UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Real-time Control of Animated Broad Agents

Permalink
https://escholarship.org/uc/item/05d0h32d

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Authors
Loyall, A. Bryan
Bates, Joseph

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/05d0h32c
https://escholarship.org
http://www.cdlib.org/

Real-time Control of Animated Broad Agents

A. Bryan Loyall and Joseph Bates
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
bryan.loyall @cs.cmu.edu, joseph.bates@cs.cmu.edu

Abstract

As autonomous agents’ interactions with humans become
richer, we believe it will become increasingly important
for some of the agents to have believable and engag-
ing personalities. In previous papers we have described
Tok, a broad agent architecture which integrates reactiv-
ity, goal-directed behavior, emotion and some memory
and inference for agents in non-real-time worlds. In this
paper we discuss the issues raised when we extend Tok
to work in real-time, animated domains. Convincing
animated motion poses three challenges to the architec-
ture: multiple primitiveactions and higher level activities
must be executed simultaneously; future actions must be
known before current actions complete, to enable smooth
animation; and the mind must be fast enough to provide
the impression of awareness. Here we describe Hap,
the reactive substrate of Tok, and its approaches to these
challenges. The described architecture was used for the
creation of three agents, called woggles, in a world titled
Edge of Intention, which was first shown at the AAAI-92
Al-based Arts Exhibition.

Introduction

Artists regularly construct characters when they create
stories in noninteractive media such as animated films
or novels. There are known techniques for making the
constructed characters believable and engaging with dis-
tinct, recognizable personalities (Thomas & Johnston,
1981; Gardner, 1991). Computer scientists also create
characters in the form of autonomous agents for interac-
tive worlds. As these agents’ interactions with humans
become richer, we believe it will become increasingly
important for some of them to have believable and en-
gaging personalities.

To this end we are studying requirements and tech-
niques to construct believable agents for interactive
worlds. We suspect one requirement for believable inter-
active agents is that they have broad though perhaps shal-
low capabilities. This requirement is described in (Bates,
Loyall & Reilly, 1991), and our efforts toward construct-
ing such broad agents have been described in (Bates,
Loyall & Reilly, 1992b; Bates, Loyall & Reilly, 1992a).
Those papers describe an agent architecture, called Tok,
that integrates reactivity, goal-directed behavior, emotion

and some memory and inference for agents in interactive
fiction worlds.

In this paper we discuss the issues raised when ex-
tending this work to believable agents for a real-time,
animated domain. We found three challenges in this ex-
tension. First, when an animated creature is performing a
sequence of actions, the next action must often be known
in advance to determine in detail how to animate the
current action. For example, depending on whether the
agent is immediately jumping again or stopping, the way
the agent transfers momentum during the final part of a
jump is different.

Second, creatures we normally see, whether real or
animated, perform multiple actions at one time. Dogs
wag their tail, and move their ears, head and eyes while
they are barking to get your attention. If we want our
creatures to have convincing behavior, they also need to
be able to perform multiple actions and pursue multiple
higher level activities concurrently.

Third, creatures in a real-time domain must think fast
enough to keep up. In our domain primitive actions
have durations between 100 and 1500 milliseconds. The
creatures must be able to respond to their own and other
creatures’ actions as they are occurring. In addition, to
appear active they must be able to produce actions at the
same rate they are being completed by their own bodies.
This demand is increased because multiple actions are
often executing simultaneously.

Our approaches to these challenges largely appear in
the reactive substrate of the Tok architecture, called Hap,
so Hap will dominate our discussion. For information
about Tok as a whole see (Bates, Loyall & Reilly, 1992b;
Bates, Loyall & Reilly, 1992a). For detailed information
about the emotion component of Tok see (Reilly & Bates,
1992).

The architecture described here was used for the cre-
ation of three agents, called woggles, in a world ti-
tled Edge of Intention. This world was first shown at
the AAAI-92 Al-based Arts Exhibition, and is visiting
other sites. The architecture is part of the Oz project at
Carnegie Mellon, which develops technology for artis-
tically interesting, highly interactive, simulated worlds.
These worlds are intended to give users the experience of
living in (not merely watching) dramatically rich worlds

mailto:bryan.loyall@cs.cmu.edu
mailto:joseph.bates@cs.cmu.edu

Figure 1: The Edge of Intention world

that include believable, engaging agents (Bates, 1992).

Domain

The woggle’s world is shown in Figure 1. The physical
world is designed to be something like a child’s play-
ground or one of the animal environments in a zoo. The
style was intended to be reminiscent of the worlds cre-
ated by Dr. Seuss in his popular children’s books (Seuss,
1975). There are areas in the world which are conducive
to sleeping, playing, exploring, exercising, showing off
and observing the world. The three woggles use these
areas as well as the rest of the world as they go about
their normal behaviors. They play together, fight, relax,
explore the world, mope when they are sad, try to cheer
up their sad friends, etc. Figure 3 lists additional behav-
iors. The user can take part in many of these activities by
controlling a fourth woggle, which is otherwise inactive,
with the mouse.

The three creatures themselves were designed to have
somewhat stereotypical personalities: Wolf is an aggres-
sive character; Shrimp is a friendly, meek one; and Bear
is a protector. These characterizations are reflected in the
agents’ behavior. Bear becomes sad when there is strife
in the world and will often try to stop it, while Wolf sees
it as an opportunity to amuse himself. Shrimp is often
afraid, and almost never does anything aggressive.

Specifically, the world is modeled as a height field with
simple physics. It is a rectangularly bounded plane with
each point having an associated height representing the
terrain surface at that point'. Each agent’s body is an
ellipsoid with eyes.

The agents cannot see the colors painted onto the
world, but can sense the shape of the world by query-
ing heights at individual points in the x,y plane. They
can also sense each other to determine properties such
as where an agent is located, where an agent’s eyes are
pointed, which primitive actions are being performed,
etc. Active sonars are connected to the system so that the

!The two funnel shaped chutes are actually cylinders with
the funnel shape painted onto the surface. The bushes in the
background are likewise painted.

665

active plan tree

R

G

plan
subgoal memory

indexing

instantiated
plans

8>'o—0
o
6>v—o

action initiation,
termination,

timing|
dependencies

action
completion,
status

sensor
(de)activation,
queries

sense
data

selective
perception

continuous
motor control

simulated world

Figure 2: The Hap Architecture

creatures can sense the presence and location of nearby
humans.

In each creature, actions are sent from Tok to the
agent’s body to be executed. The body notifies the mind
when actions are actually started and when they finish.
Multiple actions can be executed simultaneously if they
do not require the same body resources?. The primitive
acts which can be performed are jump, turn, squash, puff
up, slide, change color, move eyes and face a point or
track it with eyes.

The task facing Tok is to produce a series of potentially
overlapping actions that make the creature seem alive.

Basic Hap

Hap is the reactive substrate of the Tok architecture. In
this section we describe the basic Hap architecture. An
early version of basic Hap has been described in (Loyall
& Bates, 1991). Basic Hap developed from our desire to
extend the ideas of situated activity and reactivity (Agre
& Chapman, 1990; Brooks, 1986) with explicit goals,
which we felt necessary in broad agents. Hap has simi-
larities with other reactive architectures, (Nilsson, 1992;
Simmons, 1991; Maes, 1989; Kaelbling & Rosenschein,
1990), but is most similar to Firby’s RAPs (Firby, 1989)
and Georgeff and Lansky’s PRS system (Georgeff & Lan-
sky, 1987). Like several of these systems, Hap facilitates
hierarchical composition of behaviors from primitive ac-
tions.

The Hap architecture is shown in Figure 2. Hap di-
rectly supports goal-directed action producing behaviors,
and allows the encoding of cognitive tasks. It contin-
uously chooses the agent’s next action based on per-
ception, current goals, emotional state and aspects of
internal state. Goals in Hap contain an atomic name
and a set of parameters which are instantiated when the

2Each woggle body has 27 resources including such things
as the center of the woggle, which direction it is facing, etc.

goal becomes active, forexample (tease <other>).
Goals do not characterize world states to accomplish,
and Hap does no planning. Instead, sets of actions
(which for historical reasons we call “plans™) are cho-
sen from an unchanging plan library. These plans
are either ordered or unordered collections of subgoals,
physical actions and mental actions which can be used
to accomplish the invoking goal. For example, one
plan for the above tease goal is the sequence of
subgoals: (goto <other>), (greet <other>),
(run-from <other>). Subgoals are constructed by
the author, primitive physical actions are given by the
domain, and mental actions are given by the underlying
language (either Lisp or C), and typically include such
actions as storing a fact, performing calculations, etc.

Plans have testable preconditions which are true when
the plan is applicable for a goal in the current state of the
world. Multiple plans can be written for a given goal,
with Hap choosing between the plans at execution time.
If a plan fails, Hap will attempt any alternate plans for
the given goal, and thus perform a kind of backtracking
search in the real world.

Hap stores all active goals and plans in a structure
called the active plan tree (APT). This is a tree of alter-
nating layers of goals and plans. The first layer of the
APT is the collection of top level goals for the creature.
A goal’s child, if it has one, is the active plan for that goal.
A plan’s children are its component subgoals, physical
actions and mental actions. The APT is constantly chang-
ing: expanding as plans with their component subgoals
are chosen for goals and shrinking as goals and plans suc-
ceed and fail. Physical actions succeed or fail depending
on their realization in the world. Mental actions always
succeed. Goals succeed when a plan for the goal suc-
ceeds, and fail if all of the applicable plans have failed.
Plans succeed if all of the component steps succeed and
fail if any of the steps fail.

There are various annotations in the APT to support re-
activity and the management of multiple top-level goals.
Two important annotations are context conditions and
success tests. Both of these are arbitrary testable ex-
pressions over the perceived state of the world and other
aspects of internal state. Success tests can be associated
with any goal in the APT. When a success test is true, its
associated goal is deemed to have been accomplished and
thus no longer needs to be pursued. For example, the first
step of the tease plan described above has a success
test associated with it to determine if the agent is already
near <other>. If this test is true when the plan begins,
the step (goto <other>) would be skipped. Also,
if the agent is in the process of going toward <other>
when some external factor causes the test to be true, the
success test would enable Hap to recognize that the goal
has succeeded and stop pursuing it.

Analogously, context conditions can be associated
with plans in the active plan tree. When a context con-
dition becomes false its associated plan is deemed no
longer applicable in the current state of the world. That
plan fails and a new plan must be chosen to accomplish

the invoking goal.

Every goal instance has a priority number, used by
Hap when choosing a goal to execute, and an importance
number, used by the emotion system when considering
the significance of the goal. These annotations are as-
signed to instances of goals rather than to types of goals,
because identical goals could have different priority or
emotional importance depending on the context in which
they arise. For example, the goal of going to an area as a
subgoal to arun away goal would likely have a higher pri-
ority than the same goal in pursuit of an exploration goal.

Any goal can be annotated as persistent with respect to
success, failure or both. A goal so marked remains in the
tree upon success or failure rather than being removed,
and is reset so that it is again available to be pursued.

Multiple plans for a goal can be partially ordered by
specificity using numeric annotations. Hap uses these to
choose more specific plans when multiple plans apply.

Hap executes by first modifying the APT based on
changes in the world: goals whose success tests are true
and plans whose context conditions are false are removed
along with any subordinate subgoals or plans. Next, one
of the leaf goals is chosen. This choice is made by a
goal arbiter which prefers high priority goals and, among
goals of equal priority, prefers continuing the active line
of expansion. If the chosen goal is a primitive mental
action, it is executed. If it is a physical action, it is sent
to the body to be executed. Otherwise, the plan library is
indexed and the plan arbiter chooses one plan for the goal
from among those whose preconditions are true. The plan
arbiter will not choose plans which have already failed
to achieve this goal instance, and prefers more specific
plans over less specific ones using the specificity anno-
tation. The chosen plan and its component subgoals are
added to the APT, and the execution loop repeats.

Hap includes a special type of goal called wair that is
never chosen by the goal arbiter. Thus, when present in
a sequential plan it suspends that plan until removed. It
can be removed by an associated success test becoming
true, or by success or failure of one of its ancestors in the
tree. Arbitrary demons can be encoded using wait goals.

Goals can have two additional annotations: ignore-
failure and effect-only. Goals marked with ignore-failure
treat failure as success thus making the attempt of the
goal enough for success. The effect-only annotation
causes the marked goal to be irrelevant in determining
the success of its parent plan. The parent plan then suc-
ceeds when all of its other subgoals succeed regardless
of whether the marked goal has been attempted.

Hap as described in this section is implemented in Lisp
and is currently being used to develop agents for the Oz
project’s text interface interactive fiction worlds.

Real-Time Hap

To respond to the challenges of a real-time, animated
domain, a number of refinements to this basic architec-
ture are necessary: (1) parallel execution of multiple
actions and goals, (2) early production of next actions to

allow smooth animation, (3) automatic management of
selective sensors, and (4) incremental evaluation of the
continuously monitored conditions.

Parallel Execution of Goals and Actions

As mentioned earlier, for agents to appear realistic, they
must do more than one thing at a time. Basic Hap allows
agents to hold multiple parallel goals through the toplevel
parallel set of goals and through parallel plans which arise
during execution. Like other goal-directed reactive archi-
tectures (Firby, 1989; Georgeff & Lansky, 1987), basic
Hap manages these multiple goals by concentrating on
the most critical according to its arbitration mechanism,
and for the most part only attends to other goals after the
current goal completes or as events trigger demons.

In real-time Hap, all of an agent’s active goals can
be attended to, potentially producing multiple actions or
performing parallel cognitive processing. Hap uses a
greedy approach by attending to the most critical goals
first and mixing in others as time allows. In each deci-
sion cycle Hap chooses the most critical of the available
leaf goals. This thread of behavior is attended to until it
is interrupted, as in basic Hap, or it becomes suspended.
For example, when a jump action in a sequential plan is
sent to the body to be executed, the plan cannot continue
until the action completes. When a thread is suspended
Hap uses the available processing time (in this case ap-
proximately 1200 milliseconds of real time) to attend to
the other, perhaps unrelated, available goals. A thread
of behavior could also be suspended if its current goal is
the special form wait or if its current goal is incompatible
with a more critical executing thread.

This notion of incompatible goals deserves further
comment. Two actions are considered incompatible if
they use the same body resources. For example the
jump and slide actions both move the body and so can-
not execute simultaneously. Similarly, goals can be in-
compatible with other goals or with actions. These goal
incompatibilitiesexist independently of any primitive ac-
tion resource conflict. For example, while sleeping the
primitive actions being executed are rather sparse and do
not by themselves preclude concurrently executing other
primitive actions. In the woggles, however, the goal
of sleeping is incompatible with actions or goals which
significantly move the body.

Hap allows authors to specify pairs of goals or actions
which are incompatible. The woggles have an average of
49 pairs each. During processing, Hap will not allow two
incompatible goals to be pursued at the same time. The
more critical one according to the goal arbiter is pursued
while the other is temporarily suspended.

Early Production of Next Action

To allow the motor control part of the animation system
to provide smooth motion, Hap attempts to provide the
next action for each thread before the current action fin-
ishes. One hundred milliseconds prior to the completion
of an action Hap assumes that the action will complete
successfully. It then can use this time to compute the next

667

action along that thread. If an action is produced, it is
sent to the motor system to be executed after the current
action. All of Hap’s reactive mechanisms apply to these
pending actions as well as to normal Hap execution, so
in the event that Hap chooses to abort a pending action,
a message is sent to the motor system and it is removed.

Of course, if the agent is currently attending to some-
thing more critical than this thread, it will continue to be
attended to and the next action will likely not be com-
puted. The motor control system will assume that action
for this set of muscles is temporarily ending. Also, if
the current action fails after it has been assumed to finish
successfully, the agent must recover from its incorrect
assumption using its various reactive mechanisms, such
as success tests and context conditions.

Selective Sensing

Sensing in a real-time, animated world must be efficient.
To this end, Hap creatures employ task-specific sensors
which can be turned on or off as needed. Each sensor
observes a low level aspect of the world and notifies the
mind when that aspect’s value changes. Typical sensors
are “can I see woggle X jumping” and “what is the posi-
tion of woggle X”. The aspects of the world which must
be known to evaluate an agent’s preconditions, success
tests and context conditions are noted when these condi-
tions are written by associating a list of sensors for each
condition. Hap automatically manages the sensors by
turning them on and off when appropriate. As a leaf sub-
goal is chosen to be executed, sensors needed to evaluate
the preconditions for that goal’s plans are automatically
turned on, and then turned off again after a plan is chosen.
Likewise, when a particular goal or plan is present in the
APT, the sensors relevant to evaluating any success tests
or context conditions are turned on. When that goal or
plan is removed from the tree because of success, failure
or irrelevance, the sensors are turned off. Because the
same sensor may be needed for several different con-
ditions at a time, the sensors are shared and reference
counted. In the woggles we observed roughly a factor of
two reduction in active sensors as a result of this sharing.

Incremental Evaluation of Conditions

Typically a Hap agent has a number of continuously mon-
itored conditions (context conditions and success tests)
active at any given time. In order for these agents to
run fast enough for a real-time animation system, we be-
lieve it is useful to evaluate them incrementally. Thus
characters written in the Hap language are compiled to
RAL (Forgy, 1991), a production system extension of the
C programming language that includes a RETE (Forgy,
1982) incremental matcher implementation. The charac-
ter’s APT is represented in working memory, with con-
text conditions, success tests, and preconditions compiled
to rules. These rules fire to prune and expand the tree,
with additional runtime support rules included to com-
plete the architecture. In Edge of Intention, the real-time
Hap agents execute approximately 50 times faster than
basic Hap agents.

Action Behaviors

follow-the-leader
lead-the-follower
freak-out
go-to-place
go-to-woggle
help-friend
jump-in-chute
mope
watch-nervously
rest

save-friend
seek-out-woggle
sleep-until-rested
stay-in-view
release-aggression
tease-woggle
watch-human
dance-on-pedestals
tremble

dart-eyes

Emotion Behaviors
handle-goul-failure
handle-goul-success
infer-blame
infer-credit
fear-being-hurt
react-to-threat
react-to-threat-to-other

react-to-falling-behind-in-

follow-the-leader
clean-up

roll-eyes watch-a-woggle decay-emotions
run-away look-for-human

sigh blink Sensing Behaviors
console-friend threaten recognize-aggression
do-fun-acrobatics fight-back recognize-escape
greet-human protect-friend recognize-hey

hey gang-up-on recognize-threat-to-other
wander-explore amuse recognize-teasing

threaten-for-fun recognize-moping

Figure 3: Woggle Behaviors

Building Higher Functionality on Hap

Hap was initially designed to be a reactive architecture
for action. As we have continued to build creatures, its
role has broadened somewhat. In addition to the action
producing behaviors, aspects of sensing and emotion are
implemented using Hap behaviors. Some of the behav-
iors for the woggles are listed in Figure 3. (A complete
woggle contains about 250 goal types and 500 plans.)

The task-specific sensors provide sensory information
at a low level, including primitive action events. To be
effective, agents need to be able to recognize abstract
composites of this sensory information such as agents
fighting, playing games or moping. Originally we en-
visioned constructing new task-specific sensors for each
of these higher level events, but we realized that Hap’s
normal mechanisms could conveniently be used to cre-
ate recognizers using only the low-level sensors. The
constructed behaviors use parallel and sequential plans,
combined with success tests, context conditions, men-
tal actions, etc. to actively look for patterns in the low
level perceptions as they are perceived. For example, a
sensing behavior might infer that a woggle is trying to
annoy another because over time the first is staying very
close and performing quick, jerky actions, even though
the second is trying to move away.

Tok’s emotion architecture, Em (Reilly & Bates,
1992), is also implemented using Hap behaviors. Em cre-
ates emotions by matching particular patterns of events
in the world with the agent’s goal state. Hap provides
flexible access to the goal state because it is represented
in working memory. Em is implemented by combining
this reflection of the goal state with abstract event recog-
nition behaviors as above to recognize events such as
another agent causing this agent’s goal to fail which then
causes anger. Em also periodically decays its emotion
state, and performs various internal clean-up tasks using
Hap behaviors.

By implementing these capabilities as Hap behaviors,
they inherit the processing properties of the architecture.

668

They are managed as some of the multiple threads of
behavior, with Hap attending to several of them simulta-
neously when the time available to think allows, or other-
wise only attending to the ones most critical to this agent.

Example of Processing

To better illustrate the flow of Hap processing, we present
here a brief excerpt of one creature’s processing, with
special attention to the concepts we have described
above. The full excerpt lasts roughly one second of
real-time in the running system.

At the beginning of the excerpt Bear is pursuing his
amuse goal by going toward a hill in the world to watch
the other woggles. He has sent the next jump action to his
body and is waiting foritto finish. Atthis pointhe notices
the possibility that the user-controlled woggle is intimi-
dating Shrimp. He notices this because the user is close to
Shrimp and has just performed a quick movement. This
combination of sensations is recognized by the firing of
a success test in one of his persistent sensing behaviors.
This behavior is higher priority than the amuse thread so
it would interruptin any case, but since it does notconflict
and the amuse behavior is waiting for the action to finish,
it is pursued concurrently. As it is pursued, it verifies
whether the user is in fact threatening Shrimp by watch-
ing theiractions unfold. If the behavior were to determine
that no threatening is taking place, it would be aborted by
a context condition firing, and the persistent goal would
be reset so that it is ready to notice such a situation again.
In this instance, however, the behavior observes the user
slide in front of Shrimp’s face again and puff up. This is
enough to recognize that the user is intimidating Shrimp.

This recognition gives rise to a number of goals: two
emotion producing goals and a goal to protect Shrimp.
The protect goal conflicts with the existing amuse goal
and has a higher priority, so the amuse goal and its sub-
goals are temporarily suspended. The jump action itself
cannot be aborted as Bear is flying through the air, so
it is allowed to complete normally. When the protect
behavior is elaborated and a jump toward the fight is
chosen as the next act, it conflicts with this orphaned
jump, but again has a higher priority. Since the act can-
not be aborted, the next jump is queued after it enabling
the motor system to create an appropriate landing for the
current jump. After this decision, Hap again has time to
mix in other behaviors. The two emotion goals are pro-
cessed resulting in Bear becoming sad because there is a
fight in the world and angry at the user for picking on a
friend of his. The anger then increases his energy behav-
ioral feature which affects how he pursues his behaviors,
such as the speed of jumping toward the fight.

Conclusion

We have described the Hap architecture including exten-
sions for convincing, real-time, animated motion. We
believe a number of qualities of the architecture have
contributed to our attempts to create believable agents.
These include improving the speed of the architecture,

providing task-specific sensing, permitting multiple ac-
tions and goals to be pursued concurrently, and providing
early production of actions to enable smooth animation.
In addition, Hap provides a common computational en-
vironment for other parts of the Tok architecture, namely
sensing and emotion, scheduling them along with other
goals of the agent.

This architecture has been used to create three ani-
mated creatures which were first shown at the AAAI-92
Al-based Arts Exhibition in the exhibit Edge of Inten-
tion. The system runs at 10 frames per second on a
Silicon Graphics Indigo XS24+Z with an R3000 proces-
sor. Each mind uses approximately 20 milliseconds of
each 100 millisecond video frame for its processing; the
remainder is used for graphics.

Precisely evaluating the degree to which we have suc-
ceeded in our goal of building believable, engaging char-
acters is of course problematic. Ultimately, believability
must be a subjective judgment based on observations of
and interactions with the constructed creatures. At the
time of this writing several thousand people have seen
Edge of Intention and anecdotal evidence suggests that
we have made some progress toward believability. The
system has been chosen for display at the curated SIG-
Graph 1993 Art Show and a the Carnegie Mellon Hewlett
art gallery. It is on display in the Boston Computer Mu-
seumn’s permanent collection, and will be shown in the
ARS Electronica '93 exhibition in Austria.

The specific behaviors, emotions and personalities of
the woggles were created in less than six weeks of work.
We suspect that further artistic effort working within ex-
isting Tok will yield correspondingly more believable
creatures. Work is continuing to extend Tok in the areas
of emotion, models of other agents, integration of natural
language understanding and generation including prag-
matics and emotional speech, and Hap is evolving to
support new demands of these systems.

Acknowledgments

This research was supported in part by Fujitsu Labora-
tories, Ltd. We also thank those who helped construct
Edge of Intention: A. Witkin, J. Altucher, A. Haupt-
mann, M. Kantrowitz, D. Langer, K. Murakami, P. Ol-
brich, Z. Popovic, W.S. Reilly, P. Sengers, W. Welch, P.
Weyhrauch, and Production Systems Technologies, Inc.

References

Agre, P. E. & Chapman, D. 1990. What are plans for?
In Robotics and Autonomous Systems. Elsevier Sci-
ence Publishers.

Bates, J. 1992. Virtual reality, art, and entertainment.
PRESENCE: Teleoperators and Virtual Environ-
ments, 1(1):133-138.

Bates, J., Loyall, A. B., & Reilly, W. S. 1991. Broad
agents. In Proceedings of AAAI Spring Sympo-
sium on Integrated Intelligent Architectures, Stan-
ford, CA. Available in SIGART Bulletin, Volume 2,
Number 4, August 1991, pp. 38-40.

669

Bates, J.,, Loyall, A. B., & Reilly, W. S. 1992a. An ar-
chitecture for action, emotion, and social behavior.
In Proceedings of the Fourth European Workshop
on Modeling Autonomous Agents in a Multi-Agent
World, S Martino al Cimino, Italy.

Bates, J., Loyall, A.B., & Reilly, W. S. 1992b. Integrating
reactivity, goals, and emotion in a broad agent. In
Proceedings of the Fourteenth Annual Conference
of the Cognitive Science Society, Bloomington, IN.

Brooks, R. 1986. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and Au-
tomation, RA-2:14-23.

Firby, J. R. 1989. Adaptive Execution in Complex Dy-
namic Worlds. PhD thesis, Department of Computer
Science, Yale University.

Forgy, C. L. 1982. Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artifi-
cial Intelligence, 19(1):17-37.

Forgy, C. L. 1991. Rule-extended Algorithmic Language
Language Guide. Production Systems Technolo-
gies, Inc., 5001 Baum Boulevard, Pittsburgh, PA
15213.

Gardner, J. 1991. The art of fiction : notes on craft for
young writers. Vintage Books, New York, vintage
books edition.

Georgeff, M. P. & Lansky, A. L. 1987. Reactive reasoning
and planning. In Proceedings of the Sixth National
Conference on Artificial Intelligence.

Kaelbling, L. P. & Rosenschein, S. J. 1990. Action and
planning in embedded agents. Robotics and Au-
tonomous Systems, 6(1-2):35-48.

Loyall, A. B. & Bates, J. 1991. Hap: A reactive, adaptive
architecture for agents. Technical Report CMU-
CS-91-147, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

Maes, P. 1989. The dynamics of action selection. In Pro-
ceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, Detroit, MI.

Nilsson, N. J. 1992. Toward agent programs with circuit
semantics. Technical Report STAN-CS-92-1412,
Department of Computer Science, Stanford Univer-
sity, Stanford, CA.

Reilly, W. S. & Bates, J. 1992. Building emotional
agents. Technical Report CMU-CS-92-143, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

Seuss, D. 1975. Oh, the THINKS You Can Think! Ran-
dom House, Inc., New York.

Simmons, R. 1991. Concurrent planning and execution
for a walking robot. In Proceedings of the IEEE
International Conference on Robotics and Automa-
tion, Sacramento, CA.

Thomas, F. & Johnston, O. 1981. Disney Animation —
The Illusion of Life. Abbeville Press, New York.

	cogsci_1993_664-669

