ABSTRACT OF THE DISSERTATION

Essays in Time and Risk
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Charles David Sprenger

Doctor of Philosophy in Economics

University of California, San Diego, 2011

Professor James R. Andreoni, Chair

In this dissertation I focus on novel mechanisms for eliciting time and risk

preferences and using these methods to test neoclassical and behavioral economic

models. In Chapter 1, a new methodology for eliciting time preferences, the Convex

Time Budget, is introduced. In Chapter 2, the Convex Time Budget is extended to

explore the relationship between hyperbolic discounting and payment risk. In Chapter

3, a new measure of risk preferences, the Uncertainty Equivalent, is introduced and

used to differentiate several models of risk preferences. In Chapter 4, I generate a

new test distinguish between competing models of reference dependent preferences in

risky choice.
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Chapter 1

Estimating Time Preferences From

Convex Budgets

Abstract

Experimentally elicited discount rates are frequently higher than what one

would infer from market interest rates and seem unreasonable for economic decision-

making. Such high rates have often been attributed to present bias and hyperbolic

discounting. A commonly recognized bias of standard elicitation techniques is the use

of linear preferences for identification. When attempts are made to correct this bias

with additional experimental measures, researchers find exceptional degrees of utility

function curvature. We present a new methodology for identifying time preferences,

both discounting and utility function curvature, from simple allocation decisions. We

estimate annual discount rates substantially lower than normally obtained, dynami-

cally consistent discounting, and moderate utility function curvature.

1.1 Introduction

Understanding and estimating time preferences is obviously of great impor-

tance to economists, marketers, and policy makers. Consumers decide how much to

invest in savings, education, real estate, and life insurance, how much to diet, exer-

cise, and smoke, whether to marry, when to have children, and what to leave in their

wills.

1
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While there has been substantial research estimating time preferences using

aggregate consumption data,1 the bulk of the effort has occurred in laboratory envi-

ronments.2 Among the many laboratory techniques employed, many recent studies

have favored multiple price lists (MPL) with monetary payments.3

With MPLs, individuals are asked multiple times to choose between smaller

payment amounts closer to the present and larger amounts further into the future.

The interest rate increases monotonically in a price list, such that the point where

an individual switches from preferring sooner payments to later payments carries

interval information about their intertemporal preferences. Assuming time-separable

stationary preferences and linear utility, individual discount rates can be bounded

and potentially calculated from MPL switching points.4

A notable feature of MPLs (and other experimental methods) is that they yield

high average discount rates. Estimates of annual discount rates over one hundred

percent are common (Frederick et al., 2002). This is curiously at odds with aggregate

models of discounting which imply much lower annual discount rates (Gourinchas

and Parker, 2002; Cagetti, 2003). A possible explanation for this difference may lie

in experimenters’ frequent assumption of linear utility, which leads to upwards-biased

discount rate estimates if utility is concave.5 An important step in correcting this bias

comes from Andersen et al. (2008) who separately administered MPLs and price list

1Examples include Hausman (1979); Gourinchas and Parker (2002); Cagetti (2003); Laibson et
al. (2003, 2005).

2For a survey of the literature, see Frederick et al. (2002). Recent contributions include Harrison
et al. (2002, 2005); Andersen et al. (2008); Benhabib et al. (2007); Tanaka et al. (2010).

3The MPL with monetary payments in economics was motivated and popularized by Coller and
Williams (1999) and Harrison et al. (2002). In psychology, a similar technique was employed by
Kirby et al. (1999) and has been implemented in several economic laboratory experiments, including
Chabris et al. (2008a,b).

4Price list switch points indicate approximately where sooner and later payments are equally
valued. Take a sooner payment, ct a later payment ct+k, and a utility function U(ct, ct+k). Under
time-separable stationary utility, U(ct, ct+k) = u(ct) + δku(ct+k) and a switch point indicates where
u(ct) ≈ δku(ct+k). Under linear utility, u(c) = c and δ is calculated as δ ≈ (ct/ct+k)1/k. Discount
rates are then calculated as IDR = (1/δ)− 1.

5Under linear utility, u(ct) = ct and δ is calculated as δL ≈ (ct/ct+k)1/k. Rabin (2000a) shows
that under expected utility theory, individuals should have approximately linear preferences for small
stakes outcomes, such as those normally used in time preference experiments. However, a variety of
studies show substantial curvature over small stakes outcomes (e.g., Holt and Laury, 2002). If there
is curvature to the utility function, then δC ≈ (u(ct)/u(ct+k))1/k. The direction of the bias δC − δL

depends on the shape of the utility function. Concavity generates downwards-biased discount factor
(upwards-biased discount rate) estimates.
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risk preference measures based on Holt and Laury (2002) (HL) to the same subjects.

Using both time and risk price lists, they jointly estimated discounting and curvature

parameters.6 For brevity, we refer to this as the Double Multiple Price List (DMPL)

approach.7

In this paper, we use a single, simple instrument to capture both discounting

and concavity of utility in the same measure. Notice that the binary choice of an MPL

task is akin to intertemporal optimization subject to a discontinuous budget. Though

under linear preferences the discontinuity does not influence choice, individuals with

concave utility will be constrained. The potentially problematic discontinuity suggests

a simple solution: convexify the experimental budgets. Hence, we call our approach

the Convex Time Budget (CTB) method.

Intertemporal allocations in CTBs are solutions to standard intertemporal

constrained optimization problems. Analysis of the allocations is straightforward.

Given a set of functional form assumptions about discounting and curvature of the

utility function, preference parameters are estimable at either the group or individual

level. Unlike preference parameters estimated from MPL data, which are identified

as a set of possible values, CTBs allow for point identification of preference param-

eters. Additionally, structural assumptions such as the dynamic consistency of time

preferences can be tested in simple and familiar ways.

In a computerized experiment with 97 subjects, we show that the CTB method

can be used to generate precise estimates of discounting and curvature parameters

at both the aggregate and individual levels. These estimates require a minimal set

of structural assumptions and are easily implemented econometrically. On average,

estimates of individual discount rates are found to be considerably lower than in

previous studies. Across specifications, we estimate average annual discount rates

between 25 and 35 percent. We reject linearity of utility, although we find far less

6Frederick et al. (2002) propose a similar strategy of separately identifying the utility function
and discounting along with two other approaches for distinguishing time preferences from curvature:
1) eliciting utility judgements such as attractiveness ratings at two points in time; and 2) eliciting
preferences over temporally separated probabilistic prospects to exploit the linearity-in-probability
property of expected utility. The second approach is employed by Anderhub et al. (2001).

7Tanaka et al. (2010) employ a similar approach with a risk price list task designed to elicit loss
aversion. However, they do not use the risk price list to inform curvature of the utility function in
estimation of time preference parameters.
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curvature than prior studies using price lists for risk preferences. Indeed, almost 35

percent of subjects exhibit behavior that is fully consistent with linear preferences.

Finally, to our surprise, we find no evidence of present-bias or hyperbolic discounting.

We also compare within-subjects results of the computerized CTB and those

obtained using a standard paper-and-pencil DMPL. Our design allows us to make

individual level comparisons. Interestingly, though individual discounting correlates

highly across elicitation mechanisms, estimated curvature from CTBs is found to be

independent of DMPL risk experimental responses.

Our results raise several important questions for future research. First, why

did we find no evidence of present bias or hyperbolic discounting? One hypothesis is

that this may be the result of measures we took to equate transaction costs of sooner

and later payments and to increase confidence of receiving future payments. This

interpretation suggests that some of the behavior attributed to present bias in the

literature may actually be an artifact of differential risk or transactions costs over

sooner and later payments. A second, more fundamental, question is whether we

should have expected to find present bias? Though present bias has been demon-

strated many times in experiments using money, the underlying psychological models

of temptation and self-control (Laibson, 1997; O’Donoghue and Rabin, 1999; Gul

and Pesendorfer, 2001) make clear that present bias is about consumption utility

rather than money. Indeed, if subjects have access to even modest amounts of liquid-

ity, researchers should be surprised to measure any present bias in experiments with

monetary rewards.8 Third, we find substantial within-subject differences between

our CTB and DMPL measures of utility function curvature. This may suggest a real

difference in the utility parameters that apply in uncertain and certain environments.

Utility differences across certainty and uncertainty arise in some form in many static

and intertemporal models of decision making (Selden, 1978; Kreps and Porteus, 1978;

Epstein and Zin, 1989; Schoemaker, 1982; Neilson, 1992; Schmidt, 1998; Diecidue et

al., 2004) and were originally suggested by Allais (1953b).

The paper proceeds as follows: Section 2 explains the motivation of the CTB

and design for the CTB experiment. Section 3 outlines several econometric specifica-

tions while Section 4 presents group and individual analysis. Section 5 concludes.

8We thank Matthew Rabin for persistently and amicably reminding us of this point.
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1.2 Experimental Design: Convex Time Budgets

In each decision of an MPL, subjects choose either an amount ct, available at

time t, or an amount ct+k > ct, available after a delay of k > 0 periods. Let (1+r) be

the experimental gross interest rate and m be the experimental budget.9 Assuming

some utility function, U(ct, ct+k), the MPL task asks subjects to maximize utility

subject to the discrete budget set:

((1 + r)ct, ct+k) ∈ {(m, 0), (0, m)}. (1.1)

Assuming linear utility, the corner solution constraints of (1.1) are non-binding. How-

ever, if utility is concave, the constraints bind. One cannot infer discounting from

MPL switch points.

Imagine, instead of (1.1), subjects choose ct and ct+k continuously along a

convex budget set:

(1 + r)ct + ct+k = m. (1.2)

This is a standard future-value budget constraint. To operationalize (1.2) we provide

subjects with a budget of experimental ‘tokens.’ Tokens can be allocated to either a

sooner time t, or a later time t + k, at different ‘token exchange rates.’ The relative

rate at which tokens translate into payments determines the gross interest rate, (1+r).

Subjects choose how many tokens to allocate to sooner and later periods. This is our

Convex Time Budget (CTB) approach.

Substantial information can be obtained from allocations in this convex choice

environment. Variations in delay lengths, k, and interest rates, (1 + r), allow for the

identification of time discounting and utility function curvature. Variations to starting

times, t, allow for the identification of present bias and hyperbolic discounting.

9Theoretically, extra-experimental interest rates and liquidity constraints should influence labora-
tory decisions (Coller and Williams, 1999). If subjects can borrow (save) at rates inferior (superior)
to the rates offered in the lab, then they have an arbitrage opportunity. If subjects are credit con-
strained, they may choose sooner experimental payments to smooth consumption. In a controlled
experiment with MPLs, Coller and Williams (1999) show that providing external interest rate in-
formation and elaborating possible arbitrage strategies makes treated subjects appear only slightly
more patient. Meier and Sprenger (2010) show that objectively measured credit constraints taken
from individual credit reports are generally uncorrelated with MPL responses. For further discussion
on arbitrage opportunities and liquidity constraints see Appendix Section 4.5.
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1.2.1 CTB Design Features

Our experiment was conducted at the University of California, San Diego in

January of 2009. Subjects 45 convex budget decisions. These 45 budgets involve 9

combinations of starting times, t, and delay lengths, k, with annual interest rates that

vary from zero to over 1000% per year.

A (3 × 3) design was implemented with three sooner payment dates, t =

(0, 7, 35) days from the experiment date, crossed with three delay lengths, (k =

35, 70, 98) days.10 Thus there are nine (t, k) cells and within each cell are five CTB

questions, generating 45 choices for each subject. We refer to each (t, k) combination

as a ‘choice set’. The t and k combinations used in our study were selected to

avoid holidays (including Valentine’s Day), school vacations, spring break, and final

examination weeks. Payments were scheduled to arrive on the same day of the week

(t and k are both multiples of 7), to avoid differential week-day effects.

In each CTB question, subjects were given a budget of 100 tokens. Tokens

allocated to sooner payments had a value of at while tokens allocated to later payments

had a value of at+k. In most cases, at+k was $0.20 per token and at varied from $0.20

to $0.10 per token.11 Note that at+k/at = 1 + r, the gross interest rate over k days,

so (1 + r)1/k gives the standardized daily interest rate. Daily net interest rates in the

experiment varied considerably across the 45 budgets, from 0 to around 1 percent

per day implying annual interest rates of between 0 and 1300 percent (compounded

quarterly).

Each choice set featured at+k = $0.20 and at = $0.16 (1 + r = 1.25). In eight

of the nine choice sets, one convex budget represented a pure income shift relative to

this choice. This was implemented with at+k = $0.25 and at = $0.20 (1 + r = 1.25

again). In the remaining choice set, (t, k) = (7, 70), we instead implemented at = $.20

and at+k = $.20, a zero percent interest rate. Table 2.1 shows the token rates, interest

rates, standardized daily interest rates and corresponding annual interest rates for all

45 budgets.

10See below for the recruitment and payment efforts that allowed sooner payments, including those
for t = 0, to be implemented in the same manner as later payments.

11In eight of 45 choices, at+k was $0.25. If an individual allocated all her tokens in every choice
to the later payment, she could expect to earn either $20 or $25. If she allocated all her tokens to
the sooner payment in every choice, she would earn at least $10.
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Table 1.1: Choice Sets
t (start date) k (delay) Token Budget at at+k (1 + r) Daily Rate (%) Annual Rate (%)

0 35 100 0.19 0.2 1.05 0.147 65.3
0 35 100 0.18 0.2 1.11 0.301 164.4
0 35 100 0.16 0.2 1.25 0.64 528.9
0 35 100 0.14 0.2 1.43 1.024 1300.9
0 35 100 0.2 0.25 1.25 0.64 528.9

0 70 100 0.19 0.2 1.05 0.073 29.6
0 70 100 0.18 0.2 1.11 0.151 67.4
0 70 100 0.16 0.2 1.25 0.319 178.1
0 70 100 0.14 0.2 1.43 0.511 362.1
0 70 100 0.2 0.25 1.25 0.319 178.1

0 98 100 0.19 0.2 1.05 0.052 20.5
0 98 100 0.16 0.2 1.25 0.228 113
0 98 100 0.13 0.2 1.54 0.441 286.4
0 98 100 0.1 0.2 2 0.71 637.1
0 98 100 0.2 0.25 1.25 0.228 113

7 35 100 0.19 0.2 1.05 0.147 65.3
7 35 100 0.18 0.2 1.11 0.301 164.4
7 35 100 0.16 0.2 1.25 0.64 528.9
7 35 100 0.14 0.2 1.43 1.024 1300.9
7 35 100 0.2 0.25 1.25 0.64 528.9

7 70 100 0.2 0.2 1 0 0
7 70 100 0.19 0.2 1.05 0.073 29.6
7 70 100 0.18 0.2 1.11 0.151 67.4
7 70 100 0.16 0.2 1.25 0.319 178.1
7 70 100 0.14 0.2 1.43 0.511 362.1

7 98 100 0.19 0.2 1.05 0.052 20.5
7 98 100 0.16 0.2 1.25 0.228 113
7 98 100 0.13 0.2 1.54 0.441 286.4
7 98 100 0.1 0.2 2 0.71 637.1
7 98 100 0.2 0.25 1.25 0.228 113

35 35 100 0.19 0.2 1.05 0.147 65.3
35 35 100 0.18 0.2 1.11 0.301 164.4
35 35 100 0.16 0.2 1.25 0.64 528.9
35 35 100 0.14 0.2 1.43 1.024 1300.9
35 35 100 0.2 0.25 1.25 0.64 528.9

35 70 100 0.19 0.2 1.05 0.073 29.6
35 70 100 0.18 0.2 1.11 0.151 67.4
35 70 100 0.16 0.2 1.25 0.319 178.1
35 70 100 0.14 0.2 1.43 0.511 362.1
35 70 100 0.2 0.25 1.25 0.319 178.1

35 98 100 0.19 0.2 1.05 0.052 20.5
35 98 100 0.16 0.2 1.25 0.228 113
35 98 100 0.13 0.2 1.54 0.441 286.4
35 98 100 0.1 0.2 2 0.71 637.1
35 98 100 0.2 0.25 1.25 0.228 113
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1.2.2 Implementation and Protocol

One of the most challenging aspects of implementing any time discounting

study is making all choices equivalent except for their timing. That is, transactions

costs associated with receiving payments, including physical costs and confidence,

must be equalized across all time periods. We took several unique steps in our subject

recruitment process and payment procedures in order to closely equate transaction

costs over time, which we discuss in the following subsections.

Recruitment

In order to participate in the experiment, subjects were required to live on cam-

pus. All campus residents are provided with an individual mailbox at their dormitory.

Students frequently use these mailboxes as all postal service mail and intra-campus

mail are received at this mailbox. Each mailbox is locked and individuals have keyed

access 24 hours per day.

By special arrangement with the university mail services office, we were granted

same-day access to a specific subset of campus mailboxes. These mailboxes were lo-

cated at staffed dormitory mail centers and so experimental payments could be im-

mediately placed in a subject’s locked mailbox. As such, subjects in our experiment

were required to have one of the fixed number of campus mailboxes to which we had

immediate access. We recruited 97 undergraduate freshman and sophomores meeting

these criteria.

Experimental Payments

We employed six measures intended to equalize the costs of receiving pay-

ments. These measures not only attempt to equate transactions costs over sooner

and later payments, but also to increase confidence that future payments will arrive.

First, all sooner and later payments, including those for t = 0, were placed in sub-

jects’ campus mailboxes. Subjects were fully informed of the payment method and

the special arrangement made with university mail services.12 Eliminating in-lab pay-

ments ensures that subjects don’t disproportionately prefer present in-lab payments

12See Appendix Section 1.6.5 for the information provided to subjects.
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because they are more likely to be received than future extra-lab payments.

Second, upon beginning the experiment, subjects were told that they would

receive a $10 thank-you payment for participating. This $10 was to be received in two

payments: $5 sooner and $5 later, regardless of choices, and all experimental earnings

were added to these two $5 thank-you payments. This eliminated any convenience

gained by concentrating payments in one period – two checks were sent regardless.

Third, two blank envelopes were provided to each subject. After receiving

directions about the two thank-you payments, subjects were asked to address the

envelopes to themselves at their campus mailbox, thus minimizing clerical errors on

our part.

Fourth, at the end of the experiment, subjects were asked to write their pay-

ment amounts and dates on the inside flap of both envelopes, so they would see and

verify the amounts written in their own handwriting when payments arrived, thus

eliminating the cost of remembering the future amounts owed to them.

Fifth, one choice for each subject was selected for payment by drawing a

numbered card at random. All experimental payments were made by personal check

from Professor James Andreoni drawn on an account at the campus credit union.13

Individuals were informed that they could cash their checks (if they so desired) at

this credit union, thus increasing the fidelity of the payment method.

Sixth, subjects were given the business card of Professor James Andreoni and

told to call or email him if a payment did not arrive and that a payment would be

hand-delivered immediately. This invitation to inconvenience a professor was intended

to boost confidence that future payments would arrive as promised.

We believe that these efforts helped both equate transactions costs across

payments, and engender experimenter trust. In an auxiliary survey, subjects were

asked if they trusted that they would receive their experimental payments, and 97%

of respondents replied yes.

13Payment choice was guided by a separate survey of 249 undergraduate economics students
eliciting payment preferences. Personal checks from Professor Andreoni, Amazon.com gift cards,
PayPal transfers and the university stored value system TritonCash were each compared to cash
payments. Subjects were asked if they would prefer a twenty dollar payment made via each payment
method or $X cash, where X was varied from 19 to 10. Personal check payments were found to
have the highest cash-equivalent value.



10

Protocol

A JavaTM-based client/server system was written to implement the CTB ex-

periment. The server program sent budget information, recorded subject choices, and

reported experiment earnings. The client program provided instructions to subjects,

elicited choices, and administered a post-experiment questionnaire.

Upon starting the experiment, subjects read through directions and CTB ex-

amples. The CTB examples indicated to subjects that tokens could be allocated

entirely to the sooner payment, entirely to the later payment or divided between the

two. The objective was not to lead subjects to interior or corner allocations with

suggestive language.14 Screen shots of the instructions are presented in Appendix

1.6.5, which were read aloud and projected on a screen.

Subjects’ decision screens displayed a dynamic calendar and a series of nine

14Though, we cannot be sure if the language led subjects towards or away from specific allocations,
subjects were not shy about either type of allocation. Roughly 70% of responses are at corners, but
only 36 of 97 subjects made zero interior allocations. See Section 4.4 for further detail.
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“decision tabs.” These decision tabs corresponded to the nine choice sets described

above, one tab for each (t, k) combination. Subjects could respond to the decision

tabs in any order they wished. Each decision tab had five budget decisions presented

in order of increasing interest rate and then in order of increasing budget.15 An image

of the decision screen is presented in Figure 1.2.2.

For each decision, individuals were told how many tokens they were to allocate

(always 100), the sooner token value at, and the later token value at+k.16 As each

budget decision was being made, the calendar in the subjects’ screen highlighted the

experiment date (in yellow), the sooner date t (in green), and the later date t + k (in

blue). This allowed subjects to visualize the delay length for a given decision.17

Background Consumption and DMPL

In addition to the CTB experiment, we implemented a series of three MPLs

and two HL risk price list tasks (the components of the DMPL). The MPLs featured

the (t, k) combinations: (t = 0, k = 35), (t = 0, k = 98), (t = 35, k = 35). The

MPLs can be used to create alternate measures of both discounting and present bias

for comparison. The HL risk price lists were designed to elicit risk aversion or utility

function curvature over $20 and $25, respectively.18

At the end of the computer-based CTB experiment, subjects were administered

a questionnaire. Importantly, subjects were asked how much they spend in a typical

week. The average response was $49.32 per week or $7.05 per day of “background

consumption.” This figure is used later in our analysis (see Section 1.4.1).

15For a disussion of order effects and presenting choices by increasing interest rate, see Harrison
et al. (2005).

16Individuals were not told the gross interest rate, (1+r). However, in a companion questionnaire
individuals were asked several numeracy questions, including one on compound interest. Roughly
70% or respondents were able to correctly answer a standard compound interest question. The level
of numeracy in the sample suggests that the majority would be able to calculate at least the interest
rate over the delay, k.

17Because t and k were multiples of 7, all dates were described by the number of weeks (e.g.,
t = 7, k = 35 was described as “1 week from today” and “5 weeks later”). Note, also, that allocation
amounts were initially blank on the decision screen and subjects used up and down arrows to make
choices.

18The MPLs and HLs could also be chosen at random for payment. For directions and the price
list tasks see Appendix Section 1.6.6.



13

1.3 Parameter Estimation with the CTB

Given assumptions on the functional form of utility and the nature of dis-

counting, the CTB provides a natural context in which to jointly estimate (and test

hypotheses of) time preferences, present bias, and curvature of the utility function.

To begin, we posit a time separable CRRA utility function discounted via the quasi-

hyperbolic β-δ discounting function (Strotz, 1956; Phelps and Pollak, 1968; Laibson,

1997),

U(ct, ct+k) = (ct − ω1)
α + βδk(ct+k − ω2)

α, (1.3)

where δ is the one period discount factor and β is the present bias parameter. The

quasi-hyperbolic form elegantly captures the notion of present-biased time preferences

and nests the exponential discounting when β = 1. A value β < 1 indicates present

bias and when t > 0 present bias does not influence choice. The values ct and ct+k

are experimental earnings and α is the CRRA curvature parameter.19 The CRRA

utility function is frequently estimated in experimental studies on both time and risk

preferences and also used as the benchmark utility formulation across many fields

of economics. The terms ω1 and ω2 are additional utility parameters which could

be interpreted as classic Stone-Geary consumption minima, intertemporal reference

points, or background consumption. For example, such utility parameters are used

in Andersen et al. (2008), where experimental earnings are added to background con-

sumption, B, such that ω1 = ω2 = −B. The parameter, B, is not estimated in their

specification, but set to 118 Danish Kroner, the average value of daily consumption in

Denmark in 2003, around $25 US in 2009. Appendix Table 1.5 provides comparisons

using various given values of ω1 and ω2.

Maximizing (2.2) subject to the future value budget (1.2) yields the tangency

condition

ct − ω1

ct+k − ω2
=





(βδk(1 + r))( 1

α−1 ) if t = 0

(δk(1 + r))( 1
α−1 ) if t > 0




 , (1.4)

19This power utility formulation for CRRA is often used in experimental contexts and differs
slightly from CRRA utility formulated as c1−ρ/1− ρ, with ρ being the coefficient of relative risk
aversion. In our utility formulation the coefficient of relative risk aversion is 1− α.
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and the intertemporal formulation of a Stone-Geary linear demand for ct,

ct =






1

1+(1+r)(βδk(1+r))
( 1

α−1 )
]ω1 + [ (βδk(1+r))

( 1
α−1 )

1+(1+r)(βδk(1+r))
( 1

α−1 )
](m− ω2) if t = 0

1

1+(1+r)(δk(1+r))
( 1

α−1 )
]ω1 + [ (δk(1+r))

( 1
α−1 )

1+(1+r)(δk(1+r))
( 1

α−1 )
](m− ω2) if t > 0





.

(1.5)

1.3.1 Estimation of Intertemporal Preferences

Notice the parameters (β, δ, α) and the data (r, k, t) enter into the tangency

condition of (2.2) and the demand function of (2.1) in a non-linear fashion. Naturally,

if α = 1, only corner solutions are obtained. We discuss estimation of the parameters

β, δ, α, ω1 and ω2 when α < 1, and recognize that corner solutions may indeed arise

in the data.20 We motivate two regression techniques, each with their benefits and

weaknesses.

The first technique estimates (2.1) and the parameters β, δ, α, ω1 and ω2 using

non-linear least squares. Appendix Section 1.6.1 provides the details of the estimator.

The strength of this methodology is that it estimates the Stone-Geary parameters ω1

and ω2. Its weakness is that it cannot account for the censored data issues inherent

to potential corner solutions without additional distributional assumptions.21

For the second technique, we consider the tangency condition of (2.2). If we

assume ω1 and ω2 are (non-estimated) known values, we can take logs to obtain

ln(
ct − ω1

ct+k − ω2
) =





( ln β

α−1 ) + ( ln δ
α−1) · k + ( 1

α−1) · ln(1 + r) if t = 0

( ln δ
α−1) · k + ( 1

α−1) · ln(1 + r) if t > 0




 ,

20With the employed utility formulation and α < 1, corner solutions can be predicted provided
ω1 and ω2 < 0. As discussed in Section 4.4, corner solutions are frequent. Appendix Tables 1.9
and 1.10 provide individual estimates and demonstrate that for the motivated regression techniques,
individuals with only corner solutions have estimated values of α = 0.999, while individuals with
more interior solutions are estimated to have more utility function curvature. This gives support
to the employed regression techniques for identifying utility function curvature and near linear
preferences. Indeed, estimated curvature is found to correlate strongly with the discussed bias in
MPL-based discounting estimates. See Sub-section 1.4.2 for details.

21However, with such an assumption we could reduce the sum of squared residuals to the solution
function (2.1) recognizing that ct will be censored in the interval [0, m/(1 + r)]. Details of an NLS
estimator of (2.1) adapted for censoring are provided in Appendix Section 1.6.1 and discussed in
Section 4.4. We thank an anonymous referee for this very helpful suggestion.
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which is linear in the in the data, k and ln(1 + r), and reduces to,

ln(
ct − ω1

ct+k − ω2
) = (

ln β

α− 1
) · 1t=0 + (

ln δ

α− 1
) · k + (

1

α− 1
) · ln(1 + r),

where 1t=0 is an indicator for the time period t = 0. Given an additive error structure,

such a linear equation is easily estimated, with parameter estimates for δ, β, and

α obtained via nonlinear combinations of coefficient estimates. The weakness of

estimation based on the tangency condition of (2.2) is that it requires first that the

background parameters ω1 and ω2 be known, and second that the consumption ratio

(ct − ω1/ct+k − ω2) be strictly positive, such that the log transform is well-defined.

The strength, however, is that censoring issues are easily addressed. Two-limit tobit

maximum likelihood regressions can be implemented to account for corner solutions

(Wooldridge, 2002). Appendix 1.6.1 provides details.

Of additional interest in the present analysis is robustness to alternate func-

tional forms for utility.22 A leading alternative utility formulation, constant absolute

risk aversion (CARA) utility is also easily estimable in the CTB environment. Indeed,

because of the exponential form background parameters drop out of the marginal con-

dition if ω1 = ω2. The marginal condition can be written

exp(−ρ(ct − ct+k)) =





βδk · (1 + r) if t = 0

δk · (1 + r) if t > 0




 ,

where ρ represents the coefficient of absolute risk aversion in the utility formulation

u(ct) = −exp(−ρct). Taking logs and rearranging, this is linear in the data 1t=0, k,

and ln(1 + r), reducing to

ct − ct+k = (
ln β

−ρ
) · 1t=0 + (

ln δ

−ρ
) · k + (

1

−ρ
) · ln(1 + r). (1.6)

Both this tangency condition and the solution function,

ct = (
ln β

−ρ
) · 1t=0

2 + r
+ (

ln δ

−ρ
) · k

2 + r
+ (

1

−ρ
) · ln(1 + r)

2 + r
+

m

2 + r
, (1.7)

22We thank an anonymous referee for helpful suggestions related to estimating this alternate
functional form.
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can be easily estimated via similar Two-limit tobit maximum likelihood regression

techniques. Appendix 1.6.1 provides further detail. A CARA specification eliminates

the need to estimate additional utility parameters and is easily handled with standard

estimation techniques, but does not readily allow for comparison with prior CRRA

estimates and different background assumptions. Given that each estimation strategy

has its relative strengths, we provide all estimates and discuss any differences in our

analysis.

1.4 Experimental Results

The results are presented in two sub-sections. First, we present aggregate CTB

data and provide estimates of aggregate discounting, present bias and curvature. Sec-

ond, we explore individual level results, estimating preference parameters and com-

paring the results within-subject to parameters obtained from DMPL methodology.

1.4.1 Aggregate Analysis

We identify experimental allocations as solutions to standard intertemporal

optimization problems. These solutions are functions of our parameters of interest

(discounting and curvature), and experimentally varied parameters (interest rates and

delay lengths). Our experimental results should mirror this functional relationship.

In Figure 4.2 we plot the mean number of tokens chosen earlier against the gross

interest rate, (1 + r), of each CTB decision. We plot separate points
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for the three experimental values of t (t = 0, 7, 35 days), and separate graphs for

the three experimental values of k (k = 35, 70, 98 days). At each delay length, the

number of tokens allocated to the earlier payment declines monotonically with the

interest rate; and at comparable gross interest rates, the number of tokens allocated

earlier increases with delay.

Evidence for present bias or hyperbolic discounting would be observed in Fig-

ure 4.2 as the mean level of tokens allocated earlier being substantially higher when

t = 0 compared to t = 7 or 35. Instead, we observe that the mean number of earlier

tokens at each interest rate is roughly constant across t.

Notice that Figure 4.2 also reveals that choices respond to both changing in-

terest rates and delay lengths in predicted way.23 Masked by these aggregate results,

however, is important individual heterogeneity. Roughly 37 percent of subjects (36 of

97) have no interior choices in 45 convex budgets, consistent with linear preferences.24

Additionally, for the remaining 61 subjects, in any given decision, an average of ap-

proximately 50% of responses are found at corners. In the following section we discuss

estimation of aggregate preferences following the estimation procedures discussed in

Section 1.3.1 that can and cannot account for such corner solutions. In Section 1.4.2,

we discuss heterogeneity and provide individual estimates.

23Additionally, there is support for a homothetic utility function as the mean number of earlier
tokens does not change appreciably with increased income. This aggregate result masks individual-
level heterogeneity. Some subjects violate strict income monotonicity, by decreasing either ct or ct+k

in response to an income increase. In eight experimental budget expansions, 72 of 97 subjects make
two or fewer such monotonicity violations for ct and 89 of 97 subjects make two or fewer violations
for ct+k. Such violations may be a consequence of natural subject error as on average individuals
would have to adjust their responses by only 1.67 later tokens (valued at $0.42) to be consistent with
income monotonicity. Other potential errors are also small. For instance, the data generally satisfy
the law of demand. For (t = 7, k = 70) only one subject had a strictly upward sloping demand
curve, and 8 of 97 subjects had some increase in demand of ct in response to increased interest
rate. This can be compared to an extreme form of non-monotonic demand, multiple-switching in
standard MPL experiments. Around 10 percent of subjects feature multiple switch points in price
list experiments (Holt and Laury, 2002; Meier and Sprenger, 2010) and as many as 50 percent in
some cases (Jacobson and Petrie, 2009). As well, there is support for positive discounting. For
example, between the 1st, 6th and 11th budgets in Table 1, (t = 0, k = 35, 70, 98), (1 + r) = 1.05,
only one subject strictly decreased her allocation to the earlier payment in response to the delay
increase.

24See Appendix Tables 1.9 and 1.10 for individual censoring details and estimates.
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Estimating Aggregate Preferences

Table 1.2 presents estimates of aggregate preference parameters. In column

(1), the annual discount rate, present bias parameter, CRRA utility function curva-

ture and ω̂1 and ω̂2 are estimated by non-linear least squares on solution function

(2.1) with clustered standard errors.

Column (1) indicates, first, the aggregate annual discount rate is estimated at

0.300 (s.e. 0.064). This discount rate is lower than those estimated by most other

researchers.25

Second, aggregate curvature is precisely estimated at α̂ = 0.920 (s.e. = 0.006),

significantly different from 1 (F1,96 = 155.18, p < .01), but far closer to linear util-

ity than estimated from the DMPL approach employing HL risk measures or other

experimental estimates of risk aversion. For comparison, using DMPL methodology

with Danish subjects, Andersen et al. (2008) find a CRRA curvature parameter of

0.259. When allowing for this curvature and setting both ω1 and ω2 equal to minus

average daily spending in Denmark, Andersen et al. (2008) find a discount rate of

0.101. When assuming linear utility, they obtain a discount rate of 0.251.

The third, and most prominent finding is that, echoing Figure 4.2, we find

no evidence of present bias. That is, β̂ is estimated to be 1.004 (s.e. = .002). The

hypothesis of no present bias, β = 1, is marginally rejected (F1,96 = 2.82, p < .10),

with the favored alternative being future bias, β > 1. Obtaining a precisely estimated

β̂ so close to 1 is of specific interest. The general finding in both monetary and non-

monetary experiments and aggregate analyses is of substantial present bias (Frederick

et al., 2002), with a suggested value for β of around 0.7 (Laibson et al., 2003). Figure

4.2 also provides model fits corresponding to Table 1.2, column (1) t = 35 days,

demonstrating that the estimated time consistent preferences closely fit the aggregate

data. However, the R2 value indicates that substantial variation remains unexplained,

potentially related to individual heterogeneity. Individual analyses are presented in

Section 1.4.2
25Similar results are obtained when adapting the NLS criterion function for censoring. See Ap-

pendix Table 1.4. Notable exceptions of similarly low discount rates include Coller and Williams
(1999); Harrison et al. (2002, 2005) which all assume linear preferences and Andersen et al. (2008),
employing the DMPL technique.
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Table 1.2: Discounting and Curvature Parameter Estimates
(1) (2) (3) (4) (5) (6) (7) (8)

Method: NLS NLS NLS Tobit NLS Tobit Tobit Tobit

Annual Discount Rate 0.300 0.377 0.371 0.324 0.246 0.275 0.254 0.335
(0.064) (0.087) (0.091) (0.173) (0.128) (0.162) (0.159) (0.136)

Present Bias: β̂ 1.004 1.006 1.007 1.023 1.026 1.026 1.028 1.017
(0.002) (0.006) (0.006) (0.010) (0.008) (0.010) (0.010) (0.008)

CRRA Curvature: α̂ 0.920 0.921 0.897 0.977 0.706 0.873
(0.006) (0.006) (0.009) (0.004) (0.017) (0.018)

CARA Curvature: ρ̂ 0.008 0.007
(0.001) (0.001)

ω̂1 1.368
(0.275)

ω̂2 -0.085
(1.581)

ω̂1 = ω̂2 1.350 0 -0.01 -7.046 -7.046 - -
(0.278) - - - - - -

R2 / LL 0.4911 0.4908 0.4871 -7642.74 0.4499 -5277.56 -8864.52 -7772.91

# Observations 4365 4365 4365 4365 4365 4365 4365 4365
# Uncensored - - - 1329 - 1329 1329 1329
# Clusters 97 97 97 97 97 97 97 97

Notes: NLS and two-limit tobit ML estimators. Column (1): Unrestricted CRRA regression of
equation (5). Column (2): CRRA regression of equation (5) with restriction ω1 = ω2. Columns
(3) and (4): CRRA regressions of equations (5) and (4), respectively with restriction ω1 = ω2 = 0.
Columns (5) and (6): CRRA regressions of equations (5) and (4), respectively with restriction
ω1 = ω2 = −7.046 (the negative of average reported daily spending). Columns (7) and (8): CARA
regressions of equations (6) and (7), respectively. Clustered standard errors in parentheses. Annual
discount rate calculated as (1/δ̂)365 − 1. Standard errors calculated via the delta method.

The finding of no aggregate present bias is at striking odds with a body of ex-

perimental results in both economics and psychology. Reconciling our findings with

others is an important issue. A potential explanation is associated with our experi-

mental methodology. First, experimental evidence suggests that present bias may be

conflated with subjects’ assessment of the risk of receiving payments (Halevy, 2008).26

Keren and Roelofsma (1995) and Weber and Chapman (2005) find in two of three

experiments that when applying increasing levels of risk to both present and future

payments, present bias decreases to some degree. Our experimental methodology is

designed to eliminate differential risk between sooner and later payments. Indeed, in

26Indeed, this is the motivating argument for experimental front-end delays. See, for example,
Harrison et al. (2002, 2005).
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Andreoni and Sprenger (2010a) we show that when differential payment risk is exoge-

nously added back into the decision environment, a hyperbolic pattern of discounting

appears.

Though eliminating differential payment reliability represents one possible ex-

planation for our findings, many others exist. Principal among these explanations

is that present bias is a visceral response only activated when sooner rewards are

actually immediate. For example, dynamic inconsistency is shown to manifest itself

in immediate choices over healthy and unhealthy snacks (Read and van Leeuwen,

1998), juice drinks (McClure et al., 2007) and more immediate monetary rewards

(McClure et al., 2004).27 In order to equate transaction costs over sooner and later

payments we were unable to provide truly immediate rewards. Viewed in this light,

our findings represent a potential bound on present bias. With delays of a few hours

in between decision and reward receipt, present bias may be effectively eliminated. A

second explanation is that monetary payments should perhaps not elicit present bias

to the same extent as more tempting primary goods. Though the body of experimen-

tal evidence on present bias has used monetary payments, and high correlations are

obtained across primary and monetary intertemporal rewards (Reuben et al., 2008),

the underlying psychological models are very clearly focused on the temptation of

consumption utility and not on monetary rewards (Laibson, 1997; O’Donoghue and

Rabin, 1999; Gul and Pesendorfer, 2001). A third explanation is that unstudied el-

ements of the CTB presentation encourage dynamic inconsistency. We explore this

possibility in sub-section 1.4.2 by comparing CTB present bias with MPL present

bias. MPL-identified present bias is substantially lower than previously obtained and

correlates significantly with that found in CTBs at the individual level, suggesting

that aspects of payment mechanism and not CTB presentation limit present bias in

our context. It must also be recognized that our findings are one study among many,

and further research is necessary before firm conclusions can be drawn.

27In McClure et al. (2004), immediate monetary rewards were received via e-mail in the form of
Amazon gift certificates directly after the experiment.
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The Effect of Setting ω1 and ω2 from Consumption Data and Alternative

Utility Forms

Extra-experimental consumption poses an important challenge for studies of

time preferences. While experimenters are able to vary experimental payments, sub-

jects make choices over consumption streams including both experimental payments

and non-experimental consumption. It is assumed that individuals do not adjust their

non-experimental consumption. That is, ω1 and ω2 are taken as non-estimated, fixed

parameters. Prior research has set these to zero or fixed −ω1 and −ω2 to match the

average value of daily consumption (Andersen et al., 2008).

In column (1) of Table 1.2, we report estimates of both Stone-Geary parameters

ω̂1 and ω̂2. The hypothesis that ω1 = ω2 is not rejected (F1,96 = 0.87, p = 0.35). In

column (2) we report estimates of an identical NLS procedure with the restriction that

ω1 = ω2 and obtain very similar results. This suggests the restriction that ω1 = ω2 is

not costly.

Columns (3) through (6) of Table 1.2 examine whether the results are influ-

enced by procedures that fix rather than estimate ω1 and ω2. Additionally, fixed

values of ω1 and ω2 allow us to easily compare results across the estimators moti-

vated in Section 1.3.1. We estimate non-linear least squares regressions identical to

columns (1) and (2) and impose varying restrictions on the values of ω1 and ω2. We

also provide two-limit tobit maximum likelihood regressions accounting for corner

solution censoring, corresponding to the same restrictions.

In columns (3) and (4), the imposed restriction is ω1 = ω2 = 0.28 In columns

(5) and (6), we restrict ω1 = ω2 = −7.05, based on a post-experiment questionnaire

which elicited average daily consumption of our subjects to be $7.05.

Some differences in estimated parameters are obtained across econometric

techniques. In particular, curvature is less pronounced when accounting for the cen-

sored nature of the data, as should be expected. Across econometric techniques, es-

timated preference parameters are found to be sensitive to the choice of background

parameters. Both the estimated discount rate and α̂ decrease appreciably as the re-

stricted value of the ω parameters moves from 0 to -7.05. The present bias parameter

28In column (4), the restriction is ω1 = ω2 = −0.01, such that the log consumption ratio log(ct −
ω1/ct+k − ω2) is well-defined.
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β̂ varies in a tight range.29 These results suggest that the method of determining the

ω parameters is potentially of great relevance. In Appendix Table 1.5, we demonstrate

the effect of changing the values of ω1 and ω2 on estimated preference parameters for

both NLS and tobit estimators. The results indicate substantial sensitivity of esti-

mated parameters (particularly curvature) to increasingly negative values of ω1 and

ω2. Corresponding R2 and likelihood values diminish accordingly.

As discussed in Section 1.3.1, background parameters are eliminated from es-

timation under CARA utility if ω1 = ω2. As such, utility and discounting estimates

based on CARA utility will not suffer from the same sensitivity to background as-

sumptions as CRRA estimates. In columns (7) and (8) of Table 1.2 we provide

two-limit Tobit CARA estimates based on (1.6) and (1.7). Virtually identical dis-

counting and present bias parameters are estimated under this alternative functional

form and coefficients of absolute risk aversion of ρ̂ between 0.007 and 0.008 are ob-

tained. Notable from these estimate as well as the CRRA estimates is the limited

utility function curvature estimated from CTB responses. Taken as a measure of risk

aversion, for a 50%-50% gamble over $20 and $0, our CARA column (7) and CRRA

column (3) estimates indicate certainty equivalents of $9.60 and $9.23, respectively.

These values are far from the often-found extreme experimental risk aversion and

requires further research on the relationship between risk and time preferences. This

work is begun in Andreoni and Sprenger (2010a).

1.4.2 Individual Analysis

Table 1.3 presents estimates of discounting, present bias and curvature pa-

rameters at the individual level. For each subject, we estimate the parameters of

equation (2.1). To limit the number of estimated parameters and facilitate compar-

ison with DMPL methodology, we restrict ω1 = ω2 = 0. The parameters β̂, δ̂, and

CRRA curvature parameter α̂ are estimated by non-linear least squares as in Table

1.2, column (3).30 As robustness tests we first conduct estimation restricting ω1 = ω2

29Similar results are obtained when adapting the NLS criterion function for censoring. See Ap-
pendix Table 1.4.

30We opt for the NLS estimator to accommodate the restriction ω1 = ω2 = 0 . Additionally,
the motivated tobit estimators require a sufficient number of non-censored interior solutions for
estimation. Given that 36 of 97 subjects have no interior solutions, consistent with linear preferences,
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at various levels and, second, we allow ω1 and ω2 to equal minus self-reported daily

consumption. Additionally, we provide tobit and OLS estimates. Obtained values

are similar to Table 1.3 and reported in Appendix Tables 1.6 through 1.8.

Time preferences and curvature parameters are estimable for 86 of 97 sub-

jects.31 The results are broadly consistent with those estimated at the aggregate

level. The median estimated annual discount rate is 0.41, close to the aggregate val-

ues obtained in Table 1.2. Echoing the aggregate results, individual present bias is

limited as the median estimated β̂ is 1.001. The median estimated α̂ is 0.967, sug-

gesting that individual curvature, like aggregate curvature, is limited. In addition to

median values, Table 1.3 reports the 5th-95th percentile range for individual estimates

of the annual discount rate, δ̂, β̂, and α̂ along with the minimum and maximum values

estimated. For the majority of subjects the employed estimation strategy generates

reasonable parameter estimates. However, extreme observations do exist. Figure

4.7, Panel A presents histograms of individual curvature and discounting estimates

from the CTB methodology. The histograms demonstrate that a large proportion

of subjects have low discount rates, limited present bias and limited utility function

curvature. Estimation results for all subjects are in Appendix Tables 1.9 and 1.10.

Table 1.3: Individual Discounting, Present Bias
and Curvature Parameter Estimates

N Median 5th 95th Min Max
Percentile Percentile

Annual Discount Rate 86 0.4076 -0.1784 5.618 -0.9949 35.3555

Daily Discount Factor: δ̂ 86 0.9991 0.9948 1.0005 0.9902 1.0146

Present Bias: β̂ 86 1.0011 0.9121 1.1075 0.7681 1.3241

CRRA Curvature: α̂ 86 0.9665 0.7076 0.9997 -0.1331 0.9998

Notes: NLS estimators with restriction ω1 = ω2 = 0 as in Table 1.2, column (3).

this condition would not be met for a number of experimental subjects. See Appendix 1.6.1 for
details.

31We do not study the 11 remaining subjects. Eight of these subjects had zero variance in their
experimental responses, allocating the same number of sooner tokens in each choice set. Estimation
convergence is not achieved for two subjects and the last remaining subject gave an identical pattern
of sooner token choices in every choice set: 4 tokens in the first decision, 3 in the second, 2 in the
third, 1 in the fourth and 0 in the fifth.
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Figure 1.3: Histograms of CTB Estimates and DMPL Calculations

Correlation Between CTB Parameter Estimates and DMPL Calculations

For completeness, we compare individual discounting and curvature param-

eter estimates from the CTB to those calculated from DMPL methodology. Three

standard time multiple price lists and two HL risk price lists were administered to

all subjects. From the three price lists, we calculate daily discount factors following

standard practice.32 Given a switching point, X, a later payment, Y , and a delay

32MPL switch points yield an interval of the individual discount factor (Coller and Williams,
1999), which is easily accounted for with interval regression techniques (Coller and Williams, 1999;
Harrison et al., 2002). However, common practice for calculation takes one point in the interval (see,
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length, k, in a price list, l, we calculate the daily discount factor as dl = (X/Y )1/k.

This is equivalent to positing a linear utility function and background ω1 = ω2 = 0.

We examine the average of the three measures, d = 1/3 · (d1 + d2 + d3). From the

two HL risk price lists, we calculate curvature parameters also following standard

practice.33 Given a switching probability pair, (p, 1 − p), and two HL lotteries, A

and B, in a specific price list l we take the value al that equates the CRRA expected

utility of lottery A and lottery B. We take the midpoint of the interval in which

this value lies as the calculated curvature parameter, al. We examine the average

value, a = 1/2 · (a1 + a2). In both MPLs and HLs, individuals must exhibit a unique

switching point to have a calculable discount factor or curvature parameter.

Of the subjects for whom we estimate δ̂, 84 of 86 have a calculable discount

factor, d. The median value implies an annual discount rate of 137 percent, which

replicates the very high observed discount rates in MPL experiments assuming linear

utility. We can also identify present bias in the MPLs by the standard methodology

of comparing the (t, k) = (0, 35) MPL to the (t, k) = (35, 35) MPL. Fourteen of 84

subjects (16.7%) are classified as present-biased, (d(t=0,k=35) < d(t=35,k=35)), while the

median present bias parameter, b, is 1.34 For comparison, using similar MPL methods,

Ashraf et al. (2006), Dohmen et al. (2006), and Meier and Sprenger (2010) find around

30-35% of subjects to be present-biased and a substantially smaller percentage to be

future-biased. In contrast, using closely controlled payments and the CTB method,

Gine et al. (2010) find limited aggregate present bias and almost equal appearances of

present and future bias.35 This further supports the notion that our unique payment

methods resulted in fewer instances of apparent present bias. Of the subjects for

for example Ashraf et al., 2006; Burks et al., 2009; Meier and Sprenger, 2010). We choose the point
of the interval that makes subjects appear the most patient.

33HL switch points yield an interval of the individual curvature parameter (Holt and Laury,
2002), which can be accounted for with either interval regression techniques or alternative estimators
(Harrison et al., 2005). However, common practice for calculation takes one point in the interval
or alternatively the number of lottery A choices (see, for example Dohmen et al., 2005; Holt and
Laury, 2002).

34Present bias b, is calculated as (d(t=0,k=35)/d(t=35,k=35))35. Nine subjects are classified as future-
biased (d(t=0,k=35) > d(t=35,k=35)) and 61 are classified as dynamically consistent (d(t=0,k=35) =
d(t=35,k=35))

35Additionally, Gine et al. (2010) allow individuals to revise prior choices. Present bias, as mea-
sured in CTBs, predicts present-biased revisions. This gives support to the CTB methodology for
being able to both measure individual preferences and predict important choice.
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whom we estimate α̂, 77 of 86 have a calculable curvature parameter, a. The median

value is 0.513 indicating substantial utility curvature.

Figure 4.7, Panel B provides histograms of these calculations for comparison

with CTB estimates. Figure 4.7 shows that present bias is found to be similar across

elicitation techniques. Discount rates and curvature, however, differ substantially.

Time and risk price lists yield systematically higher discount rates and utility func-

tion curvature than CTB estimates. As in Andersen et al. (2008), correcting for

curvature from the HL risk measures yields lower discounting estimates. Performing

such an exercise, we obtain a median discount rate estimate of 33 percent per year.

However, such a correction may be misguided given the wide difference between HL

risk measures and the CTB estimates. This motivates careful examination of the

correlation of obtained preference parameters across elicitation methods.

Figure 4.3 plots calculated DMPL and estimated CTB parameters against

each other. In Panel A the calculated discount factor, d, is plotted against the

estimated parameter, δ̂, along with an estimated regression line and 45 degree line.

Panel B is similar for a and α̂. No panel is presented for b and β, because of the

sheer volume of responses near to (b, β̂) = (1, 1). However, estimated present bias

from CTB methodology, β̂, and calculated present bias from MPL methodology b

are significantly correlated (ρ = 0.255, p < 0.05) as are β̂ and the frequently-used

categorical variable classifying present-biased (1) , dynamically consistent (0) and

future biased (-1) subjects, (ρ = −0.274, p < 0.05). The correlation between between

DMPL and CTB present bias further suggests that payment methods as
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opposed to CTB presentation led to less apparent present bias.

Panel A of Figure 4.3 shows a high degree of correlation between MPL cal-

culated and CTB estimated discount factors (ρ = 0.420, p < 0.001). However,

most of the data lies above the 45 degree line, consistent with standard arguments

that, under concave utility, discount factors calculated from price lists alone will be

downwards-biased. Additionally, we can examine the difference, δ̂ − d, as a measure

of price list-induced bias. Interestingly, this discounting bias measure is negatively

correlated with CTB estimated curvature, α̂, (ρ = −0.743, p < 0.001). Subjects

who are closer to linear utility will have less biased MPL-calculated discount factors.

This indicates that, though biased, standard MPLs do yield useful measures of time

preference and that the bias attenuates with utility function curvature as theoreti-

cally predicted. Importantly, HL measured curvature does not correlate with the bias

(ρ = −0.092, p = 0.431).

The lack of correlation between HL curvature and price list-induced discount-

ing bias is not surprising. It is generated by the apparent zero correlation in Panel

B of Figure 4.3 between HL calculated curvature, a, and CTB estimated curvature

α̂ (ρ = 0.066, p = 0.568). This is interesting because, under CRRA utility, the two

elicitation methodologies ostensibly measure the same utility construct. Not only is

the level of curvature inconsistent between the two, but also the correlation is remark-

ably low. Additionally, HL curvature cannot account for the bias induced in MPL

discounting experiments. These findings suggest that the practice of using HL risk

experiments to identify and correct for curvature in discounting may be problematic.

As we obtain different parameter estimates across CTB and DMPL method-

ologies, a natural question arises as to which is better for eliciting time preferences.

Though the individual analyses suggest the CTB estimates are more reasonable and

can better explain the curvature-induced bias in MPL discount factors, more research

must be conducted before firm conclusions can be drawn. Additionally, recent work

from Noor (2009, 2011) demonstrates that an alternate experimental methodology

fixing monetary payments and having delay length be the object of choice can, un-

der certain regularity conditions, elicit discounting functions. This is in contrast to

most experimental designs such as both CTB and MPL where time-dated rewards,

with varying delay lengths and monetary values, are the object of choice. Though
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this new methodology has not been widely implemented, it should be tested and

related to both CTB and DMPL techniques in order to both better understand the

new mechanism and potentially understand which of the common time-dated rewards

methodologies yields more consistent measures.

1.5 Conclusion

MPLs and other experimental methods frequently produce high estimates of

annual discount rates at odds with non-laboratory measures. A possible bias of

MPLs is the imposition of linear preferences, generating upwards-biased discount

rate estimates if utility is actually concave. Solutions to this bias to date have relied

on Double Multiple Price List methodology: identifying time preferences with MPLs

and utility function curvature with HL risk measures.

We propose a single simple instrument that identifies discounting and utility

function curvature, that we call Convex Time Budgets. Allocations in Convex Time

Budgets are viewed as solutions to standard intertemporal optimization problems with

convex choice sets. Given assumptions on functional form, discounting and curvature

parameters are estimable. Additionally, tests of present-biased time preferences are

easily implemented.

In a computer-based experiment with 97 subjects, we show that CTBs precisely

identify discounting and curvature parameters at both the aggregate and individual

levels. Across specifications, we find an aggregate discount rate of around 30% per

year, substantially lower than most experimental estimates. Linear utility is rejected

econometrically, though we find less utility function curvature than obtained with

DMPL methodology or most studies using HL risk measures. Additionally, we find

no evidence of present bias.

When examining individual estimates, we find that MPL-elicited discount

rates, though upwards-biased, do correlate with CTB estimates. HL risk measures,

however, are found to be virtually uncorrelated with CTB estimated utility function

curvature.

These findings raise several natural and important questions. First, why did

we find no evidence of present bias, while so many other studies using cash rewards
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do find present bias? The most likely answer, it appears to us, lies in the unique steps

we took to equate the costs and risks associated with sooner and later payments. This

is surely the most consequential aspect of our findings, and as such invites rigorous

replication and testing.

Second, why do we find substantial differences between CTB estimates and

those obtained with DMPL methodology? In particular, why is the curvature over

time obtained from CTBs so different from and uncorrelated with the curvature over

risk obtained from HL measures. Why can’t HL risk measures account for MPL-

induced bias in discounting? At a minimum, these results indicate that using risk

experiments to identify curvature in discounting may be problematic. They also

suggest that future research is necessary on the interactions between risk and time.

Particular attention should be given to investigating the link between payment risk

and present bias. We begin this investigation in Andreoni and Sprenger (2010a).

1.6 Appendix

1.6.1 Estimating Preference Parameters

Nonlinear Least Squares

Let there be N experimental subjects and P CTB budgets. Assume that each
subject j makes her ctij , i = 1, 2, ..., P , decisions according to (2.1) but that these
decisions are made with some mean-zero, potentially correlated error. That is let

g(m, r, k, t; β, δ, α, ω1, ω2) =

8
>>>>>>>><

>>>>>>>>:

1

1+(1+r)(βδk(1+r))
( 1

α−1 )
]ω1 + [

(βδk(1+r))
( 1

α−1 )

1+(1+r)(βδk(1+r))
( 1

α−1 )
](m − ω2) if t = 0

1

1+(1+r)(δk(1+r))
( 1

α−1 )
]ω1 + [

(δk(1+r))
( 1

α−1 )

1+(1+r)(δk(1+r))
( 1

α−1 )
](m − ω2) if t > 0

9
>>>>>>>>=

>>>>>>>>;

,

then

ctij = g(m, r, k, t; β, δ, α, ω1, ω2) + eij.

Stacking the P observations for individual j, we have

ctj = g(m, r, k, t; β, δ, α, ω1, ω2) + ej.
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The vector ej is zero in expectation with variance covariance matrix Vj, a (P × P )

matrix, allowing for arbitrary correlation in the errors eij. We stack over the N

experimental subjects to obtain

ct = g(m, r, k, t; β, δ, α, ω1, ω2) + e.

We assume that the terms eij may be correlated within individuals but that

the errors are uncorrelated across individuals, E(e′jeg) = 0 for j %= g. And so e is

zero in expectation with covariance matrix Ω, a block diagonal (NP × NP ) matrix

of clusters, with individual covariance matrices, Vj.

We define the usual criterion function S(m, r, k; β, δ, α, ω1, ω2) as the sum of

squared residuals,

S(m, r, k, t; β, δ, α, ω1, ω2) =
N∑

j=1

P∑

i=1

(ctij − g(m, r, k, t; β, δ, α, ω1, ω2))
2,

and minimize S(·) using non-linear least squares with standard errors clustered on

the individual level to obtain β̂, δ̂, α̂, ω̂1 and ω̂2. NLS procedures permitting the esti-

mation of preference parameters at the aggregate or individual level are implemented

in many standard econometrics packages (in our case, Stata). Additionally, an esti-

mate of the annual discount rate can be calculated as (1/δ̂)365−1 with standard error

obtained via the delta method. Ω̂ is estimated as the individual-level clustered error

covariance matrix. Given additional assumptions on the individual covariance matrix

Vj, such as diagonal or block-diagonal, individual parameter estimates can also be

obtained via the same estimation procedure.

It is important to recognize the strengths and weaknesses of such an NLS pref-

erence estimator. Background parameters ω1 and ω2 can be estimated as opposed to

assumed, which is an advantage. A potential disadvantage is that the NLS estimator

is not well-suited to the censored data issues inherent to potential corner solutions

without additional assumptions.

The NLS estimator can be adapted to account for possible corner solutions

by adapting the criterion function and making additional distributional assumptions.

Let c∗t be a latent variable for period t allocation that follows
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c∗t = g(m, r, k, t; β, δ, α, ω1, ω2) + ε. We observe ct = 0 if c∗t ≤ 0, ct = m/1 + r if

c∗t ≥ m/1+r and ct = c∗t otherwise. As discussed in Wooldridge (2002) Chapter 16, c∗t

here does not have an interpretation, but the latent variable vocabulary and associated

censored techniques are applicable to corner solution applications. Borrowing from

Greene (2003) Chapter 22, assume that ε is continuous random variable, with density

f(ε) and distribution F (ε), that ε is orthogonal to the data (m, r, k, t) and has mean

0 and variance σ2. Then the expectation

E[ct|m, r, k, t] = P [c∗t ≤ 0|m, r, k, t] · 0 + P [c∗t ≥
m

1 + r
|m, r, k, t] · m

1 + r
+

P [0 < c∗t <
m

1 + r
] · E[c∗t |0 < c∗t <

m

1 + r
|m, r, k, t]

can be rewritten

E[ct|m, r, k, t] = Fl · 0 + (1− Fh) · m

1 + r
+ (Fh − Fl) · E[c∗t |0 < c∗t <

m

1 + r
|m, r, k, t],

where Fh = F (m/(1+r)−g(·)
σ ) and Fl = F (0−g(·)

σ ). A distributional assumption is im-

posed on ε to provide functional form. In particular ε is taken to follow a normal

distribution. This provides the following form,

E[ct|m, r, k, t] = Φl · 0 + (1− Φh) · m

1 + r
+ (Φh − Φl) · (g(·) + (

φl − φh

Φh − Φl
)σ),

with Φ(·) and φ(·) representing the standard normal distribution and density, respec-

tively.

We introduce g̃(m, r, k, t; β, δ, α, ω1, ω2, σ) = Φl · 0+ (1−Φh) · m
1+r +(Φh−Φl) ·

(g(·)+( φl−φh

Φh−Φl
)σ), with g(·) defined as before. This motivates a new criterion function

S̃(m, r, k, t; β, δ, α, ω1, ω2) =
N∑

j=1

P∑

i=1

(ctij − g̃(m, r, k, t; β, δ, α, ω1, ω2, σ))2, (1.8)

which is minimized using non-linear least squares with standard errors clustered on

the individual level. Estimates are discussed in the text and presented in Appendix

Table 1.4.
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Censored Regression Techniques

Next we consider more standard censored regression techniques that can ad-

dress corner solution issues. We consider the tangency condition of (2.2). If we assume

ω1 and ω2 are non-estimated, known values, we can take logs to obtain

ln(
ct − ω1

ct+k − ω2
) =





( ln β

α−1 ) + ( ln δ
α−1) · k + ( 1

α−1) · ln(1 + r) if t = 0

( ln δ
α−1) · k + ( 1

α−1) · ln(1 + r) if t > 0




 ,

which is linear in the in the data k and ln(1 + r), and reduces to,

ln(
ct − ω1

ct+k − ω2
) = (

ln β

α− 1
) · 1t=0 + (

ln δ

α− 1
) · k + (

1

α− 1
) · ln(1 + r),

where 1t=0 is an indicator for the time period t = 0.

Let there be N experimental subjects and P CTB budgets. Assume that

each subject j makes her ctij , i = 1, 2, ..., P , decisions according to the above log-

linearized relationship but that these decisions are made with some additive mean-

zero, potentially correlated error. That is,

ln(
ct − ω1

ct+k − ω2
)ij = (

ln β

α− 1
) · 1t=0 + (

ln δ

α− 1
) · k + (

1

α− 1
) · ln(1 + r) + eij,

Stacking the P observations for individual j, we have

ln(
ct − ω1

ct+k − ω2
)j = (

ln β

α− 1
) · 1t=0 + (

ln δ

α− 1
) · k + (

1

α− 1
) · ln(1 + r) + ej

The vector ej is zero in expectation with variance covariance matrix Vj, a

(P ×P ) matrix, allowing for arbitrary correlation in the errors eij. We stack over the

N experimental subjects to obtain

ln(
ct − ω1

ct+k − ω2
) = (

ln β

α− 1
) · 1t=0 + (

ln δ

α− 1
) · k + (

1

α− 1
) · ln(1 + r) + e

We assume that the terms eij may be correlated within individuals but that

the errors are uncorrelated across individuals, E(e′jeg) = 0 for j %= g. And so e is

zero in expectation with covariance matrix Ω, a block diagonal (NP × NP ) matrix
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of clusters, with individual covariance matrices, Vj.

The above linear model is easily estimated with ordinary least squares. How-

ever the log consumption ratio is censored by corner solution responses,

ln(
ct − ω1

ct+k − ω2
) ∈ [ln(

0− ω1

ct+k − ω2
), ln(

ct − ω1

0− ω2
)],

motivating censored regression techniques such as the two-limit tobit model more

appropriate. Wooldridge (2002) presents corner solutions as the primary motivation

for two-limit tobit regression techniques and Chapter 16, Problem 16.3 corresponds

closely to the above. Parameters can be estimated via the two-limit tobit regression.

ln(
ct − ω1

ct+k − ω2
) = γ1 · 1t=0 + γ2 · k + γ3 · ln(1 + r) + e

With parameters of interest recovered via the non-linear combinations

α̂ =
1

γ̂3
+ 1 ; δ̂ = exp(

γ̂2

γ̂3
) ; β̂ = exp(

γ̂1

γ̂3
),

and standard errors obtained via the delta method. Additionally, an estimate of the

annual discount rate can be calculated as (1/δ̂)365 − 1 with standard error obtained

via the delta method. Ω̂ is estimated as the individual-level clustered error covariance

matrix.

Given additional assumptions on the individual covariance matrix Vj, such as

diagonal or block-diagonal as well as a sufficient number of non-censored observations

(one less than the number of parameters), individual parameter estimates can also

be obtained via the same estimation procedure.

Censored regression techniques are helpful in addressing the critical issues

of corner solutions. However, there are disadvantages to the technique. First, the

values ω1 and ω2 must be assumed rather than estimated from the data. Second, the

consumption ratio ( ct−ω1
ct+k−ω2

) must be strictly positive such that the log consumption

ratio is well defined. This restricts the values of ω1 and ω2 to be strictly negative.

Under alternative preference models, the difficulty of background parameters

is eliminated. Consider for example constant absolute risk aversion utility, u(ct) =

−exp(−ρ(ct−ω1)) = −exp(−ρct) ·exp(ρω1). Under this CARA parameterization and
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ω1 = ω2, the background parameters drop out of the marginal condition such that

the tangency can be written

exp(−ρ(ct − ct+k)) =





βδk · (1 + r) if t = 0

δk · (1 + r) if t > 0




 .

Taking logs and rearranging, this is linear in the data 1t=0, k, and ln(1+ r), reducing

to

ct − ct+k = (
ln β

−ρ
) · 1t=0 + (

ln δ

−ρ
) · k + (

1

−ρ
) · ln(1 + r).

This can again be estimated with censored regression techniques and parameters of

interest recovered as before. Additionally, the solution function,

ct = (
ln β

−ρ
) · 1t=0

2 + r
+ (

ln δ

−ρ
) · k

2 + r
+ (

1

−ρ
) · ln(1 + r)

2 + r
+

m

2 + r
,

can also be estimated with censored regression techniques with the coefficient on the

nuisance term m
2+r constrained to be 1. As the strategies employed for these censored

CARA regressions are virtually identical to those just discussed for CRRA utility,

further matrix notation is unnecessary.

1.6.2 About Arbitrage

A relevant issue with monetary incentives in time preference experiments, as

opposed to experiments using primary consumption as rewards, is that, in theory,

monetary payments should be subject to extra-lab arbitrage opportunities. Subjects

who can borrow (save) at external interest rates inferior (superior) to the rates offered

in the lab should arbitrage the lab by taking the later (sooner) experimental payment.

As such, discount rates measured using monetary incentives should collapse to the

interval of external borrowing and savings interest rates and present bias should

be observed only if liquidity positions or interest rates are expected to change. In

the CTB context, this arbitrage argument also implies that subjects should never

choose intermediate allocations unless they are liquidity constrained.36 Furthermore,

36If an arbitrage opportunity exists, the lab offered budget set is inferior to the extra-lab budget
set everywhere except one corner solution. This corner should be the chosen allocation. Liquidity
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for ‘secondary’ rewards, such as money, it is possible that there could be less of a

visceral temptation for immediate gratification than for ‘primary’ rewards that can

be immediately consumed. As a result, one might expect limited present bias when

monetary incentives are used.

Contrary to the arbitrage argument, others have shown that experimentally

elicited discount rates are generally not measured in a tight interval near market

rates (Coller and Williams, 1999; Harrison et al., 2002); they are not remarkably sen-

sitive to the provision of external rate information or to the elaboration of arbitrage

opportunities (Coller and Williams, 1999); and they are uncorrelated with credit con-

straints (Meier and Sprenger, 2010). In our CTB environment, a sizeable proportion

of chosen allocations are intermediate (30.4% of all responses, average of 13.7 per

subject) and the number of intermediate allocations is uncorrelated with individual

liquidity proxies such as credit-card holdership (ρ = −0.049, p = 0.641) and bank

account holdership (ρ = −0.096, p = 0.362).

Despite the fact that money is not a primary reward, monetary experiments

do generate evidence of present-biased preferences (Dohmen et al., 2006; Meier and

Sprenger, 2010). Of further interest is the finding by McClure et al. (2004, 2007)

that discounting and present bias over primary and monetary rewards have very

similar neural images. As well, discount factors elicited over primary and monetary

rewards correlate highly at the individual level (Reuben et al., 2008). The fact that

we find significant but limited utility function curvature is therefore consistent with

the evidence of strict convexity of preferences in the presence of arbitrage.

constraints could yield intermediate allocations if individuals are unable to move resources through
time outside of the lab and desire smooth consumption streams. Additionally intermediate alloca-
tions could be obtained if the lab-offered rate lay in between borrowing and savings rates. Cubitt
and Read (2007) provide substantial discussion on the limits of the preference information that can
be obtained from intertemporal choice experiments.
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1.6.3 Additional Aggregate Estimates

In this appendix we provide two table of additional aggregate estimates. Table

1.4 provides NLS estimates adapted for censoring as described in Appendix Section

1.6.1 with the normalization σ = 1. Table 1.5 demonstrates the sensitivity of esti-

mates to alternate assumptions on background parameters ω1 and ω2 with NLS and

Two-Limit Tobit estimates.

Table 1.4: Discounting and Curvature Estimates

(1) (2) (3) (4)
Method: NLS NLS NLS NLS

Annual Discount Rate 0.297 0.377 0.374 0.371
(0.063) (0.087) (0.027) (0.027)

Present Bias: β̂ 1.007 1.006 1.007 1.006
(0.005) (0.006) (0.006) (0.006)

CRRA Curvature: α̂ 0.919 0.921 0.899 0.810
(0.006) (0.006) (0.004) (0.006)

ω̂1 1.340
(0.297)

ω̂2 -0.083
(1.580)

ω̂1 = ω̂2 1.321 0 -7.046
(0.302) - -

R2 0.2396 0.2393 0.2355 0.2231

# Observations 4365 4365 4365 4365
# Clusters 97 97 97 97

Notes: NLS estimators of equation (1.8) accounting for censoring.
Column (1): Unrestricted CRRA regression. Column (2): CRRA
regression with restriction ω1 = ω2. Column (3) CRRA regression
with restriction with restriction ω1 = ω2 = 0. Column (4): CRRA
regression with restriction ω1 = ω2 = −7.046 (the negative of average
reported daily spending). Clustered standard errors in parentheses.
Annual discount rate calculated as (1/δ̂)365 − 1. Standard errors cal-
culated via the delta method.
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Table 1.5: Background Consumption, Parameter Estimates and Goodness of Fit
NLS Estimates Two-Limit Tobit Estimates

ω1 = ω2 Discount Rate β̂ α̂ R2 Discount Rate β̂ α̂ Log-Likelihood
(s.e.) (s.e) (s.e.) (s.e.) (s.e) (s.e.)

-25 .151 1.04 .24 .433 .264 1.027 .711 -4173.8
(.151) (.01) (.045) (.16) (.01) (.041)

-20 .159 1.039 .361 .434 .266 1.027 .754 -4393.04
(.149) (.009) (.037) (.16) (.01) (.035)

-15 .175 1.037 .487 .437 .268 1.027 .799 -4660.35
(.145) (.009) (.03) (.161) (.01) (.029)

-14 .18 1.036 .513 .438 .269 1.027 .808 -4721.82
(.144) (.009) (.028) (.161) (.01) (.028)

-13 .186 1.035 .539 .439 .27 1.027 .817 -4786.7
(.142) (.009) (.027) (.161) (.01) (.026)

-12 .192 1.034 .566 .44 .27 1.027 .826 -4855.43
(.141) (.009) (.025) (.161) (.01) (.025)

-11 .2 1.033 .593 .441 .271 1.027 .835 -4928.58
(.139) (.009) (.024) (.161) (.01) (.024)

-10 .209 1.032 .621 .443 .272 1.027 .845 -5006.81
(.137) (.008) (.022) (.161) (.01) (.022)

-9 .22 1.03 .649 .445 .273 1.027 .854 -5091.02
(.134) (.008) (.02) (.161) (.01) (.021)

-8 .232 1.028 .678 .447 .274 1.026 .864 -5182.36
(.131) (.008) (.019) (.162) (.01) (.02)

-7 .246 1.026 .707 .45 .275 1.026 .874 -5282.39
(.127) (.008) (.017) (.162) (.01) (.018)

-6 .263 1.023 .737 .453 .277 1.026 .884 -5393.3
(.123) (.008) (.016) (.162) (.01) (.017)

-5 .282 1.02 .767 .458 .279 1.026 .894 -5518.36
(.118) (.007) (.014) (.162) (.01) (.015)

-4 .302 1.017 .796 .463 .281 1.026 .904 -5662.8
(.113) (.007) (.013) (.163) (.01) (.014)

-3 .323 1.014 .824 .468 .284 1.026 .916 -5835.85
(.107) (.007) (.012) (.163) (.01) (.012)

-2 .342 1.011 .851 .475 .288 1.026 .928 -6056.91
(.101) (.006) (.01) (.164) (.01) (.01)

-1 .359 1.009 .875 .481 .295 1.025 .943 -6382.19
(.095) (.006) (.009) (.166) (.01) (.008)

Notes: NLS and two-limit tobit estimators with restriction ω1 = ω2 equal to first column as in Table
1.2. 4365 observations (1329 uncensored) for each row. Clustered standard errors in parentheses.
Annual discount rate calculated as (1/δ̂)365 − 1, standard errors calculated via the delta method.
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1.6.4 Additional Individual Estimates

In this appendix we provide three summary tables and two tables of individual

estimates of additional individual level estimates with alternative specifications and

estimators. All three tables are in the form of Table 1.3. In 1.6 we impose the restric-

tion ω1 = ω2 = −7.05, minus average daily background consumption, and provide

NLS estimates. In 1.7, we impose the same restriction and provide tobit estimators.

For individuals with one or fewer interior solutions, we estimate via OLS as the tobit

requires at least two uncensored observations for estimation. See Appendix Section

1.6.1 for details. In 1.8 we impose the restriction ω1 = ω2 = −B, where B corresponds

to the subject’s own self-reported daily background consumption, and provide NLS

estimates for responders. The number of subjects for whom estimation is achieved

is also reported and varies across tables. Tables 1.9 and 1.10 provide NLS estimates

for each subject with ω1 = ω2 = 0 as in Table 1.2, column (3) and discussed in the text.

Table 1.6: Individual Discounting, Present Bias
and Curvature Parameter Estimates

N Median 5th 95th Min Max
Percentile Percentile

Annual Discount Rate 88 .4277 -.8715 5.6481 -1 55.4768

Daily Discount Factor: δ̂ 88 .999 .9948 1.0056 .989 1.031

Present Bias: β̂ 88 1.0285 .8963 1.1566 .8016 1.1961

CRRA Curvature: α̂ 88 .7536 .1293 .8977 -3.273 .9052

Notes: NLS estimators with restriction ω1 = ω2 = −7.05.
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Table 1.7: Individual Discounting, Present Bias
and Curvature Parameter Estimates

N Median 5th 95th Min Max
Percentile Percentile

Annual Discount Rate 84 .3923 -.9868 7.9005 -1 42.9775

Daily Discount Factor: δ̂ 84 .9991 .994 1.0119 .9897 1.4535

Present Bias: β̂ 84 1.0238 .9102 1.3384 .8426 5.7041

CRRA Curvature: α̂ 84 .7836 -.0838 .9846 -50.4261 .9916

Notes: Tobit and OLS (for subjects with one or fewer uncensored observations) estimators with
restriction ω1 = ω2 = −7.05.

Table 1.8: Individual Discounting, Present Bias
and Curvature Parameter Estimates

N Median 5th 95th Min Max
Percentile Percentile

Annual Discount Rate 82 .3734 -.9169 3.7477 -.9989 80.6357

Daily Discount Factor: δ̂ 82 .9991 .9957 1.0068 .988 1.0187

Present Bias: β̂ 82 1.0087 .905 1.2156 .8208 1.2223

CRRA Curvature: α̂ 82 .7987 -.0155 .9859 -.6922 .9955

Notes: NLS estimators with restriction ω1 = ω2 = −B, the subject’s own self-reported daily back-
ground consumption. Reporters only.
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Table 1.9: Individual Estimates 1
Proportion of Responses

Subject # Annual Rate β̂ α̂ Interior Zero Tokens Sooner All Tokens Sooner

1 .123 .958 .984 .4 .56 .04
2 .73 1.054 1 .16 .64 .2
3 .931 .988 .986 0 .71 .29
4 .55 1.017 .935 .6 .27 .13
5 .117 1.001 .999 0 .98 .02
6 .117 1.001 .999 0 .98 .02
7 .339 1.02 .979 .18 .78 .04
8 1.906 1 .911 .13 .44 .42
9 .117 1.001 .999 0 .98 .02
10 . . . 0 1 0
11 .735 .931 1 .07 .62 .31
12 1.966 .979 .955 .13 .38 .49
13 .496 1.027 .993 .51 .4 .09
14 . . . 0 .22 .78
15 .965 .993 .98 0 .69 .31
16 .305 .994 .916 .51 .49 0
17 .723 .938 .996 0 .71 .29
18 14.452 1.107 .951 .31 .09 .6
19 1.318 1.105 .885 .84 .11 .04
20 -.16 .904 .956 .16 .84 0
21 1.592 .984 .952 .13 .49 .38
22 5.618 .971 .772 .13 .2 .67
23 .707 .999 1 0 .8 .2
24 .117 1.001 .999 0 .98 .02
25 .117 1.001 .999 0 .98 .02
26 .117 1.001 .999 0 .98 .02
27 1.145 .993 .975 .07 .56 .38
28 2.742 .994 .933 .42 .22 .36
29 . . . 1 0 0
30 .676 1.043 .906 .64 .29 .07
31 .144 1.015 .966 .33 .64 .02
32 .73 .973 .963 .49 .42 .09
33 .788 1.002 .954 0 .73 .27
34 17.243 .912 .927 .18 .04 .78
35 . . . 0 0 1
36 .117 1.001 .999 0 .98 .02
37 .736 1.006 .997 .07 .71 .22
38 -.837 .852 .167 1 0 0
39 1.134 1.131 .887 .98 0 .02
40 .117 1.001 .999 0 .98 .02
41 1.81 .911 .885 .6 .04 .36
42 1.186 .967 .933 .58 .2 .22
43 .899 .975 .935 .18 .6 .22
44 .257 .979 1 0 .89 .11
45 .1 1.033 .89 .96 .04 0
46 -.995 .999 -.133 1 0 0
47 .476 1.078 .975 .22 .73 .04
48 . . . 0 1 0
49 1.545 1.062 .953 .36 .33 .31
50 .116 .94 .997 0 .89 .11
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Table 1.10: Individual Estimates 2
Proportion of Responses

Subject # Annual Rate β̂ α̂ Interior Zero Tokens Sooner All Tokens Sooner

51 29.583 1.138 .918 .13 0 .87
52 . . . .04 .76 .2
53 2.536 1.191 .847 .71 .09 .2
54 .219 1.003 .976 .16 .82 .02
55 .169 .975 .968 .09 .87 .04
56 .744 .916 .95 .16 .56 .29
57 -.144 1.042 .944 .38 .62 0
58 .306 1.01 .999 0 .91 .09
59 -.88 .974 .771 .98 .02 0
60 3.462 .768 .915 .11 .2 .69
61 1.511 .957 .904 .89 0 .11
62 -.123 1.037 .419 1 0 0
63 .513 .992 .761 1 0 0
64 .732 .949 1 .16 .62 .22
65 .126 1 .993 .69 .29 .02
66 1.073 .957 .834 .91 .04 .04
67 .291 1.003 .951 .36 .6 .04
68 .117 1.001 .999 0 .98 .02
69 .117 1.001 .999 0 .98 .02
70 3.225 .959 .89 .71 0 .29
71 .117 1.001 .999 0 .98 .02
72 35.356 1.324 .991 0 .22 .78
73 .117 1.001 .999 0 .98 .02
74 .117 1.001 .999 0 .98 .02
75 .109 1.059 .884 .42 .58 0
76 -.474 1.003 .708 1 0 0
77 .117 1.001 .999 0 .98 .02
78 0 1.003 .999 .02 .98 0
79 . . . 0 1 0
80 -.178 .982 .913 .47 .53 0
81 .834 1.009 .907 .56 .38 .07
82 .219 .986 .543 1 0 0
83 .117 1.001 .999 0 .98 .02
84 . . . .8 .2 0
85 -.001 1.007 .973 .87 .13 0
86 .117 1.001 .999 0 .98 .02
87 . . . 0 0 1
88 1.206 .959 .972 .49 .22 .29
89 .117 1.001 .999 0 .98 .02
90 1.954 .935 .905 .38 .16 .47
91 .732 1.027 .943 .62 .33 .04
92 .999 .986 .967 .36 .49 .16
93 . . . 0 1 0
94 .117 1.001 .999 0 .98 .02
95 .117 1.001 .999 0 .98 .02
96 .555 1.051 .938 .76 .22 .02
97 . . . 0 .64 .36
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1.6.5 Welcome Text and Payment Explanation

Welcome and thank you for participating

Eligibility for this study: To be in this study, you need to meet these criteria.

You must have a campus mailing address of the form:

YOUR NAME

9450 GILMAN DR 92(MAILBOX NUMBER)

LA JOLLA CA 92092-(MAILBOX NUMBER)

You must live in:

• XXX College.

• XXX College AND have a student mail box number between 92XXXX and

92XXXX

• XXX College AND have a student mail box number between 92XXXX through

92XXXX.

Your mailbox must be a valid way for you to receive mail from now through

the end of the Spring Quarter. You must be willing to provide your name, campus

mail box, email address, and student PID. This information will only be seen by

Professor Andreoni and his assistants. After payment has been sent, this information

will be destroyed. Your identity will not be a part of any subsequent data analysis.

You must be willing to receive your payment for this study by check, written

to you by Professor James Andreoni, Director of the UCSD Economics Laboratory.

The checks will be drawn on the USE Credit Union on campus. This means that, if

you wish, you can cash your checks for free at the USE Credit Union any weekday

from 9:00 am to 5:00 pm with valid identification (drivers license, passport, etc.). The

checks will be delivered to you at your campus mailbox at a date to be determined

by your decisions in this study, and by chance. The latest you could receive payment

is the last week of classes in the Spring Quarter.

If you do not meet all of these criteria, please inform us of this now.

Payment Explanation

Earning Money
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To begin, you will be given a $10 thank-you payment, just for participating in

this study! You will receive this thank-you payment in two equally sized payments of

$5 each. The two $5 payments will come to you at two different times. These times

will be determined in the way described below.

In this study, you will make 47 choices over how to allocate money between

two points in time, one time is ”earlier” and one is ”later.” Both the earlier and

later times will vary across decisions. This means you could be receiving payments

as early as today, and as late as the last week of classes in the Spring Quarter, or

possibly two other dates in between. Once all 47 decisions have been made, we will

randomly select one of the 47 decisions as the decision-that-counts. We will use the

decision-that-counts to determine your actual earnings. Note, since all decisions are

equally likely to be chosen, you should make each decision as if it will be the decision-

that-counts. When calculating your earnings from the decision-that-counts, we will

add to your earnings the two $5 thank you payments. Thus, you will always get paid

at least $5 at the chosen earlier time, and at least $5 at the chosen later time.

IMPORTANT: All payments you receive will arrive to your campus mailbox.

That includes payments that you receive today as well as payments you may receive

at later dates. On the scheduled day of payment, a check will be placed for delivery

in campus mail services by Professor Andreoni and his assistants. By special arrange-

ment, campus mail services has guaranteed delivery of 100% of your payments on the

same day.

As a reminder to you, the day before you are scheduled to receive one of your

payments, we will send you an e-mail notifying you that the payment is coming.

On your table is a business card for Professor Andreoni with his contact infor-

mation. Please keep this in a safe place. If one of your payments is not received you

should immediately contact Professor Andreoni, and we will hand-deliver payment to

you.



46

Your Identity

In order to receive payment, we will need to collect the following pieces of

information from you: name, campus mail box, email address, and student PID. This

information will only be seen by Professor Andreoni and his assistants. After all

payments have been sent, this information will be destroyed. Your identity will not

be a part of subsequent data analysis.

You have been assigned a participant number. This will be linked to your

personal information in order to complete payment. After all payments have been

made, only the participant number will remain in the data set.

On your desk are two envelopes: one for the sooner payment and one for the

later payment. Please take the time now to address them to yourself at your campus

mail box.
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1.6.6 Multiple Price Lists and Holt Laury Risk Price Lists
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Chapter 2

Risk Preferences Are Not Time

Preferences

Abstract

Risk and time are intertwined. The present is known while the future is

inherently risky. This observation problematizes the study of time preferences as

non-expected utility models of risk preferences can generate behavior that is observa-

tionally equivalent to hyperbolic time discounting. In risky intertemporal experiments

we document robust violations of discounted expected utility. Importantly, these vi-

olations are further inconsistent with leading non-expected utility models such as

prospect theory and models with preferences for the resolution of uncertainty. Our

results have potentially important implications for understanding dynamically incon-

sistent preferences.

2.1 Introduction

Research on decision making under uncertainty has a long tradition. A core of

tools designed to explore risky decisions has evolved, leading to the expected utility

(EU) framework.1 There are, however, a number of well-documented departures from

EU such as the Allais (1953b) common consequence and common ratio paradoxes.

1Ellingsen (1994) provides a thorough history of the developments building towards expected
utility theory and its cardinal representation.
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An organizing principle behind the body of violations of expected utility is that

they seem to arise as so-called ‘boundary effects’ where certainty and uncertainty are

combined. Camerer (1992), Harless and Camerer (1994) and Starmer (2000) indicate

that violations of expected utility are notably less prevalent when all choices are

uncertain.

Certainty and uncertainty are combined in intertemporal decisions. The present

is known and certain, while the future is inherently risky, and the far future may be

riskier still. This observation problematizes the study of pure time preference. Be-

haviors identified as dynamically inconsistent time preferences, such as diminishing

impatience, may instead be generated by non-EU boundary effects.2

The discounted expected utility (DEU) model is the standard approach to

addressing risky intertemporal decision-making. Interestingly, there are relatively few

noted violations of the expected utility aspect of the DEU model.3 An implication

of the DEU model is that intertemporal allocations should depend only on relative

intertemporal risk. For example, if sooner consumption will be realized 50% of the

time and later consumption will be realized 50% of the time, intertemporal allocations

should be identical to a situation where all consumption is risk-free. This is an

intertemporal statement of the common ratio property of expected utility, and can be

further applied to ecologically relevant situations where present rewards are certain

and future rewards are risky.

In an experiment with 80 undergraduate subjects at the University of Califor-

nia, San Diego, we test intertemporal common ratio predictions using Convex Time

Budgets (CTBs) under varying risk conditions (Andreoni and Sprenger, 2009). In

CTBs, individuals are asked to allocate a budget of experimental tokens to sooner

and later payments. Unlike multiple price lists (Coller and Williams, 1999; Harrison

2Machina (1989) discusses non-EU preferences generating dynamic inconsistencies. The link was
also hypothesized in several hypothetical psychology studies (Keren and Roelofsma, 1995; Weber
and Chapman, 2005), and Halevy (2008) shows that hyperbolic discounting can be reformulated in
terms of non-EU probability weighting similar to the prospect theory formulations of Kahneman
and Tversky (1979); Tversky and Kahneman (1992).

3Loewenstein and Thaler (1989) and Loewenstein and Prelec (1992) document a number of
anomalies in the discounting aspect of discounted utility models. The only evidence of intertemporal
violations of EU we are aware of are Baucells and Heukamp (2009) and Gneezy et al. (2006) who
show that temporal delay can generate behavior akin to the classic common ratio effect and that
the so-called ‘uncertainty effect’ is present for hypothetical intertemporal decisions, respectively.
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et al., 2002), which require linear utility for identification of time preferences, CTBs

allow both precise identification of utility parameters and tests of structural discount-

ing assumptions (Andreoni and Sprenger, 2009; Gine et al., 2010).4 Critical to any

study of time preferences is the close control over and minimization of payment risk.

This is, to our knowledge, the first incentivized study to systematically vary payment

risk for intertemporal decisions with the CTB or any other experimental methodology.

We implement CTBs in two baseline risk conditions: 1) A risk-free condition

where all payments, both sooner and later, will be paid 100% of the time; and 2) a

risky condition where, independently, sooner and later payments will be paid only 50%

of the time. All uncertainty was resolved immediately after the allocation decisions

were made, for both sooner and later payments. Additionally, mechanisms were in

place to guarantee delivery of experimental payments once such resolution was made.

Under the standard DEU model, CTB allocations in the two conditions should yield

identical choices. The pattern of results we find clearly violates DEU, and is further

inconsistent with non-EU concepts such as probability weighting (Kahneman and

Tversky, 1979; Tversky and Kahneman, 1992; Tversky and Fox, 1995), temporally

dependent probability weighting (Halevy, 2008), and resolution-timing preferences

(Kreps and Porteus, 1978; Chew and Epstein, 1989; Epstein and Zin, 1989). We

document substantial DEU violations at both the group and individual level. Indeed,

85% of subjects are found to violate common ratio predictions and do so in more than

80% of opportunities.

We examine four critical additional conditions with differential risk, but com-

mon ratios of probabilities. In the first such condition the sooner payment is paid

100% of the time while the later payment is paid only 80% of the time. This is com-

pared to a common ratio counterpart where the sooner payment is paid 50% of the

time while the later payment is paid only 40% of the time. We document substantial

violations of common ratio predictions favoring the sooner 100% payment. We mir-

ror this design with conditions where the later payment has the higher probability.

There we document substantial violations of common ratio predictions favoring the

later 100% payment. The data are organized systematically at both the group and

4Alternate strategies for accounting for utility function curvature are discussed in Frederick et
al. (2002) and implemented in Andersen et al. (2008).
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individual level. Subjects who violate common ratio in the baseline 100%-100% and

50%-50% conditions are more likely to violate in the four additional conditions.

Our results reject DEU, prospect theory, and resolution timing models when

certainty is present. However, when certainty is not present behavior closely mirrors

DEU predictions. Interestingly, this is close to the initial intuition for the Allais

paradox. Allais (1953b, p. 530) argued that when two options are far from certain,

individuals act effectively as expected utility maximizers, while when one option is

certain and another is uncertain a disproportionate preference for certainty prevails.

Such an argument may help to explain the frequent experimental finding of present-

biased preferences (Frederick et al., 2002). That is, certainty, not intrinsic temptation,

may lead present payments to be disproportionately preferred. This view has been

argued in prior explorations of present-bias and prospect theory (Halevy, 2008), and

is implied in the recognized dynamic inconsistency of non-EU models (Green, 1987;

Machina, 1989). However, as our results are inconsistent with prospect theory, they

point to a different mechanism. Though elaboration of this mechanism will be left

to future work, we do offer some speculation in the direction of direct preferences for

certainty (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004).5

The paper proceeds as follows: Section 4.2 presents a conceptual development,

building to testable hypotheses of intertemporal decision making in risky and certain

situations. Section 4.3 describes our experimental design. Section 4.4 presents results

and Section 2.5 is a discussion and conclusion.

2.2 Conceptual Background

To motivate our experimental design, we briefly analyze decision problems for

discounted expected utility, resolution timing preferences, and prospect theory. When

utility is time separable and stationary, the standard DEU model is written,

U =
T∑

k=0

δt+kE[v(ct+k)],

5These models, termed u-v preferences, feature a discontinuity at certainty similar to the dis-
continuity at the present of β-δ time preferences (Laibson, 1997; O’Donoghue and Rabin, 1999).
Importantly, u-v preferences necessarily violate first order stochastic dominance at certainty.



56

governing intertemporal allocations. Simplify to assume two periods, t and t+k, and

that consumption at time t will be ct with probability p1 and zero otherwise, while

consumption at time t + k will be ct+k with probability p2 and zero otherwise. Under

the standard construction, utility is

p1δ
tv(ct) + p2δ

t+kv(ct+k) + ((1− p1)δ
t + (1− p2)δ

t+k)v(0).

Suppose an individual maximizes utility subject to the future value budget constraint

(1 + r)ct + ct+k = m,

yielding the marginal condition

v′(ct)

δkv′(ct+k)
= (1 + r)

p2

p1
,

and the solution

ct = c∗t (p1/p2; k, 1 + r,m).

A key observation in this construction is that intertemporal allocations will depend

only on the relative risk, p1/p2, and not on p1 or p2 separately. This is a critical and

testable implication of the DEU model.

Hypothesis: For any (p1, p2) and (p′1, p
′
2) where p1/p2 = p′1/p

′
2, c∗t (p1/p2; k, 1 +

r,m) = c∗t (p
′
1/p

′
2; k, 1 + r,m).

This hypothesis is simply an intertemporal statement of the common ratio

property of expected utility and represents a first testable implication for our ex-

perimental design. In further analysis it will be notationally convenient to use θ to

indicate the risk adjusted gross interest rate,

θ = (1 + r)
p2

p1
,
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such that the tangency can be written as

v′(ct)

δkv′(ct+k)
= θ.

Provided that v′(·) > 0, v′′(·) < 0, c∗t will be increasing in p1/p2 and decreasing in

1 + r. As such, c∗t will be decreasing in θ. In addition, for a given θ, c∗t will be

decreasing in 1 + r. An increase in the interest rate will both raise the relative price

of sooner consumption and reduce the available consumption set.

There exist important utility formulations such as those developed by Kreps

and Porteus (1978), Chew and Epstein (1989), and Epstein and Zin (1989) where

the common ratio prediction does not hold. Behavior need not be identical if the

uncertainty of p1 and p2 are resolved at different points in time, and individuals have

preferences over the timing of the resolution of uncertainty. Our experimental design

purposefully focuses on cases where all uncertainty is resolved immediately, before

any payments are received. The formulations of Kreps and Porteus (1978) and Chew

and Epstein (1989), and the primary classes discussed by Epstein and Zin (1989)

will reduce to standard expected utility. That is, when “... attention is restricted to

choice problems/temporal lotteries where all uncertainty resolves at t = 0, there is a

single ‘mixing’ of prizes and one gets the payoff vector [EU] approach” (Kreps and

Porteus, 1978, p. 199).6

Of additional importance is the role of background risk. Dynamically incon-

sistent behavior may be related to time-dependent uncertainty in future consumption

(see, e.g., Boyarchenko and Levendorskii, 2010). If individuals face background risk

compounded with the objective probabilities, it will change the ratio of probabilities.

However, a common ratio prediction will be maintained even if background risk differs

across time periods. That is, when mixing (p1, p2) with background risk one arrives

at the same probability ratio as when mixing (p′1, p
′
2) if p1/p2 = p′1/p

′
2.

A leading alternative to expected utility that may be relevant in intertempo-

ral choice is prospect theory probability weighting (Kahneman and Tversky, 1979;

6Not all of the classes of recursive utility models discussed in Epstein and Zin (1989) will reduce
to expected utility when all uncertainty is resolved immediately. The weighted utility class (Class
3) corresponding to the models of Dekel (1986) and Chew (1989) can accomodate expected utility
violations even without a preference for sooner or later resolution of uncertainty.
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Tversky and Kahneman, 1992). Probability weighting states that individuals ‘edit’

probabilities internally via a weighting function, π(p). Though π(p) may take a va-

riety of forms, it is often argued to be monotonically increasing in the interval [0, 1],

with an inverted S -shaped, such that low probabilities are up-weighted and high prob-

abilities are down-weighted (Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec,

1998; Gonzalez and Wu, 1999). Probability weighting generates a common ratio pre-

diction in some cases, but violates common ratio in others. In particular, if p1 = p2

and p′1 = p′2, and a common ratio of objective probabilities is held, p1/p2 = p′1/p
′
2,

then π(p1)/π(p2) = π(p′1)/π(p′2) = 1 as in DEU. However, for unequal probabilities,

common ratio may be violated as the shape of the weighting function, π(·), changes

the ratio of subjective probabilities.

A discussed extension to prospect theory probability weighting is that prob-

abilities are weighted by their temporal proximity (Halevy, 2008). Under this for-

mulation, subjective probabilities are arrived at through some temporally dependent

function g(p, t) : [0, 1] × (+ → [0, 1] where t represents the time at which payments

will be made. Provided freedom to pick the functional form of g(·), one could easily

arrive at differences between the ratios g(p1, t)/g(p2, t + k) and g(p′1, t)/g(p′2, t + k)

under a common ratio of objective probabilities.7

These differences lead to a new risk adjusted interest rate similar to θ defined

above,

θ̃p1,p2 ≡
g(p2, t + k)

g(p1, t)
(1 + r).

Note that either θ̃p1,p2 > θ̃p′1,p′2
for all (1+r) or θ̃p1,p2 < θ̃p′1,p′2

for all (1+r), depending

on the form of g(·) chosen. Once one obtains a prediction as to the relationship

between θ̃p1,p2 and θ̃p′1,p′2
, it must hold for all gross interest rates. If ct is decreasing in

θ as discussed above, one should never observe a cross-over in behavior where for one

gross interest rate ct allocations are higher for (p1, p2) and for another gross interest

rate ct allocations are higher for (p′1, p
′
2). Such a cross-over is not consistent with

either standard probability weighting or temporally dependent probability weighting

of the form proposed by Halevy (2008).

7Halevy (2008) gives the example of g(p, t) = g(pt) with g(0) = 0; g(1) = 1.
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2.3 Experimental Design

In order to explore the development of Section 4.2 related to uncertain and cer-

tain intertemporal consumption, an experiment using Convex Time Budgets (CTB)

(Andreoni and Sprenger, 2009) under varying risk conditions was conducted at the

Univeristy of California, San Diego in April of 2009. In each CTB decision, subjects

were given a budget of experimental tokens to be allocated across a sooner payment,

paid at time t, and a later payment, paid at time t + k, k > 0.8 Two basic CTB

environments consisting of 7 allocation decisions each were implemented under six

different risk conditions. This generated a total of 84 experimental decisions for each

subject.

2.3.1 CTB Design Features

Sooner payments in each decision were always seven days from the experiment

date (t = 7 days). We chose this ‘front-end-delay’ to avoid any direct impact of

immediacy on decisions, including resolution timing effects, and to help eliminate

differential transactions costs across sooner and later payments.9 In one of the basic

CTB environments, later payments were delayed 28 days (k = 28) and in the other,

later payments were delayed 56 days (k = 56). The choice of t and k were set to avoid

holidays, school vacation days and final examination week. Payments were scheduled

to arrive on the same day of the week (t and k are both multiples of 7) to avoid

weekday effects.

In each CTB decision, subjects were given a budget of 100 tokens. Tokens

allocated to the sooner date had a value of at while tokens allocated to the later date

had a value of at+k. In all cases, at+k was $0.20 per token and at varied from $0.20

to $0.14 per token. Note that at+k/at = (1 + r), the gross interest rate over k days,

and (1 + r)1/k − 1 gives the standardized daily net interest rate. Daily net interest

rates in the experiment varied considerably across the basic budgets, from 0 to 1.3

8An important issue in discounting studies is the presence of arbitrage opportunities. Subjects
with even moderate access to liquidity should effectively arbitrage the experiment, borrowing low
and saving high. Andreoni and Sprenger (2009) provide detailed discussion in this vein.

9See below for the recruitment and payment efforts that allowed sooner payments to be imple-
mented in the same manner as later payments. For discussions of front-end-delays in time preference
experiments see Coller and Williams (1999); Harrison et al. (2005).
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percent, implying annual interest rates of between 0 and 2116.6 percent (compounded

quarterly). Table 2.1 shows the token values, gross interest rates, standardized daily

interest rates and corresponding annual interest rates for the basic CTB budgets.

Table 2.1: Basic Convex Time Budget Decisions
t (start date) k (delay) Token Budget at at+k (1 + r) Daily Rate (%) Annual Rate (%)

7 28 100 0.20 0.20 1.00 0 0
7 28 100 0.19 0.20 1.05 0.18 85.7
7 28 100 0.18 0.20 1.11 0.38 226.3
7 28 100 0.17 0.20 1.18 0.58 449.7
7 28 100 0.16 0.20 1.25 0.80 796.0
7 28 100 0.15 0.20 1.33 1.03 1323.4
7 28 100 0.14 0.20 1.43 1.28 2116.6

7 56 100 0.20 0.20 1.00 0 0
7 56 100 0.19 0.20 1.05 0.09 37.9
7 56 100 0.18 0.20 1.11 0.19 88.6
7 56 100 0.17 0.20 1.18 0.29 156.2
7 56 100 0.16 0.20 1.25 0.40 246.5
7 56 100 0.15 0.20 1.33 0.52 366.9
7 56 100 0.14 0.20 1.43 0.64 528.0

The basic CTB decisions described above were implemented in a total of six

risk conditions. Let p1 and p2 be the probabilities that payment would be made

for the sooner and later payments, respectively. The six conditions were (p1, p2) ∈
{(1, 1), (0.5, 0.5), (1, 0.8), (0.5, 0.4), (0.8, 1), (0.4, 0.5)}.

For all payments involving uncertainty, a ten-sided die was rolled immediately

at the end of the experiment to determine whether the payment would be sent or not.

Hence, p1 and p2 were immediately known, independent, and subjects were told that

different random numbers would determine their sooner and later payments.10

The risk conditions serve several key purposes. To begin, the first and second

conditions share a common ratio of p1/p2 = 1 and have p1 = p2. As discussed, in Sec-

tion 4.2, DEU, resolution timing models, and prospect theory probability weighting

all make common ratio predictions in this context. Temporally dependent proba-

bility weighting of the form proposed by Halevy (2008) can generate common ratio

violations in this context, but not cross-overs in experimental demands. Next, the

third and fourth conditions share a common ratio of p1/p2 = 1.25, and only one

payment is certain, the sooner 100% payment in the third condition. These condi-

tions map to ecologically relevant decisions where sooner payments are certain and

10See Appendix 2.6.3 for the payment instructions provided to subjects.
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later payments are risky. That is, (p1, p2) = (1, 0.8) is akin to decisions between

the present and the future while (p1, p2) = (0.5, 0.4) is akin to decisions between

two subsequent future dates. In these conditions, DEU and resolution timing models

again make common ratio predictions, while probability weighting predicts violations

if π(1)/π(0.8) %= π(0.5)/π(0.4). We mirror this design for completeness in the fifth

and sixth conditions, which share a common ratio of p1/p2 = 0.8 and feature one

later certain payment. Lastly, note that across conditions the sooner payment goes

from being relatively less risky, p1/p2 = 1.25, to relatively more risky, p1/p2 = 0.8.

Following the discussion of Section 4.2, subjects should respond to changes in relative

risk, allocating smaller amounts to sooner payments when relative risk is low.

2.3.2 Implementation and Protocol

One of the most challenging aspects of implementing any time discounting

study is making all choices equivalent except for their timing. That is, transactions

costs associated with receiving payments, including physical costs and payment risk,

must be minimized and equalized across all time periods. We took several unique

steps in our subject recruitment process and our payment procedure in an attempt

to minimize payment risk once uncertainty was resolved and equate transaction costs

over time.

Recruitment and Experimental Payments

In order to participate in the experiment, subjects were required to live on cam-

pus. All campus residents are provided with individual mailboxes at their dormitories

to use for postal service and campus mail. Each mailbox is locked and individuals

have keyed access 24 hours per day. We recruited 80 undergraduate students fitting

this criterion.

All payments, both sooner and later, were placed in subjects’ campus mail-

boxes by campus mail services, which allowed us to equate physical transaction costs

across sooner and later payments. Campus mail services guarantees 100% delivery

of mail, minimizing payment risk. Subjects were fully informed of the method of
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payment.11

Several other measures were also taken to equate transaction costs and min-

imize payment risk. Upon beginning the experiment, subjects were told that they

would receive a $10 minimum payment for participating, to be received in two pay-

ments: $5 sooner and $5 later. All experimental earnings were added to these $5

minimum payments. Two blank envelopes were provided. After receiving directions

about the two minimum payments, subjects addressed the envelopes to themselves at

their campus mailbox. At the end of the experiment, subjects wrote their payment

amounts and dates on the inside flap of each envelope such that they would see the

amounts written in their own handwriting when payments arrived. All experimental

payments were made by personal check from Professor James Andreoni drawn on

an account at the university credit union.12 Subjects were informed that they could

cash their checks (if they so desired) at the university credit union. They were also

given the business card of Professor James Andreoni and told to call or email him if a

payment did not arrive and that a payment would be hand-delivered immediately. In

sum, these measures serve to ensure that transaction costs and payment risk, includ-

ing convenience, clerical error, and fidelity of payment were minimized and equalized

across time.

One choice for each subject was selected for payment by drawing a numbered

card at random. This randomization device introduces a compound lottery to the

decision environment, which does not change the common ratio predictions for DEU.

However, the payment mechanism does add complication to the decision environment

and eliminates experimental certainty. Subjects were told to treat each decision as

if it were to determine their payments.13 The results of Section 4.4, suggest that

individuals do still treat 100% differently than other probabiltiies.

11See Appendix 2.6.2 for the information provided to subjects.
12Payment choice was guided by a separate survey of 249 undergraduate economics students

eliciting payment preferences. Personal checks from Professor Andreoni, Amazon.com gift cards,
PayPal transfers and the university stored value system TritonCash were each compared to cash
payments. Subjects were asked if they would prefer a twenty dollar payment made via each payment
method or $X cash, where X was varied from 19 to 10. Personal checks were found to have the
highest cash equivalent value. That is, the highest average value of $X.

13See Appendix 2.6.3 for text.
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Instrument and Protocol

The experiment was done with paper and pencil. Upon entering the lab sub-

jects were read an introduction with detailed information on the payment process and

a sample decision with different payment dates, token values and payment risks than

those used in the experiment. Subjects were informed that they would work through

6 decision tasks. Each task consisted of 14 CTB decisions: seven with t = 7, k = 28

on one sheet and seven with t = 7, k = 56 on a second sheet. Each decision sheet fea-

tured a calendar, highlighting the experiment date, and the sooner and later payment

dates, allowing subjects to visualize the payment dates and delay lengths.

Figure 4.2 shows a decision sheet. Identical instructions were read at the be-

ginning of each task providing payment dates and the chance of being paid for each

decision. Subjects were provided with a calculator and a calculation sheet transform-

ing tokens to payment amounts at various token values.
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Four sessions were conducted over two days. Two orders of risk conditions

were implemented to examine order effects.14 Each day consisted of an early session

(12 p.m.) and a late session (2 p.m.). The early session on the first day and the late

session on the second day share a common order as do the late session on the first

day and the early session on the second day. No order or session effects were found.

2.4 Results

The results are presented in two sub-sections. First, we examine behavior in

the two baseline conditions: (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). We document

violations common ratio predictions at both aggregate and individual levels and show

a pattern of results that is generally incompatible with various probability weighting

concepts. Second, we explore behavior in four further conditions where common ratios

maintain but only one payment is certain. Subjects exhibit a preference for certain

payments relative to common ratio when they are available, but behave consistently

with DEU away from certainty.

2.4.1 Behavior Under Certainty and Uncertainty

Section 4.2 provided a testable hypothesis for behavior across certain and

uncertain intertemporal settings. For a given (p1, p2), if p1 = p2 < 1 then behavior

should be identical to a similarly dated risk-free prospect, (p1 = p2 = 1), at all

gross interest rates, 1 + r, and all delay lengths, k. Figure 3.2.1 graphs aggregate

behavior for the conditions (p1, p2) = (1, 1) (blue diamonds) and (p1, p2) = (0.5, 0.5)

(red squares) across the experimentally varied gross interest rates and delay lengths.

The mean earlier choice of ct and a 95 percent confidence interval (+/− 1.96 standard

errors) are graphed.

Under DEU, resolution timing models, and standard probability weighting

behavior should be identical across the two conditions. We find strong evidence to

the contrary. In a hypothesis test of equality across the two conditions, the overall

14In one order, (p1, p2) followed the sequence (1, 1), (1, 0.8), (0.8, 1), (0.5, 0.5), (0.5, 0.4), (0.4, 0.5),
while in the second it followed (0.5, 0.5), (0.5, 0.4), (0.4, 0.5), (1, 1), (1, 0.8), (0.8, 1).
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difference is found to be highly significant: F14,79 = 6.07, p < .001.15

0

0

05

5

510

10

1015

15

1520

20

201

1

11.1

1.1

1.11.2

1.2

1.21.3

1.3

1.31.4

1.4

1.41

1

11.1

1.1

1.11.2

1.2

1.21.3

1.3

1.31.4

1.4

1.4k = 28 days

k = 28 days

k = 28 daysk = 56 days

k = 56 days

k = 56 days(p1,p2) = (1,1)

(p1,p2) = (1,1)

(p1,p2) = (1,1)(p1,p2) = (0.5,0.5)

(p1,p2) = (0.5,0.5)

(p1,p2) = (0.5,0.5)+/- 1.96 S.E.

+/- 1.96 S.E.

+/- 1.96 S.E.Mean Earlier Choice ($)

M
e
a
n
 E

a
rl
ie

r 
C
h
o
ic

e
 (

$
)

Mean Earlier Choice ($)Gross Interest Rate = (1+r)

Gross Interest Rate = (1+r)

Gross Interest Rate = (1+r)Graphs by k

Graphs by k

Graphs by k

Figure 2.2: Behavior Under Certainty and Uncertainty

Note: The figure presents aggregate behavior for N = 80 subjects under two conditions: (p1, p2) =
(1, 1), i.e. no risk, in blue; and (p1, p2) = (0.5, 0.5), i.e. 50% chance sooner payment would be sent
and 50% chance later payment would be sent, in red. t = 7 days in all cases, k ∈ {28, 56} days.
Error bars represent 95% confidence intervals, taken as +/− 1.96 standard errors of the mean. Test
of H0 : Equality across conditions: F14,79 = 6.07, p < .001.

The data follow an interesting pattern. Behavior in both (p1, p2) = (1, 1) and

(0.5, 0.5) conditions respect increasing interest rates. Allocations to sooner payments

decrease as interest rates rise. At the lowest interest rate, ct allocations are substan-

tially higher in the (1, 1) condition. However, as the gross interest rate increases, (1, 1)

allocations drop steeply, crossing over the graph of the (0.5, 0.5) condition.16 This

cross-over in behavior is in clear violation of discounted expected utility, all models

that reduce to discounted expected utility when uncertainty is immediately resolved,

15Test statistic generated from non-parametric OLS regression of choice on indicators for interest
rate (7 levels), delay length (2 levels), risk condition (2 levels) and all interactions with clustered
standard errors. F-statistic corresponds to null hypothesis that all risk condition terms have zero
slopes. See Appendix Table 2.3 for regression.

16Indeed, in the (1, 1) condition, 80.7 percent of allocations are at one or the other budget corners
while only 26.1 percent are corner solutions in the (0.5, 0.5) condition. We interpret the corner
solutions in the (1, 1) condition as evidence consistent with separability. See Andreoni and Sprenger
(2009) for a full discussion of censoring issues in CTBs. The difference in allocations across conditions
is obtained for all sessions and for all orders indicating no presence of order or day effects.
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standard probability weighting and temporally dependent probability weighting.

The aggregate violations of common ratio documented above are also sup-

ported in the individual data. Out of 14 opportunities to violate common ratio pre-

dictions, individuals do so an average of 9.68 (s.d. = 5.50) times. Only fifteen percent

of subjects (12 of 80) commit zero violations of expected utility. For the 85 percent of

subjects who do violate expected utility, they do so in more than 80% of opportuni-

ties, an average of 11.38 (s.d. = 3.99) times. Figure 4.7, Panel A presents a histogram

of counti, each subject’s number of violations across conditions (p1, p2) = (1, 1) and
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Figure 2.3: Individual Behavior Under Certainty and Uncertainty

Note: The figure presents individual violations across three common ratio comparisons. The variable
counti is a count of each individual’s common ratio violations and, di is each individual’s budget
share difference between common ratio conditions. Bin size for di is 0.04.

(0.5, 0.5). More than 40% of subjects violate common ratio predictions in all 14 oppor-

tunities. This may be a strict measure of violation as it requires identical allocation

across risk conditions. As a complementary measure, we also present a histogram

of |di|, the individual average budget share difference between risk conditions. For
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each individual and each CTB, we calculate the budget share of the sooner payment,

(1 + r)ct/m. The average of each individual’s 14 budget share differences between

common ratio conditions is the measure di. Here we consider the absolute value as the

difference may be positive and negative, following the aggregate results.17 The mean

value of |di| is 0.27 (s.d. = 0.18), indicating that individual violations are substan-

tial, around 27% of the budget share. Indeed 63.8% of the sample (51/80) exhibit

|di| > 0.2, indicating that violations are not produced by simple random response

error.

2.4.2 Behavior with Differential Risk

In this sub-section we explore behavior in four conditions with differential

risk. First, we discuss violations in common ratio situations where only one payment

is certain. Second, we examine our three experimental conditions where all payments

are uncertain and document behavior consistent with discounted expected utility.

A Preference for Certainty

Figure 2.4.2 compares behavior in four conditions with differential risk but

common ratios of probabilities. Condition (p1, p2) = (1, 0.8) (gray diamonds) is com-

pared to (p1, p2) = (0.5, 0.4) (green triangles), and condition (p1, p2) = (0.8, 1) (yellow

circles) is compared to (p1, p2) = (0.4, 0.5) (purple squares). The DEU model predicts

equal allocations

across conditions with common ratios. Interestingly, subjects’ allocations demon-

strate a preference for certain payments relative to common ratio counterparts, re-

gardless of whether the certain payment is sooner or later. Hypotheses of equal

allocations across conditions are rejected in both cases.18

17That is, the absolute value of each of the 14 differences is obtained prior to computing the
average. When computing di across comparisons (p1, p2) = (1, 0.8) vs. (p1, p2) = (0.5, 0.4) and
(p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5), the first budget share is subtracted from the second
budget share to have a directional difference. A disproportionate preference for certainty would be
exhibited by a positive di across (p1, p2) = (1, 0.8) vs. (p1, p2) = (0.5, 0.4) and a negative di across
(p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5).

18For equality across (p1, p2) = (1, 0.8) and (p1, p2) = (0.5, 0.4) F14,79 = 7.69, p < .001 and for
equality across (p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5) F14,79 = 5.46, p < .001. Test statistics
generated from non-parametric OLS regression of choice on indicators for interest rate (7 levels),
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Figure 2.4: A Preference for Certainty

Note: The figure presents aggregate behavior for N = 80 subjects under four conditions: (p1, p2) =
(1, 0.8), (p1, p2) = (0.5, 0.4), (p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5). Error bars represent 95%
confidence intervals, taken as +/−1.96 standard errors of the mean. The first and second conditions
share a common ratio as do the third and fourth. Test of H0 : Equality across conditions (p1, p2) =
(1, 0.8) and (p1, p2) = (0.5, 0.4): F14,79 = 7.69, p < .001. Test of H0 : Equality across conditions
(p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5): F14,79 = 5.46, p < .001.
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Figure 4.7, Panels B and C demonstrate that the individual behavior is or-

ganized in a similar manner. Individual violations of common ratio predictions

are substantial. When certainty is sooner, across conditions (p1, p2) = (1, 0.8) and

(p1, p2) = (0.5, 0.4), subjects commit an average of 10.90 (s.d. = 4.67) common ratio

violations in 14 opportunities and only 7.5% of subjects commit zero violations. The

average distance in budget shares, di, is 0.150 (s.d. = 0.214), which is significantly

greater than zero (t79 = 6.24, p < 0.01), and in the direction of preferring the certain

sooner payment. When certainty is later across conditions (p1, p2) = (0.8, 1) and

(p1, p2) = (0.4, 0.5), subjects make an average of 9.68 (s.d. = 5.74) common ratio

violations and 17.5% of subjects make no violations at all, similar to Panel A. The

average distance in budget share, di, is −0.161 (s.d. = 0.198), which is significantly

less than zero (t79 = 7.27, p < 0.01), and in the direction of preferring the certain

later payment.

Importantly, violations of discounted expected utility correlate across experi-

mental comparisons. Figure 2.4.2 plots budget share differences, di, across common-

ratio comparisons. The difference |di| from condition (p1, p2) = (1, 1) vs. (p1, p2) =

(0.5, 0.5) is on the vertical axis while di across the alternate comparisons is on the hori-

zontal axis. Common ratio violations correlate highly across experimental conditions.

The more an individual violates common ratio across conditions (p1, p2) = (1, 1) and

(p1, p2) = (0.5, 0.5) predicts how much he or she will demonstrate a common-ratio vio-

lation towards certainty when it is sooner in (p1, p2) = (1, 0.8) vs. (p1, p2) = (0.5, 0.4),

(ρ = 0.31, p < 0.01), and when it is later in (p1, p2) = (0.8, 1) vs. (p1, p2) = (0.4, 0.5),

(ρ = −0.47, p < 0.01). Table 2.2 presents a correlation table for the number of

violations counti, and the budget proportion differences di, across comparisons and

shows significant individual correlation across all conditions and measures of violation

behavior.

These findings are critical for two reasons. First, the common ratio viola-

tions observed in this sub-section could be predicted by a variety of formulations of

probability weighting (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992;

delay length (2 levels), risk condition (2 levels) and all interactions with clustered standard errors. F-
statistic corresponds to null hypothesis that all risk condition terms have zero slopes. See Appendix
Table 2.3 for regression.
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Figure 2.5: Violation Behavior Across Conditions

Note: The figure presents the correlations of the budget share difference, di, across common ratio
comparisons. |di| across conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) is on the vertical
axis. di across the alternate comparisons is on the horizontal axis. Regression lines are provided.
Corresponding correlation coefficients are ρ = 0.31, (p < 0.01) for the triangular points (p1, p2) =
(1, 0.8) vs (p1, p2) = (0.5, 0.4) and ρ = −0.47, (p < 0.01) for the circular points (p1, p2) = (0.8, 1) vs
(p1, p2) = (0.4, 0.5). See Table 2.2 for more details.

Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec, 1998; Gonzalez and Wu, 1999;

Halevy, 2008). Recognizing that violations correlate highly across contexts that can

and cannot be explained by such probability weighting suggests that prospect the-

ory cannot provide a unified account for the data. It is important to note, however,

that prospect theory is primarily motivated for the study of decision-making under

uncertainty. Clearly, more research building upon this design is required analyzing

prospect theory predictions in atemporal choices before conclusions can be drawn as

to the general validity of the model. This work is initiated in Andreoni and Sprenger

(2010b).

Second, though the results suggest that prospect theory may not be the final

account of dynamic inconsistency, certainty may play a critical role in generating such

behavior. Here we have demonstrated that certain sooner payments are preferred over

uncertain later payments in a way that is inconsistent with DEU at both the aggregate
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Table 2.2: Individual Violation Correlation Table

counti counti counti |di| di di

(1, 1) (1, 0.8) (0.8, 1) (1, 1) (1, 0.8) (0.8, 1)
vs. vs. vs. vs. vs. vs.

(0.5, 0.5) (0.5, 0.4) (0.4, 0.5) (0.5, 0.5) (0.5, 0.4) (0.4, 0.5)

(1, 1)
counti vs. 1

(0.5, 0.5)

(1, 0.8)
counti vs. 0.56 1

(0.5, 0.4) ∗∗∗

(0.8, 1)
counti vs. 0.71 0.72 1

(0.4, 0.5) ∗∗∗ ∗∗∗

(1, 1)
|di| vs. 0.84 0.40 0.52 1

(0.5, 0.5) ∗∗∗ ∗∗∗ ∗∗∗

(1, 0.8)
di vs. 0.31 0.34 0.28 0.31 1

(0.5, 0.4) ∗∗∗ ∗∗∗ ∗∗ ∗∗∗

(0.8, 1)
di vs. -0.55 -0.412 -0.61 -0.47 -0.34 1

(0.4, 0.5) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Notes: Pairwise correlations with 80 observations. The variable counti is a count of each individual’s
common ratio violations and, di is each individual’s budget share difference between common ratio
conditions. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01.

and individual level. This phenomenon clearly did not involve intrinsic present bias

because first, the present was not directly involved and, second, the effect can be

reversed by making later payments certain.

When All Choices Are Uncertain

Figure 2.4.2 presents aggregate behavior from three risky situtations: (p1, p2) =

(0.5, 0.5) (red diamonds); (p1, p2) = (0.5, 0.4) (green squares); and (p1, p2) = (0.4, 0.5)

(orange triangles) over the experimentally varied values of θ and delay length. The

mean earlier choice of ct is graphed along with error bars corresponding to 95 percent

confidence intervals. We also plot predicted behavior based on structural discounting

and utility estimates from the (p1, p2) = (0.5, 0.5) data.19 These out-of-sample pre-
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Figure 2.6: Aggregate Behavior Under Uncertainty

Note: The figure presents aggregate behavior for N = 80 subjects under three conditions: (p1, p2) =
(0.5, 0.5), i.e. equal risk, in red; (p1, p2) = (0.5, 0.4), i.e. more risk later, in green; and (p1, p2) =
(0.4, 0.5), i.e. more risk sooner, in orange. Error bars represent 95% confidence intervals, taken as
+/ − 1.96 standard errors of the mean. Solid lines correspond to predicted behavior using utility
estimates from (p1, p2) = (0.5, 0.5) as estimated in Appendix Table 2.4, column (6).

dictions are plotted as solid lines in green and orange. The solid red line corresponds

to the model fit for (p1, p2) = (0.5, 0.5).

We highlight two dimensions of Figure 2.4.2. First, the theoretical predictions

are 1) that ct should be declining in θ; and 2) that if two decisions have identical

θ then ct should be higher in the condition with the lower interest rate.20 These

features are observed in the data. Allocations of ct decline with θ and, where overlap

of θ exists ct is generally higher for lower gross interest rates.21 Second, out of sample

19Appendix 4.4.2 describes the estimation procedure, the methodology for which was developed
in Andreoni and Sprenger (2009). Appendix Table 2.4, column (6) provides corresponding estimates
based on the (p1, p2) = (0.5, 0.5) and (p1, p2) = (1, 1) data. In both conditions, discounting is
estimated to be around 30% per year. While substantial risk aversion is estimated from (p1, p2) =
(0.5, 0.5), limited utility function curvature is obtained when (p1, p2) = (1, 1). Of interest is the
close similarity between the (p1, p2) = (1, 1) estimates and those obtained in Andreoni and Sprenger
(2009), where payment risk was minimized and no experimental variation of risk was implemented.

20As discussed in Section 4.2, ct should be monotonically decreasing in θ. Additionally, if θ = θ′

and 1 + r %= 1 + r′ then behavior should be identical up to a scaling factor related to the interest
rates 1 + r and 1 + r′. ct should be higher in the lower interest rate condition due to income effects.

21This pattern of allocations is obtained for all sessions and for all orders indicating no presence
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predictions match actual aggregate behavior. Indeed, the out-of-sample calculated

R2 values are high: 0.878 for (p1, p2) = (0.5, 0.4) and 0.580 for (p1, p2) = (0.4, 0.5).22

Figure 2.4.2 demonstrates that in situations where all payments are risky, the

results are surprisingly consistent with the DEU model. Though subjects exhibited

a preference for certainty when it is available, away from certainty they trade off

relative risk and interest rates like expected utility maximizers, and utility parameters

measured under uncertainty predict behavior out-of-sample extremely well.23

2.5 Discussion and Conclusion

Intertemporal decision-making involves a combination of certainty and uncer-

tainty. The present is known while the future is inherently risky. In an intertemporal

allocation experiment under varying risk conditions, we document violations of dis-

counted expected utility’s common ratio predictions. Additionally the pattern of

results are inconsistent with various prospect theory probability weighting formula-

tions. Subjects exhibit a preference for certainty relative to common ratio when it is

available, but behave approximately as discounted expected utility maximizers away

from certainty.

Our results have substantial implications for intertemporal decision theory.

In particular, present bias has been frequently documented (Frederick et al., 2002)

and is argued to be a dynamically inconsistent discounting phenomenon generated

by diminishing impatience through time. Our results suggest that present-bias may

have an alternate source. If individuals exhibit a preference for certainty when it is

available, then present, certain consumption will be favored over future, uncertain

consumption. When only uncertain future consumption is considered, individuals

act more closely in line with expected utility and apparent preference reversals are

of order or day effects.
22By comparison, making similar out of sample predictions using utility estimates from (p1, p2) =

(1, 1) yields predictions that diverge dramatically from actual behavior (see Appendix Figure 2.6.1)
and lowers R2 values to 0.767 and 0.462, respectively. This suggests that accounting for differential
utility function curvature in risky situations allows for an improvement of fit on the order of 15-25%.

23Prospect theory probability weighting would make a similar prediction as many of the functional
forms used in the literature are near linear at intermediate probabilities (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992; Tversky and Fox, 1995; Wu and Gonzalez, 1996; Prelec, 1998;
Gonzalez and Wu, 1999).
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generated.

Other research has discussed the possibility that certainty plays a role in gener-

ating present bias (Halevy, 2008). Additionally such a notion is implicit in the recog-

nized dynamic inconsistency of non-expected utility models (Green, 1987; Machina,

1989), and could be thought of as preferring immediate resolution of uncertainty

(Kreps and Porteus, 1978; Chew and Epstein, 1989; Epstein and Zin, 1989). Our

results point in a new direction: that certainty, per se, may be disproportionately

preferred. We interpret our findings as being consistent with the intuition of the

Allais Paradox (Allais, 1953b). Allais (1953b, p. 530) argued that when two op-

tions are far from certain, individuals act effectively as discounted expected utility

maximizers, while when one option is certain and another is uncertain a dispropor-

tionate preference for certainty prevails. This intuition is captured closely in the u-v

preference models of Neilson (1992), Schmidt (1998), and Diecidue et al. (2004) and

may help researchers to understand how and why present bias and other discounting

phenomena are manifested.

2.6 Appendix

2.6.1 Appendix Tables
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Table 2.3: Non-Parametric Estimates of DEU Violations
Comparison

(p1, p2) = (1, 1) vs. (0.5, 0.5) (p1, p2) = (1, 0.8) vs. (0.5, 0.4) (p1, p2) = (0.8, 1) vs. (0.4, 0.5)

Dependent Variable: ct Allocations

Risk Conditions

Condition (p1, p2) = (1, 1) 3.350***
(0.772)

Condition (p1, p2) = (1, 0.8) 4.418***
(0.558)

Condition (p1, p2) = (0.8, 1) -3.537***
(0.684)

Interest Rate x Delay Length Categories

(1 + r, k) = (1.00, 28) - - -

(1 + r, k) = (1.05, 28) -5.318*** -1.651*** -0.967*
(0.829) (0.316) (0.452)

(1 + r, k) = (1.11, 28) -6.294*** -2.818*** -1.382**
(0.812) (0.434) (0.454)

(1 + r, k) = (1.18, 28) -6.921*** -4.140*** -1.851***
(0.780) (0.490) (0.455)

(1 + r, k) = (1.25, 28) -7.438*** -5.449*** -2.222***
(0.755) (0.544) (0.488)

(1 + r, k) = (1.33, 28) -8.187*** -7.139*** -2.742***
(0.721) (0.668) (0.496)

(1 + r, k) = (1.43, 28) -9.039*** -8.164*** -3.126***
(0.677) (0.658) (0.503)

(1 + r, k) = (1.00, 56) 0.193 0.073 0.873*
(0.192) (0.211) (0.395)

(1 + r, k) = (1.05, 56) -4.600*** -1.290*** -0.352
(0.791) (0.336) (0.442)

(1 + r, k) = (1.11, 56) -5.409*** -2.582*** -0.923
(0.805) (0.331) (0.515)

(1 + r, k) = (1.18, 56) -6.462*** -3.685*** -1.451**
(0.796) (0.480) (0.513)

(1 + r, k) = (1.25, 56) -7.436*** -5.227*** -1.812***
(0.758) (0.544) (0.512)

(1 + r, k) = (1.33, 56) -8.118*** -6.979*** -2.532***
(0.740) (0.652) (0.493)

(1 + r, k) = (1.43, 56) -8.775*** -7.882*** -2.833***
(0.713) (0.656) (0.477)

Risk Condition Interactions: Relevant Risk Condition x

(1 + r, k) = (1.05, 28) -6.148*** -1.544* 0.134
(1.111) (0.602) (0.421)

(1 + r, k) = (1.11, 28) -6.493*** -1.574** 0.498
(1.048) (0.573) (0.446)

(1 + r, k) = (1.18, 28) -6.597*** -2.131** 0.849
(0.981) (0.708) (0.463)

(1 + r, k) = (1.25, 28) -6.666*** -2.584** 0.920
(0.971) (0.762) (0.576)

(1 + r, k) = (1.33, 28) -6.425*** -2.136** 1.319*
(0.917) (0.764) (0.601)

(1 + r, k) = (1.43, 28) -5.683*** -2.170** 1.443*
(0.880) (0.728) (0.623)

(1 + r, k) = (1.00, 56) 0.192 -0.180 0.107
(0.450) (0.243) (0.602)

(1 + r, k) = (1.05, 56) -5.540*** -1.646** 0.156
(1.088) (0.616) (0.557)

(1 + r, k) = (1.11, 56) -6.734*** -1.781** 0.511
(1.093) (0.588) (0.521)

(1 + r, k) = (1.18, 56) -6.450*** -2.471*** 0.747
(1.040) (0.719) (0.644)

(1 + r, k) = (1.25, 56) -6.006*** -2.576*** 0.994
(0.975) (0.714) (0.636)

(1 + r, k) = (1.33, 56) -5.911*** -2.286** 1.604**
(0.974) (0.781) (0.587)

(1 + r, k) = (1.43, 56) -5.574*** -2.618*** 1.639*
(0.936) (0.702) (0.654)

Constant (Omitted Category) 12.537*** 14.455*** 5.950***
(0.464) (0.424) (0.554)

H0: Zero Condition Slopes F14,79 = 6.07 F14,79 = 7.69 F14,79 = 5.46
(p < 0.01) (p < 0.01) (p < 0.01)

# Observations 2240 2240 2240
# Clusters 80 80 80
R2 0.429 0.360 0.173

Notes: Clustered standard errors in parentheses. F14,79 statistics cor-
respond to hypothesis tests of zero slopes for risk condition regressor
and 13 risk condition interactions.
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Estimating Preference Parameters

In this appendix we discuss with structural estimation of intertemporal prefer-

ence parameters. Given structural assumptions, the design allows us to estimate util-

ity parameters, following methodology developed in Andreoni and Sprenger (2009).

We assume an exponentially discounted CRRA utility function,

U = p1δ
t(ct − ω)α + p2δ

t+k(ct+k − ω)α,

where δ represents exponential discounting, α represents utility function curvature

and ω is a background parameter that could be interpreted as a Stone-Geary mini-

mum.24 We posit an exponential discounting function because for timing and trans-

action cost reasons no present payments were provided. This precludes direct analysis

of present-biased or quasi-hyperbolic time preferences (Strotz, 1956; Phelps and Pol-

lak, 1968; Laibson, 1997; O’Donoghue and Rabin, 1999). Under this formulation, the

DEU solution function, c∗t , can be written as

c∗t (p1/p2, t, k, 1 + r, m) =
[1− (p2

p1
(1 + r)δk)

1
α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
ω +

[(p2
p1

(1 + r)δk)
1

α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
m,

or

c∗t (θ, t, k, 1 + r,m) =
[1− (θδk)

1
α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
ω +

[(θδk)
1

α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
m. (2.1)

We estimate the parameters of this function via non-linear least squares with

standard errors clustered on the individual level to obtain α̂, δ̂, and ω̂. An estimate

of the annual discount rate is generated as 1/δ̂365 − 1, with corresponding standard

error obtained via the delta method.

Table 2.4 presents discounting and curvature parameters estimated from the

24The ω terms could be also be interpreted as intertemporal reference points or background con-
sumption. Frequently in the time preference literature, the simplification ω = 0 is imposed or ω
is interpreted as minus background consumption (Andersen et al., 2008) and calculated from an
external data source. In Andreoni and Sprenger (2009) we provide methodology for estimating the
background parameters and employ this methodology here. Detailed discussions of sensitivity and
censored data issues are provided in Andreoni and Sprenger (2009) who show that accounting for
censoring issues has little influence on estimates.
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two conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). In column (1), we estimate

a baseline model where discounting, curvature, and background parameters are re-

stricted to be equal across the two risk conditions. The aggregate discount rate is

estimated to be around 27% per year and aggregate curvature is estimated to be 0.98.

The background parameter, ω̂ is estimated to be 3.61.

Table 2.4: Discounting and Curvature Parameter Estimates
(1) (2) (3) (4) (5) (6)

α̂ 0.982 0.984
(0.002) (0.002)

α̂(1,1) 0.987 0.987 0.988 0.988
(0.002) (0.002) (0.002) (0.002)

α̂(0.5,0.5) 0.950 0.951 0.885 0.883
(0.008) (0.008) (0.017) (0.017)

Rate 0.274 0.285 0.284
(0.035) (0.036) (0.037)

Rate(1,1) 0.281 0.276 0.282
(0.036) (0.039) (0.036)

Rate(0.5,0.5) 0.321 0.269 0.315
(0.059) (0.033) (0.088)

ω̂ 3.608 2.417 2.414
(0.339) (0.418) (0.418)

ω̂(1,1) 2.281 2.106 2.285
(0.440) (0.439) (0.439)

ω̂(0.5,0.5) 4.397 5.260 4.427
(0.321) (0.376) (0.324)

H0: Equality F3,79 = 16.12 F2,79 = 30.47 F2,79 = 23.24 F2,79 = 37.97 F1,79 = 38.09
(p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01)

R2 0.642 0.675 0.672 0.675 0.673 0.673
N 2240 2240 2240 2240 2240 2240
Clusters 80 80 80 80 80 80

Notes: NLS solution function estimators. Subscripts refer to (p1, p2) condition. Column (1) im-
poses the interchangeability, v(·) = u(·). Column (2) allows different curvature, discounting and
background parameters in each (p1, p2) condition. Column (3) restricts curvature to be equal across
conditions. Column (4) restricts discounting to be equal across conditions. Column (5) restricts the
background parameter ω to be equal across conditions. Column (6) restricts the background param-
eter ω and discounting to be equal across conditions. Clustered standard errors in parentheses. F

statistics correspond to hypothesis tests of equality of parameters across conditions. Rate: Annual
discount rate calculated as (1/δ̂)365 − 1, standard errors calculated via the delta method.

In column (2), we estimate separate discounting, curvature and background

parameters for the two risk conditions. That is, we estimate a certain v(·) and an

uncertain u(·). Discounting is found to be similar across the conditions, around 30%

per year (F1,79 = 0.69, p = 0.41).25 In the certain condition, (p1, p2) = (1, 1), we

25For comparison, using similar methodology without uncertainty Andreoni and Sprenger (2009)
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find almost linear utility while in the uncertain condition, (p1, p2) = (0.5, 0.5), we

estimate utility to be significantly more concave (F1,79 = 24.09, p < 0.01). In the

certain condition, (p1, p2) = (1, 1), we estimate a background parameter ω̂1,1 of 2.28

while in the uncertain condition the background parameter is significantly higher at

4.40 (F1,79 = 25.53, p < 0.01). A hypothesis test of equal utility parameter estimates

across conditions is rejected (F3,79 = 16.12, p < 0.01).

In Table 2.4, columns (3) through (6) we estimate utility parameters with

various imposed restrictions. In column (3), we restrict curvature to be equal across

conditions and obtain very similar discounting estimates, but a larger difference in

estimated background parameters. In column (4), we restrict discounting to be equal

across conditions and obtain a result almost identical to column (2). In column (5),

we restrict background parameters to be equal and obtain very similar discounting

estimates, but a larger difference in curvature. This finding is repeated in column (6)

where discounting is restricted to be the same. Across specifications, hypothesis tests

of equality of utility parameters are rejected.

To illustrate how well these estimates fit the data, Figure 2.6.1 displays solid

lines with predicted behavior from the most restricted regression, column (6) and the

common regression of column (1). The general pattern of aggregate responses is well

matched by the column (6) estimates. Figure 2.6.1 reports separate R2 values for the

two conditions: R2
1,1 = 0.594; R2

0.5,0.5 = 0.761, and the model fits are substantially

better than the combined model of column (1). For comparison a simple linear

regression of ct on the levels of interest rates, delay lengths and their interaction in

each condition would produce R̃2 values of R̃2
1,1 = 0.443; R̃2

0.5,0.5 = 0.346. The least

restricted regression, column (2) creates very similar predicted values with R2 values

of 0.595 and 0.766. As the estimates show predicting either condition’s responses from

the other would lead to substantially worse fit. When using the (p1, p2) = (0.5, 0.5)

estimates of column (2) as a model for the (p1, p2) = (1, 1) data, the R2 value reduces

to 0.466. And, when using the (p1, p2) = (1, 1) estimates of column (2) as a model

find aggregate discount rate between 25-35% and aggregate curvature of around 0.92. These discount
rates are lower than generally found in the time preference literature (Frederick et al., 2002). Notable
exceptions of similarly low or lower discount rates include Coller and Williams (1999), Harrison et
al. (2002), and Harrison et al. (2005) which all assume linear utility, and Andersen et al. (2008),
which accounts for utility function curvature with Holt and Laury (2002) risk measures.
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for the (p1, p2) = (0.5, 0.5) data, the R2 value reduces to 0.629.
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Figure 2.7: Behavior Under Certainty and Uncertainty

Note: The figure presents aggregate behavior for N = 80 subjects under two conditions: (p1, p2) =
(1, 1), i.e. no risk, in blue; and (p1, p2) = (0.5, 0.5), i.e. 50% chance sooner payment would be sent
and 50% chance later payment would be sent, in red. t = 7 days in all cases, k ∈ {28, 56} days.
Error bars represent 95% confidence intervals, taken as +/− 1.96 standard errors of the mean. Test
of H0 : Equality across conditions: F14,79 = 6.07, p < .001.
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Figure 2.8: Behavior Under Uncertainty with Predictions Based on Certainty

Note: The figure presents aggregate behavior for N = 80 subjects under three conditions: 1)
(p1, p2) = (0.5, 0.5), i.e. equal risk, in red; 2) (p1, p2) = (0.5, 0.4), i.e. more risk later, in green;
and 3) (p1, p2) = (0.4, 0.5), i.e. more risk sooner, in orange. Error bars represent 95% confidence
intervals, taken as +/− 1.96 standard errors of the mean. Blue solid lines correspond to predicted
behavior using certain utility estimates from (p1, p2) = (1, 1) as estimated in Table 2.4, column (6).
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2.6.2 Welcome Text

Welcome and thank you for participating.

Eligibility for this study: To be in this study, you need to meet these criteria.

You must have a campus mailing address of the form:

YOUR NAME

9450 GILMAN DR 92(MAILBOX NUMBER)

LA JOLLA CA 92092-(MAILBOX NUMBER)

Your mailbox must be a valid way for you to receive mail from now through

the end of the Spring Quarter.

You must be willing to provide your name, campus mail box, email address,

and student PID. This information will only be seen by Professor Andreoni and his

assistants. After payment has been sent, this information will be destroyed. Your

identity will not be a part of any subsequent data analysis.

You must be willing to receive your payment for this study by check, written

to you by Professor James Andreoni, Director of the UCSD Economics Laboratory.

The checks will be drawn on the USE Credit Union on campus. You may deposit or

cash your check wherever you like. If you wish, you can cash your checks for free at

the USE Credit Union any weekday from 9:00 am to 5:00 pm with valid identification

(drivers license, passport, etc.).

The checks will be delivered to you at your campus mailbox at a date to be

determined by your decisions in this study, and by chance. The latest you could

receive payment is the last week of classes in the Spring Quarter.

If you do not meet all of these criteria, please inform us of this now.

2.6.3 Instruction and Examples Script

Earning Money:

To begin, you will be given a $10 minimum payment. You will receive this

payment in two payments of $5 each. The two $5 minimum payments will come

to you at two different times. These times will be determined in the way described
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below. Whatever you earn from the study today will be added to these minimum

payments.

In this study, you will make 84 choices over how to allocate money between

two points in time, one time is ‘earlier’ and one is ‘later’. Both the earlier and later

times will vary across decisions. This means you could be receiving payments as early

as one week from today, and as late as the last week of classes in the Spring Quarter,

or possibly other dates in between.

It is important to note that the payments in this study involve chance. There

is a chance that your earlier payment, your later payment or both will not be sent at

all. For each decision, you will be fully informed of the chance involved for the sooner

and later payments. Whether or not your payments will be sent will be determined

at the END of the experiment today. If, by chance, one of your payments is not sent,

you will receive only the $5 minimum payment.

Once all 84 decisions have been made, we will randomly select one of the 84

decisions as the decision-that-counts. This will be done in three stages. First, we will

pick a number from 1 to 84 at random to determine which is the decision-that-counts

and the corresponding sooner and later payment dates. Then we will pick a second

number at random from 1 to 10 to determine if the sooner payment will be sent.

Then we will pick a third number at random from 1 to 10 to determine if the later

payment will be sent. We will use the decision-that-counts to determine your actual

earnings. Note, since all decisions are equally likely to be chosen, you should make

each decision as if it will be the decision-that-counts. When calculating your earn-

ings from the decision-that-counts, we will add to your earnings the two $5 minimum

payments. Thus, you will always get paid at least $5 at the chosen earlier time, and

at least $5 at the chosen later time.

IMPORTANT: All payments you receive will arrive to your campus mailbox.

On the scheduled day of payment, a check will be placed for delivery in campus mail

services by Professor Andreoni and his assistants. Campus mail services guarantees

delivery of 100% of your payments by the following day.

As a reminder to you, the day before you are scheduled to receive one of your

payments, we will send you an e-mail notifying you that the payment is coming. On
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your table is a business card for Professor Andreoni with his contact information.

Please keep this in a safe place. If one of your payments is not received you should

immediately contact Professor Andreoni, and we will hand-deliver payment to you.

Your Identity:

In order to receive payment, we will need to collect the following pieces of

information from you: name, campus mail box, email address, and student PID. This

information will only be seen by Professor Andreoni and his assistants. After all

payments have been sent, this information will be destroyed. Your identity will not

be a part of subsequent data analysis.

On your desk are two envelopes: one for the sooner payment and one for the

later payment. Please take the time now to address them to yourself at your campus

mail box.

How it Works:

In each decision you are asked to divide 100 tokens between two payments at

two different dates: Payment A (which is sooner) and Payment B (which is later).

Tokens will be exchanged for money. The tokens you allocate to Payment B (later)

will always be worth at least as much as the tokens you allocate to Payment A

(sooner). The process is best described by an example. Please examine the sample

sheet in you packet marked SAMPLE.

The sample sheet provided is similar to the type of decision sheet you will fill

out in the study. The sample sheet shows the choice to allocate 100 tokens between

Payment A on April 17th and Payment B on May 1st. Note that today’s date is

highlighted in yellow on the calendar on the left hand side. The earlier date (April

17th) is marked in green and the later date (May 1st) is marked in blue. The earlier

and later dates will always be marked green and blue in each decision you make. The

dates are also indicated in the table on the right.

In this decision, each token you allocate to April 17th is worth $0.10, while

each token you allocate to May 1st is worth $0.15. So, if you allocate all 100 tokens to

April 17th, you would earn 100x$0.10 = $10 (+ $5 minimum payment) on this date

and nothing on May 1st (+ $5 minimum payment). If you allocate all 100 tokens to
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May 1st, you would earn 100x$0.15 = $15 (+ $5 minimum payment) on this date and

nothing on April 17th (+ $5 minimum payment). You may also choose to allocate

some tokens to the earlier date and some to the later date. For instance, if you

allocate 62 tokens to April 17th and 38 tokens to May 1st, then on April 17th you

would earn 62x$0.10 = $6.20 (+ $5 minimum payment) and on May 1st you would

earn 38x$0.15 = $5.70 (+ $5 minimum payment). In your packet is a Payoff Table

showing some of the token-dollar exchange at all relevant token exchange rates.

REMINDER: Please make sure that the total tokens you allocate between

Payment A and Payment B sum to exactly 100 tokens. Feel free to use the calculator

provided in making your allocations and making sure your total tokens add to exactly

100 in each row.

Chance of Receiving Payments:

Each decision sheet also lists the chances that each payment is sent. In this

example there is a 70% chance that Payment A will actually be sent and a 30%

chance that Payment B will actually be sent. In each decision we will inform you

of the chance that the payments will be sent. If this decision were chosen as the

decision-that-counts we would determine the actual payments by throwing two ten

sided die, one for Payment A and one for Payment B.

EXAMPLE: Let’s consider the person who chose to allocate 62 tokens to April

17th and 38 tokens to May 1st. If this were the decision-that-counts we would then

throw a ten-sided die for Payment A. If the die landed on 1,2,3,4,5,6,or 7, the person’s

Payment A would be sent and she would receive $6.20 (+ $5 minimum payment) on

April 17th. If the die landed 8,9, or 10, the payment would not be sent and she would

receive only the $5 minimum payment on April 17th. Then we would throw a second

ten-sided die for Payment B. If the die landed 1,2, or 3, the person’s Payment B would

be sent and she would receive $5.70 (+ $5 minimum payment) on May 1st. If the die

landed 4,5,6,7,8,9, or 10, the payment would not be sent and she would receive only

the $5 minimum payment on May 1st.

Things to Remember:

• You will always be allocating exactly 100 tokens.
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• Tokens you allocate to Payment A (sooner) and Payment B (later) will be

exchanged for money at different rates. The tokens you allocate to Payment B

will always be worth at least as much as those you allocate to Payment A.

• Payment A and Payment B will have varying degrees of chance. You will be

fully informed of the chances.

• On each decision sheet you will be asked 7 questions. For each decision you will

allocate 100 tokens. Allocate exactly 100 tokens for each decision row, no more,

no less.

• At the end of the study a random number will be drawn to determine which

is the decision-that-counts. Because each question is equally likely, you should

treat each decision as if it were the one that determines your payments. Two

more random numbers will be drawn by throwing two ten sided die to determine

whether or not the payments you chose will actually be sent.

• You will get an e-mail reminder the day before your payment is scheduled to

arrive.

• Your payment, by check, will be sent by campus mail to the mailbox number

you provide.

• Campus mail guarantees 100% on-time delivery.

• You have received the business card for Professor James Andreoni. Keep this

card in a safe place and contact Prof. Andreoni immediately if one of your

payments is not received.
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Chapter 3

Uncertainty Equivalents: Testing

the Limits of the Independence

Axiom

Abstract

We show that a novel experimental device, the uncertainty equivalent, provides a

direct test of linearity-in-probability for decision-making under objective uncertainty.

In a within-subject experiment with both uncertainty and certainty equivalents we

demonstrate that the expected utility model performs remarkably well away from

certainty, but breaks down near certainty. In particular, violations of both the in-

dependence axiom and stochastic dominance are obtained at probability one. This

indicates that individuals may have a disproportionate preference for certainty, as

assumed in models of disappointment aversion or u-v preferences, and is notably in-

consistent with standard notions of prospect theory probability weighting. We unify

these results by showing that a preference for certainty means that certainty equiva-

lents will lead to specification error when used to estimate preferences for risk alone.

Using certainty equivalents we reproduce the misspecification, leading to S -shaped

probability weighting and, moreover, show that the error is largely driven by subjects

with the strongest preferences for certainty in uncertainty equivalent tasks.
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3.1 Introduction

The theory of Expected Utility (EU) is among the most elegant and esthetically

pleasing results in all of economics. It shows that if a preference ordering over a given

set of gambles is complete, transitive, continuous, and, in addition, it satisfies the

independence axiom, then utility is linear in objective probabilities.1 The idea that

a gamble’s utility could be represented by the mathematical expectation of its utility

outcomes dates to the St. Petersburg Paradox (Bernouilli, 1738). The idea that a

gamble’s utility was necessarily such an expectation if independence and the other

axioms were satisfied became clear only in the 1950’s (Samuelson, 1952, 1953).2

Two parallel research tracks have developed in the study of decision-making

under uncertainty with respect to the independence axiom. The first has taken

linearity-in-probability as given and attempted to measure attitudes towards uncer-

tainty using experimental methods. Subjects are asked to choose between gambles

(Holt and Laury, 2002) or provide certainty equivalents for gambles (Birnbaum, 1992;

Kachelmeier and Shehata, 1992). Using the EU formulation and functional form as-

sumptions for utility, such as constant relative risk aversion, preference parameters

are calculated or estimated. Harrison and Rutstrom (2008) provide a detailed sum-

mary of both the experimental methods and estimation exercises associated with this

literature.

The second track has focused on identifying violations of independence.3 Prin-

cipal among these violations are the common consequence and common ratio para-

doxes initially documented by Allais (1953b) and frequently reproduced in laboratory

1Subjective Expected Utility is not discussed in this paper. All results will pertain only to
objective probabilities.

2The independence axiom is closely related to the Savage (1954) ‘sure-thing principle’ for sub-
jective expected utility (Samuelson, 1952). Expected utility became known as von Neumann-
Morgenstern (vNM) preferences after the publication of von Neumann and Morgenstern (1944).
Independence, however, was not among the discussed axioms, but rather implicitly assumed. Samuel-
son (1952, 1953) discusses the resulting confusion and his suspicion of an implicit assumption of
independence in the vNM treatment. Samuelson’s suspicion was then confirmed in a note by Mal-
invaud (1952). For an excellent discussion of the history of the independence axiom, see Fishburn
and Wakker (1995).

3This second line of research began contemporaneously with the recognition of the importance
of the independence axiom. Indeed Allais’ presentation of Allais (1953a) was in the same session
as Samuelson’s presentation of Samuelson (1953) and the day after Savage’s presentation of Savage
(1953) at the Colloque Internationale d’Econométrie in Paris in May of 1952.
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studies (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

There is now an extensive catalogue of similar violations of EU (Camerer, 1992;

Harless and Camerer, 1994; Starmer, 2000). These violations are used to motivate

new theoretical and experimental exercises. The most important associated develop-

ment is Cumulative Prospect Theory’s (CPT) inverted S -shaped non-linear probabil-

ity weighting (Kahneman and Tversky, 1979; Quiggin, 1982; Tversky and Kahneman,

1992; Tversky and Fox, 1995). In a series of experiments eliciting certainty equivalents

for gambles, Tversky and Kahneman (1992) and Tversky and Fox (1995) estimate

utility parameters demonstrating that high probabilities are down-weighted and low

probabilities are up-weighted. The probability weighting phenomenon has become an

established feature in decision research. Identifying the general S -shape of the weight-

ing function and determining its parameter values has received significant attention

both theoretically and in experiments (Wu and Gonzalez, 1996; Prelec, 1998; Gonza-

lez and Wu, 1999; Abdellaoui, 2000). Figure 3.1 illustrates the general observation

of down-weighting of high probabilities and up-weighting of low probabilities. Based

upon the strength of these findings researchers have developed new methodology for

eliciting risk preferences such as the ‘trade-off’ method (Wakker and Deneffe, 1996)

that is robust to non-linear probability weighting.

Interestingly, there are few direct tests of the independence axiom’s most criti-

cal implication: linearity-in-probabilities of the expected utility function. Experimen-

tal tests of probability distortion such as Tversky and Kahneman (1992) and Tversky

and Fox (1995) are not separate from functional form assumptions.4 Furthermore, if

the independence axiom is assumed for identification of utility parameters (Holt and

Laury, 2002) or if elicitation methodology is designed to difference out probability

weights (Wakker and Deneffe, 1996; Booij and van de Kuilen, 2009), then the axiom is

untestable. This is not to say that one cannot test EU via violations (Allais, 1953b),

calibrational arguments (Rabin, 2000a,b), or goodness-of-fit comparisons (Camerer,

1992; Hey and Orme, 1994; Harless and Camerer, 1994). These tests clearly demon-

strate that the independence axiom can fail to hold, but the conclusions do not speak

4This observation is made by Abdellaoui (2000). Notable exceptions are the non-parametric prob-
ability weighting estimates of Gonzalez and Wu (1999); Bleichrodt and Pinto (2000) and Abdellaoui
(2000) which find support for non-linearity-in-probabilities (see sub-section 3.4.2 for discussion).



90

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Objective Probability, p

Π
(p
)

Figure 3.1: Standard Probability Weighting

Note: The general S -shaped probability weighting finding is illustrated of up-
weighting of low probabilities and down-weighting of high probabilities. The plotted
function is π(p) = pγ/(pγ + (1 − p)γ)1/γ with γ = 0.61 as found by Tversky and
Kahneman (1992).

directly to the often-suggested alternative interpretation of non-linearity in probabil-

ities.

In this paper, we provide a direct test of linearity-in-probabilities that uncovers

when independence holds, how it fails, and the nature of violations. We reintroduce an

experimental method, which we call the uncertainty equivalent. Whereas a certainty

equivalent identifies the certain amount that generates indifference to a given gamble,

the uncertainty equivalent identifies the probability mixture over the gamble’s best

outcome and zero that generates indifference. For example, consider a (p, 1−p) gamble

over $10 and $30, (p; 10, 30). The uncertainty equivalent identifies the (q, 1−q) gamble

over $30 and $0, (q; 30, 0), that generates indifference.5 Independence implies a linear

relationship between p and q.

The uncertainty equivalent draws its motivation from the initial proofs of

5We recognize that it is a slight abuse of traditional notation to have the probability refer to
the lower outcome in the given gamble and the higher outcome in the uncertainty equivalent. It
does, however, ease explication to have p refer to the probability of the low value and q refer to the
probability of the high value.
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expected utility, where the cardinal index for a gamble is derived as the probability

mixture over the best and worst options in the space of gambles. Such derivations

are provided in most textbook treatments of expected utility.6

The uncertainty equivalent can also be used to inform the discussion of a

variety of non-EU preference models including S -shaped probability weighting, ex-

pectations based reference-dependence such as disappointment aversion (Bell, 1985;

Loomes and Sugden, 1986; Gul, 1991; Koszegi and Rabin, 2006, 2007)7, and ‘u-v’ pref-

erences (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004).8 Though these models

are often motivated by violations of independence and the Allais (1953b) paradox,

they have both divergent psychological accounts of the phenomenon and divergent

predictions in the uncertainty equivalent environment. Probability weighting explains

the Allais paradox with non-linear probability distortions, disappointment aversion

relies instead on reference-dependence around an expectations-based reference point,

and ‘u-v’ preferences rely on a direct preference for certainty. Importantly, in the un-

certainty equivalent environment these different models of preferences have different

predictions as to the relationship between gambles and their uncertainty equivalents,

and these predictions can generally be examined without relying on functional form

assumptions for utility.

We conducted a within-subject experiment with 76 undergraduates at the Uni-

versity of California, San Diego, using both uncertainty equivalents and standard cer-

tainty equivalents. We demonstrate four important results. First, using uncertainty

equivalents the independence axiom performs well away from certainty, where proba-

6See, e.g. Varian (1992). Our research has uncovered that methods like our uncertainty equivalent
were discussed in Farquhar’s (1984) excellent survey of utility assessment methods and, to our
knowledge, were implemented experimentally in only one study of nine subjects using hypothetical
monetary rewards (McCord and de Neufville, 1986), and a number of medical questionnaires (Magat
et al., 1996; Oliver, 2005, 2007; Bleichrodt et al., 2007).

7We include the Koszegi and Rabin (2006, 2007) model in the broad class of expectations-based
reference dependence as the model’s predictions will closely resemble those of standard disappoint-
ment aversion in the present context as well as most other experimental environments (Ericson and
Fuster, 2009; Gill and Prowse, 2010; Abeler et al., Forthcoming). For specific evidence distinguishing
Koszegi and Rabin (2006, 2007) preferences from disappointment aversion, see Sprenger (2010).

8‘u-v’ preferences are less well-known than the other preference models. For a discussion of the
early history of u-v preferences, see Schoemaker (1982). These models capture the intuition of Al-
lais (1953b) that when options are far from certain, individuals act effectively as EU maximizers
but, when certainty is available, it is disproportionately preferred. The u-v model differs in im-
portant ways from extreme or even discontinuous probability weighting and prior experiments have
demonstrated these differences (Andreoni and Sprenger, 2010a).
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bilities are found to be weighted approximately linearly. Second, linearity breaks down

as probabilities approach 1. The nature of the violation is contrary to S -shaped prob-

ability weighting. Third, we document that 38 percent of subjects violate stochastic

dominance at certainty, providing a within-subject example of the recently debated

‘uncertainty effect’ (Gneezy et al., 2006; Rydval et al., 2009; Keren and Willemsen,

2008; Simonsohn, 2009). Such violations are a prediction of both the u-v model and

some formulations of disappointment aversion, and are indicative of a disproportion-

ate preference for certainty. Fourth, in the certainty equivalents experiments, subjects

show both small stakes risk aversion and apparent S -shaped probability weighting,

reproducing prior findings. These phenomena are largely driven by subjects who dis-

play a disproportionate preference for certainty by violating stochastic dominance in

uncertainty equivalents. This suggests that extreme experimental risk aversion and

probability weighting may be artifacts of a disproportionate preference for certainty

in traditional experimental methodology.

Our findings have critical implications for research on risk attitudes and have

applications to a variety of economic problems. The results demonstrate that ex-

perimental measures of risk attitudes and EU violations are dramatically influenced

by the presence of certainty. In uncertainty equivalents we find no support for S -

shaped probability weighting, but rather evidence for a disproportionate preference

for certainty. Conversely, in standard certainty equivalents these same subjects ex-

hibit S -shaped probability distortions. Additionally, the disproportionate preference

for certainty has predictive power for the extent of apparent probability weighting.

We put these findings in context by noting that certainty has long been known to

play a special role in decision making. The original Allais (1953b) paradoxes drew

attention to certainty being disproportionately preferred. And, violations of EU are

documented predominantly when certainty is involved (Conlisk, 1989; Camerer, 1992;

Harless and Camerer, 1994; Starmer, 2000). Recognizing that certainty may be dis-

proportionately preferred gives a reason, perhaps, to expect apparent non-EU be-

havior in certainty-based analyses: certainty effects are built into the experimental

design. This further suggests that future empirical and theoretical work should take

specific preferences for certainty into account when modeling decision-making.

The paper continues as follows. Section 3.2 discusses the uncertainty equiv-
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alent methodology and develops empirical predictions based on different preference

models. Section 3 presents experimental design details. Section 4 presents results

and Section 5 concludes.

3.2 The Uncertainty Equivalent

Consider a lottery (p; X, Y ) which provides $X with probability p and $Y >

$X with probability 1−p. A certainty equivalent task elicits the certain amount, $C,

that is indifferent to this gamble. The uncertainty equivalent elicits the q-gamble over

$Y and $0, (q; Y, 0), that is indifferent to this gamble. Take for example a 50%-50%

gamble paying either $10 or $30. The uncertainty equivalent is the q-gamble over $30

and $0 that generates indifference.

Under standard preference models, a more risk averse individual will, for a

given gamble, have a lower certainty equivalent, C, and a higher uncertainty equiv-

alent, q. A powerful distinction of the uncertainty equivalent is, however, that it

is well-suited to identifying alternative preference models such as S -shaped proba-

bility weighting (where the non-linearity of the weighting function can be recovered

directly), disappointment aversion and u-v preferences. If preferences under cer-

tainty differ from those under uncertainty as in both disappointment aversion and

u-v models, then certainty equivalent methodology assuming a single utility function

is misspecified.9 Risk preferences or probability weights are not identified separately

from differential preferences over certainty and uncertainty. Figure 3.2 demonstrates

the difficulty with certainty equivalents relative to uncertainty equivalents in the case

of u-v preferences where v(·) with certainty differs from u(·) with uncertainty.

3.2.1 Empirical Predictions

We present empirical predictions in the uncertainty equivalent environment for

expected utility, S -shaped probability weighting, disappointment aversion, and u-v

9In the u-v model, the differential preferences over certainty and uncertainty are delivered via a
discontinuity. In disappointment aversion, choice under uncertainty involves disappointment and so
an extra utility parameter not present in choice under certainty. See sub-sections 3.2.1 and 3.2.1 for
further discussion.
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Figure 3.2: The Uncertainty Equivalent

Note: Illustration of uncertainty equivalent, (q; 30, 0), for the lottery (p; 10, 30). Cer-
tainty equivalent, C, demonstrated for u-v preferences with a disproportionate pref-
erence for certainty.

preferences.10 Unlike experimental contexts that require functional form assumptions

for model identification, the uncertainty equivalent can generally provide tests of

utility specifications based on the relationship between p and q without appeal to

specific functional form for utility.11

Expected Utility

Expected utility’s independence axiom makes a critical prediction of behav-

ior in the uncertainty equivalent. Take a p chance of $X and a 1 − p chance of a

larger payment $Y > $X. The uncertainty equivalent of this prospect is the value q

10This is, of course, a limited list of the set of potentially testable decision models. For example,
we do not discuss ambiguity aversion or the anticipatory utility specifications of Kreps and Porteus
(1978) and Epstein and Zin (1989) as experimental uncertainty was resolved directly at the end of
the experimental sessions. These specifications generally reduce to expected utility when uncertainty
is resolved immediately.

11One environment where this is not the case is our discussion of disappointment aversion as
probabilities enter directly into the utility function in the formation of the referent. See sub-section
3.2.1 for detail.
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satisfying

p · u(X) + (1− p) · u(Y ) = q · u(Y ) + (1− q) · u(0).

Assuming u(0) = 0, u(Y ) > u(X), and letting θ = u(X)/u(Y ) < 1, then

q = p · u(X)

u(Y )
+ 1− p = 1− p · (1− θ),

and
dq

dp
=

u(X)

u(Y )
− 1 = −(1− θ) < 0.

Thus, expected utility generates a negative linear relationship between the probability

p of $X and the probability q of $Y . This is an easily testable prediction.

Cumulative Prospect Theory Probability Weighting

Under Cumulative Prospect Theory, probabilities are weighted by the non-

linear function π(p). One popular functional form is the one parameter function used

in Tversky and Kahneman (1992)12, π(p) = pγ/(pγ + (1 − p)γ)1/γ, 0 < γ < 1. This

inverted S -shaped function, as with others used in the literature, has the property

that π′(p) approaches infinity as p approaches 0 or 1. Probability weights are imposed

on the higher of the two utility values.13

Under this CPT formulation, the uncertainty equivalent indifference condition

is

(1− π(1− p)) · u(X) + π(1− p) · u(Y ) = π(q) · u(Y ) + (1− π(q)) · u(0).

Again letting u(0) = 0 and θ = u(X)/u(Y ) < 1,

(1− π(1− p)) · θ + π(1− p) = π(q).

12Tversky and Fox (1995) and Gonzalez and Wu (1999) employ a similar two parameter π(p)
function. See Prelec (1998) for alternative specifications.

13This formulation is assumed for binary gambles over strictly positive outcomes in Kahneman
and Tversky (1979) and for all gambles in Tversky and Kahneman (1992). We abstract away from
prospect theory’s fixed reference point formulation as static reference points do not alter the analysis.
Changing reference points, as in disappointment aversion, are discussed in sub-section 3.2.1.
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This implicitly defines q as a function of p, yielding

dq

dp
= −π′(1− p)

π′(q)
· [1− θ] < 0.

As with expected utility, q and p are negatively related. Contrary to expected

utility, the rate of change, dq/dp, depends on both p and q. Importantly, as p ap-

proaches 1, π′(1 − p) approaches infinity and, provided finite π′(q), the slope dq/dp

becomes increasingly negative.14 This result presents a clearly testable alternative to

expected utility. The argument need not rest on the derivatives of the probability

weighting function. Any modified S -shaped weighting function featuring up-weighting

of low probabilities and down-weighting of high probabilities will share the character-

istic that the relationship between q and p will become more negative as p approaches

1.15 Comparing gambles to their uncertainty equivalents is an ideal way to test for

S -shaped probability weighting as the non-linearity of the weighting function can be

measured directly.

14It is difficult to create a general statement for concavity based upon the second derivative
d2q/dp2, as the second derivatives of the weighting function can be positive or negative depending
on the concavity or convexity of the S -shaped distortion. The second derivative is

d2q

dp2
=

π′′(1− p) · [1− θ] · π′(q) + π′′(q) dq
dp · π′(1− p) · [1− θ]

π′(q)2
.

For p near 1, the sign is partially determined by π′′(q) which may be negative or positive. For
S -shaped weighting, π′′(1− p) will be negative in the concave region of low probabilities, and dq/dp
will be negative from the development above. If q lies in the convex weighting region, such that
π′′(q) > 0, then d2q/dp2 < 0 and the relationship is concave and may remain so with π′′(q) < 0.
Consensus puts the concave region between probability 0 and around 1/3 (Tversky and Kahneman,
1992; Tversky and Fox, 1995; Prelec, 1998). As will be seen, the uncertainty equivalents for p = 1
lie substantially above 1/3 for all of our experimental conditions such that a concave relationship
between p and q would be expected.

15This would be the case for virtually all functional forms and parameter values discussed in Prelec
(1998) and for functions respecting condition (A) of the Quiggin (1982) weighting function. Take p
close to 1 and (1−p) close to zero, u(Y ) will be up-weighted and u(X) will be down-weighted on the
left hand side of the above indifference condition. In order to compensate for the up-weighting of the
good outcome on the left hand side, q on the right hand side must be high. At p = 1, the up-weighting
of u(Y ) disappears precipitously and so q decreases precipitously to maintain indifference.
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Disappointment Aversion

Disappointment aversion refers to a general class of reference-dependent mod-

els with expectations-based reference points. In disappointment aversion, a gamble’s

outcomes are evaluated relative to the gamble’s EU certainty equivalent (Bell, 1985;

Loomes and Sugden, 1986; Gul, 1991). Recent research on expectations-based ref-

erence dependence extends the notion of reference points to reference distributions

(Koszegi and Rabin, 2006, 2007). In the environment described in this paper, models

with reference distributions and models with reference points generate very similar

predictions. For simplicity, we present the analysis in terms of expectations-based

reference points.16

Consider a p chance of $X and a 1− p chance of a larger payment $Y > $X.

The EU certainty equivalent of this prospect is the value, Cp, satisfying

p · u(X) + (1− p) · u(Y ) = u(Cp).

Taking Cp as the reference point, the reference-dependent utility of the p-gamble is

Up = p · ũ(X|Cp) + (1− p) · ũ(Y |Cp)

where ũ(·|Cp) is the reference-dependent utility function with a reference point at Cp.

We assume a standard specification for u(·|Cp) (Bell, 1985; Loomes and Sug-

den, 1986),

ũ(z|Cp) = u(z) + µ(u(z)− u(Cp)),

where the function u(z) represents consumption utility for some outcome, z, and

µ(·) represents disappointment-elation utility relative to the referent, Cp. Several

simplifying assumptions are made. Following Koszegi and Rabin (2006, 2007) we

16For analysis focusing on the distinction between Koszegi and Rabin (2006, 2007) preferences
and other models of disappointment aversion as well as discussion of the different equilibrium and
utility maximization concepts across the models, see Sprenger (2010).
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assume a piecewise-linear disappointment-elation function,

µ(u(z)− u(Cp)) =

{
η · (u(z)− u(Cp)) if u(z)− u(Cp) ≥ 0

η · λ · (u(z)− u(Cp)) if u(z)− u(Cp) < 0

}
,

where the utility parameter with λ > 1 indicates disappointment aversion. For sim-

plicity and to aid the exposition, η = 1 is assumed. Under these specifications, the

utility of the (p; X, Y ) gamble can be written as

Up = p · [u(X) + λ · (u(X)− u(Cp))] + (1− p) · [u(Y ) + 1 · (u(Y )− u(Cp))].

Replacing u(Cp) = p · u(X) + (1− p) · u(Y ) , this becomes

Up = [p + p · (1− p) · (λ− 1)] · u(X) + [(1− p)− p · (1− p) · (λ− 1)] · u(Y ).

Note that this implies that disappointment aversion is another version of a probability

weighted utility function with weighting function

π̃(1− p) = (1− p)− p · (1− p) · (λ− 1).

In addition π̃(1 − p) ≤ 1 − p if λ > 1, and π̃(1 − p) is a convex function.17 Hence

disappointment aversion is equivalent to a specific form of probability weighting that

is not S -shaped, but rather downweights all probabilities, between 0 and 1. Loomes

and Sugden (1986) and Gul (1991) provide similar demonstrations that disappoint-

ment aversion is observationally equivalent to down-weighting of all probabilities.

As such, disappointment aversion will not generate the same relationship between

given (p; X, Y ) gambles and their uncertainty equivalents, (q; Y, 0), as predicted by

S -shaped probability weighting. Instead of a concave shape, the relationship between

p and q will be predicted to be convex.

Following identical logic to that of the previous section, setting up the same

17π̃(1− p) describes a parabola with a critical point at 1− p = (λ− 2)/(2λ− 2).
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uncertainty equivalent indifference relation and simplifying, we again find

dq

dp
= − π̃′(1− p)

π̃′(q)
· [1− θ] .

Because the weighting function, π̃(·), is convex, one can easily check that the second

derivative, d2q
dp2 , is greater than zero, implying that disappointment aversion predicts

a convex relationship between p and q for λ > 1.18

Of additional interest is that as p approaches 1, π̃′(1 − p) approaches 2 − λ

under our formulation. For sufficiently disappointment averse individuals, λ > 2,

the relationship between p and q, dq/dp, will become positive as p approaches 1,

provided π̃′(q) > 0. This is an important prediction of disappointment aversion in

the uncertainty equivalent environment. A positive relationship between p and q

near certainty implies violations of first order stochastic dominance as certainty is

approached. The uncertainty equivalent, q, acts as a utility index of the offered

p-gamble. Given two offered gambles, p and p′, with p > p′, and two associated

18Note that π̃(q) ≥ π̃(1 − p) is implied from the above indifference condition, and, for a weakly
increasing π̃(·), q ≥ 1 − p. Convexity implies π̃′(q) ≥ π̃′(1 − p). For the employed specification
π̃′(1− p) = 2− λ + 2(1− p)(λ− 1) and π̃′′(·) is a constant, such that π̃′′(1− p) = π̃′′(q) = 2(λ− 1).
This second derivative is positive under the assumption λ > 1. Hence, the sign of

d2q

dp2
=

π̃′′(1− p) · [1− θ] · π̃′(q) + π̃′′(q) dq
dp · π̃′(1− p) · [1− θ]

π̃′(q)2
.

depends on the sign of

π̃′(q) +
dq

dp
· π̃′(1− p).

Plugging in for dq/dp

π̃′(q)− π̃′(1− p)
π̃′(q)

· [1− θ] · π̃′(1− p),

and dividing by π̃′(q) we obtain

1− π̃′(1− p)
π̃′(q)

· [1− θ] · π̃′(1− p)
π̃′(q)

.

Because convexity of π̃(·) and q ≥ (1−p) implies π̃′(q) ≥ π̃′(1−p), π̃′(1−p)/π̃′(q) ≤ 1. Additionally
1− θ < 1, by the assumption of monotonicity. The second term is therefore a multiplication of three
terms that are less than or equal to 1 and one concludes

1− π̃′(1− p)
π̃′(q)

· [1− θ] · π̃′(1− p)
π̃′(q)

> 0,

d2q/dp2 > 0, the relationship is convex.
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uncertainty equivalents, q and q′, a subject violates first order stochastic dominance

if q > q′ as this indirectly reveals a preference for a gamble with higher probability of

a lower prize.

A sufficiently disappointment averse individual will disproportionately prefer

certainty as the specter of disappointment is eliminated at certainty. Hence certainty

of a low outcome may be preferred to a near-certain dominating gamble with the

possibility of disappointment.

Importantly, disappointment averse models are often constructed with assump-

tions guaranteeing that the underlying preferences satisfy stochastic dominance, tak-

ing violations of stochastic dominance as a disqualifying feature of a model of be-

havior (Loomes and Sugden, 1986; Gul, 1991). However, the models of Bell (1985)

and (Koszegi and Rabin, 2006, 2007) do not feature such assumptions. Hence, test-

ing for violations of stochastic dominance tests the constraints imposed by different

approaches to expectations-based reference dependence.

u-v Preferences

The u-v model (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004) is designed

to capture Allais’ (1953b) intuition of a disproportionate preference for security in the

‘neighborhood of certainty.’ Let u(X) be the utility of $X with uncertainty and v(X)

be the utility of $X with certainty. Assume v(X) > u(X) for $X > 0. Under such

u-v preferences, p and q will have a linear relationship away from p = 1. At p = 1,

the discontinuity in utility introduces a discontinuity in the relationship between p

and q. At p = 1, the q that solves the indifference condition

v(X) = q · u(Y )

will be

q =
v(X)

u(Y )
>

u(X)

u(Y )
.

With the u-v specification, q will be linearly decreasing in p and then discontinuously

increase at p = 1.

Importantly, if the neighborhood of certainty is understood to begin at prob-
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abilities less than one, the discontinuity may appear below p = 1. Instead of a dis-

continuity at certainty, however, one could imagine a less rigid model of preferences

where the relationship between p and q is continuous but non-linear as p approaches

1. Distinguishing between such a representation and disappointment aversion would

be virtually impossible. In this sense, discontinuous u-v preferences could act as a

simple, tractable representation of disappointment averse decision-making without

making appeals to an expectations-based reference point. All uncertainty entails dis-

appointment and so lower utility. This is similar in spirit to the β-δ representation

of time preferences to approximate hyperbolic discounting.

Similar to some versions of disappointment aversion, the u-v preference model

violates first order stochastic dominance if there exists a disproportionate preference

for certainty, v(X) > u(X). Certainty of a small payment will be preferred to near

certain gambles paying this small amount with sufficiently high probability and some-

thing larger with low probability.

Though such a property is viewed as a weakness of the u-v preference model

(Diecidue et al., 2004), we again take the view that violations of stochastic dominance

are actually an implication of the model that can be easily tested in the uncertainty

equivalent environment.

3.2.2 Summary

Figure 3.2.1 presents the theoretical predictions of the four discussed models

of decision-making under uncertainty. Importantly, the uncertainty equivalent envi-

ronment provides separation between the models. Under expected utility, q should be

a linear function of p. Under S -shaped probability weighting q should be a concave

function of p with the relationship growing more negative as p approaches 1. Under

disappointment aversion q should be a convex function of p, perhaps with sharper

convexity as p approaches 1, and with indirect violations of stochastic dominance.

Under u-v preferences, q should be a linear function of p until certainty, with convex-

ity appearing near certainty and being associated with indirect violations of stochastic

dominance.
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Figure 3.3: Empirical Predictions

Note: Empirical predictions of the relationship between given gambles, (p; X, Y ),
and uncertainty equivalents (q; Y, 0) for Expected Utility, S -shaped CPT probability
weighting, disappointment aversion, and u-v preferences. A linear prediction is ob-
tained for EU, a concave relationship for S -shaped CPT probability weighting, and a
convex relationship for disappointment aversion. For u-v preferences a linear negative
relationship between (p; X, Y ) and (q; Y, 0) is obtained for p < 1, with a discontinuous
increase in (q; Y, 0) at certainty, p = 1.

3.3 Experimental Design

Eight uncertainty equivalents were implemented with probabilities

p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1} in three different payment sets, (X, Y ) ∈
{(10, 30), (30, 50), (10, 50)}, yielding 24 total uncertainty equivalents. The experiment

was conducted with paper-and-pencil and each payment set (X, Y ) was presented as

a packet of 8 pages. The uncertainty equivalents were presented in increasing order

from p = 0.05 to p = 1 in a single packet.

On each page, subjects were informed that they would be making a series of

decisions between two options: Option A and Option B. Option A was a p chance

of receiving $X and a 1 − p chance of receiving $Y .19 Option A remained the same

for every decision on the page. Option B varied in steps from a 5 percent chance of

19All probabilities in the experiment were presented as a p× 100 chance in 100.
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receiving $Y and a 95 percent chance of receiving $0 to a 99 percent chance of receiving

$Y and a 1 percent chance of receiving $0. A sample decision task is presented in

Figure 3.3. In this price list style experiment, the row at which a subject switches

from preferring Option A to Option B indicates the range of values within which the

uncertainty equivalent, q, lies.

TASK 4
On this page you will make a series of decisions between two uncertain options. Option A will be a 50 in
100 chance of $10 and a 50 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

50 in 100 50 in 100 !" or 100 in 100 0 in 100 !
1) 50 in 100 50 in 100 ! or 95 in 100 5 in 100 !
2) 50 in 100 50 in 100 ! or 90 in 100 10 in 100 !
3) 50 in 100 50 in 100 ! or 85 in 100 15 in 100 !
4) 50 in 100 50 in 100 ! or 80 in 100 20 in 100 !
5) 50 in 100 50 in 100 ! or 75 in 100 25 in 100 !
6) 50 in 100 50 in 100 ! or 70 in 100 30 in 100 !
7) 50 in 100 50 in 100 ! or 65 in 100 35 in 100 !
8) 50 in 100 50 in 100 ! or 60 in 100 40 in 100 !
9) 50 in 100 50 in 100 ! or 55 in 100 45 in 100 !
10) 50 in 100 50 in 100 ! or 50 in 100 50 in 100 !
11) 50 in 100 50 in 100 ! or 45 in 100 55 in 100 !
12) 50 in 100 50 in 100 ! or 40 in 100 60 in 100 !
13) 50 in 100 50 in 100 ! or 35 in 100 65 in 100 !
14) 50 in 100 50 in 100 ! or 30 in 100 70 in 100 !
15) 50 in 100 50 in 100 ! or 25 in 100 75 in 100 !
16) 50 in 100 50 in 100 ! or 20 in 100 80 in 100 !
17) 50 in 100 50 in 100 ! or 15 in 100 85 in 100 !
18) 50 in 100 50 in 100 ! or 10 in 100 90 in 100 !
19) 50 in 100 50 in 100 ! or 5 in 100 95 in 100 !
20) 50 in 100 50 in 100 ! or 1 in 100 99 in 100 !

50 in 100 50 in 100 ! or 0 in 100 100 in 100 !"

Figure 3.4: Sample Uncertainty Equivalent Task

Note: Sample uncertainty equivalent task for (p; X, Y ) = (0.5, 10, 30) eliciting
(q; 30, 0).

Generally, in price list experiments a non-negligible proportion of individuals

switch from preferring Option A to Option B and then switch back. Around 10

percent of subjects feature multiple switch points in similar price list experiments

(Holt and Laury, 2002; Meier and Sprenger, 2010) and as many as 50 percent in some

cases (Jacobson and Petrie, 2009). Because such multiple switch points are difficult to

rationalize and may indicate subject confusion, some researchers mechanically enforce

single switch points.20 Instead, we augmented the standard price list with a simple

framing device designed to clarify the decision process. In particular, we added a line

20See Harrison et al. (2005) for discussion.
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to both the top and bottom of each price list in which the choices were clear, and

illustrated this by checking the obvious best option. The top line shows that each p-

gamble is preferred to a 100 percent chance of receiving $0 while the bottom line shows

that a 100 percent chance of receiving $Y is preferred to each p-gamble.21 These pre-

checked gambles were not available for payment, but were used to clarify the decision

task without leading the subjects. Since the economist is primarily interested in the

price list method as a means of measuring a single choice – the switching point – it

seemed natural to include language to this end. Hence, in directions subjects were

told “Most people begin by preferring Option A and then switch to Option B, so one

way to view this task is to determine the best row to switch from Option A to Option

B.” This greatly reduced the volume of multiple switching to less than 1 percent of

total responses.22

In order to provide an incentive for truthful revelation of uncertainty equiv-

alents, subjects were randomly paid one of their choices in cash at the end of the

experimental session.23 Seventy-six subjects were recruited from the undergraduate

population at University of California, San Diego. The experiment lasted about one

hour and average earnings were $24.50, including a $5 minimum payment.

3.3.1 Additional Risk Preference Measures

In addition to the uncertainty equivalents discussed above, subjects were also

administered two Holt and Laury (2002) risk measures over payment values of $10

and $30 as well as 7 standard certainty equivalents tasks with p gambles over $30

from the set p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1}. The certainty equivalents

probabilities were chosen to be identical to those used in the original probability

weighting experiments of Tversky and Kahneman (1992) and Tversky and Fox (1995).

These additional measures were also designed in price list style with similar language

21This methodology is close to the clarifying instructions from the original Holt and Laury (2002)
where subjects were described a 10 lottery choice task and random payment mechanism and then
told, “In fact, for Decision 10 in the bottom row, the die will not be needed since each option pays
the highest payoff for sure, so your choice here is between 200 pennies or 385 pennies.”

22Observations with multiple switch points were removed from analysis and are noted.
23Please see the instructions in the Appendix for payment information provided to subjects.
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to the uncertainty equivalents and could also be chosen for payment.24 Examples of

these additional risk measures are provided in the appendix. Two orders of the tasks

were implemented: 1) UE, HL, CE and 2) CE, HL, UE to examine order effects.25

3.4 Results

The analysis is presented in two sub-sections. First, we present data from

uncertainty equivalents and provide simple likelihood ratio tests of competing models

of risk preferences. We find that expected utility performs well away from certainty,

but that a disproportionate preference for certainty is displayed when p approaches

1. Indeed this disproportionate preference yields individual violations of stochastic

dominance when p is close to certainty.

Second, we analyze behavior in certainty equivalents experiments. The cer-

tainty equivalents data indicate the presence of both small stakes risk aversion and

prospect theory probability weighting, reproducing previous findings. Importantly,

we use behavior in the uncertainty equivalents to predict behavior in the certainty

equivalents. Individuals who violate stochastic dominance in uncertainty equivalents

are more likely to exhibit small-stakes risk aversion and non-linear probability weight-

ing in certainty equivalents.

3.4.1 Uncertainty Equivalents and Tests of Linearity

Subjects made 24 uncertainty equivalent decisions in three (X, Y ) payment

sets. A summary of the data is presented in Figure 3.4.1. In order to provide esti-

mates of the mean uncertainty equivalent as well as appropriate standard errors for

each experimental probability, we first estimate non-parametric interval regressions

24Multiple switching was again greatly reduced relative to prior studies to less than 1 percent of
responses. Observations with multiple switch points were removed from analysis and are noted. As
will be seen, results of the CE task reproduce the results of others. This increases our confidence
that our innovations with respect to the price lists did not result in biased or peculiar measurement
of behavior.

25Though we used the HL task primarily as a buffer between certainty and uncertainty equivalents,
a high degree of correlation is obtained across elicitation techniques. As the paper is already long,
correlations with HL data are discussed primarily in footnotes.
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(Stewart, 1983).26 The interval response of the uncertainty equivalent, q, is regressed

on indicators for all probability and payment-set interactions with standard errors

clustered on the subject level. For ease of interpretation we calculate the relevant

coefficients as linear combinations of interaction terms and present these in Table

4.1, Panel A. In Figure 3.4.1, the corresponding mean uncertainty equivalent, q, is

graphed versus the experimental values of p for each payment set.
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Figure 3.5: Uncertainty Equivalent Responses

Note: Figure presents uncertainty equivalent, (q; Y, 0), corresponding to Table 4.1,
Panel A for each given gamble, (p; X, Y ), of the experiment. The dashed black
line represents the quadratic model fit of Table 4.1, Panel B. The solid black line
corresponds to a linear projection based upon data from p ≤ 0.75, indicating the
degree to which the data adhere to the expected utility prediction of linearity away
from certainty.

Figure 3.4.1 graphs the responsiveness of uncertainty equivalents to experi-

mental parameters, p, X, and Y .27 We first consider the prediction from expected

26Identical results are obtained when using OLS and the midpoint of the interval.
27Uncertainty equivalents correlate significantly with the number of safe choices chosen in the
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utility of a linear relationship between p and q. Figure 3.4.1 provides a projection

to certainty based on a linear interval regression of q on p for p ≤ 0.75. Though the

data adhere closely to this linear fit away from certainty, in the (X, Y ) = (10, 30)

and (30, 50) conditions, the slope dq/dp becomes appreciably more shallow as p ap-

proaches 1. Indeed in the (X, Y ) = (10, 30) condition, mean behavior exhibits a

violation of stochastic dominance at certainty as the q for p = 1 is slightly above that

of p = 0.95. In the (X, Y ) = (10, 50) condition, the relationship between p and q

appears virtually linear throughout.28

To explore the apparent non-linearity near p = 1, Table 4.1, Panels B and

C present estimates of the relationship between q and p. Panel B estimates interval

regressions assuming a quadratic relationship, and Panel C assumes a linear relation-

ship. Based on the arguments presented above, expected utility predicts a negligible

square term, S -shaped probability weighting predicts a negative square term, and

disappointment aversion and u-v preferences predict a positive square term. Panel B

reveals positive square terms that are statistically significant in two of the conditions,

(X, Y ) = (10, 30) and (30, 50).29

The parametric specifications of Panels B and C can be compared to the non-

parametric specification presented in Panel A via simple likelihood ratio chi-square

tests. Neither the quadratic nor the linear specification can be rejected relative to the

fully non-parametric model: χ2(15)A,B = 8.23, (p = 0.91); χ2(18)A,C = 23.66, (p =

0.17). However, the linear specification of Panel C can be rejected relative to the

parsimonious quadratic specification of Panel B, χ2(3)B,C = 15.43, (p < 0.01). We

reject expected utility’s linear prediction in favor of a convex relationship between p

Holt-Laury risk tasks. For example, for p = 0.5 the individual correlations between the uncertainty
equivalent q and the number of safe choices, S10, in the $10 HL task are ρq(10,30),S10 = 0.52 (p < 0.01),
ρq(30,50),S10 = 0.38 (p < 0.01), and ρq(10,50),S10 = 0.54 (p < 0.01). The individual correlations
between the uncertainty equivalent, q, and the number of safe choices, S30, in the $30 HL task are
ρq(10,30),S30 = 0.54 (p < 0.01), ρq(30,50),S30 = 0.45 (p < 0.01), and ρq(10,50),S30 = 0.67 (p < 0.01). The
correlation between the number of safe choices in the HL tasks is also high,ρS10,S30 = 0.72 (p < 0.01).
These results demonstrate consistency across elicitation techniques as higher elicited q and a higher
number of safe HL choices both indicate more risk aversion.

28See Section 3.4.1 for discussion.
29One can also interpret the coefficients on p × 100 as a measure of utility function curvature at

p = 0 where dq/dp = −(1 − u(X)/u(Y )). Under risk neutrality, this coefficient should be −0.66
for (X,Y ) = (10, 30), −0.4 for (X, Y ) = (30, 50) and −0.8 for (X, Y ) = (10, 50). Though the
estimates in the (X, Y ) = (10, 30) and (30, 50) conditions are close to the risk neutral prediction,
the (X, Y ) = (10, 50) condition differs substantially from risk neutrality.
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Table 3.1: Estimates of the Relationship Between q and p
(1) (2) (3)

(X, Y ) = ($10, $30) (X, Y ) = ($30, $50) (X, Y ) = ($10, $50)

Dependent Variable: Interval Response of Uncertainty Equivalent (q × 100)

Panel A: Non-Parametric Estimates

p× 100 = 10 -3.623*** -2.575*** -3.869***
(0.291) (0.321) (0.413)

p× 100 = 25 -13.270*** -8.867*** -11.840***
(0.719) (0.716) (0.748)

p× 100 = 50 -24.119*** -13.486*** -22.282***
(1.476) (0.916) (1.293)

p× 100 = 75 -34.575*** -17.790*** -30.769***
(2.109) (1.226) (1.777)

p× 100 = 90 -39.316*** -19.171*** -36.463***
(2.445) (1.305) (2.190)

p× 100 = 95 -41.491*** -20.164*** -39.721***
(2.635) (1.411) (2.425)

p× 100 = 100 -41.219*** -21.747*** -43.800***
(2.626) (1.536) (2.454)

Constant 95.298*** 96.822*** 96.230***
(0.628) (0.290) (0.497)

Log-Likelihood = -4498.66
AIC = -9047.32, BIC = 9185.02

Panel B: Quadratic Estimates

p× 100 -0.660*** -0.376*** -0.482***
(0.060) (0.035) (0.047)

(p× 100)2 0.002*** 0.002*** 0.001
(0.001) (0.000) (0.000)

Constant 98.125*** 97.855*** 97.440***
(0.885) (0.436) (0.642)

Log-Likelihood = -4502.77
AIC = -9025.55, BIC = 9080.63

Panel C: Linear Estimates

p× 100 -0.435*** -0.209*** -0.428***
(0.027) (0.016) (0.027)

Constant 95.091*** 95.603*** 96.718***
(0.678) (0.512) (0.714)

Log-Likelihood = -4510.49
AIC = -9034.98, BIC = 9073.54

Notes: Coefficients from single interval regression for each panel (Stewart, 1983) with 1823 obser-
vations. Standard errors clustered at the subject level in parentheses. 76 clusters. The regressions
feature 1823 observations because one individual had a multiple switch point in one uncertainty
equivalent in the (X, Y ) = ($10, $50) condition. Level of significance: *p < 0.1, **p < 0.05,
***p < 0.01
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and q. In comparisons of information criteria, the quadratic specification is preferred

by the Akaike Information Criteria (AIC) and the linear specification is preferred by

the Bayesian Information Criteria (BIC).

Our results are important for evaluating linearity-in-probabilities, and for un-

derstanding the robustness of the standard probability weighting phenomenon. The

data indicate that expected utility performs well away from certainty where the data

adhere closely to linearity. However, the data deviate from linearity as p approaches

1, generating a convex relationship between p and q. This is a strong and significant

rejection of the S -shaped probability weighting model. The finding is notable as the

uncertainty equivalent paradigm is only a small deviation from standard certainty

equivalents, where probability weighting has often been demonstrated. In Section

3.4.2, we unify these results by showing that these same subjects demonstrate appar-

ent probability weighting in certainty equivalents.

While the data reject S -shaped probability weighting, both disappointment

aversion and u-v preferences predict the obtained convex relationship between p and

q with sharpened convexity at p = 1. The difference between the models arises in

that u-v preferences predicts a strictly linear relationship away from certainty while

disappointment aversion predicts convexity throughout. Though the data adhere

closely to linearity for p ≤ 0.75 in Figure 3.4.1, significant positive square terms

are obtained for p ≤ 0.75 in regressions corresponding to Table 4.1, and the the

linear specification can be rejected relative to the quadratic specification of Panel B,

χ2(3) = 20.07, (p < 0.01). Supporting disappointment aversion, we reject linearity

for probabilities away from certainty. However, linearity does provide surprisingly

good model fit in this region allowing EU to adequately explain the data away from

certainty.

We interpret the analysis of this subsection as being most consistent with

disappointment aversion, though u-v could also provide a parsimonious explanation.

The implied presence of a disproportionate preference for certainty in these models

can, in theory, predict violations of first order stochastic dominance as p approaches

1.30 In the next section we explore this prediction of violations of stochastic dominance

30Hints of this disproportionate preference exist in the prior literature. McCord and de Neufville
(1986), with nine experimental subjects and a related construct they called a lottery equivalent,
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near to certainty.

Violations of Stochastic Dominance

A substantial portion of our subjects violate first order stochastic dominance.

These violations are organized close to certainty in a manner that is consistent with

disappointment aversion and u-v preferences, indicating a disproportionate preference

for certainty. Dominance violations are identified when a subject reports a higher q

for a given p relative to his or her previous response q′ for a smaller p′. For example,

revealing a q of 0.5 for p = 1 would be an indirect violation of stochastic dominance

if an individual had previously revealed a q′ of 0.4 for p′ = 0.95.

Each individual has 84 opportunities to violate first order stochastic domi-

nance in such a way.31 We can identify the percentage of choices violating stochastic

dominance at the individual level and so develop an individual violation rate. To be-

gin, away from certainty, violations of stochastic dominance are few, averaging only

4.3% (s.d. = 6.4%). In the 21 cases per subject when certainty, p = 1, is involved, the

individual violation rate increases significantly to 9.7% (15.8%), (t = 3.88, p < 0.001).

When examining only the three comparisons of p = 1 to p′ = 0.95, the individual

violation rate increases further to 17.5% (25.8%), (t = 3.95, p < 0.001). Addition-

ally, 38 percent (29 of 76) of subjects demonstrate at least one violation of stochastic

dominance when comparing p = 1 to p′ = 0.95. This finding suggests that viola-

tions of stochastic dominance are prevalent and tend to be localized close to certainty

as allowed by disappointment aversion and predicted by u-v preferences. We iden-

tify individuals who feature violations of stochastic dominance between p = 1 and

document no systemaric difference in utilities elicited below probability 1, but that elicited utility at
probability one was “consistently above and to the right of the other functions” [p. 60]. Bleichrodt
et al. (2007) use five methods of utility elicitation for health outcomes including certainty equiva-
lents and lottery equivalents. Expected utility was found to perform poorly in decisions involving
certainty, but well in comparisons involving only uncertain prospects. Additionally the utilities
elicited with certainty were generally above those elicited with uncertainty. Though these results
and other certainty effects are often argued to be supportive of S -shaped probability weighting,
careful consideration of our results suggests otherwise.

31Identifying violations in this way recognizes the interval nature of the data as it is determined by
price list switching points. We consider violations within each payment set (X, Y ). With 8 probabil-
ities in each set, seven comparison can be made for p = 1 : p′ ∈ {0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05}.
Six comparisons can be made for p = 0.95 and so on, leading to 28 comparisons for each payment
set and 84 within-set comparisons of this form.
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p′ = 0.95 as Certainty Preferring, and organize much of our further discussion around

the behavior of subjects with and without this disproportionate preference for cer-

tainty. The remaining 62 percent of subjects without a disproportionate preference

for certainty are classified as Certainty Neutral.32

Figure 3.4.1 reproduces Figure 3.4.1, but splits the sample by certainty pref-

erence. First, this shows the roughly 60% of subjects that are classified as Cer-

tainty Neutral demonstrate a linear relationship between q and p throughout. In

estimates corresponding to Table 4.1, Panel B, negligible and insignificant square

terms are obtained and quadratic and linear specifications cannot be distinguished

(χ2(3)B,C = 0.69, p = 0.88).33 These data show that without specific individuals who

exhibit a disproportionate preference for certainty, expected utility organizes the data

extremely well. This finding of linearity is additionally important because eliminating

the convexity of Certainty Preferring individuals should, in principle, give S -shaped

probability weighting’s concave prediction the best opportunity to be revealed.

Second, the mean uncertainty equivalents in Figure 3.4.1, Panels A and B

coincide away from certainty and decline linearly with p. However, the uncertainty

equivalents for subjects with a disproportionate preference for certainty peel away

as certainty is approached. Third, for Certainty Preferring subjects aggregate viola-

tions of stochastic dominance are less pronounced in the (X, Y ) = (10, 50) condition.

Andreoni and Sprenger (2009c) discuss experimental conditions when violations of

stochastic dominance are more or less likely to be observed in experimental data and

demonstrate that for one natural specification with differential curvature one would

expect less pronounced violations of stochastic dominance as experimental stakes di-

verge in value.34

32This is not a complete taxonomy of types as one could imagine a classification for Certainty
Averse. A full axiomatic development of Certainty Preferent, Neutral and Averse is left for future
work and the present classifications are consistent with violation and non-violation of stochastic
dominance between p = 1 and p′ = 0.95. There were no session or order effects obtained for
stochastic dominance violation rates or categorization of certainty preference. Certainty Preferring
individuals are also more likely to violate stochastic dominance away from certainty. Their violation
rate away from certainty is 8.2% (7.5%) versus 1.9% (4.1%) for Certainty Neutral subjects, (t =
4.70, p < 0.001). This, however, is largely driven by violations close to certainty.

33See Appendix Tables 3.2 and 3.3 for full estimates.
34The Andreoni and Sprenger (2009c) specification is of u-v preferences with v(x) = xα, u(x) =

xα−β with β < α < 1. The differential curvature causes less pronounced violations of stochastic
dominance when stakes differ substantially.
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Figure 3.6: Uncertainty Equivalents and Certainty Preference

Note: Figure presents estimated uncertainty equivalent, (q; Y, 0), for each given gam-
ble, (p; X, Y ), of the experiment split by certainty preference, following methodology
from Table 4.1, Panel A. Dashed black line represents the quadratic model fit fol-
lowing methodology from Table 4.1, Panel B. The solid black line corresponds to a
linear projection based upon data from p ≤ 0.75, indicating the degree to which the
data adhere to the expected utility prediction of linearity away from certainty. See
Appendix Tables 3.2 and 3.3 for estimates.

Documenting within-subject violations of stochastic dominance using uncer-

tainty equivalents is potentially of great interest. The observed violations are pre-

dicted by both the u-v model and specific versions of disappointment aversion (Bell,

1985; Koszegi and Rabin, 2006, 2007) and represent a within-subject example of the

hotly debated ‘uncertainty effect.’ Gneezy et al. (2006) discuss between-subject re-

sults indicating that a 50%-50% gamble over book-store gift certificates is valued less

than the certainty of the gamble’s worst outcome. Though the effect was reproduced

in Simonsohn (2009), other work has challenged these results (Keren and Willemsen,

2008; Rydval et al., 2009). While Gneezy et al. (2006) do not find within-subject ex-

amples of the uncertainty effect, Sonsino (2008) finds a similar within-subject effect

in the Internet auction bidding behavior of around 30% of individuals. Additionally,

the uncertainty effect was thought not to be present for monetary payments (Gneezy

et al., 2006). Our findings may help to inform the debate on the uncertainty effect
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and its robustness to the monetary domain. Additionally, our results may also help

to identify the source of the uncertainty effect: a disproportionate preference for cer-

tainty. Indeed, this view is hypothesized by Gneezy et al. (2006), who suggest that

“an individual posed with a lottery that involves equal chance at a $50 and $100 gift

certicate might code this lottery as a $75 gift certicate plus some risk. She might then

assign a value to a $75 gift certicate (say $35), and then reduce this amount (to say

$15) to account for the uncertainty.”[p. 1291]

The original uncertainty effect of preferring a 50%-50% gamble’s worst out-

come over the gamble itself requires an intense preference for certainty. In our envi-

ronment, the behavior could be generated if the elicited q at certainty was higher than

those elicited for p ∈ {0.95, 0.9, 0.75, 0.5}. That is, subjects would have an individ-

ual violation rate in the 21 experimental comparisons involving certainty of greater

than 0.5. Figure 3.4.1 presents a histogram of Violation Rate, the stochastic domi-

nance violation rate for the 21 comparisons involving certainty.35 In our subsequent

analysis we will use Violation Rate as a continuous measure of the intensity of the

disproportionate preference for certainty.36 Notable from Figure 3.4.1 is that there

is heterogeneity in the intensity of Violation Rate and that only in the extreme is it

high enough to be clearly suggestive of preferring a 50%-50% gamble’s worst outcome

over the gamble itself.

It is important to note that the violations of stochastic dominance that we doc-

ument are indirect measures of violation. We hypothesize that violations of stochastic

dominance would be less prevalent in direct preference rankings of gambles with a

dominance relation. Of course, such direct violations of dominance may be eliminated

from the u-v preference model via editing arguments (Neilson, 1992) and are excluded

by assumption in some models of disappointment aversion (Gul, 1991; Loomes and

Sugden, 1986). However, it must be recognized that both models in some form pre-

35A small minority of Certainty Neutral subjects have non-zero violation rates, as their elicited
q at certainty is higher than that of some lower probability. The average certainty Violation Rate
(0.069) for the 19% of Certainty Neutral subjects (9 of 47) with positive Violation Rate values is
about same as their average violation rate away from certainty (0.060). For Certainty Preferring
subjects, the average certainty Violation Rate (0.235) is about three times their violation rate away
from certainty (0.082).

36We recognize that this is a rough measure of intensity of certainty preference in the sense that
individuals could have a non-monotonic relationship between p and q away from certainty. However,
given the low dominance violation rates away from certainty, this is not extremely problematic.
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Figure 3.7: Histogram of Violation Rate

Note: Figure presents a histogram of Violation Rate calculating the fraction of vio-
lations of stochastic dominance in 21 experimental comparisons involving p = 1.

dict violations of dominance in all contexts. Because one would not predict violations

in direct comparison, the present results could potentially be viewed as errors or

mistakes in decision-making influenced by frames and experimental methods.

Though we believe the presence of dominance violations can be influenced

by frames, this is likely true for the presence of many decision phenomena. In the

following section we present data from certainty equivalents demonstrating that one

cannot likely consider near-certainty dominance violations as an error and probability

weighting as a true preference. The two phenomena correlate highly at the individual

level.

3.4.2 Certainty Equivalents Data

In this section we explore behavior in standard certainty equivalents. Seven

certainty equivalents tasks with p gambles over $30 and $0 from the set

p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95} were administered, following the probabili-

ties used in the original probability weighting experiments of Tversky and Kahneman

(1992) and Tversky and Fox (1995). The analysis also follows closely the presentation

and non-linear estimation techniques of Tversky and Kahneman (1992) and Tversky

and Fox (1995).

As noted in Section 3.2, certainty equivalent analysis estimating risk aversion
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or probability weighting parameters that assumes a single utility function is flawed if

there exists a disproportionate preference for certainty. If a differential preference for

certainty exists, then risk aversion or probability weights are not identified separately

from the specific preference for certainty. As such, extreme small-stakes risk aversion

or non-linear probability weighting may be apparent when none actually exists.37 We

first document small stakes risk aversion and apparent probability weighting in our

data and then correlate these phenomena with the violations of dominance measured

in Section 3.4.1.

Risk Aversion and Probability Weighting

The identification of probability weighting and small-stakes risk aversion from

certainty equivalents data normally relies on a range of experimental probabilities

from near zero to near one. Probability weighting is initially supported if, for fixed

stakes, subjects appear risk loving at low probabilities and risk averse at higher prob-

abilities.38 Small-stakes risk aversion would be viewed as the risk aversion aspect of

this phenomenon.

Figure 3.4.2 presents a summary of the obtained certainty equivalents.39 As

in Section 3.4.1, in order to obtain appropriate estimates of the mean and standard

errors, we first conducted an interval regression of the certainty equivalent, C, on

indicators for the experimental probabilities. Corresponding estimates are provided

in Appendix Table 3.4, Column (1). Following Tversky and Kahneman (1992), the

data are presented relative to a benchmark of risk neutrality such that, for a linear

utility function, Figure 3.4.2 directly reveals the probability weighting function, π(p).

The data show evidence of both small stakes risk aversion and non-linear probability

37Diecidue et al. (2004) discuss potential functional forms that could deliver both apparent up-
weighting of low probabilities and down-weighting of high probabilities in certainty equivalents. One
possibility is the u-v parameterization discussed in Andreoni and Sprenger (2009c) with differential
curvature, v(x) = xα, u(x) = xα−β with β < α < 1, which produces both up-weighting of (very)
low probabilities and down-weighting of high probabilities.

38Because certainty equivalent responses are determined by both utility function curvature and
probability weighting, even risk aversion at low probabilities could be consistent with probability
weighting provided risk aversion was increasing in probability.

39Figure 3.4.2 excludes one subject with multiple switching in one task. Identical aggregate results
are obtained with the inclusion of this subject. However, we cannot estimate probability weighting
at the individual level for this subject.
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Note: Mean certainty equivalent response. Solid line corresponds to risk neutrality.
Dashed line corresponds to fitted values from non-linear least squares regression (1).

weighting. Subjects are significantly risk loving at low probabilities and significantly

risk averse at intermediate and high probabilities. These findings are in stark contrast

to those obtained in the uncertainty equivalents discussed in Section 3.4.1. Whereas

in uncertainty equivalents we obtain no support for S -shaped probability weighting, in

certainty equivalents we reproduce the probability weighting results generally found.40

Tversky and Kahneman (1992) and Tversky and Fox (1995) obtain probability

weighting parameters from certainty equivalents data by parameterizing both the

40Certainty equivalents correlate significantly with the number of safe choices in the Holt-Laury
risk tasks. For example, for p = 0.5 the individual correlations between the midpoint certainty
equivalent, C, and the number of safe choices, S10 and S30, in the HL tasks are ρC,S10 = −0.24 (p <
0.05) and ρC,S30 = −0.24 (p < 0.05). These results demonstrate consistency across elicitation
techniques as a lower certainty equivalent and a higher number of safe HL choices both indicate
more risk aversion. Additionally, the certainty equivalents correlate significantly with uncertainty
equivalents. For example, for p = 0.5 the individual correlations between the midpoint certainty
equivalent, C, and the midpoint of the uncertainty equivalent, q, are ρC,q(10,30) = −0.24 (p < 0.05),
ρC,q(30,50) = −0.25 (p < 0.05), and ρC,q(10,50) = −0.24 (p < 0.05).
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utility and probability weighting functions and assuming the indifference condition

u(C) = π(p) · u(30)

is met for each observation. We follow the parameterization of Tversky and Kahne-

man (1992) with power utility, u(X) = Xα, and the one-parameter weighting func-

tion π(p) = pγ/(pγ + (1− p)γ)1/γ.41 Lower γ corresponds to more intense probability

weighting. The parameters γ̂ and α̂ are then estimated as the values that minimize

the sum of squared residuals of the non-linear regression equation

C = [pγ/(pγ + (1− p)γ)1/γ × 30α]1/α + ε. (3.1)

When conducting such analysis on our aggregate data with standard errors

clustered on the subject level, we obtain α̂ = 1.07 (0.05) and γ̂ = 0.73 (0.03).42

The hypothesis of linear utility, α = 1, is not rejected, (F1,74 = 2.18, p = 0.15),

while linearity in probability, γ = 1, is rejected at all conventional levels, (F1,74 =

106.36, p < 0.01). The model fit is presented as the dashed line in Figure 3.4.2. The

obtained probability weighting estimate compares favorably with the Tversky and

Kahneman (1992) estimate of γ̂ = 0.61 and other one-parameter estimates such as

Wu and Gonzalez (1996) who estimate γ̂ = 0.71.

41Tversky and Fox (1995) use power utility with curvature fixed at α = 0.88 from Tversky and
Kahneman (1992) and a two parameter π(·) function.

42For this analysis we estimate using the interval midpoint as the value of C, and note that the
dependent variable is measured with error.
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The presence of small stakes risk aversion and probability weighting in the

aggregate certainty equivalents data is intriguing. These phenomena, as observed in

certainty equivalents, may be conflated with a disproportionate preference for cer-

tainty. In order to test this claim, we present simple correlations in Figure 3.4.2. For

each experimental probability, we correlate certainty equivalents with the intensity of

certainty preference, Violation Rate, from the uncertainty equivalents. A horizontal

benchmark of each gamble’s expected value is also provided. The correlations suggest

that the intensity of the disproportionate preference for certainty plays an important

role for measured risk attitudes. Significant negative correlations between Violation

Rate and certainty equivalents are obtained, primarily at higher probabilities. In-

significant positive correlations are obtained at lower probabilities. These results

indicate that subjects with a more intense preference for certainty, as measured by

Violation Rate, display significantly more small stakes risk aversion. These results

are confirmed in regression, and we reject the null hypothesis that Violation Rate has

no influence on certainty equivalent responses, (χ2(7) = 18.06, p < 0.01). Appendix

Table 3.4, Column (5) provides the detail.

For subjects with a more intense preference for certainty, the significant in-

crease in risk aversion at high probabilities and the slight increase in risk loving

at low probabilities introduces more non-linearity into their measured probability

weighting functions. Figure 3.4.2 also presents the correlation between individual

probability weighting, γ̂, estimated from (1) and the intensity of certainty prefer-

ence, Violation Rate.43 The degree to which individuals disproportionately prefer

certainty predicts the degree of certainty equivalent-elicited probability weighting,

(ρ = −0.29, p = 0.011).44 This gives support to the claim that a disproportionate

preference for certainty is conflated with non-linear probability weighting in standard

43Following the aggregate estimate, α = 1 is assumed for the individual estimates.
44Additionally, the indicator for Certainty Preferent correlates with certainty equivalent response.

See Appendix Table 3.4, Column (3). Eleven subjects exhibited non-monotonic relationships be-
tween experimental probabilities and elicited certainty equivalents. Though no systematic pat-
tern was observed, such behavior is another example of violating stochastic dominance in deci-
sions involving certainty. Non-monotonicity correlates significantly with being Certainty Preferent,
(ρ = 0.44, p < 0.01). Eliminating these individuals leaves the results qualitatively unchanged.
Certainty equivalent behavior remains supportive of probability weighting and elicited probability
weights remain significantly correlated with Violation Rate, (ρ = −0.29, p < 0.05). Appendix Table
3.4, Columns (2), (4) and (6) provide estimates.
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certainty-based experiments.45

It is critically important to contrast our results demonstrating the absence of

probability weighting in uncertainty equivalents, its presence in certainty equivalents,

and its relationship to violations of stochastic dominance with the body of results that

find support for S -shaped probability weighting. Above we have discussed why stan-

dard estimation exercises assuming functional form for utility or probability weighting

cannot be used to directly test linearity-in-probabilities. However, there exist a num-

ber of studies parametrically investigating probability weighting in decisions without

certainty (Tanaka et al., 2010; Booij et al., 2010). These parametric estimates in-

dicate that S -shaped probability weighting may be observed in decisions without

certainty and clearly points to the need for future research. Additionally, attention

must be given to the ‘parameter-free’ elicitation techniques that find non-parametric

support for non-linear probability weights (Gonzalez and Wu, 1999; Abdellaoui, 2000;

Bleichrodt and Pinto, 2000). Importantly, both Gonzalez and Wu (1999) and Ab-

dellaoui (2000) make use of certainty equivalents or a number of certain outcomes to

identify probability weights, a technique that is misspecified if there exists a specific

preference for certainty. Bleichrodt and Pinto (2000) do not use certainty equivalents

techniques, but their experiment is designed not to elicit preferences over monetary

payments, but rather over hypothetical life years. It is not clear the extent to which

such findings apply to incentivized elicitation procedures over money.46

45As a robustness test, we repeat the analysis with an alternate functional form Prelec (1998),
π(p) = exp(−(−lnp)γ), and obtain a correlation between γ̂ and Violation Rate of ρ = −0.25 p < 0.05.
Additionally, Appendix Tables 3.5 and 3.6 present results from the classification of risk attitudes
based on the interval of the certainty equivalent response. These data demonstrate that Certainty
Preferring subjects are more likely to be classified as risk loving at low probabilities and are more
likely to be classified as risk averse at higher probabilities. Additionally, Certainty Neutral subjects
are more likely to be risk neutral at higher probabilities.

46Abdellaoui (2000), Bleichrodt and Pinto (2000), Booij and van de Kuilen (2009) and Booij et
al. (2010) share a two-stage elicitation procedure which ‘chains’ responses in order to obtain utility
or probability weighting values. Such chained procedures are common to the ‘trade-off’ (Wakker
and Deneffe, 1996) method of utility assessment. A discussed problem with these chained methods
is that errors propagate through the experiment.
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3.5 Conclusion

Volumes of research exists exploring both the implications and violations of the

independence axiom. Surprisingly, little research exists directly testing the most criti-

cal result of the independence axiom: linearity-in-probabilities of the Expected Utility

(EU) function. We present an experimental device that easily generates such a direct

test, the uncertainty equivalent. Uncertainty equivalents not only provide tests of

expected utility’s linearity-in-probabilities, but also provide separation between com-

peting alternative preference models such as Cumulative Prospect Theory’s (CPT)

inverted S -shaped probability weighting (Kahneman and Tversky, 1979; Tversky and

Kahneman, 1992), expectations-based reference dependence (Bell, 1985; Loomes and

Sugden, 1986; Gul, 1991; Koszegi and Rabin, 2006, 2007), and the u-v preference

model (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004).

In a within-subject experiment with both uncertainty equivalents and stan-

dard certainty equivalent methodology we demonstrate four important results. First,

independence performs well away from certainty where probabilities are found to be

weighted nearly linearly. Second, independence breaks down close to certainty. The

nature of the violation is contrary to standard S -shaped probability weighting and

consistent with other alternative models such as disappointment aversion and u-v

preferences, which both feature a disproportionate preference for certainty. Third,

nearly 40% of experimental subjects indirectly violate first order stochastic domi-

nance as probabilities approach 1. These violations are a necessary prediction of

the u-v model and are accommodated in some versions of disappointment aversion.

Fourth, in certainty equivalents experiments, apparent S -shaped probability weight-

ing and small stakes risk aversion phenomena are observed, closely reproducing prior

findings. However, these phenomena are driven by individuals who exhibit a dispro-

portionate preference for certainty in uncertainty equivalents by violating stochastic

dominance.

By far the most central result of this research is the demonstration that a

parsimonious model of a disproportionate preference for certainty can be extremely

powerful in explaining and unifying a gamut of economic behavior, from apparent

S -shaped probability weighting to violations of first order stochastic dominance.
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Our findings have critical implications for research on risk attitudes and have

applications to a variety of economic problems. The results demonstrate that exper-

imental measures of risk attitudes and EU violations are dramatically influenced by

the presence of certainty. Since the work of Allais (1953b) certainty has been known

to play a special role in decision-making and in generating non-EU behavior. Our

results indicate that a specific preference for certainty may be the key element in

producing such behavior. This suggests that empirical work should take great care

to separate certainty preferences from other phenomena under investigation. Addi-

tionally, theoretical research should take seriously models with specific preferences for

certainty and their implications in the study of decision-making under uncertainty.

3.6 Appendix
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3.6.1 Additional Estimates

Table 3.2: Relationship Between q and p for Certainty Neutral Subjects
(1) (2) (3)

(X, Y ) = ($10, $30) (X, Y ) = ($30, $50) (X, Y ) = ($10, $50)

Dependent Variable: Interval Response of Uncertainty Equivalent (q × 100)

Panel A: Non-Parametric Estimates

p× 100 = 10 -3.832*** -1.708*** -3.161***
(0.361) (0.349) (0.322)

p× 100 = 25 -12.928*** -6.782*** -10.750***
(0.767) (0.739) (0.974)

p× 100 = 50 -22.492*** -11.804*** -20.306***
(1.426) (1.211) (1.631)

p× 100 = 75 -32.058*** -16.635*** -30.306***
(2.216) (1.685) (2.462)

p× 100 = 90 -38.760*** -19.613*** -37.080***
(2.725) (1.875) (3.070)

p× 100 = 95 -41.526*** -20.348*** -40.412***
(3.005) (1.855) (3.233)

p× 100 = 100 -46.951*** -23.220*** -45.199***
(3.083) (2.021) (3.168)

Constant 96.367*** 97.037*** 96.210***
(0.407) (0.289) (0.687)

Log-Likelihood = -2760.30

Panel B: Quadratic Estimates

p× 100 -0.471*** -0.276*** -0.393***
(0.043) (0.041) (0.055)

(p× 100)2 0.000 0.000 -0.000
(0.000) (0.000) (0.000)

Constant 97.313*** 97.905*** 97.132***
(0.582) (0.465) (0.804)

Log-Likelihood = –2764.70

Panel C: Linear Estimates

p× 100 -0.454*** -0.226*** -0.445***
(0.033) (0.022) (0.036)

Constan 97.081*** 97.227*** 97.832***
(0.486) (0.528) (0.861)

Log-Likelihood = -2765.05

Notes: Coefficients from single interval regression for each panel (Stewart, 1983) with 1127 obser-
vations. Standard errors clustered at the subject level in parentheses. 47 clusters. The regressions
feature 1127 observations because one individual had a multiple switch point in one uncertainty
equivalent in the (X, Y ) = ($10, $50) condition. Level of significance: *p < 0.1, **p < 0.05,
***p < 0.01
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Table 3.3: Relationship Between q and p for Certainty Preferring Subjects
(1) (2) (3)

(X, Y ) = ($10, $30) (X, Y ) = ($30, $50) (X, Y ) = ($10, $50)

Dependent Variable: Interval Response of Uncertainty Equivalent (q × 100)

Panel A: Non-Parametric Estimates

p× 100 = 10 -3.282*** -3.984*** -5.019***
(0.492) (0.534) (0.918)

p× 100 = 25 -13.823*** -12.249*** -13.605***
(1.433) (1.218) (1.104)

p× 100 = 50 -26.754*** -16.214*** -25.487***
(3.079) (1.247) (2.016)

p× 100 = 75 -38.651*** -19.663*** -31.521***
(4.145) (1.670) (2.450)

p× 100 = 90 -40.215*** -18.456*** -35.487***
(4.706) (1.599) (2.947)

p× 100 = 95 -41.432*** -19.864*** -38.602***
(4.969) (2.191) (3.656)

p× 100 = 100 -31.933*** -19.361*** -41.533***
(4.255) (2.316) (3.906)

Constant 93.565*** 96.473*** 96.263***
(1.469) (0.600) (0.691)

Log-Likelihood = -1712.51

Panel B: Quadratic Estimates

p× 100 -0.967*** -0.538*** -0.625***
(0.121) (0.052) (0.081)

(p× 100)2 0.005*** 0.003*** 0.002**
(0.001) (0.001) (0.001)

Constant 99.440*** 97.774*** 97.941***
(2.120) (0.872) (1.074)

Log-Likelihood = –1719.41

Panel C: Linear Estimates

p× 100 -0.406*** -0.182*** -0.401***
(0.048) (0.024) (0.039)

(p× 100)2 91.865*** 92.967*** 94.914***
(1.414) (0.835) (1.192)

Log-Likelihood = -1736.33

Notes: Coefficients from single interval regression for each panel (Stewart, 1983) with 696 observa-
tions. Standard errors clustered at the subject level in parentheses. 29 clusters.

Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01
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Table 3.4: Relationship between C and p
Dependent Variable: Interval Response of Certainty Equivalent (C)

(1) (2) (3) (4) (5) (6)

p× 100 = 10 1.456*** 1.517*** 1.270*** 1.246*** 1.380*** 1.550***
(0.220) (0.174) (0.166) (0.167) (0.203) (0.177)

p× 100 = 25 4.378*** 4.380*** 4.275*** 4.215*** 4.542*** 4.786***
(0.333) (0.358) (0.375) (0.379) (0.373) (0.371)

p× 100 = 50 9.339*** 9.688*** 9.749*** 9.858*** 9.921*** 10.613***
(0.632) (0.588) (0.643) (0.649) (0.721) (0.610)

p× 100 = 75 15.595*** 16.159*** 16.226*** 16.404*** 16.744*** 17.350***
(0.668) (0.682) (0.771) (0.774) (0.710) (0.681)

p× 100 = 90 20.593*** 21.448*** 21.345*** 21.632*** 21.488*** 22.004***
(0.625) (0.560) (0.719) (0.680) (0.666) (0.628)

p× 100 = 95 22.785*** 23.412*** 23.660*** 23.572*** 23.688*** 23.771***
(0.601) (0.537) (0.661) (0.670) (0.583) (0.598)

Certainty Preferring (=1) 1.578** 1.127
(0.768) (0.862)

Certainty Preferring (=1), p× 100 = 10 0.484 0.917**
(0.528) (0.429)

Certainty Preferring (=1), p× 100 = 25 0.267 0.556
(0.728) (0.888)

Certainty Preferring (=1), p× 100 = 50 -1.065 -0.581
(1.420) (1.404)

Certainty Preferring (=1), p× 100 = 75 -1.633 -0.823
(1.412) (1.561)

Certainty Preferring (=1), p× 100 = 90 -1.945 -0.619
(1.309) (1.174)

Certainty Preferring (=1), p× 100 = 95 -2.268* -0.539
(1.273) (1.087)

Violation Rate 2.792 2.719
(1.896) (3.028)

Violation Rate, p× 100 = 10 0.769 -0.474
(1.448) (1.430)

Violation Rate, p× 100 = 25 -1.682 -5.676***
(2.718) (2.185)

Violation Rate, p× 100 = 50 -5.893 -12.871***
(6.776) (3.732)

Violation Rate, p× 100 = 75 -11.643** -16.613***
(5.327) (3.165)

Violation Rate, p× 100 = 90 -9.102* -7.769*
(5.033) (4.345)

Violation Rate, p× 100 = 95 -9.178* -4.993
(4.726) (3.772)

Constant 4.421*** 4.209*** 3.812*** 3.875*** 4.146*** 4.013***
(0.376) (0.391) (0.448) (0.453) (0.427) (0.435)

Log-Likelihood -1335.677 -1085.103 -1330.755 -1081.072 -1326.645 -1072.665
# Observations 525 448 525 448 525 448
# Clusters 75 64 75 64 75 64

Notes: Coefficients from interval regressions (Stewart, 1983). Standard errors clustered at the
subject level in parentheses. Columns (2), (4), (6) restrict the sample to individuals with a monotonic
relationship between C and p. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01
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Table 3.5: Risk Attitudes in Certainty Equivalents

Panel A: All Subjects (N=75)

Proportion
p N Risk Averse Risk Neutral Risk Loving

0.05 75 0.12 0.28 0.60
0.10 75 0.09 0.25 0.65
0.25 75 0.23 0.33 0.44
0.50 75 0.40 0.27 0.33
0.75 75 0.49 0.23 0.28
0.90 75 0.47 0.23 0.31
0.95 75 0.28 0.48 0.24

Panel B: Certainty Preferring (N=29)

Proportion
p N Risk Averse Risk Neutral Risk Loving

0.05 29 0.07 0.21 0.72
0.10 29 0.03 0.10 0.86
0.25 29 0.17 0.24 0.59
0.50 29 0.45 0.10 0.45
0.75 29 0.52 0.07 0.41
0.90 29 0.48 0.17 0.34
0.95 29 0.31 0.34 0.34

Panel C: Certainty Neutral (N=46)

Proportion
p N Risk Averse Risk Neutral Risk Loving
0.05 46 0.15 0.33 0.52
0.10 46 0.13 0.35 0.52
0.25 46 0.26 0.39 0.35
0.50 46 0.37 0.37 0.26
0.75 46 0.48 0.33 0.20
0.90 46 0.46 0.26 0.28
0.95 46 0.26 0.57 0.17

Notes: Table reports classification of risk averse, neutral and
loving based on interval of certainty equivalent response for 75
of 76 subjects. One subject with multiple switching in one task
is eliminated.
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Table 3.6: Risk Aversion and Risk Loving in Certainty Equivalents
All p p ≤ 0.25 p > 0.25

(1) (2) (3) (4) (5) (6)

Dependent Variable: Risk Averse, Neutral or Loving Classification

Risk Loving

Certainty Preferring (=1) 1.261*** 1.129** 1.336***
(0.381) (0.445) (0.469)

Violation Rate 4.236*** 5.046** 3.418**
(1.349) (2.131) (1.685)

p× 100 -0.013*** -0.013*** -0.032** -0.030** -0.016* -0.015*
(0.004) (0.004) (0.014) (0.015) (0.008) (0.008)

Constant 0.471 0.578** 0.672* 0.692** 0.703 0.911
(0.296) (0.275) (0.359) (0.343) (0.713) (0.690)

Risk Averse

Certainty Preferring (=1) 0.667* -0.045 0.920**
(0.389) (0.653) (0.441)

Violation Rate 4.614*** 3.987 4.628***
(1.226) (2.543) (1.392)

p× 100 0.010** 0.010** 0.029 0.028 -0.013* -0.013*
(0.004) (0.004) (0.021) (0.021) (0.008) (0.008)

Constant -0.756** -0.935** -1.107** -1.359** 1.060 0.978
(0.362) (0.366) (0.551) (0.548) (0.656) (0.671)

# Observations 525 525 225 225 300 300
# Clusters 75 75 75 75 75 75
Log-Likelihood -529.355 -528.915 -205.289 -205.384 -315.141 -314.776

Notes: Coefficients of multinomial logit regressions. Dependent variable: classification of risk averse,
neutral and loving based on interval of certainty equivalent response for 75 of 76 subjects. One
subject with multiple switching in one task is eliminated. Reference category: risk neutrality.
Clustered standard errors in parentheses. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01
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3.6.2 Experimental Instructions

Hello and Welcome.

ELIGIBILITY FOR THIS STUDY: To be in this study,

you must be a UCSD student. There are no other requirements. The study will be

completely anonymous. We will not collect your name, student PID or any other

identifying information. You have been assigned a participant number and it is on

the note card in front of you. This number will be used throughout the study. Please

inform us if you do not know or cannot read your participant number.

EARNING MONEY:

To begin, you will be given a $5 minimum payment. This $5 is yours. What-

ever you earn from the study today will be added to this minimum payment. All

payments will be made in cash at the end of the study today.

In this study you will make choices between two options. The first option will

always be called OPTION A. The second option will always be called OPTION B. In

each decision, all you have to do is decide whether you prefer OPTION A or OPTION

B. These decisions will be made in 5 separate blocks of tasks. Each block of tasks is

slightly different, and so new instructions will be read at the beginning of each task

block.

Once all of the decision tasks have been completed, we will randomly select

one decision as the decision-that-counts. If you preferred OPTION A, then OPTION

A would be implemented. If you preferred OPTION B, then OPTION B would be

implemented.

Throughout the tasks, either OPTION A, OPTION B or both will involve

chance. You will be fully informed of the chance involved for every decision. Once

we know which is the decision-that-counts, and whether you prefer OPTION A or

OPTION B, we will then determine the value of your payments.

For example, OPTION A could be a 75 in 100 chance of receiving $10 and a

25 in 100 chance of receiving $30. This might be compared to OPTION B of a 50 in

100 chance of receiving $30 and a 50 in 100 chance of receiving nothing. Imagine for
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a moment which one you would prefer. You have been provided with a calculator to

help you in your decisions.

If this was chosen as the decision-that-counts, and you preferred OPTION

A, we would then randomly choose a number from 1 to 100. This will be done by

throwing two ten-sided die: one for the tens digit and one for the ones digit (0-0 will

be 100). If the chosen number was between 1 and 75 (inclusive) you would receive $10

(+5 minimum payment) = $15. If the number was between 76 and 100 (inclusive) you

would receive $30 (+5 minimum payment) = $35. If, instead, you preferred OPTION

B, we would again randomly choose a number from 1 to 100. If the chosen number

was between 1 and 50 (inclusive) you’d receive $0 (+5 minimum payment) = $5.

If the number was between 51 and 100 (inclusive) you’d receive $30 (+5 minimum

payment) = $35.

In a moment we will begin the first task.

3.6.3 Sample Uncertainty Equivalent

On this page you will make a series of decisions between two uncertain options.

Option A will be a 5 in 100 chance of $10 and a 95 in 100 chance of $30. Option B

will vary across decisions. Initially, Option B will be a 95 in 100 chance of $0 and a

5 in 100 chance of $30. As you proceed down the rows, Option B will change. The

chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or

Option B.
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Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

5 in 100 95 in 100 !" or 100 in 100 0 in 100 !
1) 5 in 100 95 in 100 ! or 95 in 100 5 in 100 !
2) 5 in 100 95 in 100 ! or 90 in 100 10 in 100 !
3) 5 in 100 95 in 100 ! or 85 in 100 15 in 100 !
4) 5 in 100 95 in 100 ! or 80 in 100 20 in 100 !
5) 5 in 100 95 in 100 ! or 75 in 100 25 in 100 !
6) 5 in 100 95 in 100 ! or 70 in 100 30 in 100 !
7) 5 in 100 95 in 100 ! or 65 in 100 35 in 100 !
8) 5 in 100 95 in 100 ! or 60 in 100 40 in 100 !
9) 5 in 100 95 in 100 ! or 55 in 100 45 in 100 !
10) 5 in 100 95 in 100 ! or 50 in 100 50 in 100 !
11) 5 in 100 95 in 100 ! or 45 in 100 55 in 100 !
12) 5 in 100 95 in 100 ! or 40 in 100 60 in 100 !
13) 5 in 100 95 in 100 ! or 35 in 100 65 in 100 !
14) 5 in 100 95 in 100 ! or 30 in 100 70 in 100 !
15) 5 in 100 95 in 100 ! or 25 in 100 75 in 100 !
16) 5 in 100 95 in 100 ! or 20 in 100 80 in 100 !
17) 5 in 100 95 in 100 ! or 15 in 100 85 in 100 !
18) 5 in 100 95 in 100 ! or 10 in 100 90 in 100 !
19) 5 in 100 95 in 100 ! or 5 in 100 95 in 100 !
20) 5 in 100 95 in 100 ! or 1 in 100 99 in 100 !

5 in 100 95 in 100 ! or 0 in 100 100 in 100 !"
3.6.4 Sample Holt-Laury Task

On this page you will make a series of decisions between two uncertain options.

Option A involves payments of $5.20 and $4.15. Option B involves payments of $10

and $0.26. As you proceed, both Option A and Option B will change. For Option

A, the chance of receiving $5.20 will increase and the chance of receiving $4.15 will

decrease. For Option B, the chance of receiving $10 will increase, while the chance of

receiving $0.26 will decrease.

For each row, all you have to do is decide whether you prefer Option A or

Option B. Indicate your preference, by checking the corresponding box.
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Option A or Option B
Chance Chance Chance Chance

of of of of
$5.20 $4.15 $10 $0.26

0 in 100 100 in 100 !" or 0 in 100 100 in 100 !
1) 10 in 100 90 in 100 ! or 10 in 100 90 in 100 !
2) 20 in 100 80 in 100 ! or 20 in 100 80 in 100 !
3) 30 in 100 70 in 100 ! or 30 in 100 70 in 100 !
4) 40 in 100 60 in 100 ! or 40 in 100 60 in 100 !
5) 50 in 100 50 in 100 ! or 50 in 100 50 in 100 !
6) 60 in 100 40 in 100 ! or 60 in 100 40 in 100 !
7) 70 in 100 30 in 100 ! or 70 in 100 30 in 100 !
8) 80 in 100 20 in 100 ! or 80 in 100 20 in 100 !
9) 90 in 100 10 in 100 ! or 90 in 100 10 in 100 !

100 in 100 0 in 100 ! or 100 in 100 0 in 100 !"

3.6.5 Sample Certainty Equivalents

On this page you will make a series of decisions between two options. Option

A will be a 50 in 100 chance of $30 and a 50 in 100 chance of $0. Option B will vary

across decisions. Initially, Option B will be a $0.50 for sure. As you proceed down

the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or

Option B.
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Option A or Option B
Chance of $30 Chance of $0 Sure Amount

50 in 100 50 in 100 !" or $0.00 for sure !
1) 50 in 100 50 in 100 ! or $0.50 for sure !
2) 50 in 100 50 in 100 ! or $1.00 for sure !
3) 50 in 100 50 in 100 ! or $1.50 for sure !
4) 50 in 100 50 in 100 ! or $2.50 for sure !
5) 50 in 100 50 in 100 ! or $3.50 for sure !
6) 50 in 100 50 in 100 ! or $4.50 for sure !
7) 50 in 100 50 in 100 ! or $6.50 for sure !
8) 50 in 100 50 in 100 ! or $8.50 for sure !
9) 50 in 100 50 in 100 ! or $10.50 for sure !
10) 50 in 100 50 in 100 ! or $13.50 for sure !
11) 50 in 100 50 in 100 ! or $16.50 for sure !
12) 50 in 100 50 in 100 ! or $19.50 for sure !
13) 50 in 100 50 in 100 ! or $21.50 for sure !
14) 50 in 100 50 in 100 ! or $23.50 for sure !
15) 50 in 100 50 in 100 ! or $25.50 for sure !
16) 50 in 100 50 in 100 ! or $26.50 for sure !
17) 50 in 100 50 in 100 ! or $27.50 for sure !
18) 50 in 100 50 in 100 ! or $28.50 for sure !
19) 50 in 100 50 in 100 ! or $29.00 for sure !
20) 50 in 100 50 in 100 ! or $29.50 for sure !

50 in 100 50 in 100 ! or $30.00 for sure !"
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Chapter 4

An Endowment Effect for Risk:

Experimental Tests of Stochastic

Reference Points

Abstract

The endowment effect has been widely documented. Recent models of refer-

ence dependent preferences indicate that expectations play a prominent role in the

presence of the phenomenon. A subset of such expectations-based models predicts

an endowment effect for risk when reference points change from certain to stochastic.

In two purposefully simple risk preference experiments, eliminating often-discussed

confounds, I demonstrate both between and within-subjects an endowment effect for

risky gambles. While subjects are virtually risk neutral when choosing between fixed

gambles and changing certain amounts, a high degree of risk aversion is displayed

when choosing between fixed amounts and changing gambles. These results provide

needed separation between expectations-based reference-dependent models, allow for

evaluation of recent theoretical extensions, and may help to close a long-standing de-

bate in decision science on inconsistency between probability and certainty equivalent

methodology for utility elicitation.
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4.1 Introduction

The endowment effect refers to the frequent finding in both experimental and

survey research that willingness to pay (WTP) for a given object is generally lower

than willingness to accept (WTA) for the same good.1 Though standard economics

argues the two values should be equal apart from income effects, differences between

WTA and WTP have been documented across a variety of contexts from public ser-

vices and environmental protection to private goods and hunting licences (Thaler,

1980; Knetsch and Sinden, 1984; Brookshire and Coursey, 1987; Coursey et al., 1987;

Knetsch, 1989; Kahneman et al., 1990; Harbaugh et al., 2001). Horowitz and Mc-

Connell (2002) provide a survey of 50 studies and find a median ratio of mean WTA

to mean WTP of 2.6.

The endowment effect has been cited as a key example of loss aversion relative

to a reference point (Knetsch et al., 2001). Reference-dependent preferences with

disproportionate treatment of losses predicts sizable differences between WTA and

WTP. If losses are felt more severely than commensurate gains, paying for a good one

does not own involves incurring monetary loss, reducing WTP. Meanwhile, giving up

a good one does own involves incurring physical loss, increasing WTA. The preference

structure of loss aversion drives a wedge between the two values, resulting in WTA >

WTP.

Theoretical models of reference-dependent preferences with asymmetric treat-

ment of losses originated in the prospect theory work of Kahneman and Tversky

(1979). These models have gained traction, rationalizing not only the endowment

effect, but also a number of other important anomalies from labor market decisions

(Camerer et al., 1997; Goette and Fehr, 2007), to consumer behavior (Hardie et al.,

1993; Sydnor, Forthcoming), and finance (Odean, 1998; Barberis and Huang, 2001;

Barberis et al., 2001), among others.

Critical to reference-dependent models is the determination of the reference

point around which losses and gains are encoded. Originally, the reference point was

left undetermined, taken to be the status quo, current level of assets, or a level of

1Though I will refer to WTP and WTA as exchanging money for goods, these terms can also be
thought of as willingness to exchange goods for goods such as mugs for pens and vice versa.
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aspiration or expectation (Kahneman and Tversky, 1979). Indeed, the freedom of

the reference point may be the reason why reference dependence is able to rationalize

such a large amount of behavior. Model extensions have added discipline. Particular

attention has been given to expectations-based mechanisms for the determination

of fixed reference points in models of Disappointment Aversion (DA) (Bell, 1985;

Loomes and Sugden, 1986; Gul, 1991), or for the determination of stochastic reference

distributions in the more recent models of Koszegi and Rabin (2006, 2007) (KR).2 In

DA the referent is modeled as the expected utility certainty equivalent of a gamble,

while in the KR model the referent is the full distribution of expected outcomes.

The DA and KR models provide coherent structure for the determination of

reference points, and have found support in a number of studies. A recent body of field

and laboratory evidence has highlighted the importance of expectations for reference-

dependent behavior (Post et al., 2008; Ericson and Fuster, 2009; Gill and Prowse,

2010; Pope and Schweitzer, Forthcoming; Crawford and Meng, Forthcoming; Abeler

et al., Forthcoming; Card and Dahl, Forthcoming). Additionally, Koszegi and Rabin

(2006) and Knetsch and Wong (2009) argue that a sensible account of expectations

may help to organize the discussion of the conditions under which the endowment

effect is observed in standard exchange experiments (Plott and Zeiler, 2005, 2007).3

Though the accumulated data do demonstrate the importance of expectations

for reference dependence, the data is generally consistent with either DA or the KR

model and is often presented as such. That is, the body of evidence is unable to

distinguish between the DA and KR models. Achieving such a distinction is critical

for evaluating applications of the two models in a variety of settings where their

2Disappointment Aversion can refer to a number of different classes of models. I focus primarily
on Bell (1985) and Loomes and Sugden (1986) who capture disappointment aversion in functional
form by fixing the referent as the certainty equivalent of a given gamble and develop a reference-
dependent disappointment-elation function around this point. Shalev (2000) provides a similar
functional form in a loss-averse game-theoretic context with the reference point fixed at a gamble’s
certainty equivalent. Though similar in spirit to these models, Gul (1991) provides a distinct ax-
iomatic foundation for disappointment aversion relaxing the independence axiom. The resulting
representation’s functional form is similar to prospect theory probability weighting (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992) with disappointment aversion making a particular
global restriction on the shape of the probability weighting function (Abdellaoui and Bleichrodt,
2007).

3Expectations of exchange may also help organize results such as documented differences in
endowment-effect behavior between experienced traders and novices List (2003, 2004).
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predictions differ. Such settings include, but are not limited to theoretical extensions,

experimental anomalies, financial decision making and marketing.

This paper presents evidence from two experiments focused on identifying

a particular prediction of the KR model which is not shared with disappointment

aversion: an endowment effect for risk. The KR model predicts that when risk is

expected, and therefore the referent is stochastic, behavior will be different from

when risk is unexpected and the referent is certain. In particular, when the referent

is stochastic, and an individual is offered a certain amount, the KR model predicts

near risk neutrality. Conversely, when the referent is a fixed certain amount, and

an individual is offered a gamble, the KR model predicts risk aversion. Hence, the

KR model features an endowment effect for risk. Disappointment aversion makes no

such asymmetric prediction as to the relationship between risk attitudes and reference

points, because gambles are always evaluated relative to a fixed referent, the gamble’s

certainty equivalent.4

Prior studies have provided only limited evidence on the critical KR prediction

of an endowment effect for risk. Knetsch and Sinden (1984) demonstrate that a higher

proportion of individuals are willing to pay $2 to keep a lottery ticket with unknown

odds of winning around $50, than to accept $2 to give up the same lottery ticket if

they already possess it. Kachelmeier and Shehata (1992) show that WTA for a 50%-

50% gamble over $20 is significantly larger than subsequent WTP out of experimental

earnings for the same gamble.

Though intriguing, these studies and others on the endowment effect suffer

from potential experimental confounds. Plott and Zeiler (2005, 2007) discuss a variety

of issues. In particular, they argue that when providing subjects with actual endow-

ments via language, visual cues or physical cues, subjects may view the endowment as

a gift and be unwilling to part with it. When using neutral language and elicitation

procedures based on the Becker et al. (1964) mechanism, Plott and Zeiler (2005) doc-

ument virtually no difference between WTA and WTP for university-branded mugs.5

4See Koszegi and Rabin (2007) for discussion.
5Plott and Zeiler (2005) discuss data from a series of small-scale paid practice lottery conditions,

which they argue were contaminated by subject misunderstanding and order effects. Recently these
data have been called into question as potentially demonstrating an endowment effect for small-
stakes lotteries (Isoni et al., Forthcoming). However, the debate remains unresolved as to whether
subject misunderstanding of the Becker et al. (1964) mechanism or other aspects of the experimental
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Plott and Zeiler (2007) demonstrate, among other things, the extent to which the

endowment effect could be related to subjects’ interpretation of gift-giving. The au-

thors increase and reduce emphasis on gifts and document corresponding increases

and decreases in willingness to trade endowed mugs for pens, and vice versa.

Given the potential confounds of prior experimental methods, it is important

to move away from the domain of physical endowments and ownership-related lan-

guage. I present between and within-subjects results from simple, neutrally-worded

experiments conducted with undergraduate students at the University of California,

San Diego. In the primary experiment, 136 subjects were separated into two groups.

Half of subjects were asked a series of certainty equivalents for given gambles. In

each decision the gamble was fixed while the certain amount was changed. The other

half were asked a series of probability equivalents for given certain amounts. In each

decision the certain amount was fixed while the gamble probabilities were changed.

In a second study, portions of the data collected for Andreoni and Sprenger (2010b)

with an additional 76 subjects and a similar, within-subjects design are presented.

The results are striking. Both between and within-subjects virtual risk neu-

trality is obtained in the certainty equivalents data, while significant risk aversion is

obtained in probability equivalents. In the primary study, subjects randomly assigned

to probability equivalent conditions are between three and four times more likely to

exhibit risk aversion than subjects assigned to certainty equivalent conditions. This

result is maintained when controlling for socio-demographic characteristics, numeracy,

cognitive ability and self-reported risk attitudes.

The between-subjects design of the primary study is complemented with ad-

ditional uncertainty equivalents (McCord and de Neufville, 1986; Magat et al., 1996;

Oliver, 2005, 2007; Andreoni and Sprenger, 2010b). Uncertainty equivalents ask sub-

jects to choose between a given gamble and alternate gambles outside of the given

gamble’s outcome support. The KR preference model predicts risk aversion in this

domain and risk neutrality in the inverse. That is, individuals should be risk averse

when endowed with a gamble (p; y, x), y > x > 0 and trading for gambles (q; y, 0), but

should be risk neutral when endowed with a gamble (p; y, 0) and trading for gambles

procedure are the primary factors (Plott and Zeiler, Forthcoming).
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(q; y, x).6 These predictions are generally supported.

Finding evidence of an endowment effect for risk, particularly in a neutral envi-

ronment like that presented in these studies, provides support for the KR preference

model. Unlike prior work demonstrating the importance of expectations for refer-

ence points, these results are able to distinguish between KR preferences and other

expectations-based models such as disappointment aversion. Gaining separation be-

tween these models is an important experimental step and necessary for evaluating

theoretical developments that depend critically on the stochasticity of the referent

(Koszegi and Rabin, 2006, 2007; Heidhues and Koszegi, 2008; Koszegi and Rabin,

2009). Additionally, the distinction between the KR and DA models is important in

a variety of applied settings where the two models make different predictions. In par-

ticular, the DA model predicts first order risk aversion in the sense of Segal and Spivak

(1990) over all gambles, while the KR model predicts first order risk aversion only

when risk is unexpected.7 Applications include financial decisions where first order

risk aversion is argued to influence stock market participation (Haliassos and Bertaut,

1995; Barberis et al., 2006) and returns (Epstein and Zin, 1990; Barberis and Huang,

2001); insurance purchasing where first order risk aversion potentially influences con-

tract choice (Sydnor, Forthcoming), and decision science where researchers have long

debated the inconsistency between probability equivalent and certainty equivalent

methods for utility assessment (Hershey et al., 1982; McCord and de Neufville, 1985,

1986; Hershey and Schoemaker, 1985; Schoemaker, 1990).

In addition to providing techniques for modeling stochastic referents, Koszegi

and Rabin (2006, 2007) propose a refinement of their model, the Preferred Personal

Equilibrium (PPE), in which the referent is revealed by choice behavior. The PPE

refinement predicts identical risk attitudes across the experimental conditions. Since

the findings reject disappointment aversion, which predicts the same pattern, it nec-

essarily rejects this refinement. A more likely non-PPE candidate for organizing the

behavior is that the referent is established as the fixed element in a given series of deci-

sions, which was always presented first. Koszegi and Rabin (2006) provide intuition in

6Standard theories and disappointment aversion again predict no difference in risk preference
across this changing experimental environment.

7By unexpected I mean when risky outcomes lie outside the support of the referent. This is the
case when the referent is fixed and when the referent is stochastic but outcomes are more variable.
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this direction suggesting “a person’s reference point is her probabilistic beliefs about

the relevant consumption outcome held between the time she first focused on the

decision determining the outcome and shortly before consumption occurs”[p. 1141].

“First focus” may plausibly be drawn to the fixed, first element in a series of decisions

and the intuition is in line with both the psychological literature on “cognitive refer-

ence points” (Rosch, 1974)8 and evidence from multi-person domains where behavior

is organized around initial reactions to experimental environments (Camerer et al.,

2004; Costa-Gomes and Crawford, 2006; Crawford and Iriberri, 2007; Costa-Gomes

et al., 2009). The potential sensitivity of expectations-based referents to minor con-

textual changes has implications for both economic agents, such as marketers, and

experimental methodology.

The paper proceeds as follows. Section 4.2 presents conceptual considera-

tions for thinking about certainty and probability equivalents in standard theories,

reference-dependent theories and the KR model. Section 4.3 presents experimen-

tal design and Section 4.4 presents results. Section 4.5 provides interpretation and

discusses future avenues of research and Section 4.6 is a conclusion.

4.2 Conceptual Considerations

In this section several models of risk preferences are discussed. With one

exception, the models predict equivalence of risk attitudes across certainty equiva-

lents and probability equivalents. The exception is the KR model, which predicts an

endowment effect for risk.

Consider expected utility. Any complete, transitive, continuous preference

ordering over lotteries that also satisfies the independence axiom will be represented

by a standard expected utility function, v(·), that is linear in probabilities. Under

such preferences, a certainty equivalent for a given gamble will be established by a

simple indifference condition. Take a binary p gamble over two positive values, y and

8Rosch (1974) describes a cognitive reference point as the stimulus “which other stimuli are seen
‘in relation to’”[p. 532]. In the present studies this relationship is achieved by asking subjects to
make repeated choices between the fixed decision element and changing alternatives.
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x ≤ y, (p; y, x), and some certain amount, c, satisfying the indifference condition

v(c) = p · v(y) + (1− p) · v(x).

Under expected utility, it will not matter whether risk preferences are elicited via

the certainty equivalent, c, or the probability equivalent, p; the elicited level of risk

aversion, or the curvature of v(·), should be identical. There should be no endowment

effect for risk.

A similar argument can be made for reference-dependent prospect theory

which establishes loss-averse utility levels relative to some fixed referent and relaxes

the independence axiom’s implied linearity in probability (Kahneman and Tversky,

1979; Tversky and Kahneman, 1992; Tversky and Fox, 1995; Wu and Gonzalez, 1996;

Prelec, 1998; Gonzalez and Wu, 1999; Abdellaoui, 2000; Bleichrodt and Pinto, 2000).

Let u(·|r) represent loss-averse utility given some fixed referent, r. The cumulative

prospect theory indifference condition is

u(c|r) = π(p) · u(y|r) + (1− π(p)) · u(x|r),

where π(·) represents some arbitrary non-linear probability weighting function. Under

such a utility formulation, certainty and probability equivalents again yield identical

risk attitudes as the reference point is fixed at some known value.

Extensions to reference-dependent preferences have attempted to explain be-

havior by establishing what the reference point should actually be. Models of dis-

appointment aversion fix the prospect theory reference point via expectations as a

gamble’s expected utility certainty equivalent (Bell, 1985; Loomes and Sugden, 1986).

Disappointment aversion’s fixed referent does not change the predicted equivalence

of risk preferences across probability and certainty equivalents as gambles are always

evaluated relative to their certainty equivalents. In effect, disappointment aversion se-

lects r in the above indifference condition as the expected utility certainty equivalent,

p · v(y) + (1− p) · v(x), and selects a linear probability weighting function.9

9See Bell (1985); Loomes and Sugden (1986) for the exact functional forms.
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4.2.1 KR Preferences

The KR model builds upon standard reference-dependent preferences in two

important ways. First, similar to disappointment aversion, the referent is expectations-

based, and second, the referent may be stochastic. Together these innovations imply

that behavior when risk is expected, and therefore the referent is stochastic, will be

substantially different from when risk is unexpected, and the referent is certain. In

particular, KR preferences as presented below predict risk neutrality in specific cases

where the referent is stochastic and risk aversion in cases where the the referent is

certain.

Let r represent the referent potentially drawn according to measure G. Let x

be a consumption outcome potentially drawn according to measure F . Then the KR

utility formulation is

U(F |G) =
#

u(x|r)dG(r)dF (x)

with

u(x|r) = m(x) + µ(m(x)−m(r)).

The function m(·) represents consumption utility and µ(·) represents gain-loss utility

relative to the referent, r. Several simplifying assumptions are made. First, fol-

lowing Koszegi and Rabin (2006, 2007) small stakes decisions are considered such

that consumption utility, m(·), can plausibly be taken as approximately linear, and

a piecewise-linear gain-loss utility function is adopted,

µ(y) =

{
η · y if y ≥ 0

η · λ · y if y < 0

}
,

where the utility parameter λ represents the degree of loss aversion. For simplicity

and to aid the exposition, η = 1 is assumed, and only binary lotteries are considered

such that G and F will be binomial distributions summarized by probability values

p and q, respectively.

Consider two cases, first where the referent is certain and consumption out-

comes are stochastic, and second where the referent is stochastic and consumption

outcomes are certain. The above KR model predicts risk averse behavior in the first
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case and risk neutrality in the second. This is illustrated next.

Probability Equivalent: Certain Referent, Binary Consumption Gamble

Consider a referent, r, and a binary consumption gamble with outcomes x1 ≥ r

with probability q and x2 ≤ r with probability 1− q.10 Write the KR utility as

U(F |r) = q · u(x1|r) + (1− q) · u(x2|r).

The first term refers to the chance of expecting r as the referent and obtaining x1 as

the consumption outcome. The second term is similar for expecting r and obtaining

x2. If x1 ≥ r > x2, the KR model predicts loss aversion to be present in the second

term. Under the assumptions above, this becomes

U(F |r) = q · [x1 + 1 · (x1 − r)] + (1− q) · [x2 + λ · (x2 − r)]. (4.2)

Compare this to the utility of the certain amount, U(r|r) = r. The lottery will be

preferred to the certain referent if U(F |r) > U(r|r) and the indifference point, or

probability equivalent, will be obtained for some F ∗, with corresponding probability

q∗, such that U(F ∗|r) = U(r|r),

r = q∗ · [x1 + 1 · (x1 − r)] + (1− q∗) · [x2 + λ · (x2 − r)];

q∗ =
r − x2 − λ · (x2 − r)

[x1 − x2] + [1 · (x1 − r)− λ · (x2 − r)]
. (4.3)

The interpretation of the relationship between risk aversion elicited as q∗ and

loss aversion, λ, is straightforward. For an individual who is not loss averse, λ =

1, q∗ = (r − x2)/(x1 − x2). This equates the expected value of the probability

10I assume x2 ≥ 0 and that at least one of the inequalities is strict such that consumption gamble
is non-degenerate.
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equivalent and the referent value, r = q∗ · x1 + (1− q∗) · x2. Risk neutral behavior is

exhibited by individuals who are not loss averse.

For loss averse individuals with λ > 1, q∗ > (r − x2)/(x1 − x2) for x1 > r >

x2 ≥ 0. The gamble F ∗ will have higher expected value than r. Figure 4.1, Panel

A illustrates the decision for a loss averse individual. Additionally dq∗/dλ > 0 for

x1 > r > x2 ≥ 0, such that probability equivalents are increasing in the degree of

loss aversion.11 If endowed with a fixed amount in a probability equivalent task and

trading for a gamble, a loss-averse individual will appear risk averse.

Note that as x1 approaches r, then q∗ approaches 1, and as x2 approaches r,

then q∗ approaches 0. Hence q∗ will accord with the risk neutral level, (r− x2)/(x1−
x2), at the limits x1 = r and x2 = r. This implies a hump shaped deviation between

q∗ and the risk neutral level of q if λ > 1.

11The derivative dq∗/dλ = −(x2−r)·(2x1−2r)
[x1−x2+1·(x1−r)−λ·(x2−r)]2 > 0 for x1 > r > x2 ≥ 0.
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Certainty Equivalent: Binary Referent Gamble, Certain Consumption

Now consider a binary referent gamble and the prospect of certain consump-

tion. Let r1 be the referent with probability p and r2 ≤ r1 be the referent with

probability 1− p. The utility of the binary referent gamble is

U(G|G) = p·p·u(r1|r1)+(1−p)·(1−p)·u(r2|r2)+p·(1−p)·u(r1|r2)+p·(1−p)·u(r2|r1).

The first term refers to the chance of expecting r1 as the referent and obtaining r1 as

the consumption outcome. The second term is similar for r2. The third term refers

to the chance of expecting r2 as the referent and obtaining r1 as the consumption

outcome. The fourth term refers to the chance of expecting r1 as the referent and

obtaining r2 as the consumption outcome. With r1 ≥ r2, the KR model predicts loss

aversion to be present in the fourth term. Under the assumed utility formulation this

reduces to

U(G|G) = p2 ·r1+(1−p)2 ·r2+p ·(1−p) · [r1+1 ·(r1−r2)]+p ·(1−p) · [r2+λ ·(r2−r1)];

U(G|G) = p · r1 + (1− p) · r2 + p · (1− p) · [1 · (r1 − r2) + λ · (r2 − r1)].

Given this stochastic referent, consider the utility of a certain outcome, x, with r1 ≥
x ≥ r2,

U(x|G) = p · u(x|r1) + (1− p) · u(x|r2),

U(x|G) = x + p · [λ · (x− r1)] + (1− p) · [1 · (x− r2)].

The indifference point, or certainty equivalent c, is obtained for U(c|G) = u(G|G),

p·r1+(1−p)·r2+p·(1−p)·[1·(r1−r2)+λ·(r2−r1)] = c+p·[λ·(c−r1)]+(1−p)·[1·(c−r2)].

To demonstrate that individuals will be risk neutral in certainty equivalent

decisions, one need only establish the expected value as the risk neutral benchmark,

c = p ·r1 +(1−p) ·r2. Substituting c = c in the right hand side of the above equation,
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one obtains

p · r1 + (1− p) · r2 + p · [λ(p · r1 + (1− p) · r2 − r1)] + (1− p) · [1(p · r1 + (1− p) · r2 − r2)],

which reduces to

p · r1 + (1− p) · r2 + p · (1− p) · [1(r1 − r2) + λ(r2 − r1)],

and is identical to the left hand side of the above equation. Hence, indifference occurs

at the risk neutral benchmark, c = c = p·r1+(1−p)·r2. Figure 4.1, Panel B illustrates

the certainty equivalent of a gamble as the gamble’s expected value, c. If endowed

with a gamble in a certainty equivalent task and trading for a fixed amount, a loss-

averse individual will appear risk neutral, regardless of the level of loss aversion. This

is in contrast to probability equivalents where loss-averse individuals will appear risk

averse.

Equilibrium Behavior

Koszegi and Rabin (2006, 2007) present a rational expectations equilibrium

concept, the Unacclimating Personal Equilibrium (UPE), in which consumption out-

comes correspond to expectations. The objective of the UPE concept is to represent

the notion that rational individuals will only expect consumption outcomes that they

will definitely consume given the expectation of said consumption outcomes. To select

among the potential multiplicity of such equilibria, the KR model features a refine-

ment, the Preferred Personal Equilibrium (PPE). The PPE concept maintains that

the UPE with the highest ex-ante expected utility is selected.12

The development above demonstrates that KR preferences may allow for a dif-

ference in elicited risk behavior between certainty equivalents and probability equiva-

lents. However, this difference is not predicted under PPE. The probability equivalent,

12Another equilibrium concept in Koszegi and Rabin (2006, 2007) is the Choice-acclimating Per-
sonal Equilibrium (CPE) which applies to decisions made far in advance of the resolution of uncer-
tainty. In the present context CPE and PPE have similar implications, as both are based on the
coincidence of referent and consumption outcomes.
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U(F ∗|r), and the certainty equivalent, U(c|G), are not UPE values as the referent

and consumption outcomes do not coincide.

If the referent is revealed in choice behavior, then when an individual is ob-

served accepting some gamble, F ∗, over some fixed amount, r, the PPE concept es-

tablishes only that U(F ∗|F ∗) > U(r|r). That is, (F ∗|F ∗) provided the higher ex-ante

expected utility. If U(F ∗|F ∗) > U(r|r) is the PPE revealed preference in a probability

equivalent, then it cannot be that the opposite is revealed in a certainty equivalent.

Under PPE, the KR model predicts no difference between certainty equivalents and

probability equivalents. However, equilibrium behavior may be a challenging require-

ment. Individuals may naively change their referent in accordance with changes in

contextual variables. Koszegi and Rabin (2006) provide intuitive support for such

naivete suggesting that the referent is established as the probabilistic beliefs held at

the moment of “first focus” on a decision. To the extent that first focus is drawn

to different aspects of decisions, one might expect very similar decisions in theory to

induce different probabilistic referents in practice. The experimental design is indeed

predicated on the notion that minor changes in experimental context, particularly

what element is fixed and presented first in a decision environment, can effectively

change the perceived referent.

4.3 Experimental Design

Motivated by the conceptual development above, a primary between-subject

two condition experiment was designed. A secondary within-subjects design with

similar methods and data from Andreoni and Sprenger (2010b) is discussed in Section

4.4.3. In Condition 1, subjects completed two series of probability equivalents tasks.

The tasks were designed in price-list style with 21 decision rows in each task. Each

decision row was a choice between ‘Option A’, a certain amount, and ‘Option B’, an

uncertain gamble. The certain Option A was fixed for each task, as were the gamble

outcomes. The probability of receiving the gamble’s good outcome increased from 0%

to 100% as subjects proceeded through the task. In Condition 1.1, subjects completed

8 tasks with fixed certain amounts chosen from {$6, $8, $10, $14, $17, $20, $23, $26}
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and gambles over $30 and $0. In Condition 1.2, subjects completed 6 tasks with

fixed certain amounts chosen from {$12, $14, $17, $20, $23, $26} and gambles over $30

and $10. Most subjects began each task by preferring Option A and then switched

to Option B such that the probability at which a subject switches from Option A

to Option B provides bounds for their probability equivalent. Figure 4.2, Panel

A features a sample probability equivalent task. If the fixed Option A element in

each task is perceived as the referent, the KR model predicts risk aversion in these

probability equivalents.

In Condition 2, subjects completed two series of certainty equivalents tasks.

The tasks were similarly designed in price-list style with 22 decision rows in each

task. Each decision row was a choice between ‘Option A’, a gamble, and ‘Option

B’, a certain amount. The Option A gamble was fixed for each task. The certain

amount increased as subjects proceeded down the task. In Condition 2.1, subjects

completed 7 tasks with gamble outcomes of $30 and $0, probabilities chosen from

{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}, and certain amounts ranging from $0 to $30.

In Condition 2.2 subjects completed a further 7 tasks with gamble outcomes of $30
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and $10, probabilities chosen from {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}, and certain

amounts ranging from $10 to $30. Most subjects began each task by preferring Option

A and then switched to Option B such that the certain value at which a subject

switched from Option A to Option B provides bounds for their certainty equivalent.

Figure 4.2, Panel B features a sample certainty equivalent task. If the fixed Option A

element in each task is perceived as the referent, the KR model predicts risk neutrality

in these certainty equivalents.

4.3.1 Additional Measures

The probability and certainty equivalents tasks of Conditions 1.1, 1.2, 2.1

and 2.2 provide a simple comparison of elicited risk attitudes. This design is com-

plemented with a third set of tasks for which the KR model can also predict ex-

perimental differences. Condition 1.3, completed by subjects assigned to Condi-

tion 1, was a series of 8 uncertainty equivalent tasks with 21 decision rows in each

task. Option A was a fixed gamble over $30 and $10 with probabilities chosen

from {0.00, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}. Option B was a changing gamble

over $30 and $0. Condition 2.3, completed by subjects assigned to Condition 2,

was a series of inverted uncertainty equivalent tasks with 21 decision rows in each

task. Option A was a fixed gamble over $30 and $0 with probabilities chosen from

{0.35, 0.40, 0.50, 0.60, 0.75, 0.85, 0.90, 0.95}. Option B was a changing gamble over $30

and $10. Figure 4.3, Panels A and B provide a sample uncertainty equivalent and

the inverse.

The KR preference model can predict a marked difference in elicited risk atti-

tudes across Conditions 1.3 and 2.3 if the referent is perceived as the fixed element in

each task. The KR model predicts a particular shape of quadratically declining risk

aversion in Condition 1.3, the standard uncertainty equivalent. The reason is that at

the lowest probability, 0, the task is identical to a probability equivalent of
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$10 for sure. As discussed in Section 4.2.1, risk aversion is predicted. From there,

both the referent and the outcomes are stochastic such that the uncertainty equivalent

(q; 30, 0) for a given gamble (p; 30, 10) will be a convex function of p related to the

squared probability, p2.

The deviation from linearity depends on the degree of loss aversion λ and

Appendix Section 4.7.1 provides the mathematical detail. This is in contrast to

the prediction of expected utility where q should be a linear function p. This is

also in contrast to cumulative prospect theory probability weighting (Tversky and

Kahneman, 1992) where q is predicted to be a concave function of p.13

Interestingly, the KR model predicts risk neutrality in Condition 2.3, the in-

verted uncertainty equivalent. The logic is as follows: having prospective gamble

outcomes inside of the support of the referent gamble is similar to having a perturbed

certainty equivalent task. Just as risk neutrality is predicted in certainty equivalents,

the KR model also predicts risk neutrality in the inverted uncertainty equivalents.

Appendix Section 4.7.1 again provides the mathematical detail.

4.3.2 Design Details

In order to eliminate often-discussed confounds (Plott and Zeiler, 2005, 2007),

neutral language such as ‘Option A’ and ‘Option B’ was used throughout. Subjects

were never told that they were trading nor was exchange ever mentioned in the in-

structions. Subjects were told,

In each task you are asked to make a series of decisions between two options:

Option A and Option B. In each task Option A will be fixed while Option B will vary.

For example, ... [EXAMPLE].... For each row all you have to do is decide whether

you prefer Option A or Option B.

The full instructions are provided as Appendix Section 4.7.3. In each condi-

tion, the decisions were blocked into tasks corresponding to the three sub-conditions

13See Andreoni and Sprenger (2010b) for a discussion of uncertainty equivalents and their value
in separating between competing models of risk preferences.



153

discussed above. New instructions were read at the beginning of each task block ex-

plaining the new procedures and encouraging subjects to take each decision carefully.

Subjects were provided with calculators should they wish to use them in making their

decisions.

Two orders of the tasks were used in each condition to examine order effects:

X.1, X.3, X.2 and X.2, X.3, X.1. The uncertainty equivalents were left in the middle

as a buffer between the more similar tasks. No order effects were observed. In

addition to varying the order, an attempt was also made to manipulate slightly the

physical representation of Option A in each decision. This was done for around half

of subjects by stapling miniature copies of the appropriate number of bills, or bills

with appropriate percentages at the top of each decision sheet. The stapling was done

such that subjects would be forced to hold the representation of Option A in order

to make the first few decisions. Though I imagined that this nuance might influence

the degree of attachment to Option A, it had virtually no effect.14 A total of 136

subjects participated in the study across 10 experimental sessions. Table 4.1 provides

the dates, times, orders and details of all sessions.

Table 4.1: Experimental Sessions
Number Date Time Condition Order Representation # Obs

1 May 11, 2010 12:00 pm 1 (1) X.1, X.3, X.2 No 10
2 May 11, 2010 2:30 pm 1 (2) X.2, X.3, X.1 No 12
3 May 12, 2010 12:00 pm 2 (1) X.1, X.3, X.2 No 19
4 May 12, 2010 2:30 pm 2 (2) X.2, X.3, X.1 No 16
5 May 18, 2010 12:00 pm 1 (1) X.1, X.3, X.2 No 11
6 May 18, 2010 2:30 pm 1 (2) X.2, X.3, X.1 No 6
7 May 25, 2010 12:00 pm 1 (1) X.1, X.3, X.2 Yes 15
8 May 25, 2010 2:30 pm 1 (2) X.2, X.3, X.1 Yes 16
9 May 26, 2010 12:00 pm 2 (1) X.1, X.3, X.2 Yes 15
10 May 26, 2010 2:30 pm 2 (2) X.2, X.3, X.1 Yes 16

Total 136

Notes: ‘Representation’ refers to whether or not Option A was physically represented by stapling
miniature bills or bills and percentages to the decision sheet.

In order to provide incentive for truthful revelation of preferences, subjects

14Andreoni and Sprenger (2010b) use uncertainty equivalents to test expected utility and in-
vestigate violations of first order stochastic dominance near to certainty. In the non-representation
treatments for Condition 1.3 the findings are reproduced. However, in the representation treatments
for Condition 1.3, stochastic dominance violations at certainty are reduced to zero. See Sections
4.4.2 and 4.4.3 for discussion.
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were randomly paid for one of their choices.15 The instructions fully described the

payment procedure and the mechanism for carrying out randomization of payments,

two ten-sided die. The randomization was described in independent terms. That is,

mention was made of rolling die first for Option A and then for Option B and an

example was given. Subjects earned, on average, $23 from the study including a $5

minimum payment that was added to all experimental earnings.

4.4 Results

The results are presented in three sub-sections. The first sub-section pro-

vides a brief summary of the elicited risk attitudes across the two conditions and

non-parametric tests demonstrating risk aversion in the probability equivalent tasks

and virtual risk neutrality in the certainty equivalent tasks. Second, motivated by

these non-parametric results, the KR utility model is estimated and compelling out-of-

sample predictions for uncertainty equivalent tasks at both the aggregate and individ-

ual level are provided. The third sub-section is devoted to discussing within-subjects

results with data from Andreoni and Sprenger (2010b), which also demonstrate signif-

icant differences in elicited risk preferences between certainty and probability equiv-

alent techniques.

4.4.1 Risk Attitudes

Of the 136 individuals who participated in the primary experiment, 70 indi-

viduals participated in Condition 1 and 66 participated in Condition 2. As in most

price-list style experiments, a number of subjects switch from Option A to Option

B and then back to Option A.16 Three subjects (4.3%) in Condition 1 and eleven

15This randomization device introduces a compound lottery to the decision environment as each
individual made around 440 choices over their 22 tasks. Reduction of compound lotteries does
not change the general equivalence predictions for standard expected utility, prospect theory and
disappointment aversion discussed above. However, to the extent that the compound lottery changes
perceived referents, the randomization introduces complications into the KR analysis as it creates a
potential link between choices and referents across tasks. See Section 4.4.1 for further discussion.

16Around 10 percent of subjects feature multiple switch points in similar price-list experiments
(Holt and Laury, 2002; Meier and Sprenger, 2010), and as many as 50 percent in some cases (Jacobson
and Petrie, 2009). Because such multiple switch points are difficult to rationalize and may indicate
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subjects (16.7%) in Condition 2 featured multiple switch points in at least one task.

The majority of multiple switching occurred in Condition 2.3, indicating that this

task may have been confusing to subjects.17 Attention is given to the 122 subjects

who had unique switch points in all 22 decision tasks.18 This results in 1474 indi-

vidual decisions in Condition 1 and 1210 decisions in Condition 2. Of these 2684

total decision tasks, in a small percentage (0.60%) the subject preferred Option A

for all rows and in a larger percentage (4.14%) the subject preferred Option B for all

rows. These responses provide only one-sided bounds on the interval of the subject’s

response. The other bound is imputed via top and bottom-coding accordingly.19

A variety of demographic, cognitive and attitudinal data were collected after

the study was concluded in order to provide a simple balancing test. Table 4.2 com-

pares data across experimental conditions for survey respondents.20 Though some

differences do exist, particularly in academic year, subjects were broadly balanced on

observable characteristics, simple numeracy and cognitive ability scores, and subjec-

tively reported risk attitudes.21 An omnibus test from the logit regression of condition

assignment on all survey variables for 111 of 122 individuals with complete survey data

does not reject the null hypothesis of equal demographic, cognitive and attitudinal

characteristics across conditions (χ2 = 14.1, p = 0.12). Because the randomization

subject confusion, researchers often exclude such observations or mechanically enforce single switch
points. See Harrison et al. (2005) for discussion.

17Five of 11 multiple switchers in Condition 2, had multiple switching in only Condition 2.3, one
had multiple switching in Conditions 2.1 and 2.3, two had multiple switching in Conditions 2.2 and
2.3, and three had multiple switching in all three subconditions.

18All results are maintained when including multiple switchers and taking their first switch point
as their choice. See Appendix Table 4.4 for details.

19For example if an individual chose Option A at all rows in a probability equivalent including
when Option B was a 100% chance of getting $30, I topcode the interval as [100, 100]. Virtually all
of the bottom-coded responses, 100 of 111, were decisions in Condition 2.3 where the bottom-coded
choice would be preferring $10 with certainty to a given gamble over $0 and $30. No bottom-coded
responses arose in Condition 1 or 2.1 where the lowest Option B outcome was $0 with certainty.

20111 of 122 subjects completed all survey elements. 60 of 67 subjects in Condition 1 and 51 of 55
subjects in Condition 2 provided complete survey responses. Non-response is unrelated to condition
as Condition 1 accounts for 54-55 percent of the data in both the respondent and full samples.

21Numeracy is measured with a six question exam related to simple math skills such as division
and compound interest previously validated in a number of large and representative samples (Lusardi
and Mitchell, 2007; Banks and Oldfield, 2007; Gerardi et al., 2010). Cognitive ability is measured
with the three question Cognitive Reflection Test introduced and validated in Frederick (2005).
Subjective risk attitudes are measured on a 7 point scale with the question,“How willing are you to
take risks in general on a scale from 1 (unwilling) to 7 (fullly prepared)” previously validated in a
large representative sample (Dohmen et al., 2005).
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is at the session level, this helps to ensure that accidental selection issues are not

driving the experimental results. Additional within-subjects results unaffected by

selection are provided in Sub-Section 4.4.3, along with demonstrations of robustness

to controlling for demographic differences.

Table 4.2: Summary Statistics and Balancing Test
Total Condition 1 Condition 2

N = 122 N = 67 N = 55

Variable # Obs Mean Mean Mean t-statistic p-value
(s.d) (s.d) (s.d.)

Male (=1) 119 0.46 0.42 0.52 1.12 (p=0.27)
(0.50) (0.50) (0.50)

Academic Year 122 2.63 2.45 2.85 2.10 (p=0.04)
(1.08) (1.05) (1.08)

Grade Point Average 120 3.20 3.25 3.15 -1.26 (p=0.21)
(.42) (.44) (.39)

English 1st Language (=1) 122 0.56 0.51 0.62 1.22 (p=0.22)
(0.50) (0.50) (0.49)

Smoker (=1) 122 0.04 0.03 0.05 0.68 (p=0.50)
(0.20) (0.17) (0.23)

Weekly Spending ($) 122 89.68 85.00 95.38 0.64 (p=0.53)
(89.49) (68.63) (110.12)

Risk Attitudes (1-7) 122 3.84 3.70 4.00 1.39 (p=0.17)
(1.19) (1.22) (1.14)

Cognitive Ability Score (1-3) 117 1.79 1.86 1.70 -0.83 (p=0.41)
(1.05) (1.08) (1.01)

Numeracy Score (1-6) 120 5.75 5.78 5.71 -0.76 (p=0.45)
(0.54) (0.52) (0.57)

Omnibus χ2 = 14.1, (p = 0.12)

Notes: Summary statistics for 122 subjects with unique switch points in all 22 decision tasks. #
Obs refers to the number of responses to each question. Omnibus χ2 test statistic corresponding to
the null hypothesis of zero slopes in logit regression with 111 subjects with complete survey data of
condition assignment on all survey variables with robust standard errors.

I begin by investigating behavior in Conditions 1.1, 1.2, 2.1 and 2.2. With

the exception of the KR preference model, all discussed theories predict experimental

equivalence across these conditions. That is, elicited risk attitudes should be identical

whether one asks the probability equivalent of a given certain amount or the certainty

equivalent of a given gamble. Figure 4.4 presents median data for the 122 individuals

with unique switch points along with a dashed black line corresponding to risk neu-

trality. The experimentally controlled parameter is presented on the horizontal axis

and the median subject response is presented on the vertical axis.
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Apparent from the median data is the systematic difference in elicited risk

attitudes between certainty and probability equivalents. When fixing a stochastic

gamble and trading for increasing certain amounts in Conditions 2.1 and 2.2, sub-

jects display virtual risk neutrality. When fixing a certain amount and trading for

increasing gambles in Conditions 1.1 and 1.2 subjects display risk aversion.
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Figure 4.4: Conditions 1.1, 1.2, 2.1, and 2.2 Responses
Note: Median data from 122 experimental subjects with unique switching points in
all 22 decision tasks. Dashed black line corresponds to risk neutrality. Solid red line
for Conditions 1.1 and 1.2 corresponds to KR model fit with λ̂ = 3.4. The KR model
predicts risk aversion for probability equivalents in Conditions 1.1 and 1.2 and risk
neutrality for certainty equivalents in Conditions 2.1 and 2.2.

For each experimental task, decisions are classified as being risk neutral, risk

averse or risk loving. These classifications recognize the interval nature of the data.

For example, a decision is coded as risk neutral if the risk neutral response lies in the

interval generated by the subject’s switch point. Figure 4.5, Panel A presents these

classifications. Whereas the distributions of risk averse, neutral and loving responses

are somewhat even in the certainty equivalents of Condition 2, the majority of re-

sponses are risk averse in the probability equivalents of Condition 1. Proportionately

nearly twice as many responses are classified as risk averse in probability equivalents

relative to certainty equivalents. As this may be a strict classification of responses,
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Figure 4.5, Panel B extends the interval of the switch point to +/− one choice. By

this wider interval measure the majority of the data in Condition 1 remains risk

averse, while the majority of the data in Condition 2 is now classified as risk neutral.

Table 4.3 presents ordered logit regressions for the classification of responses

of Figure 4.5, Panel A with standard errors clustered on the individual level. The

dependent variable is Risk Attitude, which takes the value -1 for a risk loving classi-

fication, 0 for risk neutrality, and +1 for a risk averse response. The natural order of

Risk Attitude corresponds to increasing risk aversion. These regressions control for

condition and the variable Risk Neutral Response. Risk Neutral Response is coded

from 0 to 100 and expresses in percentage terms the dashed line of risk neutrality

in Figure 4.4. That is, Risk Neutral Response is either the given certain amount’s

risk neutral probability equivalent (in Condition 1), or the given gamble’s expected

value divided by 30 (in Condition 2). This helps to control for experimental variation

that might be related to elicited risk attitudes under non-EU preference models such

as non-linear probability weighting. Certain specifications additionally control for

order and representation effects as well as the collected demographic and attitudinal

characteristics for individuals who responded in full to the post-study survey. Across

specifications, subjects in Condition 1 are significantly more likely to have risk averse

responses. Odds ratios for being classified as risk averse relative to risk neutral or

risk loving are provided in brackets. Subjects randomly assigned to Condition 1 are

between three and four times more likely to exhibit risk aversion than those assigned

to Condition 2.22

These simple tests indicate an endowment effect for risk. In certainty equiv-

alents tasks, subjects are generally risk neutral. In probability equivalents tasks,

subjects are generally risk averse. Standard expected utility, prospect theory and

disappointment aversion all predict experimental equivalence across these two envi-

ronments. The data are potentially consistent with the KR model, with its possibility

of a stochastic reference distribution. However, the obtained data are not directly

consistent with the refined PPE concept, which would also predict identical behavior

22Results are maintained with the inclusion of multiple switchers. Additionally, no interactions
for order or representation effects were obtained. Appendix Table 4.4 provides these additional
regressions.
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Figure 4.5: Conditions 1.1, 1.2, 2.1, and 2.2 Classifications
Note: The figure presents classifications of responses from 122 experimental subjects
with unique switching points in all 22 decision tasks. The KR model predicts risk
aversion for probability equivalents in Conditions 1.1 and 1.2 and risk neutrality for
certainty equivalents in Conditions 2.1 and 2.2. Panel A provides the classifications
based on the interval of a subject’s switch point. Panel B provides classifications
based on a wider interval of the switch point +/− one choice.
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Table 4.3: Probability and Certainty Equivalent Risk Attitude Regressions
(1) (2) (3)

Dependent Variable: Risk Attitude Classification

Probability Equivalents: Condition 1 (=1) 1.330*** 1.329*** 1.172***
(0.225) (0.224) (0.241)
[3.782] [3.778] [3.230]

Risk Neutral Response 0.008** 0.008** 0.008**
(0.003) (0.003) (0.003)

Male (=1) -0.087
(0.236)

Academic Year -0.223*
(0.094)

Grade Point Average 0.275
(0.266)

English 1st Language (=1) -0.368
(0.248)

Smoker (=1) -0.323
(0.502)

Weekly Spending ($) 0.001
(0.001)

Risk Attitudes (1-7) -0.128
(0.107)

Cognitive Ability Score (1-3) -0.052
(0.110)

Numeracy Score (1-6) 0.014
(0.248)

Order 2 (=1) 0.074 -0.008
(0.214) (0.218)

Representation (=1) 0.023 0.063
(0.215) (0.218)

Constant 1 -0.517* -0.471 -0.959
(0.220) (0.270) (1.467)

Constant 2 0.993*** 1.040*** 0.559
(0.215) (0.252) (1.464)

# Observations 1708 1708 1554
# Clusters 122 122 111
Log-Likelihood -1609.620 -1609.275 -1443.404

Notes: Coefficients from ordered logit of Risk Attitude classification on control variables, measured
from probability and certainty equivalents of Conditions 1.1, 1.2, 2.1, and 2.2. Risk Attitude takes
the value -1 for risk loving, 0 for risk neutral, and +1 for risk averse. Standard errors clustered
on the individual level in parentheses. Odds ratios for Condition 1 in brackets, calculated as the
exponentiated coefficient. Column (3) features data from 111 subjects who also completed the
post-study survey. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01

across conditions.

In applying the equilibrium concepts from KR, I consider some form of narrow

bracketing within a given row of a choice task. That is, the subject considers a choice
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in a given row between Option A, representing some fixed amount or gamble, G,

and Option B, representing some fixed amount or gamble, F . As discussed in Section

4.2.1, choosing Option A over Option B therefore implies the PPE relation U(G|G) >

U(F |F ). However in the KR model there is some ambiguity in the bracketing of the

referent. It is possible, for instance, to consider the referent to be the distribution

induced by all choices in the task, or even all choices in the entire experiment. Such

a specification could potentially revive PPE as a viable organization of the data.

However solving for a PPE in these cases is computationally intensive and a somewhat

implausible calculation on the part of subjects. The narrow bracketing used in this

analysis is a direct application of the KR equilibrium in choices between lotteries.

Equilibrium behavior even in its simplest form may be a stringent requirement

for experimental subjects. A body of evidence from strategic environments argues

against equilibrium logic in the laboratory (Camerer et al., 2004; Costa-Gomes and

Crawford, 2006; Crawford and Iriberri, 2007; Costa-Gomes et al., 2009). Resulting

process models such as level-k thinking are argued to be organized around initial

reactions to experimental environments. Koszegi and Rabin (2006) provide a similar

indication, suggesting that referents are established as probabilistic beliefs held at

the moment an individual first focused on a decision. In our environment, subjects

may first focus their thinking on the fixed element in a given series of decisions. If

so, then the referent may sensibly change across the conditions of our experiment. In

certainty equivalents the referent will be stochastic, while in probability equivalents

the referent will be certain. See Section 4.5 for further discussion.

4.4.2 Estimating KR Preferences

Under the assumption that subjects organize their thinking around the fixed

element in a series of decisions, the KR model with exogenously manipulated referents

rationalizes the data. Importantly, such a model is easily implemented econometri-

cally. The KR model motivated above is described by one key parameter, λ, the

degree of loss aversion, which can be estimated at either the group or individual level

via non-linear least squares.

Using the data from probability equivalent Conditions 1.1 and 1.2, the mid-
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point of the interval implied by a subject’s switch point is taken as the value q∗ in equa-

tion (2). Equation (2) is then estimated via non-linear least squares with standard

errors clustered on the subject level. The aggregate estimate is λ̂ = 3.41 (s.e. = 0.34).

The null hypothesis of zero loss aversion, λ = 1, is rejected F1,66 = 49.06, p < 0.01.

This value of loss aversion is consistent with loss aversion estimates from other con-

texts (Tversky and Kahneman, 1992; Gill and Prowse, 2010; Pope and Schweitzer,

Forthcoming) and is closely in line with the often discussed benchmark of losses be-

ing felt twice as severely as gains, λ = 3, η = 1 (Koszegi and Rabin, 2006, 2007).23

Figure 4.4 presents predicted values from this aggregate regression as the solid red

line for Conditions 1.1 and 1.2. The aggregate data matches well the fitted model’s

predicted hump-shaped deviation from risk neutrality. Of course, the KR preference

model predicts risk neutrality in Conditions 2.1 and 2.2.

In order to evaluate the predictive validity of the KR preference model, it can

be tested out of sample with alternative segments of the data. As noted above, the KR

preference model with a stochastic referent predicts risk neutrality in Condition 2.3

and predicts a particular shape of quadratically declining risk aversion in Condition

1.3. Figure 4.6 presents data from these conditions as well as out-of-sample predictions

for KR model with the estimated λ̂ = 3.4. Though the KR prediction of risk neutrality

breaks down at the intermediate probabilities of Condition 2.3, in Condition 1.3, the

out-of-sample prediction closely matches aggregate behavior.24

23The functional form of Tversky and Kahneman (1992) does not feature consumption utility and
so the loss aversion estimate of λ̂ = 2.25 in their paper is a direct measure of losses being felt twice
as severely as gains.

24Additionally, Condition 1.3 reproduces the general shape and level of the uncertainty equivalents
discussed in Andreoni and Sprenger (2010b) demonstrating a slightly convex relationship between
given gambles and their uncertainty equivalents. However, Andreoni and Sprenger (2010b) document
the convexity becoming sharper as the given gamble approaches certainty, and this result is not
present in the data. Minor differences in experimental detail may account for the difference at
p = 0 between the present results and Andreoni and Sprenger (2010b) including a different number
and order of tasks and slightly changed tasks. The Andreoni and Sprenger (2010b) price lists were
designed with decision aids of checked top and bottom rows. The task used in Condition 1.3 was
not. More importantly, however, appears to be the presence of the physical representation of Option
A. The sharpened convexity at p = 0 in Andreoni and Sprenger (2010b) is driven by individuals who
violate first order stochastic dominance close to certainty. They document individual dominance
violation rates between p = 0 and p = 0.05 of around 17.5 percent across three tasks. When Option
A is not physically represented, a similar violation rate of 13.5 percent is found. However, when
Option A is physically represented, zero violations of stochastic dominance at certainty are observed.
The effect of physical representation on the proportion of individuals violating stochastic dominance
at certainty is significant (z = 2.09, p < 0.05).



163

0

0

020

2
0

2040

4
0

4060

6
0

6080

8
0

80100

1
0

0

100UE (q;30,0)

U
E
 (

q
;3

0
,0

)

UE (q;30,0)0

0

020

20

2040

40

4060

60

6080

80

80100

100

100Given Gamble (p;30,10)

Given Gamble (p;30,10)

Given Gamble (p;30,10)Condition 1.3

Condition 1.3

Condition 1.30

0

020

2
0

2040

4
0

4060

6
0

6080

8
0

80100

1
0

0

100UE (q:30,10)

U
E
 (

q
:3

0
,1

0
)

UE (q:30,10)0

0

020

20

2040

40

4060

60

6080

80

80100

100

100Given Gamble (p;30,0)

Given Gamble (p;30,0)

Given Gamble (p;30,0)Condition 2.3

Condition 2.3

Condition 2.3Median Response

Median Response

Median Response25-75 %-ile 

25-75 %-ile 

25-75 %-ile 5-95 %-ile

5-95 %-ile

5-95 %-ileOut-of-Sample Fit

Out-of-Sample Fit

Out-of-Sample Fit

Figure 4.6: Conditions 1.3 and 2.3

Note: Median data from 122 experimental subjects with unique switching points in
all 22 decision tasks. Dashed black line corresponds to risk neutrality. Solid red
lines correspond to out-of-sample KR model prediction with λ̂ = 3.4 as estimated in
Conditions 1.1 and 1.2.

In addition to aggregate out-of-sample predictions, for the 67 subjects in Con-

dition 1, individual analyses can be conducted. Using the data from Conditions 1.1

and 1.2, the degree of loss aversion, λi, can be estimated following equation (2).

These individual estimates, λ̂i, can be correlated with behavior in Condition 1.3. As

discussed in Section 4.3.1, the deviation from risk neutrality is predicted to increase

with λi.

The log deviation from risk neutrality, Log Deviation, is measured for each

individual by taking the log difference between the area under the linear interpolation

of their responses to Condition 1.3 and the area under the dashed risk neutral response

line. Hence, Log Deviation would take the value 0 for risk neutrality, a positive value

for risk aversion and a negative value for risk loving. Figure 4.7, Panels A and B

provide histograms of the individual estimates of loss aversion λ̂i and Log Deviation.

The median λ̂i is 3.6, echoing the aggregate result. The median Log Deviation is

0.15, indicating a deviation towards risk aversion in Condition 1.3. Figure 4.7, Panel

C correlates loss aversion, λ̂i, estimated from Conditions 1.1 and 1.2 with the Log

Deviation calculated from Condition 1.3.25 Individuals who are more loss averse in

25Three subjects with extreme values, λ̂i > 20 or Log Deviation < −0.5, are not included in Figure
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Conditions 1.1 and 1.2, deviate more from risk neutrality in Condition 1.3. The

correlation is significant at all conventional levels (ρ = 0.48, p < 0.01). Additionally,

individuals with estimated λ̂i close to 1 have calculated Log Deviation close to the

risk neutral level of 0. This indicates both experimental consistency across conditions

and the predictive validity of loss aversion estimates at the individual level.

4.4.3 Secondary Study Within-Subjects Design

The results to here have been from a primary between-subjects design. Though

the data demonstrate a sizeable endowment effect for risk and the KR preference

model is able to organize the results, questions may naturally arise about the ro-

bustness of the phenomenon to issues of selection. In this section, I discuss portions

of the data obtained for Andreoni and Sprenger (2010b), a within-subjects study of

76 subjects designed primarily with uncertainty equivalents similar to Condition 1.3

and certainty equivalents similar to Condition 2.1.26 Two Holt and Laury (2002) risk

tasks were implemented as a buffer between uncertainty equivalents and certainty

equivalents in Andreoni and Sprenger (2010b) and decisions were collected between

conditions.

Importantly, the uncertainty equivalent for p = 0 is identical to a probability

equivalent. Subjects are asked to provide the gamble probability over $30 and $0 that

makes them indifferent to a 100% chance of receiving $10. This single probability

equivalent can be compared to the subject’s own range of certainty equivalents. One

finds the gamble probability over $30 and $0 at which the certainty equivalent is

revealed to be $10. Under the assumption that the referent is perceived as the fixed

element in a task, comparison of this gamble probability to the revealed probability

equivalent of $10 gives a within-subjects measure of the endowment effect for risk.

For certainty equivalents tasks, the probability of winning $30 that yields a

certainty equivalent of $10 is identified by finding the smallest probability, p, at which

the certainty equivalent is higher than $10, the largest probability, p′, at which the

4.7, Panel C for space, though their data is used in analysis and presented correlations.
26Some minor experimental differences exist such as the use of pre-checked boxes as decision aids,

differing orders and no representation in Andreoni and Sprenger (2010b). See Section 4.4.2 and
Andreoni and Sprenger (2010b) for more details.
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certainty equivalent is smaller than $10, and taking the average p = (p+p′)/2.27 The

average value of p is 0.306 (s.d. 0.210). The average (q; 30, 0) probability equivalent

of $10 for sure is 0.541 (0.220). The difference is significant at all conventional levels

(t = 7.16, p < 0.001).28 Additionally, these values are remarkably consistent with the

between-subjects evidence documented in Sections 4.4.1 and 4.4.2 where subjects are

close to risk neutral in certainty equivalents and reveal average probability equivalents

for $10 with certainty of 0.547 (0.189) in Condition 1.3 and 0.546 (0.185) in Condition

1.1.

The within-subjects results demonstrate an endowment effect for risk. Sub-

jects are close to risk neutral when revealing the gamble for which the certainty

equivalent is $10. The same subjects are risk averse when revealing the probability

equivalent gamble for $10. The KR model with the standard values of λ = 3, η = 1

and the assumption that the referent is perceived as the fixed element of a task would

predict $10 certainty equivalents to arise at a 33% chance of winning $30 and proba-

bility equivalents of $10 for sure to arise at a 50% chance of winning $30. The within-

subjects data are therefore consistent with the KR preference model with standard

values and those obtained in the between-subjects estimates of Section 4.4.2.

4.5 Discussion

The obtained results are supportive of the KR preference model. Unlike prior

work demonstrating the importance of expectations for reference points, these results

are able to distinguish between KR preferences and other expectations-based models

such as disappointment aversion. Gaining separation between these models is an im-

portant experimental step and necessary for evaluating theoretical developments that

depend critically on the stochasticity of the referent (Koszegi and Rabin, 2006, 2007;

Heidhues and Koszegi, 2008; Koszegi and Rabin, 2009). Additionally, the distinction

27There are 13 cases where p′ is not observed because the individuals’ certainty equivalents always
exceeded $10. There is one case where p is not observed because the individual’s certainty equivalent
never exceeded $10. In these cases the non-missing value is used. Eliminating these observations
does not influence the result.

28The difference remains significant when comparing (q; 30, 0) to either p (t = 4.32, p < 0.001),
or p′ (t = 8.57, p < 0.001) for individuals with non-missing values of p and p′, respectively.
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between the KR and DA models is important in a variety of applied settings where

the two models make different predictions. In particular, the DA model predicts first

order risk aversion in the sense of Segal and Spivak (1990) over all gambles, while

the KR model predicts first order risk aversion only when risk is unexpected. When

outcomes lie within the support of expectations, risk neutrality is predicted. Several

applications in finance, insurance purchasing and decision science can be considered.

First, in finance first-order risk aversion is argued to influence stock market

participation (Haliassos and Bertaut, 1995; Barberis et al., 2006) and returns (Epstein

and Zin, 1990; Barberis and Huang, 2001). The KR model indicates that individuals

will accept fair bets within expectations, but grow more risk averse as outcomes

exceed expectations. As such, the KR model would predict first-order risk aversion,

with corresponding participation and returns effects, only when potential outcomes

lie outside prior expectations. In contrast, under the DA model individuals are first-

order risk averse over all gambles, never accepting a fair investment bet.29

Second, a comparison can be made for insurance purchasing where first order

risk aversion potentially influences contract choice (Sydnor, Forthcoming). First-

order risk aversion predicts a desire for full insurance even when insurance is not

actuarially fair (Segal and Spivak, 1990). Hence, a disappointment averse consumer

may fully insure under positive insurance profits. The KR model predicts insurance

only for potential outcomes outside of expectations. As such, the KR model gives a

suggestion as to what gambles will be insured and how they relate to expectations.30

This is in contrast to disappointment aversion where full insurance is desired for all

gambles. Future work should explore these different predictions of the KR and DA

models in real-world financial decision-making and experimental settings.

Third, a gap between KR and DA models is apparent in decision science where

researchers have long debated the inconsistency between probability equivalent and

29Additionally, there is no natural way to model an outcome being outside of expectations in
disappointment aversion. All gambles are evaluated relative to their own expected utility certainty
equivalents.

30Of course, risks can lie outside of expectations by endogenously constructing a fixed referent
and risks can coincide with expectations by constructing a stochastic referent. It may be UPE to
insure and have a fixed referent as well as not insure and have a stochastic referent. Hence the
necessity of the PPE concept to select among such UPE choices. Koszegi and Rabin (2007) provide
a detailed discussion of the relationship between insurance purchasing and expectations under the
KR preference model.
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certainty equivalent methods for utility assessment (Hershey et al., 1982; McCord

and de Neufville, 1985, 1986; Hershey and Schoemaker, 1985; Schoemaker, 1990).

The general finding is that probability equivalents yield more risk aversion. This

difference in elicited utility is predicted by the KR model but not DA. Though there

are some hints in the literature that such experimental inconsistency may be due to

a “response mode bias,” where probability equivalent tasks are reframed as mixed

gambles with gains and losses (Hershey et al., 1982; Hershey and Schoemaker, 1985),

many other explanations for the inconsistency have been proposed (McCord and

de Neufville, 1985; Schoemaker and Hershey, 1992; Schoemaker, 1993). The present

results and use of the KR model help to resolve this long-standing issue. If referents

are changed from stochastic to certain as the environment moves from a certainty to

a probability equivalent, then the specific KR structure of preferences and not some

idiosyncratic bias organizes this long-debated inconsistency in utility elicitiation.

Though the findings are supportive of the KR model and provide direction for

further analysis, a distinction must be made between the results presented and the

equilibrium predictions of the KR model. Koszegi and Rabin (2006, 2007) present a

rational expectations equilibrium concept, the Unacclimating Personal Equilibrium

(UPE), in which consumption outcomes correspond to expectations. To select among

the potential multiplicity of equilibria, the Preferred Personal Equilibrium (PPE)

concept is introduced. The Preferred Personal Equilibrium (PPE) concept of KR

requires the coincidence of expectations and behavior. Under the PPE refinement,

the KR model, similar to disappointment aversion, predicts no endowment effect for

risk. Because the data reject disappointment aversion, they necessarily reject the

PPE refinement.

PPE logic may be a stringent requirement for experimental subjects. Koszegi

and Rabin (2006) suggest that “a person’s reference point is her probabilistic beliefs

about the relevant consumption outcome held between the time she first focused

on the decision determining the outcome and shortly before consumption occurs”[p.

1141]. “First focus” in the present studies is plausibly drawn to the fixed element in a

given series of decisions. Hence the referent may be established as this fixed element

and deviated from when alternatives become sufficiently attractive. It is likely that

the different fixed elements induced different stochastic referents as the the data are
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systematically organized by the KR model under this assumption.

The non-PPE finding is in line with a body of evidence from strategic environ-

ments arguing against equilibrium logic and organizing behavior with initial reactions

to decision environments (Camerer et al., 2004; Costa-Gomes and Crawford, 2006;

Crawford and Iriberri, 2007; Costa-Gomes et al., 2009). Additionally it suggests that

expectations-based referents may be quickly changed by context. This supports field

findings such as Pope and Schweitzer (Forthcoming) and Post et al. (2008) where

referents and risk taking behavior change with both minor contextual shifts such as

field performance on specific holes in golf tournaments and major contextual variables

such as unwon large-value prizes in sequential game shows.

The potential sensitivity of expectations-based referents to contextual changes

has implications for both economic agents and experimental methodology. First, from

a methodological perspective, if fixed elements can serve as referents, slightly changed

choice environments may induce very different behavior. This is of particular impor-

tance for the experimental measurement of preferences and willingness to pay where

similar techniques are used and resulting estimates are given economic significance.

Second, if expectations-based referents can be manipulated via simple framing devices

without physical endowments, then scope exists for marketers and policy-makers to

deeply influence behavior with menus alone.

4.6 Conclusion

Reference-dependent preferences with loss-aversion relative to a reference point

has been widely adopted in both theoretical and empirical research, rationalizing not

only endowment effect behavior but a host of other anomalies from labor supply,

to consumer behavior, to finance. Critical to such reference-dependent models is the

determination of the referent around which losses and gains are encoded. Though ini-

tially the referent was left a virtual free parameter, extensions to reference dependence

have added discipline. Attention has focused on expectations-based mechanisms for

the determination of fixed reference points in models of Disappointment Aversion

(DA) (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991), or for the determination of
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stochastic reference distributions in the models of Koszegi and Rabin (2006, 2007)

(KR).

A body of field and laboratory evidence has highlighted the importance of ex-

pectations for reference-dependent behavior consistent with these expectation-based

models. Though accumulated data does demonstrate the importance of expectations

for reference dependence, the data is generally consistent with either the DA or the

KR model. That is, prior evidence cannot distinguish between the two models.

This paper presents evidence from two experiments focused on identifying a

particular prediction of the KR model which is not shared with DA: an endowment

effect for risk. The endowment effect for risk is closely related to the potential stochas-

ticity of the referent. When the referent is stochastic, and an individual is offered a

certain amount, the KR model predicts risk neutrality. Conversely, when the referent

is a fixed certain amount, and an individual is offered a gamble, the KR model pre-

dicts risk aversion. Disappointment aversion makes no such prediction of differential

behavior as gambles are always evaluated relative to a fixed referent, the gamble’s

expected utility certainty equivalent.

To date, little evidence exists exploring the KR implication of an endowment

effect for risk. In purposefully simple risk preference experiments, eliminating often-

discussed confounds, I test both between- and within-subjects for an endowment

effect for risky gambles. In the primary study discussed, half of subjects make prob-

ability equivalent choices between fixed certain amounts and changing gambles. Half

of subjects make certainty equivalent choices between fixed gambles and changing

certain amounts. Importantly, both standard models and most reference-dependent

models including disappointment aversion predict equivalence of risk attitudes across

the experimental conditions. One exception is the KR preference model. Under the

assumption that the fixed element in a series of decisions serves as the referent, the

KR model predicts that subjects will be risk averse in probability equivalents and

risk neutral in certainty equivalents.

Both between- and within-subjects the data indicate an endowment effect for

risk. In the primary study, subjects are between three and four times more likely to be

risk averse if randomly faced with a probability equivalent as opposed to a certainty

equivalent. In a secondary, within-subjects study, the phenomenon is also observed.
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Under the assumption that the experimental variation changes the perceived referent,

the KR preference model organizes the data at both the aggregate and individual level

and both between and within-subjects.

Finding evidence of an endowment effect for risk, particularly in a neutral

environment, provides critical support for the KR preference model. Unlike prior

work demonstrating the importance of expectations for reference points, these results

clearly distinguish between KR preferences and disappointment aversion. Providing

separation between these competing accounts of expectations-based reference depen-

dence represents an important experimental step and a necessary contribution for

evaluating theory models and applications that rely specifically on stochastic refer-

ents. Demonstrating methodology for distinguishing between the expectations-based

reference-dependent preferences is additionally important as the different models pro-

vide notably different accounts of financial decision-making, insurance purchasing

behavior, and long-standing anomalies in decision science. Future work should test

these competing accounts, particularly in the domain of financial behavior, with both

field and laboratory evidence.

4.7 Appendix

4.7.1 KR Preferences and Uncertainty Equivalents

I demonstrate two results: 1) that the KR preference models predicts quadrat-

ically declining risk aversion in uncertainty equivalents where individuals are endowed

with gambles (p; y, x), y > x > 0 and trading for gambles (q; y, 0); and 2) that the

KR preference model predicts risk neutrality in inverted uncertainty equivalents where

individuals are endowed with gambles (p; y, 0) and trading for gambles (q; y, x).

Uncertainty Equivalents

Uncertainty equivalents feature a binary referent gamble, G, summarized by

the probability p. Let r1 be the referent with probability p and r2 < r1 be the referent
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with probability 1− p. Given the linear KR model, the utility of the referent is

U(G|G) = p · r1 + (1− p) · r2 + p · (1− p) · [1 · (r1 − r2) + λ · (r2 − r1)].

Now, I consider a binary consumption gamble, F , summarized by the probability q.

Let x1 = r1 be the gamble outcome with probability q and x2 < r2 be the gamble

outcome with probability 1− q. I write the KR utility as

U(F |G) = q·p·x1+(1−q)·p·[x2+λ·(x2−r1)]+q·(1−p)·[x1+1·(x1−r2)]+(1−q)·(1−p)·[x2+λ·(x2−r2)].

For simplicity I carry out the uncertainty equivalent replacements, x1 = r1 and

x2 = 0 such that this reduces to

U(F |G) = q · {r1 +(1−p) · [r1− r2]+p ·λ · r1 +(1−p) ·λ · r2}−λ ·p · r1−λ · (1−p) · r2.

The uncertainty equivalent will be the consumption gamble, F ∗, with corre-

sponding probability q∗ satisfying U(F ∗|G) = U(G|G).

p · r1 + (1− p) · r2 + p · (1− p) · [1 · (r1 − r2) + λ · (r2 − r1)] =

q∗ · {r1 + (1− p) · [r1 − r2] + p · λ · r1 + (1− p) · λ · r2}− λ · p · r1 − λ · (1− p) · r2

q∗ =
(1 + λ) · p · r1 + (1 + λ) · (1− p) · r2 + (1− λ) · p · (1− p) · (r1 − r2)

{r1 + (1− p) · [r1 − r2] + p · λ · r1 + (1− p) · λ · r2}
(4.4)

The uncertainty equivalent q∗ can be evaluated at two critical points, p = 0 and

p = 1. At p = 0,

q∗0 =
(1 + λ) · r2

2r1 + (λ− 1) · r2
.

This is simply the probability equivalent for r2 with certainty when x2 = 0. To see

this, I compare to the probability equivalent of equation (2) with r = r2, x2 = 0, and
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x1 = r1,

q∗ =
r − x2 − λ · (x2 − r)

[x1 − x2] + [1 · (x1 − r)− λ · (x2 − r)]
,

q∗ = q∗0 =
(1 + λ) · r2

2r1 + (λ− 1) · r2
.

As in the development of 4.2.1, I predict risk aversion for loss averse individuals,

λ > 1, at p = 0.

At intermediate probabilities, the uncertainty equivalent follows equation (3)

above which depends upon the squared probability term p ·(1−p). The function q∗(p)

can be traced to demonstrate quadratically declining risk aversion. One such trace

is provided as the out of sample prediction in Figure 4.4. Risk neutrality is slowly

approached such that at p = 1, q∗ = 1. I evaluate q∗ at p = 1, and show

q∗1 =
(1 + λ) · r1

(1 + λ) · r1
= 1.

Inverted Uncertainty Equivalents

Inverted uncertainty equivalents, like uncertainty equivalents feature a binary

referent gamble, G, summarized by the probability p. Let r1 be the referent with

probability p and r2 < r1 be the referent with probability 1− p. Given the linear KR

model, the utility of the referent is

U(G|G) = p · r1 + (1− p) · r2 + p · (1− p) · [1 · (r1 − r2) + λ · (r2 − r1)].

For simplicity I carry out the inverted uncertainty equivalent replacement, r2 = 0

such that this reduces to

U(G|G) = p · r1 + p · (1− p) · (1− λ) · r1,

U(G|G) = p · r1 · [1 + (1− p) · (1− λ)],
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U(G|G) = p · r1 · [2 + p · λ− p− λ].

It will be convenient to write this as

U(G|G) = p · r1 · [2 + p · λ− p]− p · λ · r1.

Now, I consider a binary consumption gamble, F , summarized by the proba-

bility q. Let x1 = r1 be the gamble outcome with probability q and x2 > r2 be the

gamble outcome with probability 1− q. I write the KR utility as

U(F |G) = q·p·x1+(1−q)·p·[x2+λ·(x2−r1)]+q·(1−p)·[x1+1·(x1−r2)]+(1−q)·(1−p)·[x2+1·(x2−r2)]

and note that only one term features loss aversion λ as x2 > r2. I carry out the

replacements r2 = 0 and x1 = r1 such that this reduces to

U(F |G) = q ·p ·r1 +(1−q) ·p · [x2 +λ · (x2−r1)]+q · (1−p) ·2r1 +(1−q) · (1−p) ·2x2,

U(F |G) = [q · r1 + (1− q) · x2] · [2 + p · λ− p]− p · λ · r1.

The inverted uncertainty equivalent will be the consumption gamble, F ∗, with corre-

sponding probability q∗ satisfying U(F ∗|G) = U(G|G),

p · r1 · [2 + p · λ− p]− p · λ · r1 = [q∗ · r1 + (1− q∗) · x2] · [2 + p · λ− p]− p · λ · r1;

p · r1 = q∗ · r1 + (1− q∗) · x2.

Note that the left hand side corresponds to the expected value of the referent gamble

with r2 = 0. The right hand side corresponds to the expected value of the con-

sumption gamble with x1 = r1. The inverted uncertainty equivalent reveals where

the gamble expected values are equal and so, independent of loss aversion, λ, risk

neutrality is expected.
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4.7.2 Appendix Tables

Table 4.4: Additional Risk Attitude Regressions

(1) (2) (3)

Dependent Variable: Risk Attitude Classification

Panel A: Including Multiple Switchers

Condition 1 (=1) 1.303*** 1.304*** 1.128***
(0.206) (0.207) (0.223)

Risk Neutral Response Yes Yes Yes
Demographic Controls No No Yes
Order and Representation No Yes Yes
# Observations 1904 1904 1750
# Clusters 136 136 125

Panel B: All Treatment Interactions

Condition 1 (=1) 1.330*** 1.784*** 1.450**
(0.225) (0.409) (0.540)

Condition 1 (=1) x Order 2 (=0) x Rep (=1) -0.402 -0.153
(0.613) (0.684)

Condition 1 (=1) x Order 2 (=1) x Rep (=0) -0.709 -0.200
(0.584) (0.746)

Condition 1 (=1) x Order 2 (=1) x Rep (=1) -0.738 -0.634
(0.593) (0.686)

Condition 1 (=0) x Order 2 (=0) x Rep (=1) 0.050 -0.114
(0.377) (0.394)

Condition 1 (=0) x Order 2 (=1) x Rep (=0) 0.271 -0.178
(0.351) (0.435)

Condition 1 (=0) x Order 2 (=1) x Rep (=1) 0.443 0.326
(0.287) (0.321)

Condition 1 (=0) - - -

Risk Neutral Response Yes Yes Yes
Demographic Controls No No Yes
# Observations 1708 1708 1554
# Clusters 122 122 111

Notes: Coefficients from ordered logit of Risk Attitude classification on control variables,
measured from probability and certainty equivalents of Conditions 1.1, 1.2, 2.1, and 2.2.
Risk Attitude takes the value -1 for risk loving, 0 for risk neutral, and +1 for risk averse.
Standard errors clustered on the individual level in parentheses. Demographics, Order and
Representation correspond to variables in Table 4.3.
Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01
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4.7.3 Experimental Materials

Instructions

Hello and Welcome.

ELIGIBILITY FOR THIS STUDY: To be in this

study, you must be a UCSD student. There are no other re-

quirements. The study will be completely anonymous. We will

not collect your name, student PID or any other identifying in-

formation. You have been assigned a participant number and

it is on the note card in front of you. This number will be used

throughout the study. Please inform us if you do not know or

cannot read your participant number.
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EARNING MONEY: To begin, you will be given a $5 minimum payment.

This $5 is yours. Whatever you earn from the study today will be added to this minimum

payment. All payments will be made in cash at the end of the study today.

In this study you will make decisions between two options. The first option will

always be called OPTION A. The second option will always be called OPTION B. Each

decision you make is a choice. For each decision, all you have to do is decide whether you

prefer OPTION A or OPTION B.

These decisions will be made in 3 separate blocks of tasks. Each block of tasks is

slightly different, and so new instructions will be read at the beginning of each task block.

Once all of the decision tasks have been completed, we will randomly select one

decision as the decision-that-counts. Each decision has an equal chance of being the decision-

that-counts. If you preferred OPTION A, then OPTION A would be implemented. If you

preferred OPTION B, then OPTION B would be implemented.

Throughout the tasks, either OPTION A, OPTION B or both will involve chance.

You will be fully informed of the chance involved for every decision. Once we know which is

the decision-that-counts, and whether you prefer OPTION A or OPTION B, we will then

determine the value of your payments.

For example, OPTION A could be a 75 in 100 chance of receiving $10 and a 25 in

100 chance of receiving $30. This might be compared to OPTION B of a 50 in 100 chance

of receiving $30 and a 50 in 100 chance of receiving nothing. Imagine for a moment which

one you would prefer. You have been provided with a calculator should you like to use it

in making your decisions.

If this was chosen as the decision-that-counts, and you preferred OPTION A, we

would then randomly choose a number from 1 to 100. This would be done by throwing two

ten-sided die: one for the tens digit and one for the ones digit (0-0 will be 100). If the chosen

number was between 1 and 75 (inclusive) you would receive $10 (+5 minimum payment) =

$15. If the number was between 76 and 100 (inclusive) you would receive $30 (+5 minimum

payment) = $35. If, instead, you preferred OPTION B, we would again randomly choose a
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number from 1 to 100. If the chosen number was between 1 and 50 (inclusive) you’d receive

$0 (+5 minimum payment) = $5. If the number was between 51 and 100 (inclusive) you’d

receive $30 (+5 minimum payment) = $35.

In a moment we will begin the first task.
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