UC Irvine
ICS Technical Reports

Title
The Distributed BASIC Interpreter System

Permalink
https://escholarship.org/uc/item/0582d5t9

Author
Levin, Steven L.

Publication Date
1973-06-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0582d5t9
https://escholarship.org
http://www.cdlib.org/

The Distributed BASIC Interpreter
System

teven L. Levin

TECHNICAL REPORT #33 - JUNE 1973

Department of Information and Computer Science
University of California, Irvine

The Distributed BASIC Interpreter System

by

Steven L. Levin

June, 1973

ABSTRACT: This paper presents a design for 'a translator
system to be wused in a distributed computing
environment. The concept of a language service

for such an environment is discussed and the

distribution of the system's. processes 1is
examined. A technique for moving interrupted
interactive computations among : processors is
presented. Detailed design specifications are

provided for the translator system processes.,

14

The work reported here was supported by MNational Science
Foundation Grants GJ-36414 and GJ-1045.

UCI Technical Report 33, XDA-4, DCS Memo No. 33

- ' ACKNOWLEDGEMENTS

Professor David Farber supplied the initial idea of a
distributed BASIC system. Dr. | Peter TFreeman suggested
study ing the process used to obtain the design for the BASIC
system and ailded iﬁ defining the format of this paper.
Richard Burton, Elaine Gord and Marsha Hopwood provided many
ideas and sugggstioné in the course of this work. Sandra

Kass assisted with the editing and typing.

FOREVORD

The design described here was undertaken to explore the
jssues of a distributed language system and the ?rocess of
softﬁére rationalization. The design proéess was documented
by maintaining a diary in which the path and alternatives of
the design were recoéded. A conscious effort was made to

examine all alternatives and record the reasons for

rejection.

Design alternatives resulting from this process of
software rationalization are included in this document. The
lists of alternatives are not complete. Indeed, exploring

how to examine more fully the alternative space for a

software designer partly motivated this effort. The utility

of providing implementors with alternative designs is being

" studied as the system is undergoing implementation. Thus,

this document is primarily an instance of a rationalized

desigh and does not provide any analysis of the process.

Section 1 is an - introduction that .explains the goals,
motivation and overall désign of the language system. The
reméinder of this document is an application of these ideas
to a particul;r language. Sections 2, 3, and & are detailed

design specifications for the processes comprising the

implementation of~ a BASIC system. The technical
specifiéation in each section is preceded by an introduction

and overview, Section 5 describes the techniques used for

moving computations amongst processors.

Abstfact

Foreword

CONTENTS

Acknowledgements

Section One: Introduction

- Introduction to the Dlstrlbuted BASIC

Interpreter System

The Distributed Computing System

DBIS: A Language Service

Distributed Processes in the DBIS

1.4.1 Load Sharing

i1.4.2 Processor Specialization and

Hierarchical Computlng
The Design of the DBIS
1.5.1 The Input Handler

1.5.2 The Translator

1.5.3 The Interpreter

‘Program Mobility

System Portability

Two: Input Handler Process

Introduction

Qverview
k4

Section

L

Three: Translator Process
Introduction
Overview

Interpretive ExpreSsionsv
Translator Error Hessages

Technical Specification

- 3.5.1 Technical'pvérview

-3.5.2 Translator Tables

3.5.3 Translator Procedure desériptions

3.5.3.1 Lexical Analysis
3.5.3.2 Translation Procedures

3.5.3.3 Expression Analysis

Four: Interpreter Process
Introduction
Overview

Technical Specification

" 4#,3.1 Technical Overview

4.3.2 Interpreter Tables and Data
Structures

.3.2.1 Program Repreééntation
4,3.2.2 Syﬁbol Table

4.3.2.3 The R-stack

L,3.2.4 The S~stack .

4.3.2.5 The T-stack

L.3.4

Section Five:

4,3%2.6

4.3.2.7

Transfer Table

User Information Table

Storage Allocation

4L.3.3.1

4,3.3.2

4.3.3.3

u.s.a.q

4,3.3.5

4.3.3.6

4.3.3.7

4.3.3‘.8

1*.3.3.9

4‘3‘3.10

4,.3.3.11

Introduction
Pointer.Cells
Floating Point Cells
Strings

Storage Reservation and
Liberation

Consolidated Storage Allocation
Design Alternatives

Design Alternatives for String
Storage

Implementation Alternatives
Summary of Allocation Functions

Storage Allocation Procedures

Interpreter Procedure Descriptions.

4381
B.3.4.2
B.3.4.3
B.3.4.4

b.3.4.5

Introduction

Internalization
Evaluation

String Handling
Stack Accessing>

Buffer Accessing

Program Mobility

Computation Interruption

5.3 Context String Formats
5.3.1 Sfatement Fornms
5.3.2 Symbol Table
5.3.3 R-stack
5.3.4 S-stack

‘5.3.5 T—stack

References
Appendix A: Procedure Index

Appendix B: Partial Procedure Descriptions

Section One

Introduction
‘ to the
Distributed BASIC Interpreter Systen

1.1 Introduction

The Distribﬁted Basic Interpretér éystém (DBIS) i;‘an
interactive language service designed tO'providé incremental
compilation ‘and execution of BASIC programs in the
environment of the Distributed Computing Syétem (DCS). The
maip design goals are to allow distribution of the processes
composing the language system and pepmit movement of
incomplete interactive computations from one ‘computer to

another without interruption of service +to the user. The

techniques in the DBIS are applicable +to languages other

‘than BASIC and to environments employing a delayed binding

of names to locations.

1.2 The Distributed Computing System

n

The Distributed Computing System ig a computér network
uﬁder development at the University of California, Irvine
[2]. Hardware consists of a collection of computing system
elements (processors/memory, secondary storage, peripherals)

connected to a digital communications ring. The network

software is composed of processes which are addressed by

name and interact by sending and receiving messages.

1.3 DBIS: A Language Service

Usgrs of the DBIS view BASIC as a language service
available on the DCS. Specifically, users are provided with
a service and in general have no concern or control over how
that service is provided. The DBIS providesithe network's
fuli range of computational power to a user who " need not
know the particulars of the processofs prdviding the
service. A uéer becomes faﬁiliarv with the properties,
facilities and protocols of %he DBISV ana not the machines

providing the service.

. 'Since part of the power of the DBIS is the ability to
mové an.incomplete computation to another processor,(as when
a user's resource demands exceed . those of the current
processor) users may <encounter some_computafional anomaliés.
The anomaiies arise in executing the'same computation at
different points in space and time. _ Different processor
architectures result in varying word siées, arithmetic

algorithms and test conditions.

This may lead to different overflow conditions and
different ‘roundoff and truncation errors. If these

differences are significant, facilities «could be provided

within either DBIS.or the computing system to allow users to

specify required arithmetic precision and arithmetic

algorithms.

1.4 Distributed Processes in the DBIS

The DBIS is composed of three component processes that
communicate by sending messages. The component processes
(input handler (IH),; translator (TR) and interpreter (INT))

and their communication paths are shown in figure 1-1.

Figure 1-1: DBIS Processes and Communication Paths

The input handler process controls input/output between
the user and the DBIS, It establishes a user information
table with the user's identification, processing
requirements and input handler and interpretér process
names. Since a user's BASIC statement may be translated
into interpretive format by any available translator process

and all processes operate asynchronously, the input handler

must assign seguence numbers to user inputs to insure the

correct order of statement evaluation by the interpreter

process.

ihe translator process performs lexical and syntacfic
analysis on the user input and translates the input into
interpretive format,b Detected errors result in a message to
the user via the input handler process. Translated input im
+he format of an interpreter coﬁfext.string (CS) 4is sent to
an . interpreter process. User information accompanies
messages.sent from the input handler to a tramnslator, from a

translator to an interpreter, and from an interpreter to an

e

nterpreter.

The interpreter process internalizes &a context sfring'
and then may continue the execution of an interrupted
computation or initiate a new computation. An interpreter
process may generate a context string which is a canonical
representation qf.the information needed to move & partial.
computation to another interpreter process. 'Interpretation-

errors are vreported to the user via the input handler

process.

1.4.1 Load Sharing

One advantage of a network architecture 1s the
L4

&

possibility of load sharing, dynamlically distributing the
load so that each processor receives $some portion of the

total work [9].

When a hardware processor becomes unavailable, then any

. DBIS component process active on that processor may be moved

or restarted on another processor,

Most interactive language systems do mnot attempt
dynamic load sharing because of the difficulties in moving
computations from one processor to another and the need to

adjust communication’ paths when processes are moved

[8,9,10].

The pfoblem of transferring computations is partially
solved in the DBIS by uncoupling the user's contexf from the
physical processor. . Adjusting communication paths is
unnecessary in the DCS since messages are addressed to a

process name rather than a physical location.

Another consequence of having distributed process
components is.that the number of input héndlers, translators
and interpfefers may be varied to meet user demand. An
example is shown in figure 1-2 where a large nqmber of users
require high levels of computation but very 1little

input/output &nd statement translation.

usefZ::::igz\éiz::::::%user
eser 2 >§ |
. 2 e INT

N
INTN_/ \\

{INT

user

Figure 1-2: Balanced Process Service in the DBIS

1.4.2 Processor Specialization and Hierarchical Computing

The processors that compose a network may have
differing #rchitectures. That is, those processors in the
system may vary in speed, resources, word sizes and order
codes. Given that both computatioﬁs and processes can
migrate in the network, this suggests that processes might
be located on 'specialized processors' and thét computations
withv increasing ©resource demands could‘ _be moved to

acceptable processors., .

A process 1s located on a 'SPeciélized processor' if
the efficiency of executing that process on that particular
processor 1is greater than might be obtained on another
processor in the network under the same conditions. If the
network had only one processor with hardwafe floating point

arithmetic instructions it would be a good candidate as an

'interpreter processor,'! Similarlj other processors might
be spedialized with respect to the DBIS in input/output
{input hahdlér) and charééterrhandling (tfénslator process).
The ‘allocation of processors to processes is considered a

function of thé network.

If the DCS were augmented by the addition of more
powerful processor/memory components then a computation
might be moved from processor to processor as 1ts resource

demands outstripped those of its current environment.

In - a univeréity envibonment this means students wbuld
have most of their computing needs satisfied economicaliy én
the smaller more specialized processors while programs that
excéed the.resources of these processors would bbe moved to
larger processors without interrupting service to the user.
Thus, users are supported by a powerful range of computingi

resources which are accessible through the same language

%

service.

1.5 The Design of the DBIS

This section presents an overall view of the DBIS.
Extended discussion of program mobility, system portability
and technical design specifications are found 1in later

sections. ;

-

4.5.1 The Input Handler

L. o
o

Input/output -betveen the user and the DBIS is performed
by the dinput handler, Statements 'inpﬁt by the user are
assembled acédrding to DCS message protocols and then sent
over the network to be transla?ed by any available
translator process. Information identifying the wuser
accompanies the statement' as it prdceeds to a franslator

process.

1.5.2 The Translator

The +translator transforms user statements into a
statement canonical form which is shown below in figure 1-3.
A statement form is a list that contalins a statement number

(i1f present), a statement type, a statement and a series of

interpretive expressions.

" (statement number statement type source

interpretive expressions)
Figure 1-3: tatement Canonical Form

The "~ expressions are ©represented in “Cambridge Polish™
notation, a notation in which a function call is represented
as a parenthesized list whose first element is the name of

the function and whose remaining elements are its arguments

1:7] .

The statement form and user information constitute a
context string (see figure 1-4). This string is sent to the
interpreter process on which the current user context is

established.
yser information #~statemenf cénonical form
Figure 1-4: Context String
.1.5.3‘The‘interpre£er

Examination of the user information poftion of the
conteit"string determines whether a,,ﬁser's vcontext is-
aiready established on a partiéular processor. A context
includes progran, déta values and computational status. If
the context string originatés from a translator it céntains
user Iinformation and a statement form.v ' If the context
sfring ofiginates from an interpreter it comsists of user
information and canonical forms for the statements, symbol
table, and interpreter stacks. The format of- a complete

context string is given in figure 1-5.

user information # statement forms # symbol table %

result stack # expression stack # transfer stack &
v '

Figure 1i-5: General Context String

Regardless of origin, context strings are internalized
using identical interpreter procedures. A program is a list

of statement forms as shown in figure 1-6.

statement Statement ‘ statement
form. form] form

Figure 1-6: Program List

- References to functions and variables in the
interpretive expressions are +to ©relative entries in the

symbol table as shown in figure 1-7.

The interpretive expression

(GOTO 100) - Symbol Table
internally is represented as 1

(20 67) 2

] —> GOTO function

‘ “IT—>constant 100

4

Figure 1-7: Symbol Table References

In this manper, addresses in the interpretive
expressions are not bound to physical locations on any
processor. Address bindings are made at interpretation

time. This practice is extended to the interpreter result

stack (R-stack) and transfer stack (T-stack).

Intermediate values obtained -in evaluating function
arguments and expressions are stored as temporary entries in
the symbol table and referenced by relative addresses placed

on the R-stack.

Control information (return addresses) is divorced from

physical locatiens by placing relative transfer addresses on

the T-stack. These addresses map inte a table that contains
the physical _gddvésses, As Dbefore, binding of relative
addresses to physical locations is delayed wuntil execution

of the transfer.,

On the S-stack (expression stack) acéuél machine
addresses ére used as pointers to portions of the program
list and its compoﬁent structures, statement formé and
interpretive expressions. A canonical representation for

the S~stack is discussed in section 5.3.4.

All interpretdr values {user and system) and function

addresses are accessed through the symbol table. The symbol

table contains descriptive informafion on the s abol's name,
symbol type (simpie numeric, simple string, dimensioned
numeric, function), data type (integer, floating point,
string) and value. Values are pointers to defined data type

structures.

1.6 Program Mobility

Programs may be moved in the DBIS by forming a
canonical character string representation (context string)

as shown in figure 1-6. | }

Thé structure énd data ofithe program, symbol table énd
stack;'are preserved in the format:of the string. The DBZS.
systemn mandateé that all intefpreters accept and generate
context étrings in the same format. Furthermore, the points

at which computations may be interrupted are identical in

all interpreters.

Detailed format descriptions of the context string are
discussed in section 5.
1.7 System Portability

The DBIS, processes as implemented on one network

processor must perform identically to similar DBIS

components on an¥ ‘other processor, To be feasible,

successive implementations of the DBIS on other processors
should require a minimum of . recbding. This goal is
supborted by 1) implementing the DCS Qersion in a high level
ALGOL-like" language [5] and 2) confining machine dependent

operations to a set of 'primitive! rocedures.
P

In a 1limited way, the primitive procedures help to

uncouple the design from processor érchitecture by
permitting - the implementor to ch§ose suitable. data
representafions without propagéting design changes
throughout the system, Other procedures requiring

information from data structures know only the name and

outputs of the appropriate accessing 'primitive.!

Portability in the DBIS is not gained by standardizing
on a virtual process§r. Implementors are free to tailor
their data structures to a particular processor as long as
the performance of the accessing procedures meet design

specifications.

Section Two

Input Handler Process

2.1 'Introduction

The input handler process ‘controls all input/ocutput
between the wuser and .the . DBIS. It: establishes a user
information table which may be moved to other processors as
may the input handler process. Technical specification will
not be available until details in this area are finalized in

the DCS design.

2.2 Overview

The input handler accepts input from the user and forms

the message string shown in figure 2-1.

user information # user input

Figure 2-1: Message from Input Handler to Translator

'Thisvmessage is sent to any translator process on the
network. The user information contains.a sequencing number
for the inferpreter and may include the ﬁame of an
interpreter procesé. The sequencing. number iIs used to

f
insure correct ovrder in evaluating user statements.

Synchronization is not guaranteed since all DBIS component

processes operate asynchronously.
.*"y‘-

J———

Design Alternatives

.

Part of the overhead in the DBIS not found in a
traditional language system is the +time and code spent
assémbling and sending messages. Collapsing the two
pProcesses into one removes.the overhead buﬁ eliminates the

" use of specialized I/0 or translation processors,

Section Three

Translator Process

3.1 Introduction

The translator‘process,attempts to generate a étatemént
form from the wuser input. If errors are detected in
translation then a ~diagnostic meséage is issued to the user
throﬁgh the input handler, otherwise. a context string is

formed and sent to an interpreter process.

.

3.2 Overview

Translation into inierpretive format begins by
lexicaiiy processing the wuser 1input to eliminate blanks
(except in quoted strings), reduce multiple symbol operators
to opé token ;nd detect .trivial errors.. In particuléf,

unequal numbers of quotation marks and unequal. numbers of

parentheses are detected.

- Statement types are identified by comparison with a key
word table and individual translation procedures being
~invoked to process eéch statement type and produce fhe
interpretive expressions that constitute part of the
statement form. Figure 3-1 shows the statement form

generated by the translator.

»

(statement qgmber statement type wuser input

interpretive exps)
Figure 3-1: A Statement Form
A context string as shown in figure 3-2 is sent to an
interpreter process.
user information # statement form

Figure 3-2: Context String

3.3 Interpretive Expressions

A Interpretive expressions are .lists of . actions which
must‘be_evaluafed to execute é BASIC statement. The nuﬁber
of interpretive expressions generated for. a . single BASIC
statement depends on the +type and composition of the

statement. Some statements, 1like the RETURN, generate a

fixed number of expressions (i.e. (SET :P: (POP))) .while

other statement types like INPUT will generate a variéble

‘number of expressions depending on their parameter list.

‘In .almost all cases these expressions are interpreted
sequentially within each statement.form. The exceptions are

DATA and DEF statements.

All expressions are ©represented in "Cambridge Polish™®
notation, a notation in which a function call is represented
as auparenfhesized list whose firét element is the name of
the funétion (primitive or special in the DBIS) and whose
remaining velements are 1its arguments. The primitivé
functions manipulaté stacks and systém . status variables
(enclosed in colons) Awhilevthe special functions carry out

the execution of BASIC operations.

Design Alternative

An alternative coding was considered for almost every

14

-

BASIC statement. The general alternative was to compose the
“interpretive expressions using only a small set of primitive

functions. While this reduces the number of functions that

require implementation, reduces some table sizes and lessens

the implementations relation to any particular language, it
is cumbersome and produces unwieldy expressions. A mixture

of primitive and special functions is a middle choice.

-

Interpretive Expressions Generated By BASIC Statements

i, GOTO exp
(GOTO exp)

f2. "READ v1,v2,...,VD
(ASSIGN vi1 (READD))

(ASSIGN v2 (READD))

(ASSIGN vn (RzAnb))
.3; "GOSUB exp
" (pusH :P: (POP))
(GOTO exp)
%, ° RETURN
(SET :P:)
S. LET v = exp
| A> (ASSiGN v exp)
6. FOR v = expl TO exp2 STEP exp3
“ (ASSIGN v expl)
_(FORTEST v exp2 e#pS)
(PUSH :P:)
7. NEXT v
(SET :FORF: :TRUE:)
_¢SET :P: (POP))
'8, STOP

(HALT)

9. END
| (HALT)
10. DIM vi(expl), v2(exp2,exp3)
(DIM v1 expl :NIL:)
" (DIM v2 exp2 exp3)
11. DATA expl,exp2,...,exXpn
(expl exp2 ... expn)
12. INPUT v1,v2,...,vD
(ASSIGN vi1 (INPUT))

»(ASSIGN v2 (INPUT))

(ASSIGN vn (INPUT))

-

13. IF expl THEN exp2

(IF expl exp2)
14, RESTORE

(SET :DATAP: :PROGP:)
15. PRINT expl, exp2;

| (PRINT exp :COMMA: exp2 :SEHICOLON: inoppint:)

i16. DEF FN<letter>(p1,p2,.;.,pn) = exp | ‘

(pi1 p2 ... Pn) -

(exp)

17, FNEND

3.4 Translator Error Messages

An error detected during translation. is announced to
the user by invoking the procedure TRERR. TRERR has one

argument which is the number of the error message to be

issued.

TRERR prepares and sends a message to the user via the
input handler. The text of the message is kept in an incore

table.

Design Alternatives

1. Store error messages on secondary storage.

If core is at a premium and/or extensive messages
‘are contemplated then the text may be kept on
secondary storage and vretrieved indirectly or wvia a

hash function. The easiest alternative is to store

'~ the text of messages in core.

2. Issue error messages from the procedure that has the

most information regarding the error.

If we had been concentrating on a product where

there would be regular use in a teaching environment
£ o
I would have pushed +the 1dea of having error

‘messages originate from the context where +the most

information was available as . to what caused the .

error and how it could be corrected, -

3.5 Technical Specification

3.5.1 Technical Overview

The user input is deposited into the buffer SRC and the
procedure LEXICAL used to lexically process the string. The
output of LEXICAL goes to- the buffer labelled NSRC. STHNTN

is a cbpy of the statement number formed by LEXICAL.

PARSE identifies the wuser input by comparisqn with a
keyword +table and invokes the appropriate translator
procedure to syntactically analyze the statement and produce
interpretive expressions which are pushed on the S-stack.

TRNCNTL creates a statement form and context string. The

context string is sent to an interpreter process.
3.5.2 Translator Tables ' ' - -

A). KEYWRD - Key Word Table

This table contains statement key words ordered by
increasing length. An‘entry'consists of a key word
string and its symbol table location. NXEYWRDS is

the number of keywords in the keyword table.

B) PRECTB - Precedence Table
(.

. C) BINOPTB - Binary Operator Table

BINOPTB is an association table for binary operators

and function addresses in the symbol table.

'3 - 10

3.5.3 Translator Procedure Descriptions

Many of the procedures wused in the translator process
are duplicated in the interpreter and are described in other

sections. A complete index to all procedures 1is found in

appendix A.

Symbols in procedures prefaced 'S:' or ':! are equated
to symbol ‘table - locations (i.e. They are strings that

correspond to the symbol table entry for that function or

variable).

3.5.3.1 Lexical Afalysis and Statement Recognitiocon

LEXICAL - Lexical Analyzer

PARSE - Statement Recognition
GETKEY - Accessing Prbcedure for the Kejword
Table :

3 - 12

Name: LEXICAL

Function:

This module accepts as input the user's source statement
and outputs in a new buffer a character string that is
more easily translated by the remaining routines. A
‘limitted amount of error checking is performed.

Description:

After initializing the buffer pointers SRCP and NSRCP
for the buffers SRC and NSRC respectively the string in
SRC is scanned and the user identification information
(USER-INFO) is extracted (the user information - may be
.removed by the routine which calls LEXICAL, in this case

the pointer SRCP is positioned at the beginning of the
user source statement).

Processing continues with the scanning of SRC and the
creation of 2 new source string (NSRC) in which all
extraneous blanks have been removed and the
multi-character symbols (¥<=", ¥>=m_ and "<>") have been
reduced to single characters.

In parallel, tests are made for matching parentheses and
quotation marks. Upon encountering a delimiter the
original source statement is extracted (SRCS). The
compressed source string is used to obtain the statement
number if present. If there is no statement number then
STMTN is set to the null string. Control is then passed
to the parser (PARSE), '

Design Alternatives:

‘A) General table driven lexical analyzer.
BASIC requires only very simple lexical analysis and
this particular design is not sufficiently general

t0 regquire a general analyzer.

B) Process statements by replacing keywords, literals
and constants with tokens. ‘

Some token replacement is done as with multiple
character symbols but in general it is unnecessary
since the type and composition of wvariables and
numbers 1is simple as is the expression analyzer.

7.

Functions Called:

GETCHR ”fﬁTCHR OUTSTR DIGIT MATCH

Called By:

TRNCNTL
Error Calls:

TRERR(1): wunequal number of parentheses
TRERR(2): .unequal number of gquotation marks

3 - 14

Flowchart:

LEX
NSRCP<-1
PCNT<-0
QFLG<-FALSE
CHR<-GETCHR(SRC,SRCP)
Y
CHR = D‘ELIH-‘.;;———‘}II
N
A 4
QFLG = FALSE —— I
N b
‘F
CHR = BLANK
N >
- ‘,. N y .
MATCH(">=")~———— PUTCHR(NSRC ,NSKCP, S :GE) ——>
N
v Y
BATCH("<=") —————PUTCHR(NSRC,NSRCP ,S:LE) —>
N
.Y Y
 MATCH("<>%") ———— 5 PUTCHR(NSRC ,NSRCP ,S :NE)
N
L 4 A4
CHR = "(" —————5PCNT<-PCNT+1
e
3 Y ’
: CHR = ")n > PCNT<-PCNT=1—— s
_ . . .
I—
L 4
CHR = "um ‘ > QFLG<~NOT(QFLG) >
BN

PUTCHR(NSRC ,NSRCP,CHR)

IX

P

L v
PUTCHR(NSRC,NSRCP ,DELIM)

v v
PCNT = 0— STRERR(1)
QFLG = TRUEQL————ATRBRR(z)
N .
NSRCP<-1

CHR<ZGETCHR(NSRC,NSRCP)

v T
DIGIT(CHR)———=STMTN<=-"— S EXIT

v

NSRCP<-NSRCP+1
CHR<-GETCHR(NSRC ,NSRCP)

v
DIGIT(CHR)
N

v v
STMTN<-OUTSTR({NSRC,1,NSRCP-1)

v
EXIT

3 - 186

1.

2.

3.

b,

Name: PARSE

Function:

This

procedure identifies the statement type and

transfers control to the appropriate coding routine.

Description:

The

process of identifying the statement type is

performed by extracting strings of increasing length

from

the source string and comparing them against

entries in the key word table {(KEYWRD).

The‘key word matching process is terminated upon 1)
encountering a delimiter, 2) exhausting entries in the

*If no match is found then a test is made to determine
the statement is an implicit LET, if not an error

- key word table, or 3) a successful match.

e e
0 Hy

generated.

Design Alternatives:

- A)

B)

o)

Tree structured dictionary of key words.

Rather than blindly searching and matching on string
length this technique would follow a path through.

the dictionary dictated by the source string.
Although certainly faster in matching statements the
dictionary is complicated to set up and questionable
in what its storage overhead would be.

Partial matching using a key word table.

This requires looking at less characters and reduces
the storage overhead of the table., It is
undesirable as some statements are not completely
identified and this job is pushed onto later
routines.

Table driven parser.

BASIC does not require the generality.

5. Functions Called:

e

GETCHR OUTSTR LENGTH GETKEY STREQ
DELSTR (indirectly calls translation procedures)

6. Called By:
LEXICAL
7. Error Calls:

TRERR(3): unidentifiable statement

3 - 18

8. Flowchart:

PARSE

y
KEYP<-1
BEGSTR<-~NSRCP

>y
CHR<-GETCHR(NSRC,NSRCP)

v

" CHR = DELIM—X———~—9TRERR(3)
N

, TKEY<-QUTSTR{NSRC,BEGSTR,NSRCP)
> TLEN<-LENGTH(TKEY)
II—— | y
KEYP > NKEYWDS ———TRERR(3)"
. . ,

. A , ,
KEYW<~-GETKEY(KEYP,KEY)

v ’

N :
LENGTH(KEYW) > TLEN‘*———*STREQ(TKEY,KBYW):£~5BI
DELSTR(TKEY) ' ' KEYP<-KEYP+1
HSRCP<~-NSRCP+1 ’

II
III

NSRCP<-NSRCP+1
TO GETKEY(KEYP,ADDR)

'3 - 19

7.

8..

Name: GETKEY
Function:
Accessing function for the keyword table, KEYWRD.

Description:

The calling sequence is GETKEY(KEYP,ITEM) where KEYP .is
a relative pointer into the table and ITEM is a flag.
If ITEM 1is O then a pointer to a keyword string is-
returned, if ITEM is 1 then the address of the
corresponding translation routine is returned.

‘Design Alternatives: none

Functions Called: none

*Called By:

PARSE
Efror Calls: none.

Flowchart: none

'3 -~ 20

TLET
TGOTO
 TFOR
TNEXT
TREAD
TDATA
TGOSUB
TRETURN
TDIN
TSTOP
TEND
TIF
TINPUT
TRESTORE
TPRINT
TDEF

" TFNEND

3.3.3.2 Statemeﬁt Translatibn Procedures

LET statement

GOTO statement

~FOR statement

NEXT statement
READ statement
DATA statement

GOSUB statement

RETURN statement

. DIM statement

STOP statement
END statemént

IF statement
INPUT statement
RESTORE stétement
PRIHT statement
DEF statenrent

FNEND statement

Ve

7.

Name: TLET

Function:

Generate interpretive code for assignment LET

'statements.

Description:

This procedure generates the interprétive expression

(S:ASSIGN var exp).

S:ASSIGN 1is pushed onto S-stack and the procedure

OPERAND is <called to analyze the variable. OPERAND
leaves its result on S-stack. If the equal sign is
missing an error 1is generated, otherwise the return

-address for the ecall +to EXPRESS 1is stacked and the

expression -analyzer invoked.

" Design Alternatives: none

Functions Called:

PUSHS GETCHR OPERAND . EXPRESS | TRERR
PUSHT OUTL

Called‘By:
PARSE

Error Calls:

"TRERR(7): missing equal sign

8.

Flowchart:

TLET

PUSHS(S:ASSIGN)
OPERAND
CHR<-GETCHR(NSRC,NSRCP)

' N
CHR = "=%-————STRERR(7)

y

NSRCP<~-NSRCP+1
PUSHT(RETURN ADDRESS)
EXPRESS .

OUTL(3)

|

RETURN

3 - 23

Name: TGOTO

Function:

Generate interpretive code for GOTO statements.

Description:

The symbol table address of the GOTO function is pushed
onto S-stack and the return address for after the call

to the expression analyzer is pushed onto T-stack. The
expression amnalyzer is <called and the interpretive
expression formed by using OUTL. :

‘Design Alternatives:

 A) Allow only integers as the argument of the GOTO.

B) Use primitive functions to transfer control.

This can be done using a SET :P: and a function that
performs a statement number lookup.

 Functions Called:

PUSHT PUSHS EXPRESS OUTL
Called By:

PARSE TGOSUB
Error Calls: ﬁone

Flowchart:
TGQTO

PUSHT(RETURN ADDRESS)
PUSHS(S:G0TO)

EXPRESS

OUTL(2)

{ N

RETURN

1.

2,

3.

Name: TFOR

Function:

Generate interpretive expressions.for the FOR statement.

-

Description:

This procedure generates the interpretive expressions
"(S:ASSIGN var expl)
(S:FORTEST var exp2 exp3)
(S:PUSH :P:) ' '

for BASIC statements of the form

FOR var=expl TO exp2 STEP exp3

"The first expression is composed by pushing the address

of S:ASSIGN onto S-stack and invoking the procedure
OPERAND to analyze +the assignment variable. If the

- equal sign is not present after the variable then an

error message is generated, otherwise a return address
is stacked and +the expression analyzer called. Upon

- returning from EXPRESS the top three elements of S-stack

are now formed into a list expression with & pointer

left on S-stacke.

A check is made for the prescence of 'TO' and if absent
an error message is gemerated, otherwise a return
address is stacked and EXPRESS called to parse the
arithmetic bound expression. '

If the word 'STEP' is present then a return address is
again stacked and EXPRESS used to «compile the third

expression which is the increment. If no step
expression is given then the third expression is set to

¢NIL:.

The parse of +the TFOR statement is completed by
outputting the +top four elements of S-stack and
generating a third interpretive expression which pushes
a pointer to the current statment onto the S-stack of
the interpreter.

L, Design_Altérnatives:

S5a

A)

B)

)

Maintain a FOR/NEXT table to enable linking FOR/NEXT
statements when the program is executed.

This adds greater cost in complexity and code since
now another table must be in a format for transfer
and the requisite routines designed.

More intelligence in the interpretive code.

Having the interpretive code push the next
expression to evaluate on the stack and having a
FINDNEXT function does not reduce the total amount
of work domne but just distributes it amongst the
interpretive code and more special functioms.

Place a pointer on stack to the. expression to

- evaluate after the initialization code.

This would require either a table of FOR/NEXT

entries or scanning the wusers program. The first
alternative is undesirable for program wmobility the
second because of our desire to limit

pre-interpretation overhead.

Functions Called:

PUSHS PUSHT MATCH GETCHR ‘ OUTL
EXPRESS OPERAND . '

Called By:

PARSE

Error Calls:

TRERR(7)

missing equals sign

TRERR(8): missing 'TO' in a FOR statement

~™ Flowchart:

TFOR

PUSHS(S:ASSIGN)

OPERAND

T<~POPS

PUSHS(T)
CHR<-GELCHR(NSRC NSRCP)

. . ‘ |

CHR = "=® ———3TRERR(7)
lv

NSRCP<~NSRCP+1

PUSHS(RETURN ADDRESS)

EXPRESS

OUTL(3)
CHR<~-GETCHR{NSRC,NSRCP)

MATCH("TO™)~ 5 TRERR(S)

Iy
PUSHS(S:FORTEST)
PUSHS(T)

PUSHS(RETURN ADDRESS)

EXPRESS

|

4

I

'3 - 27

i

I

X
_CHR<—GETCHR(NSRC,NSRCP)

v A ‘ 4
CHR = DELIM—> PUSHS(S:NIL)

N

MATCH("STEP")——> TRERR(9)
PUSHS(RETURN ADDRESS)
EXPRESS
II—
0UTL(4)
PUSHS(S:PUSH)

PUSHS(S:P)
OUTL(2)

RETURN

3 - 28.

>I1

o

1. Name: TNEXT

2, Function:

Generate interpretive code for NEXT statements.
3. Description:

This procedure éompiles interpretive code that sets the
flag FORF on and sets the program pointer to the entry

.on top of the S-stack. FORF indicates whether the loop
has been initialized. :

4., Design Alternatives:
A) Use a FOR/NEXT table.

This allows wus to go directly to the correct FOR
expression whithout storing any pointers on the
stack, it requires saving and moving an additional
table and saves negligible computation time,

B) Eliminate the FOR flag.

This requires that the pointer on the stack be a
pointer to the interpretive expressions that follow
the loop initialization. To do this the interpreter
must be modified +to allow one to .jump into the
middle of a statement expression, thus bypassing

initialization that allows us .to transfer context.
The restriction on mobility is undesirable.
5. Functions Called: .
PUSHS OUTL
6. Called By:
PARSE

7. Error Calls: none

8.

Flowchart:

T:NEXT

PUSHS(S:SET)
PUSHS(S :FORF)
PUSHS(S:TRUE)

"OUTL(3)

PUSHS(S:SET)
PUSHS(S:P)
PUSHS(S:POP)
OUTL(1)
OUTL(3)

- EXIT

3

30

s

i.

2.

L.

Se

Name: TREAD

Function:

‘Generate interpretive expressions for READ statements.

Description:
Each parameter in the READ statement causes an

interpretive expression of the form (S:ASSIGN (S:READD))
to be generated.

The interpretive expressions are genérated by pushing
S:ASSIGN onto the S-stack and 1invoking the procedure

"OPERAND. S:READD is then pushed on S-stack and QUTL
‘used to form a 1list. The complete expression 1is then

formed wusing OUTL(3). If a comma is present, another
element is assumed and the procedure repeated. -

Design Alternatives: none

anctions Called:

OPERAND PUSHS GETCHR OUTL

Called By:

"PARSE

Error Calls: hone

'3 - 31

e,

8. Flowchart:
TREAD

C—

v
PUSHS(S:ASSIGN)
OPERAND
PUSHS(S:READD)
OUTL(1) .
OUTL(3) :
CHR<-GETCHR(NSRC,NSRCP) -

N
CHR = " M —— SEYIT

NSRCP<-NSRCP+1

I

'3 - 32

1. Name: TDATA

2. Function: ' ‘ -

GCenerate ~ interpretive expressions. for the = DATA
‘statement. ‘

3 Description: : . -
A DATA statement generates one interpretive expression.
The number of elements in the expression corresponds to
the number that appeared in the original statement. The -
items in a DATA statement may be general expressions.
4, .Design Alternatives:
5. Functions-Called:
; EXPRESS GETCHR OUTL PUSHT
6. Called By:
PARSE

7. Error Calls: none

8., Flowchart:
~ TDATA

« CNT<=0
o l
PUSHT(RETURN ADDRESS)

EXPRESS
N<~-N+1

CHR<-GETCHR(NSRC,NSRCP)

CHR = ®u " YOUTL(CNT) ———————EXIT

(

Ty
| NSRCP<-NSRCP+1
I

Name: TGOSUB L

Function:

Generate interpretive code for GOSUB statements.

Description:

The expression (S:PUSH (S:CDR :P:)) is formed and the
procedure.- TGOTO invoked to generate the transfer
expression.

Design Alternatives:

The program list evaluator, EVALP, could be called
recursively and modified to terminate wupon encountering

‘@& RETURN statement.

" Functions Called:

PUSHS OUTL TGOTO
Called By:

PARSE

"Error Calls: none

FLOWCHART:

- TGOSUB

PUSHS(S:PUSH)
PUSHS{S:CDR)
PUSHS(:P:)
OUTL(2)

. 0UTL(3)

TGOTO

RETURN

3 - 34

8.

Name: TRETURN

Function: -

Generate interpretive code for the RETURN statement.

Description:

‘The interpretive
(S:SET :P: (S:POP).

expression

Design Alternatives: see TGOSUB

VFunctions Called:

PUSHS OUTL

. Called By:

PARSE

. Error Calls: none

Flowchart:

TRETURN

PUSHS(S:SET)
. PUSHS(S:P)
PUSHS{(S:POP)
OUTL(1)
OUTL(3)

RETURN

35

generatéd

1,”

.

Name: TDIM

Function:

Generate interpretive code for the DIM statement.

Description: -

An interpretive expression is generated for each
variable that occurs in the dimension statement. The
DIM function expects three arguments which are the array
name and the dimensions for this array. If the second
dimension is missing this is indicated by the translator
inserting :NIL:.

Since the DIM statement 1is treated as an executable
statement that dynamically allocates storage to the
named variable the dimensions may be general
expressions, ' ‘

Design Alternatives:

A) Restrict the dimensions to be explicit integer
values. :

By allowing generality it actually simplifies the
nunber of datz types the interpreter must handle. .
The dimensions are now floating point values. Since

we can provide dynamic allocation there is no reason
to proscribe its use. '

B) Create a table of dimensioned variables.

This is only necessary if a fixed amount of storage
is to be allocated. In this case we must know about
implicitly dimensioned variables as well as those
that appear in DIM statements. If the ADDR function
encounters a variable for which no storage is
allocated that at execution time it can invoke the
DIY function directly to accomplish the allocation.

C) Generate one variadic interpretive expression.
The overhead of multiple expressions is balanced by

simplifying the type of functions the interpreter
must handle.

7.

‘Called By:

Functions Called:

PUSHS PUSHT GETCHR ALPHA OUTSTR
CONCAT EXPRESS OUTL

PARSE
Error Célls:

TRERR(9): Array names must be a single letter
TRERR(10): Arrays may have no more than two dimensions

3 - 37

8. Flowchart:
TDIM
I—

\r
PUSHS(S:DIM)
CHR<~GETCHR({NSRC,NSRCP)

v . . :
ALPHA(CHR) N >TRERR(9)

v)
L<-0UTSTR(NSRC,NSRCP,NSRCP)
NSRCP<~NSCRP+1
CHR<~GETCHR(NSRC,NSRCP)

L 4

CHR = ngn Y > PUSHS (CONCAT("D*,L))
N NSRCP<~NSRCP+1

PUSHS(CONCAT("C",L))

CHR<~GETCHR(NSRC,NSRCP)

P
<

v N
CHR = m(n" > TRERR(9)
‘ Y
- 1
PUSHT(RETURN ADDRESS)
_EXPRESS
W
i1

3 - 38

11

. 1)
CHR<-GETCHR(NSRC,NSRCP)

v }J
CHR = " " ———5PUSHS(S:NIL)

v

v

NSRCP<~NSRCP+1
PUSHT(RETURN ADDRESS)
EXPRESS

CHR<~GETCHR(NSRC,NSRCP)
e
I
N
CHR =)" ————————>STRERR(10)
v

OUTL(4)
NSRCP<-NSRCP+1
CHR<~GETCHR(NSRC,NSRCP)

Y
CHR = n," ————T

lu

EXIT

3 - 39

i.

oty

2.

3.

Le

S.

6.

¥ame: TSTOP

Function:

Generate interpretive code for STOP statement.
Description:

Creates code that causes a program halt.

T~

Design Alternatives: none

.Functions Called:

PUSHS OUTL
Called By:

PARSE
Error Calls: none

Flewchart:
TSTOP

PUSHS(S:HALT)
OUTL(1)

EXIT

3 ~ &0

6.

Name: TEND

Function:

Generate interpretive code

Description:

for END statemehts.

Creates code that causes a program halt.

Design Alternatives: none

-Funections

'PUSHS
Called By:

PARSE

Called:

OUTL

Error Calls: none

Fiowghart:

TEND

PUSHS(S:HALT)
OUTL(1)

EXIT

n1

Name: TIF

Function:

"Generate interpretive expressions for the IF statement.

Description:

TIF generates a single expression of the form (S:IF expl
exp2). Whenever expl evaluates to TRUE the IF function

sets :P: to the statement form corresponding to exp2, in

all other cases :P: 1is 1left wunchanged and control
follows its normal path.) ‘

Design Alternatives:

‘Two expressions could be formed, the first a test that

causes the second to be evaluated only when the first

-expression is logically true.

Functions Called:
PUSHT EXPRESS MATCH OUTL
Called By:

PARSE

‘Error Calls:

TRERR(12): +the word THEN is misspelled or missing

8.

Flowchart:

TIF

PUSHS(S:1IF)

. PUSHT(RETURN ADDRESS)
EXPRESS ‘

HATCH("THEN")“ﬂ_———QTRERR(12)
l v
PUSHT(RETURN ADDRESS)

EXPRESS
OUTL(3)

1

EXIT

1.“‘

Name: TINPUT

Function:

Generate interpretive expressions for INPUT statements.

‘Description:

Each paramter in the INPUT statement - causes an
interpretive expression of the form
(S:ASSIGN var (S:INPUTD)) to be generated.

The Jinterpretive expressions are generated by pushing
S:ASSIGN onto the S-stack and invoking the procedure
OPERAND. S:INPUTD is +then pushed on the S-stack and
OUTL wused to form a list. The complete expression is
then formed wusing OUTL(3). If a comma is present,
another element is assumed and the procedure repeated,

Design Alternatives: none
Functions Called:

OPERAND PUSHS - GETCHR OUTL

'Called By:

PARSE

Error Calls: none

8. Flowchart:

TINPUT

X

>

PUSHS(S:ASSIGN)

OPERAND

PUSHS(S:INPUTD)

OUTL(1)

0UTL(3)

. CHR<-GETCHR(NSRC,NSRCP)

K}

N
CHR = " " ————EXIT
]

v
NSRCP<-NSRCP+1

Name: TRESTORE
Function:

Generate interpretive = expression for the RESTORE
statement. ’ ~ .

. Description:

The expression (S:SET :DATAP: :PROGP:) is formed. It
causes the data list pointer, :DATAP:, to be restored to
the beginning of the program list.
Design Alternatives: see TDATA
Functions Called:

PUSHS OUTL
Called By:

PARSE

Error Calls: none

"Flowchart:

TRESTORE

PUSHS(S:SET)
PUSHS(S:DATAP)
PUSHS(S:PROGP)
OUff(a)

EXIT

'3 - 46

Name: TPRINT

Function:

.Generate interpretive expressions for PRINT statements.

Description:

TPRINT generates one interpretive expression for each.
PRINT statement. The number of elements in that

expression depends on the parameter list of the PRINT
statement. . ‘

. An element of the list may be an expresSion or a print

character deliniter (comma or semicolon). PRINT
statements are evaluated by having the ©runtime print
routine perform its output using the values placed on

- the R-stack after the PRINT statement's argument list

has been evaluated.

The print character delimiters on the R-stack control
the formatting of the output for the PRINT statement.

Design Alternatives:

A) Generate a separate interpretive express;on for each-
parameter in the PRINT statement.

This causes redundant calls of +the runtime print
function when all the activity could be accomplished
in one invocation.

B) Pass a 1list of expressions and a string of print
- control characters to the runtime procedure.

This requires more processing by the runtime
procedure to determine the correct formatting.

Functions Called:

'GETCHR PUSHS EXPRESS OUTE PUSHT
Called Bya

PARSE

Error Calls: none

8.~ Flowchart:

TPRINT

CNT<-1

II—

~
CHR<~GETCHR{NSRC,NSRCP)"

b

CHR

CHR

CHR

"

DELIMITER ————> OUTL(CNT)
- o EXIT
Y
= COMMA _ >PUSHS(S :COMMA) >T
I~) R
= SEMICOLON SPUSHS(S :SEMICOLON) —>T

v
PUSHT(RETURN ADDRESS)
EXPRESS

¥
NSRCP<~-NSRCP+1
CNT<-CNT+1

v

11

Name: TDEF

Function:

Produce interpretive expressions for DEF statements.
Description:

Sihgle line functionvdefinition statements generate two

interpretive - expressions, a parameter list and a
function expression. HNultiple line function definitions -

~ generate only a parameter list.

~The DEF statement form is not directly evaluated but is

entered upon encountering am occurence of a function
during evaluation of a statement form.

Evaluation of single line functions is accomplished by

-binding arguments and evaluating the function
expression. Multiple line functions are evaluated by
binding the argument list and recursively calling the
program list evaluator, EVALP, Subsequent statement
forms are evaluated until a ENEND statment is

encountered at which +time variables are unbound and a
return executed..

Varizble binding and progranm control is under control of
the evaluation routines,

Design Alternatives:

Single and multiple line functions can be distinquished
by using separate statement types or inspecting the list

of 1interpretive expressions., This design uses both
technieques.

-

Functions Called:

. HATCH GETCHR PUSHT OPERAND EXPRESS
OUTL

- Called By:

PARSE ',
Error Calls:

TRERR(5): malformed function header

o el

8.

Flowchart:

TDEF

N _
MATCH(“FN")——TRERR(5)

CHR

v
COMPUTE STATEMENT TYPE

—

NSRCP<-NSRCP+1
CHR<-GETCHR(KSRC,NSRCP)

CHR = n(n
A |

>I1

NSRCP<-NSRCP+1
PUSHT(RETURK ADDRESS)
OPERAND

CNT<-CNT+1 :
CHR<~GETCHR(NSRC,NSRCP)

b

CHR NSRCP<~-NSRCP+1——>II

= m)n
N

N
m ® _—_STRERR(5)

v

3 -~ 50

II

J!
OUTL(CNT)
- CHR<-<~-GETACHR(NSRC,NSRCP)

,

cHR = w=n L TRERR(S)

\.Y
NSRCP<~NSRCP+1 .
PUSHT(RETURN ADDRESS)
EXPRESS ‘
OUTL(1)

|

EXIT

3 - 51

Name: TFNEND
Function:

Generate interpretive expressions for FNEND statezent.

Description:

The FNEND statement does not generate any interpretive
expressions. It is recognized by its statement type by

the evaluation routines and terminates a program list
evaluation.

Design Alternatives:
Unbinding of arguments could be made a part of the FNEND

statements actions but to be consistent a "dummy FNEND
would +then be required for single line function

definitions.

Punctioﬁs Called:

Called By:
PARSE
Error Calls: none

Flowchart: none

3.3.3.3 Expression Analysis

EXPRESS
OPERAND
' SUBTRAN
FUNCTRAXN
© STRING
NUMBER
CODE
BiNARY
FPREC

GPREC

1

Expression Parser

Operand Analyzer

Subscript Translator

Function Translator

Process String 0perands'

Process Numeric Operands

Coae Selector.

Code Generator, Binary Operators
f Precedence Function |

G Precedence Function

¥ame: EXPRESS
Function:

Parse arithmetic and logical expressions producing <the

‘corresponding interpretive expressions.

Description:

An operator precedence parser is used to translate
expressions into the desired prefix form. This
procedure may be called 1recursively to analyze
expressions embedded in subscripts and functioms.

The parser uses the precedanée functions FPREC and GPREC
to compare precedence values of operators on the stack
and those in the input stream, respectively.

"Upon entering the procedure a delimiter 1is place on the

S-stack. This delimiter is used to flag the completed
analysis of an expression. If the first character is

either a nminus sign, negation operator or a left
parenthese it is stacked and the source pointer (NSRCP)
advanced., Ve return to get the next character and test

-again for these characters.

If any of these operators are present they are stacked,
otherwise we stack a return address and invoke the
OPERAND procedure. OPERAND returns to us after placing
the appropriate operand expression on the S-stack.

After returning from OPERAND the source pointer must be
at some operator or a character that will cause us to
process the operators and operands - on the stack thus
completing the parse. L precedence test 1is perforzed
and either the algorithm continues scanning the striang
and stacking operators and operands or causes some of
the items on the stack to be evaluated and formed into
what will become the Interpretive expression. The
procedure CODE 1s used to pop amn operator off the stack
and generate the correct expression.

Expression analysis is .ended when the precedence test
indicates the stack should be evaluated and the
indicated operator is the delimiter,

S.

Design Alternatives:

An early design goal of facilitating implementation of a
variety of languages in this system prompted considering

the value of embedding a general table driven parser in

the translator. When this design goal was subjugated we

resolved to use a simple and efficient operator
precedence parser.

The very tight structure of the parser permitted some
deviation from previous standards involving information
control. In the expression, parser substructure results
are sometimes passed by placing +them on the S-stack

‘rather than returning pointers which <then could be

stacked.

Functions Called:

PUSHS PUSHT GETCHR ~FPREC GPREC
OPERAND CODE POPS POPT

Called By:

TGOTO TGOSUB TLET TFOR . TIF
TDIM TDATA TPRINT TDEF SUBTRAN
FUNCTRAN

Error Calls: none

8., Flowchart:
EXPRESS

s
PUSHS(DELIMITER) .
I——
Y

CHR<-GETCHR{NSRC ,NSRCP)

II—

A : ' .
"CHR = %w-m | uyoT" | "(" —— PUSHS{CHR)
N : NSRCP<-NSRCP+1
PUSHT(RETURN ADDRESS) I
- OPERAND
III -————sl/
TMP<-~-POPS
OPR<-POPS
PUSHS(OPR)
PUSHS(THP)
CHR<-GETCHR(NSRC ,NSRCP)
: v ' : v
FPREC(OPR) < GPREC(CHR) ————1II
N
" OPR'= DELIMITER-Y > POPS
N o POPS
i1} PUSHS(THP)
CODE(OPR)
v EXIT
III

L.

S.

Name: OPERAND

Function:

This procedure forms the appropriate string expression
for all legal BASIC operands. Data and symbol type
information is encoded into the expression string.

Description:

The operand procedure performs complete processing for
simple string and npumeric variables and calls other
procedures -to handle strings, numbers, subscripted
variables and function calls after they are identified.
The output of OPERAND is always left on the ‘S-stack.

OPERAND is invoked with +the source ©pointer at the
beginning of a presumed legal operand. Malformed

"operands will cause error messages to be issued,

Design Alternatives: none

Functions Called:

PUSHS PUSHT POPS POPT GETCHR
DIGIT NUMBER STRING ALPHA OQUTSTR

CONCAT SUBTRAMN FUNCTION FUNCTRAN OUTL

Called by:

EXPRESS TREAD TLET) TFOR ' TNEXT
TINPUT TDEF

Error Calls:

TRERR(4): malformed operand

'3 - 57

8.

Flowchart:

OPERAND

l;

-GETCHR(NSRC,%SRCP)

l

A
CHR = "4" —————>NSRCRP<-NSRCP+1
N .
v) \I . .
DIGIT(CHR)————NUMBER ——EXIT
N .
‘{ \l »
CHR = PW#— 38 TRING —>EXIT
N

Y u

ALPHA(CHR) ——>TRERR(H4)

.lw

NSRCP<-NSRCP+1
CHR<-GETCHR(NSRC ,NSRCP)

N
DIGIT(CHR) —I1I

,Lv
VAR<—0UTSTR(NSRC,NSRCP—l,NSRCP-l)
NSRCP<-NSRCP+1

. CHR<-GETCHR(NSRC,NSRCP)

II

'3 - 58

I

A Y

CHR = "¢" —— 5VAR<-CONCAT("B",VAR)

v NSRIP<~NSRCP+1

v

VAR<-CONCAT("A" ,7AR) —— PUSHS(VAR)

IIz

CHR = nsw _N___.__.__)v

iw
Y

NSRCP<-NSRCP+1

CHR<-ZETCHR{NSRC,NSRC?)

EXIT

VAR<-GUTSTR(NSRE,HSRCP—2,NSRCP—2)

!

CHR = (™

]x

v
VAR<-Z0NCAT("B¥,VAR)
PUSH?(VAR)

v

~EXIT

"3 - 589

PUSHS{S:ACDR)
VAR<-CONCAT(™D",VAR:
PUSHS(VAR)

IivV—————
NSRCP<-NSCRE+1
PUSHT(RETURKX ADDEEISS
SUBTRAN :

v
EXIT

L3N

Y
> FUNCTIOX

VR

(S:ADDR)

PC
VAR<-OUTSTR{NSRC,
v

PUSHS(VAR)

|

Iv

VI

A 4

CER<~-GETCHR(NSRC ,NSRCP)

Y
CER = m(®»

>VI

N

VII

NSRCP-1, NSRCP 1)
AR<-CONCAT("CY, VAR)

EXIT

v

v

NSRCP<-NSRCP+1

PUSKET(RETURN ADDRESS)

FUNCTRAN

l

EXIT

VII

VAR< %LTSLR(NSRC NSRCP-1,NSRCP

VAR<-CONCAT(M"A™, VAR)

PLShS(VnR

b l

EXIT

60

>0UTL(1)

!

EXIT

'-I
L

-the first character following +the 1

Name: SUBTRaAN

Function:

Analyzer and code generation procedure for subscripted

variables.

Description:

SUBTRAN is invoked with the pointer HSRC

}ﬂ)
[SINe
-
=
®
[/ 2
1]
.
1
o
(]

symbol table address of +the ADDR fu:
of the subscripted variable are alrea:

The ©result of +<he subscript traasiation is left on
S-stack andé XSRC? 1is advanced beyczd ths subscript's
matching right parent ese, Since SU3TRAX zay be called

‘recursively through EXPRESS it 1s =z=2cessary to save a
return address when invoking it.

Subscripts are tranmslated by invoking EXPRISS to analyze
the first argument. If the next charazcter on return is
a comma thenx EXPRESS is invoked a sezond time, if not a
symbol tatle po*n;er ~to :tNIL: is szacked. The
subscripted szxpression is completed by oztputting the
top four elszsment on the stack as +the «csmpleted list

expression.

Design Alterzatives:

The ADDR function could be modified to acce3st a variable
number of exsressions. If this were done then we would
not have to supply a dummy parameter. This requires
implementing function calls that dc not evaluate their
arguments in the interpreter. The savings in work in
not implementing is type of functica calill is balanced
against less flexibility for future extensions.

Functions Czlled:

XPRESS GETCHR PUSHT CUTL PUSHS

Called By:

OPERAND

7.

8.

Error Calls:

TRERR(11):

Flowchart:

malformed subscripted expression

SUBTRAN

PUSHT(RETURN ADDRESS)
EXPRESS

CHR<-GETCHR(NSRC ,NSRCP)

!
CHR = ® ,® ——— 5PUSHS(S:NIL)

Lv
NSRCP<-NSRCP+1

PUSHT(RETURN ADRESS)
EXPRESS-

CHR<-GETCHR(NSRC,NSRCP)

!

N
CHR = #)We—o——0 STRERR(11)
lv
NSRCP<-NSRCP+1
OUTL(4)

EXIT VIA POPT

'3 -~ 62

1.

2.

L 3

Name: FUNCTRAN
Functio=x:

Form interpretive expressions for functions.

Descripzion:

FUNCTRAY 1is invoked with NSRCE positioned at the first
character of the first argument. The function name has
already been placed on S-stack. Since FUNCTRAN analyzes

'its arguments by calling EXPREZSS a return address must

be stacxed in case of recursive czlls.

Functioczs can have an arbizrzry number of arguments.
The couzt for the number of arguzsnts is kept on S-stack
during sarsing. The argument count, NARGS is pushed
onto the stack before EXPRESS is called and then updated

-and repiaced upon return.

Design 2lternatives: o .
Functiozs Called:

PUSET PUSHS GETCHR EXPRESS QUTL
POPT POPS

Called =y:
OPEZXAND
Error Czlls:

TRERR(6): malformed function excression

8. “lowchart:
FUNCTRAN

NARG<-1

b

PUSHT(RETURY £ZIZRZSS)
PUSHS(NARG)

EXPRESS

THP<-POPS

NARG<-POPS
NARG<-NARG+1
CHR<-GETCHR(N¥SIZ,N3RCP)

l

Y

CHR = " " —————— NSRCP<-NSRCP+1
N
v }]
CHR = ") ——— > TRERR(6)
9 .
~
NSRCP<-NSRCF=+1
OUTL(NARG)
~

EXIT VIA POPT

0)

~!
¢

Process string ccostants and leave a peolrtar to the
cperand om S-stack.

¢

Description:

The procedure STRIXE 1is invoked with the pciIzter NSRCP
at a quote mark ¥xich delimits +the begiz=Ingz of the
stringe. All cherzcters between the 1nitIzal gucte nark
znd the delimiting cuote are formed into a string and
prefaced with the Zetter G (to flag a stringz cocmstaant).
A pointer to the sIring is pushed on S-stack.

¥o error checkinz iIs performed. The procelzrs assumes
the delimiting quozTe will be present. '

Design Alternatives:

The alternative to including the quote marks swrrounding
+he string in the processed operand was <tz eliminate
+them but +this =zecessitates either 1izclz<icz somne
information on the Zsngth of the string or- = dslimiter
character. The first option is unwielding zz2 tites quote
rarks already perfcrn the second function.

Functions Called:
GETCHR PUSHS . QUTSTR CONCAT
Called By: | |
OPERAND

Zrror Calls: none o :

8. Flowchart:
STRING

THP<-NSRCP
NSRCP<~-NSRCP+1
CHR<~-GETCHR(NSRC,NSRCP)

v
—L CHR = ®nun

B

THMP<~OUTSTR(TMP ,NSRCP)
TMP<-CONCAT("G",TMP)
PUSHS(THP)
NSRCP<~-NSRCP+1

EXIT

'3 - 66

.
W

n

Name: NUMBER
Function:
Process operands that ers Ifloating point constmats.

Description:

The procedure NUMBER Iz iInvoked with the pointer, NSZC?
at the first digit of the number. The procedurs zcceztTs
numbers as being syntsciiczally correct if they =zre of
<he - - form <flonum>[E<integer>1], whare
<flonum>=<integer>[.<iztszer>]. A string reprszentizg
the number is output =nc¢ Zeft on the stack. The cuatsut
string is prefaced witz za "F" to flag it as & Ilcating
point constant to the im:z cur=s.

erpreter's READ proce

Design Alternatives:

Functiéns Called:

[£3]

GETCHR CONCAT CUTSTR DIGIT PUESH
Czalled By:
OPERAND

Error Calls: none

Flowchart:
NUMBER

TMP<-NSRCP

le

CHR<-GETCHR(NSRC,NSRCP)

‘(.
DIGIT(CHR) Y NSRCP<-NSRCP+1
N |
\!
CHR = "
N 7

NSRCP<-NSRCP+1
CHR<-GETCHR{NSRC,NSRCP)

o

R7

DIGIT(CHR)
| ¥ |
v N)
CHR = “gv >PUSHS(OUTSTR({ THP ,NSRCP-1) ——EXIT
! . A -
NSRCP<~NSRCP+1
CHR<~-GETCHR(NSRC,NSRCP)

DIGIT(CHR)

) |y

'3 - 68

b,

5.

6.

Name: CODE

Function:

Forms the appropriate 1list expression based on the
operator being coded,

Description:

CODE has one argument, OPR, which must be a legal

‘arithmetic or relational operator.

CODE uses the «contents of the S-stack to form

"expressions. If OPR is not a unary operator then BINARY

is used to determine the correct symbol table name.,

Design Alternatives: none

~-Functions Called:

POPS PUSHS OUTL BINARY

Called By:
EXPRESS

Error Calls: none

'3 - 69

8. Flowchart:

CODE(OPR)
¥ N)
OPR .= u(n > T<-POPS
N POPS
' PUSHS(T)
EXIT
g
OPR = M.m 5> T<-POPS
N ‘ PUSHS(S:UMINUS)
: PUSHS(T)
OUTL(2)
EXIT
. !
OPR = NOT > T<-POPS
N POPS
PUSHS(S:NOT)
J
T<-POPS
POPS
T1<-POPS
BINARY(OPR)
PUSHS(T)
PUSHS(T1)
OUTL(3)
EXIT

Name: BINARY

Function:

Return the symbol table function (location) for a binary
operator.

Description:

BINARY takes one input, a code for a legal binary
operator. The binary operator table, BINOPTB, 1is

‘searched and a pointer +to the symbol table location

string is returned.

Design Alternatives:

By choosing appropriate token values for the operators
they <can be wused either 1) to directly access the

. operator table or 2) their value can be the location,

thus they are converted to a string.

" Functions Called: none

~Called By:

CODE
Error Calls: none

Flowchart: none

7.

8.

Name: FPREC

Function:

Description:

" Return precedence value of an operator when stacked.

FPREC takes one argument, the operator whose precedence

value is requested.

‘Design Alternatives:

or possibly direct loockup.

Functions Called: none

-Called By:

EXPRESS

Error Calls: none

Filowchart: none

‘The precedence may be determined by

72

searching

a tabie,

Name: GPREC

Function:

Return precedence value of an operator whern in the input

-streamn.

Description:

GPREC takes one argument;
value is requested.

Design Alternatives:

the operator whose precedence

The precedence may be determined by séarching a table,

or possibly direct lookup.

Functions Called: none

Called By:

EXPRESS

Error Calls: none

Flowchart: none

73

Section Four

The Interpreter Process

4,1 Introduction

The ‘interprgter process builds a wuser context by
ihterﬁalizing context strings sent 'ffom translators éﬁd;
interpreéers; List evaiuation procedures are used to
interprét the internal program-structure. The interpreter
environment is designed to separate program and data from
physical processor bindings thus allbwing user contexts to
be moved froﬁ processor to processor. The structure of the

interpreter list processer is based ocn a design found in

[11].

4,2 Overview

Interpreter processing begins with intermalizing a
context string. If the user information in the string
indiéates that a computation has.beeh iﬁ?er:upted then it is
resumed from its break point. New computations are begun by
interpreting the internalized contents of the éontext
string. Communications with the user>are done through an
input handlér‘process. An overview of the interpreter flow

is shown in figure u4-1,

L

Internalize context string

v
Interrupted computation? ——>Restore interpreter
status

Resume computation

v

Is the statement form Send message to input
executable handler that
computation is
complete

v
Evaluate the statement

Figure 4-1: 1Interpreter Overview
A general storage allocator proiides dynamic storage

allocation during program interpretation. Garbage
collection is wunneccessary since procedures explicitly

release unneeded storage.

The program list, symbol table, stacks and transfer
table constitute the major interpreter data structures. All
interpreter control and user values are referenced through

the symbol table.

Symbol table entries are referenced by relative
location to eliminate binding of data references to physical

addresses. Similarly, values on the R-stack and T-stack are

relative references to the symbol table and +transfer table,

respectively.

Three stacks, R-stack, S-stack and T-stack are used by
the - interpreter. _The R-stéck stores intermediate
éomputétion values, the S-stacks contains pointers into the
program‘ list and. the T-stack holdé re;ative references to
thg transfer table. All three stacks have canoniéal

representations in the context string.
4.3 Technical Specification
4.3.1 Technical Overview

INTCNTL, the top 1level interpreter pfocedure, invokes
the procedure INTERNCS to build the internal structﬁres and
tables from the information in the context string. User
inforﬁation, statement forms, the symbol table, ;nd the

stacks are internalized by the procedures INTERNUIT,

INTERNSF, INTERNSTB, and INTERNSTK respectively.

If this is an interrupted . computation (determined by

examining the wuser information) then the interpreter stats
7

is restored from the values in the symbol table and the

computation resumed. These activities are carried out by

e
e,

the procedure RESTART.

If this was not an interrupted computation then a test
is made to determine if the statement form from the
translator is executable. If so, then EVAL is used to
éva;uafe the form. 'This. may in turn lead to the program

list being evaluated by EVALP.

Most of the run timé functions have not been‘described
in detail. This‘is true in part because they have obvious
definitions and that wmany correspond to similarly named
pro;edures already defined in the translator and
interpreter. As this design is imflementéted these
functions will be specified and included 4in the design

document.

o

L,3.2 InterpreterVTables and Data Structures
4,3.2.1 Program Representation

- A program is represented as a list whose elements are
statement forms. @ Each statement form corresponds to a BASIC
statement that has been input by the user. A statement form

(Sr) is itself a list that contains the following elements.

Statement Form

First element: Statement Number
Second element: . Statement Type
Third element: Original Source Statement

Féurth ﬁlement:

-

. Interpretive Expressions

L 4

Nth Element:

Internally a program is represenfed as a one way linked

list, as in figure 4-3,

ll l N S N %
SF

Figure 4-3: The Program List

Each statement form is also a variadic one way linked list,

figure 4-4L,

} ! 1 T 7T T

statement statement source IE(1) - IE(n)
number type statement ' : '

‘Figure 4-4: A Statement Form

The interpretive expressions are lists in "Cambridge Polish"

notation and are described in section 3.4.-
A complete internal representation of the statement
110 FOR I = 1 TO LEN(KS)

is given in figure 4-5.

" program list

, T T T
/ | } \ »)\

110 43 "110 FOR I =1 (ASSIGN I 1

(PUSH :P:)
TO LEN(XK$)"

. (FORTEST I (LEN K$) NIL)
Figure 4-5: Complete Statement Form

Design Alternatives

e

1. Represent statement forms as fixed 1length blocks

(see figure 4-6).

L

N N

!

————>statement number
[——>statement type
s source statement

interpretive expressions

Figure 4-6: Fixed Length Statement Foras

This alternative reduces some storage overhead if
the wupper 1limit on the number of interpretive

-

expressions is two or three. Since READ and INPUT

statements may have up to 20 interpretive
expressions, fixed size blocks represent too great a

storage overhead. : -

2. Represent statement forms as variable length blocks.,

This eliminates the problem of alternative one but
it is novw necessary to determine the size of the
block to be allocated which may involve a
complicated lookahead problen., A block structure
complicates the problem of expression movement since
internal pointers on any particular object machine

are ambiguous with respect to cell versus word size.

3. Uncompile interpretive code to ©reconstruct source

statements 1instead of storing original source
statement. \
A) The storage costs are not too extreme in

preserving the original source string.

B) It 1is difficult to vrecompile the interpretive
code due to theAuse of primitive functions used

in representing the source statements.
‘4, Do not explicitly store the statement type.

A) It is difficult to determine the statement type
from examining the statements interpretive

expressions,

B) This' alternative increases the interpretation

speed, although not significantly.

Implementation Alternative

The statement number and type can be placed in the
location used as a pointer to these items in the statement
form instead of pointers if the cell size is adequate.

f

P

L
. ——

%4,3.3.2 Symbol Table

General Organization

When represented as a table (other representations are
discussed ir this section under design alternatives), the
symbol table has four divisions which éorreqund to system
functions, user functions, systen variables and user
variables. While the total number of symbols 1s a function
.0f the user program, a large'percentége of -the symbol'in the

table are fixed.

system
functions

user functions

system variables

user variables

Figure 4-7: Symbol Table Organization

The system functions comprise all procedures appearing
in the interpretive code with the exception of user defined
functions (i.e. wuser functions have the form FN<letter>).
Systém variables are critical interpreter values that are
used in preserving cantext for' program mobility (i.e.
sDATAP:, :PROGP:, etc.). User variables are all the

variables that appear in the program in addition to function

values, constants, and temporary values.

Temporary values are those that are created in the
process of evaluating expressions. Theyvare stored in the
symboi table by treating the remaining symbol space as a
stack ‘during program execﬁtion. Thus, all values are
accessed through the structure of the symbol table, a

feature that facilitates error checking and mobility.

To achieve program mobility it is necessary to maintain
complete information on symbol entries and separate the. data

representation of symbol values from the table format.

Symbol Entries

A 'symbol has four descriptive entries but not all of
them ma& be applicable depending upon the +type of symbol
(i.e. system functions do not have name components). Thése

entries include:

SNAME: symbol name
DTYPE: data type
STYPE: symbol type

SVALUE: symbol value
;&T -
The list of 'symbol types and the possible data types they

might assume is given in table U-1. The presence of a

L

symbol name is also indicated.

simple numeric variable
simple string variable
dimensioned numeric variable

dimensioned string variable

function value
floating point constant
;tring constant
femporary value

system variable

usef function

system function

Table 4-1: Symbol

. The data type codes ave:

WNRrO

Symbol Values

STYPE '. SNAME
A yés
»B - &es
c yes
D ' yes
E yeé
F no
G no
H ' no
I | no
J no
X no

Table Data Types

- integer

- floating point
- string

- list expression

DTYPE

No values are stored in the symbol table proper because

there can be no assumptions

about the ‘amount

- 11

of storage

required for the different data types. To achieve this
machine independence the symbol value entry 1is always a

pointer to the appropriate data structure (value). In some

cases, as with undefined functions, this may be a pointer to

:NIL:. The value structures differ depending on the symbol
type. The storage decisions for numbers and strings are
discussed in section 4-6. For now it is sufficient to have

the concept of having a pointer to a floating point cell or
a string to express the remaining structure - of the symbol

table.

A diagrammatic representation of the various symbol

table entries is given in figure 4-8.

SVALUE

SNAME
DTYPE i .
STYPE ll[1[-} [!'l]
N v £
, \u floating point value cells (FPC)
A ‘/[> ' +——_le .+ - B, ’
B. _ , \\\5““§string blocks
) _/"") }. ' - . - ‘
c — dimensions of array
D — <« floating point value
\\‘\~5\\ cells
N s N
F >p01nter8;o FPC dimensions
T~—._ 9T of arra
. “FPC } 7
¢ “‘\\\§ «l-pointers to
SB string
H | z
> - blocks
: integer/FPC/SB (SB)
I T~
) \\\“integer or pointer to a list
J ' ,
4 \\“>pointer to user function

Figure 4-8: Symbol Table Value Representations

13

L

Symbol Table Value Representations

1) Simple numeric and string variables (types A and B)

Since BASIC éllows for functions with arguments it
is necessary to have a mechanism for saving the
values of variables that appeaf as parameters in
function calls. This is achieved by having multiple
value cells in thé form of 2 one way linked list;
The cell ét the head of the list isbalways the most

current value for that variable.

The CAR of the cell is a pointer to a floating point

cell for numeric variables and a pointer to a string

block for string vafiables.

2) Dimensioned numeric and string variables (types C

and D)

For dimensioned variables the value pointér is to a
block of storage in which the first two components
-are the dimensions of the array. The remainder of
the block is composed of floafing pﬁint cells if it
is a numeric array or regular pointer cells if it is
a'string array. In the latter case the cells then

contain pointers to the appropriate string blocks.

3)

4)

5)

‘o)

7?

8)

Function value (type E)

The pointer may be to a floating point value cell or

a string block.

Floating point constant (type F)

The pointer is to a floating point value cell.

String comstant (type G)

The pointer is to a string block.

Temporary value (type H)

The pointer is to a floating point value cell or a

string block.

System variable (type I)

The pointer is either

an

to a floating point value

list structure.

User function (type J)

The pointer is
p

to

defines the function

.statement).

N

the

(i.

integer value or a pointer-

cell, a string block, or a

statement expression that

e. the corresponding DEF

g9) System function (type K)
The pointer is the address of a function.

Table Accessing Functions

Ail accesses to the symbol.table arevperformed with the
primitive functions GETS and PUTS. For the purposaé of this
design these functions are assumed to operaté ‘on a table
such that we can directly accesss symbols by their relative

position (i.e. third symbol, tenth symbol, etc.).

Other functions, such as FINDSYH, access the symbol

table but always by using GETS and PUTS.

4 - 16

1.7

Name: GETS
Function:

Accessing function for retrieving information from the
symbol table.

Description:

The calling sequence is GETS(POS,ENTRY) where POS is .an
integer value indicating the symbol to access and the

value of ENTRY an indicator for which part of the entry
to retrieve.

Design Alternatives: see symbol table description

"Functions Called:n none

Called By:

FINDSYHM

‘Error Calls: none

Flowchart: none

4 o- 17

Name: PUTS

Function:

Accessing function for depositing information 4into the
symbol table.

Description:

The calling sequence is PUTS(POS,ENTRY,VAL) where POS is
an integer indicating the symbol to access, ENTRY is an

" indicator for which part of the symbol entry to access
‘and VAL the value to be deposited.

Design Alternatives: see symbol table description

Functions Called: none

‘Called By:

FINDSYM
Error Callsﬁ none

Flowchart: none

4 - 18

—

e ’

Design Alternatives

1.

Direct access table

-

This alternative meets - all of the design
requirements but requires reserving sforage for all.
the system functions, system variables and 650
entrie; fér all the BASIC variables (simple
variables-286 + dimensioned §ariables;52 + function
values-26 = 650). The cost in storage requiremenfs
is mediated by eliminating symbol lookup time in
internalizing expressions. This does not seem to be
sufficient justification since +the one time loockup
cost represents only & small portion of the

interpreter's worktime.

Hashed and sorted symbol tables

Both of +these techniques are inappropriate for a
system implementing BASIC since the size of the
variéble name space (i.é. variables are liﬁitfed té
a letter or a letter followed by a digit) is so
restricted., The number of symbols in a users

program is wusually very low and the variable names

do net hash well,

In addition, the sorted symbol table would require

either looking up each symbol at interpretation time

‘or passing over the interpretive code linking it

with the symbol table.

Storing function parameter values on a stack

This strategy does not significantly reduce
processing or storage requirements but instead
increases the amount of bookkeeping to insure

program mobility.
Eliminate the data type entry'

Elimination of the data type entry would require

more worktime at interpretation time to determine

~the data types of symbols that may have multi type

values.
Maintain a separate structure for temporary values

All of the information ©required for processing
regular symbols and ﬁoving them is needed for
tempofaries. Using the same.accessing functions and
structure reduces unnecessary overhead and maintains

a uniform structure.
P

B

e

878.2,.3 The R-stack

Temporary values created in evaluating argument lists
Or expressions are placed on the R-stack. An R-stack entry
is either a delimiter or a relative reference to an item in
the symbol table. Delimiters indicate the . bounds of an
argqmeﬁt list and should have a value that could not be

mistaken as a symbol table reference,

Access to the R-stack is by the Procedures PUSHR and
POPR which are discussed in section 4.,3.4.4. The context

string format for the R-stack is found in section 5.3.2.

4.3.2.4 The S-stack

Internalization and evaldatién procedures use the
S-gtack-for Storage of pointers (physical addresses) +to the
list structures composing the program list. During
interpretation the stack contents can be viewed as sets of
pointers to particular statement expressions. A mapping
back to the-appropriaté statement expression is made by
marking the limit of each set ‘with a delimiten and the
statement number of the statement expression fﬁr the set.
Figure 4~9 shows a typical composition of the S-stack during

interpretation.

S~-stack

statement number
delimiter
pointer(1l)
pointer(2)
pointer(n)

‘'statement number:
delimiter
pointer(1)

Figure 4-9: S-~stack Composition

Returﬂ addresses for procedure calls are stored on the
T-stack. An address is a relative reference to a transfer
table entry which in turn contains the physical ‘location of
the procedure. Thus, return transfers are indirect and the
addfassing information on the T-stack is independent of the

procedure actual hardware location.

L,3.2.6 Transfer Table

The transfer table, TRNTB, is a fixed length address

'

- vector for mapping references on the T-stack in physical

locations. Any address that may occur on the T-stack at a

computation interruption point appears in +the table. The

4o~ 22

e
gy

table access procedure 1is GETTRN.

4.3.2.7 User Information Table

. The wuser information table (UIT) is

a fixed length

table containing the intgrnalized' data from the user

information portion of the <context string.

Access to the

table is with the procedures GETUIT and PUTUIT.

4 - 23

4.3.3 Storage Allocation

4.3.3.1 Introduction

There are three functional +types of storage that the
allocétor' must - dynamically all&cate. ' torage tYpes are
differentiated by their |wuse. Thus, the storage allocator
- might 'fespond differently in a request for pointer cells
thaﬁ iﬁ @& request fér floating point value cells. The
motivatioh for tﬂe separation is to eliminate from

‘consideration any one object matchine architecture.

Subsequent sections describe the types of storage,

accessing functions for the different storage types and
general reservation and liberation mechanisms. The last

section shows how the storage allocation for all of the

storage types may be handled by one set of funections and

structures,
3,3.3.2 Pointer Cells
1. Description

Pointer cells are the basic elements from which list
structures are built. A pointer cell (see figure
' : ; =

4-10) must be able to contain two address pointers

and be addressable.

L o~ 24

- CAR(P)

CDR(P)

Figure 4-10: pointer cell
Accessing Functions

Pointer cells are accessed by the primitive
functions CAR aand CDR. If P is a pointer to a cell
then CAR(P) is the left hand component of the cell

and CDR(P) is the right hand component.

Allocation Functions

Pointer cells may be alleocated individually or in
blocks. A block of pointer cells may be used in

representing a dimensioned string array.

GETCELL value returned is a pointer to a new
:cell
GETBLK(N) returns pointer to a block of N

pointer cells

FRCELL(X) - returns pointer cell pointed at by X

L - 25

to the available storage pool

FRBLK(X,N) returns block of N pointer cells)
pointed at by X to the available storage
pool ‘

4.3.3.3 Floating Point Cells
1. Description

A floating point cell must be able to represent a

floating point number on a given object machine.

2. Accessing Functions

Floating point cells are addressable and directly.

accessed.
3. Allocation Functions

Similiar to pointer cells, floating point cells maj
be allocated individually or in blocks. Blocks are

used to represent numeric arrays.

GETFCELL returns pointer to a‘floating point
‘ cell : - :
GETFBLK(N) returns pointer to a block of N

floating point cells

FRFCELL(X) returns the floating point cell .
fa .. pointed to by X to the available storage
pool :
FRFBLK(X,N) returns the block of floating point

cells pointed at by X to the available

storage pool

4.3.3.4 Strings

1.

Description

A string 1is represented in the form of. a string
block. String blocks have twovcomponents, the first
is the length of the string in characters, the

second is the characters composing the string.

The length component should be large enough to avoid

arbitrary restrictions on the size of strings.
Accessing Functions

Strings and their string blocks are accessed by the

primitve functions GETC and PUTC.

Allocation Functions

The only representation for a logical string is in

the form of a string block. The allocation

functions are:

GETSBLX(N) returns a pointer to a block of
-sufficient to represent a string

of N characters (includes storage for
the length component)

(o

FRSBLK(X,N) returns the string block of size
N pointed at by X to the available

b= 27

storage pool
4.3.3.5 Storage Reservation and Liberation

Available Storage Lists

The available blocks of storage are maintained in a omne
way linked lisf which 1s ordered by memory addresses.
‘Depending on the object machine architecture the storage
allocator may maintain separate availability 1lists for

different types of storage [6]. The 1lists are represented

as in figure H4-11.

T =

Figure 4-11: Available Storage Lists

in each storage block is kept the size of the bloeck and

a pointer to the next available block.

Reservation

A block of storage is reserved by searching down the
appropriate storage 1list wuntil the first block which is

large enough 1is found. = The required amount of storage is

then allocated from that block.

Liberation

"The appropriate storage 1list is searched until the
insertion position for the freed block is found. The freed
block is inserted into the 1ist or is compacted with

abutting upper or lower blocks if possible.

B - 28

4,3.3.6 Consolidated Storage Allocation

Unless the object machine has an architecture that
would make separate storage 1lists desirable the pointer
cell, -floating point cell and string block type storagé can
all be obtained from the same availability list. This 1list
can describe storége in words,» bytes, or bits, whatever is

best suited for that machine.

The storage allocation functions +thus become mapping
functions for the general storage allocator. - If the
allocator manipulated words as its basic elements then the

following functions could be defined.

WFCELL(N) number of words to représent N floating
point cells

WPCELL(N) number of words to represent N pointer
cells

These functions can then be used 1n calls to the
storage allocator. Thus the allocation function, GETBLK(N)

is defined as

GETBLK(N): RETURN(ALLOCATE(WPCELL(XN)))

"The allocation functions for this design are specified
1 - -

for a word oriented storage allocator.

b - 30

By
storage

schemes

1.

L

Design Altermnatives

Placing the burden on the users for informing the

allocator of freed storage the choice of allocation

is simplified.
Garbage collection and reference counts

The ‘'freedom' inherent in these systems is
unnecessary for this BASIC system since it is always
known when structures are available to be freed.
These systems 1like others may be more or less
attractive givem a particular machine that has an

extra bit or two to make the particular scheme

efficient.
Buddy-system

The requirement of a free bit "in each block
restricts this techniques generality. 1In addition,
since most blocks allocated in blocks of size 2

there 'can be considerable wasted space.

Given the adopted allocation system a number of

alternatives are available for the available storage lists

organization and reservation and liberation algorithms.

i.

Order available storage list by block size

\v

‘This strategy insures a best fit on block allocation

but complciates memory compaction,
2. Random list ordering

This strategy makes the liberation and reservation

algorithms both slow and complicatéd.
3. Use best-fit as a reservation algorithm

This algorithm is much slower but presents the best

~alternative to first-fit.
4,3,3.8 Design Alternatives for String Storage

The major alternative to allocating blocks for strings
was to maintain a fixed size string storage table [11].
This system eliminates the need for searching'an available

storage list yet still provides dynamic storage for strings.

ixternally all of the string handling functions would
remain unchanged. ‘ Internally_ string storage would hé
allﬁcated as needed from a fixed size ~storage area (it is
possible that this area could be enlarged dynamically). To
free ' a string would be accomplished by 'nulling' that string
out in storage (replacing all characters with a defined null

character), When the string storage would be exhausted then

the area could be compacted by eliminating the aggregate

null areas.

The difficulty arises in compacting the storage area,
since‘the organization of poianters to strings is not always
well defined. In compaction, the address of the strings are
éhanged and the original pointer must be modified. To do

this the pointer must be identifiable and addressable.

There are a number of alternatives that can be used to

handle the compaction problem.

‘1., Trace the list and symbol table structures to build

a table that identifies all string pointers.

This technique is very inefficient and time

consunming.

2. MHaintain a two way peointer system (have a back

pointer in string storage).

This dées not completely disambiguate 'the source
pointer since multiplé pointers may exist in a
single addressable word on some machings. It 1is
then necessary to compare addresses within the word.
This may be ‘impractical without storing further
infoﬁmé&ion in string storage to ﬁelp identify the

object pointer.

-

b - 33

Maintain a string descriptor table.

This causes all string references +to be indirect
through the descriptor table. This alternative
increases the amount of context information which

must be savable and adds to storage overhead.

Allocating blocks from the regular storage mechanism

has the

and eli

advantage of solving +the garbage collection problem

minates the need for a string storage table which

hight arbitrarily restrict string sizes.

Ano

another

4.3.3.9

Any
general

the more

ther side effect 1is to eliminate +the need for

movable data structure.

Implementation Alternatives

of the functions like GETCELL, .whichvcall a more
function with a fixed parameter may be replaced by

general function.

Similiarly all of the functions may be replaced by

using invocations of ALLOCATE and RELEASE.

4 - 3y

4,3.3.10 Summary of Allocation Functions
General

" ALLOCATE(N)
RELEASE(X,N)

Pointer Cells

GETCELL
_GETBLK(N)

FRCELL(X)

FRBLK(X,N)

'_Floating Point Cells

"GETFCELL
GETFBLK(N)
FRFCELL(X)
FRFBLK(X,N)

Strings

GETSBLK(N)
FRSBLK(X,N)

Primitives (for a word machine)

WFCELL -
WPCELL
WSCELL

.4 - 35

ot

L.3.3.11 Storage

ALLOCATE
RELEASE
GETCORE

DELSTR

S e

Alloéatiqn Procedures

Storage Allocation
- Storage Liberation
- Core Expansion

- Release Strings

4 - 36

-

Name: ALLOCATE

Function:

Returns a pointer to a block of N words.

Description:

ALLOCATE(N) searches down the available storage list,

AVSTORE, until the first block which is large enough is
found or the list is exhausted. If a block is found, it
is allocated with any excess storage left on the list.

'If the list is exhausted more storage is vrequested from

the system,

Design Alternatives: see Storage Allocation

Functions Called:

CAR CDR LGC GETCORE

Called By:

GETCELL GETBLK GETFCELL GETFBLK GETSBLK

Error Calls:

SYSERR(7): insufficient core available for expansion

4 - 37

Flowchart:

ALLOCATE(N)

1

Q<-LOC(AVSTORE)

3.

L' 4

CDR(Q)

P<

NIL—X———————QII'

N

n_

P
AIII————s

A 4 .
CAR(P) »>= N—Z———ﬁI
N

A
.Q<-P

I

|

L<-CAR(P)-N

) L = 0—" 5CDR(Q)<~CDR(P)
1&
CAR(P)<-L - >RETURN(P+L)

I1

P<~GETCORE(N)

P = FALSE-l—eSYSERR(7)
lN

CDR(Q)<~P.

CAR(P)<~N

CDR(P)<~NIL ~———3III

L - 38

Name: RELEASE
Function:>

Returns the Dblock of N words pointed at by X to the
available storage pool.

Description:

The calling sequence is RELEASE(X,N) where X is a
pointer to the storage to be freed and N is the number
of words to be released.

The available storage list, AVSTORE, is searched to find

the position to insert the freed storage. If the freed
storage abuts either the blocks above or below then they
are compacted into one block. '
Design Alternatives: see Storage Allocation

Functions Called:

LoC CAR CDR

Called By:

FRCELL VFRBLK FRFCELL FRFBLK FRSBLK
¥
Error Calls: none

4 - 39

8. Flowchart:
RELEASE(X,N)
Q<-LOC(AVSTORE)

|«

" p<-CDR(Q)

N
P = NIL— P > X ——3Q<-P
l,V ‘ |y
" X+N = P (AND P # NIL) ——3CDR(X)<-P
,1v
N<=N+CAR(P)
CDR(X)<-CDR(P)

€

Q+CAR(Q) = X-Ji——————eCDR(Q)<-X

ly CDR(X)<-N -

CAR(Q)<-CAR(Q)+XN
- CDR(Q)<-CDR(X)

le

v

EXIT

4 - Lo

Name: GETCORE

Function:

Requests more core storage from operating system.

Description:

GETCORE takes one argument, N, which is fhe amount of

, storage requested. The function returns FALSE (i.e. 0)

if the request cannot be satisfied or a pointer to the
requested storage.

.Design Alternatives:

In the environments where core expansion is not allowed
this function becomes a dummy call that always generates
an error message informing the user of insufficient
core. ‘
Functions Called: operating system
Called By:

ALLOCATE o)

Error Calis: none

Flowchart: none

Name: DELSTR

Function:

"Releases storage of indicated string.

Description:

'DELSTR takes one input, a pointer to the string to be

released, The string is released by using the string
primitive for freeing string blocks, FRSBLK.

‘Design Alternatives:

. Strings can be released by directly invoking the FRSBLX

procedure and doing the required calculations.

" Functions Called:

FRSBLK
Called By:
PARSE
Error Calls: none

Flowchart: none

L o~ L2

4.3.4%.1 Internalization Procedures

INTERNSF
_ INTERNIE
ARG
 FINDSYH
STR2STR"
STR2INT

FLCNVT

Internalize Statement Forms
Internalize Interpretive Expressions
Internalize Arguments
Symbol Table Entries
String to String Conversion
String to Intéger Conversion

String to Floating Point Conversion

4 - 43

Name: INTERNSF
Function:

Internalizes the statement form (SF) portion of the
context string.

Description:

On entry to INTERNSF the buffer pointer, BFP, is assumed
to be positioned at the delimiter that follows ~the user
information segment of the context string. The BFP is_
repositioned to the first character of +the statement
form as shown in figure 4-12.

SF

#(stmt no._stmt type_source IE ...IE)#

Figure 4-12: Segment of the Context String

If the first character is a blank then a flag indicating

no statement number 1is set by setting STMTN ' to -1,
otherwise the procedure STR2INT is used to convert the
character string up to the next delimiting character

into the machine representation of an integer.
Similiarly, the statement type and statement source
string are :translated into an integer and string

respectively.

A partial statement form structure is formed and then
the - INTERNIE procedure is ‘used to internalize the
interpretive expressions associated with the statment.
The entire statement form is then inserted into the
program list. ’

If additional statement forms are present the INTERNSF
procedure is repeated, otherwise control is returned to
the «c¢alling procedure. The BFP is positioned at the
delimiter following the list of statement forms.

Design Alternatives:
Until INTERNSF was redesigned to handle context strings

as received from the interpreter as well as the
translator this procedure would initiate progranm

interpretation.

Functions Called:

GETCHR GETCELL STR2INT
CDR INTERNIE PUTS
Called By:
~ INTERNCS

Error'Calls: none

4 - 45

QUTSTR

PUSHT

CAR
INSERTS

8.

Flowchart:

INTERNSFE

I—
v
BFP<-BFP+2
CHR<-GETCHR(BF,BFP)
A 4 Y
CHR = n ¥ » STHTN<~- -1
N . BFP<-BFP+2

v
STMTN<~-STR2INT
BFP<-BPFP+1

L
&

-l
TYPE<~-STR2INT
TEMP<-BFP+1

>
v

BFP<-BFP+1
CHR<-GETCHR(BF,BFP)

b

N CHR = n »
Y

SRC<-OUTSTR(BF,TEMP ,BFP-1)
STMTP<-GETCELL
. TEMP<-GETCELL
CAR(STMTP)<~-TEMP
CAR(TEMP) <-STHMTN
TEMPA<-GETCELL
CAR(TEMPA)<-TYPE
TEMP<-GETCELL
_CDR(TEMPA)<-TEMP
CAR(TEMP)<~-SRC

I

IT

4 - 46

II

CHR<-GETCHR(BF,BFP)

¥
rd

v

Y
CHR = ")}" — III
N ,

BFP<-BFP+1
TEMPA<-GETCELL
CDR(TEMP)<-TEMPA
PUSHT(RETURN ADDRESS)
CAR(TEMPA)<~INTERNIE
TEMP<~-TEMPA

| :

I1I

~
TYPE = DEFSTMT ———— PUTS(TYPE,"I",STMTP)

I '

INSERTS
BFP<~-BFP+1
CHR<-GETCHR(BF,BFP)

CHR = DELIN ——— 51
N
EXIT

Name: INTERNIE

Function:

Internalize 1nterpret1ve expressions to produce internal
list representations.

'Description:

The 1nterna11zatlon of a list expression 1s accomplished

by recursively invoking INTERNIE to process embedded

lists. The wvalue returned by INTERNIE is a pointer to
an internalized list structure.

"The list is processed by analyzing the first character

of an element. If the character is a left parenthese
then INTERNIE is called recursively, if it is a right

parenthese INTERNIE returns a pointer to a internalized

list, otherwise ARG is used to process the element.
Design Alternatives: none
Functions Called:

PUSHS PUSHT GETCELL GETCHR ARG
POPS POPT

Called By:

INTERNIE g

" Error Calls: none

b - 48

J—

8. Flowchart:

INTERNIE

TEMP<-GETCELL
PUSHS(TEHP)
BFP<~BFP+1
CHR<-GETCHR(BF,BFP)
CAR(TEMP)<-ARG

LY
?

CHR<-GETCHR(BF ,BFP)

CHR = "(" Y — T
BTN
I—
v V
CHR = ")" —— 3 BFP<-BFP+1 -
N EXIT VIA POPT

A
TEMPA<~GETCELL
CDR{TEMP)<-TENPA
BFP<-BFP+1
CAR(TEMPA)<-ARG
TEHPT~TEMPA

I

|

PUSHT(RETURN ADDRESS) '
*INTERNIE -
TEMPA<~GETCELL
CAR(TEMPA)<-POPS
TEMP<-POPS
CDR(TEMP)<-TENPA
PUSHS(TEMP)

TEMP<~TEMPA

II

4 - 49

u.‘

Name: ARG

Function:

Processes 1list elements and returns the symbol table
position of the element. ' :

Description:

All list elements, except symbol table positions, are
prefaced by a character that defines the elements symbol
type. If the element is an address, STR2INT is used to
convert the string representation of the address to an

integer and this value is returned.

If the symbol type is 'A','B','C','D', or 'E' then the
symbol name packed into NAME and FINDSYM invoked. The
value returned by FINDSYM is returned. :

If the symbol type is 'F' +then the remaining string is
converted into the machine representation of a floating
point number, otherwise it is assembled as a string

-eonstant. In both cases FINDSYM is then ' used to enter

the argument into the symbol table.

Design Alternatives:

Part of the ARG procedure consists of packing a symbol
name into NAME (i.e. storing the one or two character
variable name in NAME). This is a machine dependent
strategy and may be avoided by processing the symbol
name as a string and correspondingly storing the name as
a string (string block) in the symbol table.
Functions Called:

GETCHR DIGIT FINDSYM FLCNVT STR2STR
STR2INT -

Called By:
INTERNIE

Error Call’s: none

)

4 - 50

8. Flowchart: : -

ARG

l

TYPE<-GETCHR(BF,BFP)

. ‘
DIGIT(TYPE) y 3 RETURN(STR2INT)
N) .

4

BFP<-BFP+1

Y N
TYPE = 'A' OR 'B' OR 'C' OR 'D!' OR 'E' ——1I
1y)

4
PACK THE SYMBOL NAME INTO NAME

-
RETURN(FINDSYM(NAME,TYPE,VAL))

I

TYPE = F Y VAL<~STR2STR

[!

VAL<=-FLCNVT ——> NAME<-BLANKS -

!

" RETURN(FINDSYM(NAME,TYPE,VAL))

L ~ 51

L 3%

5.

Name: FINDSYM

Function:

Returns the symbol table address of a symbol. If the
symbol is not present an entry is created, else the

location existing symbol 1is returned.

Description:

The <calling sequence is FINDSYM(NAME,TYPE,VAL) where
NAME is the symbol name (possibly null), TYPE is the
symbol type, and VAL is the symbol value (null unless

'TYPE is a string or floating point constant).

Unless the symbol is a string literal (type G) the
current symbol table 1s searched for an already existing

entry. If present the location of the existing entry is
returned. :

If no entry is present a new entry is made in the symbol
table and its location is returned. NXTSYM contains the
value of the next available symbol table position.

Design Alternatives: nomne

"Functions Called:

PUTS CAR GTSBLK GETCELL
GETS :

Called By:
ARG

Error Calls: none

4 - 52

D

8. Flowchart:

FINDSYM(NAME,TYPE,VAL)

Y
TYPE = '@G! M } PUTS{NXTSYM,DTYPE,STRING)
: T” ‘ PUTS(NXTSYM,STYPE,TYPE)
I —— PUTS(NXTSYM,SNAME, NAME)
PUTS(NXTSYM,SVALUE,VAL)
v PUTS(NXTSYM,SVALUE,VAL)
FIND THE NEXT ENTRY
WHERE THEY TYPE , V l
ENTRY MATCHES III
N N ' ' .
MATCH SUCCEEDS? —————I1
v . _
h g
TYPE = 'p! —1————~—4 SAME FPc—li——————%I
N Y-

g Y
DOES NAME MATCH

:

III

}

NXTSY

YRETURN POINTER TO THIS ENTRY
N -

M<-NXTSYM+1

RETURN(NXTSYM-1)

STRING and FNUM are predefined
symbol values that indicate data

types of the string and floating point
number -

b - 53

II

A
PUTS(NXTSYH,SNAKE,NAME)
PUTS{NXTSYM,STYPE,TYPE)
\ Y
TYPE = ‘'A? —> TEMP<-GETCELL
N CAR(TEMP)<-VAL
PUTS(NXTSYM,SVALUE,TEMP)
PUTS(NXTSYM,DTYPE,FNUH)
III
. 4 Y
TYPE = 'B!? > TEMP<-GETCELL
X CAR(TEMP)<-GTSBLK(0)
PUTS(NXTSYM,SVALUE,TEHP)
PUTS(NXTSYM,TYPE,STRING)
III
A 4 y

TYPE rtee

v

PUT(NXTSYH;DTYPE,FNUH) >III

IS
> U
<

TYPE = D! > PUTS(NXTSYM,DTYPE,STRING) —> IIT
v Y
TYPE = 'F! ~> PUTS(NXTSYM,SVALUE,VAL)
N PUTS (NXTSYM,DTYPE, FNUM)
} |
Y
I1I

e

Name: STR2STR
Function:

Internalizes the sequence of characters enclosed by

- quotation marks as a string and returns a pointer to the

string.

Description:

The buffer pointer, BFP, is advanced to beyond the

matching quotation mark and OUTSTR is used to created

the string. BFP is left positioned after the matching
quotation mark. : '

Design Alternatives:

The pointer marking the end of the string can be moved
in the «calling procedure and OUTSTR used directly to

-eliminate the need for this procedure.

Functions Called:
GETCHR QUTSTR
Called By:
. ARG
Errér Calls: none

Flowchart:

STR2STR

+T<-BFP+2
______ﬁl

BFP<-BFP+1
CHR<-GETCHR(BF ,BFP)

o ¥

CHR = QUOTE ———— BFP<-BFP+1
N RETURN(OUTSTR(BF,T,BFP-1)})

4 - 55

Name: STR2INT

Function:

Internalizes the sequence of characters -starting at the

" buffer pointer and to the next non-numeric character as
-an integer and returns the integer value.

Description:

The buffer pointer, BFP, is advanced to beyond the last
numeric character encountered.

.Design Alternatives: none

Functions Called:
Called By:

ARG INTERNSFE
Error Calls:

Flowchart: none

8.

.The

Name: FLCNVT

Function:

Internalizes the sequence of characters starting

at the

buffer pointer and to the next blank as a floating point

number, A pointer to

returned.

Description:
sequence of characters
and converted to a floating

the conversion 1is stored in

Design Alternatives: none

Functions Called:

GETCHR GETFCELL
.Called By: |

ARG
Error Calls:
Flowchart: none

the floating

point number is

in the number are delimited
point number. The result of
a floating point value cell,

57

B3 b2 Evaluation“

EVALP -
EVALE -
EVAL -
ETYPE -
ESUBR -
EEXPR - -
EVLARG -
BIND -
REBIND -

—
Procedures

Evaluate Program List

Evaluate Interpretive Expressions
Evaluate an Interpretive Expréssion
Determine Function Type

Evaluate System Funcfions

Evaluate User Functions

Evaluate an Arguﬁent List

Bind Argumeht List

Unbind Argument List

4 - 58

Name: EVALP
Function:

Top level procedure that controls the evaluation and
interpretation of the program list.

Description:

EVALP traverses the program list interpretively
evaluating statement forms until either the 1list
terminator is encountered, a FNEND function is found, or

@ halt function 1is executed by the program.

User defined functions are conveniently handled by
recursively calling EVALP. Thus, upon invocation, EVALP
preserves a certain amount of program context (i.e. the

‘gurrent statement number) on the S-stack.

Whenever & statement form 1is to be evaluated the
statement number of that .statement and a delimiter are

. placed on the S-stack, This is done to facilitate

moving the S-stack and is discussed in detail in the
section on program mobility (section 5).

_When the program list's terminator is reached or a FKEND

statement encountered then control is returned to the
invoking function, otherwise the statement type of the
current statement form is examined.

If the type of statement is a REM, DATA, or DEF then the
form pointer P is advanced to the nmnext form and this
entire procedure repeated. If the DEF statement 1is a
multiple line function (detected by examining the form's
interpretive list), the pointer to advanced to beyond
the matching FNEND statement., The implementor should
include a test for embedded DEF statements.

EVALE is called upon finding an interpretable statement
form, The current statement form pointer to updated to
the next expression to evaluate before EVALE is invoked.

Design Altermnatives:

4 - 59

.

5.7 Functions Calléd:

CAR CDR EVALE PUSHT PUSHS
POPS POPT '

6. Called By:
INTCNTL
7. Error Calls:

" INTERR(7): DEF statement has no matching FNEND "
INTERR(8): 1illegal embedded DEF statement

4 - B0

8.

Flowchart:

—]

CII——

EVALP

P = NIL-2—— 3EXIT VIA POPT

lN
Z<-CAR(P)
Z<-CDR(3Z)
Z<-CDR(Z)
= DATA, REM OR DEF STHT-:i———9P<—CDR(P)—————*I
P
v

z
Z = FNEND STMT ———>EXIT VIA POPT

!

Z = MULTIPLE LINE DEF STMT —>1IV
¥ ’ :

P<~CDR(P)

)
P = NIL——> INTERR(7)

ik

'Z<-CAR(P)

Z<~-CDR(Z)
Z<-CDR(2Z)

¥ .
Z = DEF STMT ——>INTERR(8)

!

Il

4 - 61

R

IIIX

v N
Z = FNEND STHT—>11
: b

Y .
P<=-CDR(P)

Iv

Z<-CAR(P)
PUSHS(CAR(Z))
PUSHS(DELIMITER) .
Z<-CDR(Z)

Z<-CDR(Z)

" E<~-CDR(Z)

CP<-P

P<~CDR(P)
PUSHT(RETURN ADDRESS)
EVALE .
POPS

Pip

I

4 o- 62

S.

MNMame: EVALE
Function:

Interpret the 1list of interpretive expressions for a
statement expression.

Description:

EVALE sequentially interprets the 1list of interpretive
expressions until the list terminator is encountered, at

which time an exit .is made to the calling procedure.

Since EVALE maybe called vrecursively all local

information (such as the pointer to the mnext
interpretive expression) i1s saved on the S-stack. -

EVAL is - called to evaluate individual interpretive
expressions. '

Design Alterntives:

Functions Called:

EVALE POPT POPFS PUSHS — PUSHT » oo

CDR CAR
Called By:

EVALP
Error Calls: none
Flowchart:

EVALE

LY
4

Y
E = NIL——>EXIT VIA POPT
A |
PUSHS(CDR(E)) : .
"B<-CAR(E)))
PUSHT(RETURN ADDRESS)

EVAL
E<-POPS

Name: EVAL
Function:

Evaluate the interpretive expression pointed at by E.

Description:

‘EVAL assumes that the structure pointed at by E is a

list, if its first element is not atomic (i.e. a pointer
to a function) then ETYPE is invoked to identify and
evaluate the function. Otherwise, the value of the

‘atomic item is retrieved from the symbol table (i.e. a

pointer to the symbol table location) and is pushed onto
the result stack (R-stack).

Design Alternatives: none
Functions Called: ,

ATOM CAR PUSHR POPT ETYEE
Called By:

EVALE . EEXPR

Error Calls: none

Flowchart:
- EVAL

ATCYM(CAR(E)) L+ ETYPE
.) \]

r

.PUéHR(CAR(E))

L
«®

Y
EXIT VIA POPT

L~ 64

Name: ETYPE
Function:

Determines the function type for a function and invokes
the proper interpreter procedure. |

Description:

The function type is determined from the symbol table

and control 1is passed to the appropriate function
evaluating procedure. :

Function types may be either SUBR's or EXPR's both of

which evaluate thelr arguments before invoking the
function. EXPR's are user defined functions and SUBR's
are machine code procedures.

Design Altermatives:

_An FSUBR facility (arguments not evaluated) is easily

implemented and some interpretive code expressions could
be rewritten to take advantage of such a facility.

Functions Called: |
GETS CAé ' ESUBé EEXPR’
Called By:
EVAL
Error Cails: none

Flowéhart:

ETYPE

1

FTYPE<-GETS(CAR(E),STYPE)
; b
YETYPE = SUBR————>ESUBR

i

EEXPR

4 - 65

Name: ESUBR
Function:

Evaluate system functions whose arguments must be
evaluated. '

Description:

A pointer to the function's symbol table entry 1is saved
on the R-stack wuntil after the functions argument list
is evaluated by EVLARG. The function's address is

restored after returning from EVLARG and the function is
then executed.

-

The evaluation procedures are all recursively callable
and must save all local information.

Design Alternatives: none
Functions Called:

PUSHR PUSHT POPR POPT GETS
CAR EVLARG EXECUTE

~Called By:

ETYPE
Error Calls: none

Flowchart:
ESUBR

PUSHR(GETS(CAR(E) ,SVALUE))
PUSHT(RETURN ADDRESS)
EVLARG ;

EXECUTE(POPR) -

l

EXIT VIA POPT

4 -~ 66

L.

S.

Name: EEXPR
Function:

Evaluate user defined functions.

‘Description:

The name of the function is saved on the R-stack and a
return address 1s placed on the T-stack. After the
function's argument list has been evaluated by EVLARG
then the procedure BIND is wused to bind the values on
the R-stack to the functions argument list. Error tests

-are - performed to check for a matching number of

arguments. ‘ »

By examining the interpretive expression 1list it is
determined if the function is a single or multiple line
definition.

Single line definitions are handled by calling EVAL to
evaluate the interpretive expression, vrebinding the
arguments and exitting. :

In the <case of multiple line functions the pointer to

- the next statement expression is saved on the S-stack.

The function name is saved to allow returning a value
and EVALP called recursively. Upon return the arguments
are rebound and the procedure SETVAL used to return the
evaluated functions value.

Design Alternatives:

Functions Called:

PUSHS - PUSHR PUSHT POPR POPS
POPT EVLARG GETS CAR CDR
GETCELL PUTS BIND EVAL REBIND
EVALP SETVYAL

Called By:

ETYPE

Error Calls: none

4 - 67

——

8.

Flowchart:

EEXPR

PUSHR(CAR(E))
PUSHT(RETURN ADDRESS)
EVLARG

FCN<-POP .
FDEF<-GETS(FCN,SVALUE)
T<~CAR(FDEF)

T<-CDR(T)

T<-CDR(T)

T<~CDR(T)

BIND(CAR(T))

CDR(T) = NIL P—511
Y

E<-CDR(T)
PUSHT(RETURN ADDRESS)
PUSHR(FCN)

EVAL

 T<-POPR

REBIND(POPR)
PUSHR(T)

EXIT VIA POPT

II

PUSHS(P)

*P<~-CDR(FDEF)

PUSHT(RETURN ADDRESS)
EVALP

P<-POPS

FN<-POPR

REBIND(FN)

SETVAL(FN)

EXIT VIA POPT

4 - B8

Name: EVLARG
Function:
Evaluate a functions argument list.

Description:

A delimiter for the argument list is pushed onto the

R-stack as part of the initialization. If no arguments
are left to evaluate the calling function is returned to

.via a POPT, otherwise a return address is stacked, the’

current expression pointer, E, set and EVAL invoked.

.The process 1is repeated until all arguments are
. evaluated, : : -

Design Alternatives: none

Functions Called:

PUSHR = PUSHS PUSHT POPS POPT
EVAL CDR .

Called By:
ESUBR EEXPR

Errpr Calls: none

8. Flowchart:

EVLARG

v

PUSHR(DELIMITER)

by
7

I ,
Y
CDR(E) = NIL — EXIT VIA POPT
N
Y
E<-CDR(E)

PUSHS(E)

PUSHT(RETURN ADDRESS)
EVAL ‘
E<-POPS

4o~ .70

5.

Name: BIND

Function:

Saves current context of variables in argument list and
binds then with new values from the R-stack.

Description:

BIND takes one argument, ARGP, a pointer to the argument
list (the elements in +turn point to symbol table

.entries). For each element in the argument 1list its

corresponding symbol table value entry is modified by

-Placing a2 new cell at the beginning of the value list. .

The value this new cell points at is obtained *from the

.hR-stack.

Error messages are issued whenever the number of
arguments used in the function c¢all differs from the

‘definition.

Design Alternatives:

The current value of parameter variables can alsc be
saved by pushing a function identifier and the current
values onto a stack.

Functions Called:

GETCELL CDR GETS PUTS POPR
CAR : ,

Called By:
EEXPR

Error Calls:

INTERR(9): too many arguments in function call
INTERR(10): too few arguments in function call

4 - 71

P

8.

Flowchart:

BIND(ARGP)

Y

Y v
ARGP = NIL—— POPR = DELIMITER-

N '1\1'
EXIT

V)
N<-GETCELL -
CDR(N)<-GETS(CAR(ARGP) ,SVALUE)
PUTS(CAR(ARGP) ,N,SVALUE) ’
ARGV<-PQPR

5
ARGV = DELIMITER —> INTERR(9)

| le

CAR(N)<-ARGYV
ARGP<~CDR(ARGP)

4o~ 72

INTERR(10)

7.

8.

Name: REBIND
Function:

Restore previous context for a list of variables.

Description:

© 'REBIND takes one argument, ARGP, .2 pointer to the

argument list. The list pointed at by ARGP 1is mapped
down and each elemenis symbol table enitry has the first

" yalue cell deleted.

Design Alternatives: none
Functions Called:

CAR CDR PUTS ~ GETS

.Called By:

EEXPR

Error Calls: none _ -

"Flowchart:

REBIND(ARGP)

—)

ARGP = NIL
| ¥ | |

PUTS(CAR(ARGP),CDR(GETS(CAR(ARGP),SVALUE)),SVALUB)

ARGP<~-CDR(ARGP) .

2EXIT

4 - 73

Rt

4,3.4.3 String Handling Procedures

These procedures are used in manipulating strings in
the translator and interpreter processes.

- GETC - Get Character From a String .
PUTC - Put Character into String
LENGTH - Determine Length of String
CONCAT - Concat Strings
STREQ = - Test String Equality
HATCH - ; Test Matching Substring

B - 74

Name: GETC

Function:

Returns specified character from a string.

Description:

Calling sequence is GETC(STRP,

pointer to the string and CHRP
the character requested. CHRP

between 0 and the length of the

CHRP) where STRP is a
is a relative pointer to
must be an integer value
string.

If the value of CHRP is zero the request is interpreted
to be a request for the length of the string.

Design Alternatives: none
Functions Called: none
Called By:

Error Calls: nomne

Flowchart: none

5~ 75

Name: PUTC

Function:

Deposit character into a specified position in a string
block.

Description:

The calling sequence is PUTC(STRP,CHRP,VAL) where STRP
is a pointer to the string, CHRP is a relative string

pointer, and VAL is the value to be deposited.

CHRP must be an integer value betweén 0 and the length

of the string. If the value of CHRP is 0 then the value
is deposited as the length of the string(i.e. wherever
the length component of strings are stored.

Design Alternatives:

Functions Called: none

Called By:
Error Calls: none

Flowchart: none

4~ 76

Name: LENGTH

Function:

Returns the number of characters iﬁ a string.
Description:

LENGTH has one input, a pointer to the named string.
The length of the string is determined by invoking the
string primitive GETC(pointer to string,LEN).

.Design Alternative:

The length of strings can be directly accessed under
some implementations by wusing the string primitives.
The use of LENGTH is clean but has some overhead.
Functions Called:

GETC
Called By:

LEXICAL PARSE

Error Calls: none

Flowchart: none

4 o- 77

- Name: COHCAT

Function:

Return a pointer +to a new string formed by the
concatenation of two strings.

Description: -

The procedure CONCAT takes two inputs which are pointers
to the strings to be concatenated. The lengths of both
strings are obtained, summed, and used to allocate a new

‘string block for the concatenated string. The object

strings are copied into the new string block character
by character using the sitring primitives GETC and PUTC.

A pointer to the mnew string block iIs returned as the
value of CONCAT.

.Design Alternatives: none

Functions Called:

GETC PUTC GTSBLK TDIM ‘ OPERAND
NUMBER STRING

Called By:

Error Cails: none

S, Flowchart:

CONCAT(STR1,STR2)

|

LEN1<~-GETC(STR1,LEN) WHERE LEN = 0
LEN2<-GETC(STR2,LEN)

TLEN<-LEN1+LEN2

P<-GTSBLK(TLEKN)

Q<-1
—|
y . .
Q > LEN1 > ' Q<-Q+1
N - - T<-1
C<-GETC(STR1,Q) - % y
PUTC(P,Q,C) _ -T > LEN2 ——>RETURN
Q<-Q+1 v P
SEEE. C<-GETC(STR2,T)
PUTC(P,Q,C)
T<-T+1
Q<-Q+1

4 - 79

-Name: STREQ

~Function:

Compares two strings to determine if they are equal.

Description:
The calling sequence is STREQ(STRl,STR2) ' where STR1 and

STR2 are pointers to string blocks. TRUE is returned .if
equal, else FALSE. '

. If the lengths of the two strings are the same they are

compared characterwise until either a mismatch 1is found
(and FALSE is returned) or the end of the string is
reached (return TRUE).
Design Alternatives: none
Functions Called:

LENGTH GETC PARSE
Called By:

Error Calls: none

.4 - 80

B

g.

Flowchart:
STREQ(STR1,STR2)
LEN<-LENGTH(STR1)
. Y N
LEN = LENGTH(STR2) RETURN(FALSE)
S

P<-0

- al‘
P = LEN v > RETURN(TRUE)
P<-P+1

N - .

GETC(STR1,P) = GETC(STR2,P) —> RETURK(FALSE)

u

7.

is a pointer to the start of a buffer, BUFP

Name: MATCH
Function:

Determines if a given string matches a substring

starting at +the current position of the given pointer
and buffer.

Description:

The calling sequence is MATCH(BUF,BUFP,STRING) where BUF

is a
relative pointer for that buffer, and STRING is a

- pointer to the string to be matched against.

The comparision is done character by character until
either 1) the end of the buffer 1s reached, 2) a
mismatch is found, or 3) the match succeeds. In cases 1
and 2 FALSE is returned else TRUE.

Design Alternatives:

A matching string of the same length could be created by
using the OUTSTR function and then the two strings
compared using the procedure STREQ.

This 1is a cleaner procedure but would require changing
OUTSTR to handle requests that cannot be filled, i.e.
detecting a delimiter, or prescanning the buffer before
the OUTSTR to determine if it can be accomplished.

Functions Called:

LENGTH = GETCHR GETC

Called By:
LEXICAL TFOR TDEF

Error Calls: none

L - 82

\

8.

Flowchart:

MATCH(BUF ,BUFP,STRING)

L<-1ENGTH(STRING)
T<-1 .
Ti<-BUFP

3
4

" C<-GETCHR(BUF, TL)

v
C = DELIH > RETURN(FALSE)

C1<-GETC(STRING,T)

cC = C1 N > RETURN(FALSE)
T =1L Y > RETURN{ TRUE)
u .
T<-T+1
Ti<-T1+1
|

B - 83

4.3.4.4 Stack Accessing Procedures

PUSHR | - Push onto R-stack
fUSHS - Push onto S-stack
PUSHT - Push onto T-stack
POPR - Pop off R-stack
POPS ‘ - Pop off S-stack

POPT - Pop off T-stack

L - 8y

Name: PUSHR

Function:

Places a value on the R-stack.
Descriptioﬁ:

The calling sequence is PUSHR(VALUE) where VALUE is the
item to be pushed onto the stack.

A test is performed to see if stack overflow will occur,
if so a diagnostic is issued through the ~system error

routine.

Design Aiternatives: none
Functions Called: none
Called By:

Error Calls:

SYSERR(3): R-stack overflow

Flowchart: none

Ly -

-85

Name: PUSHS

Function:

Places a value on the S-stack.
Description:"

The calling sequence is PUSHS(VALUE) where VALUE is the
item to be pushed onto the stack.

A test is performed to see if stack overflow will occur,

if so a diagnostic is issued through the system error
routine. .

Design Alternatives: none

Functions Called: none -

Called By: - : | -
Bfror Calls: -

SYSERR(i): S—sfack overflow

Flowchart: none

L - 8%

Name: PUSHT

Function:

Places a value on the T-stack.
Description:

The calling sequence is PUSHT(VALUE) where VALUE is the
item to be pushed onto the stack.

A test is performed to see if stack overflow will occur,
if so a diagnostic is issued through the system error
routine.

Design Alternatives: none

Functions Called: none

' Called By:

Error Calls:

SYSERR(2): T-stack overflow

Flowchart: none

4 - 87

ﬁame: POPS

Function:

Return value on top of the S-stack.

Dgscription:

The pointer to S-stack 1s tested tb see 1f the pop will
cause stack underflow, if true then an error message is
issued else the stack is popped and the value returned.
Design Alternatives: none

Functions Called: none

Called By:

Error Célls:

SYSERR(4): S-stack underflow

Flowchart: none

L - 88

Name: POPT

Funétion:

Return vélue on top of the T-stack.
Description:

The pointer to T-stack is tested to see if the pop will

‘eause stack underflow, if true then an error message is

issued else the stack is popped and the value returned.
Design Alternatives: none
Functions Called: none

Called By:

Error Calls:

SYSERR(5): T-stack underflow

Flowchart: none

4 - 89

i

Name: POPR
Function:
Return value on top of the R-stack.

Description:

The pointef to R—stackvis tested to see if the pop will
cause stack underflow, if true then an error message is
issued else the stack is popped and the value returned.

Design Alternatives: none

Functions Called: none

Callied By:
error Calls:

SYSERR(6): R~stack underflow

Flowchart: none

4 - 90

v

R el
o ity

4.3.4.5 Accessing Input/Output and Working Buffers

Accessing Functions

The primitive accessing functions for buffers are
GETCHR(BUF ,RELP) and PUTCHR(BUF,RELP,CHR). BUF is a pointer
to the beginning of some buffer and RELP 'is a pointer .

relative to the beginning of the buffer which indicates the

‘character to access. ’ - : S

The wuse of relative buffer addre§sing has the
advéntages of 1) allowing us to write higher level string
handling procedures independent of machine architecture and

2) of preserving greater process mobility.

Design Alternatives

If we assume the object machine has byte addressing
features then a direct addressing pointer can be used.
Direct character addressing can also by done if we assume

one character/word or construct complex pointers that have

word and character components.

Design Alternative:

Name: GETCHR
Function:
Returns indicated character from some.buffer.

Description:

The calling sequence is GETCHR(BUFP,CHRP) where BUFP is
@ pointer to the beginning of some buffer and CHRP is an
integer value which is a relative pointer from the
beginning of the buffer. Thus the invocation
GETCHR(NSRC,4) would return the fourth character from

- the beginning of the buffer NSRC.

Functions Called: none

. Called by:

LEXICAL PARSE TFOR ' TREAD TDATA

TDIM TINPUT TPRINT TDETF EXPRESS
SUBTRAN FUNCTRAN STRING NUMBER OPERAND

Error Calls: none

Flowchart: none

y - 92

Name: PUTCHR
Functtion:
Deposits a character into a buffer.

Description:

The calling sequence is PUTCHR(BUFP,CHRP,CHR) where BUFP

is a pointer to the buffer, CHRP is a relative pointer
in the buffer, and CHR is the value of the character to
be deposited.
Design Alternatives:
Functions Called: none
Called by:

LEXICAL

Error Calls: none

Flowchart: none

Section Five

Program Mobility

5.1 Introduction

‘A technique for moving partial computations amongst

similar processors is discussed in this section. The
_consequences involved in program transferability were
presented in section 1. The following sections consider in

detail when a computation may be interrupted and the

canonical forms for representing structures and data.

5.2, Computation Interruption

The choice of +the level at which a computation can be
interruﬁted and moved is subject to measures of feasibilty
and cost. Portions of the interpreter process that involve
machine de?endent activity cannot be halted. In particular,
internalization procedures, rstorage reservation and
libération, and most run time functibns. must compute to
completion. 'Procedureé involving arithmetic processes
(software implemented floating point arithmetic) aré not
interruptible. Since input/output can be included under run
fime functions they are not interruptible. The lower the

level at which program interruption is allowed the greater

the amount of context information that must be saved.

The locations and number of program break points can be

established by the implementor, however, restricting

interruptions to the evaluation - procedures appears

reasonably effective. Within this scope break points may be
established at the level of statement forms, interpretive
expressions or functions. The size of the symbol table and

transfer table are directly related to the level of program

interruption.

5.3 Context String Formats

" The context string components are canonical
reéresentations of +the interpreter data structures .and
permit the transfer of user context ﬁithout information
loss. Section 1.5 described the organization and contents
of the variéus structures. This section describes the

formats used in forming the context string whose general

overall format is shown in figure 5-1.

user information # statement forms # symbol table £

~R-stack # S-stack # T-stack #
; ,

Figure 5-1: General Context String

"4

o o

In the format descriptions the characters '#', '/' and

's' are used as delimiters and are abitrary choices left to

the implementor.
$5.3.1 Statement Forms

Each statement form has four components:

1) statement number

2) statement type -
3) original source statement
4) interpretive expressions

The statement number and type are integers, the source

stiing is a quoted string and the interpretive expressions
are external representations of 1list expressions. The
'intérpretive expressions are structurally iaentiéal t; the
original expression produced by the translator except that
2ll symbols have beén replaced by integers which are symbol
table entry positions. Whén the statement forms are
re-internalized it is unnecessary to search the symbol

table.
The statement
10 LET K1 = LEN(RS)

when translated by the translator process generates

-

-

(10_statement type "10 LET K1 = LEN(R$)"

(61_AK1_ (82 _BR)))

The values 61 and 92 represent the symbol table entries
for the assignment and length functions. The letters A and
B preceding the variable names indicate the symbol types

simple numeric and simple string. The underscore ' ?

represents a blank.

When this statement form is formatted for transfer to
another interpreter'the variable references are replaced by

symbol table references.

(10_statement type_"10 LET K1 = LEN(RS$)"

(61 104 (92 123)))

therefore the values 104 and 123 are the table posifions

~assigned for the symbols K1 and RS.

5.3.2 Symbol Table

Thg symbol table context is preserved by scanning the
table from top <to bpttom and outputting a ‘string form
representing all symbol table entries except those for
sysfem functkéns (type K).

Conversion from internal ©representations to character

L

—

formats is done using the PRINT and READ functions found in -

BASIC.

The order of symbol entries is preserved by the context
string, a necessity since interpretive expressions and
partial results on the R-stack reference symbol table items

by relative location.

The general string format is given below in figure 5-2,
Bacﬁ symbol type and its format is discussed.individually.
The format of the symbol types is summarized in table 5-1 at

"the end of section 5.3.

/<symbol type>,[<data type>,][<symbol name>,]

<symbol value> [,<symbol value>]/
Figure 5-2: General Symbol Table Format

The square brackets enclose optional descriétion
elements. A symbol description may have multiple value
elements depending wupon the symbol ‘type. ‘ Some. of the
vnotation used in describing the string formats is given

below,

<symbol type>:= A | B] ¢c | DIlE|F Il G} HII
<data type>:= 0 | 1] 2] 3

<value>:= <integer> | <fleoating point> | <string>A|

<list pointer>

<pame>:= <letter> | <letter> <digit>

Symbol Table Context String Formats

Type A: simple numeric variables
Multiple values may be present from function calls.

/A,<name>,<floating point>,...,<floating point>/

Type B: simple string variables

Multiple values may be present from function calls.

/B,<name>,<string>,...,<string>/

Type C: dimensioned numeric variables

The number of value elements is indicated by the
dimensions of the array which are elements three and
four,

/Cy,<name>, ,<integer>, <1nteger> <floa;1ng peint>,
eees<floating p01nt>/
Type D: dimensioned string variables

- The format is similiar +to that of the symbol type'c
except the the value elements are strings. ‘

/D,<name>,<integer>,<integer>,<string>, esey<string>/

Type E: function values

There is only one value element but it may be either a
floating p01nt value or a string.

/E,<name>,<value>/

Type F: floating point constant

/Fy,<floating point>/

Type G: string constant

/Gs<string>/

Type H: temporary value

/H,<floating point>/ or /H,<string>/

Type I: system variables

/I,<data type>,<value>/

Table 5-1: Summary of Symbol Table String Formats

symbol type' string formats
Ar /A ,<name>,<flo pt>,...,<flo pt>/
B ‘ /B,<name> ,<string>,...,<string>/
¢’ - /C,<name>,<integer>,<integer>,

<flo Pt>,...4,<flo pt>/

D . /D,<name>,<integer>,<integer>,
<string>,...,<string>/

E ‘/B,<name>,<sfring>l<flo pt>/
F /F,<flo pt>/ .
G /G,<string>/
H /H,<flo pt> | <string>/
I | : /I,<data type>,<integer> | <flo pt> |
: . <string> <list pointer>/

-

5.3.3 R-stack

Pointers to evaluated arguments, temporary values and
the vresults of function calls are placed on the R-stack.
Actual values are never placed ‘on the stack, instead,

pointers in the form of vrelative locations in the symbol

table are used.
The R~stack is represented as
#<integer>,<integer>,...,<integer>#

where each <integer> represents a relative symbol table

location. , -

The.S—stack'is composed of pointers (machine addresses)
to list expressions that have yet to be evaluated or to
whiéh program control will 'later vbe returned. These
expressions are either entire statement forms or sublists of
statement forms which are placed‘on the‘S-staék as Statement

forms are evaluated.

¥henever a statement form is entered for evaluation
then the statement number is pushed on the stack followed by

a delinmniter. Subsequent pointers are all found in that

statement form wuntil +the next statement number/delimiter
pair occurs. The stack has the general composition given in
figure 5-3,. |

S~-stack

Statement number
Delimiter
Pointer(1)
Pointer(2)

Pointer(n)

‘" Statement number
Delimiter
Pointer(1)

Figure 5-3: S-stack Composition

Knowing the statement form which the list pointer
references allows use to convert the machine address
pointers to strings that provide relative 1ist positions

similiar in form +to the list addressing information as used

in the BBN LIST editor [1].

- The 1list form given in figure 5-4 has several pointers

which are shown referencing parts of a list structure.

statement statement source
number type

)
A

/

O—r 1

Figure 5-%: Example List Structure

The pointers can be represented in the form of relative list

addressing shown below.

Pointer 1: O
Pointer 2: 5
Pointer 3: 4/3
Pointer 4: u/2/1

The meaning of the pointers can be seen more clearly by

viewing the structure in list form.

1 3 2 4 :
A B ¢ (D (lsé FOm {1 (7 kL)

Thus, for pointer 1, O is the top most level, or a
pointer to the statement form. Pointer 2 is 5 or the 5th

element of the list. Pointer 3 is to the kth element of the

list and then to the 3rd element of that 1list. The
addressing scheme is applied recursively to the 1list being
accessed. The structure referenced by pointer 4 is found by

taking the list which is the 4th element, the 2nd element of

. that list and then the 1st element of that list.

~

The entire context string would appear as in figure

fstatement number 0 5 4/3 4/2/4,....#

'Figure 5-5: S-stack portion of Context String

Design Alternatives .

An elegant and -more general solution suggested by

- Martin Kay is that the relative position of the pointer on

the stack be inserted at the position that it references in
the program list. As the statement forms composing the 1list

are internalized the pointers are used to reconstruct the

'S-stack.

5«3.5 T-stacEA

The information regarding control transfers within the

interpreter can be preserved by making such transfers

i

indirect through the transfer tablef In practice this
causes all function calls and jumps to be made indirectly
through a relative transfer table entry. Address
information, expressed as relative transfer table entries,

is placed on the T-stack.

The T-stack 1is ©represented in the format shown in

figure 5-6.

f<iNteger>,<integer>,...,<integer>#

Figure 5-6: Format of T-stack Context String

T

Each string element delimited by a comma is a relative

pointer into the transfer table.

10.

Rowe, D.A., Hopwood, M.D., Farber, D.J. "Software
Methods for Achieving Fail-Soft ‘Behavior in the
Distributed Computing System." Proc. IEEE Symposium on

Computer Software Reliability, April 1973.

~

Sattley, Millstein, and Warshall. "On Program

Transferability", November 1970, NTIS Document
#AD-716-476. o

11. Waite,- W.M, Implementing Software for Non-Numeric

Applications. . (Prentice Hall, 1972).

REFERENCES - 2

APPENDIX A

Procedure Index

ALLOCATE ctevtseeccssassecscsecsnscccccsnasssncscss U4=37
ALPHA. ceceeseeoosccsccsnosocscsscsosennnscnnses Appendix B
ARGuveeeseoecosscsocssssocscsssssennsascsseasans U=50
ATOM. i eveeeesnseccsoccscssnsssoesscacccsscnsssses.Appendix B
BINARY.-ooooocooco-.ooo'ooooo.octo-oooooo--;..o 3-71
BIND. oo eeoooeosoeososecossocssscsssasesascsncacnsss =71
CAR.coooco.oooo.o.oc-ocov‘coo-onlooooooooooonno -25
CDRQ...OOOo'ovoooo;06000o000000050‘0.......¢l.n 4—25
CODB.co-ooocooo;-aoo..o'JQQQQ--ooooo--ooo-cooc‘ 3-69
CONCAT e teeesvcosncsscscscnsosesossssasccsnsscnsses 4=78
DELSTRueecsecasacossocsonsnssasossnssnssaseanee Boli2
DIGITeeceesasescosncsnnsnesscsssscocssssseassenecnsss Appendix B
EEXPR......-ooooo...ooo-o.oo.t-ooo.oc..ooo.cooo u“G?
ESUBR'..IOQOO....OCQOO...QQOQOO‘.‘0.0.0......0. u-GG
ETYPB..-...-..--.-.:ooo.oooo-n-o-o-ooooon-o-oo. L.65
EvAL..-...o;.'-oocccco.lOocqntouooonooooovboobo 4-64
EVALE.ieeeeeescesccnsccccnsces
EVALP e euieeueeereresaseceeseseasecosnssecnsnacacesss U4=59
EVLARG.....".......O.Q..OQ.......’.00.'...'... 4-69
EXECUTE e eeesscsacnosncsesscossonsacsccsseseassssseses Appendix B
EXPRESSQOOO.‘...Q.OO..QOD..'.0.0.Q'.O.C.O....'O 3“54
FINDSYH.ueoeotoeoooescecosncssessessscascsnncssccnonse U4-=-52
FLCNVT eeeoessoccasccssecsssasscssncssscnscssossccnsea 4=57
FPREC---.-o-co-ooooo‘-o‘.o--oo
FRBLKeososoososescosnsosesssnosssssscssnscacsnssee U4-26
FRCELL........o;o.o.c-o-ooocooovcoooaooo-ooo-oo 4-25
FRFBLKeeooseoeooansasossaassnsovessasscnannsnnss 4=-26
FRECELL . cesoeccncoaasscccescnaccsssssnceasnsanes U=26
PRSBLK.............................:........... 427

FUNCTION..o..to.o..o.o.o.oo.o‘.ooc’oo...bo..'.o Appendix B
FUNCTRAN-..'.'o..bo....oo..too...oo...‘0.‘.0... 3"63

GETBLK..0.0.....10....0.0...D.Oo..bo.ob..o...p. q"25

T RIS ““63

LI B AR IR B IR IR B AR O N A) 3‘72

GETC...I.0..'..0'..0..0-.'.....'..0“.."'...’0 l‘-75

GETCELL . vevevovenusnonenoensnsnasassosnssoseses B=25
GETCHR . e seseroasenoncusoscocnconsasascosnsnaass k=92
GETCORE. e vsvosuossnsossossncansnnsscosaannsses bl
GETFBLK: eesenoonsceasosoonnncnannonssasseasnsees H=26
GETFCELLcvsvsocssonasconsonncesnssanosensnnasss 4266
GETKEY w seueensrnosnssnesnocsansnssasannnsassnns 3-20
BETS e vvesusvenssosassassnoncnsosnonsanannnsoans H=17

GETsBLKOOOO.‘0.0..‘0.0.‘...000..0.0.0..."...0. q—'27
GETTRr{.b....OQ.....'.l...’."....0........0..’. AppendiXB

APPENDIX A - 1

GETUIT.seasecesesdeseonescscncsssnssnssnssseasss Appendix B
GPREC . ieecececssossnscoscocsosncoscscccnnscnsnssases 3-73

INSERTS e eeeeecasensnaccencssnsosssonssasesseansas Appendix
INTCNT L e eeeeeescecosesooscsscossncsosanssencnsnse Appendix

w

INTERHCS et eaaeneeessscececsossscscsasaseasaseess Appendix
INTERNIE ..o eeesoseeecotascnsnnoancoscnsanconannsnneas 4-048
INTERNSF .esveoeenseeansoeescecscnssocnasccanecnses UL=hlL
INTERNSTB . seseeeeeeescenocensoeansacsnsassscseas Appendix
INTERNSTK.e eeonoeecascosososseascsscsnncseceanssss Appendix

rwt

INTERNUIT teeeeeosocssasescscsnscsccnccscnsessss Appendix
LENGTHeeooeeooceocsasascrsascsosssosnoscsscsossoasssass 4=77
LEXICAL...-.ooo--»--ooo.ooo.-coco.o.oooo--oooto 3-13
MATCH. teeeeoneassossacossasssssssnsaasnossosccenecs U4=82
NUMBER .2 eeveoaooneoecocasossscsassscsscsscccsnsscses 3=67
OPERANDcoooooooco.‘oo‘ooooooo¢oa-.o..4¢n¢-ooooo 3-57
OUTL.ceseecacesoaccsocssoasesecaaacssascasssssss Appendix B
OUTSTR:eeeeasosscsecsssesssscscsasansscscssesnssss Appendix B
PARSE . v sesescesosnssscssssssnancsscsncssscsconsssns 3=17
POPR..O‘..‘.......C...-....00.“‘........0..“. 4-87
POPS..Q.QQ.......‘.‘0.‘..“.'.......'0‘0......0 l*—'88
POPT...O....O"C..l........C.C.l.“‘.‘....O..'O. u-sg
PUSHRueeeeeoassosesoncsennsssssvsscsacasncssscacsans U4-85

PUSHS tieseesesececccncsessacsescossssncssscscnnsnns 4—86
PUSHTQ..Q..0.....O....'.l..0.0".0....0..0....' u°87

PUTC .t eevncsecocacoscescasconsscsnsssesssscsscncasas H=76
PUTCHR:. e oceeersoosscesossvscsssscescsscssnsncscas U4=93
PUTS.ieeereeneocensssesssosescnssccsssscscscsesss =18
PUTUIT.cceeeeceocnsceccsnsoscscccsasscsosceansess Appendix B
REBIND . ceeaceansnsacscssosssasasasassansssacnnsses U4—73
RBLBASB.---g.-.-.o--cOooo.oco-o-ooo.-.-.o-oo... 4“39
SETVAL.ctereeecocacscscssscssscsssscccsssscnssese Appendix B
STRZ2INT e eseseccecsceosassnsssssnsssnssssnscscasses U4=56
STRZSTRueseeseveesassonssasssescsoscssancsossonsss H=55
STREQ.-;..;....-o-ooooo-..ooboonboo;oo‘ooo----- 4“80

'STRING‘."..0....0...0...0.-......‘.'.....C.... 3'65
SUBTRA}{C..’.....O..Q.I'Q...l...’...‘.....’...O' 3"61

TDAT A e eeconasocnscsansseossseoscscasnascsssennsnssse 3-33
TDE ee ceeeveneosvsassensossssscnsssssecsassanses 3I=43
TDIHeeasneoeoeosoranscaosssossacsonsnnsconcsancsss 3~36
TEND . tconcecensseroosnonvosnsccsccacssncsssscsess 3=011
TENEND Dt e eeaoeosesensosssccsssscsosssosssesssccsoecsnses 3=52
TFOR: e veoeasosssssscesssssscssscnssssscncsnsses 3-25
TGOSUBe e sesestossoseseossencocsnsossascssconcossens 3I~34
TGOTO e eunoosoessacssnsmancsosesssconcssanassonces 3=2U4
Tl e eeneoosuseeascsssocoensossesossosenssesssecsacss 3=U42
0 O o 1214
TLET et eeaeacososscassoscsnssosctssasancssnasssaase 3=22

TNEXT..O.'O.'.CO."00-0.0-—0.“0000000'..‘o0.0-. 3—29

APPENDIX A - 2

S

TPRINT

TREADO.O.O...;....."Q.0‘00.0'.....!00.00000.0.

TRERR.Q...........0...0.-’..0......‘.l.....-‘...

TRESTORE
TRETURN

TRNCNTL..'..“.Q.‘.C.OO.I.O...O'...QD..'O.'..‘.

TSTOP...C............'.0.‘.'....l.....‘...ll'.l

WFCELL

HPCELL..OO‘I.IO...‘...O".Q.“Q‘...O......0....

WSCELL

o.'..con‘.oaoobcoooconocul-oooooclo.oo...

..Q.‘.l."'O‘.l...D..'....O....'......0.0

.l.'on!'.o...o.oo‘.o'-.le0.0o.ao.'ol..'.
.

APPENDIX A

.o.o.a‘oo...oo.'o.cc..o.oo...n.o.o.c.o.

00'.00..0......00...-o-.a.o-o.-o....o..‘

3

3-47

3-31

3-7

3-46

3-35
Appendix B
3-40

4-30

4-30

L-~30

W

Appendix B

Partial Procedure Descriptions

The procedures in this appendix are referenced in the
design document but do not have complete descriptions.
These procedures are described briefly in this section so
that the implementor is made aware of their function.

Function: ALPHA(X)

" Returns TRUE if character X is alphabetic.

Function: ATOM(X)

Returns TRUE if item X is atomic.

Function: DIGIT(X)

Returns TRUE is character X is a digit.

Function: EXECUTE(X)

Transfers control to machine subroutine whose address is
Xe These are usually system functions. This funection
is invoked in the procedure ESUBR.

Function: FUNCTION
" Invoked by the procedure OPERAND to determine if the
next characters in the buffer NSRC 1is a function name
(either user or system). FUNCTION returns TRUE if the

function name is present and places the symbol table
address on the S-stack.

Function: GETfRN(N)

Value returned is the Nth item in the transfer table.

APPENDIX B - 1

Function: GETUIT(N)

Returns the Nth entry in the User Information Table
(uIT).

Function: INSERTS

Inserts the current statement form inteo the program
listo :

Function: INTCNTL

Top level procedure for the interpreter process.

Function: INTERNCS

Controlling procedure for the internalization of the
context string.

Function: INTERNSTB

Function to internalize symbol table portion of the
context string. :

Funection: INTERNSTX

Function to internalize stack portions of. the context
string. '

Function: INTERNUIT

Function to internalize user information portion of the
context string. :

Function: OQUTL(N)

Returns a pointer to a string composed by forming a list
using the top N elements of the S-stack.

APPENDIX B ~ 2

G

Function: OUTSTR(BF,BEGP,ENDP)

Returns pointer to a string block formed from
sequence: of characters 1in the buffer
position BEGP to ENDP.

Function: PUTUIT(N,VAL)

‘Deposits the value, VAL into the Nth position

user information table.

Function: SETVAL(FN)

Pops the top value

off the R-stack and

value of the function FHN.

Function: TRNCNTL

BF fron

makes

Top level procedure for the translator process.

-
»

APPENDIX B - 3

of

the
the

the

the

	z699_c3_no33_0001
	z699_c3_no33_0002
	z699_c3_no33_0003
	z699_c3_no33_0004

