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Abbreviations and Acronyms

AKI acute kidney injury
AUC area under the receiver operating characteristic
CABG coronary artery bypass grafting
CI confidence interval
COVID-19 coronavirus disease 2019
EF ejection fraction
GBM gradient boosted machine
ICU intensive care unit
INR international normalized ratio
IQR interquartile range
LOS length of stay
ML machine learning
RF random forest
R2 coefficient of determination
STS Society of Thoracic Surgeons
UCCSC University of California Cardiac Surgery Consortium
XGBoost extreme gradient boosting
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Central Message (196/200)

Compared to traditional regression, machine learning yielded superior performance in the 
prediction of length of stay, mortality, acute kidney injury and reoperation following cardiac 
operations. 

Perspective Statement (379/405)

This study outlined the development of machine learning (ML) models to predict length of stay 
(LOS) following cardiac operations. Several clinical, operative and hospital characteristics were 
found to be associated with increased LOS. Taken together, our findings suggest that ML models
may be used to inform case scheduling strategies during times of limited hospital capacity. 

Central Picture Legend (69/90)

Observed length of stay versus predictions by machine learning model.
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Abstract (250/250)

Objective

We sought to several develop parsimonious machine learning (ML) models to predict 

resource utilization and clinical outcomes following cardiac operations using only preoperative 

factors. 

Methods

All patients undergoing coronary artery bypass grafting and/or valve operations were 

identified in the 2015-2021 University of California Cardiac Surgery Consortium repository. The

primary endpoint of the study was length of stay (LOS). Secondary endpoints included 30-day 

mortality, acute kidney injury (AKI), reoperation, postoperative blood transfusion and duration 

of intensive care unit admission (ICU LOS). Linear regression, gradient boosted machines 

(GBM), random forest (RF), extreme gradient boosting (XGBoost) predictive models were 

developed. The coefficient of determination (R2) and area under the receiver operating 

characteristic (AUC) were used to compare models. Important predictors of increased resource 

use were identified using SHapley summary plots. 

Results

Compared to all other modeling strategies, GBM demonstrated the greatest performance 

in the prediction of LOS (R2 0.42), ICU LOS (R2 0.23) and 30-day mortality (AUC 0.69). 

Advancing age, reduced hematocrit and multiple-valve procedures were associated with 

increased LOS and ICU LOS. Furthermore, the GBM model best predicted AKI (AUC 0.76), 

while RF exhibited greatest discrimination in the prediction of postoperative transfusion (AUC 



5

0.73). We observed no difference in performance between modeling strategies for reoperation 

(AUC 0.80).

Conclusion

Our findings affirm the utility of ML in the estimation of resource use and clinical 

outcomes following cardiac operations. We identified several risk factors associated with 

increased resource use, which may be used to guide case scheduling in times of limited hospital 

capacity.

Keywords: cardiac surgery, resource utilization, length of stay, machine learning, COVID-19, 

pandemic, hospital capacity
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Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic has placed unprecedented 

strain on healthcare systems, influencing the allocation of personnel and resources. Several 

groups have reported cardiac surgery case volume reductions of 45-94%, with significant 

regional variability.1–4 Subject to rates of “reopening” and patients’ desire to proceed with 

elective surgery, the projected time to equilibrium between back-logged cases and ongoing 

surgical need is estimated to be 12-22 months.5–7 Furthermore, recovery from cessation of 

elective cases requires a nuanced approach to management of deferred and newly presenting 

patients as well as ongoing demands for perioperative resources. With estimates that operating 

volume must exceed 120% of baseline to accommodate deferred patients while concurrently 

preventing excess waitlist morbidity, rapid and accurate prediction of hospital bed occupancy 

and resource utilization are especially crucial.6

The Society of Thoracic Surgeons (STS), among others, has successfully implemented 

risk models to provide canonical estimates for parameters such as mortality, postoperative 

complications and prolonged length of stay (LOS).8 However, as demonstrated by several reports

of poor calibration when applied at the institutional level, these predictive tools are often 

cumbersome and require numerous data fields to yield a predicted risk without accounting for 

local variations in clinical practice.9–11 Furthermore, most available models predict prolonged 

LOS in a binary manner, rather than an estimate of the actual duration of hospitalization in 

days.8,12–14 The classification of LOS into prolonged and routine may reduce generalizability and 

limit the application of such tools in the acute care setting.15 
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Machine learning (ML) algorithms allow for complex modeling of non-linear 

relationships between predictive factors and have demonstrated superior discrimination and 

calibration in several clinical applications.16–18 Therefore, we sought to develop ML-based 

models to predict length of stay, 30-day mortality and select complications using an academic, 

state-wide database. We hypothesized that a parsimonious ML model, containing few 

explanatory covariates, would yield superior discrimination and calibration compared to 

traditional linear and logistic regression. 

Methods

Study Population

All adults (≥18 years) who underwent coronary artery bypass grafting (CABG) and/or 

valve operations were identified from the 2015-2021 University of California Cardiac Surgery 

Consortium (UCCSC) repository. Founded in 2013, the UCCSC is a collaborative among five 

academic hospitals across California. Data elements, including those submitted to the STS, are 

prospectively collected in compliance with policies of individual institutions and the University 

of California System-wide Review Board (IRB #16-000558, approved 5/6/2016, renewed 

4/15/2020). Patient written consent for the publication of the study data was waived by the IRB 

due to the de-identified nature of the UCCSC. 

Patients were stratified by the class of operation performed: isolated CABG, isolated 

valve, concomitant CABG/valve and multi-valve operations. Those who required left ventricular 

assist device implantation, extracorporeal membrane oxygenation or transcatheter procedures 

were excluded to maintain cohort homogeneity. Moreover, records with missing values for 
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overall and intensive care unit (ICU) LOS as well as 30-day mortality were excluded 

(Supplemental Figure 1). Patients with LOS or ICU LOS greater than the 95th percentile (>30 

days for LOS, >259 hours in ICU) were similarly excluded. 

Variable and Outcome Definitions

The primary endpoint was overall LOS. Mortality at 30-days, acute kidney injury (AKI), 

postoperative blood transfusion, reoperation and ICU LOS were also considered. Patient 

comorbidities, operative characteristics, and complications including AKI, postoperative blood 

transfusion and reoperation, were defined in accordance with the STS Adult Cardiac Database 

dictionary.19 Annual operative caseload, number of adult cardiac surgeons, total number of low 

acuity and cardiothoracic ICU beds were tabulated for each institution. Variables with missing 

values in >20% of patients were not considered for inclusion. For retained features with missing 

data, values were imputed using the median and mode for continuous and categorical variables, 

respectively. The number of records with missing data for each variable is reported in 

Supplemental Table 2. 

Modeling Techniques

We compared three ML models to traditional, multivariable linear and logistic regression:

gradient boosted machines (GBM), extreme gradient boosting (XGBoost) and random forest 

(RF). These algorithms autonomously generate a large set of decision trees to capture nuanced 

patterns in the training dataset. In the case of RF, development of one decision tree occurs 

independently from the other and the final output of the model is the arithmetic mean of the 

output from each decision tree. However, XGBoost and GBM develop decision trees in a 
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stepwise manner to compensate for errors of the prior trees, and the output is the weighted 

average of each decision tree’s estimate.20 A brief schematic highlighting the differences between

boosting and bagging classifiers is shown in Supplemental Figure 2. Hyperparameters, which are

used to control the learning process of ML models, were selected using the GridSearchCV 

function in the Python sklearn library. This technique exhaustively evaluates a wide range of 

hyperparameters and selects values which optimize model performance. Selected 

hyperparameters for each model are shown in Supplemental Table 3.

Model Development

Thirty-seven preoperative patient and hospital characteristics were chosen as candidate 

predictors. Clinical variables were selected from the STS risk score variable list based on clinical

relevance and are listed in Table 1.8 Hospital factors were incorporated to account for variation in

practice across participating institutions. Variable selection was performed using recursive 

feature elimination (RFE), a ML technique that is used to reduce collinearity and eliminate 

covariates with low variance. In RFE, cross validation is used to exhaustively evaluate variable 

sets of different sizes and select the best collection of features. Given that transportability and 

ease of use is an important aspect of risk tools, we identified smallest set of variables which 

retained maximum predictive performance. This algorithm was independently applied using 

linear regression and GBM to ascertain any differences between modeling strategies. Selected 

variables were used for all subsequent model development (Supplemental Table 4). We also 

compared the performance of ML against the STS risk scores for 30-day mortality, AKI and 

reoperation.
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The derivation cohort consisted of operations performed before March 2020, while the 

remainder comprised the validation dataset. To obtain cross-validated performance metrics, 

models were fit using 50% of the derivation cohort and tested using the remainder. This process 

was repeated 100 times to acquire model performance metrics, which are reported as means with 

95% confidence intervals (95% CI). To account for potential differences in case-mix due to the 

COVID-19 pandemic, we assessed the stability of model performance in the pre- (derivation) 

and post-COVID-19 (validation) eras.

Model Evaluation and Interpretation

Linear regression, GBM, RF and XGBoost models were compared using the coefficient 

of determination (R2) between observed and predicted values. Binary classifiers were evaluated 

using the area under the receiver operating characteristic (AUC). The accuracy of probabilistic 

predictions was assessed using the Brier score, for which lower values denote superior 

calibration. Model R2 and Brier scores were analyzed using a paired t-test, which allowed for 

comparison of model performance across cross-validation folds. Similarly, model AUCs were 

compared using DeLong’s test, which specifically accounts for the impact of model evaluation 

on a common test set. SHapley additive values were calculated to estimate the marginal impact 

of each covariate on the output of a decision tree model.17 

Baseline characteristics are reported as means with standard deviation or medians with 

interquartile range (IQR), as appropriate. Means were analyzed using the adjusted Wald’s test, 

while medians with the Mann-Whitney U test. Categorical variables are reported as frequencies 

and were compared using the Pearson’s chi-squared test. Statistical significance was set at 

α<0.05. Statistical analysis was conducted using Stata 16.0 (StataCorp, TX) and Python version 
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3.9 (Python Software Foundation, Wilmington, DA). The sklearn, shap and xgboost packages of 

Python were used to develop and assess ML models as described above.21,22 

Results

Population Characteristics

Across five participating centers, 6,316 patients met study criteria. The study cohort was 

predominantly male (72.5%), with mean age of 63 years. A significant proportion of patients had

pre-existing medical conditions such as diabetes, congestive heart failure and atrial fibrillation 

(Table 1). The most frequent operation was isolated CABG (50.5%), followed by isolated valve 

(33.3%) and concomitant CABG/valve operations (10.6%). The majority of operations were 

performed electively. Over the study period, the highest volume center performed 1,205 

operations, while the lowest volume center performed 626. The 30-day mortality rate was 0.9%. 

Overall, 27.7% of patients received postoperative transfusions, and 1.5% developed AKI. 

Median LOS was 8 days (IQR 6-13) with a median ICU LOS of 74 hours (IQR 47-116).

Comparison of baseline characteristics and outcomes between the derivation and 

validation cohorts is shown in Tables 1 and 2. Patients in the validation cohort were marginally 

older (64±13 vs 63±13 years, p<0.001) and had greater rates of congestive heart failure (45.0 vs 

33.8%, p<0.001) and peripheral vascular disease (11.1 vs 8.3%, p=0.003). Valve operations were

more frequent in the validation group, compared to derivation. While rates of 30-day mortality 

and AKI were similar, the incidence of reoperation (6.9 vs 9.1%, p=0.014) and postoperative 

blood transfusion (23.1 vs 28.8%, p<0.001) was lower in the validation cohort. The distribution 
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of LOS and ICU LOS was statistically different between the derivation and validation datasets 

(Table 2).

Variable Selection

Recursive feature elimination was applied to 37 candidate variables to determine the 

optimal covariate set in the prediction of overall LOS. Figure 1 demonstrates the cross validated 

R2 versus the number of covariates included in each model. The GBM model outperformed 

linear regression, regardless of feature set size. Notably, after the inclusion of 23 features, no 

appreciable increase in performance was observed from the GBM or linear regression model. 

Thus, all models were developed using the 23 features which were most strongly associated with 

LOS (Supplementary Table 4). 

Resource Utilization

Linear regression, GBM, RF and XGBoost models were developed to predict in-hospital 

LOS. Compared to linear regression, the GBM model yielded the greatest R2 (0.42 vs 0.41, 

p<0.001). As shown in Supplemental Figure 3, predictions by the GBM model were more 

strongly correlated with observed values for LOS, compared to linear regression. While the 

difference in cross-validated R2 between the two strategies was subtle, the GBM model greatly 

outperformed linear regression in the validation dataset (R2 0.47 vs 0.42, Table 4). When 

assessing cumulative model error in the validation cohort, the GBM model resulted in a 197-day 

reduction in error across all patients relative to linear regression.

The GBM model was interpreted using SHapley summary plots, and the most salient 

predictors of LOS were ranked by their relative importance (y-axis). Figure 2 depicts how high 
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(red dot) and low (blue dot) feature values corresponded to a change in LOS prediction. Elective 

admission had the highest feature importance and was associated with significantly decreased 

LOS. In addition, we found decreased hematocrit and serum albumin to increase the estimated 

LOS. Certain procedures, such as concomitant CABG/valve and multi-valve operations, were 

found to confer longer LOS. Notably, an increased number of floor beds conferred greater 

estimated LOS (Figure 2).  

In the prediction of ICU LOS, the GBM model demonstrated significantly increased 

cross-validated R2 compared to linear regression (0.23 vs 0.15, p<0.001). However, in the 

validation dataset, the XGBoost model demonstrated the highest performance (Table 4). 

Decreased pre-operative creatinine, low EF and pre-existing congestive heart failure were 

associated with greater predicted ICU LOS. Notably, increased annual hospital volume and a 

higher number of low acuity beds were associated with lower estimated ICU LOS (Figure 3). 

Clinical Outcomes

The GBM, RF and XGBoost models outperformed logistic regression in the prediction of

30-day mortality (AUC 0.69 vs 0.67, p<0.001). Furthermore, the GBM and RF models 

outperformed logistic regression and XGBoost in the prediction of AKI (Table 3). While 

postoperative blood transfusion was best predicted by GBM and XGBoost, all modeling 

strategies displayed similar discrimination in the estimation of reoperation (Table 3). The STS 

risk score for 30-day mortality and AKI outperformed ML models. However, ML displayed 

greater discrimination than the STS model in the prediction of reoperation (Table 3). These 

comparisons were consistent when evaluating the Brier score for each model (Supplemental 

Tables 5 and 6).
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Discussion

Reliable estimation of hospitalization duration remains a challenge for surgeons and 

administrators alike. The present study developed several parsimonious ML models to develop a 

readily useful prediction instrument for LOS. This work entails one of the largest applications of 

ML to discretely model LOS using a multi-center, academic dataset. Compared to linear and 

logistic regression, we found ML algorithms to exhibit the best performance for prognostication 

of LOS, 30-day mortality, AKI, postoperative transfusion and ICU LOS. Using autonomous 

techniques, we identified several key predictors of increased resource use including existing 

comorbidities, decreased preoperative hematocrit and serum albumin. And finally, we noted a 

significant impact of hospital characteristics on ICU LOS, suggesting the need for incorporation 

of center-specific characteristics in predictive tools. 

Several clinical characteristics, including preoperative anemia, renal dysfunction and 

operative complexity, were associated with increased overall and ICU length of stay. These 

findings are expected since laboratory values such as hematocrit, INR, creatinine and albumin 

are incorporated in virtually every clinical risk score calculator.8 Moreover, these clinical factors 

influence the development of postoperative complications, including pneumonia and AKI, which

are drivers of hospital LOS and costs.8,12,17,23 SHapley interpretation revealed that more complex 

operations were associated with greater LOS. The relatively higher incidence of complications in

the setting of complex cardiac surgery, such as pacemaker placement, need for blood transfusion,

and a greater need for ICU-level care, may explain this observation. Taken together, our findings 

validate the utilization of ML methods to reduce bias, enhance external validity and 

autonomously select features associated with increasing LOS. Furthermore, our results 
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demonstrate that during times of limited hospital capacity, clinical characteristics such as organ 

dysfunction and operative complexity should be considered when predicting hospitalization 

duration.24

In addition to patient factors, we found certain hospital structural characteristics to 

influence ICU LOS. For example, increasing cardiac institutional volume and a greater number 

of low acuity beds was associated with reduced ICU LOS. Several factors may contribute to this 

important finding. Greater institutional cardiac surgery volume may represent greater expertise, 

the presence of standardized care pathways, and more efficient hospital throughput for these 

cases. Moreover, greater availability of low-acuity beds may lead to less delay in transitioning 

out of the ICU when clinical milestones are met.15 Consistent with this notion, several prior 

studies have demonstrated wide variation in hospital practices that may influence LOS, such as 

expedited discharge after lung resection and CABG.25,26 A nationwide study of minimally 

invasive esophagectomy in the Netherlands demonstrated great heterogeneity in ICU LOS, 

pointing to differences in use of early extubation protocols and analgesic modalities as 

contributing factors.27 Investigation at a broader scale is necessary to confirm the generalizability

of our findings and to identify modifiable practice patterns that increase LOS. 

In the present work, ML models exhibited superior accuracy in the prognostication of 

overall and ICU length of stay, compared to linear regression. A single-center study similarly 

compared linear regression and artificial neural networks, finding the latter to have enhanced 

LOS prediction for patients undergoing isolated CABG.28 Furthermore, LaFaro and colleagues 

used a sample of 185 cardiac surgical patients to show that artificial neural networks yield more 

accurate estimates of ICU LOS compared to linear regression.29 The improved performance of 
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ML models is likely attributable to their ability to capture non-linear interactions between 

covariates and outcomes of interest. While the decision tree structure evaluates such interactions 

autonomously, linear regression models can only accommodate explicitly included interaction 

terms, making the development of an equivalent model cumbersome and more prone to bias. Our

findings are in congruence with the growing body of literature which demonstrates increased 

performance of ML models in the clinical setting.16–18 Thus, ML algorithms should be considered

as a viable and potentially superior alternative modeling approach in surgical care applications. 

Although ML methods outperformed linear strategies for prediction of reoperation, the 

STS models outperformed ML for 30-day mortality and AKI. This observation is most 

attributable to the large sample used to derive the STS risk scores as well as the incorporation of 

over 100 data fields.14 Nonetheless, the STS models are limited to operations either involving 

CABG or single valve replacement, and do not provide risk estimates for aortic surgery or multi-

valve procedures. Such operations present a more heterogeneous risk profile and may reduce the 

performance of predictive models. We opted to include such operations in our modeling attempts

to develop a tool which accurately reflects the case-mix at our five academic institutions. Indeed, 

procedures not accounted for by the STS comprised approximately 5% of our study cohort. 

Regardless, ML approaches are gradually being incorporated into the STS models to provide 

more bespoke estimates, an effort which will certainly improve risk prediction across cases 

performed in the United States. 

The predictive models developed in the present work have considerable utility in the 

clinical and administrative settings. Their mode of application is tunable to an institution’s needs,

and the insights that they provide have the potential to enhance clinical outcomes. A landmark 
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randomized control trial by Shimabukuro and colleagues found the implementation of ML 

models to reduce ICU mortality and LOS, demonstrating that such tools can tangibly improve 

clinical outcomes and decrease resource utilization.30 Our group has chosen to make the ML 

models with the greatest R2 and AUC available for public use. This online tool may be used by 

clinicians when evaluating patient risk or by administrators who wish to apply our predictive 

model at the programmatic level. However, a model which continuously incorporates 

postoperative events into the estimated LOS would be most pertinent to patient care in the 

perioperative setting. Further efforts to develop such tools are warranted.  

Given the premium placed on low-acuity and ICU beds during the COVID-19 pandemic, 

hospitals transiently reduced surgical volume. Prachand et al. proposed the widely used MeNTS 

framework, highlighting several key factors, such as OR time, estimated LOS, and anticipated 

blood loss, when determining resource allocation.31 In the event of significant reduction in 

operating capacity, the development of algorithms that balance risk associated with delay in 

operative management as well as estimated resource use may be necessary. Our proposed ML 

based models may better inform decisions about scheduling and optimizing case mix to ensure 

sufficient hospital throughput. With wide availability of ML present and use of few explanatory 

variables, prospective studies may readily determine the pragmatic impact of such models in 

optimizing hospital efficiency.

The present study has several limitations. As a multi-center study confined to a group of 

academic centers, our findings are not generalizable to the cardiac surgical population at large. In

addition, while the consortium makes a concerted effort to homogenize practice patterns across 

participating institutions, certain clinical factors may vary by center and surgeon, such as the 
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threshold for blood transfusion. Transfer status was similarly not captured in the UCCSC and 

could not be accounted for in our predictive models. Furthermore, despite the relatively large 

size of the dataset, prospective application of the ML models is required to externally validate 

their utility. Nonetheless, we used robust statistical methods and a sparse set of autonomously 

selected variables to enhance the generalizability. 

In conclusion, we have demonstrated the superior performance of machine leaning 

models in providing accurate predictions for length of stay using a multi-institutional, cardiac 

surgical database. Derived from few variables, such models can estimate resource use and better 

inform projected hospital census. Leveraging the information derived from machine learning 

models may be especially useful in reducing the impact of pandemic related disruptions in 

cardiac surgical programs.
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Tables:

Table 1: Baseline patient characteristics of the study cohort. CABG: Coronary Artery Bypass 
Grafting; SD: Standard Deviation. 

Parameter Overall
n=6,316

Derivation
n=5,028

Validation
n=1,288 P-Value

Age (years, mean±SD) 63±13 63±13 64±13 <0.001
Elective Admission (%) 58.5 58.3 59.3 0.52
Female (%) 27.5 27.7 26.6 0.45
Height (centimeters, mean±SD) 171±11 171±11 171±10 0.29
Weight (kilograms, mean±SD) 82±19 82±19 81±20 0.57
Ethnicity (%) 19.7 19.9 19.3 0.68
Operative Type (%)

Isolated CABG 50.5 51.3 47.4 0.012
Isolated Valve Operation 33.3 31.3 41.2 <0.001
CABG + Valve 10.6 11.1 8.3 0.003
Multiple Valve 5.8 6.3 3.6 <0.001

Medical Conditions (%)
Atrial Fibrillation 17.6 17.6 17.7 0.91
Cancer 6.9 7.1 6.4 0.37
Cerebrovascular Disease 17.0 17.2 16.2 0.38
Severe Lung Disease 3.3 3.2 3.9 0.23
Congestive Heart Failure 36.1 33.8 45.0 <0.001
Diabetes 38.1 37.6 39.7 0.18
Home Oxygen 3.0 3.1 2.8 0.59
Hypertension 77.4 77.2 78.0 0.57
Infectious Endocarditis 5.9 5.9 6.1 0.84
Liver Disease 6.4 6.8 5.0 0.017
Peripheral Vascular Disease 9.0 8.5 11.1 0.003
Prior Myocardial Infarction 31.2 31.7 29.3 0.09

Laboratory Values (mean±SD)
Hematocrit (% blood volume) 39±6 39±6 39±6 0.01
International Normalized Ratio 1.13±0.3 1.13±0.3 1.12±0.2 0.26
Serum Albumin (g/dL) 3.9±0.6 3.9±0.6 3.9±0.6 0.008
Preoperative Creatinine (mg/dL) 1.4±1.7 1.4±1.6 1.5±1.9 <0.001
Ejection Fraction (%) 56±12 56±12 57±12 0.21

Hospital of Operation (%)
Center 1 32.7 31.7 36.5 0.001
Center 2 24.0 24.7 21.4 0.014
Center 3 19.1 19.1 18.9 0.84
Center 4 14.0 14.9 10.5 <0.001
Center 5 10.2 9.5 12.7 <0.001
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Table 2: Resource utilization and clinical outcomes stratified by derivation and validation 
cohorts. 

Outcome Overall
n=6,316

Derivation
n=5,028

Validation
n=1,288 P-Value

Resource Use (median, IQR)
Length of Stay (days) 8 [6-13] 8 [6-13] 8 [5-12] 0.008
ICU Length of Stay (hours) 74 [47-116] 75 [47-117] 68 [43-99] <0.001

Clinical Endpoints (%)
Mortality 0.9 1.0 0.7 0.39
Acute Kidney Injury 1.5 1.5 1.7 0.54
Postoperative Transfusion 27.7 28.8 23.1 <0.001
Reoperation 8.6 9.1 6.9 0.014

Table 3: Cross-validated model performance metrics for each algorithm and outcome. Reported 
as means with 95% confidence intervals. aModels with continuous output were evaluated using 
the coefficient of determination (R2), while binary classifiersb were assessed with the area under 
the receiver operating characteristic (AUC). GBM: Gradient Boosted Machine. ICU: Intensive 
Care Unit. STS: Society of Thoracic Surgeons Risk Score. RF: Random Forest. XGBoost: 
Extreme Gradient Boosting.

Outcome Linear Logistic GBM RF XGBoost STS
Resource Use (R2, 95% CI)

Length of Stay 0.41 (0.41-0.41) - 0.42 (0.42-0.42) 0.41 (0.40-0.41) 0.42 (0.42-0.42)
ICU Length of Stay 0.15 (0.15-0.15) - 0.23 (0.23-0.23) 0.21 (0.21-0.21) 0.22 (0.22-0.22)

Clinical Endpoint (AUC, 95% CI)
Mortality - 0.67 (0.67-0.68) 0.69 (0.68-0.70) 0.69 (0.68-0.70) 0.69 (0.69-0.70) 0.91 (0.91-0.92)
Acute Kidney Injury - 0.67 (0.67-0.68) 0.76 (0.75-0.77) 0.76 (0.76-0.77) 0.74 (0.73-0.75) 0.84 (0.83-0.86)
Postoperative Transfusion - 0.71 (0.71-0.72) 0.73 (0.73-0.73) 0.71 (0.71-0.71) 0.73 (0.73-0.74)
Reoperation - 0.81 (0.80-0.81) 0.8 (0.79-0.80) 0.80 (0.80-0.80) 0.79 (0.79-0.80) 0.76 (0.76-0.77)
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Table 4: Performance of each algorithm when predicting resource utilization and clinical 
outcomes in the validation cohort. Regressionsa were evaluated using the coefficient of 
determination (R2), while binary classifiersb were assessed with the area under the receiver 
operating characteristic (AUC). GBM: Gradient Boosted Machine. ICU: Intensive Care Unit. 
STS: Society of Thoracic Surgeons Risk Score. RF: Random Forest. XGBoost: Extreme Gradient
Boosting.

Outcome Linear Logistic GBM RF XGBoost STS
Resource Use (R2) -

Length of Stay 0.42 - 0.47 0.47 0.47 -
ICU Length of Stay 0.017 - 0.078 0.054 0.082

Clinical Endpoint (AUC)
Mortality - 0.68 0.68 0.7 0.72 0.91
Acute Kidney Injury - 0.77 0.79 0.8 0.8 0.84
Postoperative Transfusion - 0.69 0.68 0.68 0.67 -
Reoperation - 0.78 0.79 0.8 0.78 0.76
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Figures: 

Figure 1: Coefficient of determination (R2) versus covariate set size in the prediction of in-
hospital length of stay. GBM: Gradient Boosted Machine; LR: Linear Regression.
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Figure 2: Interpretation of GBM-based model for prediction of length of stay (LOS, days) using 
SHapley summary plots. Y axis is ordered by increasing feature importance, and the x-axis is the
marginal effect of each parameter on predicted LOS. Red dots show the impact of high feature 
values on predicted LOS, while blue dots show the impact of low feature values.



27

Figure 3: Interpretation of GBM-based model for prediction of intensive care unit length of stay 
(ICU LOS, hours) using SHapley summary plots. Y axis is ordered by increasing feature 
importance, and the x-axis is the marginal effect of each parameter on predicted ICU LOS. Red 
dots show the impact of high feature values on predicted ICU LOS, while blue dots show the 
impact of low feature values.
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Supplemental Figure 1: Study CONSORT diagram. CABG: Coronary Artery Bypass Grafting.

Supplemental Figure 2: Schematic representing the algorithmic design of random forest, gradient
boosted machines (GBM) and extreme gradient boosting (XGBoost).
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Supplemental Figure 3: Calibration plot of observed versus predicted length of stay in days. R2: 
Coefficient of Determination; GBM: Gradient Boosted Machine; LR: Linear Regression.
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