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ABSTRACT

A new algorithm for an unstructured mesh generator which forms all quadrila-
teral elements is described. The quadrilateral elements are generated according to
some measure, such as an error indicator evaluated by a finite element solution. The
mesh generator is applied to exponentially distributed functions and is found to be
applicable even for high gradient regions. Mesh adaptation is performed by regen-
erating using information obtained from the solution on the current mesh. The

method is found to be reliable even for complicated boundary shapes.
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1. Introduction

Development of an unstructured mesh generator is important for performing adaptive mesh
refinement effectively. By using an unstructured mesh generator, it becomes possible not only to
automatically handle problems with complicated boundaries, but also to handle rapid variations in
mesh density. An unstructured triangular mesh generator already has been developed by Peraire et.
al and has been applied to stress concentration problems in elastic solids and the shocks in
compressible flow problems. In general, however, quadrilateral elements are used more frequently
than triangular ones. Thus, the development of an unstructured quadrilateral mesh generator is

greatly desired.

A quadtree algorithm intended for an unstructured mesh generator has been developed by
Bachmann et. al.?)| but an all-quadrilateral mesh is rather difficult to achieve with this. Although the
parallel mesh generation algorithm® is intended for all-quadrilateral elements, this method has diffi-
culty in handling general boundary geometries precisely. Furthermore, it is difficult to apply these

methods to high gradient region because the mesh density generated varies too greatly.

In this report, an unstructured quadrilateral mesh generation algorithm is proposed based upon
the concept of the unstructured triangular mesh generation?). The method is applicable to arbitrary
boundary geometries and is applicable even to high gradient regions. The method is applied to adap-

tive mesh refinement of some elastic analysis and satisfactory results are obtained.
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2. Generation of All-Quadrilateral Elements

2.1 Definition of local parameters

It is shown by Peraire et.al.) that adaptive mesh refinement in high gradient regions can be
performed effectively by using an unstructured triangular mesh. Figure 1(a) shows an application of
their method to a supersonic flow problem. This method does not require complicated procedures
(such as sub-division of the region) even if the domain boundary geometry is complicated. There-
fore, an unstructured mesh generator has the advantage that adaptive mesh refinement can be per-
formed fully automatically. Peraire et. al. define three local parameters to characterize the unstruc-
tured triangular mesh as shown in Fig.(b);3:node spacing, s:tretching parameter, and «:direction of
stretching. The stretching parameter plays an important tole especially in high gradient regions
because it predicts whether the trend of the side distribution toward the direction of generation is

increasing or decreasing.

For any unstructured quadrilateral mesh generator, these three local parameters are necessary
and are introduced accordingly as /,s and « in Fig.2. The local parameters have to be defined at
every point in the solution domain. When it is applied to a FEM, the node spacing & at the point of
interest is evaluated by interpolation over a background mesh. Therefore, the 4 values have to be

specified at each node a priori.

For the initial mesh, the solution domain will be expected to be filled with a single element if
the following conditions are satisfied.

-h = constant

1y =1

-a: the direction normal to the bottom side.



p=1.125
u = 1020.0
e = 727350.0
Ma=3

(a)
p=1.125
w = 1020.0
e = 727350.0
Ma=3

(b)
p=1.125
u = 1020.0
e = 727350.0
Ma =3

(c)

Unstructured triangular mesh generator

by J. Peraire et. al.
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Fig. 14.19 Mesh enrichment. Supersonic flow past wedge (Mach number 3). (a)
Initial configuration of mesh. (b) After 101 steps. (c) After 201 steps (p = density:;

u = velocity; e = specific energy)

(a)

5o

FiG. 2.2. The definition of the mesh parameters 6, s, and a.

(b)

Fig.1 An example of unstructured triangular mesh generationl)



n  projected node spacing
o direction of steepest gradieht
S stretching parameter = dh/do:
active front mesh
------- background mesh
— — — generated mesh
location to evaluate local parameter

“node

Fig.2 Definition of local parameters
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2.2 Introduction to generation procedure

Figure 3 shows the process adopted for an unstructured quadrilateral mesh generation. This
section sketches the procedure and details are discussed in subsequent sections. Generally speaking,
the boundary geometry for a two dimensional problem can be described by the union of one exterior
boundary loop and several interior boundary loops. Usually, mesh generation becomes troublesome
for complicated boundary geometry. If the concept of an unstructured mesh generation is utilized,
however, the procedure is significantly simplified even for the complicated boundary case. Thus, the
generation procedure is performed exactly in the same manner independent of the boundary
geometry. The proposed method performs adaptive mesh generation using the boundary geometry
together with a distribution function defined in the solution domain. When it is applied to a FEM,
the distribution function is estimated from an error indicator and is used as a measure to update the

length of the element sides in regenerating the mesh.

The procedure begins with placing nodes on the boundary segments based upon the current dis-
tribution function 4 (x,y )(Fig.(a)). The boundary nodes are generated counter-clockwise for the exte-
rior boundary and clockwise for the interior boundaries. In Fig.(b), each boundary line is considered
in turn and elements are generated according to & (x,y). In generating the mesh, the concept of a
generation front, as proposed by Lo, is utilized. This concept is explained in the section 2.4. The
mesh will be generated counter-clockwise for the exterior boundary and clockwise for the interior
boundary in the same way as the boundary nodes. This means that, as the boundary curve is
traversed, the region to be generated always lies to the right. As the generation proceeds, the boun-
dary segments will collide with one another and will be combined together as shown in Fig.(c). This
will produce an increase or decrease in the number of boundary segments. In this way, the remaining
region will be filled with mesh gradually. However, to form all-quadrilateral elements from the begin-
ning is quite difficult because overly distorted elements are liable to be produced especially in high
gradient regions. In addition, it will be impossible to produce only quadrilaterals if the number of the
remaining nodes on an active front is odd. Thus, though the present method generates quadrilaterals

as far as possible, it will form triangular elements whenever the quadrilateral formed is evaluated to
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be too distorted or forming a quadrilateral is no longer possible. This means that a mixed mode mesh
of 3-node elements and 4-node elements is produced at this stage. Figure (d) shows the state after
generating the mixed mode mesh. To achieve all-quadrilateral elements, the triangular elements have
to be merged into quadrilateral ones in the next step. This procedure is basically performed by chang-
ing the connectivities of elements;Fig.(¢) shows the state after the process. At this stage, there are

many distorted quadrilateral elements in the domain and a smoothing process is required. This leads

to the last figure (f).
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2.3 Generation of boundary nodes

Boundary nodes are placed according to the distribution function #(x,y). Figure 4 shows the
method for placing the boundary nodes. Suppose the local parameters at the previously generated
node n; are h;,5;and ,o;. o has to be taken in the direction tangent to the boundary line. To generate
the next boundary node n;., the node a which is at distance (1+s;); from #; has to be determined
first. This point @ is not adequate as n;,; because the edge length may change rapidly by this

method. To avoid this, an average edge length between edge value at n; and one at a is calculated as

H = %{(1 +s)h + (1 + sa)ha}
where, s, i, are the local parameters at point a. Then, the point which is at distance H from n; is

allocated as the new node n; 4.

When the generation of boundary nodes reaches the corner node m as shown in Fig.(b), the

treatment is as follows.

First, calculate a ratio r from

_ l
R

where, / is the distance between m and n;. If r=0.5, m is allocated as n; . If not, the previously

r

generated node n; is removed and the node m is allocated as n; .



h; h,
\)\_’/‘6\
n; 0 nipy a

(b)

Fig.4 Procedure for generating a boundary node
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2.4 Concept of generation front

The generation algorithm uses the concept of a generation front as proposed by Lo®. Although
this concept has been applied only to triangular elements to date, it will be used for quadrilateral ele-
ments in this report. During the generation process, consecutive straight lines which are available to
generate a new element are termed active. At the start of the process, the consecutive lines which
connect the boundary nodes are the active front. Once a new element is generated, nodes which are
no longer active are removed from the front and the active front is updated. Thus the active front
changes continuously as the generation process proceeds. Figure 5 shows an example of the process
for updating the front table. At a certain stage the generated mesh and the active front table are as
given in Fig.(a). When element 10 is newly generated as shown by the broken line in Fig.(b), node

13 is no longer active and is removed from the current table. The table then is linked as shown below

the figure.



11 10 9 8 7
B 7 6 5
12 18 17 1 3
[y
9 4
13 14 15 i
1 2 3
1 4

18] 13141516 [ 17]

(a) The current front at a certain stage
11 10 8

. 8
8 7 g 5
12 18 1 1 6
\
9 \ 4
\
13 1Y 15 %
\ 3

(8] T14 15 [16 [ 17]

N

(b) The updated front after generation of a new element

Fig.5 Updating process for the front table

11
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2.5 Generation of mixed mode mesh

Figure 6 shows a method to form a new element from the front nodes. The steps to generate a

new element are as follows:

(a)

(b)

(©)

(d)

(e)
®

(©)

Suppose the first three nodes in the current active front are nq,n,,n5 as shown in Fig.(a).
Evaluate the angle 8=n1nyn3. The generation procedure differs depending on whether 9 is
greater than 6 or not. There is no unique choice for the value of 8, which should be adopted,

but 8y = 0.75 is used for the computations shown in this report.

Determine the local mesh parameters 4,5 and o at the midpoint M of n,n4 by interpolating
over the background grid.

For 9<60:

Determine two points: one at a distance (1+s )k from node 7; and normal to «, the other at a
distance (1+s)h from node n; and parallel to «. A candidate node is generated at the mid-

point of these two points.

Determine all the active nodes which lie within a circle with center at the candidate node and
radius rlrpns|. In this report, r =5 has been used for the computations. These nodes are
ordered according to their distance from the candidate node and are denoted by

M1,Ms,.....,.My.. Thus, M, is the closest point to the candidate node in the list.
Place the candidate node at the head of the list.

The new node M; is chosen as the first point in the list which is such that the interior of the
quadrilateral nyn,n3M; does not contain any other point M; in the list and such that the line
niM; and the line n3M; do not intersect any edges in the current front. The new element
ninynsM; is generated and the front table is updated as described in the previous section(e.g.,
see Fig.5). If the number of active edges in the front table becomes zero, the generation pro-
cess ceases. Go to (a), otherwise.

For 6=6y:

A candidate node ny is determined at the point which is at a distance (1+s )k from node n,
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and is parallel to c.

(d) Update the front table as indicated in Fig.5 and place n4,n5,n5 as the first three nodes in the

table. Go to (a).




XM,

1

candidate node
XM3
X M2

(a) for 6<6,

candidate node

(b) for 6=6,

Fig.6 Procedure for generating a new node

14
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2.6 Searching algorithm

Figure 7 shows the principle of the algorithm. The values of the parameters 4,s and « are

needed to construct the mixed mode mesh. To accomplish this, a search over the background ele-

ments is made to locate the element which contains the midpoint of n,n5. The searching algorithm

1s implemented efficiently as follows.(see Figure 7.):

(a)

(b)

(©)
(d)

(e)

for the background mesh build a table which identifies the list of elements connected to each

element as shown in Fig.7.

Given a global coordinates (x,y) for a point M, the natural coordinates (&,m) are determined

from the isoparametric mapping function for element e .
If-1=¢=1and-1 =m =1, Mis contained within the element; else.

consider the 4 surrounding elements which have sides in common with element ¢ and identify

the number of the region which contains M.(e.g. region number 3 in Fig.7)

If the region number is i, ¢; is the next element to be checked.(e.g. element e; in Fig. 7) Go

to (b).

In this way, searching all elements is avoided and the searching time to find the appropriate

background element containing M will be greatly reduced.



Fig.7 Searching algorithm

xM

16
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2.7 Merging of 3-node elements

After generating a mixed mode mesh, triangular elements must be eliminated to achieve an
all-quadrilateral mesh. Figure 8 shows a simple method to achieve this step. The merging step begins
with the triangular with highest element number. If a triangular element exists in an interior region,
it is merged into a quadrilateral one by changing the connectivities of elements towards the boundary
line as shown in Fig.8(b). Whenever a triangular element collides with a pre-existing triangular ele-
ment during the process, a quadrilateral element is formed from these two elements. Since the mixed
mode generation has been performed from the exterior to the interior, the direction to the boundary
line will be identified easily because elements nearer their boundary have lower element numbers. In
forming a new quadrilateral element the diagonal of the adjacent quadrilateral which yields the least
distorted shape is selected. When the merging procedure reaches the boundary line, two new nodes
are generated within the boundary element to produce quadrilaterals as shown by the broken h'.nes in
Fig.8(b). It may be rather troublesome to generate a new node at the midpoint of the two boundary
nodes, but no more than one midpoint in the boundary side is required in this process. For the boun-
dary triangular element, three new nodes are generated within the adjacent boundary quadrilateral

element and the connectivities of the elements are changed as shown by broken lines in Fig.(a).
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o added nodes

-------- new connectivity

(b)In the case of an interior triangular element

et /
.
‘9--8
\ \
AY
¥ \
v \
v \
Vol
7

(a)In the case of a boundary triangular element

Fig.8 Merging 3-node elements into 4-node elements
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2.8 Modified Laplacian operator

There are several higher distorted quadrilateral elements at the end of the merging
process(Fig.3 (e)). To improve their shapes, a smoothing process is performed as the final step. A
Laplacian smoothing operator”) has been widely used as a smoothing method.(e.g. see Fig. 9) In the
Laplacian smoothing method, the interior nodes in the object are repositioned to improve the shape
of the quadrilaterals. The repositioning of the interior nodes is accomplished using a weighted form
of the Laplacian smoothing method. In this method, an interior node is positioned at a weighted cen-
troid of the nodes that define the quadrilaterals surrounding that node. In calculating the centroid, a
weight of 2 is assigned for nodes associated with edges and a weight of 1 is used for nodes on diago-
nal of each element. This weighted form Laplacian smoothing method can be expressed as

N M
T = (EIP,- + ZngQj)/(N + 2M)
where T is the new location of the interior node. P; are the coordinates of node i, which is on a
diagonal of the quadrilateral, Q; are the coordinates of node j, which is on an edge containing the
node being smoothed. N is the number of nodes for P; and M is the number of nodes for Q ;. These
are shown in Fig.(a). From experience, however, this simple method often produces distorted ele-
ments such as shown in Fig.(b). One of the quadrilaterals is nearly a triangular and a near zero Jaco-
bian may occur during finite element analysis due to the distorted element. To avoid this, the values
for the weighted form of the Laplacian smoothing method are slightly modified. For the nodes on
clement diagonal, the weighted values are modified according to the corresponding open angles at

the interior node as shown in Fig. 10. The modified Laplacian operation can be expressed as

T = (Iz:aiP,- + 2,2Qj)/(,ﬁ::'1ai + 2M)
where the meanings of P;,0; N ,M are the same as those described above. For «;, the usual Lapla-
cian smoothing method always uses 1, but the present method utilizes the values shown in Table 1.
There is no unique choice for the values of a;,084,8min, however based upon experience in solving
several problems, the values in Table 1 give improved results. In the present operator, the interior

node is pulled in the direction of the opposite node if §>0,,,, and is pushed away from the opposite
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node if 0=6,,,.

20
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Laplacian smoothing method

P
Q
Py
o
0,
(a) _ N M
T—(ZPi +22Qj)/(N+2M)

i=1 j=1
T :new location of node t

this may produce

(b)

Fig.9 The Laplacian smoothing method
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Modified Laplacian smoothing method

P

N M N
T =(>oP; + 22Qj)/(2ai + 2M)
i=1 j=1 i=1

Fig.10 The modified Laplacian smoothing method

Table 1 Modified weighted values
Modified  Standard

>0 0.0 1.0
o =9 6g0,;, 2.0 1.0
otherwise 1.0 1.0

6 =0.87

6 =0.2r1

min
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2.9 Examples

2.9.1 Complicated boundary geometry

The proposed method is applied to several domains with complicated boundary geometry and
uniformly distributed mesh generations are performed. The unstructured mesh generator has the
advantage that there is no limitation on the boundary geometry. Figure 11 shows the comparison of
the mesh generated by the present method with one by the quadtree method of Bachmann et. al.2)
It is clear that the quadtree solution does not fill the domain with quadrilateral elements only. On
the other hand, the present method achieves the all-quadrilateral elements as shown in Fig.(b). In
Fig.(a), some mesh refinements are performed around the corners, but it seems that the edge length
distribution does not change smoothly around each corner. For effective adaptive mesh refinement, it
is necessary to produce a mesh varying smoothly according to some distribution function. Tt will be

shown in 3.4.2 that the present method yields this performance.

Figure 12 shows the comparison of a mesh generated by the present method with one deter-
mined by the parallel mesh generation algorithm of Cheng et. al.?). The parallel mesh generation
method has the advantage that it can be computed in parallel and naturally ensures the conformity of
the generated mesh. In this method, an all-quadrilateral mesh is indeed achieved, as shown in
Fig.(a). However, it can not represent the given boundary geometry precisely because its boundary
line is determined at the first stage of mesh generation. In addition the rate of changing the mesh
size is rather rapid. On the other hand, the present method, as shown in Fig.(b) can represent the

given boundary line precisely and can achieve an all- quadrilateral mesh.
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(a) Quadtree mesh generator by Bachmann et. al.
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(b) Present algorithm

Fig.11 Comparison of the present algorithm with
quadtree mesh generation one when applied
to a complicated boundary domain
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Fig.12 Comparison of the present algorithm with parallel
mesh generation one when applied to a complicated
boundary domain
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2.9.2 Generation for exponential distribution

The present method is able to generate a mesh based upon any arbitrary distribution function.
To examine the adaptability of the present method to a given distribution function, a mesh genera-
tion is performed using an exponential function as the given distribution function. If the exponential
function within the rectangular region is given as

y = —AeF) + C

where A ,B,C are constant parameters and are determined from the edge lengths of the elements at
the rightmost side and at the center and the changing ratio of the side length. Quadrilateral elements
are generated within a region with width /, and height /, according to the distribution function. Fig-
ure 13 shows the result for A =1.011,B =0.106,C =1.071,/, = 10,1, =5. Figure (a) shows that the
edge length does in fact becomes shortest on the y-axis. Even if the principal axis of the distribution
function is inclined 40° from y-axis, the mesh can be generated precisely according to the function as
shown in Fig.(b).

Figure 14 shows the result when applied to an even higher gradient case. The values used are
A=0.648,B=0.1,C =0.678,1, =10,4,=5. Even for this high gradient region, the adaptive mesh gen-
eration can be performed as shown in Fig.(a). Figure (b) shows an enlargement of the region
enclosed by bold line in Fig.(a); and Fig.(c) shows a further enlargement of the region enclosed by
the bold line in Fig.(b). This confirms that an all quadrilateral mesh can be achieved even in a high
gradient region. Thus, the proposed method is expected to be applicable to the vicinity of a singular

point in stress analysis or shocks in a supersonic flow problem.



(a) Principal axis is in the normal direction

(b) Principal axis is rotated 40°
from the normal direction

Fig.13 Generated mesh for the node spacing distribution
according to an exponential function

27
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(a) Whole domain

\\\\\\

(b) Enllarggﬂtl)ethf the region _ (c) Enlargement of the region
enclosed by the bold line in fig.(a) enclosed by the bold line in fig.(b)

Fig.14 Application to the high gradient distribution function
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3. Application to Adaptive Mesh Refinement

3.1 Procedure

In this section, the application of the proposed generation method to an adaptive mesh refine-
ment is presented. Figure 15 shows the flowchart of the mesh refinement cycle ,where the distribu-
tion function of node spacing is denoted by & (x,y). Since there is no information about 4 (x,y) at
the beginning, we use a uniform distributed function for 4 (x,y) at the beginning so that the pro-
cedure is general. In steps (a) to (d), the mesh generation is performed according to the algorithm
given in the previous chapter. The mesh obtained at this stage has an extremely large band-width and
profile and is not adequate for an implicit FEM solution. Therefore an optimization of the band and
the profile is performed using "Profile-Front Minimization" or "PFM" algorithm proposed by Hoit
and Wilson®. The PFM method requires little computer memory and can execute rapidly. After the
optimization process, the conditions of analysis are added to the mesh data and a FE analysis is per-
formed using feap®). Based upon the calculation result, we can evaluate an error indicator in each
clement, as defined in the next section. The analyst determines whether or not the error value is
satisfactory. Generally speaking, an error level of 5% in energy is sufficient for many practical pur-
poses. If the result meets the accuracy requirement, the procedure terminates. If not, i (x,y) is
updated based upon the error values. As the error value in each element determines the amount by
which to modify the current edge length, the distribution 4 (x,y) can be updated based upon the
results of each analysis. The procedure then returns to step (a) and the mesh refinement is performed

again. This cycle is repeated until the analyst is satisfied with the result.

Figure 16 shows the relationship between the programs and the files in the refinement cycle
described above. A G —file contains information about the boundary geometry and an 7 —file con-
tains the input data for the program feap. Each E —file contains information related to the error
indicators. At the beginning we need only to prepare the G —file. The steps from (a) to (d) in Fig.15
are combined into a single program, unif, for the 1st cycle and are combined into a program, adap-
tive, for subsequent cycles. The program unif generates the mesh under the conditions that the dis-

tribution function of node spacing is uniform, the stretching parameter always is 1 and the direction
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of o is normal to the side of the element. Executing unif and pfm will produce an 7 —file("), and an
E —file®) will be obtained by using the 7 —file() as input to feap. The 2nd refinement is performed
by applying these two files together with G —file to the program adaptive. Then, executing adaptive
and pfm will produce 7 —file®, and E —file® will be obtained by supplying the I —file® to feap.

This cycle continues until the desired convergence is achieved - generally within 3 or 4 steps.



h(x,y): distribution function of node spacing

Use uniformly distributed
function for A(x,y)

Generate boundary nodes (a)
according to h(x,y)

Generate mixed mode
(3 and 4 node) mesh (b)
according to h(x,y)

Merge 3 node elements (C)
into 4 node elements

Operate modified Laplacian (d)
operator
Reﬁne@
Band and profile optimization
(pfm method) (e)

Perform FEM to evaluate
updated A (x,y) ()
(feap)

Fig.15 Mesh refinement cycle
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I—file®

E-file)

I_ﬁle(n-H)

I—filet™

feap input

E_ﬁle(n+l)

E—file™

error indicator

O

program file

Fig.16 Schematic drawing of the adaptive mesh refinement cycle
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3.2 Error estimation

In order to update the current edge length, an error indicator is used. As the exact solution is
not known a priori, we define the error as follows. Based upon the calculated results of a FE analysis,
a pseudo solution which is expected to be closer to the correct solution is evaluated first. The error is
defined as the value obtained by integrating the difference between the pseudo solution and the cal-
culated value over the element. It is well known?) that the true error becomes bigger as the stress

difference between two adjacent elements becomes bigger and the error definition adopted here is

based upon this concept.

As for the pseudo solution, the nodal stress values o-A,-j which are obtained by projecting the cal-
culated stress values c}i_j to each node are used. Though there have been many stress projection
methods, the node averaging method is used here because the principle is simple and it does not
require much memory space. It is known that better results could be obtained by using the projection
method proposed by Hinton and Campbell®. This method, however, would require us to solve a
large linear equation again and so would require much memory space. The difference of the results
between the two methods is rather small except when the mesh density is extremely coarse, and thus
the node averaging method should be adequate for most cases. There are also many methods for

defining errors from cr_,-j— and c;j. The stress norm defined below is used for the computation in this

report.

(verror); = ({z(o}j —0;)%dQ (3.1)
; U

where (verror); is the error evaluated at element i and (); is the area of the element. It is known
that the energy norm will give better results and the authors will leave this as a topic for future

research.

To update the edge length, calculate the average permissible error level e,, defined as

N

where eproj is a sum of the integration of a}j which is defined as

e, = F[—Er—i]% (3.2)

eproj = 2(_{ [EU;Z]dQ, (3.3)
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where, N is a number of elements and 7 is a permissible error level per each element. Usually, 5% is
sufficient for the value of ¥ for practical purposes. The error ratio & is defined as the ratio of the

(verror); to e,:
g = erork
It is not necessary to update the edge length of an element if £, =1. The edge length of the elements

(3.4)

€m

where §; is greater must be made smaller. Thus, the current edge length ; is updated according to

the following equation:

1)
hi, = ]l,‘ [‘g—‘] (35)

where p is the degree of trial function in the displacement formulation(herein, p is 1 since linear

elements are used in this report).

In feap, o, ; can be obtained by using the macro command

stre ,node

and eproj can be obtained by using the macro command

erro.

As the feap did not have the capability to output (verror);, it was slightly modified to send the

values of & = (verror);/e,, to the standard output file.
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3.3 Evaluation of local parameters

The local parameters 4 ,s, and a need to be defined at every point within the solution domain.
Therefore, the nodal projection of each #; has to be calculated based upon the updated edge length
h; which is described in the previous section and evaluated with a point M whose coordinates are
Xy yn - The nodal projection of #; is calculated by using a node averaging method. A node spacing A
at a point in the element can be evaluated by interpolating the nodal values of #; using the shape

function N; . Thus for the natural coordinates &, associated with a point, 4 can be calculated as

h = SNk (3.6)
i
To evaluate the stretching parameter s at the same point, the origin of the co-ordinate system is first

moved to the point. Next, the x-y co-ordinate system is transformed to the polar co-ordinate one:

x =Xy +rcos(8),y =yy +r sin(0) (3.7)
Then the stretching parameter is evaluated as the maximum of s:
oh

g = 5‘ (38)

and the vector @ is determined as the direction which gives the maximum values for s. That is to

say, the angle 8 of the vector a which satisfies

as
— - 3-9
50 = 0 (3.9

On the other hand, 8//3r and 9h/06 are evaluated from dh/dx ,0h/dy as follows.

an|  fox ay|[on

or|_ |aor or ax

% = ax oy ||on (3.10)
20 00 00 ay

By substituting eq.(3.7) into eq.(3.10),

oh oh . oh
=2 = 21 7o, 3.11
§ = === cos (6) o + sin(0) 3y (3.11)
is obtained and by substituting eq.(3.11) into eq.(3.9)
; oh oh
— o AL, 3.12
sin (6) o + cos (6) 3y 0 (3.12)
or
oh
)
tan(0) = o

ax
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is obtained. Therefore, vector & can be expressed as

dh dh
N = ——— 3.
* [ax > 9y ] (3.13)
Furthermore, by substituting eq.(3.12) into eq.(3.11), we will get
) . (an)]
= 3.14
g [f’x ] i [ay ] ' 19

On the other hand 6h/dx and dh/dy can be calculated as

oh oh 4
ox | _ 11 0E | _ % Y h
=7 = 3.15)
oh oh [x,n y,n] [h - (
dy am
where,
oN; oN;
x’ —1 —-x y, = .
A ; 9
aN; oN;
x’ = _‘t y, — —y
e O E om ™

aN; oN;
he=>— h,=>—h
‘ ; s b ; am

Thus, s and « can be calculated by substituting eq.(3.15) into eq.(3.13) and eq.(3.14) respectively.
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3.4 Examples

3.4.1 Short cantilever beam

We define the relative error to use as the indicator to measure the error for the entire mesh as

follows.

Relative error = V eerror/eproj (3.16)

eerror = Y (verror);
i

For an optimal mesh, it is known that the convergence rate of the relative error is given by

O (NDF )2 (3.17)
where NDF is the number of degrees of freedom and p is the polynominal order of the shape func-

tions.

Figure 17 describes the problem and shows the relative error dependence on NDF obtained by
Zienkiewicz et. al.%) for a short cantilever beam. Figure (a) is an analysis condition used and Fig.(b)
shows the results. The results obtained from an adaptive mesh refinement by the proposed quadrila-
teral mesh generator are denoted by the symbol X in Fig.(b). It is clear that the convergence rate is

asymptotic to eq.(3.17) and that it gives slightly better results than the unstructured triangular mesh

generator of Zienkiewicz et. al.
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3.4.2 Stress concentration problem

The proposed algorithm is applied to an adaptive mesh refinement solution of a circular
cylinder under diametrical loading. The results are shown in Fig.18. The refinement cycle starts with
the initial mesh shown in Fig.(a). Then the 2nd mesh is computed according to the algorithm
described above and the results are shown in Fig.(b). Finally, the 3rd mesh is constructed and it
gives the results shown in Fig.(c). It is confirmed that an all-quadrilateral mesh is achieved at all

steps. The enlargement of the region enclosed by the bold line in Fig.(c) is shown in Fig.(d).

Figure 19 shows the results for a quadrant under diametrical loading. Starting with the initial
mesh shown in Fig.(a), it produces the 2nd mesh shown in Fig.(b). Finally the 3rd mesh is given as
shown in Fig.(c). The enlargement of the region enclosed by the bold line in Fig.(c) is shown in
Fig.(d) and the further enlargement of the region enclosed by the bold line in Fig.(d) is shown in
Fig.(e). It is confirmed that an all-quadrilateral mesh can be achieved for all steps. Therefore, it

seems that the present method is applicable even in the regions around singular points.

Figure 20(a)(b) show the results from FE analysis corresponding to Fig.19(a)(c) respectively.
These results plot contour lines of maximum shear difference which correspond to the isochromatic
lines in photoelasticity. Figure (c) shows the enlargement of Fig.(b) which corresponds to Fig.19(d).
Fig.(d) shows the results from a photoelastic experiment. It is apparent that the contour lines match

the isochromatic lines well even at the region around the singular point (see Fig.(c)).

Figure 21 shows the result when the present method is applied to adaptive mesh refinement of
a solution domain with a complicated multi connected boundary geometry. The initial mesh was
already shown in Fig.11(b) and Fig.(a) shows the 2nd mesh. The enlargement of the region enclosed
by the bold line in Fig.(a) is shown in Fig.(b). This confirms that an all-quadrilateral mesh is
achieved. Thus, the present method is even applicable to mesh refinement of domains with compli-

cated boundary geometry.



(d)Enlargement of the region'

(c) 3rd mesh
enclosed by the bold line in fig.(c)

Fig.18 Cylinder under diametrical loading



(a) Initial mesh

(b) 2nd mesh

Fig.19 Quadrant disk under diametrical loading
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enclosed by the bold line in fig.(d)
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(a) Coarse mesh (b) Refined mesh

(c) Enlargement around the singular point (d) Isochromatic lines in photoelasticity'

Fig.20 Comparison of the contour calculated from the refined mesh
with the isochromatic lines in photoelasticity



(a) 2nd mesh after refinement

(b) Enlargement of the region
enclosed by bold line in fig.(a)

Fig.21 Adaptive mesh refinement when applied to complicated
boundary domain
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3.4.3 The crack problem

Figure 22 presents the results of an adaptive mesh refinement for a crack problem. The speci-
men type considered is CT(Compact Tension). Figure () shows the initial mesh and the boundary
conditions used. The 2nd and the 3rd mesh are shown in Fig.(b) and Fig.(c), respectively. The
enlargement of the region enclosed by the bold line in Fig.(c) is shown in Fig.(d). Thus, an all-

quadrilateral mesh is achieved even at the region around the singular point at the crack tip.



(a) Initial mesh

(b) 2nd mesh
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\

(c) 3rd mesh (d) Enlargement of the fegion
enclosed by the bold line in fig.(c)

Fig.22 The crack problem(CT specimen)
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4. Conclusions

A new algorithm for an unstructured quadrilateral mesh generator is presented. The algorithm
achieves all-quadrilateral meshes by extending the concepts used by Zienkiewicz et. al.l) This
method has greater generality than other methods because there is no restriction on the boundary
geometry and the processing is automatic even for complicated boundary geometries. Applying the
present method to the case where edge lengths are exponentially distributed confirms that it is appli-
cable even to high gradient regions. This method required only that the edge length be defined at
every point within the region. Therefore, the generation method is easy to apply to adaptive mesh
refinement and modeling of experiments. Some elastic stress problems have shown that the method

gives satisfactory results for both stress concentration and crack problems.

Further work is needed to develop an algorithm which improves the shape of the generated

quadrilateral mesh.
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