
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Cyber-Physical-System-On-Chip (CPSoC): An Exemplar Self-Aware SoC and Smart Computing
Platform

Permalink
https://escholarship.org/uc/item/0578m1bz

Author
Sarma, Santanu

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0578m1bz
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Cyber-Physical-System-On-Chip (CPSoC): An Exemplar Self-Aware
SoC and Smart Computing Platform

THESIS
submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Santanu Sarma

Thesis Committee:

Professor Nikil Dutt, Chair
Professor Alex Nicolau, Co-Chair

Professor Nalini Venkatasubramanian

2016

© 2016 Santanu Sarma

To my family

ii

Contents

List of Figures ix

List of Tables xvi

Acknowledgments xviii

Abstract xxiv

1 Introduction 1
1.1 Challenges in Emerging SoC . 2

1.1.1 Increasing Heterogeneity and the Era of Dark Silicon 2
1.1.2 Increasing Variability . 3
1.1.3 Manufacturing Process Variations 4

1.1.3.1 Intrinsic Parametric Variability 5
1.1.3.2 Voltage and Power Variations 6
1.1.3.3 Gate, Path Delay, and Slack Variations 8

1.1.4 Ambient and On-chip Thermal Variability 9
1.1.4.1 Thermal Effects on Failure, Aging, and Material Degra-

dation . 10
1.1.5 Application and Workload Variability 12
1.1.6 Complexity of Resource Management and Programming 12

1.2 Tackling Emerging SoC Design Challenges 12
1.2.1 Whole-Stack Co-Design and Optimization 13
1.2.2 Principled Approach to Cross-Layer Awareness 14
1.2.3 Transitioning to Closed-loop Adaptive SoC Design 14
1.2.4 Rethinking MPSoCs as Cyber-Physical Systems 16

1.3 Thesis Contributions . 16
1.3.1 Thesis Organization . 19

iii

2 Background and Related Work 20
2.1 Taxonomy and Classification of Microarchitectures 21
2.2 Emerging MPSoC and Embedded System Trends 26
2.3 Intelligence and Awareness for Smart Embedded System 27
2.4 Self-Aware, Self-Adaptive and Autonomic Computing Systems 29

2.4.1 Awareness in Software Systems 30
2.4.2 Awareness in Embedded and Cyber-Physical Systems 32
2.4.3 Awareness in Systems-on-Chip 33

2.5 Properties and Levels of Awareness . 37
2.6 Self-Aware CPSoC . 41

2.6.1 On-chip Sensing and Monitoring for Awareness 42
2.6.2 Cross-Layer Architecture Models for Self-Aware Adaptation . . . 43

2.7 Summary . 44

3 CPSoC: Concept and Architecture 46
3.1 Introduction . 47
3.2 Rationale and Concept of CPSoC . 47
3.3 CPSoC Paradigm . 49
3.4 Features and Attributes of CPSoC . 50

3.4.1 Cross-Layer Virtual and Physical Sensing and Actuation 51
3.4.2 Simple and Self-Aware Adaptations 51
3.4.3 Cross-layer Interactions and Interventions 52
3.4.4 Predictive Models and On-line Learning 53

3.5 CPSoC Organization . 54
3.6 CPSoC Architectural Components . 55

3.6.1 Heterogeneous Tiled Cluster Architecture 55
3.6.2 Tiles and cNIC . 58
3.6.3 Processor Cores . 59
3.6.4 Memory Hierarchy . 60
3.6.5 Interconnects . 60

3.6.5.1 Network-on-Chip (NoC) 61
3.6.5.2 cNIC Cluster Bridge . 61
3.6.5.3 cNIC Chipset . 61

3.6.6 Actuation Networks-on-Chip (xNoC) 61
3.6.6.1 Fusion of Actuation Mechanism 62

3.6.7 Middleware and OS Support for Adaptation 63
3.6.8 Self-Awareness Properties and Levels in CPSoC 64

3.7 Summary . 66

iv

4 Multi-Sensor NoC (sNoC) for Self-Awareness in CPSoCs 67
4.1 Introduction . 68

4.1.1 Sensor Network-on-Chip (sNoC) 69
4.1.1.1 Properties and Features of Multi-sensor NoC (sNoC) . . 70

4.1.2 Types of sNoC in CPSoC . 72
4.1.2.1 Thermal Sensor-NoC . 72
4.1.2.2 Aging Sensor-NoC . 76
4.1.2.3 Power Sensor-NoC . 77
4.1.2.4 Critical-Path Delay Monitoring 77

4.2 Heterogeneous Sensor Placement and Fusion 78
4.2.1 Motivation and Approach . 78

4.3 Full-chip Thermal Reconstruction: Problem Formulation 81
4.3.1 Signal Estimation and Recovery 82
4.3.2 Accounting for Process Variability and Noise in Full Signal Predic-

tion . 83
4.3.3 HSPF Problem Statement . 84

4.4 Methodology and Solution . 85
4.4.1 Stage-wise Greedy Solution (gHSPF) 85
4.4.2 ILP based Heterogeneous Sensor Selection 85

4.4.2.1 Selection of Weights in Sensor Selection ILP 86
4.4.3 Basis Vector and Coefficient Selection 87
4.4.4 Greedy Sensor Placement and Allocation 87
4.4.5 Heterogeneous Sensor Fusion and On-chip Prediction 88

4.5 Experimental Setup . 88
4.6 Experimental Results . 89

4.6.1 Effect of Approximation and Sensor Accuracy on Prediction Accu-
racy . 91

4.6.2 Computational Complexity of HSPF 92
4.6.2.1 Predictor Computational Complexity 92

4.7 On-chip Self-Awareness Trends and Overhead in CPSoC 93
4.7.1 On-chip Sensors Trends . 93
4.7.2 SensorNoC Implementation and Overheads 94

4.7.2.1 sNoC Topology . 96
4.7.2.2 Custom Circuit Switched sNoC 97

4.7.3 Thermal Sensor Overhead Estimation and Reduction 99
4.8 Related Work . 100
4.9 Summary . 101

5 Cross-Layer Predictive Model Building 105
5.1 Model Building Approach . 107

5.1.1 Linear Regression Based Predictive Model 107
5.1.2 Time Series Predictive Model . 108

v

5.1.2.1 Auto-regressive and moving average (ARMA) model . . 108
5.1.3 System Identification for Predictive Model Building 109

5.1.3.1 State-space models . 110
5.2 Cross-Layer Predictive Modeling for Emerging SoCs 110

5.2.1 Application and Workload Models 113
5.2.2 Heterogeneity-Aware Task Allocation Model 114

5.3 Predictive Modeling of Performance and Power of Different Core Types . 115
5.3.1 Predictive Model Evaluation Results 117

5.4 Application of Predictive Models in DSE of HMPs 118
5.4.1 DSE Problem Formulation for the HMPs 120
5.4.2 HMP Configuration Selection . 120
5.4.3 Experimental Results for DSE . 120

5.5 Related Work . 121
5.6 Summary . 123

6 State Estimation and Prediction Using Minimal Sensing 129
6.1 Motivation . 130
6.2 Preliminaries and System Model . 131

6.2.1 Dynamic System Model and Model Conversions 131
6.2.2 Observability and Controllability of a System 131

6.3 Problem Formulation . 132
6.3.1 Minimal Sparse Observability Problem (MSOP) 132
6.3.2 Greedy Solution to MSOP . 133

6.4 Sparse Kalman Filter (SKF) . 133
6.5 Run-time Thermal Estimation and Hotspot Tracking 135

6.5.1 Thermal Dynamic Model of MPSoC 135
6.5.2 Minimum Sensor Set and Their Optimal Placement 137
6.5.3 SKF for State Prediction . 138
6.5.4 Run-time Thermal Awareness and Hotspot Tracking 139
6.5.5 Overheads and Complexity . 141
6.5.6 Virtual Run-time Power Sensing Using Thermal Sensors 141

6.6 Related Work . 143
6.7 Summary . 144

7 Operating System Support for Adaptation in Emerging MPSoCs 153
7.1 Smart Balancing : An Operating System Adaptation Mechanism 155
7.2 Motivation and Related Work . 157
7.3 Heterogeneous Computing Elements and Thread Model 158
7.4 SmartBalance Approach . 160

7.4.1 Sensing . 160
7.4.2 Prediction of Performance and Power 162

vi

7.4.2.1 Performance and Power Estimation of Each Thread on a
Core . 162

7.4.2.2 Performance and Power Prediction for Different Core
Types . 163

7.4.3 Thread Balancing and Allocation 164
7.4.3.1 Optimization Methodology 164

7.5 Experimental Setup and Implementation 166
7.5.1 SmartBalance Implementation 166

7.6 Experimental and Evaluation Results . 167
7.6.1 Comparison with state-of-the-art 168
7.6.2 Predictor Evaluation . 168
7.6.3 Overheads and Scalability . 170

7.7 Future work . 170
7.8 Summary . 171

8 FPGA Prototyping of CPSoC 174
8.1 Introduction . 175
8.2 FPGA Prototyping Library for CPSoC . 176
8.3 CPSoC Architecture and Design . 176

8.3.1 Heterogeneous Tiled Cluster Architecture 177
8.3.2 Tile and cNIC . 178
8.3.3 Processor Cores . 179
8.3.4 Memory Hierarchy . 180
8.3.5 Interconnect Architecture . 180

8.3.5.1 Network-on-Chip (NoC) 180
8.3.5.2 cNIC Cluster Bridge . 180
8.3.5.3 cNIC Chipset . 181

8.3.6 On-chip Sensors and Sensor Network (sNoC) 181
8.3.7 Multi-purpose On-chip Sensors 182
8.3.8 Built-in Sensors and System Monitors 183
8.3.9 On-Chip Actuation Mechanism 183
8.3.10 CPSoC Runtime and OS Support 184
8.3.11 CPSoC FPGA Prototyping Platforms 184

8.4 Platform Features . 185
8.5 Tool-Chain and OS Support . 186

8.5.1 API and Software Development Kit 187
8.5.2 CPSoC Simulation Framework . 188

8.6 Evaluation Results . 188
8.6.1 Validation . 189
8.6.2 FPGA Boards . 190

8.7 Enabled Use Cases . 191
8.8 Platform Limitations . 191

vii

8.9 Related Work . 192
8.10 Summary . 193

9 Conclusions and Future Work 195
9.1 Future Work . 198

Bibliography 200

viii

List of Figures

1.1 Number of transistors integrated into a singe chip and average cost per
transistor over time. 2

1.2 (a) Power density in multi-core trend (b) dark silicon in emerging SoC. 3
1.3 Variability induced challenges from three fronts in emerging SoCs. . . . 4
1.4 Variability predictions by ITRS (a) performance variability and (b) leak-

age and total power variability [159, 158]. 5
1.5 Effect of variations on technology parameters (a) effective channel length

Leff on drain to source current Ids (b) channel doping concentration
Nch on Ids(c) overall impact on Ids due to variation in Leff at different
technology nodes[65]. 5

1.6 Voltage droops and variations (a) voltage droops in multi-core processors
[191] (b) supply voltage and ground plane voltage variations [359] (c)
voltage swings in emerging technologies [288]. 7

1.7 Power variations (a) transient power variation in each functional units
of Alpha processor executing SPEC2k benchmarks (alphabetically) (b)
power variability in ARM cortex M3 processor cores [370]. 7

1.8 Variation in Emerging SoC Architecture (a) With-in-Die (WID) core-to-
core maximum clock frequency variation for 80 cores on a single chip
at 65nm [96] (b) Critical path delay distribution and its coefficient of
variation (s/m) for 80 cores on a single chip[96] (c) Impact of voltage
scaling on gate delay variation due to process variation [103]. 8

1.9 Timing Slack and Delay Variability (a) Spatial slack across processor units
(b) Temporal slack between application phases (c) worst case circuit de-
lay variations across benchmarks (d) worst case circuit delay variations
across chips for same benchmarks [286]. 9

1.10 Thermal variations (a) mobile processor [380](b) AMD dual-core proces-
sor [251](c) AMD quad-core [284] (d) Xilinx Virtex 5 FPGA [14]. . . . 10

1.11 Influence of temperature on device characteristic and path delay (a)
transfer characteristic of MOSFET (b) path delay for different voltages. 10

ix

1.12 On-chip and ambient thermal variations (a) on-chip temporal thermal
variations of Alpha processor functional units executing SPEC2k bench-
marks (alphabetically) (b) yearly weather and ambient temperature vari-
ations (c) major cause of electric circuit failure. 11

1.13 Impact of different sources of variations on (a) timing margins [286](b)
guardband. 11

1.14 Dimensions of Awareness for emerging SoC. 15
1.15 Thesis overview and scope. 19

2.1 A conventional processor compared with a multithreaded processor [249].
. 24

2.2 Chip architecture and different approaches of multithreading (a) chip
multiprocessor (b) conjoined multithreading (c) coarse-grained multi thread-
ing (d) fine-grained multithreading (e) symmetric multithreading [249].
. 25

2.3 Heterogeneity trends in emerging SoCs. S. Borkar of Intel asserts that
future of microprocessors will be heterogeneous [53]. 26

2.4 Hierarchy of self-* properties [298]. 31
2.5 Agent hierarchy in the HAMSoC system [124]. 36
2.6 The SEEC activity cycle [140]. 37
2.7 Classification of architectures. 41

3.1 Concept and representation of Cyber-Physical Systems (CPSs) (a) a space-
craft example (b) block diagram representation of CPS (c) models used
in CPS representation [211] . 48

3.2 From CPS to CPSoC: concept and model representation. 49
3.3 Cross-layer virtual sensing and actuation at different layers of CPSoC

[309, 313]. 50
3.4 High-level abstraction of CPSoC self-awareness. 53
3.5 Adaptation using predictive control model and policies in CPSoC [309,

313]. 54
3.6 Opportunity with Self-Aware Adaptation. 55
3.7 CPSoC architecture with adaptive Core, NoC, and the Observe-Decide-

Act Loop as Adaptive and Reflexive Middleware[309, 313]. 56
3.8 CPSoC Computational Fabric with on-chip sensing and actuations (OCSA)

for (a) homogeneous titled architecture (b) strongly heterogeneous ar-
chitecture. 57

3.12 Homogeneous and Heterogeneous Tiled Architecture of CPSoC fabric (a)
homogeneous cluster and tile (b) heterogeneous cluster and tile. 57

3.9 CPSoC core with on-chip sensors and actuators connected to the local
bus. The cores have independent L1 cache and may share L2 and L3
cache with other cores. 58

x

3.13 Architecture of the tile and its different configurations (a) tile with on-
chip sensing and actuation (OCSA) and accelerators (c) tile with dis-
tributed OCSA (d) Cluster network interface chipset (cNIC). 58

3.10 Distributed sensor networks-on-chip for homogeneous and heterogeneous
architectures. 59

3.11 CPSoC with the distributed sensor network (sNoC) and the introspective
sentient unit (ISU). (a) A ring network with a time division multiplexed
(TDM) router connects all the distributed sensors of different types in
cores, memories and accelerators. (b) placement of multiple ISU for dis-
tributed sensing. 60

3.14 Memory hierarchy showing the data path and interfaces. 60
3.15 A software-defined adaptive router for cNIC with bandwidth, channel

direction, and routing policy control. 62
3.16 Clock frequency adaptation and control in CPSoC platform (a) clock

scheme (b) clock selection (c) DPLL (d) DPLL with jitter reduction. . . . 62

4.1 Recent trends in numbers of on-chip temperature sensors in microproces-
sors and SoC [381]. 68

4.2 Temporal classification of variations. 70
4.3 Distributed Sensors-Network-on-Chip (sNoC) for on-chip self-awareness

using (a) mesh topology (b) aggregation tree topology. 72
4.4 (a) Heterogeneous on-chip thermal sensors at 65nm [381] (b) sensor

accuracy, (c) normalized power and (c) area of the digital temperature
sensors of Table (4.2) scaled to 1.0V, 65 nm technology. 74

4.5 Impact of process variation on thermal sensor characteristics (a) Ring
oscillator (RO) based thermal sensor (b) nominal process parameters for
the sensor (c) probability distribution of the sensor frequency output for
the same temperature [388](d) variations in frequency outputs of sensors
due to process variation and environmental uncertainties [327]. 76

4.6 Heterogeneous Sensor Placement and Sensor NoC (sNoC) Design Ap-
proach. 79

4.7 Run-time configuration of thermal sensing networks for emerging SoC
(a) homogeneous sensors with hardware predictor (b) homogeneous sen-
sors with software predictor (c) heterogeneous sensors with hardware
predictor (d) heterogeneous sensors with software predictor. 80

4.8 (a) Multicore Alpha processor floor-plan (b) original thermal profile with
SPEC 2K benchmarks (c) Recovered thermal profile from noisy sensor
measurements. 89

xi

4.9 Design space exploration for area power trade-off (a) number of sam-
ples that can be used in reconstruction for given Area Power Budget
for various sensor combinations (equal weights for all types) (b) MSE
with different combination of sensors for given area power overhead. (c)
Number of samples that can be collected for different design corners and
trade-offs with mix of sensors type S1,S2, S3 (d) with S1 only. 90

4.10 (a) Comparison of reconstruction error with state-of-the-art methods.
Both k-LSE [251] and EigenMaps [282] use sensor type S1 while pro-
posed HSPF uses sensor combination S1,S2, and S3. (b) Eigen values
and their magnitudes (c) Eigen Vectors for first 12 dominant eigen values
corresponding to the basis matrix Φ formed from the covariance matrix
Cx of the thermal traces. 92

4.11 Area-power overhead of on-chip sensors. 94
4.12 Area-power overhead of different sensors types with respect to Cortex-A9

core at 40nm technology node. 95
4.13 Area-power overhead of dedicated sensing data processing cores (Cortex-

M3) with respect to the A9 cores. 96
4.14 Comparison of total overheads of the introspection architecture in CPSoC

(a) packet switched sNoC using Aggregation Tree of 32 nodes (b) packet
switched sNoC using Aggregation Tree of 16 nodes (c) custom circuit
switched TDM network (d) custom circuit switched TDM network with
virtual sensing. 97

4.15 Aggregation Tree based sNoC topology. 97
4.16 Aggregation Tree (AT) based sNoC overheads with respect to cortex A9

cores of the platform. 98
4.17 (a) Custom TDM Router for sNoC (b)Star topology for circuit switched

sNoC. The channels are time division multiplexed (TDM). 99
4.18 Virtualizing the calibration lookup table in software reduces the sensing

overhead. 99

5.1 Training Phase : Cross-Layer Predictive Model Building. 112
5.2 Prediction Phase : use of the cross-layer predictive model showing use of

features from different layers of the stack during prediction. 113
5.3 (a) Relative core sized for the Alpha processor cores. (b) HMP configu-

rations for area budget of 4×EV6. Total of 37 configurations numbered
from 1 to 37 from left to right. 118

5.4 Average power and execution time for 8 benchmarks for different Alpha
processors. 125

5.5 Predictive model evaluation (a) accuracy of the predictive model for the
Ev6 core (b) Accuracy of the predictive model for Ev4. 126

5.6 Examples of heterogeneous architectures composition for the same die
area using Big (A15), Medium (A11) , and Little (A7) cores. 126

xii

5.7 Objectives with variability in number of task for delay only task allocation
strategy (minD) using the predictive models. Lower is better. 127

5.8 DSE with predictive models: Comparison of SA based static allocation
strategies with random allocation strategy (as in vanilla Linux). Higher
is better. 128

6.1 Kalman filter overview. 137
6.2 Floor plan of quad-core processor based on Alpha 31386. 139
6.3 Thermal network representation of high performance processors. (a)

blocks in the different layers of the chip and their corresponding nodes
in the thermal networks [335] (b) RC equivalent circuit representation
of the thermal dynamic network [128]. 140

6.4 System matrices of the micro-architectural thermal model of Alpha 31386
processor. (a) sparsity pattern of the the system coupling matrix A (size
50×50) in continuous domain (b) representation of the coupling matrix
A (size 50×50) in the discrete domain (c) sparsity pattern of the con-
trol matrix B (size 50×50) in continuous domain (d) the B matrix (size
50×50) in discrete domain. The matrices are obtained from the Hotspot
thermal simulator [147] for the Alpha 31386 processor floorplan. . . . 145

6.5 Simulation and validation framework for run-time thermal estimation
using Sparse Kalman Filter (SKF). The SKF estimates the full chip thermal
profile using minimum number of sensors while filtering the effect of
sensor, measurement, and process noise. 146

6.6 Thermal profile estimation (a) actual thermal profile (b) estimated by
SKF using a single sensor for all the SPEC 2000 benchmarks. The esti-
mated error is with in 0.3% for all the blocks. 147

6.7 Robust hotspot tracking of the Alpha processor using SKF in comparison
to the state-of-the-art hotspot tracking approach in [285]. 148

6.8 Sensor measurement (with noise variance of ±1oC) and noise filtering
with SKF. Effect of both measurement noise and variability induced pro-
cess noise can be mitigated by the SKF to achieve statistically superior
estimates. 148

6.9 DTM control of the Alpha processor with minimal sensor placement (a)
DTM with direct noisy sensor reading (b) with SKF. Because of the noise
filtering by the SKF, less frequent frequency throttling is initiated in the
DTM, which improves performance of the processor system (approx. by
28%). 149

6.10 (a)Virtual Sensor Network-on-Chip Architecture (b) Sensor NoC (sNoC)
(c) Independent multiple coexisting NoCs in CPSoC. 150

6.11 Run-time subsystem temperature estimation. 150
6.12 (a) Power estimation of subsystem units (b) Run-time total power esti-

mation and tracking. 152

xiii

7.1 Load balancing with (a) standard Linux for homogeneous MPSoCs, (b)
SmartBalance closed-loop sense-predict-balance approach for aggressively
heterogeneous MPSoCs, (c) timing relations of the phases in SmartBal-
ance. Each epoch covers several linux CFS scheduling periods. 156

7.2 Temporal model of the SmartBalance approach. 157
7.3 SmartBalancer epochs for workload-aware dynamic thread balancing and

scheduling in heterogeneous MPSoCs. Each SmartBalance epoch covers
L Linux CFS scheduling periods. 161

7.4 SmartBalance experimental platform using extended Gem5. 166
7.5 SmartBalance kernel performance with respect to the baseline vanilla

Linux kernel (running the same benchmarks with same number of threads)
using (a) interactive microbenchmarks (b) PARSEC benchmark and their
mixes. The optimization goal is set to maximize overall energy efficiency
(IPS/Watt). 169

7.6 Comparison for normalized energy efficiency with respect to the state-of-
the-art. 169

7.7 IPC and power prediction for the bodytrack PARSEC benchmark. The
upper part of the figure shows predictions for the Huge core from mea-
surements made on the Medium core, while the lower part shows the
inverse. 171

7.8 Average error in performance and power prediction across PARSEC. . . 172
7.9 (a) Overhead with the quad-core HMP and (b) scalability analysis with

increasing number of threads and cores for the SmartBalance approach. 172
7.10 Maximum number of iterations (Optmax_iter parameter) for each scalability

scenario (a). The distance to optimal is obtained by running our opti-
mization algorithm for synthetic cases whose optimal solution is known.
(b) shows the values used for the remaining optimization parameters. . 173

8.1 CPSoClib: an FPGA prototyping library for CPSoC. The library is orga-
nized in four groups of processor & memories, NoCs, sensors, and actua-
tors. 177

8.2 Homogeneous and Heterogeneous Tiled Architecture of CPSoC fabric (a)
homogeneous cluster and tile (b) homogeneous cluster, heterogeneous
tile (c) heterogeneous cluster, homogeneous tiles (d) heterogeneous clus-
ter and tile. 178

8.3 Architecture of the tile and its different configurations (a) baseline tile
(b) tile with on-chip sensing and actuation (OCSA) unit (c) the tile with
OCSA and accelerators (d) tile with distributed OCSA. 178

8.4 Cluster network interface chipset (cNIC) 179
8.5 Memory hierarchy showing the data path and interfaces. 180
8.6 Resource efficient custom time division multiplexed (TDM) Router for

sNoC. 181

xiv

8.7 Ring Oscillator (RO) based thermal sensor. The delay line length and
the counter range (proportional to temperature range and precision) is
configurable at design time. 182

8.8 Built-in FPGA sensors and system monitor support in the CPSoC FPGA
platform. 183

8.9 Clock frequency adaptation and control in CPSoC platform (a) clock
scheme (b) clock selection (c) DPLL (d) DPLL with jitter reduction. . . . 184

8.10 Proof-of-concept prototyping boards using Virtex-6 ML605 evaluation board
[153]. 185

8.11 CPSoCSim: CPSoC Experimental Simulation Framework. Several new
components are developed and integrated to existing architectural tool
chains to build the CPSoC simulation framework. 188

8.12 FPGA resources breakdown for different components of CPSoC. 189
8.13 Xilinx Virtex-6 boards connected by the bridge and external connectors. 190

xv

List of Tables

2.1 Examples of Contemporary Embedded Multi/Manycore Processors. . . . 28
2.2 Smart Dynamic Reliability/Resilience Management. 34
2.3 Smart Dynamic Power Management. 35
2.4 Architectural Features of Open Source Processors. 42

3.1 Virtual/Physical Sensing and Actuations Across Layers. 52

4.1 Summary of on-chip Sensors and Monitors. 73
4.2 Comparison of Recent Smart Temperature Sensors. 74
4.3 On-chip Sensors Survey . 93
4.4 Resource Utilization and Overheads of Aggregation Tree based sNoC. . . 98
4.5 Circuit Switched TDM sNoC Area Power Estimation 98
4.6 Thermal sensor design space exploration. 100

5.1 State-space model representation for different system types. 111
5.2 Heterogeneity-Aware Task Allocation Strategies for Given HMP Compo-

sition . 114
5.3 Alpha Processor Cores Performance, Area and Power [203] 118
5.4 Execution Time and Prediction Model Performance on Intel i7 2.4 GHz

Machines. 119
5.5 Architectural Composition with Different System Goals and Allocation

Strategies. 121

7.1 Comparative Summary of Related Work. 158
7.2 Heterogeneous Core Configuration Parameters 159
7.3 Benchmarks and their Mixes. 167
7.4 Predictor coefficient matrix. 170

8.1 Open Source Processors. 179
8.2 FPGA Development and Prototyping Tools. 186
8.3 CPSoC FPGA Platform and Configuration Options. 187

xvi

8.4 Resource Usage for Different Hardware Components in Small CPSoC pro-
totype. 189

xvii

Acknowledgments

During the last five years at the University of California Irvine, I have had the priv-
ileged to interact with several fine individual who directly or indirectly contributed to
the success of my dissertation work, and more importantly provided me the opportu-
nity to grow and expand my knowledge. I would like to express my utmost gratitude to
everyone who has guided, supported and helped me achieve my academic and profes-
sional goals. Especially, my advisors: Professor Nikil D. Dutt and Professor Alex Nicolau,
who gave me the opportunity to pursue my dream under their tutelage. I am extremely
grateful to them for giving me the freedom to explore the ever growing landscape of
computer science and pursuing my own interests in an exciting and stimulating envi-
ronment. Their mentorship has helped me grow as a person and learn the necessary
skills to grow as a successful individual in the community.

I take this opportunity to express my gratitude to Prof. Nalini Venkatasubramanian,
for her guidance and support throughout my Ph.D. and course work. I have enjoyed
every opportunity to collaborate and interact with her during various group meetings,
brainstorming for ideas, as well as writing research papers. I thank her for introducing
me to several promising research directions such as cross-layer resilience issues in cyber-
physical systems, adaptive and reflexive middleware, and Internet-of-things.

I am really fortunate that I had the opportunity to work with Prof. Axel Jantsch of TU
Vienna, Austria and Prof. Puneet Gupta of UCLA on many emerging areas, especially
computational self-awareness, and hardware variability respectively. The interaction
with them greatly influenced my understanding of several aspects of the thesis. I was
fortunate to have been part of the Variability Expedition project where I got the oppor-
tunity to learn from Prof. Subhashish Mitra, Prof. Rajesh Gupta, Prof. Mani Srivastava,
Prof. Tajana Simunic Rosing, Prof. Steve Swanson, Prof. Rakesh Kumar, Prof. Andrew
B. Kahng, and Prof. Dennis Sylvester. They have all at some point in my life made an
enormous impact, encouraged me to follow my interest, and think big. I would like to
thank Prof. Elaheh (Eli) Bozorgzadeh, Prof. Marco Levorato, Prof. Tony Givargies and
Prof. Sharad Mehrotra for their guidance and help at various stages of my research. I
would like to specially mention Sudeep Pasricha and Houman Homayoun, who always
encouraged my work and gave me the words I needed to hear to keep moving forward.

I would also like to express my gratitude to all my present and past mentors : Dr.
V.K. Agrawal, Dr. J.K. Kishore, Subramaniyam Udupa, Dr. Venkateswarlu Andra, Prof.

xviii

Sudeep Pasricha, Prof. Houman Homayoun, Prof. Sung-Soo Lim, Prof. Alfonso Avila,
and Prof. Krishnendu Chakrabarty. I would like to thank Dr. Ruddy Beraha and Dr.
Karam S. Chatha of Qualcomm Research Center for the opportunity to present my work
and the kind support to pursue my research.

I would like to thank my friends and colleagues at UCI, who made a great impact
in my life. In particular, I thank Dr. Luis Angel D. Bathen, Dr. Rosario (Ro) Cam-
marota, Arup Chakraborty, JurnGyu Park, Majid Namaki Shoushtari, Michael Beyeler,
Bryan Donyanavard, Roger Chen-Ying Hsieh, Tiago Rogerio Muck, Kasra Moazzemi, Hi-
rak Kashyap, Kazuyuki Tanimura, Abbas Banaiyan, Hossein Tajik, Dr. Jun Yong Shin,
Dr. Juan Gonzalez, Dr. Janmartin Jahn, Dr. Codrut Stancu, Prof. Gustavo Giro, and Dr.
Trent (Chen-Kang) Lo. Special thanks to Dr. Yuko Hara-Azumi, Prof. Yukio Mitsuyama,
Prof. Hoyoung Hwang, Prof. Preeti Panda, Prof. Gu-Min Jeong for all the stimulat-
ing discussions and insights into their research work. I would also like to take this
opportunity to thank my colleagues in NSF Variability Expedition and Cypress project :
Lucas Wanner, Mark Gottscho, Abbas Rahimi, Nga Dang, Kyle Benson, Zhijing Qin, Leila
Jalali, M. Reza Rahimi, Liyan Zhang, Dr. Minyoung Kim, and Dr. Grit Denker of SRI for
giving me the opportunity to know about their research work. Similarly, I would like
to thank my former colleagues in ISRO Satellite Centre, who gave me the opportunity
to collaborate on several exciting projects that resulted in successful publications. I am
especially thankful to my friends and colleagues Ajay Andhiwal, Rahul Mishra, Partha
Bandyopadhyay for their immense help and support in numerous situations. Special
thanks to my friends Arunima Bhattacharjee, Rupsa Datta, Hrishi Chandanpurkar, Ro-
hit Athavale, Zonglin Guo, Sky Faber, Sukomal Paul, Sirishkumar Jayine, Harsh Sahu,
and Pramit Choudhary for all their help, support, and memorable time we spent to-
gether. I extend my gratitude and thanks to all those friends and colleagues I could not
personally mention here.

I would like to thank UC Irvine’s graduate division for their help and various sources
of funding. I especially thank Melanie Sander and Grace Wu for making CECS such an
enjoyable place to work and for all the help and advice on so many different subjects.
I would like to thank National Science Foundation (NSF) for partially supporting my
work with NSF award CCF-1029783 (Variability Expedition).

Lastly, I am thankful to my wife who had been of immense help and my core support
system during the course of this dissertation work. Without her support and help, I
would have never been able to complete this thesis work. I am greatly indebted to my
parents and in-laws, my sister and brother-in-law, and all my relatives for their encour-
agement and support during this course of study. My younger brother performed many
of my responsibilities in my absence on several occasions, and my deepest appreciation
for all the hardship he took on my behalf. I would like to thank all of them for making
my stay at Irvine enjoyable and memorable during this course of study.

xix

CURRICULUM VITAE

SANTANU SARMA

EDUCATION

Ph.D. in Information and Computer Science 2016
University of California, Irvine Irvine, California

M.S in Computer Science 2015
University of California, Irvine Irvine, California

M.Tech in ECE, Specialization Control System
Technology

2002

Indian Institute of Technology Guwahati Guwahati, India

B.E in Electrical Engineering 1999
National Institute of Technology Agartala Agartala, India

RESEARCH EXPERIENCE

Graduate Student Research Assistant 2013-2016
University of California, Irvine Irvine, California

Reader / Teaching Assistant 2011-2013
University of California, Irvine Irvine, California

Research Scientist (C/D/E) 2002-2011
Indian Space Research Organization, Bangalore Bangalore, India

AWARDS AND HONORS

Chair’s Fellowship 2011-2016
Donald Bren School of Information and Computer Science,
University of California, Irvine

Satellite Technology Development Award 2011
Indian Space Research Organization, ISRO Satellite Centre,
Bangalore

Satellite Technology Development Award 2010

Indian Space Research Organization, ISRO Satellite Centre,
Bangalore

Young Engineer Award 2009
Indian National Academy of Engineering (INAE)

GATE Scholarship 2000-2002
Indian Institute of Technology, Guwahati

University Gold Medal 1999
NIT Agartala (Tripura University), India

SELECTED PUBLICATIONS

Toward Smart Embedded Systems: A Self-aware
System-On-Chip (SoC) Perspective

2016

ACM Transection on Embedded Computing Systems, TECS, 2016.
(Invited Keynote Paper)

Cross-layer Virtual/Physical Sensing and Actuation for
Resilient Heterogeneous Many-core SoCs

2016

ASPDAC’16, Macau, 2016.

SmartBalance: A Sensing-Driven Linux Load Balancer for
Energy Efficiency of Heterogeneous MPSoCs

2015

DAC’15, SF, USA, 2015.

Cyber-physical System-on-Chip (CPSoC): A Self-Aware MPSoC
Paradigm with Cross-Layer Virtual Sensors and Actuators

2015

DATE’15, Grenoble, France, 2015

Run-DMC: runtime dynamic heterogeneous multicore
performance and power estimation for energy efficiency

2015

In Proceedings of the 10th International Conference on
Hardware/Software Codesign and System Synthesis (CODES
’15), Amsterdam, 2015

Self-Aware Cyber-physical Systems-on-Chip 2015
In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’15, Austin, USA, 2015

xxi

Cross-Layer Exploration of Heterogeneous Multicore
Processor Configurations

2015

VLSI Design, India, Jan 2015

Minimal Sparse Observability of Complex Networks:
Application to MPSoC Sensor Placement and Run-time
Thermal Estimation & Tracking

2014

Design, Automation and Test in Europe Conference and
Exhibition, DATE’14, Dresden, Germany, 2014

On-chip Self-Awareness Using
Cyber-physical-Systems-on-Chip (CPSoC)

2014

Proceedings of the 2014 International Conference on
Hardware/Software Codesign and System Synthesis. CODES’14,
New Delhi, 2014.

Sense-making from Distributed and Mobile Sensing Data: A
Middleware Perspective

2014

Proceedings of the The 51st Annual Design Automation
Conference on Design Automation Conference. DAC’14, SF, USA,
2014

FPGA Emulation and Prototyping of a
Cyber-physical-System-On-Chip (CPSoC)

2014

Rapid System Prototyping, RSP’14, 25th IEEE International
Symposium on. IEEE, 2014

Cross-Layer Virtual Observers for Embedded Multi-processor
System-on-Chip (MPSoC)

2012

Adaptive and Reflective Middleware, ARM’12, Montreal, Canada,
Dec 3-7, 2012

BOOK CHAPTER

Architecture and Cross-layer Design Space Exploration of
Heterogeneous Muti-core Processors

2016

Handbook of Hardware/Software Codesign, Springer, to appear in
2016

TECHNICAL REPORTS

xxii

Cyber-physical-System-On-Chip (CPSoC): Sensor-Actuator
Rich Self-Aware Computational Platform

2014

UC Irvine, Technical Report, CECS TR 13-06. Revised June 26,
2014.

Strength of Diversity: Exploiting Cheap Heterogeneous Noisy
Sensors for Accurate Full-Chip Thermal Estimation and
Prediction

2014

UC Irvine, Technical Report, CECS TR 14-01, 2014

SOFTWARE

SmartBalance 2015
https://github.com/santanusarma/smartbalance

CPSoCSim: CPSoC, HMP Simulator. 2014
https://github.com/santanusarma/CPSoCSim

INVITED TALKS AND PRESENTATIONS

Cyber-Physical-System-On-Chip (CPSoC): A Self-Aware SoC
Paradigm for Smart Embedded Systems

2016

ECE Department, George Mason University, March, 2016.

Essence: A Machine Learning Approach to Sense-making for
Internet-of-Things

2016

IoT Workshop, ESWEEK, 2016

Energy and Performance-aware task scheduling in
heterogeneous parallel platforms

2012

ACM SRC, Design Automation Conference, DAC’12, San
Francisco, June, 2012

PROFESSIONAL MEMBERSHIPS

ACM Student Member 2012
IEEE Member 2003

xxiii

ABSTRACT OF THE THESIS

Cyber-Physical-System-On-Chip (CPSoC): An Exemplar
Self-Aware SoC and Smart Computing Platform

by

Santanu Sarma
Doctor of Philosophy in Computer Science

University of California, Irvine, 2016

Professor Nikil Dutt, Chair

Embedded systems are increasingly seeing the need for self-awareness to operate au-
tonomously in the face of uncertainty and unpredictability in the environment, the
applications they execute, and in the manufactured hardware. The notion of self-
awareness enables a system to monitor its own state and behavior such that it is capable
of making judicious decisions and adapt intelligently. However, emerging Multiproces-
sor Systems-on-chip (MPSoCs), used by these embedded systems and devices, still treat
the elements of intelligence, specifically self-awareness, as a second-class design re-
quirement, supporting them with ad hoc and poorly-developed awareness mechanisms,
architectural supports, and system software. This dissertation overcomes these limita-
tions by providing the foundation for a new class of self-aware adaptive MPSoCs called
a Cyber-Physical-System-on-Chip (CPSoC). Unlike traditional MPSoCs, CPSoCs are dis-
tinguished by an intelligent co-design of the control, communication, and computing
(C3) infrastructure while considering both the cyber and physical aspects together so
as to adaptively achieve desired objectives and goals. CPSoC’s sensor-actuator rich scal-
able architecture intrinsically couples on-chip and cross-layer sensing and actuation to
enable self-awareness in a principled way. The thesis corroborates, through experiments
and FPGA prototypes, the key idea that giving the SoC the freedom to opportunistically
adapt the software and the hardware stack by infusing self-awareness mechanisms and
steerable knobs across the stack can open up new and otherwise untapped opportunities
in energy efficiency, performance, and thermal resilience.

xxiv

Chapter 1

Introduction

1

The primary driver for computing systems innovation has been phenomenal scal-
ability of manufacturing process that has allowed us to build computing systems at
exponentially growing capacity over the last three decades. Transistor scaling improved
integration density, speed and energy exponentially following Moore’s law [13]. As
sequential processor performance peaked in the early 2000s and faced several improve-
ment barriers [350], computer architects were forced to turn to parallelism to sustain
performance growth. This shift was primarily motivated by power concerns, as the end
of Dennard scaling meant it was no longer practical to increase core frequency with
each technology generation [58, 94, 107]. Although core frequency and complexity
have since plateaued and the properties of CMOS technology scaling have changed dra-
matically, the number of cores in emerging SoCs has increased exponentially following
Moore’s law.

Figure 1.1: Number of transistors integrated into a singe chip and average cost per
transistor over time.

As integrated circuit technology dives deeper into the nanoscale era, a multitude
of challenges stemming from the end of perfect Dennard scaling [107, 280, 111] and
worsening process variations [54] are introduced. Several studies indicate [42, 174]
that radical approaches including major shift in architecture, software, and operating
system are needed in order to address these new and emerging challenges.

1.1 Challenges in Emerging SoC

1.1.1 Increasing Heterogeneity and the Era of Dark Silicon

Due to the breakdown of Dennard scaling, the percentage of a silicon chip that
can switch at full frequency is dropping exponentially with each process generation as
shown in Fig.1.2b. “Dark silicon” will be a defining feature of future SoCs, where only

2

small portions of a chip may be powered on at a time in order to manage power density
and heat [107]. This utilization wall forces designers to ensure that, at any point in
time, large fractions of their chips are effectively dark or dim silicon, i.e., either idle
or significantly underclocked. As exponentially larger fractions of a chip’s transistors
become dark, silicon area becomes an exponentially cheaper resource relative to power
and energy consumption. This shift is driving a new class of architectural techniques
that spend area to improve energy efficiency and seek to introduce new forms of het-
erogeneity into the computational stack. The dark silicon phenomenon and the need
for greater energy proportionality and efficiency are major driving forces behind re-
search and development in many-core SoCs and heterogeneous devices, architectures,
and systems.

Widespread use of specialized architectures that leverage these techniques in order
to attain orders-of-magnitude improvements in energy efficiency is expected to increase.
However, many of these approaches also suffer from massive increases in complexity
and the need for developing heterogeneous architectures that insulate the hardware
designer and the programmer from the underlying complexity of such systems. Careful
understanding of the underlying tradeoffs and benefits are crucial as several application
domains and diverse heterogeneous cores increasingly converge to a single multicore
SoC platform [53], which must address a multitude of potentially conflicting design and
runtime constraints such as resiliency, energy, heat, cost, performance, security, etc., all
in the face of highly dynamic operational behaviors and environmental conditions.

(a) (b)

Figure 1.2: (a) Power density in multi-core trend (b) dark silicon in emerging SoC.

1.1.2 Increasing Variability

Emerging computing systems exhibit increasing variation in performance, power
consumption, and reliability parameters across the manufactured parts as well as across

3

the use of these parts over time in the field from three fronts as illustrated in Fig. 1.3.
This variability has led to increasing use of over design and guard-bands in design and
test to ensure yield and reliability to a rigid set of specifications. Variability in supply
voltage, chip temperature, manufacturing process, and transistor aging have imposed a
large amount of pessimistic margins in clock frequency, voltage, and device size, which
has severely undermined gains from various advancements in technology scaling.

In particular, many-core computational platforms already face significant resiliency
challenges with errors resulting from manufacturing process variability, exponentially
increasing power dissipation and heating, environmental effects (e.g., radiation induced
soft errors [35], and aging/wear-out [43]). These problems are exacerbated in the
nanometer era with exploding core counts and on-chip resources. The combined sys-
tematic and random effects in nanoscale technologies results in high variability (and
thus higher error rates) manifested at the circuit level all the way to the architecture and
system levels [54], requiring new strategies for ensuring application resilience when ex-
ecuting on these computing platforms.

Variability-induced challenges

[wanner 13]

Figure 1.3: Variability induced challenges from three fronts in emerging SoCs.

1.1.3 Manufacturing Process Variations

The relentless scaling of CMOS technology has accelerated in recent years and will
arguably continue toward the 10 nm regime. In the nanometer era, physical factors that
previously had little or no impact on circuit performance are now becoming increasingly
significant as predicted in Fig. 1.4 by ITRS [159, 158]. Particular examples include
process variations, transistor mobility degradation, and power consumption. These new

4

effects pose dramatic challenges to robust circuit design and system integration.

(a) (b)

Figure 1.4: Variability predictions by ITRS (a) performance variability and (b) leakage
and total power variability [159, 158].

1.1.3.1 Intrinsic Parametric Variability

Spatial parameter variations in the device geometries in conjunction with temporal
degradation and undesirable fluctuations in the operating condition may prevent the
circuit from meeting desired performance and power constraints as discussed below:

(a) (b) (c)

Figure 1.5: Effect of variations on technology parameters (a) effective channel length
Leff on drain to source current Ids (b) channel doping concentration Nch on Ids(c)
overall impact on Ids due to variation in Leff at different technology nodes[65].

• Channel Length Variation Leff is a form of critical dimension (CD) variation that
dramatically affects performance (in terms of both delay and power). Since digital

5

ICs typically utilize the minimum gate length allowed for a device, gate length is
especially susceptible to variation consisting of a probabilistic component as well
as spatially correlated (systematic) component [267]. Variation in Leff affects de-
signs in numerous ways including changes in the drain current ID in all operating
regimes (subthreshold, triode, and saturation) of the MOSFET characteristics and
the Vth through drain-induced barrier lowering (DIBL) as shown in Fig. 1.5a. It
also affects the gate-to-channel capacitance (Cgc), which loads the previous logic
stage (modulating the previous stage’s delay and dynamic power consumption)
altering the propagation and rise/fall delays, leakage power consumption, and
the delays and power consumption of its fan-in core. CD variations also impact
the interconnect geometries modifying the capacitance and resistance of a given
net. Variable interconnect capacitance affects both the coupling between nets, as
well as the dynamic power consumption and delay of the gates driving those nets.

• Threshold Voltage Variations : The threshold voltage Vth, variation impacts fun-
damental MOSFET device behavior due to a probabilistic phenomenon (which
is independent of other types of variation) known as random dopant fluctuation
(RDF) caused by the random nature of ion implantation [17, 18]. With process
scaling, the number of dopants has decreased dramatically and is only on the order
of hundreds in modern-day devices [17, 237]. This fluctuation in channel dopants
typically results in ~50mV of Vth variation in today’s MOSFETs [17, 237]. Unlike
CD variation, the main component of the threshold voltage variations due to RDF
is probabilistic and random in nature which is typically modeled as a Gaussian ran-
dom variable characterized by its mean, µ, and standard deviation, σ [17, 237].
Vth variations influences number of MOSFET parameters including both circuit
delay and leakage power. While the circuit delay is usually a linear or slightly
super-linear function of Vth, leakage power is exponentially dependent on thresh-
old voltage [68]. This exponential relationship between subthreshold current (and
hence, leakage power) and Vth has become a major concern as leakage power is
expected to surpass dynamic power as projected by ITRS in Fig. 1.4a.

• Gate Oxide Thickness Variations: In state-of-the-art (sub-65nm) process nodes,
the equivalent gate oxide thickness, tox, is less than five silicon atoms thick (and
is in the order of 1nm for a silicon atom diameter of ∼ 0.2nm [19]). Thus, gate-
to-oxide and oxide-to-silicon interfaces can exhibit significant amounts of oxide
thickness variation (OTV) due to atomic scale roughness [19]. These variations
are probabilistic in nature and can lead to variability in mobility, gate tunneling
leakage current, and threshold voltage, among other parameters [19].

1.1.3.2 Voltage and Power Variations

Voltage droops result from abrupt changes in the switching activity, inducing large
current transients in the power delivery system (dI/dt voltage drops), and contain high-

6

frequency and low-frequency components which occur locally as well as globally across
the die as shown in Fig. 1.6a [191]. In addition to transient voltage droops, spatial
variation in both the supply voltage and ground plane voltage is observed for a IBM
power grid benchmark [359]. On the other hand, Fig. 1.7a shows transient power vari-
ation in each functional unit of the Alpha processor executing SPEC2k benchmarks with
fast temporal variations. Power variability is also challenging due to spatial variation
among instances of the same processor, for instance 13× variation in the sleep power
across five instances of ARM Cortex M3 core was observed over a temperature range of
22− 60 oC [370].

(a) (b) (c)

Figure 1.6: Voltage droops and variations (a) voltage droops in multi-core processors
[191] (b) supply voltage and ground plane voltage variations [359] (c) voltage swings
in emerging technologies [288].

(a) (b)

Figure 1.7: Power variations (a) transient power variation in each functional units of
Alpha processor executing SPEC2k benchmarks (alphabetically) (b) power variability in
ARM cortex M3 processor cores [370].

7

1.1.3.3 Gate, Path Delay, and Slack Variations

With-in-Die (WID) core-to-core maximum frequency (Fmax) variations as well as
exaggerated variation in delay at near-threshold voltages are accepted reality in mod-
ern microelectronic manufacturing processes with geometries in nanometer scales. For
an Intel 80-core processor in 65nm, Fig.1.8a shows the WID core-to-core maximum fre-
quency (Fmax) variations for each of the 80 cores. The measurements have been done
at a fixed operating temperature of 50 oC with three operating voltages: 1.2V, 0.9V,
and 0.8V. At the nominal voltage of 1.2V, the fastest core displays the Fmax of 7.3GHz
while in the same die the slowest core can work with the Fmax of 5.7GHz resulting in
28% WID clock frequency variation. Fig. 1.8b illustrates the delay distribution of the
80 cores for the same operating conditions where the single die exhibits an increasing
value of σv/μ for lower voltages. Specifically, lowering the voltage from the nominal 1.2V
to 0.8V, increases the critical paths variability (σ/µ) by 45% [96].

(a) (b) (c)

Figure 1.8: Variation in Emerging SoC Architecture (a) With-in-Die (WID) core-to-core
maximum clock frequency variation for 80 cores on a single chip at 65nm [96] (b)
Critical path delay distribution and its coefficient of variation (s/m) for 80 cores on
a single chip[96] (c) Impact of voltage scaling on gate delay variation due to process
variation [103].

For circuits working at near-threshold voltages, the statistical WID variation in the
voltage threshold (Vth) plays an important role in determining the path delay. For ex-
ample, Fig. 1.8c shows the normalized gate delay variation due to process variations
as a function of VDD where working at near threshold voltage of 400mV increases
the performance variability by 5× compared to 1.3× at the nominal operating voltage
[103]. Considering dynamic sources of variations, including temperature fluctuations,
and voltage droops result in a total performance variability of 20× [103]. Similarly,
variability is observed in relative delay and worst case runtime delay for different in-
stances of the same chip running the same benchmarks, as well as different benchmarks
as shown in Fig. 1.9 [286]. Wang et al. [367] reports that certain combinational logic
can have a 5×increase in delay degradation depending on their input vectors.

8

(a) (b) (c) (d)

Figure 1.9: Timing Slack and Delay Variability (a) Spatial slack across processor units
(b) Temporal slack between application phases (c) worst case circuit delay variations
across benchmarks (d) worst case circuit delay variations across chips for same bench-
marks [286].

1.1.4 Ambient and On-chip Thermal Variability

Environmental variations in ambient conditions are caused by fluctuations in oper-
ating temperature and supply voltage droops.

• Thermal Variations: Depending on the thermal conductivity, the dissipated power
affects the temperature of a chip and devices as illustrated in Fig. 1.10. Power dis-
sipation hence leads to global temperature variations as well as local fluctuations
in regions of high-activity, so-called hot-spots. Additionally, ambient tempera-
ture variations lead to global shifts in chip temperature. Temperature fluctuations
typically have time constants in the range of milliseconds to seconds [286]. An
increase in temperature typically causes a circuit to slow down due to reduced
carrier mobility and increased interconnect resistance, see Fig. 1.11. However,
for low VDD the circuit is operated in temperature inversion. Here, the effect of
decreasing threshold voltage with temperature exceeds the mobility degradation,
see Fig. 1.11a. Consequently, the circuit exhibits an inverted temperature charac-
teristic, as it speeds up with increased temperature and vice versa, see Fig. 1.11b.

• Variation in Hotspots: Hot spots are a major concern in high-end processors as
they constrain performance and limit the lifetime of semiconductor chips. To illus-
trate the magnitude of thermal variations, Fig. 1.10 shows infrared imaging cap-
tures thermal traces of a dual-core AMD Athlon II 240 and a dual-core Intel Core
2 Duo processor while running various CPU SPEC2006. The traces demonstrate
that with-in-die thermal gradients can reach up to 16 ◦C, and that differences in
workloads can lead to strong variations in hotspot locations [284]. Variability in
the hotspot locations requires smart sensor allocation techniques and various full
thermal map characterization methods.

9

(a) (b) (c) (d)

Figure 1.10: Thermal variations (a) mobile processor [380](b) AMD dual-core proces-
sor [251](c) AMD quad-core [284] (d) Xilinx Virtex 5 FPGA [14].

1.1.4.1 Thermal Effects on Failure, Aging, and Material Degradation

(a) (b)

Figure 1.11: Influence of temperature on device characteristic and path delay (a) trans-
fer characteristic of MOSFET (b) path delay for different voltages.

Effective thermal solutions are essential for reasons ranging from prevention of ther-
mal runaway to maintenance of low skin temperature for mobile and wearable systems.
However, due to increasing electrical fields and new materials, transistor wear-out is of
increasing concern in recent technologies. BTI- as well as HCI-effects degrade the speed
of transistors during their lifetime and demand for additional safety margin :

• Hot Carrier Injection (HCI) : Hot Carrier Injection mainly occurs during switching
of logic gates. Carriers are accelerated in the lateral field under the oxide and gain
sufficient kinetic energy to be injected into the gate dielectric. The trapped charge
increases the threshold voltage of the device and reduces its current drivability.

• Bias Temperature Instability (BTI): BTI results from high vertical fields and thus
mainly occurs when a transistor is operated in triode mode (linear region), i.e.,
high VGS and low VDS is applied. Charge trapping by BTI for an n-FET is referred
to as Positive Bias Temperature Instability (PBTI), while the term Negative Bias

10

Temperature Instability (NBTI) is used in the case of a p-FET. PBTI and NBTI in-
crease the threshold voltage of the device and slow down the switching speed.
BTI-aging is caused by charge trapping and detrapping with a wide range of cap-
ture and emission times. Therefore, small Vth -shifts can be observed already after
very short stress times down to microseconds. However, due to the distribution of
the capture and emission time constants, considerable Vth -shifts arise only after
days, weeks or even years. NBTI alone can degrade circuit speed by upwards of
20% over a ten year period [366].

(a) (b) (c)

Figure 1.12: On-chip and ambient thermal variations (a) on-chip temporal thermal
variations of Alpha processor functional units executing SPEC2k benchmarks (alpha-
betically) (b) yearly weather and ambient temperature variations (c) major cause of
electric circuit failure.

(a)

Temperature	

Clock	

actual	circuit	delay	 guardband		

Aging	 VCC	Droop	 Across-wafer	Frequency	

[image	courtesy	Rajesh	Gupta,	UCSD,	www.variability.org]	

(b)

Figure 1.13: Impact of different sources of variations on (a) timing margins [286](b)
guardband.

11

1.1.5 Application and Workload Variability

The level of Thread-Level Parallelism (TLP), Instruction-Level Parallelism (ILP), and
Memory-Level Parallelism (MLP) varies across programs and across program phases due
to workload phases [324, 325]. Within a single program TLP is defined as the number
of concurrently active threads. A thread is active when it is not waiting for a synchro-
nization event. TLP varies at run-time because of software requirements but also due
to inter-thread synchronization. ILP is defined as the number of instructions executed
in parallel, and MLP is defined as the number of memory requests issued in parallel.
Within a single thread of execution, ILP and MLP often vary across programs and pro-
gram phases because of the inherent structure of the programs and input set dependen-
cies. Due to these workload variability, every application requires different underlying
core microarchitectural resources for high performance and/or energy efficiency.

1.1.6 Complexity of Resource Management and Programming

With increasing integration of different heterogeneous core types and increasing
number of cores per chip, while satisfying increasingly diverse and stringent cost, power,
and performance constraints along with the key features of today’s general-purpose pro-
grammability, hardware resource utilization and sharing will become a more complex
issue. Better resource utilization (such as costly microarchitectural resources, I/O, and
off-chip bandwidth) can improve aggregate system performance and enable lower-cost
design alternatives, such as smaller die area or less exotic battery technology. Concur-
rently executing threads with greater hardware resource sharing in presence of diverse
sources of variability, not only amplifies the programming complexity with system size,
but also exaggerates the programmer burden by posing additional responsibility of com-
putation organization and optimization of complex applications [141, 180].

1.2 Tackling Emerging SoC Design Challenges

Computing systems face unprecedented levels of system dynamics exaggerated by
different sources of variability and dramatic changes in CMOS technology scaling. As
a result, computing systems must respond to the new realities both in architecture and
software. Radical approaches are needed that call for a major shift in architecture, soft-
ware, and whole-stack design. We consider the following radical approaches that may
revolutionize how computers are designed in order to address the emerging challenges
and limitations.

12

1.2.1 Whole-Stack Co-Design and Optimization

The recent generation of transistor device scaling have produced limited benefits in
transistor speed and power. Aggressively scaled technologies face more stringent design
constraints and introduce worst-case design margins or guardbands to tackle increasing
process variability. State-of-the-art guardband design methodologies assume worst-case
environmental factors and minimum feature size that result in overly conservative de-
cisions and inevitable deterioration in the yield. For example, in today’s 32nm node,
a 20% voltage margin translates to a 33% frequency degradation, and at future tech-
nology nodes the situation gets much worse. Currently, the state-of-the art guardbands
methodology tends to accumulate margins (i.e., overheads) as design closure is per-
formed using a multi-corner analysis, with an increasing number of corners [20]. The
impact of guardbanding on the key design metrics (power, performance, and area) has
been steadily increasing with technology scaling [158], leading to loss of operational
efficiency and increased costs due to over-design. Consequently, existing state-of-the-art
guardbanding system technologies have hit major obstacles.

In addition, the future of computing faces formidable challenges, especially with
the slow-down of traditional integrated circuit scaling. The slowdown of silicon CMOS
(Dennard) scaling has prompted comprehensive research on faster, more reliable and
energy-efficient switches. However, better switches alone will not deliver the necessary
leaps in performance. Instead of focusing solely on improving transistors or memory
cells, an integrated approach that shifts from transistor-scaling-driven performance im-
provements to a new post-scaling whole-stack co-design would be the key to improved
efficiency and promises of significant benefits in performance, energy efficiency, and
cost. An end-to-end approach is essential, as substantial improvements are generally
rare, and cannot be achieved with uncoordinated improvements in architectures, tran-
sistors, or memory cells alone but through symbiotic relations among components to
enhance key performance metrics. Over-optimizing a single component without consid-
ering the full-system may not improve the system margin, as components from other lay-
ers may be the bottleneck. Improving each component/layer of the system stack where
each component/layer shows comparable improvement can result in synergies. Careful
co-design and co-optimization of software and hardware can enable higher efficiency
and performance. For example, faster memory accesses cut core idle times, reducing
energy consumption and overall execution time [89]. When combined with increased
memory bandwidth and improved memory locality that enable many concurrent mem-
ory accesses and reduce memory access contention significantly, performance speedup
and energy efficiency is improve appreciably [37]. On the other hand, comprehensive
improvement in the layers of the stack through (scale-out and scale-up) parallelism and
near-threshold voltage scaling with tolerance of variability across the layer can provide
the necessary leaps in performance and energy efficiency [103]. This thesis advances
and promotes an integrated approach spanning emerging logic devices and memories,
computer architecture, thermal solutions, and synergistic runtime software.

13

1.2.2 Principled Approach to Cross-Layer Awareness

In order to advance whole-stack co-design and optimization at a reasonable develop-
ment cost and time, cross-layer awareness both at design time as well as run-time is key
to enabling this objective. Awareness is critical because an un-aware computing system
can never respond to user and system goals by being oblivious to system state, behavior,
and environment. For instance, because of the lack of accurate awareness of the design
margins, pessimistic assumptions incurring significant overheads are made across the
layer during hardware design time. With the availability of certain system/architecture-
level awareness information, overhead and margin can be reduced by relaxing some
of these assumptions. Additionally, system design margins may be dominated by the
existence of certain pathological scenarios caused by behaviors from different layers of
system abstraction, for example, certain applications are found to be faster in simple
cores that are design for energy efficiency than complex faster cores that are design for
performance [187]. Contrary to the conventional belief, complex cores do not enhance
the performance for all applications, neither do the simple cores save energy for all
applications. Consequently, cross-layer awareness is required as awareness of a single-
layer may be inadequate to avoid these scenarios during design optimization approach.
Furthermore, some hardware-related phenomena are difficult to monitor by hardware
monitors alone. For example, timing and soft error rate are extremely difficult to mon-
itor due to their rare occurrence nature and dependence on ambient characteristics.
Cross-layer awareness approaches can use system and cross-layer information for better
monitoring and awareness to investigate and address several limitations of current SoC
design.

A fundamental step in the awareness of the whole-stack of the system is cross-layer
monitoring and cross-layer modeling in a principled way. Cross-layer analytical mod-
els predict chip key metrics by capturing key technology trends, design constraints,
workload characteristics and microarchitectural variables into a mathematical frame-
work. Models that are accurate, insightful, and easy to implement will become crucial
in evaluating many-core chip designs of the future. Principled approaches to tractable,
accurate and insightful analytical cross-layer modeling are crucial in order to under-
stand, evaluate, and optimize the whole-stack key system design metrics of many-core
chip designs of the future.

1.2.3 Transitioning to Closed-loop Adaptive SoC Design

It is a well established fact [125] that worst case massive over-design through guard-
bands in response to increasing levels of random and systematic variations undercut the
gains from process and device scaling. This design paradigm is steadily approaching the
point of diminishing return. There is an increasing incentive for a transition from stati-
cally configured crash-and-recover design to adaptive design where the adaptive hard-
ware provides the capability to alter itself to dynamically match software and user de-

14

(a) (b)

Figure 1.14: Dimensions of Awareness for emerging SoC.

mands, environmental characteristics, and physical defects. The fundamental premise
behind adaptive SoC design is the recognition that massive variations in manufacturing
and environment cause a statically configured operating point to be far too inefficient.
Inefficient designs are costly, waste power and performance, and will quickly be sur-
passed by more adaptive designs, just as it happens in the biological realm. Organisms
must adapt to survive, and a similar trend is seen with processors and SoCs – those
that are enabled to adapt to their environment, will be far more competitive. However,
to achieve this objective, the adaptive SoC needs to be made aware of its environment
and operating conditions through the use of various sensors and then have the ability
to respond meaningfully to the sensor stimuli.

Even though the capability to adapt is enticing, it is extremely hard to achieve a
generalized scheme with low overhead at the system level. This is partly because of the
often unknown interdependencies and interactions, wide operating range of inputs and
design parameters, and the computational cost of determining the adaptive behavior at
the system level with extremely large number of parameter configurations. However, by
devising assisted and online dynamic adaptation, emerging paradigms of the SoC, such
as Multiprocessor-Systems-on-Chip (MPSoC), can sense and learn their own physical
parameters, adapt with fine / coarse granularity in the field, as well as adjust and re-
implement their design goals / intentions on-the-fly using on-line or off-line learning
information for higher efficiency of a design metric. Traditionally, SoCs were designed
and dynamically optimized for a single design metric, for instance, performance or
power efficiency while compromising and/or trading-off other dimensions as illustrated
in Fig. 1.14(a). The radar chart in Fig. 1.14(a) shows a specific template of the design

15

that is tuned for performance. It is not designed or capable of reaching higher value
of design metric for other dimensions of the design (for example, resilience). On the
other hand, with increasing need for power/energy efficiency, thermal stability, and
resilience, multiple design dimensions and metrics are required to be optimized and
adapted across the system layers. It is not enough for emerging SoCs to be performance
efficient, but need have the capability to be efficient in other design dimensions (for
example, energy efficiency and resilience). In order to achieve these objectives and
optimize multidimensional design metrics, Fig. 1.14(b) shows the need for awareness
of multiple dimensions in emerging SoCs and transitioning to self-aware adaptation as a
key design dimension to achieve multiple, often conflicting, design goals. This transition
enables changes in computing model, architecture, and the runtime system to achieve
multiple conflicting goals and leverage the trade-off space.

1.2.4 Rethinking MPSoCs as Cyber-Physical Systems

Engineering variability challenges and the struggle to control variations in MPSoCs
with exploding number of computing cores [51, 165] calls for a rethinking of these
computational devices and their architectural design paradigm. With an increasing tilt
towards adaptive SoC design and influence of physical parameters dynamics, MPSoCs
bear several similarities with cyber-physical systems that are real-time controlled and
coordinated systems relying on computational infrastructure. For example, both these
types of systems have complex functional specifications, demanding non-functional
specifications, multi-modal behaviors, as well as use of networks in their design. Even
though the operational life-time and timeline of these designs are very different, de-
sign of both involves a control/computing co-design of closed-loop plant with computer
systems in the loop. The characteristic of the plant specially varies, the former being
computation and the later being a physical system, with disproportionate scale (e.g.,
one distributed in the nano-scale and the other geographically distributed). However,
MPSoC’s physical characteristics such as thermal- power dynamic behaviors, the cooling
system, and the modeling approach can greatly benefit from techniques and design ap-
proaches in cyber-physical systems. Consequently, this thesis proposes the foundations
for a new kind of SoC paradigm that unifies and emphasize the need for a rethinking of
the whole computing stack of the future.

1.3 Thesis Contributions

The theme of this dissertation provides the foundation for a new class of self-aware
adaptive SoC called Cyber-Physical-Systems-on-Chip (CPSoC) that contributes toward
the whole-stack co-design of emerging MPSoCs by using the notion of self-aware adap-
tation through a tightly coupled optimization of control, communication, and comput-
ing in order to achieve competing design and runtime goals (e.g., boosting energy and

16

power efficiency, improving thermal resilience, and delivering greater performance).
The dissertation presents a new paradigm through the principled design and implemen-
tation of awareness and adaptation mechanisms in emerging MPSoCs (e.g., mobile SoCs
and heterogeneous MPSoCs) to deliver greater performance, energy efficiency, and re-
silience by adopting self-aware control theoretic cross-layer mechanisms. The dissertation
provides the foundation for CPSoC through the development of closed loop modeling,
architecture, algorithm, system software, and platform that makes it possible to adapt
the system stack. The dissertation outlines research spanning five research themes and
contributes to the respective areas by bringing fresh perspective and opening new de-
sign space as described below:

• CPSoC Paradigm. The thesis presents and builds the foundation of a new class of
self-aware SoC called Cyber-Physical-Systems-on-Chip (CPSoC) and contributes
toward the principled design and implementation of awareness and adaptation
mechanisms for whole-stack co-design and optimization. The thesis demonstrates
that giving the SoC the freedom to opportunistically adapt the software and the
hardware stack by infusing steering knobs and awareness mechanism across the
stack can open up new and otherwise untapped opportunities in energy efficiency,
performance, and thermal resilience.

• Architecture: The thesis focuses on a radically new architecture for efficient
self-awareness and control of emerging heterogeneous MPSoCs in presence of in-
creasingly unreliable manufacturing process by transitioning from a run-and-crash
worst case design paradigm to sense-predict-adapt paradigm for multiple design
metrics. The proposed architecture is similar in spirit as the UnO machines [125]
but distinctly differs by incorporating a self-aware execution model, distributed
sensing and actuation infrastructure, and heterogeneity of computing elements.
The dissertation develops critical architectural support such as dedicated multi-
sensor and actuator networks-on-chip, suitable abstractions to expose awareness
properties to the system software and other layers, and architectural techniques
that navigate these complex trade-offs to reduced design overheads. An efficient
cross-layer design space exploration of these emerging heterogeneous architec-
tural configuration and compositions with system level design goals is formulated
to reduce exploration time by three orders of magnitude [307, 308].

• Models: Emerging MPSoC architectures are difficult to model precisely because
they are non-deterministic, interactive, and expected to scale to thousands of cores
in the presence of an inherently unreliable silicon substrate [53, 51]. The disserta-
tion work builds predictive machine learning models of performance, power, and
thermal dynamics for capturing online interactions of these different goals consid-
ering the cross-layer (software and hardware) characteristics [307, 313, 244]. Use
of such an integrated and end-to-end approach provides the opportunity to trade

17

model complexity with accuracy by using dimensionality reduction and approx-
imation techniques [341, 304] which ensures that the model fidelity is general
enough to cover all the possible inputs and complex enough to express required
features and behaviors. On the other hand, by using control theoretic dynamical
approach, these models are generalized and exploited to identify suitable actua-
tion knobs by using unique features at individual layers of the stack [306, 310].
The approach is extendable to incorporate environmental models such as on-chip
noise and variability while providing formal guarantees on convergence, stabil-
ity, optimality, and robustness [310, 306]. This control theoretic approach assures
formal reasoning about system dynamics of the CPS plant even when the response
is not fully understood in the closed loop context which is uniquely suitable for
the challenges of emerging SoCs.

• Algorithms: The dissertation presents a new class of scheduling and balancing al-
gorithm that incorporates the dynamics of the physical plant in the scheduling and
balancing scheme to optimize multiple objectives and goals of the platform (e.g.,
performance, power, and energy efficiency) [313, 244]. Unlike traditional ap-
proach, this bridges scheduling / balancing theory with control systems dynamics
of the MPSoC plants. The dissertation contributes to the design and synthesis of
efficient multi-sensor placement and heterogeneous sensor fusion algorithms re-
spectively using sparse and compressive techniques that reduced the area-power
overhead of monitoring scheme by an order of magnitude and improves accuracy
by two orders of magnitude [341].

• System Software: The thesis contributes toward the design and extension of
the Linux operating system with self-awareness abstractions, adaptive reflexive
middleware, with predictive models to achieve system level goals such as energy
efficiency [313, 244]. The approach can be generalized to support multiple mix of
goals. By reusing most of the Linux kernel source with minimal changes along with
a light-weight run-time scalable global optimization engine, the energy efficiency
of both application and operating system (OS) workloads can be improved by
~50% for quad core heterogeneous multicore processors (HMP) [313, 244].

• Platform and Testbeds: This research creates a new CPSoC prototyping plat-
form using FPGAs [305], develops full-system simulation framework and tools for
heterogeneous MPSoC architecture in order to validate and demonstrate on-line
monitoring, modeling, adaptation, and system software efforts [313, 341].

18

Self-monitoring and behavior modeling

Adap%ve	Polices,	
Controller,	

Actua%on	Knobs	

System	Behavior	
(Predic%ve	Model)	

measurement

input

Se
lf-

Aw
ar

e
A

da
pt

at
io

n

output

Simple Adaptation

Cross-
Layer	Phy/	
Virtual	
Sensing		

QoS/	
Goals	

Chapter	7	 Chapter	7	

Mul%-sensor	NoC	
Chapter	3	

Chapter	5,	6,	7	

Chapter	4,6	

Sensor	Placement	
Chapter	4	

CPSoC	FPGA	Proto	
Chapter	8	

Figure 1.15: Thesis overview and scope.

1.3.1 Thesis Organization

The thesis is organized in eight chapters describing the key aspect of the CPSoC fea-
tures as illustrated in Fig. 1.15. Chapter 1 gives a brief introduction and overview of
the thesis. Chapter 2 provides an overview of the related work and the background of
the thesis followed by Chapter 3 introducing and illustrating the concept of CPSoCs. It
also discusses the rationale behind the CPSoC paradigm and architectural features and
supports that distinguish CPSoCs from traditional MPSoCs. Chapter 4 presents on-chip
sensor networks, placement, and fusion as an architectural support for self-awareness
features in CPSoC supported by predictive models and model building capabilities in
Chapter 5. Chapter 6 describes a minimal sensing approach to runtime system state
estimation and prediction. The use of sensor-NoC (sNoC) architectural support along
with predictive models for awareness is demonstrated by a smart system software and
runtime to make intelligent decisions using cross-layer actuation mechanisms (for ex-
ample, smart balancing) in Chapter 7. In order to achieve a realistic implementation
of the CPSoC paradigm, prototyping and emulation is performed in FPGA platforms in
Chapter 8. Chapter 9 presents the future research directions along with dissertation
summary and conclusions.

19

Chapter 2

Background and Related Work

20

This chapter presents the relevant background, prior work, and trends in emerg-
ing SoC that falls into several categories: classification of microarchitecture, smart
SoC architecture, self-aware, self-adaptive, autonomic systems, on-chip sensing for self-
awareness, awareness modeling, and self-aware architectures.

2.1 Taxonomy and Classification of Microarchitectures

Processor microarchitectures can be classified along multiple orthogonal dimen-
sions. Here we present the most common ones and then distinguish them with respect
to emerging self-aware architectures.

• Pipelined/Non-pipelined Processors : Pipelined processors split the execution
of each instruction into multiple phases and allow different instructions to be
processed in different phases simultaneously. Pipelining increases instruction level
parallelism (ILP), and due to its cost-effectiveness, it practically is used by all
processors nowadays.

• In-Order/Out-of-Order Processors : An in-order processor processes the instruc-
tions in the order that they appear in the binary (according to the sequential
semantics of the instructions), whereas an out-of-order processor processes the
instructions in an order that can be different (and usually is) from the one in
the binary. The purpose of executing instructions out of order is to increase the
amount of ILP by providing more freedom to the hardware for choosing which
instructions to process in each cycle. Obviously, out-of-order processors require
more complex hardware than in-order ones.

• Scalar/Superscalar Processors : A scalar processor [166] is a processor that can-
not execute more than one instruction in at least one of its pipeline stages. In
other words, a scalar processor cannot achieve a throughput greater than one in-
struction per cycle for any code. A processor that is not scalar is called superscalar.
On the contrary, a superscalar processor can execute more than one instruction at
the same time in all pipeline stages and therefore can achieve a throughput higher
than one instruction per cycle for some codes. Very-long-instruction-word (VLIW)
processors are a particular case of superscalar processors, which can process mul-
tiple instructions in all pipeline stages, so they meet the definition of superscalar.
What makes a superscalar processor to be VLIW are the following features: (a)
it is an in-order processor, (b) the binary code indicates which instructions will
be executed in parallel, and (c) many execution latencies are exposed to the pro-
grammer and become part of the instruction-set architecture, so the code has to
respect some constraints regarding the distance between particular types of in-
structions to guarantee correct execution. These constraints have the purpose of

21

simplifying the hardware design since they avoid the inclusion of hardware mech-
anisms to check for the availability of some operands at run time and to decide
which instructions are issued in every cycle. For instance, in a VLIW processor
that executes 4 instructions per cycle, the code consists of packets of 4 instruc-
tions, each of them having to be of certain types. Besides, if a given operation
takes three cycles, it is the responsibility of the code generator to guarantee that
the next two packets do not use this result. In other words, in a non-VLIW proces-
sor the semantics of a code are determined just by the order of the instructions,
whereas in a VLIW processor, one cannot totally derive the semantics of a code
without knowing some particular features of the hardware (typically the latency
of the functional units). By exposing some hardware features as part of the defi-
nition of the architecture, a VLIW processor can have a simpler design but, on the
other hand, makes the code dependent on the implementation, and thus, it may
not be compatible from one implementation to another.

• Vector Processors : A vector processor is a processor that includes a significant
number of instructions in its ISA (instruction set architecture) that are able to
operate on vectors [196]. Traditionally, vector processors had instructions that
operated on relatively long vectors. More recently, most microprocessors include
a rich set of instructions that operate on relatively small vectors (e.g., up to 8
single-precision floating point (FP) elements in the Intel AVX extensions [149]).
These instructions are often referred to as SIMD (single instruction, multiple data)
instructions. According to this definition, many processors nowadays are vec-
tor processors, although their support for vector instructions varies significantly
among them.

• Multiprocessor : Multiprocessor consists of multiple central processing units
(CPUs) tightly coupled enough to cooperate on a single problem. A multipro-
cessor is a computer system having two or more processing units (multiple CPUs)
each sharing main memory and peripherals, in order to simultaneously process
programs. At the operating system level, multiprocessing is sometimes used to
refer to the execution of multiple concurrent processes in a system, with each pro-
cess running on a separate CPU or core, as opposed to a single process at any
one instant. When used with this definition, multiprocessing is sometimes con-
trasted with multitasking, which may use just a single processor but switches it in
time slices between tasks (i.e., a time-sharing system). Multiprocessing, however,
means true parallel execution of multiple processes using more than one proces-
sor. Multiprocessing doesn’t necessarily mean that a single process or task uses
more than one processor simultaneously; the term parallel processing is generally
used to denote that scenario. Multitasking, on the other hand, is a concept of
performing multiple tasks (also known as processes) over a certain period of time
by executing them concurrently. To avoid confusion, operating system techniques

22

are preferably referred as multiprogramming and reserve the term multiprocessing
for the hardware aspect of having more than one processor. Multitasking does
not necessarily mean that multiple tasks are executing at exactly the same time
(concurrently). In other words, multitasking does not imply parallel execution,
but it does mean that more than one task can be part-way through execution at
the same time, and that more than one task is advancing over a given period of
time.

• Multicore Processors : Also known as chip multiprocessor (CMP) [256], is a pro-
cessor that may consist of one or multiple cores on a single processor chip. A
core is a unit that can process a sequential piece of code (usually referred to as
a thread). Traditional processors used to have a single core, but most processors
nowadays have multiple cores. A multicore processor can process multiple threads
simultaneously using different hardware resources for each one and includes sup-
port to allow these threads to synchronize and communicate under the control of
the programmer. This support normally includes some type of interconnect among
the cores and some primitives to communicate through this interconnect and often
to share data and maintain them coherently.

• Multithreaded Processors : A multithreaded processor is a processor that can ex-
ecute simultaneously more than one thread on some of its cores. Both multicore
and multithreaded processors can execute multiple threads simultaneously, but
the key distinguishing feature is that the threads use mostly different hardware
resources in the case of a multicore, whereas they share most of the hardware
resources in a multithreaded processor. Fig. 2.1 depicts the difference between a
conventional versus a multithread process. Multicore and multithreading are two
orthogonal concepts, so they can be used simultaneously. For instance, the Intel
Core i7 processor has multiple cores, and each core is two-way multithreaded.
Fig. 2.2 illustrates different approaches of multithreading in contemporary archi-
tectures.

• GPGPU : A general-purpose GPU (GPGPU) is a graphics processing unit (GPU)
that performs data parallel calculations that would typically be conducted by the
CPU (central processing unit). In other words, General-purpose computing on
graphics processing units (GPGPU), the use of a graphics processing unit (GPU),
which typically handles computation only for computer graphics, to perform data
parallel computations in applications traditionally handled by the central process-
ing unit (CPU) [114, 113]. The use of multiple graphics cards in one computer,
or large numbers of graphics chips, further parallelizes the already parallel nature
of graphics processing. In addition, even a single GPU-CPU framework provides
advantages that multiple CPUs on their own do not offer due to the specialization
in each chip [239]. While GPUs operate at lower frequencies, they typically have

23

Figure 2.1: A conventional processor compared with a multithreaded processor [249].

many times the number of cores and operate effectively on data parallel applica-
tions much faster than a traditional CPU.

• Manycore Processors : Multicore architectures integrate multiple processor cores
in a System-on-Chip (SoC) [256]. The terms manycore and massively multicore are
often used to refer to multicore architectures with tens to hundreds of cores [51].
The term manycore distinguishes scalable architectures designed specifically to
improve application performance and efficiency by distributing parallel computa-
tions across large numbers of highly integrated cores. Manycore architectures are
specifically designed to exploit data-level and task-level parallelism within appli-
cations. They focus on delivering massive numbers of functional units efficiently,
and support massive amounts of parallelism. Unlike the communication primi-
tives found in multicore processors, which descend from architectures designed
to support multi-chip multiprocessors typically comprising from 2 to 16 proces-
sors, manycore architectures integrate scalable communication systems that ex-
ploit the low communication latencies and abundant communication bandwidth
that are available on chip. Consequently, manycore architectures deliver signifi-
cantly more arithmetic bandwidth than multicore processors, and usually achieve
superior area and energy efficiency when handling applications with sufficient
structure and locality.

• MPSoC Architectures : The MultiProcessor System-on-Chip (MPSoC) is a System-
on-a-Chip (SoC) which uses multiple processors (see multi-core), combines em-
bedded processors, specialized digital hardware, and often mixed-signal circuits to
provide a complete integrated system, usually targeted for embedded applications.

24

(e)	SMT	(d)	FGMT	(c)	CGMT	(b)	CJMT	(a)	CMP	

Figure 2.2: Chip architecture and different approaches of multithreading (a) chip mul-
tiprocessor (b) conjoined multithreading (c) coarse-grained multi threading (d) fine-
grained multithreading (e) symmetric multithreading [249].

It is used by platforms that contain multiple, usually heterogeneous, processing el-
ements with specific functionalities reflecting the need of the expected application
domain, a memory hierarchy (often using scratchpad RAM and DMA) and I/O
components. All these components are linked to each other by an on-chip inter-
connect. MPSoCs make the most sense in high-volume markets that have strict
performance, power, and cost goals. These architectures meet the performance
needs of multimedia applications, telecommunication architectures, network secu-
rity and other application domains while limiting the power consumption through
the use of specialized processing elements and architecture. For instance, em-
bedded computer vision is one example of an emerging field that can use essen-
tially unlimited amounts of computational power but must also meet real-time,
low-power, and low-cost requirements. Table 2.1 lists some of the examples of
contemporary multi/manycore processors specifically targeting embedded system
applications.

25

Year	

He
te
ro
ge
ne

ity
	

ARM	Big.Li3le	

Helio	X20	Snapdragon	

Exynos	

Tegra	4i	

Future	of	compu,ng	systems	
will	be	heterogeneous		
[S.	Borkar,	Intel]	

GPGPU	

2015	 2018	

Figure 2.3: Heterogeneity trends in emerging SoCs. S. Borkar of Intel asserts that future
of microprocessors will be heterogeneous [53].

2.2 Emerging MPSoC and Embedded System Trends

Integrated circuit technology has reached the nanoscale era, introducing a multitude
of challenges stemming from the end of perfect Dennard scaling [107, 280, 111] and
worsening process variations [54]. “Dark silicon” will be a defining feature of future
SoCs, where only small portions of a chip may be powered on at a time in order to man-
age power density and heat [107]. Further complicating matters, systems are typically
not very energy proportional due to high static power and a dearth of active low-power
modes aside from CPU dynamic voltage/frequency scaling (DVFS) [30, 29]. The dark
silicon phenomenon and the need for greater energy proportionality and efficiency are
major driving forces behind research and development in many-core SoCs and het-
erogeneous devices, architectures, and systems. In particular, many-core computational
platforms already face significant resiliency challenges with errors resulting from manu-
facturing process variability, exponentially increasing power dissipation and heating, en-
vironmental effects (e.g., radiation induced soft errors [35], and aging/wearout [43]).
These problems are exacerbated in the nanometer era with exploding core counts and
on-chip resources. The combined systemic and random effects in nanoscale technolo-
gies results in high variability (and thus higher error rates) manifested at the circuit
level all the way to the architecture and system levels [54], requiring new strategies

26

for ensuring application resilience when executing on these computing platforms. Fur-
thermore, emerging embedded computing platforms that deploy complex SoCs will be
characterized by the following key features that provide both challenges and opportu-
nities for simultaneously managing system resilience, energy, and adaptivity:

• They will see much larger fault rates. More integration results in larger platforms
facing more dominant failure mechanisms (with technology scaling), causing in-
creased fault rates [43]. This is especially true for memories in emerging data-
centric platforms [246, 333].

• They will be monitor-rich. To assess the state of health of the system, these com-
puting systems will employ a network of interconnected monitors looking for sig-
natures of faults, wearout and impending failures [112, 194, 215]. These monitors
will span circuit, microarchitecture and software layers.

• They will be aggressively heterogeneous in the computing fabric, covering all di-
mensions: processing (for accelerating application/domain-specific functions) [53],
interconnect (to handle scalability and high-throughput) [318], and memory (com-
bining volatile and non-volatile storage, e.g., [95]) as shown in Fig. 2.3.

• They will be memory-heavy, and will deploy heterogeneous memory technolo-
gies. Data-centric nature of several emerging applications creates demand for
denser memories. Memories are likely to dominate energy as well as reliability
concerns [246, 333] for computing systems. Moreover, technology trends such
as 3D integration [52] and heterogeneous memory organizations (e.g., combin-
ing traditional SRAMs with emerging faster, denser, non-volatile memories) [379]
pose new challenges for energy efficiency and resilience.

2.3 Intelligence and Awareness for Smart Embedded Sys-
tem

In this section, we present the notion of smart embedded system with attributes of
intelligence and awareness based on the work in [104].

The ubiquitous deployment of computing in virtually every facet of today’s society
has led to the colloquial usage of terms as such "embedded computing", "cyber-physical
systems", and more recently the "Internet-of-Things (IoT)". At the heart of such sys-
tems are software/hardware computing platforms that interact with the physical world
through sensors, actuators, communication/networking, and decision making engines.
These systems range from the tiniest of embedded devices (e.g., small sensor motes
[131, 273, 108, 342, 328, 344]) to complex system-of-systems, such as autonomous
swarms of robots [295, 296] and complex human-in-the-loop systems (e.g., an Airbus

27

Table 2.1: Examples of Contemporary Embedded Multi/Manycore Processors.

Processor Architecture Cores Speciality References

RAW

Tiled multicore 16 simple RISC ◦ Expose low-level resource to software [351]
Mesh Network ◦ Distributed register architecture [352]

◦ StreamIt Programing Language [355]
◦ Exploit task & data-level parallelism [212]
◦ Space-time scheduling

Tilera

Tiled multicore 64-bit ◦ Commercial version of RAW [38]
3-way wide ◦ Sub-word SIMD operations
VLIW ◦ Software-routed scalar operand networks [373]
Multiple Mesh Network ◦ General-purpose dynamically routed networks

◦ Fine-grain pipeline parallelism
◦ Improve the efficiency

Berkeley VIRAM Vector Processor 4 no of 64-bit vector lanes ◦ Uses embedded DRAM technology [196]
Processor-in-Memory Vector length of 32 ◦ General-purpose scalar control processor

◦ Vector co-processor
◦ Issue individual vector instructions in order
◦ Operate on sub-word SIMD operands within each lane
◦ Efficient with regular data-level parallelism
◦ Vector flags, compress, and expand operations
◦ Allow data-parallel loops with conditions

Stanford Imagine Stream processor 8 data-parallel lanes ◦ Several data-parallel execution units [183]
7 function units ◦Multiple lanes exploit SIMD data-level parallelism

◦ Function units within lane exploit ILP
◦ Uses a micro-sequencer to sequencing of kernels

SPI Storm Stream Processors Stream processor 16 data-parallel lanes ◦ Commercial version of Stanford Imagine [184]

MIT Scale Processor Vector-thread processor 4-wide VLIW execution ◦ Supports both vector and multithreaded processing [198]
control processor ◦ Efficient regular control-flow and data accesses [197]
parallel vector lanes ◦ Common control and memory operations are factored out
clustered function unit organization ◦ Vector fetch instruction & more fetch bandwidth

◦ Uses control thread & collection of micro-threads
Illinois Rigel Accelerator Programmable accelerator architecture Collection of simple 8 cores ◦ data parallel and task-parallel computation [178]

Hierarchical caches (2 level) ◦ single-program multiple-data models of computation [179]
Explicit synchronization instructions ◦ distributed collection of global cache banks
Software memory coherence ◦ implicit shared memory interprocessor communication

◦ support implicit locality management
◦ software enforce cache coherence protocol
◦ coherence at a limited points reduce com. overhead

330 [150, 136]). For the purpose of this thesis, we refer broadly to all of them as "em-
bedded systems". A common characteristics across this diverse set of embedded systems
is the need to operate correctly in the face of highly dynamic environmental conditions,
changing application characteristics, as well as changes in the computing platforms itself
(e.g., degradation or failures). Moreover, depending on the embedded system context,
their architectures are highly customized to achieve the often conflicting constraints of
performance, energy, and cost, reliability, etc. Furthermore, the complexity of the em-
bedded software and hardware can vary over several orders of magnitude, depending
upon the application domain, the usage context, and their physical deployment. Conse-
quently, designers of embedded systems aim to increase the level of "smartness" in these
systems, to adapt seamlessly to changes, increase the level of autonomous operation,
and incorporate learning strategies. Depending on the type of embedded system, these
needs typically translate into guarantees for functional and non-functional constraints;
adaptation to dynamism, and the ability to tolerate failures.

With the increasing complexity of tasks faced by embedded systems, the designers
of software and hardware systems have naturally borrowed concepts from biological
systems in an attempt to mimic their ability to be self-aware, evolve, and achieve a high
level of resilience in the face of highly dynamic and unpredictable environments. A
large body of research in intelligent, autonomous systems, agent-based distributed sys-
tems, and advanced control theory have all used variants of the phrase "self-x", where

28

"x" variously refers to capabilities such as awareness, healing, optimization, adapta-
tion, etc. Unfortunately with this alphabet soup of terminology, there is little consensus
of what these terms mean in the context of software and hardware systems, and for
embedded systems in general. To disambiguate loosely-used terminology in the embed-
ded systems literature, in Section 2.4 we begin by reviewing notions of self-awareness,
self-adaptivity and autonomic systems in the large body of the literature in cognitive
sciences (Section 2.4), on large software systems (Section 2.4.1), embedded systems
(Section 2.4.2), and SoCs (Section 2.4.3). We then present a taxonomy in Section 2.5
to structure the terminology and related work based on the work presented in [104].

In spite of the bewildering diversity of embedded systems in general, at the core of
all these embedded systems are integrated circuits made of silicon. As the number and
variety of those devices grow exponentially, it becomes increasingly harder to guarantee
perfect functionality and performance over the entire life time of these devices. This
chapter will therefore focus on smart embedded systems primarily from the perspective
of a System-on-Chip (SoC), and the associated challenges for developing software and
hardware platforms upon which reliable, autonomous, and smart embedded systems
can be built. From an SoC perspective, smart embedded systems (SES) are an emerging
area of computing system with unique architectural attributes. SoCs as SES have many
similarities with autonomic computing systems [180] but are severely resource and
capability constrained. They can be analyzed through the computing-communication-
control (C3) centric notions of cyber-physical systems (CPSs) [210] but are limited due
to the lack of the explicit notions of the operating systems and compilation principles in
C3.

2.4 Self-Aware, Self-Adaptive and Autonomic Comput-
ing Systems

Cognitive science has a long and rich history of theories about the mental faculties
that link perception to action [362]. Two main categories can be distinguished: cogni-
tivist and emergent systems approaches. The cognitive paradigm is based on the classic
view that cognition is a “kind of computation” that uses symbolic and abstract represen-
tations of the real world and that algorithmically calculates actions [279]. In contrast,
proponents of the emergent systems paradigm, which includes connectionist, dynami-
cal and enacting systems approaches [362], argue that cognition is an emerging phe-
nomenon in self-organizing, dynamic systems, that interactively identify and use regu-
lar patterns in the environment to continuously adapt, react and anticipate [354, 82].
Cognitivist approaches assume the existence of an objective reality which should be ab-
stracted and symbolically represented, while the emergent systems community views
the system and its environment as mutually dependent and continuously co-evolving.

One cognitive theory of consciousness, which falls into the emergent systems camp

29

and which is relevant for our topic, is Baars’ Global Workspace Model (GWM) [23].
Many parallel processes operate unconsciously and concurrently, but only one, or one
coalition of processes, obtains access to the global workspace at any time, allowing it to
broadcast its message globally and thus to marshal many global resources for its pur-
pose. Hence, the global workspace serves to allocate and synchronize limited resources.
Since its formulation, many phenomena predicted by the GWM have been confirmed in
experiments [24, 22] making it today the top contender for explaining consciousness.

2.4.1 Awareness in Software Systems

The insight that a sense of awareness can facilitate robust and dependable behavior
even under radical environmental changes and drastically diminished capabilities have
inspired researchers to study the utility of cognitive features like adaptivity, awareness,
or consciousness for robots, large scale software systems, and embedded systems. The
benefits are more obvious for some features such as adaptivity but less for awareness
or consciousness. Hence, adaptivity, and in particular self-adaptivity has been the focus
of much research. In complex software systems, self-adaptivity is expected to help in
managing the complexity [298]. Manual troubleshooting, reconfiguration, and main-
tenance are demanding and error prone. Above a certain complexity of the system, it
becomes infeasible. Self-adaptive behavior is triggered either by changes of the sys-
tem’s self (internal causes like faults or mode transitions), or by changes of the system’s
context (external events like changes in user request rates or user objectives) [298].

In 1997 a DARPA Broad Agency Announcement offered a definition of self-adaptive
software: “Self-adaptive software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software is intended
to do, or when better functionality or performance is possible” [205], which points to
several important aspects: (1) The system monitors its own behavior; (2) it knows what
behavior is expected; (3) it compares its observed behavior to the expected behavior;
(4) performance matters in addition to functionality. About the same time, Oreizy et
al.[264] highlighted the importance of the environment: “Self-adaptive software modi-
fies its own behavior in response to changes in its operating environment” [264], which
requires that (5) the system monitors its environment, (6) knows what behavior of
the environment is expected, and (7) knows its own appropriate behavior for a given
environment.

Features (1)-(4) are related to self-awareness and (5)-(7) to context-awareness which
form the bases of all self-modifying capabilities such as self-configuration, self-optimization,
or self-adaptivity. In the often used hierarchy of self-* properties they are located in the
primitive level below the major level which is populated by specific self-changing capa-
bilities [298], as illustrated in Fig. 2.4.

IBM’s original vision of autonomic computing [180], formulated in the early 2000s,
puts its emphasis on the upper levels, implicitly assuming that awareness is a simple
capability. In contrast, we argue that achieving awareness is hard, but once achieved,

30

Self−Adaptiveness

Self−Optimization

Self−Healing

Self−Protecting

Context AwarenessSelf−Awareness

Self−Configuration

Figure 2.4: Hierarchy of self-* properties [298].

realizing the higher level properties at the major and general levels are difficult but
tractable engineering tasks.

In reaction to the DARPA initiative and IBM’s vision, research on self-* properties
has flourished. Two recent surveys on self-healing by Ghosh et al. [117] and Psaier and
Dustdar [278] discuss the approaches taken for detecting and reacting to faulty states
of a system. Self-healing is rooted in work on fault tolerant and self-stabilizing [97] sys-
tems but emphasizes continuous availability and focuses on the recovery process. Both
surveys agree that a kind of self-awareness is critical, but often view it narrowly as a
mechanism to detect faults, which then triggers recovery procedures. Hence, the system
perceives itself to be in one of two states: healthy or not healthy. Our understanding is
broader and implies a richer perception of a system’s own well being and performance
allowing for a nuanced assessment as to which degree expectations and goals are met
including a track record and a sense of historical performance.

Partially overlapping are efforts to design self-adaptive systems as elaborated from
a variety of aspects in a book edited by Cheng et al. [77]. A self-adaptive system is
more general than a self-healing system as it also adapts gracefully to changing envi-
ronmental conditions. Again, publications on self-adaptivity view self-awareness rather
narrowly as a means to detect unusual states and focus mainly on the reaction to such
observations. However, it has been noticed that a more comprehensive approach to
self-awareness aspects would be both desirable and challenging. For instance, Cheng et
al. [77] note that knowledge of expectations by the environment, for which Finkelstein
has coined the term requirements reflection, would be useful and conclude that “Future
work is needed to develop technologies to provide such infrastructure support” [77].

In control applications models of the self have reached significant sophistication.
Kaindl et al. proposed an explicit, symbolic representation of self for the purpose to
monitor and self-configure the system based on changing needs and requirements [170].

31

An emotion based approach to assess the inner state and the wellness of a system is de-
scribed by Sánchez-Escribadno and Sanz [300]. They use a prioritization mechanism to
compare and relate the importance of otherwise independent states or events and call
it “emotion”. Sanz et al. have gone furthest by incorporating an explicit self-model in
the control system, which elegantly is based on the model of the system used during the
design process [303], resembling requirements reflection mentioned above. This estab-
lishes a secondary control loop in which the primary control algorithm can be adapted.

A. Morin [242] has formulated nine neurocognitive models of self-awareness distin-
guishing unconsciousness, consciousness of external stimuli and events, self-awareness of
public and private self-aspects, and meta self-awareness. Based on Morin’s classification
Lewis et al. [217] consider categories of self-awareness with respect to their relevance
to computing systems. They offer a working definition distinguishing between infor-
mation that a system has about its own state (private self-awareness) and knowledge
about how it is perceived by its environment (public self-awareness). Also, organization
of self-aware systems in groups of peers leading to group-awareness is considered. The
categorization outlined in Section 2.5 [161], is consistent and to a large degree aligned
with Lewis et al.’s [217] definition, but our concepts are more detailed and formulated
with the objective to engineer self-aware systems under tight resource constraints.

Chen et al. have proposed a pattern based approach to the design of self-aware
systems [73]. Based on Lewis’ classification they formulate seven patterns for specific
functions relevant to self-awareness: Basic information sharing, coordinated informa-
tion sharing, temporal knowledge sharing, temporal knowledge awareness, goal sharing,
temporal goal awareness, and meta-self-awareness. Architectural patterns and a method-
ology for designing self-aware and self-expressive systems are formulated and applied
to case studies with cloud computing and a smart camera networks applications.

2.4.2 Awareness in Embedded and Cyber-Physical Systems

In embedded and cyber-physical systems (CPS) the main problem is not so much
the size induced complexity of an individual system but rather the tight resource con-
straints, the large number of those systems and their interaction, and the unpredictable
environmental conditions of their deployment. Analysts expect 26 billion devices con-
nected to the Internet of Things by 2020 (www.gartner.com/newsroom/id/2636073).
Manual maintenance, diagnostics, and repair of most of these devices is soon impos-
sible. Thus, there is a growing need that CPSs have a better understanding of their
own state, their behavior, their performance, and the surrounding conditions. We call
this “better understanding” awareness, which improves the behavior of systems, making
them more robust while reducing processing, communication and energy requirements.
A variety of bio-inspired approaches have been proposed for the operation, modeling,
design, optimization, and verification of embedded systems and SoCs, as a recent collec-
tion illustrates [85]. For instance, Zakaria et al. [385] describe techniques to handle un-
certainties because of faults due to process variation and limited yield, to manage power

32

consumption and synchronization between different clock domains in SoCs. Evolvable
hardware is a hardware that can change its architecture and behavior dynamically and
autonomously [383, 134]. The hardware design is encoded in some kind of “chromo-
some” and evolutionary techniques such as genetic algorithms are deployed to modify
this chromosome and thus the hardware as a reaction to a changing environment or
faulty components. Since FPGA is a perfect medium for the implementation of evolv-
able hardware, the research field has flourished since the advent of FPGAs in the 1990s
and is continuously exploiting FPGA features as they emerge [64].

However, designing and implementing self-awareness in an ad-hoc manner for every
new system is not feasible. Introducing awareness as a separate concept in the CPS
infrastructure promises to simplify development and operation of such systems. As CPS
are typically Systems of Systems (SoS), the awareness must be solved comprehensively,
ensuring that the understanding of the situation is coherent and consistent across the
systems of systems (SoS).

Bakhouya and coworkers draw more explicit parallels to natural phenomena such
as the immune system, cell organization and ant colonies [25, 26]. They correctly put
emphasis on positive and negative feedback loops that are pervasive in natural systems
and a key in the design of adaptive behavior in smart embedded systems.

Awareness is not necessarily confined to individual components; it may as well as
emerge in cooperating systems of systems (SoS). Preden and coworkers have studied
distributed surveillance systems and assign particular importance to the role of atten-
tion and context aware processing and sensing [243, 276, 274, 275]. They argue that
these properties facilitate efficient operation of distributed sensing systems. Based on
Endley’s Situation awareness [106], Preden et al. have developed the concept of situa-
tion parameters [274]. A situation is defined by the values and interpretation of a set of
situation parameters, which are monitored or computed independently and represents
a property of the situation of interest. The information for generating situation aware-
ness is collected and processed independently of the application functionality and can
be considered as part of the CPS platform.

Witnessing the high interest in this topic are surveys on related and relevant topics
such as on-chip self-monitoring [194], bio-inspired hardware design [85], and situation
identification techniques [384].

2.4.3 Awareness in Systems-on-Chip

There is a large body of literature on SoCs developed for embedded and cyber-
physical systems that exhibit self-awareness characteristics at various levels. We have
listed an incomplete set of examples focusing on reliability and power management in
Tables 2.2 and 2.3, respectively. A number of German national projects have focused on

33

Table 2.2: Smart Dynamic Reliability/Resilience Management.

References
Adaptation Type HMP Sensing and Monitoring Decision Making Layer Cross-Layer Actuation Level

Simple* Self-Aware† Support Ckt HW NW OS App Ckt HW NW OS App Ckt HW NW OS App

Shapiro et al. 2004 [321] � Self-heal No � � − � − − − − � ? − − − � ?

Sylvester et al. 2006[347] � Self-heal No � � − − − � � − ? − � � − � −

Karl et al. 2006[172] − − No � � − − − � � − − − � � − − −

Austin et al. 2086[21] � − No � � − − − � � − − − � � − − −

Sun et al. 2009[345] � − No � ? − � − � ? − � − � ? − � −

Das et al. 2009[91] � − No � � − − − � � − − − � � − − −

Reddi et al. 2009 [287] � − No � � − − − � � − ? − � � − ? −

Reddi et al. 2010[289] � − No � � − − − � � − − − � � − − −

Leem et al. 2010[214] � − No � � − ? � � � − ? � � � − ? �

Reddi et al. 2012[290] � − No � � − − − � � − − − � � − − −

Kleeberger et al. 2013[192] � − No � � − − − � � − − − � � − − −

Mercati et al. 2013[234] � − No � � − � − � � − � − � � − � −

Li et al. 2013[221] � − No � � − − � � � − − � � � − − �

Rehman et al. 2014[291] � − No � � − ? � � � − ? � � � − ? �

Mercati et al. 2014[235] � − No � � − � − � � − � − � � − � −

Mercati et al. 2014[236] � − No � � − � − � � − � − � � − � −

* Implicit Model †Explicit Model, ? Not explicitly discussed; Ckt = Circuit, HW = Hardware, NW = Network, OS = Operating System, App = Application

computing systems that incorporate self-X properties, including the Organic Comput-
ing project [265], the InvasIC project [132], and the SPP1500 project on dependable
embedded systems [133]. There is also a wealth of research on power management,
thermal management [57, 87, 105, 306] and more recently, on an integration of both
objectives [39, 238, 193]. The trend towards more elaborate management of aspects
that are considered critical is apparent in research but also in industry, and we expect
growing sophistication in the handling of individual concerns such as power consump-
tion, over-heating, reliability, performance, etc., and a widening of scope to the simul-
taneous management of multiple, critical issues.

Most interesting are those that maintain a more sophisticated, internal model about
the system’s state, work that often draws on control theory. For instance, Wang et al.
[369] propose a control algorithm based on an online model estimator to control accu-
racy and system stability. In a similar vein, Shafique et al. [320] use implicit models to
predict key features such as required resources for an approaching time interval. The
models in these, and many other, examples are implicit and serve a narrow purpose.
History based prediction is a good example and commonly used. Based on a record
on past resource usage of an application, the resource requirements for a future time
interval are estimated. The past resource usage, perhaps only a single number, is con-
sidered a narrow model that represents a property of interest. Since almost all the
approaches in Tables 2.2 and 2.3 focus on single issues with relatively simple objec-
tives, they maintain narrow, implicit models of the systems themselves. The broader
the objectives become and the more aspects that are integrated in the decision process,
the richer the internal models grow. The power, thermal and reliability models used in

34

Table 2.3: Smart Dynamic Power Management.

References
Adaptation Type HMP Cross-Layer Sensing and Monitoring Decision Making Layer Cross-Layer Actuation Level

Simple* Self-Aware† Support Ckt HW NW OS App Ckt HW NW OS App Ckt HW NW OS App

Kumar et al. 2003[202] � − No − � − � − − − − � − − − − � −

Wu et al. 2004[376] � − No − � − − − − − − � − − − − � −

Wu et al. 2004[377] � − No − � − − � − − − � � − − − � �

Isci et al. 2006[156] � − No � � − − − − � − � − − � − � −

Nathuji et al. 2007[247] � − No − � − � � − � � � − − � � � −

Curtis et al. 2007[88] � − No � � − � − − � − � − − � − � −

Verma et al. 2008[361] � − No − � − � − − � − � − − � − � −

Sridharan et al. 2008[338] � − No � � − − − � � − � − � � − � −

Rangan et al. 2009[281] � − No − � − � − − � − � − − � − � −

Wang et al. 2009[369] � � No − � − � − − � − � − − � − � −

Bartolini et al. 2010[33] � − No � � − ? − � � − − − � � − − −

Hoffmann et al 2011[142] � � No − � − � � − − − � � − − − � �

Bartolini et al. 2011[32] � � No − � � − − − � � − − − � � − −

Rotem et al. 2011[294] � − No � � − − − � � − � − � � − � −

Sun et al. 2013[346] � − No � � − − − � � − � − � � − � −

Shafique et al. 2013[320] � − No � � − − − − � − � − − � − � −

Shafique et al. 2013[319] � − No � � � − − − � � − − − � � − −

* Implicit Model †Explicit Model, ? Not explicitly discussed; Ckt = Circuit, HW = Hardware, NW = Network, OS = Operating System, App = Application

the virtual platform described by Bartolini et al. [33] are more detailed and elaborate,
even though the models integrated in the final device, as part of the on-line feedback
based control algorithm, are simplified and optimized. Often design time information
is not sufficient or accurate enough due to unforeseen influences or aging effects. To
counter such limitations on-line self-calibration and learning techniques are employed
to improve the models used in the control algorithms [32]. Such needs require more
detailed and explicit models to represent more of the system’s features, thus gradually
increasing their sophistication.

Starting from the other end, more systematic approaches towards self-awareness
have been taken by the HAMSoC and SEEC projects.

HamSoC [123, 124, 122] is an SoC platform with a hierarchical agent structure
as illustrated in Fig. 2.5. The cell agents are hosted by individual processing cores
in a multi-core SoC. Clusters are formed along sub-system boundaries and the platform
agent is responsible for the entire chip. While the agents at the platform layer and below
are application independent, the application agent is customized towards the applica-
tion needs. The agents perform a set of activities including Communicate, Configure,
Inquire, Order, Report, and Inform [124] with the objective to monitor the system’s state
and performance, communicate with other agents across the hierarchy, and reconfigure
the system to adapt it to a changed situation. The agents and their actions are defined
in a generic and abstract way to form a framework suitable for a variety of applications
and implementations. As an application case a power management system for an NoC
based multicore SoC has been implemented and evaluated[160, 122]. The cell and

35

Cell Agent

Cluster Agent

Platform AgentApplication Agent

Figure 2.5: Agent hierarchy in the HAMSoC system [124].

cluster agents are realized in hardware while the agents at the platform and applica-
tion layers are software programs. In the case study performance and power attributes
are monitored and controlled but the framework is fairly general and would allow for
monitoring any interesting property while the decision process could be assigned to the
appropriate agent at the cluster, platform or application layer.

SEEC [140] is a general framework for self-aware computing using an observe-
decide-act paradigm. As illustrated in Fig. 2.6, the system cyclically monitors key fea-
tures, applies a control and decision algorithm, and deploys appropriate actions to adapt
to changes in the environment and its own state. It is based on the heartbeats API li-
brary [139], which defines a cyclic event called a heartbeat. Through API functions the
application can register rate and latency performance goals in terms of the heartbeat pe-
riod. Hence, the heartbeats API is a standardized mean to monitor the performance of
an application. The application itself, or a separate agent, can then adapt and optimize
the system’s behavior, for instance, by allocating and scheduling resources appropri-
ately. The approach has been further developed and evaluated in several applications
for performance optimization [140], power management [142, 138], and managing
of multiple objectives [137]. Also, the concept of knobs have been introduced [142]
to expose steering facilities such as processor speed or power modes. As a conceptual
framework it allows to adopt different decision making strategies and algorithms, which
has been explored and studied extensively [301, 230].

As we observe the extensive work published in this area, we note that all approach
the domain of self-awareness from different directions and angles. The “single-issue”
approaches, as listed only incompletely in Tables 2.2 and 2.3, introduce specific and

36

Figure 2.6: The SEEC activity cycle [140].

concrete aspects of self-monitoring and self-adaptation to solve a particular, well but
narrowly defined problem. While the proposed techniques lead to effective solutions in
the given scope, they do not easily generalize to a situation where a range of objectives
have to be met simultaneously under a set of constraining conditions. In particular,
various kinds of uncertainties and incomplete information constitute additional compli-
cations.

To overcome these limitations, a few general frameworks have been developed such
as HAMSoC and SEEC. Both propose a basic concept (hierarchical agent network in the
case of HAMSoC and a observe-decide-act operation cycle with the heartbeat paradigm
in the case of SEEC) and apply it to ever broader application scenarios while further
developing and refining the frameworks. Note that these endeavors are complimentary
in terms of the insight they generate and the techniques they describe, as well as study.

2.5 Properties and Levels of Awareness

In contrast, the classification we describe in the following starts from the other end
and lists the attributes that we expect to see in a self-aware system.

The various concepts reviewed are certainly multi-dimensional and have too many
facets and aspects to easily press them into a simple scheme of classification. But if we
concentrate for a while on awareness and self-awareness, which are the basis for many
higher level cognitive abilities, we can identify different features, which, although not
arranged linearly, constitute a well structured space that will allow us to better assess
specific realizations in smart embedded systems. The framework of awareness that we

37

use [161] requires several properties before we can call the system aware of something
or self-aware [161]:

• Abstraction of the primary input data into a semantic domain which is meaningful
for the system at hand.

• Disambiguation of the possible interpretations to always settle on exactly one in-
terpretation of the reality at any given time. When new data becomes available,
the interpretation may change, but at any given time there is only one interpreta-
tion used by the system.

• Semantic Interpretation is the result of abstraction and disambiguation and it
represents a relevant property of the system or its environment.

• Desirability Scale provides a uniform goodness-scale for the assessment of all
observed properties.

• Semantic Attribution maps properties into the desirability scale suggesting how
good or bad an observation is for the system.

• History of a Property: Awareness of a property implies awareness of its change
over time. This history may be more or less detailed and may slowly fade as
time passes, but it certainly is required to allow for assessment of properties, the
environment, and the system itself in a historical context.

• Goals provide the context in which interpretation and semantic attribution is
meaningful.

• The Purpose of a smart embedded systems is to achieve all its goals.

• Expectation on Environment: The system expects a specific environment, which
is a precondition to realize if the environment is profoundly changing. The sys-
tem’s goals are often dependent on the environment.

• Expectation on Subject: Similarly, the system’s own state and condition are con-
tinuously assessed to detect deviations, degradation, excellent performance and
malfunctions.

• Inspection Engine: Continuously monitoring and assessing the situation requires
a specific machinery that integrates all observations into a single, consistent world.

To realize all these properties in a smart embedded system is rather ambitious and not
always necessary. Depending on which of these properties are present and to what
degree we can group systems in five levels [161]:

38

• Level 1, Adaptive: A classic PID controller adapts to changes in the environment
by following reference values. Such a system does some abstraction and has some
expectations but in rather limited ways.

• Level 2, Property Aware: The system derives a semantic interpretation and attri-
bution of monitored data. The system has expectations regarding the monitored
property. It also has goals and the attribution is done with respect to these goals.
The more properties it follows in this way, the larger the share of the environment
becomes that it is aware of. If the system monitors its own properties, we call it
self-aware.

• Level 3, History Aware: If in addition to properly interpreting and classifying
properties, the system maintains a history of observations, the environmental
changes over time are monitored and assessed. Moreover, a history self-aware
system can monitor and assess its own performance and relate it to expectations
and goals.

• Level 4, Predictive: The inspection mechanism, that allows the system to observe
and assess the environment and itself, can be used to study future scenarios as
support for decision making. A system with the capability to simulate if-then-else
scenarios is called predictive.

• Level 5, Group Aware: In addition to the self and the environment, the system
recognizes a peer group with shared goals and/or similarity in behavior.

Like many other classifications, the details and boundaries can be debated, but the
above classification provides a simple framework to categorize the work done in this
field. A classification similar in ambition and scope has been proposed by Lewis and
coworkers [216, 109]. Inspired by Neisser’s work in psychology [248] they distinguish
between the five awareness levels stimulus-aware, interaction-aware, time-aware, goal-
aware and meta-self-aware. There is no simple mapping to the categorization above,
but all concepts found in one can also be identified in the other, although with dif-
ferent emphasis. The property awareness in [161] is similar to Lewis et al.’s [216]
stimulus-awareness but making the abstraction mechanism explicit. Similarly, level 1 of
an adaptive system in [161] is related to interaction-awareness in [216] but with the
focus on the adaptivity while keeping the concept of interaction rather implicit. The
history awareness in [161] and Lewis et al.’s time-awareness resemble each other quite
well. Lewis et al.’s [216] goal-awareness and meta-self-awareness separate aspects of
inspection and reasoning about goals and the self, which are combined in the predictive
level. The group awareness (i.e., level 5 in the above classification) is not covered in
Lewis et al.’s [216] set of levels but they consider it as a distinct aspect under the label
of collectives and emergent self-aware systems [216].

This direct comparison of these two schemes in [161] and [216] of categorization
highlights that there is no single scheme yet that structures the relevant concepts in an

39

obviously more natural way than others. Depending on preference, emphasis and objec-
tives one may choose and adapt a proper categorization. However, it is also reassuring
since different schemes tend to cover the same ground and thus, important aspects have
most likely not been overlooked.

Reviewing the state of the art with the above five level scheme in mind, we ob-
serve that most embedded and cyber-physical systems proposed do some abstraction
and interpretation of individual properties such as power consumption, performance,
and occurrence of specific faults. Regarding these properties there are also, mostly im-
plicitly, defined goals and expectations. With the exception of the work done by Preden
and Helander [277] and the heartbeat framework [139], history records of properties
are not kept or used in any systematic way. The systems described by Sanz et al.[303]
and, to a more limited extent, by Kaindl et al. [170] use fairly sophisticated inspection
engines and modeling capabilities. The work by Sánchez-Escribado and Sanz [300] is
an interesting attempt towards, a unified desirability scale and a semantic attribution.
A kind of desirability scale is found whenever several objectives are targeted simultane-
ously [137, 368, 347]. However, it appears implicitly as part of an objective function,
which itself is often not maintained explicitly, meaning it cannot be generalized. We
expect from a self-aware system that perhaps tens of partially independent observed
properties are easily related to each other with respect to an equally large set of desired
goals. Similarly, purpose and goals are either implicitly hidden in some decision algo-
rithm or hard-coded at design time, or both. In order to meet a larger set of more or
less independent goals, which are also likely to change over time, a more systematic and
explicit representation of objectives has to be developed. An interesting step is found
in the heartbeats framework [139] which allows applications to register performance
goals, that are then monitored by the framework. It would be interesting to explore
if this approach can be generalized to functional objectives and made sufficiently flex-
ible to allow dynamic formulation of new goals. Along the same lines we note, that
expectations on the environment are handled similarly ad-hoc and implicit, if at all.

The work by Preden et al. [275, 276, 243] can be considered the most advanced
attempt towards group awareness, although it is still limited in this respect. The recent
strong attention on fog computing [164, 314, 143, 50] may speedily advance this field
and contribute to an understanding of group awareness of cooperating systems, how it
emerges and what it is good for.

In summary, apart from classic control systems which populate Level 1, the over-
whelming majority of the work discussed here appear in level 2, though they realize
property awareness to grossly different degrees. There are some isolated attempts to
address core features of levels 3, 4 and 5. None of the levels, 2 and higher, are covered
satisfactorily, hence, significant research challenges remain.

40

Self-Aware,	Closed-loop	Execu5on	

Heterogeneity	

Homogeneity	

Un-Aware,	Open-loop	Execu5on	

CPSoC	

Tradi5onal	
microarchitectures	

SMT	

SEEC,	MIT	

Heterogeneous	
MPSoC	

CMP	

GPGPU	

HMP	

Figure 2.7: Classification of architectures.

2.6 Self-Aware CPSoC

MPSoCs are becoming large and complex [51] following Moore’s Law and are adopt-
ing diverse types of cores and on-chip networks for scalability. Traditionally, multi-
core processors were designed for single metric of design merit such as performance
or energy; today we need to optimize both energy and performance, manage locality,
parallelism, as well as resiliency. In addition to multiple goals, these MPSoCs, which
are networked distributed computing systems, not only required to perform computa-
tion efficiently, but also have to provide some form of guarantees and assurances to
achieve demanding non-functional requirements such as power efficiency, thermal sta-
bility, and resiliency which are physical in nature. Programming these systems with
multiple conflicting goals has become hard because we are faced with a multidimen-
sional optimization problem. As a result, our fundamental computing model must
change to address this multidimensional optimization. Providing formal guarantees
with efficient use of the on-chip resources motivated use of control theory [140], mak-
ing these MPSoCs a cyber-physical system (CPS) by definition. Use of control theory
in these cyber-physical systems-on-chip (CPSoCs), fundamentally changes the execu-
tion model of these systems. Unlike traditional MPSoCs and other microarchitecture
discussed in Section 2.1, CPSoC exhibits heterogenous multi/manycore architecture
with a closed-loop self-aware execution model as depicted in Fig. 2.7. CPSoCs are
uniquely distinguished by several architectural characteristics as illustrated in Table 2.4
such as self-aware execution model, heterogenous manycore processor (HMP) archi-
tecture, distributed on-chip sensor-networks (sNoC), distributed actuation network-on-
chip (xNoC) in addition to communication and coherency NoCs (cNoCs). We present
the details of these architectural features that supports self-awareness in the subsequent

41

subsections.

Table 2.4: Architectural Features of Open Source Processors.

Processor ISA Multicore/ Manycore HMP Self-Aware† sNoC, xNoC cNoC OS FPU MMU HW Multithreaded Performance
pAVR [260] 8b AVR No × × × × × × × × Low
openMSP430 [154, 258] 16bMSP430 No × × × × × × × × Low
CPU86 [146] 16b x86 No × × × × X × × × Low
Zet[7] 16b x86 No × × × × X × × × Low
LatticeMico32 [317] 32b LatticeMico32 No × × × × X × × × Low
ZPU [8] 32b MIPS No × × × × X × × × Low
SecretBlaze [31] 32b MicroBlaze No × × × × × × × × Low
AltOr32 [258] 32b ORBIS No × × × × X × × × Low
aeMB [375, 250, 323] 32b MicroBlaze No × × × × X × × X Medium
Amber [259, 302] 32b ARM v2a No × × × × X × × × Medium
OpenRISC [349, 261] 32b/64b ORBIS No × × × × X X X × Medium
MIPS32 r1 [6] 32b MIPS32 r1 No × × × × X × × X Medium
Simply RISC S1 [292] 64b SPARC V9 No × × × × X X X × High
LEON 3 [10, 9] 32b SPARC V8 SMP/AMP × × × × X X,($) X × Medium
OpenScale [61] 32b MicroBlaze Manycore × × × X X × × × Medium
XUM [5, 232] 32b MIPS32 r2 Manycore × × × X X × × X High
BERI [4, 372] 64b MIPS/CHERI Multicore × × × × X X X X,(BERI2) High
OpenSPARC T1/T2 [262, 263] 64b SPARC V9 Multicore × × × × X X X X High
RISC-V Rocket [213, 358] 64b scalar RISC-V Manycore × × × X X X X × High
RISC-V Boom [66, 357] 64b scalar RISC-V Manycore × × × X X X X × High
OpenPiton [28] 64b SPARC V9 Manycore × × × X X X X X High
CPSoC 32b/64b SPARC Manycore X X X X X X X X High

†Self-Aware Execution Model, sNoC = sensor Network-On-Chip; xNoC = Actuator Network-On-Chip,

2.6.1 On-chip Sensing and Monitoring for Awareness

Diverse real-time monitoring functions assist towards self-awareness objective through
the collection of important system metrics, such as throughput of processing elements,
communication latency, or resource utilization for each application. The online eval-
uation of these metrics can result in localized or global decisions that attempt to im-
prove aspects of system behavior, system performance, quality-of-service, power and
thermal effects under nominal conditions. Observation and collection of the essential
pieces of information plays a central role in creating and using several on-chip mech-
anisms. Designers commonly place custom, application specific observation probes at
various locations in a platform, to dynamically capture critical events, to calculate statis-
tics, or to achieve error-resilient processing and communication. This results in signif-
icant number of sensors and monitors. For example, IBM Power 7 [215] processor
has over 40 distributed thermal sensors, processor core and memory activity counters,
off-chip current and voltage sensors. These sensors include physical sensors such as
delay sensors [67, 100, 206], voltage and power sensors [168, 289, 55], temperature
sensors [69, 79, 251, 270], and reliability sensors [12, 76, 222, 215]. Sensors can
also be implemented at higher level of system stack such as architecture performance
counters [337] and NoC traffic/congestion monitors [80]. Most existing sensors are
designed solely to monitor specific phenomena. On the other hand, CPSoC expands
the role of native sensors by multi-purposing sensors and reducing sensing overheads
through extensive use of sensor fusion rather than the development of new sensors.
Various types of on-chip sensors used in CPSoC are used to develop predictive behavior
models that are essential for awareness of the system architecture and execution model.

42

2.6.2 Cross-Layer Architecture Models for Self-Aware Adaptation

Emerging MPSoC faces formidable challenges, especially with the slow-down of tra-
ditional integrated circuit scaling has prompted comprehensive research on faster, more
reliable and energy-efficient switches. However, better switches alone will not deliver
the necessary leaps in performance. Instead of focusing solely on improving transistors
or memory cells, an integrated approach that shift from transistor-scaling-driven per-
formance improvements to a new post-scaling whole-stack co-design would be the key
to improved efficiency and promises of significant benefits. An end-to-end approach is
essential, as substantial improvements are generally rare, and cannot be achieved with
uncoordinated improvements in architectures, transistors, or memory cells alone but
through symbiotic relations among components to enhance key performance metrics.
Over-optimizing a single component without considering the full-system may not im-
prove the system margin, as components from other layers may be the bottleneck. Im-
proving each component/layer of the system stack where each component/layer shows
comparable improvement can result in synergies; when exploited through careful co-
design and co-optimization of software and hardware can enable higher efficiency and
performance. For example, faster memory accesses cut core idle times, reducing energy
consumption and overall execution time [89]. When combined with increased memory
bandwidth and improve memory locality, enabling many concurrent memory accesses
reducing memory access contention significantly, performance speedup and energy effi-
ciency improves appreciably [37]. On the other hand, comprehensive improvement in
the layers of the stack through (scale-out and scale-up) parallelism and near-threshold
voltage scaling with tolerance of variability across the layer can provide necessary leaps
in performance and energy efficiency [103]. There is need for integrated approach
spanning emerging logic devices and memories, computer architecture, cooling solu-
tions, and synergistic runtime software.

In order to advance whole-stack co-design and optimization at a reasonable develop-
ment costs and time, cross-layer awareness both at design time as well as run-time is key
to enabling this objective. Awareness is critical because an un-aware computing system
can never respond to users and system goals by being oblivious to system state, behavior,
and environment. For instance, because of the lack of accurate awareness of the design
margins, pessimistic assumptions incurring significant overheads are made across the
layer during hardware design time. With the availability of certain system/architecture-
level awareness information, overhead and margin can be reduced by relaxing some of
these assumptions. Additionally, system design margin may be dominated by the ex-
istence of certain pathological scenarios. These pathological scenarios may be caused
by behaviors from different layers of system abstraction. Cross-layer awareness and
approach is required as awareness of a single-layer may be inadequate to avoid these
scenarios during design optimization approach. Furthermore, some hardware-related
phenomena are difficult to monitor by hardware monitors alone. For example, timing
and soft error rate are extremely difficult to monitor due to the rare occurrence nature

43

and unique ambient dependence. Cross-layer awareness approaches can use system and
cross-layer information for better monitoring and awareness to investigate and address
several limitations of current SoC design.

A fundamental step in the awareness of the whole-stack of the system is cross-layer
monitoring and cross-layer modeling in a principled way. Cross-layer analytical models
predict chip key metrics by capturing key technology trends, design constraints, work-
load characteristics and microarchitectural variables into a mathematical framework.
Tractable, accurate and insightful analytical models will become crucial in evaluating
many-core chip designs of the future. Principled approaches to tractable, accurate and
insightful analytical cross-layer modeling are crucial in order to understand, evaluate,
and optimize the whole-stack key system design metrics of many-core chip designs of
the future.

In order to build models online, continuous monitoring of the system to construct
a training dataset of performance statistics is required. Correlation of the dataset by
process, process type, and process group, collection of traces and logs of process activity,
and deriving predictive model to capture the performance (and other design metrics
such as power/ energy) for the observed patterns are commonly performed. In situ
simulation of new algorithms using run-time measurements and prediction model are
used in adapting the system according to system or user goals.

2.7 Summary

Self-awareness has a long history in biology, psychology, medicine, and more re-
cently in engineering and computing, where self-aware features are used to enable
adaptivity to improve a system’s functional value, performance and robustness. With
complex many-core Systems-on-Chip (SoCs) facing the conflicting requirements of per-
formance, resiliency, energy, heat, cost, security, etc. – in the face of highly dynamic
operational behaviors coupled with process, environment, and workload variabilities –
there is an emerging need for self-awareness in these complex SoCs. These concerns
highlight the need for smart SoC paradigm and architectures that dynamically bal-
ance multiple objectives across multiple levels of the design abstraction stack, manage
their limited resources and are always keenly aware of their own accomplishments and
shortcomings. These abilities and attributes distinguish them from traditional embed-
ded MPSoC design and motivate the need for a new design paradigm. In this chapter,
we presented the relevant background, prior work, and trends in emerging SoC that
falls into several categories. We described the classification of contemporary microar-
chitecture and their differences with smart SoC architecture, self-aware, self-adaptive,
autonomic systems. We then introduced the notion of self-aware execution model for
heterogeneous manycore processors as new class of architecture and discuss the CPSoC
paradigm as an example of such architecture with on-chip sensing for self-awareness,
awareness modeling, and self-aware architectures. The CPSoC approach described re-

44

sembles and is inspired by the emergent systems paradigm in that it provides for simple
faculties of monitoring, actuating and control in a bottom-up manner to allow larger
systems to evolve more potent capabilities as individual and as groups of collaborating
systems. However, it hopes to short-cut long learning cycles by equipping systems with
key capabilities without waiting for their emergence through evolution.

45

Chapter 3

CPSoC: Concept and Architecture

46

3.1 Introduction

MPSoCs are becoming large and complex [51] following Moore’s Law and are adopt-
ing diverse types of cores and on-chip networks for scalability. Traditionally, multicore
processor were designed for a single design metric (design figure of merit) such as per-
formance or energy; today we need to optimize both energy and performance, manage
locality, parallelism, as well as resiliency. In addition to these multiple goals, MPSoCs,
which are networked distributed computing systems, not only are required to perform
computation efficiently, but also have to provide some form of guarantees and assur-
ances to achieve demanding non-functional requirements such as power/energy effi-
ciency, thermal stability, reliability and resiliency. Programming and managing these
systems with multiple conflicting goals has become hard as we are faced with a multi-
dimensional optimization problem that requires improved awareness and runtime deci-
sion making capability. As a result, our fundamental computing model must change to
address this multidimensional optimization and adaptation problem.

In this chapter, we present the rationale and concept of a self-aware adaptive SoC
paradigm called the Cyber-Physical-System-on-Chip (CPSoC). We present the architec-
tural features and attributes that distinguish CPSoCs from traditional MPSoCs. We de-
scribe the models of the CPSoC architecture that can be implemented using existing
open framework, tools and methods. This chapter provides overview of the different
components of the CPSoC paradigm and an outline connecting the constituting parts
with details in subsequent chapters.

3.2 Rationale and Concept of CPSoC

Engineering variability challenges and the struggle to control variations in MPSoCs
with exploding number of computing cores [51] calls for a rethinking of the computa-
tional devices and their architectural design paradigm. With an increasing tilt towards
adaptive SoC design and influence of physical parameter dynamics, MPSoCs bear sev-
eral similarities with cyber-physical systems (CPSs) that are real-time controlled and
coordinated systems relying on computational infrastructure. For example, both these
types of systems have complex functional specifications, demanding non-functional
specifications, multi-modal behaviors, as well as use of networks in their design. Even
though the operational life-time and timeline of designs are very different, design of
both these systems involves a control/computing co-design of closed-loop plant with
computer systems in the loop. The characteristics of the plant specially vary, the former
being computation and the latter being a physical system, with disproportionate scale
(e.g., one distributed in the nano-scale and the other geographically distributed).

In Fig. 3.1 the concept of a cyber-physical system and the models used in differ-
ent components of the CPS representation are illustrated where the tight integration of
computation and networking with physical processes are shown with an example of a

47

spacecraft avionics. These system-of-systems are extensively monitored, coordinated,
controlled in real-time. When the same parallel is drawn with that of emerging het-
erogeneous MPSoC, the plant represents the physical dynamics of the MPSoC (such
as power, thermal, reliability etc.) controlled by computational process and on-chip
networks (as illustrated in Fig. 3.2(a)) and are called Cyber-Physical-System-on-Chip
(CPSoC) by analogy. The adaptation and control mechanisms adopted by these SoCs
may either be incorporated in the same chip, or using a additional external service chip.
However, as large computational resources are available in emerging SoCs, the adapta-
tion mechanisms are expected to be present in the same chip. In order to capture the
physical behavior of the whole chip, the MPSoC plant encompasses both the compu-
tational process (i.e., the cores running software) and network behavior as illustrated
in Fig. 3.2(d)-(e). This integrated behavior model of MPSoC physical characteristics
(such as thermal- power dynamic behaviors, the responsiveness, reliability etc.) greatly
benefits whole-stack adaptation and awareness of the chip. The use of adaptive control
theory helps to achieve self-aware adaptation in CPSoCs.

Vehicle	
Interface	

Comm.	
Subsys
tem	

Control	System	

Main	Computer	

Network/Bus	
Health	Monitoring	

Network	 Computa>onal	
Pla@orm	

Computa>onal	
Pla@orm	

Physical	Plant	
Sensors	 Actuators	

(a)	

(b)	 (c)	

Network	 Computa>onal	
Pla@orm	

Computa>onal	
Pla@orm	

Physical	Plant	
Sensors	 Actuators	

Figure 3.1: Concept and representation of Cyber-Physical Systems (CPSs) (a) a space-
craft example (b) block diagram representation of CPS (c) models used in CPS repre-
sentation [211] .

Use of control theory in these CPSoCs, fundamentally changes the execution model
of these systems. Unlike traditional MPSoCs and other microarchitectures discussed
in Section 2.1, CPSoCs are uniquely distinguished by several architectural characteris-
tics such as self-aware execution model, heterogeneous manycore processor (HMP) ar-
chitecture, distributed on-chip sensor-networks (sNoC), distributed actuation network-
on-chip (xNoC) in addition to communication and coherency NoCs (cNoCs). In this
chapter, we present the concept of CPSoC and its architectural features that support
self-awareness.

48

(a)	

	
Physical	Plant	

Network	
Computa+onal	

Pla/orm	
Computa+onal	

Pla/orm	

Sensors	 Actuators	

	
Physical	Plant	

Network	
Computa+onal	

Pla/orm	
Computa+onal	

Pla/orm	

Sensors	
Actuators	

	
Physical	Plant	

Network	
Computa+onal	

Pla/orm	
Computa+onal	

Pla/orm	

Sensors	 Actuators	

(b)	 (d)	

(c)	 (e)	

Network	
Computa+onal	

Pla/orm	
Computa+ona
l	Pla/orm	

Physical	Plant	
Sensors	 Actuators	

Network	 Computa+onal	
Pla/orm	

Computa+onal	
Pla/orm	

Physical	Plant	
Sensors	 Actuators	

Sta
rt	
Inp
ut	

Proces
s	

Proces
s	

En
d	

Figure 3.2: From CPS to CPSoC: concept and model representation.

3.3 CPSoC Paradigm

CPSoC [312, 313] is a sensor-actuator-rich self-aware computing-communication-
control (C3) centric paradigm with an adaptive middleware (a flexible hardware-software
stack and interface between the application and OS layer) to control the manifestations
of computations (e.g., aging, overheating, parameter variability etc.) on the physical
characteristics of the chip itself and the outside interacting environment. Inspired by
the adaptive and learning abilities of autonomous computing [180] and C3 paradigm of
CPSs [210], CPSoC provides a computing framework that assures the dependability of
the cyber/information processing (i.e., the cyber aspects such as integrity, correctness,
accuracy, timing, reliability and security) while simultaneously addressing the physical
manifestations (in performance, power, thermal, aging, wear-out, material degradation,
reliability, and dependability) of the information processing on the underlying comput-
ing platform. Note unlike the reference architecture proposed by Lewis et al. [216],
CPSoC aims to coalesce these two traditionally disjoint aspects/abstractions of the cy-
ber/information world and the underlying physical computing worlds into a unified
abstraction of computing by using cross-layer virtual/physical sensing and actuation to
enable a C3 centric self-aware computing platform.

The CPSoC architecture consists of a combination of sensor-actuator-rich computa-
tion platform supported by adaptive NoCs (cNoC – communication NoC; and sNoC –
sensor NoC), introspective sentient units (ISU), and an adaptive middleware to manage
and control both the cyber/information and physical environment and characteristics
of the chip [312, 313]. The CPSoC architecture is broadly divided into several layers of
abstraction, for example, application, operating system, network and bus communica-
tion, hardware, and the circuit / device layers. CPSoC inherits most features of MPSoC
in addition to on-chip sensing and actuation to enable the Observe-Decide-Act (ODA)

49

Applica'ons	

Opera'ng	
 System	

Network/Bus	
 Communica'on	

Architecture	
 	

Hardware	
 Architecture	

Device/Circuit	
 Architecture	
 	
 	

SA	

SO	

SN	

SH	

SC	

Sensors	
 	

(Observer)	

Adap'on	
 Policies	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(Decide)	

AA	

AO	

AN	

AH	

AC	

Actuators	
 	

(Act)	

SEN
SO

R	
 	
 	
 	
 	
 FU
SIO

N
	

ACTU
ATO

R	
 	
 	
 	
 	
 FU
SIO

N
	

Supervisory	
 Policies	

Middleware/Firmware	

ActuaBon	
 at	
 	

Different	
 layers	

Sensing	
 at	

Different	
 Layers	

Virtual	
 Sensors,	
 Actuators	

Physical	
 Sensors,	
 Actuators	

Figure 3.3: Cross-layer virtual sensing and actuation at different layers of CPSoC [309,
313].

paradigm. Unlike traditional MPSoC, each layer of the CPSoC can be made self-aware
and adaptive, by a combination of software and physical sensors and actuators as shown
in Fig. 3.3. These layer specific feedback loops are integrated into a flexible stack which
can be implemented either as firmware or middleware as shown by the dotted line in
Fig. 3.3.

CPSoC distinctly differs from a traditional MPSoC in several ways. Traditional MP-
SoC paradigms lack the ability to sense the system states and behaviors across layers
of the system stack due to lack of architectural support; they are incapable of exploit-
ing and exposing process and workload variations due to lack of suitable abstractions
at multiple layers. Furthermore, they sacrifice usable performance and energy oppor-
tunities by adopting worst case design (guard-bands), and lack support for multi-level
actuation mechanisms and adaptations to aggressively meet competing and conflicting
demands. Moreover, traditional MPSoCs lack self-learning mechanisms that can antici-
pate failures and predict vulnerabilities. CPSoC overcomes these limitations as detailed
below.

3.4 Features and Attributes of CPSoC

The CPSoC framework supports four key ideas: 1) physical and virtual sensing and
actuation 2) simple and self-aware adaptations 3) cross-layer interactions and interven-
tions 4) predictive modeling and learning. We briefly describe these below.

50

3.4.1 Cross-Layer Virtual and Physical Sensing and Actuation

CPSoCs are sensor-actuator-rich MPSoCs that include several on-chip physical sen-
sors (e.g., aging, oxide breakdown, leakage, reliability, temperature, performance coun-
ters, as well as voltage, current, and power sensors [312, 313]) on the lower three
layers as shown by the on-chip-sensing-and-actuation block (OCSN) in Fig. 3.7. On
the other hand, virtual sensing is a physical-sensor-less sensing of immeasurable pa-
rameters using computation [311]. It can be viewed as a software sensor that pro-
vides indirect measurement of abstract conditions, contexts, inferences or estimates by
processing (e.g., combining, aggregating, or predicting) sensed data from either a set
of homogeneous or heterogeneous sensors. It is also a computational technique that
enhances and/or adds sensing capability, introduces sensing options, increases sensi-
tivity, enables efficient sensor resource uses, and overcomes physical placement and
cost restrictions. When combined with different kinds of sensors, virtual sensing en-
ables consensus to resolve faults and errors while providing a testbed for on-chip sensor
fusion [341]. Table 3.1 shows examples of physical and virtual sensors and actuators
across the system stack that are key to achieving system goals and quality-of-service
(QoS). QoS is used as a general quality measure in the sense of user perceived perfor-
mance, or degree of satisfaction to the user. Application-level QoS can be ensured by
either resource-reservations at all underlying levels or by adaptation of application to
cope with changing resource availability.

Similarly, we define virtual actuations [312, 313] (e.g., application approximation,
algorithmic choice, checkpointing, duty cycling) as software/hardware interventions
that can predictively influence system design objectives such as performance, power,
energy efficiency, and reliability. Virtual actuation can be combined with physical actu-
ation mechanisms commonly adopted in modern chips (e.g., DVFS and adaptive body
biasing (ABB)) to control the chip’s performance, power, and parametric variations.

3.4.2 Simple and Self-Aware Adaptations

Self-awareness is used to describe the ability of the CPSoC to observe its own internal
states and behaviors such that it is capable of making judicious decisions that optimize
performance and other quality-of-service (QoS) metrics [180]. Self-aware systems are
capable of adapting their behavior and resources to automatically find the best way
to accomplish a given goal despite changing environmental conditions and demands.
A self-aware system must be able to monitor its behavior to update one or more of
its components (hardware architecture, operating system and running applications), to
achieve its goals.

Two key attributes of the self-aware CPSoC are adaptation of each layer and multi-
ple cooperative ODA (Observe-Decide-Act) loops. As an example, the unification of a

51

Table 3.1: Virtual/Physical Sensing and Actuations Across Layers.

Layers Virtual/Physical Sensors Virtual/Physical Actuators

Application Workload, Power, Energy and Execution

Time, Phases

Loop Perforation, Approximation,

Algorithmic Choice, Transformations

Operating System System Utilization and Peripheral States,

TLP

Task Allocation, Partitioning, Scheduling

Migration, Duty Cycling

Network/ Bus

Communication

Bandwidth, Packet/Flit Status and

Channel Status, Congestion

Adaptive Routing, Dynamic BW

Allocation and Ch. no and Direction

Control

Hardware

Architecture

Cache Misses, Miss Rate, Access Rate,

IPC, Throughput, ILP, MLP

Issue-Width Sizing, Reconfiguration

Resource Provisioning, Static/Dynamic

Redundancy

Circuit/Device Circuit Delay, Aging, Leakage

Temperature, Oxide Breakdown

DVFS, ABB, Voltage Frequency Island

Clock Gating, Power Gating

heterogeneous computing platform (with combined scheduling and DVFS as actuation
mechanism) along with application/algorithmic level approximations as an additional
knob, offers an extra dimension of controlled solutions in comparison to the traditional
MPSoC architecture. These cooperative and hierarchical control loops –e.g., the com-
bination of traditional control loop (dotted lower box in Fig. 3.5) together with virtual
sensing enabled optimized loop (upper loop in Fig. 3.5) – effectively translate user goals
or QoS into one or more multiple design objectives [312, 313].

3.4.3 Cross-layer Interactions and Interventions

Two key attributes of the self-aware CPSoC– unlike autonomous computing [180],
and invasive computing [353] –are adaptation of the layers and multiple cooperative
ODA loops. As an example, the unification of an adaptive computing platform (with
combined DVFS, ABB, and other actuation means) along with a bandwidth adaptive
NoC offers a completely different approach (extra dimensions of control) and solutions
in comparison to traditional MPSoC architecture. These cooperative and hierarchical
control loops – e.g., the combination of traditional control loop (dotted lower box in
Fig. 3.5) together with virtual sensing enabled optimized loop (upper loop in Fig. 3.5)
– effectively translate application goals or QoS into one or more multiple design objec-
tives.

On-chip self-awareness with cross-layer virtual and physical sensing and actuation is
a key enabling technology for efficient use of heterogeneous architectures, and applica-

52

Self-monitoring and behavior modeling

Adap%ve	Polices,	
Controller,	

Actua%on	Knobs	

System	Behavior	
(Predic%ve	Model)	

measurement

input

Se
lf-

Aw
ar

e
A

da
pt

at
io

n

output

Simple Adaptation

Cross-
Layer	Phy/	
Virtual	
Sensing		

QoS/	
Goals	

Mul%-sensor	NoC	

Figure 3.4: High-level abstraction of CPSoC self-awareness.

tions with guaranteed run-time system goals and QoS (performance, reliability, power,
thermal behavior) in a highly dynamic environment. The thesis demonstrates the use
of multi- and cross-layer interactions and interventions for managing multiple design
constraints (e.g., power, performance, thermal, resilience, aging), as well as in differ-
ent design contexts (e.g., mobile platforms, data-intensive applications, long-mission
applications, etc.) [306, 313, 244].

3.4.4 Predictive Models and On-line Learning

Predictive modeling and on-line learning abilities of the system behavior as well as
internal and external (environmental) states provide self-modeling abilities in the CP-
SoC paradigm. The system behavior and states can be built using on-line or off-line
linear or non-linear models in time or frequency domains [226]. We specifically use
statistical and machine learning approaches [130, 110] such that the model accuracy
can be traded-off for model computational complexity. We use regression based linear
predictors and nonlinear predictors to build models of the system performance, power
and energy consumption using the cross-layer events, hardware counters, and on-chip
sensor data. In addition, use of coupling parameters (a metric that quantifies the inter-
actions between layers) helps to develop application and cross-layer interaction models
for nominal and abnormal operations. We use the predictive and learning abilities of
CPSoC to improve autonomy in managing the system resources and assisting proactive
resource utilization in the run-time system [312, 313].

53

Adaptive
Controller

Policies

CPSoC Fabric

Cross
Layer

Virtual
/Physical
Sensing

Physical
Sensors NoC

Predictive
Models

Error
±

Noise

Feedback

On-line
Optimization

Optimizing Loop

System
Goals

(Reference
Behavior)

ad
ap

ta
tio

n
Virtual &
Physical

Actuation
±

Simple Adaptation
Control Loop

Application
Goals, Intents,

and Hints

System
Priorities and

Policies

Set Point

Application Layer

Self-Aware Adaptation

Figure 3.5: Adaptation using predictive control model and policies in CPSoC [309, 313].

3.5 CPSoC Organization

The CPSoC organization consists of a combination of sensor-actuator-rich computing
tiled clusters supported by different types of NoCs (cNoC, sNoC), introspective sentient
units (ISU), and an adaptive reflective middleware to manage and control both the cy-
ber/information and physical environment and characteristics of the chip. The CPSoC
architecture is broadly divided into several layers of abstraction, for example, applica-
tion, operating system, network and bus communication, hardware, and the circuit /
device layers. The CPSoC computation fabric is embedded with on-chip sensing and ac-
tuations (OCSA) for homogeneous and strongly heterogeneous architecture as shown in
Fig. 3.8. In this distributed sensing and actuation approach, each component and core
can make the decision to manage the fabric. An exemplar architecture with such sensing
and actuation mechanism is shown in Fig. 3.9. Note that as the sensing and actuation
mechanisms in such a configuration need to be piggy backed on the traditional best ef-
fort core-to-core communication NoC, additional design considerations (e.g., real-time
processing of sensors and actuators) need to be considered. On the other hand, such
concern can be handed to a dedicated custom network which can be specialized to meet
these requirements efficiently. One such example of a specialized sensing network to
efficiently sense several distributed sensor types is shown in Fig. 3.11. The informa-
tion generated by these sensor types needs to be aggregated and processed. To achieve
that, CPSoC introduces a specialized unit called ISU to collect, monitor, and process the
sensing data and make meaning about the system’s present states and context as well
as future states. Each ISU is a processor based system that is interfaced to the sNoC

54

Accelerators	

General	Purpose	
Processor	

Asymmetric
Multiprocessor

CPSOC	

Pe
rf
or
m
an
ce
/P
ow

er
	

Applica5ons	FFT	Matrix	Mult.	LDPC	

Self-Aware Cross-Layer Adaptation

Design Objective

Figure 3.6: Opportunity with Self-Aware Adaptation.

where the virtual sensing approach is performed. The information from the ISUs are
distributed to the computational cores. The placement and configuration of the ISUs
can be determined based on the overheads and communication bottlenecks. A small
core (e.g., Cortex M3) may be sufficient for low processing requirements. On the other
hand, when aggressive processing is required to model and predict various phenomena
in real-time, larger cores (e.g., A9) can be used.

3.6 CPSoC Architectural Components

Since the CPSoC platform introduces several new hardware and architectural mod-
ules for on-chip sensing, analysis, and actuation, in this section, we analyze the over-
heads incurred by these architectural assists.

3.6.1 Heterogeneous Tiled Cluster Architecture

CPSoC fabric is characterized by heterogeneity at multiple levels of abstraction and
granularity. Fig. 3.12 depicts the various architectural configurations due to hetero-
geneity of the cluster and the tiles. In Fig. 3.12 (a), all the clusters and tiles are uniform

55

Chip Hardware

App 1 App 2 App N

Cross-Layer
Sensors (Virtual &

Physical)

Decisions &
Learning

(Controller)

Actuation (Software
and Hardware)A

da
pt

iv
e

R
ef

le
ct

iv
e

M
id

dl
ew

ar
e

L
ay

er

Scheduling Memory
Manager

File
System

Device
Drivers

Traditional Operating System

Hypervisor

Observe Decide

Act

A
pp

lic
at

io
n

L
ay

er
DDRO (s) &

CPM(s)

Oxide
Sensor(s)

Temperature
Sensor(s)

Leakage
Sensor(s)

Aging
Sensor(s)

Reliability
Sensor(s)

Performance Counters

CPU(s)

$I $D

$L2

Scratch pad/
On-Chip
SRAM

NIA

Timer &
RTC

PLL

On-chip Actuation
Unit

On-Chip Sensing & Actuation (OCSA)

GPIO

CPSoC Core

CPS Core

Adaptive Router

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D

$L2

NIA OCSA

NoC
Router

OCSA

Figure 3.7: CPSoC architecture with adaptive Core, NoC, and the Observe-Decide-Act
Loop as Adaptive and Reflexive Middleware[309, 313].

resulting in a perfect homogeneous tiled cluster, while Fig. 3.12 (b) depicts the archi-
tectural configuration with heterogeneous tiles and cluster. Similar to the previous two
configurations, we can also have heterogeneous architectural configurations where het-
erogeneity is introduced in the cluster size as well as jointly in cluster size and tiles
respectively.

56

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPU CPU

$I $D
$L2

NIA OCSA

NoC
Router

OCSA

CPS Core

Adaptive Router

(a)	
 (b)	

Figure 3.8: CPSoC Computational Fabric with on-chip sensing and actuations (OCSA)
for (a) homogeneous titled architecture (b) strongly heterogeneous architecture.

cNIC	 cNIC	

cNIC	cNIC	

cNIC	

cNIC	

cNIC	cNIC	 cNIC	

cluster	 cluster	

cluster	 cluster	

Tile	

Tile	 Tile	

Tile	 Tile	

(a)

cNIC	 cNIC	

cNIC	cNIC	

cNIC	

cNIC	

cNIC	cNIC	 cNIC	

Cluster	type	1	

Tile	

Cluster	type	2	

Cluster	type	3	 Cluster	type	4	

(b)

Figure 3.12: Homogeneous and Heterogeneous Tiled Architecture of CPSoC fabric (a)
homogeneous cluster and tile (b) heterogeneous cluster and tile.

57

ACTUATORS	

CORE	

SE
N
SO

RS
	

MEMORIES	
NIA	

ACCELERATORS	

CPU	

$I	 $D	

$L2	

SRAM	

GPIO	

NIA	

Accelerator	

DPLL	

LDO	

On-chip	Actua@on	
Unit	

Timer(s)	&	RTC	

DDRO(s)	

Oxide	
Sensor(s)	

Temperature	
Sensor(s)	

Leakage	
Sensor(s)	

Aging	
Sensor(s)	

Reliability	
Sensor(s)	

Cri@cal-path	
monitor(s)	

On-chip	Sensing	&	Actua2on	(OCSA)	

Performance	Counters		

Figure 3.9: CPSoC core with on-chip sensors and actuators connected to the local bus.
The cores have independent L1 cache and may share L2 and L3 cache with other cores.

L3	 cNoC	Routers	

L2	Cache	

Bus	Arbiter	

FPU	

Core	

$I	 $D	

OCSA	

Accelerator	

(a)

L3	 cNoC	Routers	

L2	Cache	

Bus	Arbiter	

FPU	

Core	

$I	 $D	

OCSAQQQ
	 				

Accelerator	

(b)

Bridge	

I/O	

Traffic	
Spli2er	

cNIC	
Router	

DRAM	
Controller	

(c)

Figure 3.13: Architecture of the tile and its different configurations (a) tile with on-
chip sensing and actuation (OCSA) and accelerators (c) tile with distributed OCSA (d)
Cluster network interface chipset (cNIC).

3.6.2 Tiles and cNIC

The architecture and configurations of the tile are shown in Fig. 3.13. The base line
tile architecture consists of a SPARC cores [115, 151] with L1 cache, private L2 cache,
on-chip cNoC routers, and distributed L3 cache, along with optional floating point unit
(FPU) and accelerators. In order to support self-awareness and actuation mechanisms,
the core is modified to include the on-chip sensing and actuation (OCSA) unit in the

58

(a) (b)

Figure 3.10: Distributed sensor networks-on-chip for homogeneous and heterogeneous
architectures.

tile. The on-chip L2 and L3 caches connect directly with the cNoCs and use the bus
arbiter interface (e.g., CPU-cache-crossbar (CCX) of OpenSPARC) to connect the cores,
the caches, FPU, I/O and other components. The crossbar bus arbiter demultiplexes
memory and floating-point requests from the core to the L2 and FPU and arbitrates
responses back to the core.

3.6.3 Processor Cores

CPSoC platform can be built using processors with different instruction set archi-
tectures (ISA) that provide the ability to reconstitute or compose them (with varied
component specifications) during the design time along with the development, pro-
gramming, and configuration tool chains. Open source processor cores (see Table 8.1)
that provide the necessary tool chains are ideal candidates and we consider the fol-
lowing cores for the CPSoC FPGA prototyping and emulation. In this work, we use the
SPARC cores (OpenSPARC T1 and Leon cores) because of the industry-hardened design,
multi-threaded capability, simplicity, and modest silicon area requirements. In addition,
these open frameworks have a stable code base, a matured ISA with compiler, OS, and
validation test suite.

In order to build a heterogeneous CPSoC architecture and reduced programming
complexity, cores of the same ISA are modified with different resources to get heteroge-
neous cores. Heterogeneous architectures with different ISA can also be built, but the
added complexity and tool compatibility are limited in our present development. For
a selected processor type and ISA, the IP cores and peripherals have to follow the bus
standard of the processor. However, in order to facilitate the library components’ use
with different bus architectures, we develop bus converters and bridges such that com-
ponents can be interfaced to a processor with different bus specifications. Our design
of the different components of the library are AMBA, AXI compatible and we provide

59

Core		
Single-Thread	Mode	

Core		
Throughput	

Mode	

Core		
Throughput	

Mode	

A	 B	 C	 D	

E	 F	 G	 H	

Th
ro
ug
hp

ut
	

	C
or
e	

Th
ro
ug
hp

ut
	

	C
or
e	

Th
ro
ug
hp

ut
	

	C
or
e	

Th
ro
ug
hp

ut
	

	C
or
e	

ISU	

M
em

or
ie
s	

Introspec@ve	Sen@ent	Unit	(ISU)	

R R R R

RRRR

A	 B	 C	 D	 E	 F	 G	 H	

R

I/F	

R

(a)

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

ISU	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

ISU	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

ISU	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

ISU	
A7	
A7	

A7	
A7	
A7	

A15	

(b)

Figure 3.11: CPSoC with the distributed sensor network (sNoC) and the introspective
sentient unit (ISU). (a) A ring network with a time division multiplexed (TDM) router
connects all the distributed sensors of different types in cores, memories and accelera-
tors. (b) placement of multiple ISU for distributed sensing.

bus converters (e.g., CCX to AXI, AMBA to Wishbone, AXI to APB and vice versa) to
interface with other processor bus specifications.

3.6.4 Memory Hierarchy

The L3 cache is distributed write-back cache shared by all the tiles in the cluster. The
default cache configuration is 64KB per tile and 4-way set associativity with 64 bytes
per cache line and 64 bit per entry but both the size and associativity are configurable.

Distributed	
L3	Cache	

Private	L2	
Cache	

Off-chip	
Memory	
Controller	

Core	

$I	 $D	

CCX	

cNoC1	 cNoC1	

cNoC3	 cNoC3	

cNoC2	 cNoC2	

Figure 3.14: Memory hierarchy showing the data path and interfaces.

3.6.5 Interconnects

CPSoC deploys different types of networks and interconnects in order to observe
and act in a distributed way. The following subsections briefly discuss each of these
networks.

60

3.6.5.1 Network-on-Chip (NoC)

The core-to-core NoC (cNoC) is an integral part of the tiled distributed architectures
of CPSoC. There are three cNoCs similar to the scheme in [28] that connect the tiles in a
2D mesh topology with purpose of providing communication between the tiles for cache
coherence, I/O and memory traffic, inter-core interrupts. In addition, to routing traffic
destination for other cluster through the cNIC chipset bridge, the cNoCs maintain point-
to-point ordering to maintain consistency. The cNoCs implementation uses physical
networks, credit base flow control, and wormhole routing to ensure a deadlock-free
operation.

3.6.5.2 cNIC Cluster Bridge

The cluster bridge connects the tile array to the cluster network interface chipset
(cNIC) as shown in Fig. 8.3. All memory and I/O requests are directed through the
bridge interface to be served by the cNIC. The bridge transparently multiplexes the
cNoCs over a single link and provides a link between I/O and core clock domains. The
bridge is connected to a cNIC router that implements virtual channels over a off-chip
physical channel providing arbitration logic. In addition to traditional credit based flow
control in the cNIC router, we introduce a software-defined configurable router with
bandwidth, channel direction, and routing policy control to achieve improved adaptivity
and control of the inter-cluster networks as shown in Fig. 3.15.

3.6.5.3 cNIC Chipset

The cluster network interface (cNIC) chipset connects multiple clusters in the CP-
SoC prototype and it consists of the DRAM controller, the cluster bridge, the intra-chip
network router (cNIC router) and the I/O interfaces.

3.6.6 Actuation Networks-on-Chip (xNoC)

The CPSoC platform can support many actuation mechanisms across several layers;
here we consider emulation and prototyping of these mechanisms in the FPGA archi-
tecture. The actuation mechanisms in the software layers can be supported with mod-
ifications to application, programming models, and the runtime system. However, the
mechanisms in the networking, and architecture layers require hardware design modi-
fications. We illustrate the support of some of these mechanisms in the FPGA platform.
We consider the dynamic frequency scaling (DFS) per core using a digital phased locked
loop (DPLL) implementation and providing the DPLL control directly to the runtime
system and OS as shown in Fig. 3.16. Another actuation mechanism that can easily be
implemented is clock gating which is an extension or special case of DFS. We introduce

61

Se
ri

al
iz

er
D

es
er

ia
liz

er

VC 1

VC 2

VC 2

Flits Input

Channel P

VC 1

VC 2

VC 2

Input Buffer

Output Buffer

Crossbar

Phits Input

Switch Allocator (SA)
VC Arbitor

(VA)

Routing
Computation

(RC)

Channel
Allocator

Direction
Control

Channel Allocated

P
hi

t C
ou

nt

B
uf

fe
r

St
at

es

64

16

16

16

16

Clk
Divider

Clk
Select

Software-controlled Sensing

Figure 3.15: A software-defined adaptive router for cNIC with bandwidth, channel di-
rection, and routing policy control.

the heterogeneity of cores by different cache sizes and number of functional compo-
nents (e.g., integer unit, FPU, timers etc.) that provides performance-power trade-offs
for the runtime system to exploit.

CORE

SE
N

SO
R

S

MEMORIES
NIA

ACCELERATORS

DPLL1

DPLL2

DPLLn

C
lk Select

Clk_in Clk_out

Select

(a)

PLL1

PLL2

PLLn

C
lk

 S
el

ec
t

Clk_in Clk_out

Select

(b)

Phase		
Detector	

÷N		
Counter	

K	Counter	
D/U BO

CAK CLK

DECR INCR

fout ,φout

fin ,φin

Mfc

OUT

I/D	
÷2		 CLK

2Nfc

(c)

En	

÷N		
Counter	

K	CK	

I/D	
÷2		

Enhanced		
Phase		

Detector	 K-Counter	
o/u

I/D	
CK	

fin	

fout	

(d)

Figure 3.16: Clock frequency adaptation and control in CPSoC platform (a) clock
scheme (b) clock selection (c) DPLL (d) DPLL with jitter reduction.

3.6.6.1 Fusion of Actuation Mechanism

Actuator fusion combines different types of actuators across different layers of the
system stack into virtual actuators. By fusing actuation mechanisms from the highest
levels (e.g., application and software) together with lower layers (OS, hardware, and
circuit layers), we can exploit wider opportunities for controlling system QoS properties

62

(e.g., performance, power, thermal, and reliability guarantees). Actuator fusion affords
several advantages: graceful degradation of system performance in the face of actua-
tion mechanism failures; faster response and more dynamic range of actuation; use of
simpler (low-overhead) actuation mechanisms for virtual actuation; and repurposing of
different actuation mechanisms to overcome specific constraints and malfunctions.

Actuator fusion can be used to guarantee runtime system QoS (performance, relia-
bility, power, thermal behavior) even in a highly dynamic environment. As a specific
example, consider a manycore architectural stack executing heterogeneous applica-
tions/workloads (for example, probabilistic/RMS and safety-critical workloads). Also
consider three actuation mechanisms that are traditionally applied independently to
improve performance within the power consumption goals: loop perforations in the ap-
plication layer, task allocation in OS layer, and DVFS in the hardware layer. The fusion
of these three actuation mechanisms (loop perforation, task allocation, and DVFS) en-
able aggressive power savings that would not be possible beyond a critical voltage and
frequency with simple DVFS. Once this critical limit is reached, any further reduction
in voltage/ frequency results in exponential degradation in system reliability and error
characteristics. Loop perforation in the actuator fusion framework enables additional
power saving without jeopardizing the system reliability and dependability. This addi-
tional dimension of control provides added flexibility in improving the range and speed
of qualities of service and experience of computing platforms.

3.6.7 Middleware and OS Support for Adaptation

The word “adaptation” has several meanings in the systems community. However,
the most accepted notion of adaptation is defined as the ability to adjust and improve
system response using feedback, the ability to respond to change along with the capabil-
ity to alter itself dynamically to achieve goals. From a software engineering perspective,
a system is adaptive when it allows for modifying its structure or behavior at runtime;
i.e., without interrupting its service by coupling the system with an adaptation man-
ager. On the other hand, from a control engineering viewpoint, adaptation or adaptive
control adds a degree of flexibility to the control mechanism, where the controller may
change its own control policies, structure, or control parameters dynamically. We rec-
oncile both these viewpoints by defining a generalized closed-loop structure where the
system monitors and detects the changes, analyzes their impact, and, if needed, plans
and executes actions in response to the changes. In addition, knowledge about the
system that is captured by suitable models updated at runtime is used to support adap-
tation. We specifically focus on the operating system support needed for adaptation of
emerging heterogeneous MPSoCs for achieving system goals (e.g., energy efficiency)
dynamically.

Middleware is a computer software that provides services to software applications
beyond those available from the operating system. Adaptive middleware is a software
whose functional behavior can be modified dynamically to optimize for a change in en-

63

vironmental conditions or requirements. The requirements of runtime adaptive system
include measurement, sensing, control, feedback and stability. Adaptations can be trig-
gered by changes in the environment, change in the configuration or policy, instructions
from another program, and user requests. Reflection is a technique that enables adap-
tation. Reflection is the integral ability of a program to observe or change its own code
as well as all aspects of its programming language - even at runtime [336]. Structural
reflection provides the ability to alter the statically fixed internal functional structures.
Structural reflection changes the internal makeup of a program. On the other hand,
behavioral reflection enables the ability to intercept an operation such as a method in-
vocation and alter the behavior of that operation. Behavioral reflection alters the actions
of a program. Reflective middleware moves reflection to the middleware level.

CPSoC presents a general computational model for enabling applications and system
to cooperate in a self-aware manner. In the CPSoC paradigm, application and system
goals are considered jointly, system runtime decides possible actions and takes the ac-
tions to achieve and meet those goals. The self-awareness computing framework is
implemented using the adaptive middleware that implements the observation, decision,
and action phases of an ODA loop. The ODA loop is the characteristic of a control sys-
tem; during the observation phase the system collects information, which is fed to the
decision phase. During the decision phase the system determines whether recent ob-
servations require a change in behavior and, if needed, what form this change should
be performed. If adaptation is desired, the action phase implements the adaptation
dictated by the decision process. The CPSoC paradigm, as shown in Fig. 3.7, supports
this form of closed-loop execution by generalizing the observation and decision phases,
providing standard techniques that work with a broad range of actuation mechanisms
(actions) that is available in adaptive middleware layer. The adaptive middleware ex-
hibits some of the properties of reflection, specifically behavioral reflection, to alter the
behavior of the system and application in order to adapt to changes in workload and
environmental condition as discussed in Chapters 7 and Chapter 6.

3.6.8 Self-Awareness Properties and Levels in CPSoC

In Section 2.5, we described a necessary set of properties for a CPSoC to become
self-aware based on the classification levels. For a CPSoC to be self-aware in the ideal
sense, it should exhibit all of these properties at the highest level of fidelity and with
maximal range of attributes. However, depending on the context of the engineered
system and the use case, it may not need all of these attributes, nor does it need to have
maximal coverage in terms of the fidelity and range of attributes. Indeed, in the CPSoC
context, we are typically resource constrained, with limited area, power, and thermal
budgets. Thus we need to consider carefully how to incorporate different self-awareness
attributes, and at what levels they can be designed within the overall envelope of all the
SoC design constraints. Towards that end, we describe below how the CPSoC exemplar
has incorporated the self-aware properties described earlier. Recall that CPSoC supports

64

four main concepts: (1) physical and virtual sensing and actuation, (2) self-monitoring
and adaptation, (3) cross-layer interactions, (4) predictive modeling and learning.

Physical and virtual sensing collects the primary data but also does a great deal
of abstraction with specific goals in mind. Disambiguation is performed partially and
implicitly but not in a formal manner. Hence, CPSoC offers implicit semantic interpre-
tation.

A desirability scale is built into the system for each sensor or their combination in
the virtual sensing approach. All the functions – from the collection of sensory data to
the control algorithms and the actuation mechanisms – use this desirability scale for
accurate sense-making and deriving insights (e.g., how the system should perform and
what constitutes a malfunction). CPSoC may appear to use an implicit desirability scale
but in fact uses an explicit one through mapping functions and calibration tables as
discussed in the implementation of a temperature sensor in Chapter 4. An explicit map-
ping function (based on look-up tables (LUTs)) in a ring oscillator based thermal sensor
transforms the ring oscillator frequency to that of actual temperature reading on the die
(measured in ◦C) is used as the desirability scale for thermal awareness. Moreover, as
the mapping functions and LUTs are virtualized in software as discussed in Chapter 4,
the provision for re-purposing these sensors, for example, a ring oscillator based leakage
power or aging sensor can be realized. An explicit desirability scale has the advantage of
increased flexibility by decoupling observations from decisions. When new types of sen-
sory data and new observations have to be interpreted, they are explicitly mapped onto
a desirability scale allowing the control and decision algorithms to remain unchanged
while still taking the new information into account. Hence, we consider that CPSoC has
an explicit desirability scale while performing semantic attribution implicitly.

CPSoC keeps track of the historic evolution of properties by using explicit notions
of epoch and sampling time [313, 310]; hence it embodies this dimension of awareness
as illustrated in Chapter 7. As an example, the state space dynamic models in [309, 310]
uses explicit notions of states in the previous epoch to predict the states value in the
current epoch. Additionally, sensor data across multiple epochs are stored as history in
order to make an assessment of the average behavior of certain states of interest.

CPSoC has clear goals such as the maximization of energy efficiency and the ability
to detect and tolerate faults and failing components. Again, these goals are configurable
and can be specified, selected, or changed in the control algorithms, which make them
efficient and effective and provide flexibility to adapt to new goals during the system’s
lifetime. As an example, the online Simulated Annealing based optimization scheme
in Chapter 7 is made configurable to accept or change the objective function at run-
time by using a Linux system call for performance maximization while achieving energy
efficiency.

The purpose is only defined partially, because CPSoC is a platform that can be used
in a range of applications. By definition, a platform will always only define some of the
system’s goals, such as detecting and tolerating faults, but will leave the definition of
other goals to the application as discussed in Chapter 5.

65

CPSoC being a platform with system level goals (e.g., thermal efficiency) is aware of
some aspects of the environment (e.g., the ambient temperature) and has consequently
expectations on the environment in addition to the expectations on itself as encoded
in the sensing and control algorithms. However, these expectations are implicit and
reactions to environmental changes are limited to specific cases corresponding to the
system-level goals.

The inspection engine is based on prediction models (or their variants) as discussed
in Chapter 4, 5 and 6, thus providing the capability to inspect state variables in time
and space.

In summary, the design of the CPSoC framework has carefully considered how to
balance the needs of self-awareness in an SoC context, and has realized different self-
aware attributes with the dual goals of maximizing self-awareness, while minimizing
overheads and simultaneously meeting the complex, interdependent set of constraints
faced by the system. Hence, it can be considered as a self-aware system as defined in
Section 2.5 and in our earlier work [161, 310, 104], to the extent reasonable in an
SoC context. Indeed, it should be noted that more awareness is not necessarily better.
There is a trade-off between the cost of awareness, the efficiency of implementation,
and the flexibility and generality that would come with higher degrees of awareness.
This is particularly important in the specific context of self-aware SoCs that must meet
a multitude of cross-purpose constraints.

3.7 Summary

Emerging SoCs arguably face an even more complex set of conflicting constraints,
in the face of highly dynamic workloads, as well as process and environmental variabil-
ity. Furthermore, with increasing complexity of, and heterogeneity in the SoC platform
architecture, there is a critical need for these SoCs to be self-aware, and perform in an
adaptive manner. In this chapter, we presented the rationale and concept of self-aware
adaptive SoC paradigm called Cyber-Physical-System-on-Chip (CPSoC). We presented
the architectural features and attributes that distinguish CPSoCs from traditional MP-
SoCs. We described the models of the CPSoC architecture that can be implemented us-
ing existing open framework, tools and methods. The chapter introduced the overview
of the different components of the CPSoC paradigm and an outline connecting the con-
stituting parts with details in subsequent chapters. We presented the CPSoC platform as
an exemplar self-aware heterogeneous manycore SoC platform that achieves self-aware
adaptation through a principled orchestration of ubiquitous (virtual) sensing and actu-
ation, coupled with health-monitoring and predictive model building. We then briefly
described how each of the self-awareness properties is manifested in the CPSoC plat-
form. Since these facilities must be tightly woven into the SoC’s hardware and software
fabric, CPSoC’s self-awareness properties have been engineered carefully to prevent the
excessive overheads of intrusive sensing/actuation.

66

Chapter 4

Multi-Sensor NoC (sNoC) for
Self-Awareness in CPSoCs

67

4.1 Introduction

Increasing integration densities results in increasing number of processing elements,
storage components, and growing pool of interfaced intellectual property (IP) in a single
multicore SoC. This trend gives rise to increasing heterogeneous architecture, massive
complexity, and wide dynamic behaviors in multicore SoCs. The design intent and the
expected quality-of-service while executing demanding applications on such multicore
SoC require matching different system services and platform resources. Run-time adap-
tive mechanisms requiring online monitoring and sensing are increasingly utilized to
address the challenging application need and achieve key design objectives as well as
functional requirements. Observation, aggregation, reconstruction, fusion, and process-
ing of key pieces of information play a central role in creating different monitoring and
awareness mechanisms, architecture, and implementation methods.

Figure 4.1: Recent trends in numbers of on-chip temperature sensors in microprocessors
and SoC [381].

68

Infusing self-awareness in the CPSoC paradigm requires on-chip sensors and moni-
tors that are carefully designed, interfaced, and placed at suitable locations in the die.
The number of sensors required to monitor a given awareness dimension, for instance,
thermal behavior of the emerging SoC, is going to increase, as shown in Fig. 4.1, in or-
der to provide accurate monitoring and good fidelity of the observed on-chip phenom-
ena. Similarly, as the need for improved awareness increases for better characterization
of multiple phenomena such as aging and NBTI, oxide breakdown, electromigration,
timing error violations as well as leakage power distributions, sets of multiple sensors
of different types along with their sensor specific interfaces need to be included in the
design.

CPSoCs are uniquely distinguished by the inclusion of such diverse sets of sensors
and their associated interfaces in the design and architecture. The inclusion of multiple
sensors and their interfaces are non trivial and require careful consideration and design
planning in order to reduce the design complexity, verification effort, as well as design
overhead. As a solution, the CPSoC paradigm proposes a multi-sensor networks-on-
chip (sNoC): customized for different sensor types, suitably placed considering several
design and placement constraints, as well as a scalable sensing and monitoring archi-
tecture to support thousands of such sensors for multi and manycore architecture of the
future. In this chapter, we discuss the design approach of such multi-sensor networks
and formulate an efficient sensor placement and fusion problem and their optimizing
solutions to implement and improve several self-monitoring and awareness properties
in CPSoCs. We present a novel design time and runtime approach to sensor placement
and sensor fusion using on-chip sensors networks, redefine the sensor allocation and
placement problem using a combination of heterogeneous sensors, as well as present an
algorithm to find the best sensor combination and their location without either surren-
dering the accuracy of thermal monitoring or exceeding the sensor area power budget.
We show that significant improvements in sensing accuracy and reconstruction error
(around 10-100× compared to the state-of-the-art) is possible with three different sen-
sor types for the same overheads as well as reduction in algorithm execution time by
over 20× in comparison to the state-of-the-art technique.

4.1.1 Sensor Network-on-Chip (sNoC)

CPSoCs are distinguished by their ability to be aware of different self-aware proper-
ties across the stack as discussed in Chapter 2. CPSoC deploys specialized on-chip sensor
networks for self-monitoring of on-chip parametric variations and dynamic behaviors in
order to deal with the multitude of challenges stemming from worsening process and
other sources of variability. These on-chip sensor networks in emerging multicore archi-
tectures are becoming critical to meet the varying application requirement at runtime
and wide spectrum of qualitative requirements in terms of optimum performance, pre-
dictability, fault diagnosis, recovery, as well as power efficiency. Unlike the traditional
NoCs, these on-chip networks are distinguished by their unique properties and features

69

as discussed below.

4.1.1.1 Properties and Features of Multi-sensor NoC (sNoC)

Sensor-networks-on-chip (sNoC) deployed by emerging SoCs are characterized by
the runtime adaptation requirements and the quality and level of awareness these net-
works are required to provide. Although these networks require specific features based
on each instance, we highlight some general properties and features below.

• Temporal Timescale of Monitoring: Effective monitoring is needed to effectively
handle slow as well as fast changing effects. In order to select a suitable sNoC
architecture, Fig. 4.2 categorizes the discussed variations according to their time
constants and sampling requirements. As the dynamics of variation effects depend
on various circumstances, the shown classification is rather qualitative. While
process variations occur during fabrication and lead to fixed changes in device
parameters, device characteristics can, however, still be affected by aging induced
wear-out during operation. Significant degradation of CMOS logic delays mainly
develops in the long run. The temperature, also influencing circuit speed, changes
rather slowly, whereas power noise has normally very short time constants. The
shorter the time constant of a variation effect, the more challenging becomes the
monitoring and adaptation mechanism.

Figure 4.2: Temporal classification of variations.

• Sampling Method: In order to infer the temporal characteristics of a dynamic
phenomenon, sensors readings are performed according to sampling policies, for
example, uniform or probabilistic sampling (random, stratified, cluster).

• Accuracy: Accuracy of the independent sensor impacts the overall accuracy of the
system monitoring and the spatial and temporal reconstruction of a phenomenon.
Not only the number of sensors, but their accuracy as well as area-power overhead
are design parameter as the number of sensors embedded increases rapidly in
emerging architectures (see Fig. 4.1).

70

• Reliability: In order to have a reliable reading of the sensors, several sensors can
be tallied using majority voting schemes of nearby sensors. Redundancy of the
sensors reading could be used to improve reliability of the sensor reading in the
sNoC.

• Calibration: Sensor calibration is performed using single point or two point cal-
ibration methods. Calibration is performed by designating a reference sensor in
the sensor network or a more accurate sensor in the sNoC.

• Scalability: The trend towards massively parallel (100+) cores and hardware
accelerators integrated on 3-D stacked dies calls for scalable control algorithms
running in a few microseconds. Distributed control algorithms are needed that
leverage the spatial localization of heat exchange and which can exploit parallel
hardware.

• Spatial Distribution: The distribution of the sensors in the die to capture the
underlying spatial phenomena is performed at the system level or core level. For
example, if a multicore SoC consists of several cores, the whole system should
be considered in deciding the sensor allocation. In a tile based architecture, the
sensors are distributed in a tile and the design is replicated across the whole chip.

• Topology: The topology of the sNoC can be either distributed or centralized.
Measurement from the sensors are collected at a collection node through the in-
terconnection bus or signal between the sensor interface and the collection point.

• Data Packet Optimization: Sensor communication is optimized through pack-
ing multiple sensors into single read operations. With the exponential growth of
cores, the number of on-chip sensors of different types would also see exponential
growth.

• Robustness: Sensor readings are affected by significant output noise. System
monitoring and awareness approaches are needed that are robust to measure-
ment and process noise. Accurate on-chip temperature sensors have high area
cost and are affected by significant systematic and random noise. In addition, to
keep post-manufacturing testing costs low, not all the sensors are accurately cali-
brated. Hence, manycore thermal management is a large-scale, hybrid, nonlinear
multivariable control problem, affected by significant sensor, actuator, and process
noise.

• Adaptability: Fluctuations of process variations and ambient conditions (temper-
ature, heat sink occlusion, etc.) may change the thermal behavior over the lifetime
of a component. Model recalibration strategies and online system identification
algorithms are required.

71

• Inspection Engine: The monitoring and sensing infrastructure could be used for
rapid first silicon inspection, debug and variation analysis, IC characterization,
timing margining, production test, IR-drop and temperature analysis, wearout
analysis, and data collection.

I/F
Sensor

Controller

I/F

Sensor
Controller

Sensor
Controller

I/F

I/F

Sensor
Controller

(a)

I/F
Sensor

Controller

I/F

Sensor
Controller

Sensor
Controller

I/F

I/F

Sensor
Controller

(b)

Figure 4.3: Distributed Sensors-Network-on-Chip (sNoC) for on-chip self-awareness us-
ing (a) mesh topology (b) aggregation tree topology.

4.1.2 Types of sNoC in CPSoC

An on-chip monitoring system is composed of a set of monitors that provide an out-
put dependent on the corresponding physical magnitude; an interconnection network
that delivers the data from the monitors to a controller; and a control system that can
be either centralized or distributed. In this work, we focus on the interconnection net-
work with the objective to provide a network-on-chip architecture with a high degree of
simplicity, minimum impact in area and power, as well as scalability needs of emerging
SoCs. Based on the review of several monitoring types and characteristics summarized
in Table 4.1, we observe that the sampling frequency, quantization, and density needs
vary greatly depending on the type of monitor as shown in Table 4.1 and Fig. 4.2. Some
monitors, (such as voltage droop monitor) require fast response and are directly con-
nected to a distributed control system that takes immediate actions, and thus does not
use the NoC. They fall in the category of specialized monitoring infrastructure that falls
out of the scope for this work.

4.1.2.1 Thermal Sensor-NoC

As integrated circuit technology continues to scale to the nanoscale era, power
and thermal issues become increasingly important and major concern for processor

72

Table 4.1: Summary of on-chip Sensors and Monitors.

Sensing Cause Adverse effect Period Density Quantization Data Volume
Aging Prolonged usage Reduction Speed /Malfunction 100ms hundreds/chip ∼8 bits 691.2 MB /day
Temperature Localized power consumption Loss of Performance/Reliability 100ms hundreds/chip ∼8 bits 864 MB/day
Power Switching and Leakage Hot-spots and thermal runaway µs few-tens/chip ∼10 bits 8.64 TB/day
Critical path Timing uncertainties Loss Speed µs hundreds/chip ∼12 bits 103.68 TB/day
Supply voltage Supply network impedances Voltage droop/Malfunction ns few-tens/chip ∼6 bits 5.1840e+03 TB/day

design [54, 334, 56]. Local on-die thermal transients have time constants of microsec-
onds, whereas at the package and board level we see complex, nonlinear dynamics un-
folding in seconds to minutes. A single chip can have hundreds of thermal domains that
vary greatly in workload and intrinsic power density. Power consumption and heat gen-
eration are thus spatially and temporally heterogeneous, with nonlinear temperature
dependency caused by leakage. The on-chip thermal sensor network plays a crucial role
in characterizing these thermal behaviors as well as accurately identifying hotspots in
the multicore system.

Earlier works [382, 269, 207, 363] have shown that elevated temperatures directly
impact all key circuit metrics including: lifetime and reliability, speed, power, and costs.
Thermal hotspots reduce the mean time to failure (MTTF) as most failure mechanisms
(e.g., electromigration, time dependent dielectric breakdown, and negative bias temper-
ature instability) have strong temperature dependencies [269]. With more than 50% of
all integrated circuit failures being accounted to thermal issues [269], a mere 10oC –
15oC rise in the operating temperature could halve the life span of the chip [363]. Not
only does the fault rate double for every 10oC increase in temperature [207], but differ-
ent thermal expansion coefficients of chip materials also cause mechanical stresses that
can eventually crack the chip/package interface [56], resulting in increased packaging
cost. Additionally, accuracy of thermal measurements directly affects the efficiency of
thermal management as well as the performance of the CPU [293, 388]. Inaccuracies
in thermal tracking decreases the processor’s performance and wastes power. In par-
ticular, it was shown that a 1 oC accuracy translates to 2W power savings while 1.5oC
accuracy in temperature measurement is equivalent to 1W of CPU power in mobile
computers [293]. Due to localized heating, the temperature variation within a single
chip can reach up to 10s of degrees. For instance, within-die temperature variation of
up to 50 oC was reported in [54]. Due to lack of proximity, sensor measurements and
hotspot temperatures could differ by up to 10 0C [293]. Such inaccuracies in thermal
estimates can either trigger early or late activation of dynamic thermal management
(DTM) resulting in unwanted performance loss [388] or severe reliability degradation
[269].

As the effectiveness and efficiency of dynamic thermal management approaches
heavily rely on the accuracy of on-chip temperature measurement, several types of ther-
mal sensors varying in accuracy, resolution, area, and power consumption have been
proposed. The specifications and relative area and power characteristics of some recent
smart sensors are listed in Table 4.2 and Fig. (4.4) respectively. For an area limited

73

Table 4.2: Comparison of Recent Smart Temperature Sensors.

Sensor Resolution(0C) Accuracy(0C) Range(0C) Power Area(mm2) Technology Reference

S1 0.139 -5.1~+3.4 0~60 150µW@1.0V 0.01 65nm Chung et al.[79]
S2 0.16 -0.7~+0.9 0~100 0.49mW@3.3V 0.175 0.35µm Chen et al. [72]
S3 0.0918 -0.25~+0.35 0~90 36.7µW@3.3V 0.6 0.35µm Chen el al. [71]
S4 0.01 ±0.1 -55~125 247µW@3.3V 4.5 0.7µm Pertijs et al. [270]
S5 0.03 ±0.2 -70~125 10µW@1.2V 0.1 65 nm Sebastiano et al. [316]

design, sensor S1 would be preferred. On the other hand, for a power limited design,
sensor S3 would be preferred over S1 because of its lowest power characteristics. For
design spaces between the two extremes of area or power limited design, neither S1
nor S3 but a combination of sensors (e.g., S1, S2, S3) would potentially provide a bet-
ter solution by leveraging the diversity of each sensor type. Additionally, in order to
accurately capture the wide within-die temperature variations, a large number of them
must be deployed throughout the chip to collect thermal data in real time. For exam-
ple, Intel’s Dunnington Xeon processor with 6 cores contains 12 thermal sensors [204],
AMD’s quad-core opteron deploys 38 sensors [99], and IBM’s POWER7 microprocessors
includes 40 temperature sensors [371] at different locations. This trend is depicted in
Fig. 4.1.

(a)	 (d)	(c)	(b)	

Figure 4.4: (a) Heterogeneous on-chip thermal sensors at 65nm [381] (b) sensor ac-
curacy, (c) normalized power and (c) area of the digital temperature sensors of Table
(4.2) scaled to 1.0V, 65 nm technology.

Ring oscillator (RO) based on-chip thermal sensors are most common as they are
fully compatible with digital CMOS technologies while consuming small area and power.
Fig. 4.5 (a) shows the basic structure of an RO-based on-chip thermal sensor that has
an odd number of inverters. The transition time for each inverter to switch levels (H-L
or L-H) is determined by several factors [388]. The high-to-low time tPHL for an NMOS
and low-to-high transition time tPLH for a PMOS are given respectively by [388]:

74

tPHL = C
µn(W/L)n(VDD−Vt)

[
2Vt

VDD−Vt
+ ln

(
3VDD−4Vt

VDD

)]
tPLH = C

µp(W/L)p(VDD−Vt)

[
2Vt

VDD−Vt
+ ln

(
3VDD−4Vt

VDD

)] (4.1)

where µn, µp are the electron mobility in silicon for the NMOS and PMOS respectively,
Cox is the capacitance per unit gate area, (W/L)n , (W/L)p are the ratio between width
and length in NMOS and PMOS respectively, VDD is the supply voltage, Vt is the thresh-
old voltage, and C is the load capacitance that the inverter drives. The frequency output
of the RO is given by

f =
1

N (tPHL + tPLH)
(4.2)

where N is an odd number of inverters in the RO chain. Due to process variation
and environmental uncertainties, most of the parameters in Eq. 4.1 will be random
variables, and it is reasonable to assume that they follow a Gaussian distribution [387].
In addition, µn,µp and Vt are temperature-sensitive parameters, and we assume they
follow these empirical equations, respectively [3]:

µn = µno(T/To)
−1.5

µp = µpo(T/To)
−1.5

Vt = Vt0 − 0.002(T − To)
(4.3)

where µn0, µp0 are the nominal values of mobility for NMOS and PMOS respectively, T0

is the room temperature. Under the ideal circumstances where all sensor parameters
are nominal and known, the relationship between sensor observation and its local tem-
perature is deterministic and can be approximated by the following linear relationship
[388]:

T = a0f + b0. (4.4)

This one-to-one correspondence between temperature and sensor frequency f can be
used to accurately calculate when a certain T is observed. Traditionally, single-point and
two-point calibration methods are used, while for higher precision, a piece-wise linear
calibration method or a nonlinear least square regression method based on multiple
calibration points might be considered. In case of a single-point calibration, either the
gain a0 or the offset bo is adjusted to generate correct temperature readings [348]. In
other words, the frequency output at the single calibration point (temperature) is used
as a reference point in the conversion from the frequency outputs of a sensor to the
temperature readings. A two-point calibration method usually gives better results than
a single-point method, because both the gain a0 and the offset bo are adjusted together
based on the frequency outputs of a sensor at two calibration points. However, as most
of the sensor parameters are random due to process variation, the coefficients a0 and b0

become random as well, making the deterministic approach inappropriate [388].

75

(a)	 (b)	

(c)	 (d)	

Figure 4.5: Impact of process variation on thermal sensor characteristics (a) Ring oscil-
lator (RO) based thermal sensor (b) nominal process parameters for the sensor (c) prob-
ability distribution of the sensor frequency output for the same temperature [388](d)
variations in frequency outputs of sensors due to process variation and environmental
uncertainties [327].

4.1.2.2 Aging Sensor-NoC

On-chip transistor and interconnect aging has become a primary limiting factor in
the lifetime of emerging multicore SoCs. As chips age, key circuit and device parameters
change, and these changes worsen with technology scaling. For example, BTI and HCI
cause shifts in threshold voltage Vth, electromigration leads to increased interconnect re-
sistance, and time-dependent dielectric breakdown (TDDB) can cause catastrophic tran-
sistor gate breakdown. NBTI alone can degrade circuit speed by upwards of 20% over
a ten year period [366]. As ICs are often designed for 11 year life-spans [339], large
design margins are required to ensure reliable operation over the circuit lifetime. While
individual sensor design has been presented in several earlier work (refer Table 4.3),
the use of these sensors in the system level has been lacking. In this work, the focus is
at using different aging sensors and implement these sensors at the system level using
a aging sensor NoC.

The aging sensor NoC consists of a sensor specific interface controller (similar to
thermal sensors) that handles the control signals for the different modes of operations,
and counts the number of event when polling, aggregates multiple sensor reading in a
data frame, and communicates the sensed data to the collection point. A finite state
machine could handle the required control signals. Aging being a slow phenomenon,

76

speed of monitoring is not a primary concern. The aging sensor data can be acquired
using a slow serial scan chain or a parallel bus interface to the collection point in the
sNoC.

4.1.2.3 Power Sensor-NoC

The on-chip power sensor network is becoming extremely crucial in emerging multi-
core SoC, as the focus of multicore SoC design are shifting from traditional performance
centric design to energy/power efficient design. Power constrained environments have
completely changed the approach to SoC design. Since the highest performance imple-
mentations dissipate too much power, performance is becoming a secondary concern
for most designers.

On-chip power sensing at different levels of granularity are going to be crucial for
power and energy efficiency characterization as well as improving multicore SoC design
through optimization. Traditionally, power sensors are present at the chip level where
the capability to monitor the full system power is provided. However, as the signifi-
cance of power awareness is increasing in the SoC design and runtime management
of resources, more and more power sensors and monitors are directly included in the
SoC at finer level of granularity such as monitoring at the cluster or core levels. As
an example, the Samsung Exynos octa processor [266] implementing ARM’s big.Little
architecture [16, 163] only provides power monitoring for the Big or the small clus-
ter, but not the individual cores. Measurement of the power of individual cores, major
functional units such as on-chip cache memories, accelerators, and NoCs would be re-
quired for fine grained monitoring and eventual control using different power modes
and control mechanism.

As emerging SoCs increasingly operate in different voltage and frequency domains
and are moving towards the near threshold operation with large variation in power
dissipation characteristics, power monitoring sensors and the network should take into
account voltage scalability domains.

4.1.2.4 Critical-Path Delay Monitoring

The critical path monitor is a high-bandwidth sensor that provides timing margin
accurate to within two inverter (FO2) delays for use in system level adaptation (for
example by the voltage/frequency control loop) [102]. Critical path monitors provide
a path-delay measurement architecture capable of providing real-time timing margin
information. These monitoring structures do not ideally use a network-on-chip archi-
tecture, as the sampling requirement of these monitors are very high. As the time to
take any mitigating action based on these monitors information is extremely small, they
are directly connected locally to the control structure to avoid any latency incurred due
to on-chip network transmission [102, 101]. Therefore, the design and implementation

77

of these monitoring infrastructures is not discussed here and is out of scope for this
work.

4.2 Heterogeneous Sensor Placement and Fusion

As discussed previously, emerging SoCs need to deploy self-monitoring of on-chip
parametric variations and dynamic behaviors in order to deal with the multitude of chal-
lenges stemming from worsening process variations, increasing complexity, and highly
dynamic on-chip environment. The efficiency and effectiveness of self-monitoring of
several dynamic behaviors such as on-chip distribution of thermal, power, and reliable
operation of emerging SoCs for full-chip characterization and subsequently for run-time
behavior prediction are directly impacted by on-chip sensor characteristics and their
placement. As the efficiency of the monitoring not only depends on number of sensors
but also on the type of sensors distinguished by the sensor characteristics such as sensor
accuracy, area, and power along with their careful placement, we present an efficient
approach to effectively fuse the information from diverse type of sensors specifically
with different accuracy, area, and power characteristics jointly with their placement.

To the best of our knowledge state-of-the-art approaches only considered homoge-
neous sensors of one type without leveraging the variability induced heterogeneities or
design diversities among different sensor types. In this work, we exploit the flexibil-
ity and trade-off in accuracy and area/power characteristics of varied sensors types to
perform a heterogeneous sensor placement and fusion (HSPF) to achieve efficient self-
monitoring for full-chip characterization of dynamic behavior such as thermal profile
characterization. Unlike traditional sensor allocation and placement techniques that
consider only one sensor type, HSPF finds a combination of the heterogeneous sen-
sors along with their placement for a given budget of sensor area and power such that
the fusion of the information from the sensor combination produces minimal full-chip
characterization error.

Experimental results with multicore SoC using Alpha processor show significant im-
provements compared to the state-of-the-art in terms of reconstruction accuracy for the
same sensor area and power budget. In particular, our HSPF approach achieves superior
accuracy (around 10-100× error reduction with three types of sensors in comparison
to a single type without any additional overhead) and execution speedup of over 20×
for full-chip monitoring over the state-of-the-art techniques. This work illustrates the
HSPF method using thermal sensors of different types and is applicable for other types
of sensors such as aging and power.

4.2.1 Motivation and Approach

Accurate on-chip temperature sensors have high area cost and are affected by sig-
nificant systematic and random noise. Due to process variation and environmental

78

Infrared	
Imaging	

Thermal	Sensor	
Measurement	

Power	
Measurement	

Workload	
Environment		
Config.	Se>ng	

Mul?core	
Device	

Architecture	
Simulator	

Characteriza*on		
Measurement	Data	

Simulated	
Characteriza*on		
&	Training	Data	

I/F	
Sensor	

Controller	

I/F	

Sensor	
Controller	

Sensor	
Controller	

I/F	

I/F	

Sensor	
Controller	

Heterogeneous	
Sensor	Placement	Sensor	Specifica?ons	

No	of	Sensors	
Constraints	

sNoC	Inser?on	in		
Design	

Sensor	Fusion	&	
Predictor	Tradeoff	

Sensor	NoC	(sNoC)		
Design	

Offline	Stage	(Design	Time)		 Online	Stage	(Run	Time)		

Variability		
Model	

Noise		
Model	

I/F	
Sens
or	

Contr
oller	

I/F	

Sens
or	

Contr
oller	

Sens
or	

Contr
oller	

I/F	

I/F	

Sens
or	

Contr
oller	

Predictor	Mi?ga?on	
Ac?on	

Thermal	Profile	

Hotspots	

OS	Kernel	SoSware	

Noise		
Model	

I/F	
Senso

r	
Contr
oller	

I/F	

Senso
r	

Contr
oller	

Senso
r	

Contr
oller	

I/F	

I/F	

Senso
r	

Contr
oller	

On-Chip	
Predictor	

Mi?ga?on	
Ac?on	

Thermal	Profile	

Hotspots	

OS	Kernel	SoSware	

Figure 4.6: Heterogeneous Sensor Placement and Sensor NoC (sNoC) Design Approach.

uncertainties, the frequency outputs of ring oscillator (RO)-based thermal sensors will
be different from sensor to sensor. Fig. 4.5(d) shows variations in the frequency outputs
of a number of sensors with exactly identical design parameters. A reference frequency
output, which is calculated from nominal parameter values, is also shown as a thick
dashed line in the same figure for comparison. We can observe the frequency output
of each sensor has a different gain (or slope) and a different offset. Therefore, each
sensor behaves as a different sensor type even when they have same design parameters
and the impact of the variations on the sensor accuracy can be as much as 71.5% in the
worst case for blindly trusting a sensor to be noise-free [388].

In addition, to keep post-manufacturing testing costs low, not all the sensors are
accurately calibrated. In other words, the frequency outputs of each sensor should be
interpreted properly or considered with additional error in their reading. Specifically,
the conversion from the frequency outputs of a sensor to temperature readings should
be performed with great care in order to minimize possible temperature reading errors
[348] as the actual frequency outputs of sensors at deeper technology nodes are going
to be lot noisier [388]. Consequently, the effects of calibration error and noise have to
be considered in the full chip monitoring.

As temperature sensors along with their peripheral circuits introduce non-negligible
overhead in silicon area and power consumption, it is extremely important to min-
imize the design overhead associated with temperature sensors and their placement

79

Homogeneous	Temperature	Sensors	

Full-chip		
Thermal	predic7on	
Hot-spots	

On-chip		
Predictor	

Few	Homogeneous		
Sensor	Measurement	

Sensor	
Controller	

I/F	

Heterogeneous	Temperature	Sensors	

Full-chip		
Thermal	predic7on	
Hot-spots	

On-chip		
Predictor	

Few	Heterogeneous		
Sensor	Measurement	

Sensor	
Controller	

I/F	

Sensor	Type	1	

Sensor	Type	2	

Sensor	Type	3	

Sensor	Type	1	

Homogeneous	Temperature	Sensors	

Full-chip		
Thermal	predic7on	
Hot-spots	

SoBware	
Predictor	

Few	Homogeneous		
Sensor	Measurement	

Sensor	
Controller	

I/F	

Heterogeneous	Temperature	Sensors	

Full-chip		
Thermal	predic7on	
Hot-spots	

SoBware	
Predictor	

Few	Heterogeneous	
Sensors	Measurement	

Sensor	
Controller	

I/F	

Sensor	Type	1	

Sensor	Type	2	

Sensor	Type	3	

Sensor	Type	1	

(a)	

(c)	

(b)	

(d)	

Figure 4.7: Run-time configuration of thermal sensing networks for emerging SoC (a)
homogeneous sensors with hardware predictor (b) homogeneous sensors with software
predictor (c) heterogeneous sensors with hardware predictor (d) heterogeneous sensors
with software predictor.

without surrendering the accuracy of thermal monitoring. On one hand, large number
(few hundreds) of temperature sensors are needed for accurate thermal monitoring as
core counts scales, on the other hand, they incur substantial die real-estate and power
while facing large process variations. To effectively address this inherent trade-off in
thermal monitoring, we propose heterogeneous sensor placement and fusion (HSPF)
using heterogeneous mix of sensors while considering the inherent sensor variabilities.
In this generalized and integrated approach, we exploit the flexibility and trade-off in
area, power, and accuracy characteristics of varied thermal sensors to perform a im-
proved sensor allocation and placement while precisely recovering the full-chip thermal
profile of emerging multicore architectures. Unlike state-of-the-art sensor allocation
and placement techniques that use a single type of homogeneous sensor, our proposed
HSPF approach as depicted in Fig. 4.6 leverages the variability induced heterogeneities
or design induced diversities among different sensor types such that full-chip thermal
monitoring accuracy is improved. HSPF finds a combination or the mix of different
sensors for given sensor area and power budget along with their placement such that
the full-chip thermal characterization error is minimized. Contrary to the existing tech-
niques that minimizes the number of sensors to reduce the area and power overhead,
the proposed approach performs a joint design space exploration of sensor and on-chip
sensor network while maximizing the number of meaningful samples used in the re-
construction without increasing the sensing overhead. HSPF differs from traditional
approach by having a design-time offline stage as well as an online run-time stage that
fuses the runtime measurement to be used by a configurable predictor (on-chip hard-
ware or software) to provide improved fidelity and full-chip awareness of the thermal

80

characteristics while drastically reducing the sensing and reconstruction error.

4.3 Full-chip Thermal Reconstruction: Problem Formu-
lation

Let t[i, j] be the two-dimensional thermal map where i and j represent the coor-
dinates of the locations within the two-dimensional floor plan. The two-dimensional
thermal map t[i, j] can be represented using a one-dimensional vector x[k] where 1 ≤
k ≤ N by stacking the columns such that x[k] = t

[
kmodH, floor

[
k
W

]]
. Thus, x =

{x1, x2, .., xN} represents the full temperature field at each grid locations N = WH of
the die. Let x̂ be the reconstructed signal of x in presence of noise and truncation errors
and xS be the measurement with total sensors M � N at locations L = {i1, i2, ..., iM}
such that xS =x(L). In presence of sensor noise and errors ε, the sensor measurement
is:

xS = x(L)+ε (4.5)

where the error ε is suitably represented by a probability distribution such as multivari-
ate Gaussian distribution (ε ∼ NM(µ,Σ)) [388] with mean µ and variance Σ. Let x̂S

be an estimate of xS which is the measurement from R heterogeneous sensor types with
accuracy σr, power pr, area ar for sensor type r. Let m = {m1,m2, ...,mR} represents
combination of the heterogeneous sensors, i.e., mr is the number of sensors of type r
that is used in the measurement at locations Lr (representing the location of the sensors
of type r) and xSr represents the measurement from sensor of type r located at Lr such
that :

xSr =x(Lr) + εr (4.6)

where εr ∼ Nmr(µr,Σr) is Gaussian noise of dimension mr, mean µr, and variance Σr.
If we represent the covariance of the sensor error εs as Σ = σ2V, where V is a matrix
and σ is a positive bounding constant corresponding to maximum value in Σ, there
are two special cases (a) V = I (b) V =diag(V1, V2, ..., VR). In the first case, where the
variance is the same for each component (sensor), is called homoscedasticity and in
the second where variance of each component is not the same is called heteroscedas-
ticity. As we have different types of sensors with varied error characteristics, the sensor
error εs has heteroscedastic distribution. Thus, combined sensor measurements are
heteroscedastic and is given by:

xS = xS1

⋃
xS2 ...

⋃
xSR

=

{
R⋃
r=1

xSr

}
(4.7)

81

in presence of the sensor noise εs =
R⋃

r=1

εr at the locations :

L = L1

⋃
L2....

⋃
LR =

{
R⋃

r=1

Lr

}
| Li

⋂
Lj = ∅,∀i 6= j. (4.8)

As the number of sensors of a particular type is equal to the size of the location vectors,

i.e., mr = |Lr|, the total number of sensors is M =
R∑
r=1

mr = |L|. Similarly, the total

sensor area and power consumed by the sensors is given by:∑R
r=1 ar ∗mr ≤ AB∑R
r=1 pr ∗mr ≤ PB

(4.9)

where, AB and PB are the sensor area and power budget respectively.

4.3.1 Signal Estimation and Recovery

The sensor measurement signal in Eq. (4.5) can be represented using a generalized
linear regression model:

xS = Φsαs + εs (4.10)

where Φs is the basis or kernel matrix, αS are the coefficients of the expansion over the
basis Φs. With the assumption of zero mean and deterministic basis, following theorems
are well known results in linear regression analysis and estimation theory [283].

Theorem 1. Let x =Φα + ε be the linear regression model with zero mean homoscedas-
tic noise distribution (E(ε) = 0, Cov(ε) = σ2I) and deterministic basis Φ such that

rank(Φn×p) = p then rank(Φ
′
Φ) = p and

(
Φ
′
Φ
)−1

exists. In that case, the ordinary
least square (OLS) solution is unique and is given by:

α̂
OLS

= Φ†x = (Φ
′
Φ)−1Φ

′
x (4.11)

with the orthogonal projection as x̂ = Φα̂
OLS

= Φ(Φ
′
Φ)−1Φ

′
x = Px where P =Φ(Φ

′
Φ)−1Φ

′

is the projection matrix and PΦ = Φ. The OLS estimate has the following properties:

• E(α̂
OLS

) = α ,

• Cov(α̂
OLS

) = σ2(Φ
′
Φ)−1 ,

• α̂
OLS

is the best linear unbiased estimator (BLUE), i.e., the minimum variance
unbiased estimator.

82

Theorem 2. Let x = Φα+ε be the generalized linear regression model where rank(Φn×p) =
p, with zero mean heteroscedastic noise distribution such that E(ε)=0,Cov(ε) =Σ = σ2V,
with known V, then there exists a transformation of x to a new response vector which has
a covariance matrix σ2I . Ordinarily least square applied to the transformed x yields a
solution:

α̂
GLS

= (Φ
′
V−1Φ)−1Φ

′
V−1x (4.12)

with the orthogonal projection as

x̂ = Φα̂
GLS

= (Φ
′
V−1Φ)−1Φ

′
V−1x = P̃x (4.13)

where P̃ = (Φ
′
V−1Φ)−1Φ

′
V−1 is the generalized projection matrix and P̃Φ = Φ.

The generalized least square (GLS) estimate is the best linear unbiased estimator (BLUE)
with the following properties:

• E(α̂
GLS

) = α,

• E(α̂
GLS

) = E(α̂
OLS

),

• Cov(α̂
GLS

) = σ2(Φ
′
V−1Φ)−1,

• Cov(α̂
OLS

) = σ2(Φ
′
Φ)(Φ

′
VΦ)(Φ

′
Φ)−1.

From Theorems (1) and (2) we can infer that OLS is the best linear unbiased estima-
tor (BLUE) in presence of homoscedasticity and GLS is the BLUE in presence of het-
eroscedesticity. Under heteroscedesticity, OLS is still an unbiased linear estimator, but
not the best estimator (i.e., not efficient). In other words, OLS is not the minimum
variance estimate in the presence of heteroscedesticity. The usual variance of the OLS
estimator is biased and thus inefficient. Consequently, we use the GLS estimate in
Eq. (4.12) to find the coefficients from the sensor measurement as

α̂s = (Φ
′

sV
−1Φs)

−1Φ
′

sV
−1xS (4.14)

where we call Φs as the sensing matrix.

4.3.2 Accounting for Process Variability and Noise in Full Signal
Prediction

As the number of sensors are very few compared to the number of grids / monitor-
ing points in the die (M � N), the spatial thermal profile has to be recovered from the
few measurements xS. If we apply the generalized linear regression model for the full
thermal map, we have x = Φα+εp, where Φ is a deterministic basis of size N×N , and
the coefficients α are estimated as α̂ by GLS to get x̂, an estimate of the thermal map
due to the true process noise εp. As thermal maps are often sparse, we can approximate

83

the thermal map with a linear combination of K columns of Φ and K elements of α
out of N such that x̃ = ΦKαK . Let K = {j1, j2, ..., jK} be the vector of the locations
of the coefficients in α such that αK = α(K). Note that this approximation makes
ΦK of dimension N ×K and αK of dimensions K × 1. This approximation or trunca-
tion introduces an additional error or noise term εt in the regression models such that
x = ΦKαK + εp + εt. When the number of sensors M is equal to (or greater than) the
number of basis vectors or columns K , αK can be represented by αs in addition to a
sensor noise term εs in the thermal map such that x = ΦKαs + εp + εt + εs. Repre-
senting the total noise as sum of all the noise components as ε = εp + εt + εs, we can
make an estimate of the thermal map as:

x̂ = ΦKα̂s = ΦK

[
(Φ

′

sV
−1Φs)

−1Φ
′

sV
−1
]

xS. (4.15)

Note that the sensing matrix Φs is formed from the basis matrix Φ corresponding to
the sensor locations L and coefficient locations K such that Φs = Φ(L,K). The re-
construction matrix ΦK is formed from K columns corresponding to the coefficient
locations such that ΦK = Φ(:,K) where the operator ’:’ represents all rows of Φ. For
valid reconstruction in Eq. (4.15) , V−1 and (Φ

′

sV
−1Φs)

−1 must exist and results in
M ≥ K as a requirement.

To evaluate the reconstruction / recovery accuracy over a set of T thermal traces
such that X = {x1,x2, ..,xT} of size T × N with each row indicating a trace x, we
define the residual vector ε̂i = xi − x̂i for the thermal trace xi and the residual sum
of square RSSi = ε̂

′

iε̂i = ‖xi − x̂i‖2 such that the mean square error of the trace xi is
MSEi = E(ε̂

′

iε̂i) = 1
N

∑N
j=1 (xi[j]− x̂i[j])2. The total average mean square error over

all the traces is:

MSE =
1

TN

T∑
i=1

N∑
j=1

(xi[j]− x̂i[j])2 . (4.16)

4.3.3 HSPF Problem Statement

The HSPF problem is defined as an optimization problem which selects the best
combination of heterogeneous sensors, their locations along with the basis vector com-
binations (basis selection) such that the full chip thermal reconstruction error is mini-
mum subject to the constraints discussed in Section (4.3). The formal statement of the
problem is as follows:

Given R heterogeneous sensor types with each sensor type r having power con-
sumption pr, and area ar, accuracy σr, the problem is to select the combination of
sensors m = {m1,m2, ...,mR} (where mr is the number of sensors of type r with the
total number of sensor M =

∑R
r=1mr), their placement L = {i1, i2, ..., iM} , and the

coefficient locations K = {j1, j2, ..., jK} to select the basis vectors such that the full-chip
reconstructed residual error is minimized subject to the constraints as in Eq. (4.17).

84

Minimize
L,m,K,α̂s

‖ x−ΦKα̂s ‖2
2

Subject to :
‖ α̂s ‖0≤ K ≤M =

∑R
r=1mr∑R

r=1ar ∗mr ≤ AB∑R
r=1pr ∗mr ≤ PB

L =
R⋃
r=1

Lr; Li

⋂
Lj = ∅,∀i 6= j

(4.17)

4.4 Methodology and Solution

The HSPF problem is a generalization of the sparse regression problem [356] with
additional constraints and variables. The sparse regression problem [356] is NP-hard
and consequently the HSPF problem is NP-hard. With NP-hardness established, an opti-
mal polynomial time algorithm is unreachable. Consequently, we propose heuristics and
simplification strategies in developing a greedy solution for the HSPF problem. Specif-
ically, we investigate a greedy approach that consists of three stages with the aim of
decoupling the problem into subproblems for easy solution. We discuss the subprob-
lems and some of the implementation issues in the following sections.

4.4.1 Stage-wise Greedy Solution (gHSPF)

The stage-wise greedy solution approach is motivated by the work by Ranieri et
al. [282] and Reda el al. [285]. gHSPF attempts to decouple the HSPF into heteroge-
neous sensor selection as the first stage, the basis vector and coefficient location se-
lection as second, and the sensor placement and reconstruction as the third stage. By
using the observation in Section 4.3.1, we decouple the HSPF into two optimization
problems such that solution to both directly improves the reconstruction accuracy. By
doing so, we can easily deploy effective existing solutions at much reduced complexity.
We discuss all the stages and the optimization algorithms in the following subsections.

4.4.2 ILP based Heterogeneous Sensor Selection

It has been shown in [356] that the probability of reconstructing a signal exponen-
tially increases with increasing number of samples. If the number of samples is chosen
as MS ≥ cKln

(
N
K

)
, it is possible to reconstruct every K sparse coefficients with a prob-

ability exceeding 1 − e−NMS . As the number of samples MS exponentially impacts the
reconstruction accuracy, it is logical to maximize them while choosing them from good
sensors. However, as the number of samples MS is directly related to the number of

85

sensors M as well as their area, power, and accuracy trade-offs, we define an optimiza-
tion to maximize the number of samples as a weighted sum of the samples obtained
from a sensor of particular type within the area and power budget. The weights wr can
be chosen based on accuracy to give preference to or penalize one type over the other
in selecting the samples. We cast the problem as an integer linear program (ILP) by
defining a vector m = [m1,m2, ...,mR] such that MS =

∑R
r=1wrmr = w

′
m. The ILP thus

is stated as follows:

Maximize MS =
∑R

r=1wrmr = w
′
m

m

subject to
∑R

r=1pr ∗mr ≤ PB∑R
r=1ar ∗mr ≤ AB

(4.18)

The ILP in Eq. (4.18) can easily be solved using any standard solver. The solution of
the ILP in Eq. (4.18) determines the sensor combinations and total sensor used in the
sensor placement and reconstruction.

4.4.2.1 Selection of Weights in Sensor Selection ILP

The first stage of the HSPF performs the sensor selection based on the area, power
and sensor accuracy. An optimization problem to maximize the number of samples
used in the reconstruction is formulated as an integer linear programming (ILP). The
intuition is based on the results derived in compressive sensing [98] and dimension-
ally reduction techniques, which states that the probability of reconstruction can be
exponentially increased with increasing samples for a sparse signal. We establish a
relationship between total samples used in the reconstruction with that of the sensor
accuracy, area, and power overhead so as to maximize number of samples. The number
of samples MS is defined as a weighted sum of the samples collected from a particular
type of sensor. The weights will decide which sensor type will have maximum contri-
butions to the reconstruction samples. Thus by suitably selecting the weights we can
either penalize a particular type of sensor or give preference to another. Selecting the
weights can determine the number of samples collected by a particular sensor type for
given area-power budget of the sensors. In selecting the sensors, one approach would
be to give equal preference to each sensor type. In such a scenario, irrespective of the
accuracy of the sensor, the number of samples are predominantly determined by the
area and power budget. If the design is area constraint, i.e., the area budget AB is
small, the sensors with the least area overhead would be selected. On the other hand,
if the design is power constraint such that the sensor power budget PB is small, the
solution to the ILP would be guided toward the sensors with least power budgets. As
both the constraints are simultaneously achieved, the solution meets design corners in
between the two extremes.

Furthermore, as the overall reconstruction accuracy is affected by the sensor ac-
curacy effects, higher the accuracy of the sensors, better would be the overall recon-

86

struction. To consider the sensor accuracy in the selection of the sensors, we make the
weights proportional to the accuracy (or inversely proportional to the sensor noise vari-
ance). This way, we can account for the sensor accuracy in the sensor selection while
fine tuning the results to a better solution.

4.4.3 Basis Vector and Coefficient Selection

The purpose of this step is to find the K best basis vectors in Φ and their correspond-
ing locations K = {j1, j2, ..., jK} to form the orthonormal basis matrix ΦK such that the
approximation x̃ = ΦKαK is optimal. One approach is to use the greedy based orthog-
onal matching pursuit (OMP) [356] algorithm to find the best basis vectors. Another
approach is based on the dimensionality reduction technique as in [282] which states
that the approximation error in the reconstruction can be represented as the sum of the
eigen values of Φ, corresponding eigen vectors of which are not included in ΦK . If we
define a covariance matrix Cx formed from the set of thermal traces X = {x1,x2, ...,xT}
with eigen values {λn}Nn=1 , then the orthonormal basis ΦK that introduces the least er-
ror in the approximation is formed from theK eigen vectors of Cx with the largest eigen
values {λn}Kn=1 . The minimum approximation error ξ = E [|x− x̃|2] can be represented
as [282]:

ξ =
N∑

n=K

λn. (4.19)

Note that as the number of basis vectors K increases, approximation error ξ decreases
in Eq. (4.19). In other words, the reconstruction error can be reduced by forming the
basis matrix ΦK with the eigen vectors corresponding to the dominant eigen values of
Cx, as well as by increasing K ≤M .

4.4.4 Greedy Sensor Placement and Allocation

In this stage, sensor allocation and placement is carried out using the total number
of sensors computed in the previous stage. We allocate the best and most accurate sen-
sors to the most crucial locations. The sensor placement algorithm provides the sensor
location in order of their importance and we map the sensor types to these location ac-
cording to their accuracy. The placement algorithm iteratively finds the sensor locations
using a greedy approach [285] in polynomial time. The algorithm picks the location
based on highest temperatures iteratively by computing the orthogonal components at
available location and then picking the location with highest orthogonal norm. Once the
locations are found, the thermal profile is reconstructed using Eq. (4.15). The algorithm
is summarized in Alg. 4.1.

The sensor placement approach in Alg. 4.1 is inspired by the concept of volume
sampling [81]. The algorithm maintains two set L and S where L is the set of chosen
sensor locations and S is the set of available sensor locations. Initially, the chosen sensor

87

locations set L is initialized to a null set, and the set S is the initialized to the set of all
possible sensor locations. In the next step, the algorithm picks the location with the
highest temperature based on the Euclidian norm. The locations L and S are updated
accordingly. The algorithm then iteratively computes the orthogonal components of the
column vectors at the available locations and finds the highest Euclidian norm of the
orthogonal components. The location corresponding to the highest Euclidian norm of
the orthogonal components is included to the set of sensor locations L and removed
from S. The process is iterated for M locations.

Once the sensor combination and total number of sensors are selected, it is impera-
tive to look for the mapping of the sensor of various types to the specified locations. As
some sensor locations contribute more information to the reconstruction process than
the others, it is logical to place the higher accuracy sensors to more information rich
locations. The sensor placement algorithm returns placement of the sensors in order of
their importance. We rank the sensors according to their accuracy and map the most
accurate sensors to the most dominant locations. Another opportunity (or concern) that
arises because of varied operating range of different sensors, need to be addressed dur-
ing the sensor mapping process. A reasonable approach is to divide the full processor
die into regions of hotter to colder thermal zones. For example, the integer register
units (IRU) region of most processors (specifically Alpha processor) exhibit higher tem-
perature than that of the cache memories. Sensors with high dynamic ranges can be
mapped to these elevated regions while the lower range sensors can be placed in the
relatively colder blocks.

4.4.5 Heterogeneous Sensor Fusion and On-chip Prediction

The on-line prediction of the full thermal profile is performed considering the sensor
heterogeneity in sensing accuracy and area-power characteristics either using a ordi-
nary least square (OLS) or generalized least square (GLS) approach as described in
Section 4.3.2. The algorithmic representation of the on-line prediction using heteroge-
neous sensor fusion is described in Alg. 4.2. This prediction stage is implemented as
a run-time module in the OS such that the dynamic thermal management (DTM) can
effectively exploit accurate thermal behavior of the chip and take appropriate step (for
example, frequency thrilling, task migration, or DVFS) in order to avoid any thermal
emergency in the chip.

4.5 Experimental Setup

We evaluate the effectiveness of our methodology, by setting up a tool chain that
simulates the temperatures for single and multi-core architectures of up to 4 cores at
65nm technology node as shown in Fig. 4.8. We utilize HotSpot [147] for thermal
simulation and McPAT [218, 219] to estimate the power for each block of the processor.

88

We use the Alpha 21264 processor as our baseline core. The Alpha 21264 is an out-of-
order speculative execution core that is commonly used as a test-bench core in thermal
management research [147, 227]. HotSpot takes in the floor-plan of the processor
and the workload that will run on each core to produce the steady state and transient
temperatures at each location of the grid. Using workload instruction traces, dynamic
power traces for each micro-architectural unit are calculated and then fed together with
the floor-plan into the thermal simulator to compute both the transient and the steady-
state temperature. We use a total of 25 benchmarks from the SPEC 2000 benchmark
suite to randomly allocate these workloads to a core in the multi-core architecture. The
combination of these workloads assigned to different cores provide a rich set of thermal
traces to characterize the thermal profile of the multi-core processor. We discretize the
thermal profile by using a grid of W = 64 and H = 64 and used 25 benchmarks and
their combinations to generate total of T = 3194 traces in our analysis.

(a)

10 20 30 40 50 60

10

20

30

40

50

60 86

88

90

92

94

96

98

100

102

104

(b)

10
20

30
40

50
60

10
20

30
40

50
60

86

88

90

92

94

96

98

100

102

104

x−indexy−index

T
e

m
p

a
ra

tu
re

 o
C

(c)

Figure 4.8: (a) Multicore Alpha processor floor-plan (b) original thermal profile with
SPEC 2K benchmarks (c) Recovered thermal profile from noisy sensor measurements.

4.6 Experimental Results

We present results for the set of thermal maps for single and multi-core architectures
using the diverse set of heterogeneous temperature sensors as tabulated in Table 4.2.
Although there is no limitation, we only consider three types of sensors {S1, S2, S3} from
Table 4.2 in the following example. Fig. 4.9(a) shows the effect of sensor heterogeneity
on the total number of samples that can be collected for given sensor power and area
overhead. The x-axis represents the product of the area and power. Recall that, sensor
S1 is used for an area limited design and sensor S2 for a power limited design. For a
typical case of area and power budgets in between the two extremes of area or power

89

limited design, neither S1 nor S2 is the optimal sensor type. In fact, to show the impact
of choosing a particular sensor type, we plot the number of samples that can be collected
for each type and their combination for a given overhead in Fig. 4.9(a). As more number
of samples directly improves the measurement and reconstruction accuracy, we observe
from Fig. 4.9(b) that sensor S1 is better than S3 and sensor S2 is better than S1 as
well as S3 for this area power design overhead. However, the combination of three
sensor types {S1, S2, S3} accommodates more samples than any individual sensor type.
Consequently, the heterogeneous combination of the sensors outperforms any individual
sensor type in accommodating more sensors to improve the thermal monitoring process.
Note that sensor S2 would provide a better reconstruction compared to S1 or S3 if a
single sensor were to be selected and hence HSPF can be used to select a suitable sensor
type for a given area power overhead.

0.005 0.01 0.015 0.02 0.025 0.03

20

40

60

80

100

120

140

Area Power Budget

N
o

 o
f

S
a

m
p

le
s

Sensor S1 only

Sensor S2 only

Sensor S3 only

Sensor S1+S2

Sensor S1+S3

Sensor S2+S3

Sensor S1+S2+S3

(a)

1 2 3 4
x 10

−3

10
−6

10
−4

10
−2

10
0

M
ea

n
S

qu
ar

ed
 E

rr
or

Area Power Budget

Sensor S1 Only

Sensor S1+S2

Sensor S1+S2+S3

Sensor S2 only

Sensor S3 Only

Sesnor S1+S3

Sesnor S2+S3

(b)

0
0.5

1
1.5

0

2

4

6

x 10
−3

0

20

40

60

80

100

Area Overhead, mm2

Total Number of Samples with S1,S2, S3 combined

Power Overhead, W

N
o

 o
f

S
a

m
p

le
s

(c)

0
0.5

1
1.5

0

2

4

6

x 10
−3

0

20

40

60

80

100

Area Overhead, mm2

Total Number of Samples with Sensor S1 only

Power Overhead, W

N
o

 o
f

S
a

m
p

le
s

(d)

Figure 4.9: Design space exploration for area power trade-off (a) number of samples
that can be used in reconstruction for given Area Power Budget for various sensor com-
binations (equal weights for all types) (b) MSE with different combination of sensors for
given area power overhead. (c) Number of samples that can be collected for different
design corners and trade-offs with mix of sensors type S1,S2, S3 (d) with S1 only.

The impact of increased number of samples and their combination for the given
area-power overhead is reflected in the MSE and is shown in Fig. 4.9(b). A significant
improvement in accuracy is observed for different combinations of the sensors for a
given sensor area and power budget. The number of samples that can be collected for
different design corners and trade-offs is shown in Fig. 4.9 (c) and Fig. 4.9(d). As seen
from Fig. 4.9(c) the heterogeneous mix of sensors {S1, S2, S3} can collect more samples
by accommodating more number of sensors than the best area-efficient sensor type S1

at all area power design corners. Fig. 4.10(a) shows the saving in overhead for a given
accuracy requirement as well as improvement in accuracy for a given overhead in com-
parison with two state-of-the-art techniques, namely k-LSE[251] and EigenMaps [282].
As they do not specify the type of the sensor to be used, we used the best area efficient
sensor S1 for the given overhead for these two methods, and the sensor combination
{S1, S2, S3} for HSPF. It is clear from Fig. 4.10 that for a specified reconstruction ac-
curacy, HSPF can save die area or power for the sensors by appropriately choosing the

90

right mix of sensors. As observed from Fig. 4.10, HSPF provides accuracy improvement
of around 10-100× for same overheads compared to the k-LSE and and EigenMaps.
This improvement in turn can provide better detection of hotspots and worst case tem-
perature gradient. Besides, the total execution time for HSPF is 358.9 sec and that
of EigenMaps is 8099.7 sec, an improvement of 22.56×, when implemented in Matlab
running on Intel i7, 2.4GHz machine.

4.6.1 Effect of Approximation and Sensor Accuracy on Prediction
Accuracy

The effect of both approximation and sensor noise on the reconstruction mean
square error is bounded by the condition number κ of Φs and the noise energy of ‖ ε ‖2
as [282]:

‖ x̂− x ‖2
‖ x ‖2

= O(κ2(Φs)) ‖ ε ‖2 . (4.20)

If the condition number is close to one, the matrix is well conditioned which means its
inverse can be computed with good accuracy. If the condition number is large, then
the matrix is said to be ill-conditioned. Practically, such a matrix is almost singular,
and the computation of its inverse, or solution of a linear system of equations is prone
to large numerical errors. The numerical error that is introduced is often much larger
than that what is introduced by ill-conditioning of Φs. The error εt introduced due to
either truncation or inadvertent ill-conditioning in Section 4.3.2 is much higher than
that of the contribution εs due to sensor accuracy. Bounding the sensor noise energy
in Eq. 4.20 by the weakest sensor accuracy, we can bound the maximum error contribu-
tion due to sensor noise in MSE Eq. 4.20. In other words, the error contribution due
to sensor inaccuracy is not as significant as basis truncation or ill-conditioning, under
certain conditions. Thus, we can effectively gain in accuracy by slightly trading sensor
accuracy by allowing many weak, inaccurate sensors but eventually gaining more by
increasing the number of basis vectors in the reconstruction. More number of sensors
result in inclusion of the dominant eigen vectors in the reconstruction and remove the
repercussions significantly in lieu of moderate increase in error due to sensor inaccuracy.
Exploiting this tradeoff is cardinal to the accuracy improvement in HSPF. This trade-off
is also depicted in the eigen values of the basis matrix Φ as shown in Fig. 4.10b where
the magnitude is of the order of 107 within 50 eigen values. If we accommodate 10 ac-
curate sensors in a given area-power budget, we will be able to use 10 eigen vectors as
in Fig. 4.10c in the reconstruction and thus the approximation error introduced would
be equal to the sum of rest of the eigen values – roughly > 101 as marked in Fig. 4.10b.
On the other hand, if 41 relatively inaccurate sensors are used in the same area power
budget, they will be able to cover 41 dominant eigen vectors and thus reduce the error
to roughly > 10−2. So, there is factor of 103 error reduction due to increasing the domi-
nant basis vectors in the approximation even though the sensor inaccuracy has increase

91

to say by an order of 101. Overall, there is a improvement of 102 in the reconstruction
with heterogeneous mix of relatively inaccurate sensors.

0.5 1 1.5 2 2.5 3
x 10

−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Sensor Area Power Budget

M
ea

n
S

qu
ar

ed
 E

rr
or

k−LSE
EigenMaps
Proposed

Overhead Reduction

Accuracy Improvement

(a) (b) (c)

Figure 4.10: (a) Comparison of reconstruction error with state-of-the-art methods. Both
k-LSE [251] and EigenMaps [282] use sensor type S1 while proposed HSPF uses sensor
combination S1,S2, and S3. (b) Eigen values and their magnitudes (c) Eigen Vectors
for first 12 dominant eigen values corresponding to the basis matrix Φ formed from the
covariance matrix Cx of the thermal traces.

4.6.2 Computational Complexity of HSPF

The computational complexity of choosing M sensors from N locations is the com-
binatorial CN

M and that of choosing K coefficients (or basis vectors) among N possible
combinations is CN

K . The combined combinatorial complexity is CN
M*CN

K which is pro-
portional to (N !)2. This combinatorial complexity makes HSPF a very difficult problem
to solve.

4.6.2.1 Predictor Computational Complexity

The predictor deployed for thermal sensor fusion and full chip prediction is dictated
by the number of sensors, the dimension of the sensing matrix Φs and the computational
complexity of the matrix inversion (Φ

′
sV
−1Φs)

−1. If ns is defined as the order of the
matrix Φ

′
sV
−1Φs, then the complexity of the predictor is bounded by O(n3

s).

92

4.7 On-chip Self-Awareness Trends and Overhead in CP-
SoC

In this Section, we present the trend and the overhead of realizing on-chip self-
awareness in CPSoC, by considering the different types of sensors, sNoC, architecture
and topologies, as well as technology nodes.

4.7.1 On-chip Sensors Trends

Table 4.3: On-chip Sensors Survey

Sensor Tech. Node Area Power Accuracy Range Resolution / Rate Reference

Thermal

65nm 0.01 mm2 150µW@1.0V -5.1~+3.4 oC 0~60 oC 0.139 oC [79]

0.35µm 0.175 mm2 0.49mW@3.3V -0.7~+0.9 oC 0~100 oC 0.16oC [72]

0.35µm 0.6 mm2 36.7µW@3.3V -0.25~+0.35oC 0~90oC 0.0918oC [71]

0.7µm 4.5 mm2 247µW@3.3V ±0.1oC -55~125oC 0.01oC [270]

65 nm 0.1 mm2 10µW@1.2V ±0.2oC -70~125oC 0.03oC [316]

45nm 250-360 µW ±1oC [92]

Leakage
45nm/1.2V (SOI) 140x140 µm2 120 uW ±10 % 27-100oC/ load 0-5mA 10uA/0.5us [44]

90nm/1.2V 83x73 µm2 0.66mW @80oC ±3% [186]

Power

45nm/1.2V (SOI) 140x140 µm2 120 uW ±10 % 27-100oC/ load 0-5mA 10uA/0.5us [44]

90nm/1.2V 83x73 µm2 0.66mW @80oC ±3% [186]

0.13 µm 0.01mm2 180 µA@1V 180µW 0-50mA/-23-100oC per 80ns [45]

Aging (NBTI)

45nm/1.1V 148.0826*10−6 mm2 18.57 µW (stress mode)
30.86 µW (meas. Mode) [188]

45nm 60*10−6 mm2 12 µW [257]

45nm 78*10−6 mm2 12.2 µW [11]

45nm 62*10−6 mm2 15 µW [62]

65nm /1.2 V 38.04*10−6 mm2 [173]

130nm /1.2 V 33792*10−6 mm2 [190]

130nm/1.2V/3.3V 150*10−6 mm2 469.5 µW [176, 175]

130nm 308*10−6 mm2 500 nW (stress mode)
4.5 nW (meas. Mode) [332]

Aging (TBDI)

65nm /1.2/2.5V 38040 *10−6 mm2 214x551 µm2 <1ps [175]

130nm/1.2 V 20x20 Array 555x225*10−6 mm2 [177]

130nm 150*10−6 mm2 469.5 µW (stress mode)
14.03 µW (meas. Mode) NA/100 us [332]

Voltage

65nm 2700 µm2 50 µW 85 mV @5ns [41]

90nm 778 -338µW 50mV -10mV @(1.85ns - 872ns) [186]

0.35 µm 24950µm2 0.28 µW [241]

Current
0.18um/1.8v 140x140 µm2 1131.411mW @100KHz [365]

0.7 um 170x170 µm2 [343]

Delay

65nm 5inv+2mux <1ps [90]

65/90nm 1 Inv [46]

180nm 2 Inv <1ps [34]

Critical Path
65m 90x36 µm2 3.4-4.8 ps (std); 16 ps max [101]

65m 90x38 µm2 20 mV/bit 12 bits / 1 sample@4-5Ghz [102]

The specifications of different types of on-chip sensors are tabulated in Table 4.3.
We show the overheads of using different types and number of sensors with respect to
the platform cores. Based on the analysis, we show that the overhead of including the
large number (for 1000 sensors of 5 types) is less than 7.3% of the area and 1.6% of
the power with respect to 16 A9 platform cores. The power impacts of adding over
thousands of sensors are shown in Fig. 4.12 and is found to be less than 0.3%. The

93

thermal impact of adding the sensors are marginal as the power contribution to the
overall architecture is less than 0.3% for a 16-core architecture.

(a) Thermal sensors % overhead with respect to platform A9
cores.

(b) Power sensors % overhead with respect to platform A9
cores.

(c) Voltage sensors % overhead with respect to platform A9
cores.

(d) NBTI sensors % overhead with respect to platform A9
cores.

Figure 4.11: Area-power overhead of on-chip sensors.

Note that since most of the sensors considered in the CPSoC platform can be imple-
mented using the standard CMOS process, there are no special technology/manufacturing
requirements. Mixed signal design can be used to include specialized sensors. However,
virtualizing and fusing several sensors can avoid such specialized sensors need for CP-
SoC. For instance, although the power sensors (and few types of thermal sensors) use
mixed signal design requiring an OpAmps, ADC etc., we overcome these limitations of
process and custom design requirements by using virtual sensing. We use simple ring
oscillators (RO) based delay sensors as a proxy for different sensors (e.g., temperature
and power) and accurately estimates their values while saving substantial sensor area,
power, design complexity and cost.

4.7.2 SensorNoC Implementation and Overheads

Since CPSoCs are sensor-actuator rich platforms, the information generated by these
sensors need to be aggregated and processed at the collection point. CPSoC’s introspec-
tive sentient units (ISU) serve these functions by collecting, monitoring, and processing

94

Figure 4.12: Area-power overhead of different sensors types with respect to Cortex-A9
core at 40nm technology node.

the sensing data and make meaning about the system’s present states and context as
well as future states. Each ISU is a processor based system that is interfaced to the sNoC
where the virtual sensing approach is performed. The information from the ISUs are
distributed to the computational cores. The placement and configuration of the ISUs
can be determined based on the overheads and communication bottlenecks. A small
core (e.g., Cortex M3) may be sufficient for low processing requirements. On the other
hand, when aggressive processing is required to model and predict various phenomena
in real-time, larger cores (e.g., A9) can be used. As an example, see the distribution of
several ISUs across the fabric as shown in Fig. 3.11. The overheads of using different
number of ISUs are shown in Fig. 4.13 where we observed that the area and power
overhead is less than 1% for 8 Cortex-M3 cores with respect to the platform cores of
16xA9 cores.

The overall overhead of the CPSoC (considering 1000 sensors, consisting of 5 types,
the sNoC and the ISU) is within 7.3% of the area and 1.6% in power budget of a 16 core
platform made of Cortex A9. We expect that these overheads will only get smaller as

95

Figure 4.13: Area-power overhead of dedicated sensing data processing cores (Cortex-
M3) with respect to the A9 cores.

we scale to larger platforms. Furthermore, we illustrate mechanisms to reduced these
overheads using virtual sensing, hardware-software codesign, sensor repurposing and
fusion in the subsequent sections.

4.7.2.1 sNoC Topology

A low-overhead, low-complexity dedicated approach for the collection and use of
monitoring data for diagnosis, detection, debugging, and quality of service (power,
performance, reliability, fault tolerance, security) is essential for resilient execution of
applications on large multicore platforms. Sensor networks in emerging large scale em-
bedded and computing systems are essential and to some extent are already existing
(albeit in ad hoc manner) for reading critical system variables such as temperature in
addition to the traditional network-on-chip [40]. Even though recent trends suggest
that on-chip monitoring is a very promising foundation for investigating internal and
environmental effects, building systems cost-effectively as well as in a predictable man-
ner is a major engineering challenge. Specifically, on-chip sensor networks will need
to consider a scalable topology, placement of network managers and sensors, sensing

96

AT32−ps−sNoC AT16−ps−sNoC csTDM−sNoC csTDM−sNoC−VS
0

10

20

30

40

50

60

70

80

90

100

%
 O

ve
rh

ea
d

w
.r

.t
16

 A
9

co
re

s

Total Overheads

Area
Power

Figure 4.14: Comparison of total overheads of the introspection architecture in CPSoC
(a) packet switched sNoC using Aggregation Tree of 32 nodes (b) packet switched sNoC
using Aggregation Tree of 16 nodes (c) custom circuit switched TDM network (d) cus-
tom circuit switched TDM network with virtual sensing.

and network efficiency, colocation/coexistence with on-chip data networks and interact-
ing interfaces for bandwidth, congestion, and area-power efficiency. The requirements
from such a sensor network (see Fig. 3.11) will depend on sensing and actuation la-
tency demands, overheads compared to simple design margining schemes, the number
of sensors and sensor fusion scheme. These will dictate suitable topologies and signal-
ing mechanisms. As the number of sensors are large, we consider a high fanout network
such as aggregation tree (AT) as one of the promising topology as shown in Fig. 4.15a
and Fig. 4.15b. The specification and resource usage of these two network topologies is
tabulated in Table 4.4 and the overhead for 16 and 32 node sNoC in comparison to the
platform cores (16 A9 cores) is shown in Fig. 4.16. This overhead when compared with
16 x A9 cores is relatively higher. As the number of sensors expected in these platform
is going to be higher, we explore other network architectures that are relatively more
resource efficient in the subsequent sections.

(a) 16 Node Aggregation Tree. (b) 32 Node Aggregation Tree.

Figure 4.15: Aggregation Tree based sNoC topology.

4.7.2.2 Custom Circuit Switched sNoC

Many of the on-chip sensors are low bandwidth sensors and thus the sensor data
can be time division multiplex over a router. However, as packet switching introduces

97

Table 4.4: Resource Utilization and Overheads of Aggregation Tree based sNoC.

Config.
Name

Configuration
Area Power

% Overhead
w.r.t. 16 A9 core

No Tx Ch. No Rx Ch. Tree Fan Out No VC Flit Width Flow Control Area Power
AT-16a 16 2 4 8 64 Credit 302273.1200 µm2 1.5803e+03µW 0.7205 0.0316
AT-16b 16 4 4 8 64 Credit 310075.653901µm2 1.7172e+03 µW 0.7391 0.0343
AT-32 32 2 4 8 64 Credit 1274994.786999 µm2 6.0992e+03 µW 3.0392 0.1218

Figure 4.16: Aggregation Tree (AT) based sNoC overheads with respect to cortex A9
cores of the platform.

considerable overhead, we consider a simplified custom circuit switched architecture
as shown in Fig. 4.17 for the sNoC. We consider two candidate topologies (ring and
star) for the custom based on the cycle latency. If the cycle latency is comparable to the
number of sensors, ring topology may be sufficient. On the other hand, if a low latency
is desired the star network as shown in Fig. 4.17 is better candidate.

We implemented a circuit switched ring topology sNoC as shown in Fig. 3.11 in for
16 and 32 channels at each node/ router. The channels are time division multiplexed
(TDM) for low bandwidth (slow varying phenomena) sensors such as aging. The com-
parison of the area and power with respect to the packet switched aggregation tree
based sNoC is tabulated in Table 4.5. It is observed that the custom circuit switched
sNoC can save area and power by two orders of magnitude.

Table 4.5: Circuit Switched TDM sNoC Area Power Estimation

SL No Tech Node Channel No Channel Width Area Power
% Saving w.r.t. respective packet switched sNoC

Area Power

1 32nm 16 8 2365.287712 µm2 33.5115 µW 127.7955× 47.1569×

2 32nm 32 8 4.75e3 µm2 68.01 µW 268.4200× 89.6809×

We also show that the overhead of the networks (packet switched and circuit switched)
for the sNoC. For an aggregation tree based network of 32 nodes, the overhead is less

98

1	

2	

N

Mux	

(N:1)	

Channel	

Control	

Select	

Sensors	

Controller	

(FSM)	

(a) (b)

Figure 4.17: (a) Custom TDM Router for sNoC (b)Star topology for circuit switched
sNoC. The channels are time division multiplexed (TDM).

than 3% with respect to 16xA9 platform cores. This is drastically reduced (268x in area
and 89x in power) when a custom circuit switched network is used.

4.7.3 Thermal Sensor Overhead Estimation and Reduction

Full-chip runtime monitoring of thermal phenomena requires a large number of sen-
sors that cost area as well as power. In order to further reduce the overhead incurred
in the sensor design, design space exploration of the sensor front-end core, calibration
lookup table (LUT), and readout logic is required. As an example, we consider the
design of the sensor at two technology nodes for different sensor configurations. We
estimated (as shown in Table 4.6) the area and power consumption of each component
of the sensors. We observed that the LUT used for the sensors are the most area and
power consuming part of the sensing system. For a large number of thermal sensors,
the resource consumed by the LUTs are considerable compared to the sensing heads.
By implementing the LUT in software instead of hardware, combined area and power
overhead of the sensors as shown in Fig. 4.18 can be reduced considerably (almost over
~10×). This also provides the flexibility to modify the LUT considering the variability
of each die, during the calibration of each sensor.

Figure 4.18: Virtualizing the calibration lookup table in software reduces the sensing
overhead.

99

Table 4.6: Thermal sensor design space exploration.

Thermal Sensors Configuration & DSE

SL No Tech. Node
Sensor front end core Sensor Calibration LUT Total

Area Power Area Power Area Power
1 32 nm 34.576623e-6

µm2 (12 bit
counter)

1.7253 µW 335.751567e-6
µm2 (LUT256)

10.4937 µW 3.7033e-04 µm2 12.2190 µW

2 32 nm 45.923567e-6
µm2 (16 bit

counter)

1.7409 µW 683.102252e-6
µm2 (LUT512)

21.0713 µW 7.2903e- 04 µm2 22.8122 µW

3 32 nm 94.848312e-6
µm2 (32 bit

counter)

1.8239 µW 1392.077308e-6
µm2 (LUT1024)

43.5564 µW 0.0015 µm2 45.3803 µW

4 45 nm 6.0661e-05 µm2

(12 bit counter)
2.7561 µW 0.00058904 µm2

(LUT256)
16.763 µW 0.0006497 µm2 19.5190 µW

5 45 nm 8.0568e-05 µm2

(16 bit counter)
2.7810 µW 0.0011984 µm2

(LUT512)
33.660 µW 0.001279 µm2 36.4410 µW

6 45 nm 0.0001664 µm2

(32 bit counter)
2.9136 µW 0.0024422 µm2

(LUT1024)
69.579 µW 0.0026316 µm2 72.4920 µW

4.8 Related Work

Full chip thermal monitoring and reconstruction suffers from an inherent trade-off
between accuracy of monitoring and implementation overhead (in terms of sensor die
area and power) incurred in the monitoring infrastructure. Both the accuracy of the
reconstruction and the overhead incurred in the monitoring infrastructure are directly
impacted by the number of sensors, their locations, and accuracy [282]. Specifically, full
chip thermal reconstruction accuracy predominantly depends on the number of on-chip
sensors [251, 282], their placement [251, 282], as well as sensor accuracy and error
characteristics [388]. Although improvement in reconstruction accuracy was studied
by several computational means like interpolation [233, 245, 285], correlation of the
sensor measurements, and transformed domain processing (e.g., FFT [83], DCT [251]),
a tacit assumption in all these works [169, 233, 245, 251, 83, 282] is that sensors
characteristics are homogeneous which is no longer valid for nanometer technologies
in presence of variability [388, 54]. These works [169, 233, 245, 251, 83, 282] have
neither considered the sensor error characteristics nor did they exploit the trade-offs in
sensor characteristics to improve reconstruction accuracy. In our work, we exploit these
trade-off characteristics among different sensor types with regard to the reconstruction
accuracy and show that by using mix of many weak and inaccurate sensors along with
few robust and accurate ones, the full-chip reconstruction accuracy can be improved by
an order of magnitude.

The sensor placement work is close to the recent work of Ranieri et al. [282] which
addresses the problem of sensor allocation and placement for a given set of homoge-
neous sensors and architectures. Ranieri et al. [282] do not consider the effect of
variability induced heterogeneity or the sensor accuracy directly in the thermal profile
reconstruction. The method in [282] does not specifically account for the sensor area
and power overheads. While [282] improves the reconstruction accuracy by exploiting

100

the correlation among the thermal maps, our work jointly considers the sensor accuracy,
area, and power overhead and exploits the trade-off in different sensor types along with
the correlation information among the thermal maps. Our work differs from [282] in
several ways. First, our approach is more generic and can be applied for both homoge-
neous and heterogeneous sensor types where as the approach in [282] is only applicable
for homogeneous sensors. As the thermal sensor accuracy can vary substantially due to
process variations at different location of the die [388], the methods in [282] fail to ac-
count these effects. Our HSPF approach can easily be applied in such scenarios. Second,
the reconstruction approach in [282] is based on ordinary least square (OLS), whereas
our reconstruction approach is based on generalized least square (GLS) which is more
accurate and efficient for general and heteroscedastic noise distribution. Third, our
greedy sensor placement algorithm is relatively faster than that of [282] as we directly
find the bestM locations one after the other instead of rejectingN−M (whereM � N)
futile locations. Fourth, we provide efficient solutions that can provide improvement of
the order of 10 × −100× in the reconstruction accuracy for the same sensing area and
power overhead and execution speedup of over 20×.

4.9 Summary

This chapter presented the design, implementation, and architecture of distributed
on-chip sensor networks (sNoC) for different kind of on-chip sensors that assist in
achieving self-monitoring and awareness in emerging SoC. The architecture, design,
and implementation of such networks for full chip characterization of dynamic phenom-
ena are challenging as monitoring and reconstruction suffers from an inherent trade-off
between accuracy of monitoring and implementation overhead (in terms of sensor die
area and power). Both the accuracy of the reconstruction and the overhead incurred in
the monitoring infrastructure are directly impacted by the number of samples, sensor
locations, and accuracy of the sensors. To effectively address this inherent trade-off
in thermal monitoring, we proposed a new method called heterogeneous sensor place-
ment and fusion (HSPF) that exploits the flexibility and trade-off in area and power
characteristics of varied thermal sensors to perform a heterogeneous sensor fusion and
placement for precisely recovering the full-chip thermal map. Unlike the state-of-the-art
sensor allocation and placement techniques that use a single type of homogeneous sen-
sor, our HSPF approach finds the best combination or the mix of heterogeneous sensors
for given sensor area and power budget along with their placement such that the full-
chip thermal characterization error is minimized. Instead of quantifying the overheads
in terms of total number of sensors, HSPF directly considers the sensor accuracy, area,
power overhead of each sensor type in its formulation and thus provides a more flex-
ible and accurate approach. HSPF exploits the trade-off in area and power of several
sensor types to directly improve the accuracy of the full-chip thermal reconstruction.
Simulations and experimental results show an improvement of 10-100× in reconstruc-

101

tion accuracy with three sensor types and execution speedup of over 20× in comparison
to a state-of-the-art technique using the most area efficient sensor type. On the other
hand, when large number of sensors are included, the overall overhead of the CPSoC
considering 1000 sensors (each of 5 types), the sNoC and the ISU is within 7.3150%
of the area and 0.6476% of the power budget of an equivalent 16-core ARM Cortex
A9 platform. Using virtual sensing of power the overall overhead is further reduced to
1.6834% of the area and 0.2529% of the power budget of the 16-core platform.

102

Algorithm 4.1 Greedy Heterogeneous Sensor Placement (GHSP)
Input: Thermal characterization traces X = {x1,x2, ...,xT}, Sensor types R, Sensor Specifica-
tions, V, Sensor Area Budget AB, Sensor Power Budget PB
Output: Total no of sensors M, Sensor combination m, Sensor location L, Coefficient Location
K,Sensing matrix Φs and the Basis Matrix Φ

1. Solve the heterogeneous sensor selection ILP in Eq. (4.18) and compute M for the given
sensor area power budget

2. Estimate Cx = E [x[i]x[j]] from the set of thermal traces X. X is normalized to reflect a
zero mean process.

3. Compute the eigen values of Cx and the corresponding eigenvectors to form the basis Φ

4. Construct ΦK from Φ corresponding to the largest eigen values given by coefficient loca-
tion K such that ΦK = Φ(:,K)

5. Greedy Sensor Allocation & Placement

(a) Let L = ∅ and S = {1, .., N}
(b) s1 = arg max

s1∈S
‖ X{s} ‖2

(c) Let L = L ∪ {s1} and S = S− {s1}
(d) For k = 2..M do

i. Project XS into the column space of XL : P = XLX†LXS

ii. Find the orthogonal components N = XS −P

iii. Let si = arg max
si∈S

‖ N{s} ‖2

iv. Let L = L ∪ {si} and S = S− {si}

end

103

Algorithm 4.2 Heterogeneous Sensor Fusion and On-line Prediction
Input: Total no of sensors M, Sensor location L, Sensor types R, Sensor combination m, Sensor
Accuracy (Variance) V, Basis Φ and Coefficient Location K, Sensor Measurement xs

Output: Sensing (Prediction coefficient) matrix Φs, Predicted Thermal Profile x̂

1. Solve the heterogeneous sensor selection ILP in (4.18) and compute M for the given
sensor area power budget

2. Estimate Cx = E [x[i]x[j]] from the set of thermal traces X. X is normalized to reflect a
zero mean process.

3. Compute the eigen values of Cx and the corresponding eigenvectors to form the basis Φ

4. Construct ΦK from Φ corresponding to the largest eigen values given by coefficient loca-
tion K such that ΦK = Φ(:,K)

5. Construct the Sensing Matrix Φs = Φ(L,K) and sensor variance scaling matrix V

6. Reconstruct the thermal map x̂ = ΦK

[
(Φ

′
sV
−1Φs)

−1Φ
′
sV
−1
]

xS

104

Chapter 5

Cross-Layer Predictive Model Building

105

Predictive modeling is the process of developing a mathematical model to estimate
and predict future behavior of a system by analyzing historical and current data [199].
The predictive modeling approaches can broadly be grouped into statistical and ma-
chine learning approaches. Statistical predictive model includes regression analysis
and time series analysis. Regression model [297] describes the relationship between
a response variable, and one or more predictor variables. Depending on the specific
problem, regression techniques can be sub-categorized as linear regression (multiple,
step-wise, multivariate regression models etc.), generalized linear model (logistic re-
gression, multinomial regression, Poisson regression), and non-linear regression. The
above mentioned regression models need not have time information; the data used for
model building need not be in a time sequence, and can be picked randomly. Thus, data
and model are oblivious of time. On the other hand, time series model [329] is one in
which a series of observations are made over a certain time interval. The main idea be-
hind time series analysis is to use a certain number of previous sequential observations
to predict future observations. Commonly used forms of these models are paramet-
ric auto-regressive (AR), auto-regressive and moving average (ARMA), auto-regressive
moving-average model with exogenous inputs (ARMAX), and auto-regressive models
with integrated moving average (ARIMA).

Predictive models can be parametric and non-parametric [326]. A parametric model
can be parameterized by a finite number of parameters whereas a non-parametric model
cannot be parameterized by a fixed number of parameters (number and nature of the
parameters are flexible). A parametric model is easier to build and understand, as it
requires less data to estimate and predict future behavior of a system. In contrast, a
non-parametric model requires a lot more data, and has a higher model complexity.
At the same time, parametric model is computationally faster than a non-parametric
model. Linear regression, polynomial regression, logistic regression etc. are the exam-
ples of parametric models and K-nearest neighbor, Gaussian processes, Dirichlet process
mixtures etc. are the examples of non-parametric models. In this chapter, we focus on
parametric predictive models, as they are easier to build and implement.

In this chapter, we present linear regression based predictive modeling approach for
power and performance prediction. We also present time series predictive modeling ap-
proach including ARMAX model and system identification approach using state-space
models, which are used subsequently for different applications such as design space
exploration (DSE) of emerging Heterogeneous Multicore Processors (HMPs). The chap-
ter is organized in the following sections. Section 5.1 describes the model building
approach followed by cross-layer predictive modeling approach defined in Section 5.2
where we describe properties and complexity of the model building approach. Algo-
rithms used for estimation and prediction are described in the subsequent sub-sections.
Simulation and experimental results are described in Section 5.3.1. Section 5.5 pro-
vides a brief overview of the related works.

106

5.1 Model Building Approach

In this section we describe the method of model building using regression, time-
series, and system identification approaches. We highlight the compelling use of these
models in DSE of HMPs and motivate the use of such models in run-time decision mak-
ing.

5.1.1 Linear Regression Based Predictive Model

Regression analysis [199, 297] is used to predict the value of a dependent variable
based on the value of one or more independent variables and to explain the impact
of changes in an independent variable on the dependent variable. Assuming a data
set {yl, xl1, . . . , xlp}nl=1 of n observations is known including the values of p predictor
variables and the values of the corresponding responses. The linear regression approach
builds a linear relationship between the dependent or response variable yl and the p-
vector of predictor variables xl based on the n observations. This relationship is modeled
through a disturbance term or error variable εl which is an unobserved random variable
that adds noise to the linear relationship between the dependent variable and predictor
variables. Given the response yi(i ∈ [1..n]), the corresponding predictor variables xlk(l ∈
[1..n], k ∈ [1..p]), and the variable coefficients βk(k ∈ [1..p], βk ≥ 0) the regression model
can be expressed as:

yl = β0 + β1xl1 + · · ·+ βpxlp + εl, l = 1, . . . , n,
yl = β0 +

∑p
k=1 βkxl,k + εl, l = 1, . . . , n, k = 1, ..., p

yl = xlβ + εl,
(5.1)

where xl1, xl2, . . . , xlp, are the predictor variables or independent variables, β0 is the
intercept which implies the response when all the variables are set to zero, xlβ is the
inner product between predictor vector xl = [1 xl1 xl2 . . . xlp] and parameter vec-
tor β = [β0 β1 β2 . . . β]T where T denotes the transpose. The regression model
for n observations including p predictor variables can be represented in matrix form:

y = Xβ + ε, (5.2)

where y = [y1, y2, ..., yn]T, design matrixX =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

...
1 xn1 xn2 . . . xnp

, ε = [ε1, ε2, ..., εn]T.

The Eq. 5.2 is solved by least square method that minimizes the error ε to obtain the
estimated value of the coefficient β̂:

β̂ = (XTX)−1XTy. (5.3)

107

The estimated linear regression model is given by:

ŷ = Xβ̂. (5.4)

5.1.2 Time Series Predictive Model

A time series [329] is a sequence of data points measured over a continuous time
interval using equal spacing between every two consecutive measurements. Time series
forecasting is used to predict future values based on previously observed values.

Time series regression [329, 315] is a statistical method for predicting a future
behavior of dynamic systems from experimental or observational data. A time series
analysis is often described by multiple linear regression (MLR) models of the form:
yt = Xtβ + et, to get an estimate of a linear relationship of the observed response yt
to the design matrix Xt which includes columns for contemporaneous values (existing
or occurring in the same period of time) of current and past observations of predic-
tors ordered by time t. The partial regression coefficients in β represent the marginal
contributions of individual predictors to the variation in yt when all of the other pre-
dictors are held fixed. The term et represents the residual which is defined as the dif-
ferences between predicted and observed values of yt. These differences are due to
changes in β, measurement errors (changes in Xt), and model misspecifications (for
example, omitted predictors or nonlinear relationships between Xt and yt). It is usually
assumed that et is generated by an unobservable innovations process with stationary
covariance ,CT = Cov({e1, ..., eT}) , for any time interval of length T . Under some basic
assumptions about Xt, et, and their relationship, reliable estimates of β are obtained by
ordinary least squares (OLS). A linear time-series model can be a polynomial or state-
space model. Some particular types of models are parametric auto-regressive (AR),
auto-regressive and moving average (ARMA), auto-regressive moving-average model
with exogenous inputs (ARMAX), and auto-regressive models with integrated moving
average (ARIMA).

5.1.2.1 Auto-regressive and moving average (ARMA) model

In the statistical analysis of time series, auto-regressive moving-average (ARMA)
model [129] is a tool for understanding and predicting future values in this series in
terms of two polynomials, one for the auto-regression and the second for the moving
average. The ARMA model for a single-output time-series with input, u(t), the output
y(t), and the noise e(t) is expressed as A(q)y(t) = C(q)e(t) , where A(q) represents the
auto-regressive term, and C(q) represents the moving average term, q is the time-shift
operator.

Auto-regressive moving-average model with exogenous inputs (ARMAX model) [129]

108

is expressed as:

y(t) + a1y(t-1) + . . . + anay(t− na) = b1u(t-nk) + . . . + bnb
u(t− nk − nb + 1)

+c1e(t-1) + . . . + cnce(t-nc) + e(t),
(5.5)

where y(t) represents system output at time t, na represents number of poles, nb rep-
resents number of zeroes plus 1, nc represents number of C coefficients, nk represents
system delay, y(t − 1), . . . , y(t − na) represent previous outputs on which the current
output depends, u(t − nk), . . . , u(t − nk − n + 1) represent previous and delayed in-
puts on which the current output depends, e(t− 1), . . . , e(t− nc) represents white-noise
disturbance value. A more compact way to define the difference equation is:

A(q)y(t) = B(q)u(t-nk) + C(q)e(t). (5.6)

The variablesA(q), B(q), C(q), are polynomials with respect to the time-shift operatorq−1

and defined by the following equations:

A(q) = 1 + a1q
−1 + . . . + anaq

−na , (5.7)

B(q) = b1 + b2q
−1 + . . . + bnb

q−nb+1, (5.8)

C(q) = 1 + c1q
−1 + . . . + cncq

−nc , (5.9)

where na is the order of A(q), nb is the order of B(q) plus 1, nc is the order of C(q). If
data is a time series, which has no input channels and one output channel, then ARMAX
calculates an ARMA model for the time series A(q)y(t) = e(t). ARMAX is useful when
the load disturbances enter at the input.

5.1.3 System Identification for Predictive Model Building

System identification [1, 118] is a methodology for building mathematical models
of dynamic systems using measurements of the system’s input and output signals. In
a dynamic system, the values of the output signals depend on both the instantaneous
values of its input signals and also on the past behavior of the system. System identifi-
cation uses the input and output signals measured from a system to estimate the values
of adjustable parameters in a given model structure. System Identification methodology
builds models using time-domain input-output signals, frequency response data, time
series signals, and time-series spectra. Time-domain data consists of the input and out-
put variables of the system recorded at a uniform sampling interval over a period of
time, while frequency domain data represents measurements of the system input and
output variables recorded or stored in the frequency domain. System Identification pro-
cess requires a model structure, which is a mathematical relationship between input and

109

output variables that contains unknown parameters and apply the estimation methods
to determine the numerical values of the model parameters. Examples of model struc-
tures are transfer functions with adjustable poles and zeros, state space equations with
unknown system matrices etc. The model structure can be represented as a set of equa-
tions or state-space system and the values of its parameters can be estimated from data.
The System Identification process estimates model parameters by minimizing the error
between the model output and the measured response. The output ymodel of the linear
model is given by: ymodel(t) = Gu(t), where G is the transfer function. To determine G,
the difference between the model output ymodel(t) and the measured output ymeas(t) is
to be minimized. The minimization criterion is a weighted norm of the simulation error
or prediction error, v(t), where: v(t) = ymeas(t)-ymodel(t).

5.1.3.1 State-space models

State-space representation [253, 127] is a mathematical model that uses set of input,
output and state variables to describe a system by a set of first-order differential or
difference equations. The state of the system can be represented as a vector within that
space. The most general state-space representation of a linear continuous time-variant
system with p inputs, q outputs and n state variables is written as follows:

ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = C(t)x(t) +D(t)u(t),

(5.10)

where x(·) is the state vector, x(t) ∈ Rn; y(·) is the output vector, y(t) ∈ Rq; u(·) is the
input or control vector, u(t) ∈ Rp; A(·) is the state or system matrix, dim[A(·)] = n× n;
B(·) is the input matrix, dim[B(·)] = n× p; C(·) is the output matrix, dim[C(·)] = q× n;
D(·) is the feedthrough or feedforward matrix (in cases where the system model does
not have a direct feedthrough, D(·) is the zero matrix), dim[D(·)] = q × p. The state-
space model representation for different system types are shown in Table 5.1.

In Chapter 6, we show temporal prediction of the thermal hotspots and power con-
sumption of multicore systems ahead of time using a state-space model considering the
discrete-time equivalent of a linear time-invariant system and use the predictions to
make proactive decision in emerging SoCs.

5.2 Cross-Layer Predictive Modeling for Emerging SoCs

In this section, we describe an approach to build predictive models for emerging SoC
architectures considering multiple layers of the system stack. The predictive modeling
techniques described in Section 5.1 are generic and can be applied in many scenar-
ios. However, as selection of the informative and independent features is a crucial

110

Table 5.1: State-space model representation for different system types.

System type State-space mode

Continuous time-invariant
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

Continuous time-variant
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

Explicit discrete time-invariant
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Explicit discrete time-variant
x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) + D(k)u(k)

Laplace domain of continuous
time-invariant

sX(s) = AX(s) +BU(s)
Y(s) = CX(s) +DU(s)

Z-domain of discrete
time-invariant

zX(z) = AX(z) +BU(z)
Y(z) = CX(z) +DU(z)

step for effective predictive modeling, capturing the domain specific knowledge of the
emerging SoCs is fundamental to the model accuracy and usefulness. While several
literatures exist on predictive model of performance and power consumption of homo-
geneous architectures [331, 208, 157, 119], however, to the best of our understanding,
cross-layer predictive modeling approach for emerging heterogeneous multicore sys-
tems has not been proposed. Design space exploration of HMPs is much more complex
and challenging than that of homogeneous architectures since it involves re-evaluating
architecture and application options along with the operating systems (OS) implica-
tions [78]. A straight forward extension of the above mentioned works is not directly
applicable for emerging HMPs as they are targeted towards homogeneous multicore
processors without considering the operating system. The exploration is performed
using architectural and program space parameters without considering the OS schedul-
ing by either using micro-architecture or cycle-accurate simulation. In order to con-
sider the operating system in the cross-layer predictive modeling approach, full-system
cycle-accurate architectural simulators are indispensable tools for evaluating compli-
cated and subtle design trade-offs with respect to large design spaces, and handling
various design constraints. In this thesis, we consider an extended full system cycle
accurate HMP simulator [313] based on Gem5 [49] along with the Linux OS as the in-
frastructure for our cross-layer predictive model building. We build a predictive model
of the full system considering parameters from all the layers of system stack in order
to capture the HMP performance and power characteristics. Unlike the state-of-the-art
approaches [167, 208, 378, 155, 209, 86, 268, 74, 75] that focused either on unicore
or homogeneous multicores, our predictive approach specifically focusses on the cross-
layer predictive model of the heterogeneous multicore processor while considering key

111

parameters of the application, architecture, and the operating system in the evaluation
of the approach.

In this section, we describe a cross-layer predictive modeling methodology for emerg-
ing SoC architectures. The approach is divided in two phases. In the training phase,
known data (or training set) are used to identify the predictive model configuration as
depicted in Fig. 5.1. We use special benchmarks for coverage of the design space. On
the other hand, during the prediction phase, a predictive model is used to forecast the
unknown system response as illustrated in Fig. 5.2. The training phase of the cross-layer
predictive modeling approach captures the architectural design spaces and behaviors at
different levels of abstraction to achieve efficiency (e.g., reducing simulation time by
trimming down the large design space into a small finite set of points) and accuracy
(gradual refinement of the abstraction models). This approach, illustrated in Fig. 5.1,
is motivated by the platform based approach [182, 271] with the difference that the
hardware architecture platform and the mapping strategy are varied along with diverse
spectrum of applications for given system level constraints. We use the modeling and
optimization techniques proposed in [268] to iteratively update the predictive models
(as shown in Fig. 5.1) of different parts of the system stack as discussed in the subse-
quent sections.

Figure 5.1: Training Phase : Cross-Layer Predictive Model Building.

112

Sensors,	monitors		
and	Observer	HMP Stack Operating Parameters HMP Predictive model

Opera&ng	System	

Instruc&on	Set	Architecture	

Hardware	Architecture	
	

Network/Bus	
Communica&on	Architecture		

	
Device/Circuit	Architecture			

SO	

SI	

SN	

SH	

SC	

O
PERATIN

G	CO
N
DITIO

N
	

Sensing and monitoring
at different Layers

Virtual Sensors / monitors
Physical Sensors/ monitors

Applica&ons	 SA	

Predic&ve	
Model	

Perf.

Power

Energy

Exe.	>me	

Figure 5.2: Prediction Phase : use of the cross-layer predictive model showing use of
features from different layers of the stack during prediction.

5.2.1 Application and Workload Models

We model the workload and their diversity (program phases, CPU, memory, and IO
intensive workloads) using a task (thread) based model and expose the performance
and power/energy characterization matrices to the OS where:

• V = {vi} is the set of tasks (or interchangeably used for threads). vi stands for task
i where 1 ≤ i ≤ m and m is the number of tasks. Without loss of generality, we
use task or group of tasks to represent workload/application. Let Ni represent the
computational workload (measured in terms of number of instructions) of task vi.

• S = [ipsi] = {ipsij, 1 ≤ i ≤ m, 1 < j ≤ n} is the average throughput matrix (mea-
sured in terms of instructions per sec) when executing the tasks on different pro-
cessors. ipsij(= IPCij ∗ Fj) represents the average throughput when task vi exe-
cutes on processor pj and is the product of the IPCij (instruction per cycle) and
the frequency of the core Fj. The IPCij can be measured directly from the pro-
cessor’s built-in performance counters [116].

113

• Γ = [Ni/sij] = {τij, 1 ≤ i ≤ m, 1 < j ≤ n} is the average execution time (or the
time span) matrix. τij in average execution time of task vi on processor pj.

• P = [pwi] = {pwij, 1 ≤ i ≤ m, 1 < j ≤ n} is the average power consumption ma-
trix of tasks executing on different processors. pwi = {pwij, 1 ≤ j ≤ n} represents
a vector of all the average powers of task vi executing on each processor. pwij
represents the average power of task vi executing on processor pj and it varies
with time. The power consumption pwij of a task vi can be computed by using
combination of performance counters [116].

• Ξ = [εij] = {pwij × τij} is the average energy consumption defined as the product
of the average power consumption and execution time.

Table 5.2: Heterogeneity-Aware Task Allocation Strategies for Given HMP Composition

Sl No Platform Design Goal Allocation Problem Definition Objective Function Nomenclature

1
Performance
Maxmization
(PerfMax)

minD
Find ΨD

∃ JD is minimized topt = min{JD} = min{max{tj}}
JD = max{tj}; ti =

∑k
i=1 τij

1 ≤ j ≤ n

tj represents
total execution
time of the tasks
in processor pj

2
Energy
Minimization
(EnergyMin)

minE
Find ΨE

∃ JE is minimized
Ξopt = min{JE}; JE =

∑n
j=1 ξj

ξj =
∑k

i=1 εij =
∑k

i=1 pwij .τij ;
1 ≤ j ≤ n

ξj represents
sum of total
energy consumed
by k task in
processor pj

3
Power Minimization
(PowerMin) minED

Find ΨED

∃ JED is minimized JED = min{JE .JD}
Energy Delay
Product

4
Energy Efficiency
Maximization (EEMax) minED2 Find ΨED2

∃ JED2 is minimized JED2 = min{JE .J2
D}

Energy Delay
Square Product

5.2.2 Heterogeneity-Aware Task Allocation Model

The task allocation problem of multicore processor consists of finding an optimal
distribution of tasks on a set of processors PE = {p1, p2, ..., pn} . It is assumed that
each processor runs independently, but can only run one task at any instant of time.
We call an assignment of all tasks V = {v1, v2,, vm} to available processors PE =
{p1, p2, ..., pn} a "schedule" Ψ represented as:

Ψ = {Ψj, 1 ≤ j ≤ n}
Ψj = {ψi, 1 ≤ i ≤ m},∀ψi ∈ V = {v1, v2, ..., vm},

(5.11)

where Ψj represents the schedule of the set of task for the processor pj and ψi represents
a task among the set of tasks V = {v1, v2, ..., vm} that is mapped to processor pj. A sched-
ule as defined in Eq. (5.11) will result in a total execution time and power distribution
consumption as a function of the task allocation taking into account the heterogeneity
of processing elements and workload. In other words, for different allocation strategies,

114

the total execution time and energy consumption in the multicore processor system will
be different. Thus, the cross-layer DSE determines a schedule Ψ for the given set of
tasks that meets an objective or a performance index as defined in Table 5.2.

5.3 Predictive Modeling of Performance and Power of
Different Core Types

The predictive model based on response surface model (RSM) as described in [2,
268] is a closed-form analytical expression suitable for predicting the quality of nonsim-
ulated design points. Predictive model techniques are typically introduced to decrease
the time due to the evaluation of the system-level objective function J(x) for each ar-
chitecture x. A response surface model for the function J(x) is an analytical function
r(x) such that

J(x) = r(x)+ε (5.12)

where ε is the estimation error. Typically, an appropriate predictive model for J(x) is
such that it has some desired statistical properties such as a mean of zero and small vari-
ance. The working principle of predictive model is to use a set of simulations generated
by design of experiments (DoE) in order to build the response model of the system. A
typical predictive model based flow involves : a training phase, in which known data (or
training set) are used to identify the predictive model configuration; and a prediction
phase, in which the predictive model is used to forecast the unknown system response.
In this work, we use linear regression techniques to construct the predictive model by
taking into account the interaction between the parameters and the quadratic behavior
with respect to a single parameter using the general model discussed in [268].

In order to concisely encapsulate the effects of performance, power, and workload
behavior we need an effective approach to determine and represent the performance,
power, and the energy matrices described in Subsection 5.2.1. We use combination of
measurement and on-line prediction to construct these matrices. Estimation as well
as prediction of the performance and power matrices are possible as there is a direct
correlation between the behavior of different core types. The key idea behind the es-
timation and prediction of execution time and power matrix relies on the fact that the
performance of a task on one core is correlatable to the performance in another core
(with same-ISA and memory hierarchy) with a good degree of accuracy. By measuring
the performance of the task in one processor we can predict the performance in another
processor. The execution time τij of a task vi on the processor pj can be defined as

τij = Ni

IPCij∗Fj
= Ni

ipsij

IPCij = 1/CPIij.
(5.13)

115

We develop core specific performance (throughput) predictors and then combine them
to obtain performance prediction of the combined total platform. The average through-
put IPCij is for a given task vi running on processor pj is predicted by using a linear
predictor

IPCij = Φj ∗XT
ij (5.14)

where Φj is constant vector of a predictive model [360, 15] , XT
ij = [x1i, x2i, .., xqi]

T
j

is a characterization vector of core architectural features and hardware counter (cycle
counters, instruction counters, performance degradation events) values that is used
to predict the performance for the core pj for the task vi. The cross-layer features
and hardware architecture counters are used in the prediction. We currently use the
following static features and dynamic hardware performance counters:

• Hardware Architecture Features: Issue width (Iw),LQ/SQ size (LSQ),IQ size
(IQ),ROB size (ROB),Int/float Regs (IFR),L1$I size (KB) (L1I),L1$D size (KB)
(L1D),Freq. (MHz) (F),Voltage (V), Core Area (a).

• Performance Events Counters: We measure the following events which are known
to derive the performance of a core [15, 360]: mispredicted branches, which are
used to compute the branch misprediction rate (mB); instruction/data L1 caches
and TLBs misses and hits, which are used to compute the L1 instruction miss rate
(mL1I), L1 data cache miss rate (mL1D), instruction TLB miss rate (mITLB), data
TLB miss rate (mDTLB), and Context switch counters (Cw).

• Cycle and Instruction Counters: We sample the amount of busy cycles (cyBusy),
idle cycles (cyIdle), and sleep cycles (cySleep) of a core. Busy cycles represent the time
a core spends doing computation, idle cycles capture idling time due to pipeline
stalls or cache misses, and sleep cycles capture the time a core spends in a quiescent
state. We use the total amount of committed instructions (Itotal), committed load
and stores (Imem), and committed branches (Ibranch).

Similarly, we also compute the power consumption of each task for all the cores by
measuring the power consumption in a core and suitably scaling it by the scaling factor
among the cores using a linear predictor described below:

pwij = Θj ∗XT
ij (5.15)

where Θj = [θ1, θ2, ..., θq]j is a constant vector obtained by fitting the data of the bench-
marks, and XT

ij = [x1i, x2i, .., xqi]
T
j is the architecture feature and hardware counters

(cycle counters, instruction counters, performance degradation events). The computa-
tional complexity and accuracy of the predictors for sample benchmarks are shown in
Table 5.4.

116

5.3.1 Predictive Model Evaluation Results

To demonstrate the power and efficacy of our cross-layer predictive modeling ap-
proach we perform several experiments that are representatives of recent heteroge-
neous multicore architectures (for example ARMs big.LITTLE chip [120]) and quantify
the benefits of different architectural configurations. We use different classes of Alpha
Processors [181, 203] whose specifications are given in Table 5.3 to construct realistic
HMP in Gem5 [49] by specifying the multi-layer architectural features. Note that the
performance of the processors in terms of average IPC, Area, and Power are normalized
with respect to the smallest EV4 (Alpha 21064) core. We also observe that the asym-
metric increase of approximately 82× in chip area just to double the performance of
a EV8 core with respect to EV4 core. This asymmetry (or heterogeneity) in scaling is
essentially exploited by HMPs to achieve performance, power, and energy efficiency for
a given area budget.

We apply the cross-layer approach as described in Fig. 5.1 by considering chip/die
area budget of four Alpha 21264 (EV6) processors as the system-level constraint. We
find all the possible distinct combinations with three classes of processors (EV4, EV5,
and EV6) that meet the area budget and number the 37 possible candidate config-
urations as shown in Fig. 5.3. To represent a diverse set of workload we select 8
Mediabench-II algorithms and PARSEC benchmarks as representative workloads and
measure their execution time and power consumption as shown in Fig. 5.4 using com-
bination of Gem5 [49] and McPAT[218, 219] respectively. We measure the performance
and power values for each processor core type as shown in Table 5.3 in the full system
mode. To consider the effect of varying workload and other micro-architectural effects,
we vary the number of threads in the benchmark program, with different inputs in the
cycle accurate full system Gem5 simulation to create the training data. We consider each
of these benchmarks as a single threaded task. To simulate the effect of diverse multi-
threaded workloads on the platform we use PARSEC benchmarks or gradually increase
the number of single threaded tasks and perform the allocation for a given platform.
We use the combination of these benchmarks to form new composite tasks (e.g., JPEG
compression followed by AES encryption) and compute the execution time and power
consumption as the sum of the individual benchmarks respectively. This allows us to
test architecture configurations with more than 100 cores (e.g., area budget of 4 EV8
results in 46428 configuration with as many as 330 EV4 cores).

We perform an initial set of simulations generated by DoE in order to build the re-
sponse surface model of the system for four design objectives, i.e., make-span/delay,
power, energy, energy-delay product (EDP), and energy-delay square product (ED2P)
as listed in Table 5.2. We use these initial simulation points to construct the predic-
tive models by using linear regression and obtain the coefficients of the expression in
Eq. (5.14) by performing least square fitting of the data. Table 5.4 shows the com-
putational complexity and accuracy of the predictors in comparison to a full system
simulation (over two orders of magnitude at maximum prediction error of 10%) of the

117

platform for few benchmarks. Fig. 5.5 shows the evaluation of the cross-layer predictive
model accuracy (within 5% error) for EV6 and EV4 cores for different benchmarks.

Table 5.3: Alpha Processor Cores Performance, Area and Power [203]

Alpha Core Issue Width I-Cache D-Cache Branch Prediction # MSHRs IPC* Area* Peak Power(W) Avg. Power(W) Power*

EV4 2 8KB, DM 8KB, DM 2KB, 1-bit 2 1.00 1.00 4.97 3.73 1.00

EV5 4 8KB, DM 8KB, DM 2K-, gshare 4 1.30 1.76 9.83 6.88 1.84

EV6 6 64KB, 2 Way 64KB, 2 Way Hybrid, 2 level 8 1.87 8.54 17.8 10.68 2.86

EV8 8 64KB, 4 Way 64KB, 4 Way Hybrid, 2×EV6 size 16 2.14 82.2 92.88 46.44 12.45

* Normalized versus EV4; All cores scaled to 0.1 µm, at 2.1 GHz; IPC based on SPEC CPU benchmarks.

(a)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

of
 C

or
es

HMP Configuration #

HMP configuration for Area Budget of 4Ev6

Ev4
Ev5
Ev6
Ev8

(b)

Figure 5.3: (a) Relative core sized for the Alpha processor cores. (b) HMP configurations
for area budget of 4×EV6. Total of 37 configurations numbered from 1 to 37 from left
to right.

5.4 Application of Predictive Models in DSE of HMPs

In this section, we present a cross-layer approach for exploring and configuring a
HMP for a given goal under system level constraints (such as equal area or power bud-
get). Single-ISA based heterogeneous multicore processors (HMP) are increasingly con-
sidered as an attractive design alternative to homogeneous multiprocessors because of
their superior performance, power, and energy efficiency while providing the flexibility
of using the same software (binaries) and development tools across cores for a range
of applications. HMPs can effectively address complex requirements of diverse appli-
cations by executing workloads (or tasks) in the most appropriate core types to meet

118

Table 5.4: Execution Time and Prediction Model Performance on Intel i7 2.4 GHz Ma-
chines.

Benchmarks HMP Config
Gem5 Full System
Simulation Time

Prediction Model
Execution time

Prediction
Error

H.264 #1 (4 cores) > 2 days < 1 sec <5%

Bodytrack #2 (8 cores) > 4 days < 1 sec <5%

Blackscholes #10 (16 cores) > 7 days < 1 sec <8%

Fluidanimate #10 (16 cores) > 7 days < 1 sec <8%

Mix of above #36 (32 cores) >10 days < 1 sec <10%

competing and conflicting objectives / figures of merits (e.g., performance, power, en-
ergy, throughput, area, cost etc.) [27, 203, 201, 135]. Since different workloads (e.g.
CPU bound, integer-intensive, floating-point intensive, memory intensive etc.) require
different resources, a key issue is to determine and select the right types and num-
ber of cores (processing elements) for an allocation strategy that maps the workload
(or tasks) to right core type such that the type of workload will best benefit from the
given platform. The selection of number and type of cores is not straightforward when
the applications executed by these HMPs face diverse workload characteristics. When
designing such a system, a chip architect must decide how to distribute the available
limited system resources, such as area and power, among all the processor cores.

In this example use case, we apply the cross-layer predictive models developed us-
ing the approach discussed in Section 5.2. Unlike the state-of-the-art approaches, we
jointly consider features of the application, operating system (task allocation strate-
gies), and hardware architecture while deploying computationally efficient predictive
models (of performance and power) in composing the HMP platform resources (num-
ber and types of cores). Our predictive cross-layer approach enables the designer to
comparatively evaluate and select the most promising (e.g., energy and performance
efficient) HMP configuration in over two order of magnitude less simulation time es-
pecially during the early design and verification stages when the design space is at its
largest. Our model building methodology combines the design of experiments (DoEs)
[2] and predictive model techniques to predict the quality of the nonsimulated design
points thereby speeding up the exploration process while reducing the number of re-
quired simulations. While the DoE phase generates an initial plan of experiments used
to create a coarse view of the target design space to be explored by simulations, the
predictive model, which is a closed-form expression of objective (figure of merit) space
as a function of the parameter space is useful during the design space exploration (DSE)
phase to quickly converge to the Pareto set of the multi-objective problem without exe-
cuting lengthy simulations. We use the modeling and optimization techniques proposed
in [268] to iteratively update the predictive models (as shown in Fig. 5.1) while simu-

119

lating different parts of the system stack as discussed in the subsequent sections.

5.4.1 DSE Problem Formulation for the HMPs

We consider a shared memory HMP architecture as shown in Fig. 5.6 consisting of
K types of core represented using a set Π = {π1, π2, ..., πK} , πi 6= πj, K > 1 having
corresponding areas Λ = {a1, a2, ..., aK}. Let the set of all processing elements be PE =
{p1, p2,, pn} where pj is an instance of a core type in Π. The HMP consists of the core
combinations C ={n1, n2, .., nK} such that the total number of processors in the HMP
is n =

∑K
l=1 nl , where nl is the number of processors of type πl and the total area A =∑K

i=1 ai ∗ ni. Let Amax, Pmax be the respective maximum die area and allowable power
consumption in the design of the HMP. Our goal is to find the HMP core combinations
C such that a platform objective J (e.g., power/energy efficiency) is optimized under
system constraints (such as area or power) as below:

Maximize
C
s.t

(J)

A ≤ Amax

. (5.16)

As the design space for HMP composition problem in Eq. (5.16) is extremely large, we
make a few assumptions and approximations to reduce the space. First, we assume that
the number of core types K is small (<5). Second, as there is a hard constraint on
system area and power resources, the composition space of C can be reduced to a set of
possible configurations C ={C1, C2, .., CN}. Then our problem is to chose one of these
Ci for a given set of workloads and OS level workload allocation strategy that optimizes
the system goal J.

5.4.2 HMP Configuration Selection

Once the response surface of the system goal is formed using the predictive models,
different search heuristics can be used to find the most suitable HMP configuration. As
an example, we search for the configuration that performs the best in most cases as the
number of threads (or load) is increased. Other heuristics can also be used to select the
configurations from the Pareto front.

5.4.3 Experimental Results for DSE

In this section, we present the DSE results using the cross-layer predictive model
for selecting the HMP configurations for given platform goals. Our cross-layer DSE
shows that an allocation strategy that performs well with one architecture configura-
tion does not perform equally well for another architecture configuration and there is
a rich design space to exploit for a specific solution. With the variability in number of

120

Table 5.5: Architectural Composition with Different System Goals and Allocation Strate-
gies.

Goals/Objective JD (minD) JE (minE) JED(minED) JED2 (minED2)

CPerfMax #1 (4×EV6) #1(4×EV6) #1(4×EV6) #1(4×EV6)

CEnergyMin #37(34×EV4) #9(8×EV4,5×EV5,2×EV6) #37(34×EV4) #37(34×EV4)

CPowerMin #9(8×EV4,5×EV5,2×EV6) #37(34×EV4) #2(5×EV5,3×EV6) #2(5×EV5,3×EV6)

CEEMax #9(8×EV4,5×EV5,2×EV6) #37(34×EV4) #9(8×EV4,5×EV5,2×EV6) #9(8×EV4,5×EV5,2×EV6)

tasks, the objective functions of each architectural combination with system goal minD
is shown in Fig. 5.7. The predictive models demonstrate the relative merit for het-
erogeneous multicore processor configurations for the same area budget and different
allocation strategies. Furthermore, we compare the allocation strategies with a hetero-
geneity oblivious random allocation with variability in number of task and the execution
time as shown in Fig. 5.8. The joint impact of considering the workload variability (with
variations in number of tasks and intra task execution time variations) with allocation
strategies shows that almost all the HMP configuration will underperform by as much
as 50 % and 70% respectively in terms of energy delay product (EDP) and energy
delay square product (ED2P) if a heterogeneity agnostic allocation policy (e.g., ran-
dom policy as in vanilla Linux Kernel) is used. Thus, heterogeneity-aware allocation
strategies are crucial for almost any HMP platform configurations and their impact is
significant as the system is loaded with more tasks. We search for the best performing
architectures as given in Table 5.5 as the most preferable architectures (most frequently
occurring) for different system goals using a given allocation strategy with the given
equal area budget constraints. We observe that for the given area budget, the architec-
tural combination #9(8×EV4,5×EV5,2×EV6) with 8 EV4 cores, 5 EV5 and 2 EV6 cores
has superior performance in terms of EDP and ED2P.

5.5 Related Work

HMPs that integrate a mix of small power-efficient cores and big high-performance
cores are very attractive alternative to homogeneous multiprocessors because they have
the potential for higher performance and reduced power consumption. Contemporary
mobile phones have already embraced hardware core heterogeneity, for instance, ARM
big.LITTLE architecture [120], and NVidia’s Kal-El [252] that have cores of different
strengths in one cache coherence domain with the same instruction set architecture
(ISA). Architectures with more than two core types are already a reality (e.g., NVidia’s
Kal-El [252] that integrates four high performance cores, one low performance core,
and many GPU cores) and this trend towards heterogeneity is only expected to grow
further in the future. Processor cores in a heterogeneous multicore system can differ
in static micro-architecture to dynamic behavior or modes of operation (e.g., frequency

121

or operating voltage). Broadly the vast space of HMPs can be classified by core type
(strength/size/number/ISA) and heterogeneity levels, as shown in Fig. 5.6.

HMPs provide architecturally diverse cores with drastically different power-performance
trade-offs that can be exploited for system efficiency. Consequently, HMPs and their ar-
chitecture is an active area of research. Although several works have studied HMPs
and their runtime systems [201, 36, 322, 223, 15, 70, 360], none of them addresses
the problem of platform selection and composition for a given system level constraint
such as area or power. Selection and composition of the platform is important at the
early stage of the design and a chip architect must decide how to distribute the avail-
able limited system resources, such as area and power, among all the processor cores.
Moreover, since HMPs are inherently designed as a multi-layered system, either gross
approximation or complete neglect of any layer and its features can affect the behavior,
misrepresent the intricate multi-layer trade-offs and interactions, as well as misguide
the design and composition process. Therefore, in this chapter, we presented a cross-
layer approach for configuring a HMP under system level constraints (such as equal
area or power budget) as an optimization problem.

The closest to our work is the approach in [390, 389] where an optimization frame-
work based on Lagrange multiplier is presented to allocate system area resource to
accelerators such that the total execution time is minimized. First, the approach in
[390, 389] is applicable to specialized accelerator units that can be easily synthe-
sized/designed to trade-off area and performance at finer granularity. On the other
hand, processor cores are much more complex; they can not be easily designed to trade-
off area-performance at finer granularity. Core trade-off characteristics are discrete (re-
sulting in only few core types) and thus a continuously differentiable objective function
can not be used for HMPs compositions as used in accelerators. Second, the resource
allocation in [390, 389] does not consider operating system and allocation/mapping of
task and context switching that is intrinsic in HMPs. In fact, any allocation/mapping
approaches (e.g., as used in vanilla Linux Kernel) that are not heterogeneity and work-
load aware, will have a drastic impact on the HMP platform performance and power
[201, 36, 195] and thus in the composition of the HMP platform. In contrast, our
approach considers full system OS (vanilla Linux) and four heterogeneity-aware static
allocation schemes (that have been shown to be effective [322]) along with realistic
benchmarks while configuring the platform. Third, unlike ours, [390, 389] essentially
model the performance as function of area and ignores all the other cross-layer design
parameters and thus in essence can not be considered a cross-layer approach. Fourth,
they [390, 389] assume closed form analytical models for the performance of the hard-
ware accelerator but do not explain how these can be derived and used for multiple
accelerators or for application that can not be accelerated. In contrast, we present a
more versatile and realistic approach along with a clear methodology to build cross-
layer predictive models of application and system interactions that can be used in the
HMP composition.

122

5.6 Summary

In this chapter, we described an approach to build cross-layer predictive models for
emerging SoC architectures considering multiple layers of the system stack. The generic
predictive modeling techniques based on regression analysis is applied for emerging
heterogeneous architectures by selecting informative and independent features. To cap-
ture domain specific knowledge of the emerging SoCs is fundamental to the model
accuracy and usefulness. While several literatures exist on predictive model of perfor-
mance and power consumption of homogeneous architectures, however, to the best of
our understanding, cross-layer predictive modeling approach for emerging heteroge-
neous multicore systems has not been addressed. We used these predictive models to
investigate the interactions and influence of heterogeneity of hardware architectures
(configurations, number and types of cores), multi-objective allocation strategies along
with diverse types of workloads under system level constraints (such as equal area or
power budget). We presented a principled approach to build cross-layer predictive mod-
els of application and system interactions that can be used in the HMP compositions.
Our proposed cross-layer approach quantifies the relative merits of one architectural
configuration and allocation strategy over others and helps in selecting most promis-
ing heterogeneous architectures. Our predictive cross-layer approach enables the chip
architect and designer to comparatively evaluate and select the most promising (e.g.,
energy and performance efficient) HMP configuration in over two order of magnitude
less simulation time especially during the early design and verification stages when the
design space is at its largest.

123

Algorithm 5.1 Heterogeneity-aware static task allocation using simulated annealing
(SA)
SA Input Params: Temperature T , Temperature schedule c, Maximum number of iterations
Itermax
Input Data: HMP config C, Throughput Matrix S, Power Matrix P, Execution Time Matrix Γ,
Energy Matrix Ξ
Output: Allocation Ψ

1. Set an initial solution Ψ = Ψ0

2. Obtain a new solution Ψ′ = Ψ and randomly perturb one of the elements Ψ′ji of Ψ′. The
so-called Bolz-mann generating scheme accomplishes this:

idx = j ∗m+ i

idx = [idx+
√
T × rand()] mod (n ∗m)

j′ = idxmod n, i′ = (idx− j′)/m
swap(Ψ′ji,Ψ

′
j′i′)

where rand() generates uniformly distributed random integer numbers.

3. Evaluate the objective function J(C,S,P,Γ,Ξ) for Ψ′

4. Accept (set Ψ = Ψ′) or reject Ψ′ . If the value of the objective function is lower than
before the perturbation, always accept. If it is higher, then accept according to the proba-
bilistic rule

accept if rand() < exp

(
E0 − Ep

T

)
where E0 − Ep is the difference in objective function values before and after the pertur-
bation.

5. Decrease the temperature according to the cooling schedule:

T = c× T

where 0 < c < 1 is a constant.

6. The algorithm stops when the average change in the objective function is small relative to
the tolerance, or when it reaches the maximum number of iterations Itermax, otherwise,
it goes back to step 2.

124

EV4 EV5 EV6 EV8
0

10

20

30

40

50

60

70

80
Execution Time in msec

EV4 EV5 EV6 EV8
0

100

200

300

400

500

600

700

800
Power Consumption in mW

adpcm

aes
blowfish

gsm

h263

jpeg
motion

sha

adpcm

aes
blowfish

gsm

h263

jpeg
motion

sha

Figure 5.4: Average power and execution time for 8 benchmarks for different Alpha
processors.

125

0	

1	

2	

3	

4	

5	

6	

ad
cm
	

ae
s	

blo
wfi
sh
	

gsm
		

h2
63
	

jpe
g	

mo
8o
n	

%
	E
rr
or
	

Benchmarks	

Predictor	Error	for	Core	Type	Ev6	

Perf.	Error	

Power	Error	

(a)

0	

1	

2	

3	

4	

5	

6	

ad
cm
	

ae
s	

blo
wfi
sh
	

gsm
		

h2
63
	

jpe
g	

mo
8o
n	

%
	E
rr
or
	

Benchmarks	

Predictor	Error	for	Core	Type	Ev4	

Perf.	Error	

Power	Error	

(b)

Figure 5.5: Predictive model evaluation (a) accuracy of the predictive model for the Ev6
core (b) Accuracy of the predictive model for Ev4.

A7	
 A11	

A15	

A11	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A11	

A11	

A7	
 A11	

A15	

A11	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A11	

A11	

LLC	

A11	

A15	

A11	

A11	

A11	

A11	

A15	

A11	

A11	

A11	

LLC	

A11	

A11	

A11	

A11	

A11	

A11	

A11	

A11	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A15	
 A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

LLC	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	
 A11	

A11	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A11	

A11	

A7	
 A11	

A11	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A7	

A11	

A11	

LLC	

A11	

A11	

A11	

A11	

A11	

A11	

A11	

A11	

(a)	
 (b)	

(c)	
 (d)	

Figure 5.6: Examples of heterogeneous architectures composition for the same die area
using Big (A15), Medium (A11) , and Little (A7) cores.

126

Figure 5.7: Objectives with variability in number of task for delay only task allocation
strategy (minD) using the predictive models. Lower is better.

127

Figure 5.8: DSE with predictive models: Comparison of SA based static allocation strate-
gies with random allocation strategy (as in vanilla Linux). Higher is better.

128

Chapter 6

State Estimation and Prediction Using
Minimal Sensing

129

Temporal prediction of system states is essential for making proactive decision as
well as achieving self-awareness in emerging MPSoCs. In this chapter, we show that
state prediction can be made in advance (multiple epochs of time ahead) using sparse
measurement and minimal sensors. We present an on-line estimation method using
the sparse Kalman filters to estimate and predict the full-state of the system from
sparse measurements. In this chapter, we show that temporal prediction of the thermal
hotspots and power consumption of multicore systems ahead of time using state-space
model and use the predictions to make proactive decision in dynamic thermal man-
agement (DTM) and improve the performance by ~28% without violating the thermal
limits.

The chapter is organized in the following sections. Section 6.2 defines terminologies
and the preliminaries followed by the sparse observability problem defined in Section
6.3 with the description of the properties and complexity of the problem. Algorithms
to solve the MSOP are described in the subsequent sub-sections. A specific example
use case of thermal sensor placement and run-time in-situ thermal profile estimation
and robust hotspot tracking is described in Section 6.5 supported by simulation and
experimental results. Section 6.6 provides a brief overview of the related works.

6.1 Motivation

Observing and controlling a dynamical MPSoC system is of paramount importance
for achieving adaptation. The ability to experimentally access and accurately observe
the internal states of a system offers a means to quantitatively describe dynamic be-
haviors of any complex SoC. Such dynamics exist in a wide range of systems including
many/multi processor thermal and heat-flow networks [147]. A necessary step towards
observing a complex dynamical system is to fully understand the observability of com-
plex SoCs with linear dynamics [225]. Consider a system of n nodes described by the
following set of ordinary differential equations [224]:

ẋ = Ãx + B̃u

y = C̃x
(6.1)

where the vector x =[x1, x2, ..., xn]T stands for the states of nodes, Ã ∈ Rn×n represents
the coupling matrix of the system, in which aij represents the weight of a directed link
from node j to i (for undirected networks aij = aji), uk =[u1, u2, ..., up]

T are the set
of controllers or control inputs, B̃ ∈ Rn×p is the control matrix, y are the measure-
ments, and C̃ ∈ Rm×n is the measurement matrix. A system is called observable if we
can reconstruct its complete internal states x from the measured outputs y. Although
simultaneous measurement and sensing of all the internal variables offers a complete
description of the system’s state, in practice experimental access is limited to only a sub-
set of variables due to cost of the sensing infrastructure, placement restrictions, as well

130

as unavailability of suitable and effective sensing mechanisms. Identifying a set of such
crucial points that can provide complete insight into the internal dynamics of a complex
SoC system is fundamental to effective and high performance emerging MPSoC design.

In this chapter, we explore this fundamental question of observing the internal dy-
namics of a linear dynamical system using a minimal set of observation points by using
the notion of sparsity as developed in the emerging field of compressive sensing [98].
We define the minimal sparse observability problem to find the sparsest measurement
vector which makes a linear dynamical complex network system completely observable.
We formulate and develop analytical tools to find the minimum number of nodes (sen-
sors) for any arbitrary type of network. The mathematical tools are then used to develop
effective algorithms to find the sparsest measurement vector that enables estimation of
the internal states of a complex dynamic system from experimentally accessible outputs.
The developed algorithms are further used in the design of a sparse Kalman filter (SKF)
to estimate the time-dependent internal states of a high performance processor system
and its dynamic thermal management (DTM) and control with the minimum number
of on-chip sensors.

6.2 Preliminaries and System Model

6.2.1 Dynamic System Model and Model Conversions

We consider the discrete-time equivalent of a linear time-invariant (LTI) system in
Eq. (6.1) as follows:

xk+1 = Axk + Buk
yk = Cxk

(6.2)

where xk ∈ Rn are the system states at kth time instant, uk ∈ Rp are the system inputs
, yk ∈ Rm are the measurements, A ∈ Rn×n,B ∈ Rn×p, C ∈ Rm×n, are system matrices
and x0 is the initial state of the system. Note that the discrete-time system matrices are
obtained for the sampling time ts as [228, 126]:

A = eÃ∗ts

B =

ˆ ts

0

eÃ(ts−τ)B̃dτ.
(6.3)

6.2.2 Observability and Controllability of a System

The system described by Eq. (6.2) is said to be controllable if it can be driven from
any initial state to any desired final state in finite time, which is possible if and only if
the n× np controllability matrix

Qc =
[
B,AB,A2B,,An−1B

]
= {(A,B) (6.4)

131

has full rank, that is:

rank(Qc) =n. (6.5)

This represents the mathematical condition for controllability, and is called Kalman’s
controllability rank condition [171, 228].

Observability, on the other hand, requires us to establish a relationship between the
outputs yk, the state vector xk, and the inputs uk in a manner that we can uniquely infer
the system’s complete initial state x0. The linear dynamic system described by Eq. (6.2)
is said to be observable if we can reconstruct the system’s complete internal state from
its outputs, which is possible if and only if the nm× n observability matrix

Qo = [CT, (CA)T, ..., (CAn−1)T]T = O(A,C) (6.6)

has full rank, that is:

rank(Qo) = n. (6.7)

The controllability and observability of a LTI dynamic system is related by the fol-
lowing duality property as described in Theorem (3).

Theorem 3. A linear dynamical system described in Eq. (6.2) is observable (controllable)
if and only if the dual system

xk+1 = −ATxk + CTuk

yk = BTxk
(6.8)

is controllable (observable) [171].

Proof. Substituting the system matrices in Eq. (6.4) produces the observability matrix
Eq. (6.6) of the dual system and vice versa. See [171, 228, 63] for the detailed
proof.

6.3 Problem Formulation

We define the minimal sparse observability problem using the above definitions of
observability and controllability as follows.

6.3.1 Minimal Sparse Observability Problem (MSOP)

For the dynamic system defined by Eq. (6.2), the minimal sparse observability prob-
lem is defined as the sparsest measurement matrix C, i.e., with smallest number of
nonzero entries in C, for which the system described by Eq. (6.2) is completely observ-
able. We use the following theorems to show that MSOP is a NP-hard problem.

132

Theorem 4. For any p ≥ 1, finding matrix B ∈ Rn×p,with smallest number of nonzero
entries in B such that the system xk+1 = Axk + Buk is controllable is NP-hard.

Proof. See [255]

Theorem 5. The minimal sparse observability problem is NP-hard. In other words, for any
m ≥ 1, finding the matrix C ∈ Rm×n with the smallest number of nonzero entries that will
make the system in Eq. (6.2) observable is NP-hard.

Proof. We use the duality theorem in Theorem (3) to construct a dual system (−AT,CT,BT)
as in Eq. (6.8). We then use Theorem (4) to prove the NP-hardness of finding the
sparsest CT matrix that will make the dual system controllable. Since the minimal
controllability of the dual system is NP-hard, hence the sparsest C that will make the
original system observable is NP-hard. Hence the minimal sparse observability problem
is NP-hard.

Theorem 6. For any p ≥ 1,m ≥ 1 finding matrix B ∈ Rn×p,C ∈ Rm×n with smallest
number of nonzero entries (in B and C) such that the system xk+1 = Axk + Buk and
yk = Cxk is both controllable and observable is NP-hard.

Proof. The proof follows from Theorem (4) and (5). For details see [255].

6.3.2 Greedy Solution to MSOP

Since the minimal controllability problem as described in [255] and the minimal
sparse observability problems are NP-hard, polynomial time optimal solutions are un-
reachable. A randomized and deterministic algorithm was proposed for the minimal
controllability problem in [255]. We extend the algorithm in [255] and propose a
Greedy algorithm for the minimal sparse observability problem. The algorithm for the
minimal sparse observability is presented in Alg. s(6.1) and Alg. (6.2). A constrained
version of the MPOP algorithm with location constraints is listed in Alg. 6.3.

6.4 Sparse Kalman Filter (SKF)

In this section, we describe an approach to estimate and predict the dynamic states
from the sparse output measurement obtained from the location identified by the MSOP
approach using a Kalman filter as illustrated in Fig. 6.1. The states of the system in
presence of noise and variability is given by:

xk+1 = Axk + Buk + wk (6.9)

where xk ∈ Rn are the system states (i.e., the temperatures of each block) at epoch or
time instant k, uk ∈ Rp are the system inputs (i.e., power consumption at each block),

133

Algorithm 6.1 Minimal Sparse Controllability
Greedy Minimal Controllability Algorithm.
Input: System matrix A
Output: Sparse B such that System Eq. (6.2) is Controllable

1. Initialize B to zero vector and rank difference e∗r = 1

2. While e∗r > 1,

(a) For i = 1..n

i. If B[i]=0, then for j = 1..2n + 1, set B̃[i, j] = B + j ∗ v⊥i where v⊥i is the ith

basis vector
ii. Q̃c = {(A, B̃[i, j]); Qc = {(A,B)

iii. Set er(i, j) = rank(Q̃c)-rank(Qc)

end

(b) Let (i∗, j∗) ∈ arg max(i,j) {er(i, j)} and let e∗r = er(i
∗, j∗)

(c) if e∗r > 0,set B← B+j∗ ∗ v⊥i∗

end

3. Output B

A,B are system matrices as discussed earlier. The process noise wk is zero-mean, white
random signals with known covariance matrices, Qk = E

[
wkwT

k

]
. Our objective is to

select minimal number of sensors and their placement such that we have minimum
number of sensors in the measurement equation:

y̆k = C̆xk + η̆k (6.10)

where y̆k ∈ Rm are the measurement (i.e., the temperature sensor measurement), C̆
is the minimum sensor measurement matrix, and measurement noise η̆k is zero-mean,
white random signals with known covariance matrices R̆k = E

[
η̆kη̆

T
k

]
. The process

noise wk and measurement noise η̆k are assumed to be mutually uncorrelated.
The Kalman filter maintains the states x̂k|k which means the estimate of xk given the

measurement yk,yk−1,... , and the error covariance of the states, Pk|k , is the covariance
of the states xk given the measurement yk,yk−1,...y0. Kalman filter performs the fol-
lowing recursive processing as in Alg. 6.4 to estimate the states from the measurement
for the given input.

134

Algorithm 6.2 Minimal Sparse Observability
Greedy Algorithm for Minimal Sparse Observability Problem.
Input: System matrix A
Output: Sparse C such that system in Eq. (6.2) is Observable , Minimum number of Sensor ns,
Sensor Locations

1. Compute the system matrices for the dual system

A = −AT,

2. Find the sparse control matrix for the dual system using the Alg. (6.1)

B = minimal_sparse_controllability(A)

3. Compute the controllability matrix of original system as

C =B
T

4. Output

(a) Minimum No of Sensors ns= rank(CT)

(b) Sensor Locations are independent rows of CT

(c) Measurement matrix C

6.5 Run-time Thermal Estimation and Hotspot Tracking

We use this SKF approach for runtime thermal estimation and hotspot detection of
the MPSoC.

6.5.1 Thermal Dynamic Model of MPSoC

The thermal behavior of the multi/many core processor is modeled using heat-flow
dynamics [335]. The heat-flow dynamics describe the temperature values at differ-
ent locations on the die depending on various factors such as power consumption of
functional units, layout of the chip and the package characteristics. The differential
equations describing the heat flow have a form dual to that of electrical current, rep-
resented using lumped values of thermal R and C networks, and forms the basis for
commonly used micro-architectural thermal models [335, 147]. This complex dynam-

135

Algorithm 6.3 Constrained Minimal Sensor Observability (CMSO)
Greedy Algorithm for Constrained Minimal Sensor Complete Observability (CMSCO) Algorithm.
Input: System matrix A, Location Constraints Sc that are to be avoided
Output: Sparse C such that System is Observable, Sensor Location L

1. Initialize C to zero matrix and rank difference e∗r = 1

2. Let S = {1..n} be the set of all possible sensor location

3. Remove the Constraints locations Sc to form the valid set of location Sv = S − Sc

4. Let nv = |Sv|

5. While e∗r > 1,

(a) For i = 1..nv

i. If C[Sv(i), Sv(i)]=0, then set C̃ = C + randn ∗ v⊥Sv(i) ∗ (v⊥Sv(i))
T where v⊥i is

the ith basis vector
ii. Q̃o = O(A, C̃); Qo = O(A,C)

iii. Set er(i) = rank(Q̃o)-rank(Qo)

endfor

(b) Let (i∗) ∈ arg max(i) {er(i)} and let e∗r = er(i
∗)

(c) if e∗r > 0,set C← C+v⊥Sv(i∗) ∗ (v⊥Sv(i∗))
T

endwhile

6. Output C, Sensor Locations L = find(diag(C)>0)

ical thermal network is represented in state space form [147, 126] with the grid cell
or subsystem block temperatures as states and the power consumption of each block as
inputs to this system. The outputs of this state space model are the temperatures at the
sensor locations which can be observed by the temperature sensor readings. The system
matrices A and B are constant and are computed based on the floor-plan of the pro-
cessor and the process parameters [126]. We consider the Alpha 31386 processor and
its multi-core architectures that have been extensively used in previous research works
[335, 147, 126]. A quad-core Alpha 31386 processor floorplan is shown in Fig. 6.2
where each processor core has 18 functional blocks/ subsystem units. Fig. 6.3 shows
the blocks in different layers of the chip and package. Note that the block in the top
most layer, i.e., the die only consumes power and the blocks in the thermal interface
layer, heat spreader, and the heat sinks help in dissipating the heat generated in the die.

136

Plant	
(MPSoC)	

Kalman	
Filter	Inputs,		 Outputs	

Noise,		
Noise,	

x̂k
ŷkuk

ηk

wk

uk
yk x̂k+1

x̂k+1
ŷk+1

Current	epoch		 Next	epoch		Previous	epoch		

>me	
uk
yk

ŷk

yk+1
uk+1

x̂k

k +1kk −1

available	

Figure 6.1: Kalman filter overview.

The equivalent RC network representation of the processor’s thermal dynamic system is
shown in Fig. 6.3(b).

6.5.2 Minimum Sensor Set and Their Optimal Placement

With increasing number of cores in the processor and projection of hundreds and
even thousands of cores [51], the thermal dynamics of such a processor can be ex-
tremely complex with more than thousands of blocks or functional units. Consequently,
it is prudent to consider them as large complex dynamic networks, requiring systematic
analysis. We use the mathematical tools and algorithms developed in Section 6.3 to
perform sparse observability analysis on these networks. We consider the Alpha 31386
processor and its multi-core architectures as discussed in the previous Section 6.5.1.
Our objective is to determine if the thermal network of the Alpha processor is com-
pletely observable and find the sparsest measurement matrix C such that the processor
network is completely observable. We use the greedy algorithm in Alg. 6.2 to find
the sparsest measurement matrix C. The algorithm returns that the single-core Alpha
31386 processor thermal network is completely observable with a single sensor. Conse-
quently, we would be able to estimate the temperature of the 18 subsystem units of the
processor (resulting in 2x18+14=50 nodes on the network, see Fig. 6.3(a)) and au-
tonomously track them from a single sensor measurement. The placement of the sensor
returned by the algorithm is the first block in the processor floorplan with a sensor gain

137

Algorithm 6.4 Sparse Kalman Filter
Minimum sensor state estimation using Kalman filter.
Input: Measurements y̆k, input uk, state space model A,B, C̆,Qk, R̆k, Initial Values x0,P0

Output: State estimates x̂k, measurement estimate ŷk

1. Initialize the values of x̂0|−1 = x0,P̂0|−1 = P0,

2. Perform the following every sampling step :

(a) Predict states and states covariance:

i. x̂k|k−1 =Ax̂k|k−1 + Buk

ii. Pk|k−1 = APk−1|k−1AT + Qk−1

(b) Calculate the Kalman gain, update the states and states covariance:

i. Kk = Pk|k−1C̆T
(
C̆Pk|k−1C̆T + R

)−1

ii. x̂k|k = x̂k|k−1 + Kk

(
y̆k − C̆xk|k−1

)
iii. Pk|k = (I−KkC̆)Pk|k−1

3. Output the results:

(a) State estimate: x̂k = x̂k|k

(b) Measurement estimate: ŷk = C̆x̂k|k

of 0.272. Note that the complexity of the algorithm in Alg. 6.2 is determined by the
rank computation of the controllability matrix Qc which is O(n3). The rank computa-
tion uses singular value decomposition (SVD) which has the computational complexity
of O(n3). To further validate and verify the completely observability of the system, we
construct a Kalman filter using this single sensor observation as well as placement and
track the peak temperature (hotspot) of the processor. We compare the results of the
thermal hotspot tracking of the Alpha processor with that of a state-of-the-art thermal
and hotspot tracking method [285].

6.5.3 SKF for State Prediction

To construct a full-state observer, we propose the use of the Kalman filtering ap-
proach using sparse measurement as discussed earlier. The thermal dynamics of the
processor is modeled using the discrete linear state-space system [147, 126] in presence
of variability induced process noise [54] as in Eq. 6.9. By using Alg. 6.4, the thermal

138

Figure 6.2: Floor plan of quad-core processor based on Alpha 31386.

and power dynamic behavior of the MPSoC system is estimated as well as predicted
ahead of time in the k + 1 epoch.

6.5.4 Run-time Thermal Awareness and Hotspot Tracking

Temperature adversely affects the power and reliability of processor systems. For
safe and reliable operation, the peak temperature of the processor has to be always
maintained or controlled below a safe threshold. However, with the change in work-
loads and phasic behavior of workloads, the power consumption of each block varies
vastly. As temperature sensors along with their peripheral circuits introduce substantial
overhead in silicon area and power consumption, it is extremely important to mini-
mize the number of temperature sensors without surrendering the accuracy of thermal
monitoring. On the one-hand a large number of temperature sensors are needed for
accurate thermal monitoring in presence of large dynamic power variations, but on the
other hand they incur substantial die area real estate and power consumption over-
head. Given this scenario, the minimal sparse observability problem directly addresses
this trade-off by providing the minimum number of sensors to accurately observe the
thermal dynamics.

In order to experimentally verify the results, we have created a simulation frame-
work as shown in Fig. 6.5. Fig. 6.6 shows the thermal profile estimation of the complete
processor using a sparse Kalman filter presented in Alg. 6.4 with just one sensor. The
thermal network for the single-core Alpha processor is observable using a single sen-
sor and the thermal profile estimated by the SKF is very accurate. Even in presence of
sensor noise, the SKF provides the best statistically possible estimation and tracking of
the thermal profile. The approach presented can easily be applied to multi-core con-
figurations; the number of sensors and their location are obtained using the algorithm
in Alg. 6.2. Fig. 6.7 shows improved tracking of the hotspot in the Alpha processor

139

(a) (b)

Figure 6.3: Thermal network representation of high performance processors. (a) blocks
in the different layers of the chip and their corresponding nodes in the thermal networks
[335] (b) RC equivalent circuit representation of the thermal dynamic network [128].

in comparison to a state-of-the-art method [285] for all the SPEC 2000 benchmarks.
As should be evident from Fig. 6.7, the minimum sensor SKF provides superior hotspot
tracking that is paramount for the reliable operations of processors.

In addition, the SKF can also alleviate the variability induced process noise in deep
sub-micron technologies as well as suppress sensor noise by suitably filtering the noise
during the estimation steps. Fig. 6.8 shows the filtering of the sensor noise from the
measurements during the estimation procedure. Such an approach could also be benefi-
cial in the closed loop dynamic thermal management and performance improvement of
the processor as illustrated in Fig. 6.9. During the dynamic thermal management oper-
ation, the processor throttles its frequency (i.e., reduces the frequency of operation and
hence power by certain percentage, e.g., 20%) whenever the peak temperature crosses
a specified threshold. In the absence of a accurate hotspot tracker, the peak thresholds
are violated resulting in deep reliability issues and imminent damage to the processor.
On the other hand, the noise in the sensor can spuriously trigger early DTM operation
causing unwanted performance loss. Fig. 6.9 illustrates the scenario where the SKF
enabled the DTM to filter-out the noise and spurious triggers, resulting in performance
improvement of approximately 28% in this specific example scenario.

140

6.5.5 Overheads and Complexity

The algorithmic solution to the MSOP has the computational complexity determined
by the SVD computations. The complexity of finding the sparsest measurement matrix
through the SVD based rank computations results in O(n3). On the other hand, the
complexity of the SKF that uses the sparse measurement matrix, is also O(n3). This is
determined by the matrix inverse involved in the computation of the Kalman gain Kk.
In a scenario where the time scale at which the noise characteristics change is much
larger than the time scale at which the thermal networks are studied (e.g., month or
even years), the system and the noise covariance of the Kalman filter can be assumed to
be time-invariant [330]. As a result, we can use a steady state sparse Kalman filter for
which it is not necessary to compute the estimation error covariance or the Kalman gains
in real-time [330], rather the gains can be replaced by constant gains. This reduces the
computational overhead of the real-time thermal estimation using the SKF from O(n3)
toO(n2) while still providing good accuracy. However, a calibration step may be needed
prior to running the SKF with steady state gains, this can be achieved by computing the
Kalman gains initially from the SKF and then switching to steady state SKF with constant
gains. Furthermore, a distributed implementation [185, 254]of the SKF can be used to
reduce the complexity further for scalable architecture.

6.5.6 Virtual Run-time Power Sensing Using Thermal Sensors

Here we illustrate extended use case of the state estimation approach discussed
above for unknown inputs for accurate run-time power and temperature estimation
and prediction using noisy thermal sensors placed at the suitable locations in the CPSoC
fabric.

This scenario illustrates the virtual sensing capability of CPSoC in jointly estimat-
ing and predicting the run-time transient power consumption and accurate tempera-
ture of each subsystem unit as well as accurate temperatures from noisy temperature
sensors readings using the observe-decide-act (ODA) paradigm. The virtual approach
(Fig. 6.10(a)) combines a sensor-network-on-chip (sNoC) and a robust Kalman filter
[145] to enable in-situ, on-the-fly run-time estimation of the power and temperature of
each block/unit from on-chip noisy thermal measurements. Unlike traditional MPSoCs,
the specialized sensor network (Fig. 6.10(b)) can coexist independently or combined
with the core-to-core communication network (cNoC) as shown in Fig. 6.10(c). Such
an architecture decouples the sensing and computation concerns and allows flexibility
to independently perform on-chip sensing without interfering or burdening the core-to-
core computation network.

Temperature values at different locations on the die depend on various factors such
as power consumptions of functional units, layout of the chip and the package charac-
teristics. The differential equations describing the heat flow have a form dual to that
of electrical current, represented using lumped values of thermal R and Cs, and form

141

the basis for commonly used micro-architectural thermal models in state space form
[334][147].

Virtual sensing of the run-time transient power requires the thermal model which
represents the relation between subsystem power and the temperature as discussed in
Section 6.5.1. However, to address the emerging problem of semiconductor process
variations in deep sub-micron technologies and sensor noise [388], the processor ther-
mal dynamics is augmented with the process and measurement noise in the standard
LTI model as:

xk+1 = Akxk + Ekdk + wk

yk = Hkxk + ηk
(6.11)

where xk ∈ Rn are the system states (i.e., each block’s temperature), dk ∈ Rp are the
unknown inputs (i.e., each block’s power), yk ∈ Rm are the measurements (i.e., the
temperature sensor measurement), Ak,Ek, Hk are system matrices of appropriate di-
mensions. The process noise wk and measurement noise ηk are assumed to be mutu-
ally uncorrelated, zero-mean, white random signals with known covariance matrices,
Qk = E

[
wkwT

k

]
and Rk = E

[
ηkη

T
k

]
respectively.

To effectively construct the virtual sensing mechanism for the variability and noise
corrupted dynamic system in Eq. (6.11), we use an optimal Kalman filter to provide
robust estimates. The objective of the Kalman filter is to jointly estimate the unknown
power input dk as well as the temperature states xk from noisy temperature measure-
ments in the presence of both process and measurement noise as described in Alg. 6.5.
Robust Kalman filters [145] have been shown to provide unbiased estimates of the states
and unknown inputs and guarantee global optimality and minimum variance of the es-
timates [145]. Consequently, virtual sensors constructed using such filters will provide
the statistically best solution for the thermal and power estimation of the subsystems.

To validate our approach we created a CPSoC simulation platform called CPSoCSim
[305]. We used the Alpha 31386 processor and its compilation tools that have been
extensively used in earlier research work [334, 147]. We use the SPEC and PARSEC
benchmarks and their corresponding power traces to generate the thermal profile using
the Hotspot simulator [147]. We assume that the temperature of the blocks are mea-
sured with noisy sensors and are collected by the sNoC so that these can be processed
to produce thermal and the power estimates at each subsystem unit of the processor.
Fig. 6.11 shows the actual temperature obtained from Hotspot [147] versus the temper-
ature obtained from the virtual sensor. The estimation of the power of each units and
run-time tracking of total power consumed by the processor are shown in Fig. 6.12(a)
and Fig. (b) respectively. Although the estimation error is a function of process and
measurement noise, for typical scenarios the temperature and power estimate errors
are less than 1% and 5% respectively. Note that no power sensors were used in the
whole process of power estimation of the subsystems; results were generated indirectly
by computational means using virtual sensing.

142

6.6 Related Work

The conditions of observability and controllability of LTI systems were initially intro-
duced by Kalman [171] and have been used extensively in control theory. Although the
classical rank condition [171, 224] proposed by Kalman provides a test for checking the
controllability and observability for given system matrices, the process of systematically
finding these system matrices (measurement and control matrices) have not been ad-
dressed. The very recent groundbreaking work of Liu et al. [224] addressed the process
of making a complex system completely controllable using few controlling or driving
nodes. The approach finds the minimal number of driving nodes (or controllers) that
would be necessary for driving a complex network to a specific state by using a graphical
approach. Specifically, they developed a minimum input theory to efficiently character-
ize the structural controllability of directed networks, allowing a minimum set of driver
nodes to be identified to achieve full control. In particular, the structural controlla-
bility of a directed network can be mapped into the problem of maximum matching
[144, 386], where external control is necessary for every unmatched node. Liu et al.
[225] extended their graphical approach to observability of complex networks in their
very recent work [225] .

Although the graphical approach based on structural controllability theory offers a
general tool for directed networks, the approach fails if the assumption of independence
of free link parameters and non-symmetry of the structural matrices is violated [224].
In other words, the graphical approach can not be applied to any arbitrary complex
network with structure and configurations of the link weights where the parameters
(i.e., the elements of the systems matrices) are not independently varying. Specifically,
for undirected networks, the symmetric characteristic of the network matrix accounts
for the violation of the assumption of the structural matrix, even with random weights
[224]. To overcome this limitation, recently a more generic algorithmic approach was
proposed in [255]. Our work is motivated by the work in [255] but differs in its ob-
jective and problem formulation. The work in [255] finds the sparsest control matrix
B for which a complex network is fully controllable whereas we find the sparsest mea-
surement matrix C and minimum number of sensors as well as their locations for which
the complex dynamical network system is completely observable. Our work is closest to
the very recent work of Lie et al. [225] but differs in two respect. First, [225] considers
a graphical approach (GA) based on structural properties of system matrices to make
the system structurally observable, whereas we pursue a generic algorithmic approach
to make the system completely observable. Second, the approach in [225] can not be
applied to any arbitrary system with structural symmetries, whereas no such limitations
hampers our approach and thus our approach can be applied to any arbitrary system.

143

In our approach, we also outline the design of a sparse Kalman filter to illustrate full-
state observability of complex thermal networks of real high performance processors
and multiprocessor system-on-chip (MPSoC).

6.7 Summary

One of the most challenging problems in emerging MPSoC is that of controlling and
observing the complex dynamical behavior of power-thermal networks. Observability
is fundamental to having deeper insight and self-awareness in any complex dynamic
behavior of MPSoC. It is paramount in the understanding of the interplay between the
complex network topology and the underlying dynamic behavior. In this work, we
explored this fundamental question of observing the internal dynamics of a complex
dynamic network systems using minimal set of observation points by using the notion
of sparsity. We defined the minimal sparse observability problem (MSOP) to find the
sparsest measurement vector and proved that the problem is NP-hard. Our main result
is the development of an algorithm to find the sparsest measurement matrix that will
make any arbitrary linear dynamical network completely observable. We developed ef-
fective greedy algorithms to find the sparsest measurement and used it in the design
of a sparse Kalman filter (SKF) to estimate time-dependent internal states of complex
dynamical networks. We applied the approach to complex thermal networks of real pro-
cessor systems and demonstrated the applicability in run-time thermal profile prediction
and hotspot tracking using a minimal number of on-chip sensors for effective dynamic
thermal management of such processors. We illustrated an extended use case of the
state estimation approach for unknown inputs for accurate run-time power and tem-
perature estimation and prediction using noisy thermal sensors placed at the suitable
locations in the CPSoC fabric.

144

Figure 6.4: System matrices of the micro-architectural thermal model of Alpha 31386
processor. (a) sparsity pattern of the the system coupling matrix A (size 50×50) in
continuous domain (b) representation of the coupling matrix A (size 50×50) in the
discrete domain (c) sparsity pattern of the control matrix B (size 50×50) in continuous
domain (d) the B matrix (size 50×50) in discrete domain. The matrices are obtained
from the Hotspot thermal simulator [147] for the Alpha 31386 processor floorplan.

145

Unmeasured Temperature

Processor
Floor Plan

Power
Traces

SPEC2k

Temp.
Sensors

Sparse Kalman
Filter (SKF)

Run-Time
Temperature
Estimates

Simple Scalar
+ Wattch+Gcc

HOTSPOT
Dynamic
Thermal
Model

Validate

Hotspot
Tracking

Figure 6.5: Simulation and validation framework for run-time thermal estimation using
Sparse Kalman Filter (SKF). The SKF estimates the full chip thermal profile using min-
imum number of sensors while filtering the effect of sensor, measurement, and process
noise.

146

Figure 6.6: Thermal profile estimation (a) actual thermal profile (b) estimated by SKF
using a single sensor for all the SPEC 2000 benchmarks. The estimated error is with in
0.3% for all the blocks.

147

Figure 6.7: Robust hotspot tracking of the Alpha processor using SKF in comparison to
the state-of-the-art hotspot tracking approach in [285].

Figure 6.8: Sensor measurement (with noise variance of ±1oC) and noise filtering with
SKF. Effect of both measurement noise and variability induced process noise can be
mitigated by the SKF to achieve statistically superior estimates.

148

(a)

(b)

Figure 6.9: DTM control of the Alpha processor with minimal sensor placement (a) DTM
with direct noisy sensor reading (b) with SKF. Because of the noise filtering by the SKF,
less frequent frequency throttling is initiated in the DTM, which improves performance
of the processor system (approx. by 28%).

149

Core	

cNoC	
 router	

sNoC	
 router	

Sensor	
 	

interconnect	

Core	
 	

interconnect	

Introspec0ve	

Sen0ent	
 Unit	

Core	
 Task	
 	

Manager	

Legend	

R R R R

RRRR

Temp.	

Sensors	

Accurate	
 	

Temperature	

Power	

Total	
 Power	

Sensor	

NoC	

Robust	
 Kalman	
 Filter	

Noisy	
 	

Measurement	

Virtual	
 Sensor	

(a)Virtual	
 Sensing	
 Network-­‐on-­‐Chip	

(b)	
 Sensor-­‐NoC	
 (sNoC)	
 (c)	
 Independent	
 mul0ple	
 coexis0ng	
 NoC	
 	

…	

…	

 

Introspec0ve	

Sen0ent	
 Unit	

Figure 6.10: (a)Virtual Sensor Network-on-Chip Architecture (b) Sensor NoC (sNoC)
(c) Independent multiple coexisting NoCs in CPSoC.

Figure 6.11: Run-time subsystem temperature estimation.

150

Algorithm 6.5 Virtual Sensing of Subsystem Power and Temperature
Virtual Sensing of Core and Subsystem Temperature and Power.
Input: Temperature sensor measurement from sensors y, Thermal state space model
Ak,Ek,Hk,Qk,Rk

Output: Subsystem Thermal Profiles, x̂k, and Power Profile, d̂k, Total Power, Ptotal

Perform the following every sampling step:

1. Initialize the values of x̂k,P̂k, Ak,Ek,Hk,Qk,Rk

2. Robust Two-Stage Kalman Filter (RTSKF):

(a) x̄k|k−1 =Akx̄k|k−1

(b) Px̄
k|k−1 = Ak−1P̂k−1|k−1AT

k−1 + Qk−1

(c) Ck = HkPx̄
k|k−1HT

k + Rk

(d) Pd
k|k =

{
ET

k−1HT
k C−1

k HkEk−1

}−1

(e) Kd
k = Pd

k|kET
k−1HT

k C−1
k

(f) Kx̄
k = Px̄

k|k−1HT
k C−1

k

(g) Vk = (I−Kx̄
kHk)Ek−1, I is identity matrix

(h) d̂k|k = Kd
k

(
yk −Hkx̄k|k−1

)
(i) x̄k|k = x̄k|k−1 + Kx̄

k

(
yk −Hkx̄k|k−1

)
(j) P̂x

k|k = Px̄
k|k + VkPd

k|kVT
k

(k) Px̄
k|k = (I−Kx̄

kHk)Px̄
k|k−1

(l) x̂k|k = x̄k|k−1 + Vkdk|k

3. Output the estimates: Power Estimates , d̂; Total Power, Ptotal; Temperature Estimates, x̂

151

0

2

4

6

8

10

P
o

w
er

, W
at

ts

Average Power of Each Blocks

L2_
lef

t
L2

L2_
rig

ht

Ica
ch

e

Dca
ch

e

Bpre
d

DTB

FPAdd

FPReg

FPMul

FPMap

In
tM

ap
In

tQ

In
tR

eg

In
tE

xe
c

FPQ

LdStQ IT
B

Actual
Estimated

(a)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

time, ms

T
o

ta
l P

o
w

er
, W

Power Estimation and Tracking

Estimated Power
Ideal Power
Process Noise Induced

(b)

Figure 6.12: (a) Power estimation of subsystem units (b) Run-time total power estima-
tion and tracking.

152

Chapter 7

Operating System Support for
Adaptation in Emerging MPSoCs

153

The word “adaptation” has several meanings in the systems community. However,
the most accepted notion of adaptation is defined as the ability to adjust and improve
system response using feedback, the ability to respond to change along with the capabil-
ity to alter itself dynamically to achieve goals. From a software engineering perspective,
a system is adaptive when it allows for modifying its structure or behavior at runtime;
i.e., without interrupting its service by coupling the system with an adaptation man-
ager. On the other hand, from a control engineering viewpoint, adaptation or adaptive
control adds a degree of flexibility to the control mechanism, where the controller may
change its own control policies, structure, or control parameters dynamically.

In this work we reconcile both these viewpoints by defining a generalized closed-loop
structure where the system monitors and detects the changes, analyzes their impact,
and, if needed, plans and executes actions in response to the changes. In addition,
knowledge about the system that is captured by suitable models updated at runtime
is used to support adaptation. We specifically focus on the operating system support
needed for adaptation of emerging heterogeneous MPSoCs for achieving system goals
(e.g., energy efficiency) dynamically.

Due to increased demand for higher performance and better energy efficiency, MP-
SoCs are deploying heterogeneous architectures with architecturally differentiated core
types. However, the traditional Linux-based operating system is unable to exploit this
heterogeneity since existing kernel load balancing and scheduling approaches lack sup-
port for aggressively heterogeneous architectural configurations (e.g., beyond two core
types). In this chapter, we present SmartBalance: a sensing-driven closed-loop load
balancer for aggressively heterogeneous MPSoCs that performs load balancing using
a sense-predict-balance paradigm. SmartBalance can efficiently manage the chip re-
sources while opportunistically exploiting the workload variations and performance-
power trade-offs of different core types. The approach builds predictive machine learn-
ing models of performance, power, and energy for capturing online behavior of different
cores considering the cross-layer (software and hardware) characteristics. The approach
contributes toward the design and extension of the Linux operating system with self-
awareness abstractions, adaptive middleware, with predictive models to achieve system
level goals such as energy efficiency. The experimental results show that exposing and
adapting the system software and OS with quantitative and predictive awareness of
power and throughput at the thread level can improve energy efficiency by over 50%
with respect to the existing Linux Kernel load balancer and over 20% with respect to
ARM’s GTS scheme. When compared to the standard vanilla Linux kernel load balancer,
our per-thread and per-core performance-power-aware scheme shows an improvement
in energy efficiency (throughput/Watt) of over 50% for benchmarks from the PARSEC
[48, 47] benchmark suite executing on a heterogeneous MPSoC with 4 different core
types and over 20% with respect to the state-of-the-art ARM’s global task scheduling
(GTS) [16] scheme for octa-core big.Little architecture.

154

7.1 Smart Balancing : An Operating System Adaptation
Mechanism

Emerging embedded devices (e.g., mobile platforms) face diverse multi-threaded
workloads along with conflicting needs of high energy efficiency and performance, ne-
cessitating a move towards heterogeneous MPSoC platforms with architecturally dif-
ferentiated cores providing attractive power-performance benefits [53] [120] [252].
Architectures with different core types are already a reality (e.g., NVidia’s Kal-El [252]
and ARM’s big.LITTLE [120]) and this trend towards heterogeneity is only expected to
grow further in the future [53, 223]. Unfortunately, handling heterogeneity comes at
the cost of a complex OS scheduler and load balancer. Both time-varying characteristics
of the application and OS workloads as well as the heterogeneous features of the plat-
form need to be smartly managed. Existing OS kernels’ scheduling and load balancing
schemes are openly accepted to be inefficient for such systems [121]. For instance, the
vanilla Linux kernel load balancer evenly distributes the workload among cores even if
the cores have distinct processing capabilities, which can result in serious performance
and energy efficiency loss. Even though there have been some recent efforts to address
this important issue (e.g., the IKS [272] and the GTS [16] Linux extensions), the so-
lutions have been limited to the very specific case of ARM’s big.LITTLE with two core
types. This limitation not only discourages hardware vendors from introducing new
architectural improvements with diverse core types, but also defeats the purpose of ver-
satile OS support for heterogeneous MPSoC with seamless OS configurations without
making major structural changes in the OS load balancer/scheduler.

In this chapter, we propose SmartBalance, a closed-loop sensing-driven opportunis-
tic load balancer that uses on-chip sensing, estimation and prediction, and global opti-
mization for aggressively heterogeneous MPSoCs (with more than two core types, for in-
stance, with Big (A15), Medium (A11), and Little (A7) core types) as depicted in Fig. 7.1
(b). SmartBalance consists of three phases: sense, predict, and balance that are exe-
cuted at runtime in periodic epochs, where each epoch covers multiple Linux scheduling
periods as shown in Fig. 7.1(c). Unlike the open-loop standard Linux load balancer
seen in Fig. 7.1 (a) which distributes the thread evenly, our closed-loop feedback-driven
approach makes judicious decisions to distribute the threads smartly (i.e., matched to
the core type) so as to best achieve the system goal(s) (e.g., energy efficiency) in a
smart way. SmartBalance leverages existing OS code bases by reusing and refactoring
the legacy Linux kernel code to improve energy efficiency. The key contributions of our
approach are:

• We present SmartBalance: a closed-loop load balancing approach under a sense-
predict-balance paradigm that efficiently manages chip resources while oppor-
tunistically exploiting diverse workload and core performance-power characteris-
tics.

155

Task1	
Task2	

Task	n	Task	m	

Predict	

Balance	Sense	

Scheduler	

Alloca8on	/		
Load	Balancer	

Task1	
Task2	

Task	n	Task	m	

Scheduler	

(a)	 (b)	

A15	

A15	

LLC	

A15	

A15	

A15	

A15	

A7	 A11	
A15	

A11	
A7	
A7	

A7	
A7	
A7	

A7	
A7	
A7	

A11	
A11	

A7	 A11	
A15	

A11	A7	

A7	
A7	
A7	

A7	
A7	
A7	

A11	
A11	

LLC	

Sensing	
 Predic,on	

Balance	

Epoch	
 k-­‐1	
 Epoch	
 k	
 Epoch	
 k+1	

Scheduling	
 	

	
 	
 	
 	
 (CFS)	

Scheduling	
 	

	
 	
 	
 	
 (CFS)	

Scheduling	
 	

	
 	
 	
 	
 (CFS)	

TEpoch	

(c)	

Figure 7.1: Load balancing with (a) standard Linux for homogeneous MPSoCs, (b)
SmartBalance closed-loop sense-predict-balance approach for aggressively heteroge-
neous MPSoCs, (c) timing relations of the phases in SmartBalance. Each epoch covers
several linux CFS scheduling periods.

• We expose workload (performance, power) variability to the OS to exploit per-
thread workload characteristics (IPC, power, and utilization) in each core for ag-
gressively heterogeneous architectures (as defined in Chapter 2). We introduce
estimation and prediction models to calculate the performance and power impact
of executing each thread on different heterogeneous cores without performing
sampling at each core type as depicted in Fig. 7.2.

• We demonstrate a working prototype and make available the reference implemen-
tation for the Linux 2.6.x kernel as an open source project at:
https://github.com/santanusarma/smartbalance.

• When compared to the standard vanilla Linux kernel load balancer, SmartBalance
improves energy efficiency by over 50% for PARSEC benchmarks executing on a
Heterogeneous MPSoC with 4 core types and by over 20% with respect to the

156

Figure 7.2: Temporal model of the SmartBalance approach.

state-of-the-art ARM GTS scheme [16].

7.2 Motivation and Related Work

Heterogeneous MPSoCs provide architecturally diverse cores with drastically dif-
ferent power-performance trade-offs that can be exploited by the OS. Consequently,
heterogeneous MPSoCs and their run-time systems is an active area of research. Pre-
vious works focused on extracting computational performance with energy efficiency
as a secondary benefit [36, 360] and recently the focus has shifted to energy efficiency
[16, 189, 70, 223]. However, most of these works have been restricted to a special class
of heterogeneous MPSoC architecture (e.g., homogeneous cluster of two limited core
types as in ARM big.LITTLE [163, 252]) with the number of threads being scheduled
limited by the number of cores [36, 201, 70, 360, 223, 15]. Within this restricted archi-
tectural model, many of them do not take into account the OS and associated issues in
their simulation/analysis[201, 36, 223, 15, 70, 360]. Many of these techniques also lack
thread-level awareness of both the performance and power characteristics for exploiting
multithreaded workloads at a finer granularity[201, 360, 70, 223, 15, 240, 189, 272].
This limits the opportunity to perform extensive energy and performance optimizations.
SmartBalance overcomes these restrictions by handling aggressive architectural hetero-
geneity and exploiting runtime performance-power variability. The key differences of
SmartBalance with the existing state-of-the-art is summarized in Table 7.1.

The closest to our work are the approaches proposed in [189, 272, 16, 15, 240, 223].

157

Table 7.1: Comparative Summary of Related Work.

Reference Scheme Generality Per-Thread
Awareness

Per-Core Awareness Integrated &
Implemented
in OSNo Core

Types >2
Thread-to-

core-ratio >1
IPC Power Util. IPC Power

Chen et al., 2009[70] X × × × × X X ×
Annamalai et al., 2013
[15] × × × × × X X ×

Liu et al., 2013[223] X X × × × X X ×
Kim et al., 2014 [189] × X × × X × × X
Poirier et al., 2013 [272] × X × × X × × X
ARM GTS, 2013[16] × X × × X × × X
SmartBalance [313] X X X X X X X X

The work by Kim et al. [189] improves Linaro IKS [272] by bringing the core utilization
awareness to the scheduler but lacks support for architectures with more than two core
types in addition to per thread awareness for finer balancing. The Global Task Sched-
uler (GTS) [16] proposed by ARM brings several improvements in comparison to Linaro
IKS[272] both in terms of performance and generality. GTS allows a selection of either
a big core or a little core instead of a core cluster as in IKS, thus enabling architecture
exploitation at finer granularity. However, GTS can not directly support architectures
with more than two core types without major re-engineering of the kernel. In addition,
although GTS considers per-thread utilization awareness, it is unable to exploit thread
level opportunity for instruction level parallelism (ILP) and the power consumption of
the threads. Annamalai et al. [15] proposed a program phase-aware dynamic schedul-
ing scheme limited to only two core types without considering the OS workload and
implementation issues. Liu et al [223] proposed a dynamic thread scheduling scheme
with the number of threads limited to the number of cores. They also do not provide
per thread awareness for the load balancer to exploit and consider the OS implemen-
tation issues. Mogul et al. [240] considered OS issues and proposes an asymmetric
architecture with special core types optimized to run OS code with improved energy
efficiency, but are also limited to two core types in their scheduling and load balancing.
In contrast with all of the above related work in Table 7.1, SmartBalance considers ag-
gressively heterogeneous architectures with more than two core types while exploiting
per-thread and per-core level awareness in a closed loop manner.

7.3 Heterogeneous Computing Elements and Thread Model

We consider the case of heterogeneous multi-core systems in which all cores can have
different capabilities. A core type r is defined by the combination of micro-architectural
features and their nominal performance and power (voltage/frequency). For example,
Table 7.2 shows four core types labeled as Huge, Big, Medium, and Small differing in
seven architectural feature combinations such as issue width, instruction queue (IQ)

158

size, reorder buffer (ROB) size, number of registers, and cache size. In addition, even
if the cores are identical in terms of microarchitecture but associated with different
nominal frequencies, they can be considered as distinct core types. We define the set of
cores as C = {c1, c2,, cn}, the set of core types as R = {r1, r2, ..., rq} , where γ : C → R
gives type of a particular core. Each type r is characterized by a unique combination of
the parameters X = {x1, x2, ..., xp}, with an example shown in Table 7.2.

Table 7.2: Heterogeneous Core Configuration Parameters

Parameter Symbol Huge Core Big Core Medium Core Small Core
Issue width x1 8 4 2 1
LQ/SQ size x2 32/32 16/16 8/8 8/8

IQ size x3 64 32 16 16
ROB size x4 192 128 64 64

Int/float Regs x5 256 128 64 64
L1$I size (KB) x6 64 32 16 16

L1$D size (KB) x7 64 32 16 16
Freq. (MHz) F 2000 1500 1000 500
Voltage (V)* VDD 1 0.8 0.7 0.6

Peak Throughput* IPC 4.18 2.60 1.31 0.91
Peak Power (W)* PTotal 8.62 1.41 0.53 0.095

Area (mm2)* A 11.99 5.08 3.04 2.27

* Estimated by the Gem5 [49] and McPAT modeling framework [218, 219] for a 22nm node based on PARSEC [48, 47] benchmarks.

SmartBalance assumes each core can run multiple threads and perform multitask-
ing. We assume processes are encapsulating threads similar to the Pthread model, so
there is no formal or explicit dependency between threads. Within the Linux scheduling
subsystem, processes and threads are all treated as task entities and scheduled indepen-
dently. For uniformity, in this work the term thread is used interchangeably for both
single-threaded processes and for threads of the same process. We consider a total of
m threads to be mapped to n cores without restricting the number of threads to the
number of cores. Threads can enter and leave the system at any time and their total ex-
ecution time is unknown. The set of threads to be optimized contains all threads active
at the beginning of each SmartBalance Epoch.

Throughout the work, we use the following notations:

• V = {ti, 1 ≤ i ≤ m} is the set of all the threads to be allocated during an epoch.
The thread set Ψj(k) = {ti, 1 ≤ i ≤ mj},∀ti ∈ V = {t1, t2, ..., tm} is mj threads
mapped to core cj at the kth epoch such that the “allocation”

Ψ(k) = {Ψj(k), 1 ≤ j ≤ n} (7.1)

where total threads m =
∑n

j=1mj.

159

• We define the throughput characterization matrix that is exposed to the OS as:

S(k) = [si(k)] =[ipsij(k)] (7.2)

as the average throughput (in instruction per second (IPS)) of threads executing
on different cores at kth epoch. si(k) = {ipsij(k), 1 ≤ j ≤ n} represents the
vector throughput when executing thread ti on different cores. ipsij(k) represents
the average throughput of thread ti executing on core cj. IPSj(k) is the average
throughput of core cj when executing its allocated threads during the epoch.

• Similarly, we define a power characterization matrix that is exposed to the OS as:

P(k) = [pi(k)] = [pij(k)] (7.3)

as the average power consumption of threads executing on different cores during
an epoch k. pi(k) = {pij(k), 1 ≤ j ≤ n} represents a power vector corresponding
to a thread ti executing on different cores and pij(k) represents the average power
of thread ti executing on core cj at the kth epoch. Pj(k) is the total average power
consumed by the core cj during the epoch while executing the threads allocated
to it.

7.4 SmartBalance Approach

SmartBalance is closed-loop load balancing approach consisting of three stages:
sensing, prediction, and balancing that are executed at runtime in periodic epochs,
where each smart balancing epoch covers multiple Linux CFS (completely fair schedul-
ing) periods as shown in Fig. 7.3. Since we use the standard Linux CFS to perform
scheduling of the threads allocated to the same core, we only focus on the three stages
at the beginning of each epoch. At every epoch, SmartBalance first samples the power
and the performance counters of each core. Second, using the measurements, it esti-
mates the individual impact or contribution of each thread towards the performance
and power of its current core. Third, the individual per-thread contribution in perfor-
mance and power are used to predict the per-thread performance and power in other
core types. These per-thread performance and power characteristics are represented in
a systematic manner using two 2-dimensional matrices. These matrices are then used
to find the allocation for the next epoch in the fourth step. Once the allocation is found,
the threads are scheduled by the OS using the standard Linux CFS in the last step. This
process is repeated in each epoch as shown in Fig. 7.3.

7.4.1 Sensing

During the sensing and measurement phase, hardware performance counters (HPCs)
and power are periodically sampled per thread (at the thread context switch as shown

160

…….	

Smart	
 Balancing	
 Epoch	
 TEpoch(k)	

Linux	
 CFS	

Sched	
 Period	
 T1k(1)	
 T1k(L)	

…	
 τ1 τ 2 τ m @me	
 Core1	

TEpoch(k-­‐1)	

…….	
 @me	
 Core2	

…….	
 @me	
 Coren	

Sense	
 Es@mate	
 &	
 predict	
 Balance	

Figure 7.3: SmartBalancer epochs for workload-aware dynamic thread balancing and
scheduling in heterogeneous MPSoCs. Each SmartBalance epoch covers L Linux CFS
scheduling periods.

in Fig. 7.3) in order to trace the workload characteristics of the threads currently run-
ning in the system. We currently use following hardware performance counters (cycle,
instruction and performance degradation events):

• Cycle counters sample the amount of busy cycles (cyBusy), idle cycles (cyIdle), and
sleep cycles (cySleep) of a core. Busy cycles represent the time a core spends doing
computation. Idle cycles capture idling time due to pipeline stalls or cache misses.
Sleep cycles capture the time a core spends in a quiescent state. In our current
experimental platform and kernel implementation, a core enters this state when
it has no threads to execute.

• Instruction counters. We sample the total amount of committed instructions
(Itotal), committed load and stores (Imem), and committed branches (Ibranch). These
are used to calculate the share of memory instructions Imsh = Imem

Itotal
and the share

of branch instructions Ibsh = Ibranch

Itotal
.

• Performance events counters. We measure the following events which are known
to drive the performance of a core[15]: mispredicted branches, which is used to
compute the branch misprediction rate (mrb); instruction/data L1 cache and TLB

161

misses and hits, which are used to compute the L1 instruction miss rate (mr$i), L1
data cache miss rate (mr$d), instruction TLB miss rate (mritlb), and data TLB miss
rate (mrdtlb).

7.4.2 Prediction of Performance and Power

As described in Section 7.3 threads are characterized using the performance and
power matrices. Estimation and prediction of the performance and power matrices
are possible since there is a direct correlation between the behavior of different core
types. In this section, we derive analytical models to compute these matrices using a
combination of measurements and prediction among the cores, and the experimental
validation of each step is presented in Section 7.6. We propose a simple methodology
to predict ipsil(k) in a different core cl by using the measurement IPSj(k) (instructions
per second) and its throughput contribution ipsij(k) in the core cj, ∀j 6= l as discussed
below.

7.4.2.1 Performance and Power Estimation of Each Thread on a Core

In order to estimate the thread-specific performance and power characteristics, we
define the following notations and timing relations as shown in Fig. 7.3. We define the
load balancing epoch TEpoch consisting of L CFS scheduling periods Tjk. Let Tjk(l), l =
1..L be the lth CFS scheduling period in the kth epoch TEpoch(k). Let there be m =∑n

j=1mj threads, i.e., Ψj = {ti, 1 ≤ i ≤ mj},∀ti ∈ V = {t1, t2, ..., tm} scheduled in
a scheduling period Tjk(l) in the core cj. Let ith thread get time share τijl in the lth

scheduling period such that the scheduling period and smart balancing epoch is given
by TEpoch(k) =

∑L
l=1Tjk(l) where Tjk(l) =

∑mj

i=1τijl. Let Iijl be the measured counter
values for the number of instructions executed by the ith thread in the lth scheduling
period,

...
ipsijl ,

...
p ijl, and

...
ε ijl be the respective measured throughput, power, and energy

consumed by the thread during the execution duration τijl is given by ipsijl = Iijl/τijl and...
p ijl =

...
ε ijl/τijl respectively. The average total throughput and power in the kth epoch

for the ith thread is:

ipsij(k) =
∑L

l=1 Iijl/
∑L

l=1 τijl =
1

L

∑L
l=1

...
ipsijl (7.4)

pij(k) =
∑L

l=1
...
ε ijl/

∑L
l=1 τijl =

1

L

∑L
l=1

...
p ijl. (7.5)

Total average throughput IPSj and power Pj in the kth epoch for all the threads for the
core cj:

IPSj(k) =
∑mj

i=1

(∑L
l=1Iijl/

∑L
l=1τijl

)
=

1

mj

∑mj

i=1ipsij(k) (7.6)

162

Pj(k) =
1

mj

∑mj

i=1pij(k) (7.7)

Average core performance in terms of instruction per second for the kth epoch is IPSj(k) =
IPCj(k)∗Fj = Ijtotal∗Fj/(cyjBusy+cyjIdle) where cyjBusy, cy

j
Idle, and Ijtotal are the counters values

sampled for core cj at epoch k, and Fj is the frequency of the core.

7.4.2.2 Performance and Power Prediction for Different Core Types

In the previous section, we described how we compute ipsij(k) for all threads ti
executed on core cj in the kth epoch. The next step updates the remaining values of the
S(k) matrix with predictions of performance for different core types. Some approaches
use a sampling-based method[36], in which every thread is periodically executed on
all core types in order to collect performance and power statistics. This imposes a
high overhead in the system. Instead, we employ a prediction-based approach. The
key idea behind the prediction of the throughput matrix relies on the fact that the
average throughput behavior of a thread on one core is correlatable to the throughput
on another core (with same ISA and memory hierarchy) with a good degree of accuracy
[360]. By collecting performance information of the thread in one core we can predict
the throughput in the other cores. In Section 7.4.1, we identified a set of performance
counters that can be used to characterize the workload being executed by a thread.
Given the aforementioned set of counters, the performance of a thread ti that has run
on core cj at the the kth epoch can be predicted on every other core cl, ∀j 6= l as follows:

îpcij(k) = Θ ∗XT
ij (7.8)

such that îpsij(k) = îpcij(k) ∗ Fj where XT
ij = [xij1 , x

ij
2 , ..., x

ij
N]T represents a characteri-

zation vector of the workload of thread ti during epoch k-1. Θ is the coefficient matrix
which defines impact of each metric when predicting from core cj of type γ(cj) to core
cl of type γ(cl). In order to obtain Θ, we employ standard linear regression using the
least square method in a similar approach to [15].

The final step of the estimate/predict phase of SmartBalance is to obtain the power
characterization matrix P(k). We use the observation that the power pij a thread ti is
linearly correlated to its ipcij [220]. We use linear interpolation to relate the power
consumption of the thread ti running a core cj of type y = γ(cj) to the predicted ipcij
as:

p̂ij = α1 ∗ îpcij + α0 = Θ1 ∗XT
ij + α0 (7.9)

where α0, α1 are constants that provide the performance–power relationship for core
type y and are obtained from offline profiling.

163

7.4.3 Thread Balancing and Allocation

The thread mapping problem consists of finding an optimal allocation of threads
V = {ti, 1 ≤ i ≤ m} on the cores C = {c1, c2, ..., cn} of each type R = {r1, r2, ..., rq} such
that an objective or cost function is optimized. We call an assignment of all threads V =
{t1, t2,, tm} to available cores C = {c1, c2, ..., cn} an allocation Ψ(k). An allocation
as defined in Eq. (7.1) results in an objective or cost function to be optimized while
accounting for the heterogeneity of processing elements and executing threads. An
objective or a cost function for the allocation problem can be defined in several ways
according to the desired optimization goals. In this work, we focus on maximizing
overall energy efficiency (i.e., IPS/Watt or Instructions per Joule) as defined below:

Maximize (JE)
Ψ(k)

(7.10)

JE =
∑n

j=1 ωj
IPSj(k)

Pj(k) (7.11)

where the objective JE is the weighted sum of energy efficiency (IPS/watt) of all the
cores, IPSj(k) can be calculated using Eq. (7.6) and Pj(k) is given by Eq.(7.7) or the
characterization matrices in Eq. (7.2) and Eq. (7.3). The weights ωj are ideally set to 1,
but can be tuned to give preference to certain cores or core types.

7.4.3.1 Optimization Methodology

Finding the optimal thread allocation is an NP-hard combinatorial problem [93] that
requires heuristics exploiting specific characteristics of the problem to achieve accept-
able solutions within a reasonable amount of time. In our SmartBalance context, we
have a further constraint of achieving online optimization at the start of each Smart-
Balance epoch (Fig. 7.3). We achieve this through the runtime optimization outlined
in Alg. 7.1 that deploys a modified online Simulated Annealing (SA)-based approach.
SA has been shown to produce nearly-optimal global solutions while accommodating
problem-specific changes without significant modifications [93]. Furthermore, SA pro-
vides tunable parameters to trade-off computational complexity for solution quality
(e.g., number of iterations and precision of probabilistic functions), enabling a runtime
light-weight implementation. The tunable input parameters in Alg. 7.1 can be used to
trade-off computational complexity for solution quality (e.g., number of iterations and
convergence speed). While a straightforward floating-point implementation of Alg. 7.1
may lead to long execution times due to the high cost of computing the probabilistic
functions, we use custom fixed-point implementations of rand and ex that trade-off per-
formance with uniformity (rand) and precision (ex) without significantly compromising
the quality of the final solution. The computation of the objective function is also opti-
mized by keeping track of previous computations and obtaining a new evaluation only

164

by performing computations induced by the latest swap on Ψ. In Section 7.6.3 we show
that our runtime optimization algorithm is able to find solutions online (at the begin-
ning of each scheduling epoch) without imposing significant overheads on the operating
system.

Algorithm 7.1 Smart_Balance() Runtime Optimization
Input Parameter Options: Max. no. of iterations Optmax_iter, perturbation schedule
Opt4perturb, acceptance rate schedule Opt4accept, initial perturbation Optperturb and acceptance
rate Optaccept
Input Data: Throughput Matrix S, Power Matrix P (core dynamic and leakage power vectors
PD and PL), thread utilization vector U, initial allocation Ψ0

Output: Allocation Ψ

1: Ψ← Ψ0 . Implemented as uni-dimensional array
2: iteration← Optmax_iter

3: perturb← Optperturb
4: accept← Optaccept
5: while iteration > 0 do
6: Ψ′ ← Ψ
7: pos← randi(0, n ∗m) . permute for new index position
8: pos_new ← pos+

√
perturb ∗ randi(−pos, n ∗m− pos)

9: swap(Ψ′, pos, pos_new)
10: diff ← JE(S,P,Ψ′)− JE(S,P,Ψ)
11: if diff > 0 then . Always accept if new solution is better than previous
12: Ψ← Ψ′

13: else . Accept worse solution with a probability proportional to accept
14: probability ← e

−diff
accept

15: if randi() mod 1
probability

= 0 then
16: Ψ← Ψ′

17: end if
18: end if
19: iteration← iteration− 1 . Update perturbation and acceptance rate
20: perturb← perturb ∗Opt∆perturb
21: accept← accept ∗Opt∆accept
22: end while

. randi() generates an uniformly distributed integer number in the interval [0, 232),
while randi(x, y) generates a number in the interval [x, y)

165

7.5 Experimental Setup and Implementation

We created an experimental simulation platform (shown in Fig. 7.4) comprising
the heterogeneous cores described in Table 7.2 using the Gem5 performance simulator
[49]. Gem5 includes cycle-accurate models for various CPU architectures, as well as
peripheral models that allow us to run full system simulations. We use Gem5 to create
heterogeneous cores by changing the architectural simulation parameters of the original
Alpha 21264 superscalar architecture. Our approach is not limited by the voltage and
frequency of the cores, however, to show the effect of architectural heterogeneity, we fix
all cores’ voltages and frequencies to predefined values. All L1 and L2 caches are private
and the cores are connected to the main memory through a shared bus. For obtaining
power data, we integrated the McPAT power model [218, 219] directly with the Gem5
simulation framework, which allows us to obtain power sensor data at runtime. Gem5
is also extended with a sensing interface which exports McPAT power information and
other Gem5 statistics (specifically the hardware counters) to the kernel at run-time.

Thread	
 0	

Thread	
 n	

App	
 0	

Thread	
 0	

Thread	
 n	

App	
 n	
 Applica/ons	

Opera/ng	
 	

System	

Extended	

Gem5	

Pla;orm	

Benchmarks	

Disk	
 DRAM	

McPAT	

HPC/	

Sensing	

Interface	

….	

Power	
 Perf.	

Core	
 1	

RQ	

Schedule()	

Core	
 2	

RQ	

Schedule()	

Core	
 n	

RQ	

Schedule()	

load_balance()	

smart_balance()	

Linux	
 Kernel	

……	

……	

Big	

$I	
 $D	

L2	

Medium	

$I	
 $D	

L2	

Small	

$I	
 $D	

L2	

Huge	

$I	
 $D	

L2	

Figure 7.4: SmartBalance experimental platform using extended Gem5.

7.5.1 SmartBalance Implementation

SmartBalance replaces Linux’s existing load balancing mechanism. In the vanilla
kernel, load balancing is triggered by the function rebalance_domains() . We have

166

reimplemented this function in order to call SmartBalance instead of the standard load
balancing at the end of every epoch as shown in Fig. 7.3. We sample performance
counters on a thread-by-thread basis. The sampling of these counters is done at the
granularity of Linux’s schedule() function. At the beginning of each epoch, the values
of all thread-counters are collected and the performance and power matrices are built
for use in the subsequent phases. Values that are unavailable are predicted as described
in Subsection 4.3.1. It is worth mentioning that SmartBalance can optimize both the
user and kernel threads jointly. Since the impact of the user level threads dominates that
of the kernel threads, we focus on the user-level threads by identifying and marking
them during their creation in the sched_fork() function. We assume that each user
thread is allowed to run on any core, however, special constraints can easily be included
by modifying the objective function in Eq. (7.11). Once a new allocation Ψ is found,
threads may be migrated to balance the system according to the new allocation. The
migration process is performed using the set_cpus_allowed_ptr() function already
provided by the kernel.

Table 7.3: Benchmarks and their Mixes.

Benchmarks Mix1 Mix2 Mix3 Mix4 Mix5 Mix6

PARSEC Mixes
x264Hcrew x264Lcrew x264Lcrew x264Hcrew Bodytrack Bodytrack
x264Hbow x264Lbow x264Hbow x264Lbow x264Hcrew x264Hcrew

x264Lbow

7.6 Experimental and Evaluation Results

The objective of our experiments is to evaluate the energy efficiency and effective-
ness of the SmartBalance Linux kernel with respect to the baseline vanilla Linux kernel
and the state-of-the-art ARM GTS policy [16] using a varied sets of benchmarks and
their mixes. Our first set of experiments show results for generic HMP architectures
with four core types, while our second set of results in Section 7.6.1 performs a com-
parison with the state-of-the-art ARM GTS policy for big.Little architectures with two
core types. In order to do a comprehensive evaluation of SmartBalance, we use PARSEC
benchmarks [48, 47] and their combinations for different levels of parallelization (2,4,8
threads) as shown in Table 7.3. We select a set of multithreaded benchmarks that have
diverse characteristics (compute and memory intensive) from the PARSEC [48] bench-
mark suite as representative applications as well as create sets of synthetic benchmarks
with attributes that reflect interactive/IO dependent applications.

We call these sets of multithreaded synthetic benchmarks interactive microbench-
marks (IMB) that provide the ability to control the load, phasic behavior, and interac-
tivity (sleep and wait periods). The IMBs can be configured to have throughput (T)
and interactivity (I) that controls the sleep/wait periods for high (H), medium(M), and

167

low(L) values. As an example, HTHI corresponds to the high throughput and high in-
teractiveness of the IMB configuration and all the other 8 combinations are similarly
labeled in our experiments. Note that we use the x264 benchmark with different con-
figurations (high(H)/low(L) frame processing rate) and input videos (crew/bowing) to
show that a single benchmark can have different characteristics (both in IPS and power)
as shown in Table 7.3.

Fig. 7.5 shows the energy efficiency of the SmartBalance approach for different sets
of benchmarks when the benchmarks are run using the Gem5 experimental platform
in Fig. 7.4(a) in full system mode in a cluster computing environment. We observe
that the SmartBalance kernel performs 50.02 % on average better with the interactive
benchmarks (Fig. 7.5(a)), 52% with the PARSEC benchmarks (Fig. 7.5(b)) and their
mixes respectively when running 2, 4, and 8 threads of each benchmarks. Overall,
SmartBalance Linux kernel achieves an energy efficiency of over 50% across all the
benchmarks in comparison to the vanilla Linux kernel.

7.6.1 Comparison with state-of-the-art

SmartBalance provides a simple yet tunable runtime optimization engine that over-
comes the limitations of balancing scheme generality for emerging heterogeneous mul-
ticore processors (HMPs) with several core types. In order to demonstrate the rela-
tive advantage of the SmartBalance approach even for specific HMP architectures such
as ARM big.Little [163] with two core types, we compare our approach with that of
the state-of-the-art ARM’s global task scheduling policy[16]. We create an octa-core
big.Little HMP using Gem5 and modify the Linux 2.26.x kernel to implement the ARM
GTS policy. Note that the GTS policy works only for big.Little type of HMP as the policy
makes a fixed utilization threshold-based binary decision to either select a big or a little
core [16]. In fact, the lack of joint per-thread (finer granularity) and per-core accurate
power as well as performance awareness, limits GTS from achieving energy efficiency
by as much as ~20% in comparison to SmartBalance for several benchmarks as shown
in Fig. 7.6. On the contrary, instead of using core utilization as a proxy for deciding
thread allocation for energy efficiency, SmartBalance uses accurate energy efficiency
measurements directly –both at fine and coarse granularity during thread balancing to
provide additional improvements while providing a generic and fairly scalable solution
as shown in Section 7.6.3.

7.6.2 Predictor Evaluation

The runtime prediction of performance and power incurs an average error of 4.2 %
and 5 % respectively as shown in Fig. 7.8 and Fig. 7.7 corresponding to the predictor
coefficient matrix Θ in Table 7.4. The aver age percentage error is about 70% smaller
than the one reported by [15], which proposes a similar predictor. The predictor in [15]

168

Figure 7.5: SmartBalance kernel performance with respect to the baseline vanilla Linux
kernel (running the same benchmarks with same number of threads) using (a) interac-
tive microbenchmarks (b) PARSEC benchmark and their mixes. The optimization goal
is set to maximize overall energy efficiency (IPS/Watt).

Figure 7.6: Comparison for normalized energy efficiency with respect to the state-of-
the-art.

doesn’t include the share of memory and branching instructions in its expression, which
might explain the higher average error. The work of [223] has also employed a similar
performance predictor based on the offline profiling of PARSEC benchmarks. However,
differently from our work, [223] implements a binning approach in which each thread
is categorized as their nearest neighbor in the PARSEC benchmarks. Compared to [223],
our approach yields 71% smaller average error.

169

Table 7.4: Predictor coefficient matrix.

Predictor IPC FR* mr$i mr$d Imsh Ibsh mrb mritlb mrdtlb ipci,src const

Huge->Big -0.006 -2.110 -0.135 -0.975 1.213 0.385 -2.928 -9.552 0.416 0.691

Huge->Medium -0.007 -3.610 -0.106 -0.751 0.906 0.841 -0.881 -9.661 0.130 0.668

Huge->Small -0.005 1.786 1.139 -2.017 0.125 0.035 4.958 -8.913 0.142 0.657

Big->Huge -0.007 1.870 0.393 1.787 -2.213 -1.134 0.000 5.717 2.084 -1.017

Big->Medium -0.003 -2.286 -0.057 -0.416 0.455 1.351 0.000 -5.173 0.326 0.415

Big->Small -0.004 -0.046 1.394 -1.235 0.607 1.060 0.000 -23.62 0.194 0.432

Medium->Huge -0.053 3.064 -0.385 3.882 -3.987 -6.458 -249.4 7.210 4.503 -1.835

Medium->Big -0.016 2.145 0.025 1.401 -1.460 -1.739 -6.416 9.666 2.731 -0.987

Medium->Small -0.008 0.995 1.080 -0.258 0.105 2.719 208.5 3.290 1.040 -0.467

Small->Huge 0.042 -1.835 -9.291 6.021 -1.238 -19.81 0.000 104.00 2.745 0.235

Small->Big 0.003 -0.630 -4.087 1.185 -0.277 -9.902 0.000 39.354 1.545 0.829

Small->Medium -0.001 -1.035 -1.122 -0.517 0.357 -2.639 0.000 2.639 0.594 0.776

*FR if the ratio of the frequencies of source to target core

7.6.3 Overheads and Scalability

Fig. 7.9 shows average runtime measurements for each SmartBalance phase on our
4-core platform as well as extrapolated results for systems scaling from 2 to 128 cores
with 4 to 128 threads. Most of the overhead originates from the optimization algo-
rithm and thread migration (assuming 50% of the threads are migrated). However,
for typical embedded platforms (e.g., quad-core mobile devices) with 2 to 8 cores, the
average overhead of using SmartBalance is small (less than 1%) with respect to the
100ms balancing epoch length. Recall that we used the runtime light-weight SA-based
optimization described in Section 7.4.3, which enables us to control the overhead. As
shown in Fig. 7.10(a), for larger configurations we limit the number of iterations to
avoid excessive overhead, therefore trading off solution quality for scalability.

7.7 Future work

One limitation of the SmartBalance approach may be argued to be the dependence
on additional counters and sensors for fine-grained awareness of performance and
power. We used as many as 10 counters and per-core power sensors for predictions.
Although this may be viewed as a serious limitation on certain architectures, current
trends and future projections suggest the inclusion of per-core power sensors, many
counters, and on-chip monitors already in several existing platforms [215, 266]. For
example, the recent Samsung Exynos big.Little board [266] already has power sensors
for each core, GPU, and DRAM as well as extensive support for all the counters in the
Linux kernel using oprofile [84]. In addition, our previous work [306, 341]– where

170

Figure 7.7: IPC and power prediction for the bodytrack PARSEC benchmark. The upper
part of the figure shows predictions for the Huge core from measurements made on the
Medium core, while the lower part shows the inverse.

we developed a mechanism of sparse virtual sensing guaranteeing a minimal number
of counters and sensors for performance and power predictions, can be easily used to
overcome this perceived limitation.

7.8 Summary

Single-ISA heterogeneous MPSoCs with architecturally differentiated cores are an at-
tractive computing paradigm achieving higher performance and energy efficiency com-
pared to the homogeneous counterparts. However, aggressively heterogeneous MPSoCs
pose a serious challenge to the traditional Linux operating system scheduling as existing
load balancers do not fully exploit widely heterogeneous architectural configurations
(core types, core strength, and their combinations) and are not capable of adapting
to new processor architectural changes without significant engineering efforts. In this
chapter, we presented SmartBalance: a closed-loop approach to load balancing under
a sense-predict-balance paradigm that can efficiently manage the chip resources while
opportunistically exploiting the diverse workload and performance-power characteris-
tics of different cores for energy efficiency. Our SmartBalance approach deployed an
efficient runtime optimization executed at the beginning of each balancing epoch (cov-
ering multiple Linux scheduling periods) that effectively predicts the per-thread power
and performance characteristics for each core, allowing efficient online load balancing.
Our approach showed an improvement in energy efficiency of over 50% for a Het-
erogeneous MPSoC with 4-cores executing benchmarks from the PARSEC benchmark

171

Figure 7.8: Average error in performance and power prediction across PARSEC.

Figure 7.9: (a) Overhead with the quad-core HMP and (b) scalability analysis with
increasing number of threads and cores for the SmartBalance approach.

suite, as compared to the standard vanilla Linux kernel load balancer and over 20% im-
provement with respect to the state-of-the-art ARM’s global task scheduler (GTS). The
approach can be generalized to support multiple mix of goals. By reusing most of the
Linux kernel source with minimal changes along with a light-weight run-time scalable
global optimization engine, the energy efficiency of both application and OS workloads
can be improved for heterogeneous multicore processors (HMP).

172

Figure 7.10: Maximum number of iterations (Optmax_iter parameter) for each scalability
scenario (a). The distance to optimal is obtained by running our optimization algorithm
for synthetic cases whose optimal solution is known. (b) shows the values used for the
remaining optimization parameters.

173

Chapter 8

FPGA Prototyping of CPSoC

174

8.1 Introduction

In the nanometer era, complex SoCs have higher risk of re-spins as large SoC de-
signs present challenges in both design and verification on leading edge process nodes.
FPGA prototyping is currently an established way for pre-silicon SoC validation, ac-
celerated system software development and meeting time-to-market demands. FPGA
prototypes provide early access to a fully functional hardware platform and the ability
to develop and test several aspects of the system ahead of the actual silicon availability.
The availability of an FPGA prototype can enable early application software develop-
ment, operating system integration, as well as better understanding of the complex SoC
system performance and quality of other design metrics.

Customized hardware emulation tools are capable and fast, but highly expensive,
often out of reach for small design teams. FPGA-based prototyping tools are scalable,
cost-effective, and are readily available. FPGA prototypes offer improved debug visibil-
ity and are well suited for software co-verification as well as rapid turnaround of design
changes. In fact, a complete verification effort has multiple types of tests for all individ-
ual components, intellectual property (IP) blocks, as well as the completely integrated
design running actual software (co-verification). As the verification and validation of
such complex SoCs are far beyond what traditional simulation tools alone can do in rea-
sonable time, FPGA prototyping is increasingly gaining popularity as a pre-silicon SoC
validation approach in complex SoC design. In fact, FPGA Prototyping is no longer op-
tional because of the re-spin cost of chips, the difficulty to simulate many-core system,
and the narrowing window of time-to-market.

However, FPGA prototyping of emerging SoCs is not only complex and non-trivial
task, but also involves a significant effort at different stages of development. In addition
to requiring major development time in implementing the given specification in HDL,
there are several time-consuming and complex steps involved during the deployment of
the design including multi-FPGA design partitioning across many FPGAs, arduous and
long bring-up time with complex debugging steps, as well as possibility of large number
of errors and issues emanating out of the complexity of the design. Even with a small
change in the requirement specification, the design and validation steps can incur a sig-
nificant time and validation effort. Consequently, FPGA prototyping of emerging SoCs
need to be built with the aim to reduce the development time by supporting modularity
and reusability of design and test, support for configurability to accommodate range of
specifications, as well as providing extensibility- the capability of extending a baseline
design with ease.

In this chapter, we present an open architecture based CPSoC design library to build
and evaluate the effectiveness of various architectural features, by leveraging industrial-
grade design/verification/synthesis flow to significantly reduce design time and allevi-
ate prototyping difficulties. We present CPSoC FPGA platform as an exemplar self-aware
MPSoC paradigm along with open heterogeneous architecture frameworks for simula-
tion, synthesis, and design exploration which support extensibility, scalability, and con-

175

figurability, along-side an established base of supported software and verification tools.
The CPSoC FPGA emulation and prototyping platform helps to investigate self-aware
adaptive computing paradigms. We create an FPGA library using open source, general-
purpose, processor cores to prototype multithreaded manycore architectures for CPSoC
and provide a qualitative comparison against prior open source processors. In addition
to emulating manycore architectures, the library can also be used for limitedly scalable
multicore architecture using on-chip buses based on current standards such as AMBA or
AXI. The chapter presents detailed description and FPGA implementation of the CPSoC
architecture including cores, memory hierarchy that coherent memory system that inte-
grates on-chip and off-chip communication networks, and on-chip sensor networks. Our
implementation includes ring-oscillator (RO) based multi-purpose on-chip sensors inte-
grated with multiple sensor-network-on-chip (sNoC) as discussed in Chapter 4 which in
turn is interfaced either to a bus based shared memory architecture or to a communi-
cation and computation network-on-chip (cNoC) distributed fabric supporting several
actuation mechanisms in the software and hardware stack. We describe the CPSoC plat-
form features, present multiple use-cases of configurability, extensibility, and adaptation
of the CPSoC architecture. In addition, we provide a comparison of FPGA implemen-
tation resources, backend synthesis runtimes, brief description of the test vector and
coverage of the CPSoC test and verification efforts.

8.2 FPGA Prototyping Library for CPSoC

In order to build and illustrate the effectiveness of various architectural features in
CPSoC paradigm in a fast, cost-effective, and modular way while supporting high de-
gree of configurability and extensibility of CPSoC prototyping and emulation platform, a
reusable and parameterizable HDL library components are absolutely necessary. We de-
velop a CPSoC prototyping library called CPSoClib by leveraging industrial-grade CPU
core design together with a robust software ecosystem. The components of the library
broadly fall into four categories: processor and memories, networks-on-chip, on-chip
sensors, and actuators as shown in Fig. 8.1. Since the CPSoC platform introduces sev-
eral new hardware and architectural extensions for on-chip sensing, processing, and
actuation, in this chapter we discuss the design and implementation of these compo-
nents of the CPSoClib in the following subsections.

8.3 CPSoC Architecture and Design

CPSoC is a tiled-manycore architecture designed to support scalability, extensibil-
ity, and self-aware adaptation. The architecture supports both intra and inter-cluster
communication. Intra-cluster tiles are connected via on-chip network interface chipset

176

• DPLL	
• Clock	Ga,ng	
• Bandwidth	Controller	
• DVFS	
• Accelerators	

• LEON	
• OpenSPARC	T1	
• OpenRISC	
• RISC-V	
• ARM/Ambit	

• RO	
• Thermal	
• TDC	
• Reliability/Aging	
• PUFs	
• BIST,	Scan	etc	

• sNOC	
• Aggrega,on	Tree	
• Ring,	custom			
• cNoC	
• Mesh	
• Mesh	edge	extension	
• Bus	I/F	converter	
• Peripherals	 Networks-

On-chip		
On-Chip	
Sensors	

On-Chip	
Actuators	

Processors	
&	

Memories	

Figure 8.1: CPSoClib: an FPGA prototyping library for CPSoC. The library is organized
in four groups of processor & memories, NoCs, sensors, and actuators.

(cNIC) using mesh topology by default, however, configuration ability allows for flexi-
bility in the number of tiles in the CPSoC platform.

The cluster network interface chipset (cNIC) connects different clusters (inter-cluster)
through a bridge which connects to the tile array through the upper left most tile. By
multiplexing the three on-chip cNoCs over a single link, the cNIC also extends the cNoCs
for off-chip access and seamless connection of multiple clusters to create large scale
systems as illustrated in Fig. 8.2. The architecture uses existing state-of-the-art cache-
coherence protocols and extends to multiple clusters enabling shared memory across
multiple clusters. As the core in a tile of a cluster may be cache coherent with cores
in another cluster, the capability to enable larger shared-memory manycore system is
available.

8.3.1 Heterogeneous Tiled Cluster Architecture

CPSoC fabric is characterized by heterogeneity at multiple levels of abstraction and
granularity. Fig. 8.2 depicts the various architectural configurations due to heterogene-
ity of the cluster and the tiles. In Fig. 8.2 (a) all the clusters and tiles are uniform
resulting in a perfect homogeneous tiled cluster, while Fig. 8.2(b) depicts the architec-
tural configuration with heterogeneous tiles but homogeneous cluster. Similar to the
previous two configurations, we have the heterogeneous architectural configurations in
Fig. 8.2 (c) and Fig. 8.2 (d) where heterogeneity is introduced in the cluster size as well
as jointly in cluster size and tiles respectively.

177

cNIC	cNIC	 cNIC	

cNIC	

Tile	

cNIC	

cNIC	cNIC	

cNIC	

cNIC	

cluster	

(a)

cNIC	

Tile	

cNIC	

cNIC	cNIC	

cNIC	

cNIC	

cNIC	cNIC	 cNIC	

cluster	

(b)

cNIC	

Tile	

cNIC	

cNIC	cNIC	

cNIC	

cNIC	

cNIC	cNIC	 cNIC	

Cluster	

(c)

cNIC	

Tile	

cNIC	

cNIC	cNIC	

cNIC	

cNIC	

cNIC	cNIC	 cNIC	

cluster	

(d)

Figure 8.2: Homogeneous and Heterogeneous Tiled Architecture of CPSoC fabric (a)
homogeneous cluster and tile (b) homogeneous cluster, heterogeneous tile (c) hetero-
geneous cluster, homogeneous tiles (d) heterogeneous cluster and tile.

8.3.2 Tile and cNIC

The architecture and configuration of the tile is shown in Fig. 8.3. The base line
tile architecture consists of a SPARC cores [115, 151] with L1 cache, private L2 cache, on-
chip cNoC routers, and distributed L3 cache, along with optional floating point unit
(FPU) and accelerators. In order to support self-awareness and actuation mechanisms,
the core is modified to include the on-chip sensing and actuation (OCSA) unit in the
tile. The on-chip L2 and L3 caches connect directly with the cNoCs and uses the CPU-
cache-crossbar (CCX) bus interface of OpenSPARC to connect the cores, the caches, FPU,
I/O and other components. The CCX arbiter demultiplexes memory and floating-point
requests from the core to the L2 and FPU and arbitrates responses back to the core.

L3	
cNoC	Routers	

L2	Cache	

CCX	Arbiter	

FPU	

Core	

$I	 $D	

(a)

L3	 cNoC	Routers	

L2	Cache	

CCX	Arbiter	

FPU	

Core	

$I	 $D	

OCSA	

(b)

L3	 cNoC	Routers	

L2	Cache	

CCX	Arbiter	

FPU	

Core	

$I	 $D	

OCSA	

Accelerator	

(c)

L3	 cNoC	Routers	

L2	Cache	

CCX	Arbiter	

FPU	

Core	

$I	 $D	

OCSA	

Accelerator	

(d)

Figure 8.3: Architecture of the tile and its different configurations (a) baseline tile
(b) tile with on-chip sensing and actuation (OCSA) unit (c) the tile with OCSA and
accelerators (d) tile with distributed OCSA.

178

Bridge	

I/O	

Traffic	
Spli2er	

cNIC	
Router	

DRAM	
Controller	

(a)

Bridge	

I/O	

Traffic	
Spli2er	

cNIC	
Router	

DRAM	
Controller	

(b)

Figure 8.4: Cluster network interface chipset (cNIC)

8.3.3 Processor Cores

CPSoC platform can be built using processors with different instruction set archi-
tectures (ISA) that provide the ability to reconstitute or compose them (with varied
component specifications) during the design time along with the tool chains. Open
source processor cores (see Table 8.1) that provide the necessary tool chains are ideal
candidates and we consider the following cores for the CPSoC FPGA prototyping and
emulation. In this work, we use the SPARC cores (OpenSPARC T1 and Leon cores) be-
cause of the industry-hardened design, multi-threaded capability, simplicity, and modest
silicon area requirements. In addition, these open frameworks have a stable code base,
a matured ISA with compiler, OS, and validation test suite.

Table 8.1: Open Source Processors.

SL No Processor Name ISA Bus Type

1 LEON3[115] SPARC V8 AMBA (32 bit) In-Order

2 OpenRISC[261] OpenRISC Wishbone (32 bit) In-Order

4 Amber ARM [302] ARM AMBA (32 bit) In-Order

5 IVA [364] PISA 64bit O3

6 OpenSPARC T1[151] SPARC V9 JBI O3

7 RISC-V [358, 357] RISC-V RISC-V O3

In order to build a heterogeneous CPSoC architecture and reduced programming
complexity, cores of the same ISA are modified with different resources to get hetero-
geneous cores. Heterogeneous architectures with different ISA can also be built, but
the added complexity and tool compatibility is limited in our present development. For
a selected processor type and ISA, the IP cores and peripherals have to follow the bus
standard of the processor. However, in order to facilitate the library components’ use
with different bus architectures, we develop bus converters and bridges such that com-
ponents can be interfaced to a processor with different bus. Our design of the different
components of the library are AMBA, AXI compatible and we provide bus converters

179

(e.g., CCX to AXI, AMBA to Wishbone, AXI to APB and vice versa) to interface with
other processor bus specifications.

8.3.4 Memory Hierarchy

Distributed	
L3	Cache	

Private	L2	
Cache	

Off-chip	
Memory	
Controller	

Core	

$I	 $D	

CCX	

cNoC1	 cNoC1	

cNoC3	 cNoC3	

cNoC2	 cNoC2	

(a)

Distributed	
L3	Cache	

Private	L2	
Cache	

Off-chip	
Memory	
Controller	

Core	

$I	 $D	

CCX	

cNoC1	 cNoC1	

cNoC3	 cNoC3	

cNoC2	 cNoC2	

(b)

Figure 8.5: Memory hierarchy showing the data path and interfaces.

The L3 cache is distributed write-back cache shared by all the tiles in the cluster. The
default cache configurations is 64KB per tile and 4-way set associativity with 64 bytes
per cache line and 64 bit per entry but both the size and associativity is configurable.

8.3.5 Interconnect Architecture

8.3.5.1 Network-on-Chip (NoC)

The core-to-core NoC (cNoC) is an integral part of the tiled distributed architectures
of CPSoC. There are three cNoCs that connect the tiles in a 2D mesh topology with
purpose of providing communication between the tiles for cache coherence, I/O and
memory traffic, inter-core interrupts. In addition to routing traffic destination for other
cluster through the cNIC chipset bridge, the cNoCs maintain point-to-point ordering to
maintain consistency. The cNoCs implementation uses physical networks, credit base
flow control, and wormhole routing to ensure a deadlock-free operation.

8.3.5.2 cNIC Cluster Bridge

The cluster bridge connects the tile array to the cluster network interface chipset
(cNIC) as shown in Fig. 8.3. All memory and I/O requests are directed through the
bridge interface to be served by the cNIC. The bridge transparently multiplexes the

180

cNoCs over a single link and provides a link between I/O and core clock domains. The
bridge is connected to a cNIC router that implements virtual channels over a off-chip
physical channel providing arbitration logic. In addition to traditional credit based flow
control in the cNIC router, we introduce a software-defined configurable router with
bandwidth, channel direction, and routing policy control to achieve improved adaptivity
and control of the inter-cluster networks as shown in Fig. 3.15.

8.3.5.3 cNIC Chipset

The cNIC connects multiple clusters in the CPSoC prototype and it consists of the
DRAM controller, the cluster bridge, the intra-chip network router (cNIC router) and
the I/O interfaces.

8.3.6 On-chip Sensors and Sensor Network (sNoC)

Many of the on-chip sensors are low bandwidth sensors and thus the sensor data
can be time division multiplexed over a router. However, as packet switching intro-
duces considerable overhead, we consider a simplified custom circuit switched sNoC
architecture as shown in Fig. 8.6. We consider two candidate topologies (ring and star)
for the custom sNoC based on the sampling rate and bandwidth requirements. If the
rate or bandwidth requirement is low, a ring topology may be sufficient. On the other
hand, if the sampling rate desired is high other network topologies supporting higher
bandwidth (e.g., the star topology) can be used.

1

2

N

Mux	
(N:1)	

Channel	
Control	

Select	
Sensors	

Controller	
(FSM)	

(a)

I/F
Sensor

Controller

I/F

Sensor
Controller

Sensor
Controller

I/F

I/F

Sensor
Controller

(b)

Figure 8.6: Resource efficient custom time division multiplexed (TDM) Router for sNoC.

We implemented a circuit switched ring topology sNoC as shown in Fig. 3.11 for
16 and 32 channels at each node/ router. The channels are time division multiplexed
(TDM) for low bandwidth (slow varying phenomena) sensors such as aging and tem-
perature. The comparison of the FPGA resources with respect to the packet switched

181

aggregation tree based sNoC is substantially low. We found that our custom circuit
switched sNoC can save on-chip resources required by two orders of magnitude [312].

8.3.7 Multi-purpose On-chip Sensors

Today’s computing platforms are already equipped with few sensors such as temper-
ature sensors and are expected to increase manyfold in the future. For example, the IBM
Power 7 [215] processor has over 40 distributed thermal sensors, processor core and
memory activity counters, off-chip current/voltage sensors, and critical path monitors.
These sensors include physical sensors such as delay sensors, voltage and power sensors,
temperature sensors [79], and reliability sensors. Sensors can also be implemented at
higher levels of system stack such as architecture performance counters [337] and NoC
traffic/congestion monitors [80]. Most existing sensors are designed solely to monitor
specific phenomena. On the other hand, CPSoC expands the role of native sensors by
multi-purposing these sensors and reducing sensing overheads through use of sensor fu-
sion in absence of such new sensors. We show an example of RO based thermal sensor
(as in Fig. 8.7) that is configurable at design time by specifying the generic parameters
such as delay-line length and the counter range. The basic design can be configured
and modified to build aging sensors as discussed in [11].

LUT

(a) (b)

Figure 8.7: Ring Oscillator (RO) based thermal sensor. The delay line length and the
counter range (proportional to temperature range and precision) is configurable at de-
sign time.

Note that since most of the sensors considered in the CPSoC platform can be imple-
mented using digital logic, there are no special technology/manufacturing requirements
for prototyping in the FPGA. Although traditionally mixed-signal designs have been used
to implement some specialized sensors, we believe that by virtualizing and fusing sev-
eral digital sensors we can avoid such specialized sensor needs. For instance, although
the leakage power sensors (and few types of thermal sensors) use mixed signal design
requiring OpAmps, Signal conditioners, ADC etc., we overcome these limitations of pro-
cess and custom design requirements by using virtual sensing as explained in [312]. We

182

use simple ring oscillator (RO) based delay sensors as a proxy for different sensors (e.g.,
temperature and power) and accurately estimate their values while saving substantial
sensor area, power, design complexity and cost. The virtual sensing approach described
in [312] uses simple temperature sensor to estimate the power of the full chip at run-
time. Therefore, the CPSoC paradigm enables intelligent choice of sensors along with
virtual sensing and sensor fusion for different design concerns that can benefit the FPGA
platform realization.

8.3.8 Built-in Sensors and System Monitors

In addition to on-chip sensors, the CPSoC platform can support external sensors to
monitor the environment and other phenomena. The Xilinx platform provides a built-
in feature as shown in Fig. 8.8 to read such sensor data through the system monitor
interface. The system monitor interface reads the temperature and the supply voltage
fluctuations at the centre of the FPGA in addition to several external analog channels in-
terfaced through a high speed ADC. Note that the on-chip sensors that CPSoC emulates
are directly synthesizable in the FPGA. Any custom sensor and actuator mechanism that
cannot be directly synthesized limits the capability of the prototyping and emulation
FPGA platform, however, custom ASIC design methodology or future FPGA platforms
can provide these additional capabilities.

Figure 8.8: Built-in FPGA sensors and system monitor support in the CPSoC FPGA plat-
form.

8.3.9 On-Chip Actuation Mechanism

The CPSoC platform can support many actuation mechanisms across several layers;
here we consider emulation and prototyping of these mechanisms in the FPGA archi-
tecture. The actuation mechanisms in the software layers can be supported with mod-

183

ifications to application, programming models, and the runtime system. However, the
mechanism in the networking, and architecture layers require hardware design modifi-
cations. We illustrate the support of some of these mechanisms in the FPGA platform.
We consider the dynamic frequency scaling (DFS) per core using a DPLL implementation
and providing the DPLL control directly as shown in Fig. 8.9 to the runtime system and
OS. Another actuation mechanism that can easily be implemented is clock gating which
is an extension or special case of DFS. We introduce the heterogeneity of cores by dif-
ferent cache sizes and number of functional components (e.g., integer unit, FPU, timers
etc.) that provide performance-power trade-offs for the runtime system to exploit.

CORE

SE
N

SO
R

S

MEMORIES
NIA

ACCELERATORS

DPLL1

DPLL2

DPLLn

C
lk Select

Clk_in Clk_out

Select

(a)

PLL1

PLL2

PLLn

C
lk

 S
el

ec
t

Clk_in Clk_out

Select

(b)

Phase		
Detector	

÷N		
Counter	

K	Counter	
D/U BO

CAK CLK

DECR INCR

fout ,φout

fin ,φin

Mfc

OUT

I/D	
÷2		 CLK

2Nfc

(c)

En	

÷N		
Counter	

K	CK	

I/D	
÷2		

Enhanced		
Phase		

Detector	 K-Counter	
o/u

I/D	
CK	

fin	

fout	

(d)

Figure 8.9: Clock frequency adaptation and control in CPSoC platform (a) clock scheme
(b) clock selection (c) DPLL (d) DPLL with jitter reduction.

8.3.10 CPSoC Runtime and OS Support

The CPSoC runtime is developed with a custom message passing microkernel as well
as the Linux 2.6.x kernel for different benchmark applications. The runtime provides
abstraction to expose cyber and physical aspects of the application and platform to the
runtime to achieve different system goals. In order to verify and test the hardware
support for message passing among the cores and the on-chip sensing and actuation,
the custom bare kernel supporting message passing over the cNoC is developed.

8.3.11 CPSoC FPGA Prototyping Platforms

We used different prototyping FPGA boards based on Xilinx Virtex Series of FPGA
[152] [153] (with different technology nodes) as shown in Fig. 8.10 for proof-of-
concept and emulation of CPSoC. The resource usage of different components of CP-
SoC in a typical prototyping scenario on the Virtex 6 board is shown in Fig. 8.4. The
prototyping environment and tools used are tabulated in Table 8.3.

184

Figure 8.10: Proof-of-concept prototyping boards using Virtex-6 ML605 evaluation
board [153].

8.4 Platform Features

The CPSoC platform is uniquely characterized by the four key features of configura-
bility, extensibility, adaptivity, and heterogeneity in the FPGA platform.

• Configurability: The platform provides extensive configurability options for the
cores by allowing changing the types, translation look-aside buffers (TLB) size,
and enabling/disabling built-in accelerators such as FPU, crypto core (SPU) as
described in Table 8.3. The caches at various levels (L1, L2, and L3) can be
configured by their size, ways, associativity, etc. In addition, both the cNoC and
sNoC can be configured by their topology, size, as well as bandwidth. The tiles
are configurable by their address range for large 2-dimensional rectangular mesh
interconnect of up to 256x256 tiles for manycore scalability.

• Heterogeneity: CPSoC platform supports different form and extent of hetero-
geneity at specific levels of granularity. Of specific interest is the support for het-
erogeneous multicore architectures and clusters. Different core types are imple-
mented by diverse combination of the cache memories, availability / removal or
accelerators such as FPU, SPU etc. as well as configuring the microarchitecture.
The cores types can be further distinguished by varying the pipeline depth, ROB
sizes, and issue width for the out-of-order architectures and in-order cores. How-
ever, the existing implementation is not supported with complete validation suites
for the all the combinations.

• Extensibility: The extensibility of CPSoC platform is provided by enabling the

185

Table 8.2: FPGA Development and Prototyping Tools.

Tools Description Remarks/Specs

Host System Linux/ Windows Ubuntu 12.x/Win 7

OS Support
Linux (Debian / Ubuntu) 2.26.x/3.x

Microkernel real-time

Middleware CyPhy middleware version 1.0 provides predictive models of power, perf

Languages C/C++ version 4.x

IDE

Xilinx ISE/EDK/Plan Ahead version 14.x

Vivado HLS version 14.x

Gaisler Eclipse IDE

Compiler GCC/LLVM version 4.x/3.4

Debug Interface
JTAG standard

Chip Scope Pro version 14.x

Debuggers GDB/ Gaiseler GRMON version 2.0.x

replacement of the core types, inclusion of custom accelerators as co-processors, as
well as custom IPs using the bus converters and bridges. The platform can easily be
extended with multiple ISA, for example, some of the clusters may be formed with
different ISA such as ARM or open source RISC-V. The CPSoC platform includes
bus converters (e.g., AXI4-Lite bridges) to connect wide range of I/O operations
by interfacing memory mapped IO operations form the cNoC to the AXI-lite. By
using the standard interface like AXI, many I/O devices can be interfaced while
using existing drivers.

• Adaptation: One of the most compelling aim of creating the CPSoC platform is to
easily study improved awareness and adaptation in CPSoC architecture and to en-
able rapid prototyping self-awareness and adaptation ideas backed by infrastruc-
ture for validation, characterization, and implementation. In order to corroborate
this goal, the CPSoC paradigm includes several sensing and actuation mechanisms
along with runtime software, APIs and SDK. The platform implements clock fre-
quency adaptation and control, dynamic/adaptive voltage scaling and control, as
well as adaptation support for the on-chip networks.

8.5 Tool-Chain and OS Support

The tool-chain and operating system support for the CPSoC platform is very critical
for enabling goals for the CPSoC platform. Without proper tools and operating sys-
tem support, the objective of creating a self-aware SoC prototype in FPGA can not be
achieved. In the following subsection, we briefly describe the tools chain and simulation
framework supporting the platform.

186

Table 8.3: CPSoC FPGA Platform and Configuration Options.

Component Description Configuration Options Component Description Configuration Options

Processor Core Leon3/SPARC T1 small/ big/ huge

Actuators

Application Approximation

TLBs translation look-aside buffers 8/16/32/64 Algorithmic choice

cNoC intra-chip topology 2D Mesh / Crossbar Connected Memory Allocation OS default

cNIC inter-chip topology 2D/3D Mesh, crossbar Task migration OS default

ISU Cortex-M3/Leon2/DLX-32 1/2 nos. Allocation/ Load Balance OS default/ Smartbalance

sNoC Sensor network topology Custom TDM/Aggregation Tree Scheduling OS default/modified CFS

L1 $I Cache On-chip level 1 instruction cache, 16/32/64KB , block RAM cNoC Bandwidth Control present/ absent

L1 $D Cache On-chip level 1 data cache, 8/16/32KB, block RAM sNoC Bandwidth/Direction Control present/ absent

L2 Cache On-chip level 2 Cache, no of sets, ways, block RAM Accelerators see below, include/ remove

L3 Cache On-chip level 3 Cache no of sets, ways, block RAM Static Voltage Scaling at board level

External Memory

DRAM 1-4 GB Dynamic Frequency Scaling per core

Flesh Memory 1-2 GB Clock gating design time

Hard Disk in board 256MB-1GB Adaptive Voltage Scaling per core

Sensors

Performance Counters per core, Power gating not supported

Program Phase Detector per core, include/ remove

Accelerators

Crypto accelerator (SPU) include /remove

On-board Timers per core, include/ remove Floating Point Unit (FPU) include/ remove

NoC Traffic monitor per NoC, include/ remove O-chip Predictors include / remove

Ring Oscillators two types, include/ remove Chipset Bridge interconnect clusters

Temperature configurable, include/ remove Arbiter FPU and L2 arbitration

Aging /Reliability RO based, include/ remove Bus converter AXI to CCX

Variability Monitors Razors no, word packing size AXI to Wishbone

CPM include/ remove AXI to APB

instruction power include/ remove BIST On-chip stored tests include / remove

Voltage/Current/Power core/ board level Bootloading OS booting SD Card/ UART

8.5.1 API and Software Development Kit

The CPSoC platform is supported by several application programming interfaces
(APIs) and a software development kit in order to ease development effort. The soft-
ware development framework provides API for the accessing the on chip sensors. API
functions are available to read sensor and monitor specific readings, convert the mea-
surement data to meaningful scale, as well as process the sensed data (for example,
pack several reading in a specified format), calculate average, rate of change, and the
range of reading for a given time duration. The API functions are wrapped around
drivers built for the Linux OS supporting the CPSoC platform. APIs are also built for
accessing and using the actuation mechanisms using Linux driver. For example, the SDK
includes API function to change the clock frequency of the cores and uncross by chang-
ing the on-chip DLL parameters. On similar lines, API functions are included in the SDK
to support dynamic voltage scaling supported by the FPGA devices (Xilinx Zynq, Virtex
series).

187

8.5.2 CPSoC Simulation Framework

In order to evaluate the functionalities of CPSoC, we have created an experimental
CPSoC simulation platform shown in Fig. 8.11. At the core of our platform we use the
Gem5 performance simulator [49]. Gem5 includes cycle-accurate models for various
CPU architectures, as well as peripheral models that enable full system simulations with
Linux OS. We use Gem5 to create both homogeneous and heterogeneous systems based
on the model of supported processors (ARM, Alpha 21264, SPARC, MIPS). For obtain-
ing power data, we have integrated the McPAT power model [218, 219] directly with
the Gem5 simulation framework. In addition, Process Variability models are augmented
in the McPAT to reflect the manufacturing variabilities. Gem5 is extended with the
Sensing Interface, Actuation Interface, Sensor Network, and Memories. Hardware perfor-
mance counters are emulated by exporting McPAT power information and other Gem5’s
statistics at run-time. The CPSoC simulation platform also introduces a new component
VAR (Vulnerability, Aging, and Reliability) by integrating Hotspot [147]. VAR provides
a prediction model for system vulnerability (e.g., hotspot tracker, power bug tracker
[306], malicious attack tracker etc.), aging and threshold voltage shift due to NBTI,
PBTI, HCI, EM and other failure modes [162], and component and system level reliably,
availability, and mean time to failure (MTTF) of each component and core.

Task	
 0	

Task	
 n	

App	
 0	

Task	
 0	

Task	
 n	

App	
 n	
 Applica-ons	

Micro	
 Kernel/Linux	
 Kernel	
 	
 CyPhy	

Middleware	

Gem5	
 Performance	

Simulator	

Opera-ng	
 System	

McPAT	

Power,	
 Area,	

Timing	
 Models	
 Hotspot	

Aging	
 &	

Reliability	

Vulnerability	

Process	

Variability	

Model	

Perf	
 Power	

Sensing	

Interface	
 sNoC	
 &	

ISU	

Temp.	

Actua-on	
 	
 	
 Interface	

PlaOorm	

M
em

ory	
 (DRAM
sim

2,	
 N
VM

sim
)	

Figure 8.11: CPSoCSim: CPSoC Experimental Simulation Framework. Several new
components are developed and integrated to existing architectural tool chains to build
the CPSoC simulation framework.

8.6 Evaluation Results

In order to evaluate the resource utilization of each component of the CPSoClib, we
perform independent syntheses and resource utilization of the components and tabulate

188

the results in Table 8.4. The Table 8.4 shows the resources utilized by the ROs, the
sNoC, cNoC, the actuation mechanism such as clock control DLL, and the heterogeneous
processor cores. Fig. 8.12 shows the FPGA resources for different components of CPSoC
using an OpenSPARC T1 core [151].

Table 8.4: Resource Usage for Different Hardware Components in Small CPSoC proto-
type.

FPGA Resources
Sensors sNoC cNoC Actuation Mechanisms (DFS) Processor Cores

RO 16 ch Mesh2x2 DPLL (Standard) DPLL (Jitter free) Leon Big Leon Small

Number of Slice Registers 0 670 1096 40 47 15053 12891

Number of Slice LUTs 31 42 3344 34 44 21777 16185

Number of occupied Slices 1 194 1557 14 19 10085 6424

Number of LUT Flip Flop pairs used 0 687 3854 41 51 26434 19670

Number of bonded IOBs 21 336 590 3 3 234 226

Average Fanout of Non-Clock Nets 0 1.70 4.20 2.30 2.11 3.79 4.10

SPARC	T1	core	
49.46%	

L2	Cache	
14.35%	

L3	Cache	
22.61%	

FPU	
7.10%	

NoC1	
0.70%	

NoC2	
0.82%	

NoC3	
0.86%	

CCX	
0.82%	

Sensors	
0.75%	

ISU	(h/w	
predictor)	
0.90%	 sNoC	

0.35%	
xNoC	
0.26%	

DPLL	
0.24%	

ActuiMon	
Unit	
0.35%	

Misc	
0.43%	FPGA	Resources	

Figure 8.12: FPGA resources breakdown for different components of CPSoC.

8.6.1 Validation

The CPSoC platform is validated using different types of test cases as listed below:

• Randomized Test: This test involves generation of a number of randomized as-
sembly test cases, where number of test parameters can be configured by the

189

generating scripts written in python and Perl, to generate as many test instances.
They cover test of the core, memory, branches, ALU, FPU, and interfaces.

• Functional C Test: In this validation methodology, test case written in C is used
to perform directed test. The test cases involve small C function and microbench-
marks.

• RTL and Gate Simulation: In this approach, we perform simulation of the HDL
code for the functional blocks of the CPSoC platform using industry standard tools
such as Synopsys VCS, Mentor’s Modelsim / Questasim, or built-in tools in Xilinx
ISE / Vivado.

• Full-System Simulation: Full system simulation of the complete or portion of the
platform is supported using the CPSoCSim simulator as described in Fig. 8.11

• Test Coverage and Back-end support: In order to improve the test coverage of
the validation effort in creating the CPSoC platform, we generate coverage reports
automatically and parse them to produce quick statistics for immediate feedback.
Scripts have been developed to automate the FPGA and ASIC flow for industry
standard tools. We have created scripts to support synthesis, timing analysis, place
and route, as well as design space exploration.

8.6.2 FPGA Boards

The validation is performed using several off-the self FPGA boards from Xilinx and its
vendors. We extend the capability of the boards by connecting multiple boards through
the chip bridge, connected by external connector as shown in Fig. 8.13.

Figure 8.13: Xilinx Virtex-6 boards connected by the bridge and external connectors.

190

8.7 Enabled Use Cases

The CPSoC simulation and FPGA platform presented in this chapter can be used
in several applications ranging from rapid prototyping of soft-realtime embedded sys-
tems to hard real-time cyber-physical systems. On-chip self-awareness with cross-layer
virtual and physical sensing and actuations is a key for efficient use of heterogeneous
architectures, and applications with guarantee runtime system QoS (performance, re-
liability, power, thermal behavior) in a highly dynamic environment. Our technical
report [312] contains several sample applications where self-awareness is used to im-
prove energy efficiency, increase system lifetime by reducing aging effects and improve
system performance under thermal constraints. For instance, we show that cross-layer
virtual sensing and actuation can improve the sensing accuracy and reduce the sensing
overhead of thermal and power estimation by an order of magnitude [312].

In addition to the application described in [312], the CPSoC FPGA platform can
be used for several enabled applications in research and development of self-aware
architecture, performance analysis, power and energy awareness, thermal awareness,
reliability analysis, cross-layer reliability and resilience, compiler and operating system
research, as well as education. We are currently investigating more aggressive cross
layer sensing and actuation mechanisms to improve system resilience and energy effi-
ciency using the FPGA prototyping and library platform. For detailed descriptions of the
FPGA library components and measurement results, please refer to our technical report
[340].

8.8 Platform Limitations

We have attempted to create the first CPSoC FPGA platform with the goals of sup-
porting key architectural features of CPSoC paradigm. While most of the architectural
features of the CPSoC paradigm are implemented by the FPGA prototype, however,
there are few that could not be realized in the current platform due to technology lim-
itation, resource capability in the FPGA, as well as development cost. For example, the
existing CPSoC FPGA platforms do not support seamless integration of Multiple-ISA for
cores in the framework, rather insist on use of single-ISA cores in order to reduce the
complexity of the development and tool chain. Several sensor types that are proposed
in the CPSoC paradigm are not directly implementable in the FPGA fabric, which other-
wise could easily be implemented in ASICs. For example, the implementation of oxide
breakdown sensors for aging monitoring could not be included in the paradigm. How-
ever, we also foresee further extension of this work and the platform to address some of
the shortcomings and limitations.

191

8.9 Related Work

Emerging many-core computing architectures [53] appear in two classes: homoge-
neous and heterogeneous configurations. homogeneous tiled many-core architectures
with shared/distributed memories connected through a Network-on-Chip (NoC) fab-
ric are emerging as general-purpose platforms (e.g., Tilera [38] and Intel Single Chip
Computer [299]). On the other hand, high-performance embedded computing plat-
forms typically deploy heterogeneous combinations of multi/many-core architectures,
with tens to hundreds of small and big cores [51], to deliver unprecedented perfor-
mance within an affordable power envelope. These advances are driven by Moore’s
law, demanding radical changes to both the architecture and the entire software stack
[135]. Traditionally, MPSoC architectures [374] have been driven by features that
improve performance, but constrained by power and thermal budgets [231]. Power-
aware [59], thermal-aware [334], and reliability-aware [339] microarchitectures have
been proposed over the last decade. However, a computing framework that addresses
and assures the dependability of the information processing (i.e., the cyber aspects
such as integrity, correctness, accuracy, timing, reliability and security) while simulta-
neously addressing the physical manifestations (in performance, power, thermal, ag-
ing, wear-out, material degradation, and reliability/dependability) of the information
processing on the underlying computing platform, specifically SoC, has been missing.
CyberPhysical-System-on-Chip (CPSoC) aims to coalesce these two traditionally disjoint
aspects/abstractions of cyber/information world and the underlying physical computing
worlds into a unified abstraction of computing. This helps to deal with the increased
vulnerability due to semiconductor process variabilities as well as environmental and
aging effects that induce errors in future computational platforms.

Even though MPSoCs are studied on various aspects such as power consumption
[229], thermal [148], memory bandwidth [51] or network-on-chip [51], little attention
has been given on their ability to be prototyped. A multi-core system on a multi-FPGA
board is implemented in [60], but only on the perspective to study parallel program-
ming. The influence of awareness mechanism on the architecture as well as system
adaptation is not discussed. An efficient and rapid method to prototype and evaluate
large MPSoC architectures on multi-FPGA boards is proposed in [200]. The authors
only focused on proposing the architecture which allows large architecture prototypes
to be easily distributed over to several chips in a device-independent and platform-
independent way, but do not study the self-awareness capabilities in the architecture
as well as the system adaptability. Nor do they explore the capability of heterogeneous
architecture in the prototyping platform. On the contrary, in this work we focused on
developing a reusable library for quickly building FPGA prototypes for CPSoC with the
goal of supporting self-awareness and adaptation in scalable manycore architecture.
Equipped with advances in machine learning, distributed on-chip sensor-networks, and
multiple types of sensors, CPSoC brings many such attributes directly on-chip for a
smart, intelligent, and autonomic computing fabric. The platform features extensive

192

customization, extensibility, heterogeneity, and adaptation. Support for specialized fea-
tures such as virtual sensing [311, 306], synergistic cross-layer cooperation, and actua-
tor fusion [312] are some key attributes for CPSoC computing platforms.

8.10 Summary

In this chapter, we presented CPSoC: a sensor-actuator rich MPSoC paradigm and
its prototyping using FPGAs. The proposed design paradigm enables self-awareness
(i.e., the ability of the system to observe its own internal and external behaviors such
that it is capable of making judicious decisions) and adaptation using the concept of
cross-layer physical and virtual sensing and actuation abilities. We developed a FPGA
emulation and prototyping platform using a combination of on-chip sensor network,
adaptive communication network and cores, and several actuation mechanisms that
enable the approach of computation-communication-control co-design. In our ongoing
work, we plan to use this FPGA emulation platform to demonstrate many features of
CPSoC, in particular, the ability to improve energy efficiency and adaptively respond to
environmental and application load variations across multiple layers of abstraction that
couple both software and hardware.

We presented an open architecture based CPSoC design library to build and evaluate
the effectiveness of various architectural features, by leveraging industrial-grade devel-
opment flow to significantly reduce design time and alleviate prototyping difficulties.
We presented CPSoC FPGA platform as an exemplar self-aware MPSoC paradigm along
with open heterogeneous architecture frameworks for simulation, synthesis, and design
exploration which support extensibility, scalability, and configurability, along-side an es-
tablished base of supported software and verification tools. The CPSoC FPGA emulation
and prototyping platform helps to build and investigate self-aware adaptive computing
paradigm. We created an FPGA library using open source, general-purpose, proces-
sor cores to prototype multithreaded manycore architectures for CPSoC and provide
a qualitative comparison against prior open source processors. In addition to emulat-
ing manycore architecture, the library can also be used for limitedly scalable multicore
architecture using on-chip buses based on standard such as AMBA or AXI. The chapter
provided a detailed description and FPGA implementation of the CPSoC architecture in-
cluding cores, memory hierarchy that coherent memory system that integrates on-chip
and off-chip communication networks, and on-chip sensor networks.

Our implementation includes ring-oscillator (RO) based multi-purpose sensors inte-
grated with multiple sensor-network-on-chip (sNoC) which in turn is interfaced either
to a bus based shared memory architecture or to a communication and computation
network-on-chip (cNoC) distributed fabric supporting several actuation mechanisms in
the software and hardware stack. We described the CPSoC platform features, presented
multiple use-cases of configurability, extensibility, and adaptation of the CPSoC archi-
tecture. In addition, we provided a comparison of FPGA implementations resources,

193

backend synthesis runtimes, brief description of the test vector and coverage of the
CPSoC test and verification efforts.

194

Chapter 9

Conclusions and Future Work

195

Embedded systems are increasingly seeing the need for self-awareness to operate au-
tonomously in the face of uncertainty and unpredictability in the environment, the ap-
plications they execute, and in the manufactured hardware. As several application do-
mains increasingly converge to a single multicore SoC platform, emerging multi/manycore
heterogeneous SoC architectures [53] must address a multitude of potentially conflict-
ing design and runtime constraints such as resiliency, energy, heat, cost, performance,
security, etc., all in the face of highly dynamic operational behaviors and environmental
conditions. Not only do they have to address the emerging challenges of manufacturing
process variability [125] and dark silicon [107], but they also need to address the in-
creasing complexity of programming and the burden of on-chip efficient resource man-
agement of these multicore heterogeneous systems. Programming and managing the
resources in these systems with multiple conflicting goals have become hard as we are
faced with a multidimensional optimization problem that requires improved awareness
and runtime decision making capability. As a result, our fundamental computing model
must change to address this multidimensional optimization and adaptation problem.

The thesis presented and built a new class of self-aware SoC called Cyber-Physical-
Systems-on-Chip (CPSoC) [310, 311, 305, 312] and contributed toward a principled
design and implementation of awareness and adaptation mechanisms for whole-stack
co-design and optimization. The dissertation presented a new paradigm through the
principled design and implementation of awareness and adaptation mechanisms in
emerging MPSoCs (e.g., mobile SoCs and heterogeneous MPSoC) to deliver greater
performance, energy efficiency, and resilience by adopting self-aware control theoretic
cross-layer mechanisms. The dissertation made the following specific contributions:

• CPSoC Paradigm. The dissertation presented the foundation for a new class
of self-aware adaptive SoC called Cyber-Physical-Systems-on-Chip (CPSoC) that
contributes toward the whole-stack co-design of emerging MPSoCs by using the
notion of self-aware adaptation through a tightly coupled optimization of con-
trol, communication, and computing in order to achieve competing design and
runtime goals (e.g., boosting energy and power efficiency, improving thermal re-
silience, and delivering greater performance). The notion of self-awareness en-
ables a system to monitor its own state and behavior such that it is capable of
making judicious decisions and adapt intelligently. Unlike traditional MPSoCs, CP-
SoCs are distinguished by an intelligent co-design of the control, communication,
and computing (C3) infrastructure while considering both the cyber and physical
aspects together so as to adaptively achieve desired objectives and goals. CPSoC’s
sensor-actuator rich scalable architecture intrinsically couples on-chip and cross-
layer sensing and actuation to enable self-awareness in a principled way. The
thesis corroborated, through experiments and FPGA prototypes, the key idea that
giving the SoC the freedom to opportunistically adapt the software and the hard-
ware stack by infusing self-awareness mechanisms and steerable knobs across the
stack can open up new and otherwise untapped opportunities in energy efficiency,

196

performance, and thermal resilience.

• Architectural Supports: The dissertation provided the foundation for CPSoC
through the development of closed loop modeling, predictive behavior models,
architecture, algorithm, system software, and platform that makes it possible to
adapt the system stack. The dissertation develops critical architectural support
such as dedicated multi-sensor and actuator networks-on-chip, suitable abstrac-
tions to expose awareness properties to the system software and other layers, and
architectural techniques that navigate these complex trade-offs to reduced design
overheads. A predictive model based cross-layer design space exploration of these
emerging heterogeneous architectural configuration and compositions with sys-
tem level design goals is formulated to reduce exploration time by three orders of
magnitude[307, 308].

• Energy Efficiency. The thesis presented a generalized technique that uses sensing-
driven adaptation to improve energy efficiency of emerging heterogeneous MP-
SoCs [313, 244]. The experimental results showed that exposing and adapting
the system software and OS with quantitative and predictive awareness of power
and throughput at thread level can improve energy efficiency by over 50% with
respect to existing Linux Kernel load balancer and over 20% with respect to ARM’s
GTS scheme [313].

• Performance. While SoC performance had been a well studied problem, the re-
search showed that there still exists opportunities to improve SoC performance
under peak thermal constraints by improving the peak thermal monitoring accu-
racy and timely DTM actions [306]. Precise and timely awareness of the dynamics
of the physical phenomena (e.g., thermal hotspots) can avoid unwanted and inac-
curate run-time decisions (e.g., false DTM triggers) resulting in improved perfor-
mance by almost 28% [306] in a single core and holds the potential for substantial
improvement in heterogeneous MPSoCs.

• Thermal Resilience. The thesis presented a run-time thermal and power pre-
diction technique that estimates and predicts both the power consumption and
temperature of each functional unit ahead-of-time using only temperature mea-
surements that are readily available in the previous epoch [310, 306]. This en-
sures the awareness of the safe power a core can dissipate without violating a
peak temperature safety limit while controlling the power using well known DVFS
techniques. In addition, by being aware of the peak temperature which directly
impacts the aging characteristics of functional units, an adaptive resting and re-
covery cycle can be scheduled to improve resilience and mitigate aging [312].

197

9.1 Future Work

The CPSoC paradigm presented in this thesis can be extended in several research
directions. We list some of the short term and long term future work as follows. In the
short term, the thesis can be extended with:

• Cross-layer Reliability Models: As emerging SoCs are prone to increasing re-
liability and resilience issues, the ability to model the reliability behavior and
use such predictive models in run-time intelligent decision making to improve
resilience of emerging SoC architecture would be a promising step ahead.

• New Actuation Mechanisms: The potential of new actuation mechanisms such
as controlled algorithmic choice and approximation in combination with already
available on-chip actuation mechanism can be explored to significantly improve
performance and energy efficiency.

• Multipurpose Sensors Design and Integration: Sensors will play a crucial role
in the self-awareness of emerging CPSoCs. The research can be extended to build
multipurpose sensors and their integration methodology in the platform fabric.

• Better Predictive Models: The research can be extended to build more accurate
and better predictive models using neural networks and emerging computational
models.

• Novel Application and Use cases: Future research directions could develop novel
uses cases of the paradigm by encompassing combination of energy efficiency, re-
silience, performance, and predictability targeting new application domains such
as heterogeneous scale-out computing systems (e.g., data centers and cloud com-
puting).

In the long term, the following research problems can be addressed:

• Biologically Inspired Adaptation: Future research directions could have design
goals that encompass combination of energy efficiency, resilience, performance,
and predictability targeting new application domains such as heterogeneous ar-
chitectures and scale-out computing systems. As the need for intelligent man-
agement of computing system is increasing, use of on-chip machine learning and
biologically inspired adaptation techniques would be promising.

• Unification of Multiple Awareness Dimensions: Self-awareness being a first
class property to enable system to automatically adapt to their environment and
goals, unifying and generalizing several awareness dimensions and goals across
the system stack to achieve efficient system coordination is a promising research
direction. An implementation of such a generalized scheme in traditional op-
erating system such as Linux can result in meaningful enhancements toward a

198

self-aware operating system and its application supporting heterogeneous mobile
SoCs and futuristic mobile platforms.

199

Bibliography

[1] Dynamic System Identification: Experiment Design and Data Analysis. Mathemat-
ics in Science and Engineering. Elsevier Science, 1977.

[2] The Design and Analysis of Computer Experiments. Springer-Verlag, 2003.

[3] Microelectronic Circuits. Oxford University Press, 5th london, u.k edition, 2004.

[4] Beri processor, arcina release 1. 2016. https://github.com/CTSRD-CHERI/beri.

[5] eXtensible Utah Multicore (xum). 2016. https://github.com/
grantae/mips32r1_xum.

[6] Mips32 release 1. 2016. https://github.com/grantae/mips32r1_core.

[7] Zet processor. 2016. http://zet.aluzina.org/index.php/Zet_processor.

[8] Zylin cpu. 2016. https://github.com/zylin/zpu.

[9] Aeroflex Gaisler AB. Sparc v8 32-bit processor Leon3/Leon3-FT companion core
data sheet, March 2010.

[10] Cobham Gaisler AB. Grlib IP core users manual, May 2015.

[11] M. Agarwal, V. Balakrishnan, A. Bhuyan, et al. Optimized Circuit Failure Predic-
tion for Aging: Practicality and Promise. In IEEE International Test Conference,
ITC’08, pages 1–10, Oct 2008.

[12] Mridul Agarwal, Bipul C. Paul, Ming Zhang, and Subhasish Mitra. Circuit Failure
Prediction and Its Application to Transistor Aging. In Proceedings of the 25th
IEEE VLSI Test Symmposium, VTS ’07, pages 277–286, Washington, DC, USA,
2007. IEEE Computer Society.

[13] Vikas Agarwal, MS Hrishikesh, Stephen W Keckler, and Doug Burger. Clock rate
versus IPC: The end of the road for conventional microarchitectures, volume 28.
ACM, 2000.

200

[14] Hussam Amrouch, Thomas Ebi, Jurgen Schneider, Sri Parameswaran, and Jörg
Henkel. Analyzing the thermal hotspots in fpga-based embedded systems. In
Field Programmable Logic and Applications (FPL), 23rd International Conference
on, pages 1–4. IEEE, 2013.

[15] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu. An opportunistic prediction-
based thread scheduling to maximize throughput/watt in AMPs. In Parallel Ar-
chitectures and Compilation Techniques (PACT), 22nd International Conference on,
pages 63–72, Sept 2013.

[16] ARM Inc. big.LITTLE Technology: The Future of Mobile. 2013.
http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of
_Mobile.pdf.

[17] Asen Asenov. Random dopant induced threshold voltage lowering and fluctua-
tions in sub-0.1 µm MOSFET’s: A 3-D atomistic simulation study. Electron Devices,
IEEE Transactions on, 45(12):2505–2513, 1998.

[18] Asen Asenov, Andrew R Brown, John H Davies, Savas Kaya, and Gabriela
Slavcheva. Simulation of intrinsic parameter fluctuations in decananometer and
nanometer-scale MOSFETs. Electron Devices, IEEE Transactions on, 50(9):1837–
1852, 2003.

[19] Asen Asenov, Savas Kaya, and John H Davies. Intrinsic threshold voltage fluc-
tuations in decanano MOSFETs due to local oxide thickness variations. Electron
Devices, IEEE Transactions on, 49(1):112–119, 2002.

[20] Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge. Opportunities
and challenges for better than worst-case design. In Proceedings of the Asia and
South Pacific Design Automation Conference, pages 2–7. ACM, 2005.

[21] Todd Austin, Valeria Bertacco, Scott Mahlke, and Yu Cao. Reliable systems on
unreliable fabrics. Design & Test of Computers, IEEE, 25(4):322–332, 2008.

[22] Bernard J. Baars and Stan Franklin. Consciousness is computational: the LIDA
model of global workspace theory. International Journal of Machine Conscious-
ness, World Scientific Publishing Company, 2009.

[23] B.J. Baars. A Cognitive Theory of Consciousness. Cambridge University Press,
1989.

[24] B.J. Baars. The conscious access hypothesis: origins and recent evidence. Trends
in Cognitive Science, 6(1):47–52, 2002.

201

[25] M. Bakhouya. A Bio-Inspired Architecture for Autonomic Network-on-Chip. In
Phan Cong-Vinh, editor, Autonomic Networking-on-Chip - Bio-Inspired Specifica-
tion, Development, and Verification, chapter 1, pages 1–20. CRC Press, December
2011.

[26] M. Bakhouya and J. Gaber. Bio-inspired Approaches for Engineering Adaptive
Systems. Procedia Computer Science, 32:862 – 869, 2014. The 5th Interna-
tional Conference on Ambient Systems, Networks and Technologies (ANT’14),
the 4th International Conference on Sustainable Energy Information Technology
(SEIT’14).

[27] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The Im-
pact of Performance Asymmetry in Emerging Multicore Architectures. SIGARCH
Comput. Archit. News, 33(2):506–517, May 2005.

[28] Jonathan Balkind, Michael McKeown, Yaosheng Fu, et al. OpenPiton: An Open
Source Manycore Research Framework. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 217–232, New York, NY, USA, 2016. ACM.

[29] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 8(3):1–154, 2013.

[30] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
IEEE computer, 40(12):33–37, 2007.

[31] Lyonel Barthe, Luis Vitorio Cargnini, Pascal Benoit, and Lionel Torres. The se-
cretblaze: A configurable and cost-effective open-source soft-core processor. In
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), IEEE In-
ternational Symposium on, pages 310–313. IEEE, 2011.

[32] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca Benini. A distributed
and self-calibrating model-predictive controller for energy and thermal manage-
ment of high-performance multicores. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. IEEE, 2011.

[33] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, Luca Benini, and Matthias Gries.
A virtual platform environment for exploring power, thermal and reliability man-
agement control strategies in high-performance multicores. In Proceedings of the
20th symposium on Great lakes symposium on VLSI, GLSVLSI ’10, pages 311–316,
New York, NY, USA, 2010. ACM.

[34] A Bassi, A Veggetti, L Croce, and A Bogliolo. Measuring the effects of process vari-
ations on circuit performance by means of digitally-controllable ring oscillators.

202

In Microelectronic Test Structures, International Conference on, pages 214–217.
IEEE, 2003.

[35] Robert C Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on, 5(3):305–
316, 2005.

[36] Michela Becchi et al. Dynamic thread assignment on heterogeneous multiproces-
sor architectures. In Proceedings of the 3rd conference on Computing frontiers, CF
’06, pages 29–40, New York, NY, USA, 2006. ACM.

[37] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. Scaling distributed cache
hierarchies through computation and data co-scheduling. In High Performance
Computer Architecture (HPCA), IEEE 21st International Symposium on, pages 538–
550. IEEE, 2015.

[38] S. Bell, B. Edwards, J. Amann, et al. TILE64 - Processor: A 64-Core SoC with
Mesh Interconnect. In Solid-State Circuits Conference, ISSCC’08. Digest of Techni-
cal Papers. IEEE International, pages 88–598, 2008.

[39] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques for
system-level dynamic power management. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 8(3):299–316, June 2000.

[40] Luca Benini and Giovanni De Micheli. Networks-on-Chips: A New SoC Paradigm.
Computer, 35(1):70–78, January 2002.

[41] C. Benito, P. Ituero, and M. Lopez-Vallejo. A Low-Area Reference-Free Power
Supply Sensor. In Digital System Design (DSD), Euromicro Conference on, pages
728–733, Sept 2013.

[42] Keren Bergman, Shekhar Borkar, Dan Campbell, et al. Exascale computing study
Technology challenges in achieving exascale systems. DARPA Exascale Hardware
Study, 2008.

[43] Joseph B Bernstein, Moshe Gurfinkel, Xiaojun Li, et al. Electronic circuit reliabil-
ity modeling. Microelectronics Reliability, 46(12):1957–1979, 2006.

[44] Srikar Bhagavatula and Byunghoo Jung. A low power real-time on-chip power
sensor in 45-nm SOI. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 59(7):1577–1587, 2012.

[45] Srikar Bhagavatula and Byunghoo Jung. A power sensor with 80ns response time
for power management in microprocessors. In Proceedings of the IEEE Custom
Integrated Circuits Conference, CICC’13, pages 1–4, San Jose, CA, USA, September
22-25 2013.

203

[46] Manjul Bhushan, Anne Gattiker, Mark B Ketchen, and Koushik K Das. Ring oscil-
lators for CMOS process tuning and variability control. Semiconductor Manufac-
turing, IEEE Transactions on, 19(1):10–18, 2006.

[47] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[48] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In Proceed-
ings of the 17th international conference on Parallel architectures and compilation
techniques, pages 72–81. ACM, 2008.

[49] N. Binkert et al. The Gem5 Simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
August 2011.

[50] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing
and Its Role in the Internet of Things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New York,
NY, USA, 2012. ACM.

[51] S. Borkar. Thousand Core Chips-A Technology Perspective. In Design Automation
Conference, 2007. DAC ’07. 44th ACM/IEEE, pages 746 –749, june 2007.

[52] Shekhar Borkar. 3D integration for energy efficient system design. In Proceedings
of the 48th Design Automation Conference, pages 214–219. ACM, 2011.

[53] Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communi-
cations of the ACM, 54(5):67–77, 2011.

[54] Shekhar Borkar, Tanay Karnik, Siva Narendra, et al. Parameter variations and
impact on circuits and microarchitecture. In Proceedings of the 40th annual Design
Automation Conference, DAC ’03, pages 338–342, New York, NY, USA, 2003.
ACM.

[55] K.A. Bowman, C. Tokunaga, T. Karnik, V.K. De, and J.W. Tschanz. A 22 nm
All-Digital Dynamically Adaptive Clock Distribution for Supply Voltage Droop
Tolerance. Solid-State Circuits, IEEE Journal of, 48(4):907–916, 2013.

[56] David Brooks, Robert P Dick, Russ Joseph, and Li Shang. Power, Thermal, and Re-
liability Modeling in Nanometer-Scale Microprocessors. Micro, IEEE, 27(3):49–
62, 2007.

[57] David Brooks and Margaret Martonosi. Dynamic thermal management for high-
performance microprocessors. In High-Performance Computer Architecture, HPCA.
The Seventh International Symposium on, pages 171–182. IEEE, 2001.

204

[58] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations, volume 28. ACM, 2000.

[59] David M. Brooks, Pradip Bose, Stanley E. Schuster, et al. Power-Aware Microar-
chitecture: Design and Modeling Challenges for Next-Generation Microproces-
sors. IEEE Micro, 20(6):26–44, November 2000.

[60] Dan Burke, John Wawrzynek, Alex Krasnov, et al. RAMP blue: Implementation
of a manycore 1008 processor system. 2008.

[61] Remi Busseuil, Lyonel Barthe, Gabriel Marchesan Almeida, et al. Open-Scale: A
scalable, open-source NOC-based MPSoC for design space exploration. In Recon-
figurable Computing and FPGAs (ReConFig), International Conference on, pages
357–362. IEEE, 2011.

[62] Adam C Cabe, Zhenyu Qi, Stuart N Wooters, Travis N Blalock, and Mircea R
Stan. Small embeddable NBTI sensors (SENS) for tracking on-chip performance
decay. In Quality of Electronic Design,ISQED’09. Quality Electronic Design, pages
1–6. IEEE, 2009.

[63] Stephen L Campbell, Nancy K Nichols, and William J Terrell. Duality, observ-
ability, and controllability for linear time-varying descriptor systems. Circuits,
Systems and Signal Processing, 10(4):455–470, 1991.

[64] F. Cancare, S. Bhandari, D.B. Bartolini, M. Carminati, and M.D. Santambrogio.
A bird’s eye view of FPGA-based Evolvable Hardware. In Adaptive Hardware and
Systems (AHS), NASA/ESA Conference on, pages 169–175, June 2011.

[65] Yu Cao. Predictive technology model for robust nanoelectronic design. Springer
Science & Business Media, 2011.

[66] Christopher Celio, David A. Patterson, and Krste Asanovic. The Berkeley Out-of-
Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor. Technical Report UCB/EECS-2015-167, EECS Department,
University of California, Berkeley, Jun 2015.

[67] T.-B. Chan, P. Gupta, A.B. Kahng, and L. Lai. Synthesis and Analysis of Design-
Dependent Ring Oscillator (DDRO) Performance Monitors, 2013.

[68] Anantha P Chandrakasan, William J Bowhill, and Frank Fox. Design of high-
performance microprocessor circuits. Wiley-IEEE press, 2000.

[69] Chun-Chi Chen, Wen-Fu Lu, Chin-Chung Tsai, and Chun-Chi Chen. A time-to-
digital-converter-based CMOS smart temperature sensor. In Circuits and Systems,
ISCAS’05. IEEE International Symposium on, pages 560–563 Vol. 1, 2005.

205

[70] Jian Chen and Lizy K John. Efficient program scheduling for heterogeneous
multi-core processors. In DAC ’09, pages 927 –930, july 2009.

[71] Poki Chen, Chun-Chi Chen, Yu-Han Peng, Kai-Ming Wang, and Yu-Shin Wang. A
time-domain SAR smart temperature sensor with curvature compensation and a
3σ inaccuracy of- 0.4 C + 0.6 C over a 0 C to 90 C range. Solid-State Circuits,
IEEE Journal of, 45(3):600–609, 2010.

[72] Qikai Chen, Saibal Mukhopadhyay, Hamid Mahmoodi, and Kaushik Roy. Process
variation tolerant online current monitor for robust systems. In On-Line Testing
Symposium, IOLTS’05. 11th IEEE International, pages 171–176, July 2005.

[73] Tao Chen, Funmilade Faniyi, Rami Bahsoon, et al. The Handbook of Engineering
Self-Aware and Self-Expressive Systems. Computing Research Repository (CoRR),
abs/1409.1793, 2014.

[74] Tianshi Chen, Yunji Chen, Qi Guo, et al. Effective and efficient microprocessor
design space exploration using unlabeled design configurations. ACM Transac-
tions on Intelligent Systems and Technology (TIST), 5(1):20, 2013.

[75] Tianshi Chen, Qi Guo, Ke Tang, et al. Archranker: A ranking approach to design
space exploration. In Computer Architecture (ISCA), ACM/IEEE 41st International
Symposium on, pages 85–96. IEEE, 2014.

[76] Tze Wee Chen, Kyunglok Kim, Young Moon Kim, and Subhasish Mitra. Gate-
oxide early life failure prediction. In VLSI Test Symposium, VTS’08. 26th IEEE,
pages 111–118. IEEE, 2008.

[77] Betty HC Cheng, Rogerio De Lemos, Holger Giese, et al. Software engineering
for self-adaptive systems: A research roadmap. In Software engineering for self-
adaptive systems, pages 1–26. Springer, 2009.

[78] Nagabhushan Chitlur, Ganapati Srinivasa, Scott Hahn, et al. QuickIA: Exploring
heterogeneous architectures on real prototypes. In High Performance Computer
Architecture (HPCA), IEEE 18th International Symposium on, pages 1–8. IEEE,
2012.

[79] Ching-Che Chung and Cheng-Ruei Yang. An Autocalibrated All-Digital Temper-
ature Sensor for On-Chip Thermal Monitoring. Circuits and Systems II: Express
Briefs, IEEE Transactions on, 58(2):105–109, 2011.

[80] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. Meerbergen. An event-
based network-on-chip monitoring service. In High-Level Design Validation and
Test Workshop, Ninth IEEE International, pages 149–154, 2004.

206

[81] Ali Çivril and Malik Magdon-Ismail. On selecting a maximum volume sub-matrix
of a matrix and related problems. Theoretical Computer Science, 410(47):4801–
4811, 2009.

[82] A. Clark. Mindware An Introduction to the Philosophy of Cognitive Science. Oxford
University Press, New York, 2001.

[83] R. Cochran and S. Reda. Spectral techniques for high-resolution thermal char-
acterization with limited sensor data. In Design Automation Conference, DAC ’09.
46th ACM/IEEE, pages 478–483, 2009.

[84] W. E. Cohen. Tuning programs with OProfile. 2004.
http://oprofile.sourceforge.net/news/.

[85] Phan Cong-Vinh, editor. Autonomic Networking-on-Chip: Bio-Inspired Specifica-
tion, Development, and Verification. CRC Press, December 2011.

[86] Henry Cook and Kevin Skadron. Predictive design space exploration using genet-
ically programmed response surfaces. In Proceedings of the 45th annual Design
Automation Conference, pages 960–965. ACM, 2008.

[87] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C Gross. Temperature
management in multiprocessor SoCs using online learning. In Design Automation
Conference,DAC’08. 45th ACM/IEEE, pages 890–893. IEEE, 2008.

[88] Matthew Curtis-Maury, Filip Blagojevic, Christos D Antonopoulos, and Dim-
itrios S Nikolopoulos. Prediction-based power-performance adaptation of multi-
threaded scientific codes. Parallel and Distributed Systems, IEEE Transactions on,
19(10):1396–1410, 2008.

[89] William J Dally, James Balfour, David Black-Shaffer, et al. Efficient embedded
computing. Computer, (7):27–32, 2008.

[90] Bishnu Prasad Das, Bharadwaj Amrutur, HS Jamadagni, NV Arvind, and V Vis-
vanathan. Within-die gate delay variability measurement using reconfigurable
ring oscillator. Semiconductor Manufacturing, IEEE Transactions on, 22(2):256–
267, 2009.

[91] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, et al. RazorII: In situ error detec-
tion and correction for PVT and SER tolerance. Solid-State Circuits, IEEE Journal
of, 44(1):32–48, 2009.

[92] Basab Datta. On-chip thermal sensing in deep sub-micron CMOS. 2007.

[93] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Ltd, Chichester, England, may 2001.

207

[94] Robert H Dennard, VL Rideout, E Bassous, and AR LeBlanc. Design of ion-
implanted MOSFET’s with very small physical dimensions. Solid-State Circuits,
IEEE Journal of, 9(5):256–268, 1974.

[95] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. PDRAM: a hybrid PRAM and
DRAM main memory system. In Design Automation Conference, 2009. DAC’09.
46th ACM/IEEE, pages 664–669. IEEE, 2009.

[96] Saurabh Dighe, Sriram R Vangal, Paolo Aseron, et al. Within-die variation-aware
dynamic-voltage-frequency-scaling with optimal core allocation and thread hop-
ping for the 80-core teraflops processor. Solid-State Circuits, IEEE Journal of,
46(1):184–193, 2011.

[97] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

[98] David L Donoho. Compressed sensing. Information Theory, IEEE Transactions on,
52(4):1289–1306, 2006.

[99] J. Dorsey, S. Searles, M. Ciraula, et al. An Integrated Quad-Core Opteron Proces-
sor. In 2007 IEEE International Solid-State Circuits Conference. Digest of Technical
Papers, pages 102–103, Feb 2007.

[100] A.J. Drake, M.S. Floyd, R.L. Willaman, et al. Single-cycle, pulse-shaped critical
path monitor in the POWER7 microprocessor. In Low Power Electronics and
Design (ISLPED), 2013 IEEE International Symposium on, pages 193–198, 2013.

[101] Alan Drake, R Senger, H Deogun, et al. A distributed critical-path timing monitor
for a 65nm high-performance microprocessor. In Solid-State Circuits Conference,
2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pages 398–399.
IEEE, 2007.

[102] Alan J Drake, Robert M Senger, Harmander Singh, Gary D Carpenter, and Nor-
man K James. Dynamic measurement of critical-path timing. In Integrated Circuit
Design and Technology and Tutorial, 2008. ICICDT 2008. IEEE International Con-
ference on, pages 249–252. IEEE, 2008.

[103] Ronald G Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and
Trevor Mudge. Near-threshold computing: Reclaiming moore’s law through en-
ergy efficient integrated circuits. Proceedings of the IEEE, 98(2):253–266, 2010.

[104] Nikil Dutt, Axel Jantsch, and Santanu Sarma. Toward Smart Embedded Systems:
A Self-aware System-on-Chip (SoC) Perspective. ACM Transactions on Embedded
Computing Systems (TECS), 15(2):22, 2016.

208

[105] Thomas Ebi, M Faruque, and Jörg Henkel. Tape: Thermal-aware agent-based
power econom multi/many-core architectures. In Computer-Aided Design-Digest
of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on,
pages 302–309. IEEE, 2009.

[106] Mica R. Endsley. Design and Evaluation for Situation Awareness Enhancement.
In Proceedings of the Human Factors and Ergonomics Society 32th Annual Meeting,
pages 97–101, 1988.

[107] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Computer
Architecture (ISCA), 2011 38th Annual International Symposium on, pages 365–
376. IEEE, 2011.

[108] Lei Fang, Panos J Antsaklis, Luis A Montestruque, et al. Design of a wireless
assisted pedestrian dead reckoning system - the NavMote experience. Instru-
mentation and Measurement, IEEE Transactions on, 54(6):2342–2358, Nov. 2005
2005.

[109] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao. Architecting Self-Aware Soft-
ware Systems. In Proc. of the 2014 IEEE/IFIP Conference on Software Architecture
(WICSA), pages 91–94, Sydney, Australia, April 2014.

[110] Laurene V Fausett. Fundamentals of neural networks. Prentice-Hall, 1994.

[111] Michael Ferdman, Almutaz Adileh, Onur Kocberber, et al. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. ACM SIGARCH
Computer Architecture News, 40(1):37–48, 2012.

[112] Michael S Floyd, Soraya Ghiasi, Tom W Keller, et al. System power manage-
ment support in the IBM POWER6 microprocessor. IBM Journal of Research and
Development, 51(6):733–746, 2007.

[113] James Fung and Steve Mann. Computer vision signal processing on graphics
processing units. In Acoustics, Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Conference on, volume 5, pages V–93. IEEE,
2004.

[114] James Fung, Felix Tang, and Steve Mann. Mediated reality using computer
graphics hardware for computer vision. In Wearable Computers, 2002.(ISWC
2002). Proceedings. Sixth International Symposium on, pages 83–89. IEEE, 2002.

[115] Aeroflex Gaisler. LEON3 Processor. www.gaisler.com, 2013.

209

[116] Rong Ge, Xizhou Feng, Shuaiwen Song, et al. PowerPack: Energy Profiling and
Analysis of High-Performance Systems and Applications. IEEE Trans. Parallel Dis-
trib. Syst., 21(5):658–671, May 2010.

[117] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-
healing Systems - Survey and Synthesis. Decis. Support Syst., 42(4):2164–2185,
January 2007.

[118] Keith Godfrey. Identification of parametric models from experimental data [Book
Review]. Automatic Control, IEEE Transactions on, 44(12):2321–2322, 1999.

[119] Bhavishya Goel, Sally A McKee, Roberto Gioiosa, et al. Portable, scalable, per-
core power estimation for intelligent resource management. In Green Computing
Conference, 2010 International, pages 135–146. IEEE, 2010.

[120] P. Greenhalgh. Big.LITTLE processing with ARM Cortex-A15 & Cortex-A7: Im-
proving energy efficiency in high-performance mobile platforms. Technical re-
port, ARM Ltd., 2011.

[121] G. Grey. big.LITTLE Software Update. http://www.linaro.org/blog/hardware-
update/big-little-software-update/, 2013.

[122] L. Guang, G. Plosila, J. Isoaho, and H. Tenhunen. HAMSoC: A Monitoring-Centric
Design Approach for Adaptive Parallel Computing. In Phan Cong-Vinh, editor,
Autonomic Networking-on-Chip: Bio-Inspired Specification, Development, and Ver-
ification, chapter 6, pages 135–164. CRC Press, December 2011.

[123] Liang Guang, Ethiopia Nigussie, Pekka Rantala, Jouni Isoaho, and Hannu Ten-
hunen. Hierarchical agent monitoring design approach towards self-aware par-
allel systems-on-chip. ACM Trans. Embed. Comput. Syst., 9(3):1–24, 2010.

[124] Liang Guang, Juha Plosila, Jouni Isoaho, , and Hannu Tenhunen. Hierarchi-
cal Agent Monitored Parallel On-Chip System: A Novel Design Paradigm and its
Formal Specification. International Journal of Embedded and Real-Time Commu-
nication Systems (IJERTCS), 1(2), 2010.

[125] Puneet Gupta, Yuvraj Agarwal, Lara Dolecek, et al. Underdesigned and Oppor-
tunistic Computing in Presence of Hardware Variability. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 32(1):8–23, 2013.

[126] Yongkui Han, Israel Koren, and C Mani Krishna. TILTS: A fast architectural-level
transient thermal simulation method. Journal of Low Power Electronics, 3(1):13–
21, 2007.

[127] Katalin M Hangos, József Bokor, and Gábor Szederkényi. Analysis and control of
nonlinear process systems. Springer Science & Business Media, 2006.

210

[128] Vinay Hanumaiah, Sarma Vrudhula, and Karam S Chatha. Performance optimal
online dvfs and task migration techniques for thermally constrained multi-core
processors. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 30(11):1677–1690, 2011.

[129] Monson H Hayes. Statistical Digital Signal Processing and Modeling. 1996.

[130] Simon S Haykin. Neural networks and learning machines, volume 3. Pearson
Education Upper Saddle River, 2009.

[131] Stephan Hengstler, Daniel Prashanth, Sufen Fong, and Hamid Aghajan. Mesh-
Eye: A Hybrid-Resolution Smart Camera Mote for Applications in Distributed In-
telligent Surveillance. In Information Processing in Sensor Networks, 2007. IPSN
2007. 6th International Symposium on, pages 360–369, Stanford Univ., Stanford,
Nov. 2007 2007.

[132] J. Henkel, L. Bauer, J. Becker, et al. Design and architectures for depend-
able embedded systems. In Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011 Proceedings of the 9th International Conference on, pages
69–78, Oct 2011.

[133] J. Henkel, A. Herkersdorf, L. Bauer, et al. Invasive manycore architectures. In De-
sign Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, pages
193–200, Jan 2012.

[134] T. Higuchi, Y. Liu, and X. Yao, editors. Evolvable Hardware. Springer Sci-
ence+Media LLC, New York, 2006.

[135] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer,
(7):33–38, 2008.

[136] Eric Hoffman, Peter Martin, Thomas Pütz, Aymeric Trzmiel, and Karim Zeghal.
Airborne spacing: flight deck view of compatibility with continuous descent ap-
proach (CDA). Interface,(September), pages 1–12, 2007.

[137] H. Hoffmann. CoAdapt: Predictable Behavior for Accuracy-Aware Applications
Running on Power-Aware Systems. In Real-Time Systems (ECRTS), 2014 26th
Euromicro Conference on, pages 223–232, July 2014.

[138] H. Hoffmann, M. Maggio, M.D. Santambrogio, A. Leva, and A. Agarwal. A gen-
eralized software framework for accurate and efficient management of perfor-
mance goals. In Embedded Software (EMSOFT), 2013 Proceedings of the Interna-
tional Conference on, pages 1–10, Sept 2013.

211

[139] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and
Anant Agarwal. Application heartbeats: a generic interface for specifying pro-
gram performance and goals in autonomous computing environments. In Pro-
ceedings of the 7th international conference on Autonomic computing, pages 79–88.
ACM, 2010.

[140] Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and
Anant Agarwal. Seec: A framework for self-aware computing. 2010.

[141] Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and
Anant Agarwal. SEEC: A framework for self-aware management of multicore
resources. (MIT-CSAIL-TR-2011-016), 2011.

[142] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, et al. Dynamic knobs for
responsive power-aware computing. In ACM SIGPLAN Notices, volume 46, pages
199–212. ACM, 2011.

[143] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder,
and Boris Koldehofe. Mobile Fog: A Programming Model for Large-scale Appli-
cations on the Internet of Things. In Proceedings of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing, MCC ’13, pages 15–20, New York, NY,
USA, 2013. ACM.

[144] John E. Hopcroft and Richard M. Karp. A n5/2 algorithm for maximum match-
ings in bipartite. In Switching and Automata Theory, 1971., 12th Annual Sympo-
sium on, pages 122–125, 1971.

[145] Chien-Shu Hsieh. Robust two-stage Kalman filters for systems with unknown
inputs. Automatic Control, IEEE Trans. on, 45(12):2374–2378, 2000.

[146] HT-Lab. Cpu86: 8088 fpga ip core, 2016.

[147] Wei Huang, S. Ghosh, S. Velusamy, et al. HotSpot: a compact thermal modeling
methodology for early-stage VLSI design. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 14(5):501 –513, may 2006.

[148] Wei Huang, Mircea R Stant, Karthik Sankaranarayanan, Robert J Ribando, and
Kevin Skadron. Many-core design from a thermal perspective. In Proceedings of
the 45th annual Design Automation Conference, pages 746–749. ACM, 2008.

[149] IBM. PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technol-
ogy Pro- gramming Environments Manual. IBM, 2005.

[150] Toshiyuki INAGAKI. Design of human interactions with smart machines: Lessons
learned from aircraft accidents. The 4th IARP/IEEE RAS/EURON, keynote lecture,
June 17, 2005 Nagoya, 2005.

212

[151] Oracle Inc. OpenSPARC Processor. Oracle Inc., 2013.

[152] Xilinx Inc. Xilinx University Program XUPV5-LX110T Development System.
2011.

[153] Xilinx Inc. Virtex-6 FPGA ML605 Evaluation Kit. 2013.

[154] Texas Instruments. Msp430x1xx family users guide. 2006.

[155] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin
Schulz. Efficiently Exploring Architectural Design Spaces via Predictive Model-
ing. SIGPLAN Not., 41(11):195–206, October 2006.

[156] Canturk Isci, Gilberto Contreras, and Margaret Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to dynamic power
management. In Proceedings of the 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 359–370. IEEE Computer Society, 2006.

[157] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture, page 93. IEEE Com-
puter Society, 2003.

[158] ITRS. The International Technology Roadmap for Semiconductors [Online].
Available: http://public.itrs.net/. July 2011.

[159] ITRS. Process Integration, Devices, and Structures (PIDS). July 2011.

[160] Syed M. A. H. Jafri, Liang Guang, Axel Jantsch, et al. Self-Adaptive NoC Power
Management with Dual-Level Agents: Architecture and Implementation. In Pro-
ceedings of the Conference on Self-adaptive Netwotrked Embedded Systems, Rome,
Italy, February 2012.

[161] Axel Jantsch and Kalle Tammemäe. A Framework of Awareness for Artificial Sub-
jects. In Proceedings of the 2014 International Conference on Hardware/Software
Codesign and System Synthesis, CODES ’14, pages 20:1–20:3, New York, NY, USA,
2014. ACM.

[162] JEDEC. Failure Mechanisms and Models for Semiconductor Devices. In JEDEC
Publication JEP122-A, 2002.

[163] Jeff, B. Advances in big.LITTLE Technology for Power and Energy Savings. Tech-
nical report, ARM Ltd., 2012.

[164] Brendan Jennings and Rolf Stadler. Resource Management in Clouds: Survey
and Research Challenges. Journal of Network and Systems Management, pages
1–53, 2014.

213

[165] Kwangok Jeong, Andrew B Kahng, and Kambiz Samadi. Impact of guardband
reduction on design outcomes: A quantitative approach. Semiconductor Manu-
facturing, IEEE Transactions on, 22(4):552–565, 2009.

[166] William M Johnson. Super-scalar processor design. 1989.

[167] PJ Joseph, Kapil Vaswani, and Matthew J Thazhuthaveetil. Construction and
use of linear regression models for processor performance analysis. In High-
Performance Computer Architecture, 2006. The Twelfth International Symposium
on, pages 99–108. IEEE, 2006.

[168] Russ Joseph, David Brooks, and Margaret Martonosi. Control techniques to elim-
inate voltage emergencies in high performance processors. In High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International
Symposium on, pages 79–90. IEEE, 2003.

[169] Hwisung Jung et al. A stochastic local hot spot alerting technique. In Design
Auto. Conf., 2008. ASPDAC 2008. Asia and South Pacific, pages 468–473, 2008.

[170] Hermann Kaindl, Mathieu Vallée, and Edin Arnautovic. Self-Representation for
Self-Configuration and Monitoring in Agent-Based Flexible Automation Systems.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(1):164–175,
January 2013.

[171] Rudolf Emil Kalman. Mathematical description of linear dynamical systems.
Journal of the Society for Industrial & Applied Mathematics, Series A: Control,
1(2):152–192, 1963.

[172] Eric Karl, David Blaauw, Dennis Sylvester, and Trevor Mudge. Reliability model-
ing and management in dynamic microprocessor-based systems. In Proceedings
of the 43rd annual Design Automation Conference, pages 1057–1060. ACM, 2006.

[173] Eric Karl, Prashant Singh, D Blaauw, and D Sylvester. Compact in-situ sensors for
monitoring negative-bias-temperature-instability effect and oxide degradation.
In Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International, pages 410–623. IEEE, 2008.

[174] Stefanos Kaxiras and Margaret Martonosi. Computer architecture techniques for
power-efficiency. Synthesis Lectures on Computer Architecture, 3(1):1–207, 2008.

[175] J. Keane, Xiaofei Wang, D. Persaud, and C.H. Kim. An All-In-One Silicon Odome-
ter for Separately Monitoring HCI, BTI, and TDDB. Solid-State Circuits, IEEE
Journal of, 45(4):817–829, April 2010.

214

[176] John Keane, Tae-Hyoung Kim, and Chris H Kim. An on-chip NBTI sensor for
measuring PMOS threshold voltage degradation. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 18(6):947–956, 2010.

[177] John Keane, Shrinivas Venkatraman, Paulo Butzen, and Chris H Kim. An array-
based test circuit for fully automated gate dielectric breakdown characterization.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 19(5):787–795,
2011.

[178] John H Kelm, Daniel R Johnson, Matthew R Johnson, et al. Rigel: an architec-
ture and scalable programming interface for a 1000-core accelerator. In ACM
SIGARCH Computer Architecture News, volume 37, pages 140–151. ACM, 2009.

[179] John H Kelm, Daniel R Johnson, Steven S Lumetta, Matthew I Frank, and San-
jay J Patel. A task-centric memory model for scalable accelerator architectures.
In Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th Inter-
national Conference on, pages 77–87. IEEE, 2009.

[180] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Com-
puter, 36(1):41 – 50, jan 2003.

[181] R.E. Kessler. The Alpha 21264 microprocessor. Micro, IEEE, 19(2):24 –36,
mar/apr 1999.

[182] Kurt Keutzer, Jan M Rabaey, A Sangiovanni-Vincentelli, et al. System-level de-
sign: orthogonalization of concerns and platform-based design. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 19(12):1523 –
1543, dec 2000.

[183] Brucek Khailany, William J Dally, Ujval J Kapasi, et al. Imagine: Media processing
with streams. IEEE micro, 21(2):35–46, 2001.

[184] Brucek K Khailany, Ted Williams, Jim Lin, et al. A programmable 512 GOPS
stream processor for signal, image, and video processing. Solid-State Circuits,
IEEE Journal of, 43(1):202–213, 2008.

[185] Usman A Khan and José MF Moura. Distributing the Kalman filter for large-scale
systems. Signal Processing, IEEE Transactions on, 56(10):4919–4935, 2008.

[186] Chris H Kim, Kaushik Roy, Steven Hsu, Ram Krishnamurthy, and Shekhar Borkar.
A process variation compensating technique with an on-die leakage current sen-
sor for nanometer scale dynamic circuits. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 14(6):646–649, 2006.

215

[187] J. M. Kim, S. K. Seo, and S. W. Chung. Looking into heterogeneity: when simple
is faster. In The 2nd International Workshop on Parallelism in Mobile Platforms.,
2014.

[188] Kyung Ki Kim, Wei Wang, and Ken Choi. On-chip aging sensor circuits for reliable
nanometer MOSFET digital circuits. Circuits and Systems II: Express Briefs, IEEE
Transactions on, 57(10):798–802, 2010.

[189] Myungsun Kim, Kibeom Kim, James R Geraci, and Seongsoo Hong. Utilization-
aware load balancing for the energy efficient operation of the big. LITTLE pro-
cessor. In Proceedings of the conference on Design, Automation & Test in Europe,
page 223. European Design and Automation Association, 2014.

[190] Tae-Hyoung Kim, Randy Persaud, and Chris H Kim. Silicon odometer: An on-
chip reliability monitor for measuring frequency degradation of digital circuits.
Solid-State Circuits, IEEE Journal of, 43(4):874–880, 2008.

[191] Youngtaek Kim, Lizy Kurian John, Sanjay Pant, et al. AUDIT: Stress testing the
automatic way. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM In-
ternational Symposium on, pages 212–223. IEEE, 2012.

[192] V.B. Kleeberger, C. Gimmler-Dumont, C. Weis, et al. A Cross-Layer Technology-
Based Study of How Memory Errors Impact System Resilience. Micro, IEEE,
33(4):46–55, July 2013.

[193] Joonho Kong, Sung Woo Chung, and Kevin Skadron. Recent Thermal Manage-
ment Techniques for Microprocessors. ACM Comput. Surv., 44(3):13:1–13:42,
June 2012.

[194] Georgios Kornaros and Dionisios Pnevmatikatos. A Survey and Taxonomy of On-
chip Monitoring of Multicore Systems-on-chip. ACM Trans. Des. Autom. Electron.
Syst., 18(2):17:1–17:38, April 2013.

[195] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in heteroge-
neous multi-core architectures. In Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, pages 125–138, New York, NY, USA, 2010. ACM.

[196] Christoforos Kozyrakis and David Patterson. Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks. In Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, pages 283–293.
IEEE Computer Society Press, 2002.

[197] Ronny Krashinsky, Christopher Batten, and Krste Asanović. Implementing the
scale vector-thread processor. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), 13(3):41, 2008.

216

[198] Ronny Krashinsky, Christopher Batten, Mark Hampton, et al. The vector-thread
architecture. In ACM SIGARCH Computer Architecture News, volume 32, page 52.
IEEE Computer Society, 2004.

[199] M. Kuhn and K. Johnson. Applied Predictive Modeling. SpringerLink : Bücher.
Springer New York, 2013.

[200] Ari Kulmala, Erno Salminen, and Timo D Hämäläinen. Evaluating large system-
on-chip on multi-FPGA platform. In Embedded Computer Systems: Architectures,
Modeling, and Simulation, pages 179–189. Springer, 2007.

[201] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas. Single-
ISA heterogeneous multi-core architectures for multithreaded workload perfor-
mance. In Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, pages 64 – 75, june 2004.

[202] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan,
and Dean M Tullsen. Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction. In Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on, pages 81–92.
IEEE, 2003.

[203] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and Parthasarathy Ran-
ganathan. Heterogeneous Chip Multiprocessors. Computer, 38(11):32–38,
November 2005.

[204] Ravi Kuppuswamy, Shankar R Sawant, Srikanth Balasubramanian, et al. Over
one million TPCC with a 45nm 6-core Xeon® CPU. In Solid-State Circuits
Conference-Digest of Technical Papers, 2009. ISSCC 2009. IEEE International,
pages 70–71. IEEE, 2009.

[205] Robert Laddaga. Active Software. In Self-Adaptive Software, volume 1936 of
Lecture Notes in Computer Science, pages 11–26. Springer, July 2001.

[206] Liangzhen Lai, Vikas Chandra, Robert Aitken, and Puneet Gupta. SlackProbe:
A low overhead in situ on-line timing slack monitoring methodology. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pages 282–287,
2013.

[207] Clemens J.M. Lasance. Thermally driven reliability issues in microelectronic
systems: status-quo and challenges. Microelectronics Reliability, 43(12):1969 –
1974, 2003.

[208] Benjamin C Lee and David M Brooks. Accurate and efficient regression model-
ing for microarchitectural performance and power prediction. In ACM SIGPLAN
Notices, volume 41, pages 185–194. ACM, 2006.

217

[209] Benjamin C Lee, Jamison Collins, Hong Wang, and David Brooks. CPR: Com-
posable performance regression for scalable multiprocessor models. In Microar-
chitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on,
pages 270–281. IEEE, 2008.

[210] E.A. Lee. Cyber Physical Systems: Design Challenges. In ISORC, 2008, pages 363
–369, may 2008.

[211] Edward A Lee. The past, present and future of cyber-physical systems: A focus
on models. Sensors, 15(3):4837–4869, 2015.

[212] Walter Lee, Rajeev Barua, Matthew Frank, et al. Space-time scheduling of
instruction-level parallelism on a raw machine. In ACM SIGPLAN Notices, vol-
ume 33, pages 46–57. ACM, 1998.

[213] Yunsup Lee, Andrew Waterman, Rimas Avizienis, et al. A 45nm 1.3 GHz 16.7
double-precision GFLOPS/W RISC-V processor with vector accelerators. In Euro-
pean Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014-40th, pages 199–
202. IEEE, 2014.

[214] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A Jacobson, and Subhasish
Mitra. ERSA: Error resilient system architecture for probabilistic applications. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010, pages
1560–1565. IEEE, 2010.

[215] C.R. Lefurgy, A.J. Drake, M.S. Floyd, et al. Active Guardband Management in
Power7+ to Save Energy and Maintain Reliability. Micro, IEEE, 33(4):35–45,
2013.

[216] Peter R. Lewis, Arjun Chandra, Funmilade Faniyi, et al. Architectural Aspects
of Self-aware and Self-expressive Computing Systems. IEEE Computer, August
2015.

[217] P.R. Lewis, A. Chandra, S. Parsons, et al. A Survey of Self-Awareness and Its
Application in Computing Systems. In Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2011 Fifth IEEE Conference on, pages 102–107, October
2011.

[218] Sheng Li, Jung Ho Ahn, Richard D Strong, et al. McPAT: an integrated power,
area, and timing modeling framework for multicore and manycore architec-
tures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Interna-
tional Symposium on, pages 469–480. IEEE, 2009.

[219] Sheng Li, Jung Ho Ahn, Richard D Strong, et al. The McPAT framework for
multicore and manycore architectures: Simultaneously modeling power, area,

218

and timing. ACM Transactions on Architecture and Code Optimization (TACO),
10(1):5, 2013.

[220] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating
system power consumption. SIGMETRICS Perform. Eval. Rev., 31(1):160–171,
June 2003.

[221] Tuo Li, Muhammad Shafique, Jude Angelo Ambrose, et al. RASTER: runtime
adaptive spatial/temporal error resiliency for embedded processors. In Proceed-
ings of the 50th Annual Design Automation Conference, page 62. ACM, 2013.

[222] Y Li, Young Moon Kim, E Mintarno, D.S. Gardner, and S Mitra. Overcoming
Early-Life Failure and Aging for Robust Systems. Design Test of Computers, IEEE,
26(6):28–39, 2009.

[223] Guangshuo Liu et al. Dynamic thread mapping for high-performance, power-
efficient heterogeneous many-core systems. In Computer Design (ICCD), 2013
IEEE 31st International Conference on, pages 54–61, Oct 2013.

[224] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability of
complex networks. Nature, 473(7346):167–173, 2011.

[225] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Observability of
complex systems. Proceedings of the National Academy of Sciences, 110(7):2460–
2465, 2013.

[226] Lennart Ljung. System identification. Springer, 1998.

[227] Jieyi Long, Seda Ogrenci Memik, Gokhan Memik, and Rajarshi Mukherjee. Ther-
mal Monitoring Mechanisms for Chip Multiprocessors. ACM Trans. Archit. Code
Optim., 5(2):9:1–9:33, September 2008.

[228] D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applica-
tions. Wiley, 1979.

[229] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. Scalable power control for many-
core architectures running multi-threaded applications. In ACM SIGARCH Com-
puter Architecture News, volume 39, pages 449–460. ACM, 2011.

[230] Martina Maggio, Henry Hoffmann, Marco D. Santambrogio, Anant Agarwal, and
Alberto Leva. Decision Making in Autonomic Computing Systems: Comparison
of Approaches and Techniques. In Proceedings of the 8th ACM International Con-
ference on Autonomic Computing, ICAC ’11, pages 201–204, New York, NY, USA,
2011. ACM.

219

[231] R. Marculescu, U.Y. Ogras, Li-Shiuan Peh, N.E. Jerger, and Y. Hoskote. Out-
standing Research Problems in NoC Design: System, Microarchitecture, and Cir-
cuit Perspectives. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 28(1):3–21, 2009.

[232] Benjamin LaSalle Meakin. Multicore system design with xum: The extensible utah
multicore project. PhD thesis, The University of Utah, 2010.

[233] S.O. Memik, R. Mukherjee, Min Ni, and Jieyi Long. Optimizing Thermal Sensor
Allocation for Microprocessors. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(3):516–527, 2008.

[234] Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and
Luca Benini. Workload and user experience-aware dynamic reliability manage-
ment in multicore processors. In Proceedings of the 50th Annual Design Automa-
tion Conference, page 2. ACM, 2013.

[235] Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and
Luca Benini. A Linux-governor based Dynamic Reliability Manager for android
mobile devices. In Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE), pages 1–4. IEEE, 2014.

[236] Pietro Mercati, Francesco Paterna, Andrea Bartolini, Luca Benini, and Ta-
jana Simunic Rosing. Dynamic variability management in mobile multicore pro-
cessors under lifetime constraints. In Computer Design (ICCD), 32nd IEEE Inter-
national Conference on, pages 448–455, Oct 2014.

[237] Campbell Millar, David Reid, Gareth Roy, Scott Roy, and Asen Asenov. Accurate
statistical description of random dopant-induced threshold voltage variability.
Electron Device Letters, IEEE, 29(8):946–948, 2008.

[238] Sparsh Mittal. A survey of techniques for improving energy efficiency in embed-
ded computing systems. International Journal of Computer Aided Engineering and
Technology, 2014.

[239] Sparsh Mittal and Jeffrey S Vetter. A survey of CPU-GPU heterogeneous comput-
ing techniques. ACM Computing Surveys (CSUR), 47(4):69, 2015.

[240] J.C. Mogul et al. Using Asymmetric Single-ISA CMPs to Save Energy on Operating
Systems. Micro, IEEE, 28(3):26 –41, May-June 2008.

[241] R. Morales-Ramos, J.A. Montiel-Nelson, R. Berenguer, and A. Garcia-Alonso.
Voltage Sensors for Supply Capacitor in Passive UHF RFID Transponders. In Dig-
ital System Design: Architectures, Methods and Tools, DSD 2006. 9th EUROMICRO
Conference on, pages 625–629, 2006.

220

[242] Alain Morin. Levels of consciousness and self-awareness: A comparison and inte-
gration of various neurocognitive views. Consciousness and Cognition, 15(2):358
– 371, 2006.

[243] Lo. Motus, M. Meriste, and J. Preden. Towards Middleware Based Situation
Awareness. In Military Communications Conference (MILCOM), Boston, October
2009.

[244] Tiago Mück, Santanu Sarma, and Nikil Dutt. Run-DMC: runtime dynamic hetero-
geneous multicore performance and power estimation for energy efficiency. In
Proceedings of the 10th International Conference on Hardware/Software Codesign
and System Synthesis, pages 173–182. IEEE Press, 2015.

[245] Rajarshi Mukherjee and Seda Ogrenci Memik. Systematic temperature sensor
allocation and placement for microprocessors. In Proceedings of the 43rd annual
Design Automation Conference, pages 542–547. ACM, 2006.

[246] Sani R Nassif, Nikil Mehta, and Yu Cao. A resilience roadmap. In Proceedings
of the Conference on Design, Automation and Test in Europe, pages 1011–1016.
European Design and Automation Association, 2010.

[247] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power manage-
ment in virtualized enterprise systems. In ACM SIGOPS Operating Systems Review,
volume 41, pages 265–278. ACM, 2007.

[248] Ulric Neisser. The Roots of Self-Knowledge: Perceiving Self, It, and Thou. Annals
of the New York Academy of Sciences, 818:19–33, June 1997.

[249] Mario Nemirovsky and Dean M Tullsen. Multithreading architecture. Synthesis
Lectures on Computer Architecture, 8(1):1–109, 2013.

[250] S. T. S. Ngiap. Aemb 32-bit microprocessor core datasheet, 2007.

[251] Abdullah Nazma Nowroz, Ryan Cochran, and Sherief Reda. Thermal monitoring
of real processors: techniques for sensor allocation and full characterization. In
Proceedings of the 47th Design Automation Conference, DAC ’10, pages 56–61,
New York, NY, USA, 2010. ACM.

[252] NVidia. Variable SMP - a multi-core CPU architecture for low power and high
performance. 2011.

[253] Katsuhiko Ogata. Modern control engineering. Prentice Hall PTR, 2001.

[254] Reza Olfati-Saber. Distributed Kalman filtering for sensor networks. In Decision
and Control, 2007 46th IEEE Conference on, pages 5492–5498. IEEE, 2007.

221

[255] A. Olshevsky. The Minimal Controllability Problem. ArXiv e-prints, April 2013.

[256] Kunle Olukotun, Basem A Nayfeh, Lance Hammond, Ken Wilson, and Kunyung
Chang. The case for a single-chip multiprocessor. ACM Sigplan Notices, 31(9):2–
11, 1996.

[257] M. Omana, D. Rossi, N. Bosio, and C. Metra. Self-checking monitor for NBTI due
degradation. In Mixed-Signals, Sensors and Systems Test Workshop (IMS3TW),
2010 IEEE 16th International, pages 1–6, June 2010.

[258] OpenCores. Altor32 - alternative lightweight openrisc cpu. 2016.

[259] OpenCores. Amber arm-compatible core. 2016.
http://opencores.org/project,amber.

[260] OpenCores. pAVR. 2016.

[261] OpenCores.org. OpenRISC Processor. OpenCores.org, 2013.

[262] Oracle Inc. OpenSPARC T1 Microarchitecture Specification. 2006. Santa Clara,
CA.

[263] Oracle Inc. OpenSPARC T2 Core Microarchitecture Specification. 2007. Santa
Clara, CA.

[264] P. Oreizy, M.M. Gorlick, R.N. Taylor, et al. An architecture-based approach to self-
adaptive software. Intelligent Systems and their Applications, IEEE, 14(3):54–62,
May 1999.

[265] Organic Computing. Organic Computing Initiative. http://www.organic-
computing.de/.

[266] Oroid. ODROID-XU3 Single Board Computer. 2014.
http://www.hardkernel.com/main/products/prdt_info.php?g_code=
G140448267127&tab_idx=2.

[267] Michael Orshansky, Linda Milor, and Chenming Hu. Characterization of spatial
intrafield gate CD variability, its impact on circuit performance, and spatial mask-
level correction. Semiconductor Manufacturing, IEEE Transactions on, 17(1):2–11,
2004.

[268] G. Palermo, C. Silvano, and V. Zaccaria. ReSPIR: A Response Surface-Based
Pareto Iterative Refinement for Application-Specific Design Space Exploration.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(12):1816 –1829, dec. 2009.

222

[269] M. Pedram and S. Nazarian. Thermal Modeling, Analysis, and Management in
VLSI Circuits: Principles and Methods. Proceedings of the IEEE, 94(8):1487 –
1501, aug. 2006.

[270] M. A P Pertijs, A. Niederkorn, Xu Ma, et al. A CMOS smart temperature sensor
with a 3 sigma; inaccuracy of plusmn;0.5 deg;C from -50 deg;C to 120 deg;C.
Solid-State Circuits, IEEE Journal of, 40(2):454–461, 2005.

[271] A.D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring
embedded system architectures at multiple abstraction levels. Computers, IEEE
Transactions on, 55(2):99 – 112, feb. 2006.

[272] M. Poirier. In Kernel Switcher: A solu-
tion to support ARM’s new big.LITTLE technology.
https://events.linuxfoundation.org/images/stories/slides/elc2013_poirier.pdf,
2013.

[273] R.; Culler D. Polastre, J.; Szewczyk. Telos: enabling ultra-low power wireless
research. In Information Processing in Sensor Networks, Fourth International Sym-
posium on, pages 364–369, Dept. of Comput. Sci., California Univ., Berkeley, CA,
USA, June 2005.

[274] J. Preden, J. Llinas, G. Rogava, R. Pathma, and L. Motus. On-line data validation
in distributed data fusion. In T. Pham, M. A. Kolodny, and K. L. Priddy, editors,
Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent
ISR IV: SPIE Defense, Security and Sensing. SPIE - International Society for Optics
and Photonics, 2013.

[275] Jurgo Preden. Generating Situation Awareness in Cyber-Physical Systems: Cre-
ation and Excahnge of Situational Information. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis, New York, NY,
USA, October 2014. ACM.

[276] Jürgo-Sören Preden. Enhancing Situation-Awareness, Cognition and Reasoning of
Ad-Hoc Network Agents. PhD thesis, Tallinn University of Technology, June 2012.
Thesis on informatics and system engineering C56.

[277] Jürgo-Sören Preden and J. Helander. Auto-adaptation Driven by Observed Con-
text Histories. In Proceedings of ECHISE (Exploiting Context Histories in Smart
Environments) workshop at UbiComp, Irvine, CA, 2006.

[278] Harald Psaier and Schahram Dustdar. A survey on self-healing systems: ap-
proaches and systems. Computing, 91(1):43–73, 2011.

[279] Z. W. Pylyshyn. Computation and Cognition. MIT Press, 2nd edition, 1984.

223

[280] Arun Raghavan, Yixin Luo, Anuj Chandawalla, et al. Computational sprinting.
In High Performance Computer Architecture (HPCA), 2012 IEEE 18th International
Symposium on, pages 1–12. IEEE, 2012.

[281] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-grained
power management for multi-core systems. In ACM SIGARCH Computer Architec-
ture News, volume 37, pages 302–313. ACM, 2009.

[282] Juri Ranieri, Alessandro Vincenzi, Amina Chebira, David Atienza, and Martin
Vetterli. EigenMaps: algorithms for optimal thermal maps extraction and sensor
placement on multicore processors. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 636–641, New York, NY, USA, 2012.
ACM.

[283] C. R Rao et al. Linear Models and Generalizations: Least Squares and Alternatives.
Springer, 2008.

[284] Sherief Reda. Thermal and power characterization of real computing devices.
Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 1(2):76–
87, 2011.

[285] Sherief Reda, Ryan J Cochran, and Abdullah Nazma Nowroz. Improved thermal
tracking for processors using hard and soft sensor allocation techniques. Com-
puters, IEEE Transactions on, 60(6):841–851, 2011.

[286] Vijay Janapa Reddi and Meeta Sharma Gupta. Resilient Architecture Design for
Voltage Variation. Synthesis Lectures on Computer Architecture. Morgan & Clay-
pool Publishers, 2013.

[287] Vijay Janapa Reddi, Meeta Sharma Gupta, Glenn Holloway, et al. Voltage emer-
gency prediction: Using signatures to reduce operating margins. In High Per-
formance Computer Architecture, IEEE 15th International Symposium on, pages
18–29. IEEE, 2009.

[288] Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, et al. Voltage noise in produc-
tion processors. IEEE micro, (1):20–28, 2010.

[289] Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, et al. Voltage Smooth-
ing: Characterizing and Mitigating Voltage Noise in Production Processors via
Software-Guided Thread Scheduling. In MICRO, pages 77–88, 2010.

[290] Vijay Janapa Reddi, David Z. Pan, Sani R. Nassif, and Keith A. Bowman. Robust
and resilient designs from the bottom-up: Technology, CAD, circuit, and system
issues. In ASP-DAC, pages 7–16, 2012.

224

[291] Semeen Rehman, Florian Kriebel, Duo Sun, Muhammad Shafique, and Jörg
Henkel. dTune: Leveraging reliable code generation for adaptive dependability
tuning under process variation and aging-induced effects. In Proceedings of the
The 51st Annual Design Automation Conference on Design Automation Conference,
pages 1–6. ACM, 2014.

[292] Simple RISC. Simply risc s1 core, 2016.

[293] E. Rotem et al. Temperature Measurement in the Intel Core Duo Processor. In
Proc. IntâĂŹl Workshop Thermal Investigations of ICs, pages 23–27, 2006.

[294] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and
Eliezer Weissmann. Power-management architecture of the intel microarchitec-
ture code-named sandy bridge. IEEE Micro, 32(2):0020–27, 2012.

[295] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low cost
scalable robot system for collective behaviors. In Robotics and Automation (ICRA),
IEEE International Conference on, pages 3293–3298. IEEE, 2012.

[296] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable
self-assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

[297] T.A. Runkler. Data Analytics: Models and Algorithms for Intelligent Data Analysis.
SpringerLink : Bücher. Vieweg+Teubner Verlag, 2012.

[298] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):14, 2009.

[299] P. Salihundam, S. Jain, T. Jacob, et al. A 2 Tb/s 6 × 4 Mesh Network for a
Single-Chip Cloud Computer With DVFS in 45 nm CMOS. Solid-State Circuits,
IEEE Journal of, 46(4):757–766, April 2011.

[300] M.G. Sánchez-Escribano and Ricardo Sanz. Emotions and the engineering of
adaptiveness. In Procedia Computer Science: Conference on Systems Engineering
Research, volume 28, pages 473–480, Madrid, Spain, 2014. Elsevier.

[301] Marco D Santambrogio, Henry Hoffmann, Jonathan Eastep, and Anant Agarwal.
Enabling technologies for self-aware adaptive systems. In Adaptive Hardware and
Systems (AHS), NASA/ESA Conference on, pages 149–156. IEEE, 2010.

[302] Conor Santifort. Amber ARM-compatible core. OpenCores.org, 2010.

[303] Ricardo Sanz, Ignacio López, Manuel Rdoríguez, and Carlos Hernández. Princi-
ples for Consciousness in Integrated Cognitive Control. Neural Networks, 20(9),
11 2007.

225

[304] S. Sarma, T. Muck, M. Shoushtari, A. BanaiyanMofrad, and N. Dutt. Cross-
layer virtual/physical sensing and actuation for resilient heterogeneous many-
core SoCs. In 21st Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 395–402, Jan 2016.

[305] Santanu Sarma and Nikil Dutt. FPGA Emulation and Prototyping of a
CyberPhysical-System-On-Chip (CPSoC). In Proceedings of the International Sym-
posium on Rapid System Prototyping (RSP), pages 121–127, New Delhi, India,
October 2014.

[306] Santanu Sarma and Nikil Dutt. Minimal sparse observability of complex net-
works: Application to MPSoC sensor placement and run-time thermal estimation
and tracking. In Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 1–6, March 2014.

[307] Santanu Sarma and Nikil Dutt. Cross-Layer Exploration of Heterogeneous Mul-
ticore Processor Configurations. In VLSI Design (VLSID), 2015 28th International
Conference on, pages 147–152, Jan 2015.

[308] Santanu Sarma and Nikil Dutt. Handbook of Hardware/Software Codesign, chap-
ter Architecture and Cross-layer Design Space Exploration of heterogeneous
Muti-core Processors. Springer, to appread in 2016.

[309] Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian.
On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC). In Pro-
ceedings of the 12th International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), New Delhi, India, October 2014.

[310] Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian.
CyberPhysical-System-On-Chip (CPSoC): A Self-Aware MPSoC Paradigm with
Cross-Layer Virtual Sensing and Actuation. In Design, Automation and Test in Eu-
rope Conference and Exhibition (DATE), pages 625–628. EDA Consortium, March
2015.

[311] Santanu Sarma, Nikil Dutt, and Nalini Venkatasubramanian. Cross-layer Virtual
Observers for Embedded Multiprocessor System-on-chip (MPSoC). In Proceedings
of the 11th International Workshop on Adaptive and Reflective Middleware, ARM
’12, pages 4:1–4:7, New York, NY, USA, 2012. ACM.

[312] Santanu Sarma, Nikil Dutt, N. Venkatasubramaniana, A. Nicolau, and P. Gupta.
CyberPhysical-System-On-Chip (CPSoC): Sensor-Actuator Rich Self-Aware Com-
putational Platform. Technical report, Center for Embedded Computer Systems
University of California, Irvine, CA 92697-2620, USA, May 2013. CECS Technical
Report No: CECS-TR-13-06.

226

[313] Santanu Sarma, T. Muck, L. A.D. Bathen, N. Dutt, and A. Nicolau. SmartBal-
ance: A Sensing-Driven Linux Load Balancer for Energy Efficiency of Heteroge-
neous MPSoCs. In Proceedings of the 52nd Annual Design Automation Conference
(DAC’15), Jun 2015.

[314] Ichiro Satoh. A Framework for Data Processing at the Edges of Networks. In
Database and Expert Systems Applications, pages 304–318. 2013.

[315] Henry Scheffé et al. Review: H. Cramér, Mathematical methods of statistics.
Bulletin of the American Mathematical Society, 53(7):733–735, 1947.

[316] F. Sebastiano, L.J. Breems, K. A A Makinwa, et al. A 1.2V 10 µ W NPN-Based
Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2◦ C (3 σ) From
−70◦C to 125◦C. Solid-State Circuits, IEEE Journal of, 45(12):2591–2601, 2010.

[317] Lattice Semiconductor. Latticemico32 open, free 32-bit soft pro- cessor, 2016.

[318] Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, and Jörg
Henkel. Dark silicon as a challenge for hardware/software co-design: invited
special session paper. In Proceedings of the 2014 International Conference on
Hardware/Software Codesign and System Synthesis, page 13. ACM, 2014.

[319] Muhammad Shafique and Jörg Henkel. Agent-based distributed power manage-
ment for kilo-core processors. In Proceedings of the International Conference on
Computer-Aided Design, pages 153–160. IEEE Press, 2013.

[320] Muhammad Shafique, Benjamin Vogel, and Jörg Henkel. Self-adaptive hybrid
dynamic power management for many-core systems. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, pages 51–56. EDA Consortium,
2013.

[321] Michael W. Shapiro. Self-Healing in Modern Operating Systems. Queue, 2(9):66–
75, Dec 2004.

[322] Daniel Shelepov et al. HASS: a scheduler for heterogeneous multicore systems.
SIGOPS Oper. Syst. Rev., 43(2):66–75, April 2009.

[323] Sang Shengfeng, Zhang Dexue, and Yu Guoping. SoC Verification Platform Based
on AEMB Softcore Processor [J]. Microcontrollers & Embedded Systems, 4:016,
2010.

[324] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and
exploiting program phases. Micro, IEEE, 23(6):84 – 93, nov.-dec. 2003.

227

[325] Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and pre-
diction. In Proceedings of the 30th annual international symposium on Computer
architecture, ISCA ’03, pages 336–349, New York, NY, USA, 2003. ACM.

[326] David J Sheskin. Handbook of parametric and nonparametric statistical proce-
dures. crc Press, 2003.

[327] Jun Yong Shin, Fadi Kurdahi, and Nikil Dutt. Cooperative On-Chip Tempera-
ture EstimationUsing Multiple Virtual Sensors. Embedded Systems Letters, IEEE,
7(2):37–40, 2015.

[328] Victor Shnayder, Bor-rong Chen, Konrad Lorincz, Thaddeus RF Fulford Jones,
and Matt Welsh. Sensor networks for medical care. In SenSys, volume 5, pages
314–314, 2005.

[329] R.H. Shumway. Applied statistical time series analysis. Number v. 1 in Prentice-
Hall series in statistics. Prentice-Hall, 1988.

[330] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear ap-
proaches. Wiley. com, 2006.

[331] Karan Singh, Major Bhadauria, and Sally A. McKee. Real Time Power Estimation
and Thread Scheduling via Performance Counters. SIGARCH Comput. Archit.
News, 37(2):46–55, July 2009.

[332] Prashant Singh, Eric Karl, David Blaauw, and Dennis Sylvester. Compact degra-
dation sensors for monitoring nbti and oxide degradation. Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, 20(9):1645–1655, 2012.

[333] A. Singhee and R. Rutenbar. Extreme Statistics in Nanoscale Memory Design.
Springer, 2010.

[334] Kevin Skadron et al. Temperature-aware microarchitecture. SIGARCH Comput.
Archit. News, 31(2):2–13, May 2003.

[335] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, et al. Temperature-
aware microarchitecture: Modeling and implementation. ACM Trans. Archit.
Code Optim., 1(1):94–125, March 2004.

[336] Brian Cantwell Smith. Procedural reflection in programming languages. PhD the-
sis, Massachusetts Institute of Technology, 1982.

[337] Brinkley Sprunt. The basics of performance-monitoring hardware. Micro, IEEE,
22(4):64–71, 2002.

228

[338] Ranjani Sridharan, Nikhil Gupta, and Rabi Mahapatra. Feedback-controlled
reliability-aware power management for real-time embedded systems. In 45th
ACM/IEEE Design Automation Conference, pages 185–190. IEEE, 2008.

[339] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The case for
lifetime reliability-aware microprocessors. In ACM SIGARCH Computer Architec-
ture News, volume 32, page 276. IEEE Computer Society, 2004.

[340] S.Sarma and N.Dutt. CPSoClib: An FPGA-based design library for Cyberphysical-
System-on-Chip (CPSoC) Prototyping and Emulation. Technical Report CECS-TR,
Univeristy of California Irvine, 2014.

[341] S.Sarma, N.Dutt, and P.Gupta. Strength of Diversity: Exploiting Cheap Hetero-
geneous Noisy Sensors for Accurate Full-Chip Thermal Estimation. Technical
Report CECS-TR-14-011, Univeristy of California Irvine, Jan 2014.

[342] Ivan Stoianov, Lama Nachman, Steve Madden, Timur Tokmouline, and M Csail.
PIPENET: A Wireless Sensor Network for Pipeline Monitoring. In Information
Processing in Sensor Networks, 6th International Symposium on, pages 264–273,
Imperial Coll. London, London, Nov. 2007 2007.

[343] V. Stopjaková, H. Manhaeve, and M. Sidiropulos. On-chip Transient Current
Monitor for Testing of Low-voltage CMOS IC. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’99, New York, NY, USA, 1999.
ACM.

[344] Sujesha Sudevalayam and Purushottam Kulkarni. Energy harvesting sensor
nodes: Survey and implications. Communications Surveys & Tutorials, IEEE,
13(3):443–461, 2011.

[345] Jin Sun, Avinash Kodi, Ahmed Louri, and Janet Meiling Wang. NBTI aware work-
load balancing in multi-core systems. In Quality of Electronic Design, ISQED’09,
pages 833–838. IEEE, 2009.

[346] Jin Sun, Rui Zheng, Jyothi Velamala, et al. A Self-tuning Design Methodology
for Power-efficient Multi-core Systems. ACM Trans. Des. Autom. Electron. Syst.,
18(1):4:1–4:24, January 2013.

[347] Dennis Sylvester, David Blaauw, and Eric Karl. Elastic: An adaptive self-
healing architecture for unpredictable silicon. Design & Test of Computers, IEEE,
23(6):484–490, 2006.

[348] S. Sze. Using thermal diodes in the powerpc970MP processor. IBM White Paper,
2006.

229

[349] James Tandon. The openrisc processor: open hardware and linux. Linux Journal,
(212):6, 2011.

[350] Michael Bedford Taylor. A landscape of the new dark silicon design regime.
Micro, IEEE, 33(5):8–19, 2013.

[351] Michael Bedford Taylor, Jason Kim, Jason Miller, et al. The Raw microproces-
sor: A computational fabric for software circuits and general-purpose programs.
Micro, IEEE, 22(2):25–35, 2002.

[352] Michael Bedford Taylor, Walter Lee, Jason Miller, et al. Evaluation of the Raw
microprocessor: An exposed-wire-delay architecture for ILP and streams. ACM
SIGARCH Computer Architecture News, 32(2):2, 2004.

[353] Jürgen Teich et al. Invasive Computing: An Overview. pages 241–268. Springer,
Berlin, Heidelberg, 2011.

[354] E. Thelen and L. B. Smith. A Dynamic Systems Approach to the Development of
Cognition and Action. Bradford Books Series in Cognitive Psychology. MIT Press,
Cambridge, Massachusetts, 1994.

[355] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A lan-
guage for streaming applications. In Compiler Construction, pages 179–196.
Springer, 2002.

[356] J.A. Tropp et al. Signal Recovery From Random Measurements Via Orthogonal
Matching Pursuit. Information Theory, IEEE Trans. on, 53(12):4655–4666, 2007.

[357] UC Berkeley Architecture Research. The berkeley out-of- order risc-v processor,
2016.

[358] UC Berkeley Architecture Research. Rocket core, 2016.

[359] Inna Vaisband and Eby G Friedman. Energy efficient adaptive clustering of on-
chip power delivery systems. INTEGRATION, the VLSI journal, 48:1–9, 2015.

[360] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. Scheduling Heterogeneous Multi-Cores through Performance Impact Esti-
mation (PIE). ISCA’12, 2012.

[361] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: power and migra-
tion cost aware application placement in virtualized systems. In Middleware,
pages 243–264. Springer, 2008.

230

[362] D. Vernon, G. Metta, and G. Sandini. A Survey of Artificial Cognitive Systems:
Implications for the Autonomous Development of Mental Capabilities in Compu-
tational Agents. Evolutionary Computation, IEEE Transactions on, 11(2):151–180,
April 2007.

[363] Ram Viswanath et al. Thermal Performance Challenges from Silicon to Systems,
2000.

[364] Nicholas J Wang and Sanjay J Patel. ReStore: Symptom-based soft error detec-
tion in microprocessors. Dependable and Secure Computing, IEEE Transactions on,
3(3):188–201, 2006.

[365] Tianhan Wang, Degang Chen, and R. Geiger. Multi-site on-chip current sensor
for electromigration monitoring. In Circuits and Systems (MWSCAS), 2011 IEEE
54th International Midwest Symposium on, pages 1–4, Aug 2011.

[366] Wenping Wang, Shengqi Yang, Sarvesh Bhardwaj, et al. The impact of NBTI on
the performance of combinational and sequential circuits. In Proceedings of the
44th annual Design Automation Conference, pages 364–369. ACM, 2007.

[367] Wenping Wang, Shengqi Yang, Sarvesh Bhardwaj, et al. The impact of NBTI
effect on combinational circuit: modeling, simulation, and analysis. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 18(2):173–183, 2010.

[368] Xiaorui Wang and Yefu Wang. Coordinating Power Control and Performance
Management for Virtualized Server Clusters. Parallel and Distributed Systems,
IEEE Transactions on, 22(2):245–259, Feb 2011.

[369] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control
for chip multiprocessors with online model estimation. In ACM SIGARCH com-
puter architecture news, volume 37, pages 314–324. ACM, 2009.

[370] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava. Hardware Variability-
Aware Duty Cycling for Embedded Sensors. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(6):1000–1012, 2013.

[371] Malcolm Ware, Karthick Rajamani, Michael Floyd, et al. Architecting for power
management: the IBM® Power7™ approach. In High Performance Computer
Architecture (HPCA), IEEE 16th International Symposium on, pages 1–11. IEEE,
2010.

[372] Robert NM Watson, Jonathan Woodruff, David Chisnall, et al. Bluespec Extensi-
ble RISC Implementation: BERI Hardware reference. 2014.

[373] David Wentzlaff, Patrick Griffin, Henry Hoffmann, et al. On-chip interconnection
architecture of the tile processor. IEEE micro, (5):15–31, 2007.

231

[374] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. Multiprocessor System-
on-Chip (MPSoC) technology. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(10):1701–1713, 2008.

[375] Aeste Works. Aemb multi-threaded 32-bit embedded core family, 2016.

[376] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W Clark. Formal on-
line methods for voltage/frequency control in multiple clock domain micropro-
cessors. ACM SIGARCH Computer Architecture News, 32(5):248–259, 2004.

[377] Qiang Wu, Margaret Martonosi, Douglas W Clark, et al. A dynamic compilation
framework for controlling microprocessor energy and performance. In Proceed-
ings of the 38th annual IEEE/ACM International Symposium on Microarchitecture,
pages 271–282. IEEE Computer Society, 2005.

[378] Weidan Wu and Benjamin C Lee. Inferred models for dynamic and sparse
hardware-software spaces. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 413–424. IEEE Computer
Society, 2012.

[379] Xiaoxia Wu, Jian Li, Lixin Zhang, et al. Hybrid cache architecture with disparate
memory technologies. In ACM SIGARCH computer architecture news, volume 37,
pages 34–45. ACM, 2009.

[380] Qing Xie, Mohammad Javad Dousti, and Massoud Pedram. Therminator: A ther-
mal simulator for smartphones producing accurate chip and skin temperature
maps. In Low Power Electronics and Design (ISLPED), IEEE/ACM International
Symposium on, pages 117–122. IEEE, 2014.

[381] Teng Yang, Seongjong Kim, Peter R Kinget, and Mingoo Seok. Compact and
Supply-Voltage-Scalable Temperature Sensors for Dense On-Chip Thermal Moni-
toring. Solid-State Circuits, IEEE Journal of, 50(11):2773–2785, 2015.

[382] Chunhua Yao, Kewal K Saluja, and Parmesh Ramanathan. Calibrating On-chip
Thermal Sensors in Integrated Circuits: A Design-for-Calibration Approach. Jour-
nal of Electronic Testing, 27(6):711–721, 2011.

[383] X. Yao and T. Higuchi. Promises and Challenges of Evolvable Hardware. IEEE
Transactions on Systems, 29(1):87–97, February 1999.

[384] Juan Ye, Simon Dobson, and Susan McKeever. Situation Identification Techniques
in Pervasive Computing: A Review. Pervasive and Mobile Computing, 8(1):36–66,
February 2012.

232

[385] H. Zakaria, E. Yahya, and L. Fesquet. Self-Adaption in SoCs. In Phan Cong-Vinh,
editor, Autonomic Networking-on-Chip - Bio-Inspired Specification, Development,
and Verification, chapter 8. CRC Press, December 2011.

[386] Lenka Zdeborová and Marc Mézard. The number of matchings in random graphs.
Journal of Statistical Mechanics: Theory and Experiment, 2006(05):P05003, 2006.

[387] Yufu Zhang et al. Accurate temperature estimation using noisy thermal sensors.
In Proc. of the 46th Annual Design Auto. Conf., DAC ’09, pages 472–477, New
York, NY, USA, 2009. ACM.

[388] Yufu Zhang and Ankur Srivastava. Accurate temperature estimation using noisy
thermal sensors for Gaussian and non-Gaussian cases. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, 19(9):1617–1626, 2011.

[389] T. Zidenberg, I Keslassy, and U. Weiser. Optimal Resource Allocation with Multi-
Amdahl. Computer, 46(7):70–77, July 2013.

[390] Tsahee Zidenberg, Isaac Keslassy, and Uri Weiser. MultiAmdahl: How Should
I Divide My Heterogenous Chip? Computer Architecture Letters, 11(2):65–68,
2012.

233

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Challenges in Emerging SoC
	Increasing Heterogeneity and the Era of Dark Silicon
	Increasing Variability
	Manufacturing Process Variations
	Intrinsic Parametric Variability
	Voltage and Power Variations
	Gate, Path Delay, and Slack Variations

	Ambient and On-chip Thermal Variability
	Thermal Effects on Failure, Aging, and Material Degradation

	Application and Workload Variability
	Complexity of Resource Management and Programming

	Tackling Emerging SoC Design Challenges
	Whole-Stack Co-Design and Optimization
	Principled Approach to Cross-Layer Awareness
	Transitioning to Closed-loop Adaptive SoC Design
	Rethinking MPSoCs as Cyber-Physical Systems

	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Taxonomy and Classification of Microarchitectures
	Emerging MPSoC and Embedded System Trends
	Intelligence and Awareness for Smart Embedded System
	Self-Aware, Self-Adaptive and Autonomic Computing Systems
	Awareness in Software Systems
	Awareness in Embedded and Cyber-Physical Systems
	Awareness in Systems-on-Chip

	Properties and Levels of Awareness
	Self-Aware CPSoC
	On-chip Sensing and Monitoring for Awareness
	Cross-Layer Architecture Models for Self-Aware Adaptation

	Summary

	CPSoC: Concept and Architecture
	Introduction
	Rationale and Concept of CPSoC
	CPSoC Paradigm
	Features and Attributes of CPSoC
	Cross-Layer Virtual and Physical Sensing and Actuation
	Simple and Self-Aware Adaptations
	Cross-layer Interactions and Interventions
	Predictive Models and On-line Learning

	CPSoC Organization
	CPSoC Architectural Components
	Heterogeneous Tiled Cluster Architecture
	Tiles and cNIC
	Processor Cores
	Memory Hierarchy
	Interconnects
	Network-on-Chip (NoC)
	cNIC Cluster Bridge
	cNIC Chipset

	Actuation Networks-on-Chip (xNoC)
	Fusion of Actuation Mechanism

	Middleware and OS Support for Adaptation
	Self-Awareness Properties and Levels in CPSoC

	Summary

	Multi-Sensor NoC (sNoC) for Self-Awareness in CPSoCs
	Introduction
	Sensor Network-on-Chip (sNoC)
	Properties and Features of Multi-sensor NoC (sNoC)

	Types of sNoC in CPSoC
	Thermal Sensor-NoC
	Aging Sensor-NoC
	Power Sensor-NoC
	Critical-Path Delay Monitoring

	Heterogeneous Sensor Placement and Fusion
	Motivation and Approach

	Full-chip Thermal Reconstruction: Problem Formulation
	Signal Estimation and Recovery
	Accounting for Process Variability and Noise in Full Signal Prediction
	HSPF Problem Statement

	Methodology and Solution
	Stage-wise Greedy Solution (gHSPF)
	ILP based Heterogeneous Sensor Selection
	Selection of Weights in Sensor Selection ILP

	Basis Vector and Coefficient Selection
	Greedy Sensor Placement and Allocation
	Heterogeneous Sensor Fusion and On-chip Prediction

	Experimental Setup
	Experimental Results
	Effect of Approximation and Sensor Accuracy on Prediction Accuracy
	Computational Complexity of HSPF
	Predictor Computational Complexity

	On-chip Self-Awareness Trends and Overhead in CPSoC
	On-chip Sensors Trends
	SensorNoC Implementation and Overheads
	sNoC Topology
	Custom Circuit Switched sNoC

	Thermal Sensor Overhead Estimation and Reduction

	Related Work
	Summary

	Cross-Layer Predictive Model Building
	Model Building Approach
	Linear Regression Based Predictive Model
	Time Series Predictive Model
	Auto-regressive and moving average (ARMA) model

	System Identification for Predictive Model Building
	State-space models

	Cross-Layer Predictive Modeling for Emerging SoCs
	Application and Workload Models
	Heterogeneity-Aware Task Allocation Model

	Predictive Modeling of Performance and Power of Different Core Types
	Predictive Model Evaluation Results

	Application of Predictive Models in DSE of HMPs
	DSE Problem Formulation for the HMPs
	HMP Configuration Selection
	Experimental Results for DSE

	Related Work
	Summary

	State Estimation and Prediction Using Minimal Sensing
	Motivation
	Preliminaries and System Model
	Dynamic System Model and Model Conversions
	Observability and Controllability of a System

	Problem Formulation
	Minimal Sparse Observability Problem (MSOP)
	Greedy Solution to MSOP

	Sparse Kalman Filter (SKF)
	Run-time Thermal Estimation and Hotspot Tracking
	Thermal Dynamic Model of MPSoC
	Minimum Sensor Set and Their Optimal Placement
	SKF for State Prediction
	Run-time Thermal Awareness and Hotspot Tracking
	Overheads and Complexity
	Virtual Run-time Power Sensing Using Thermal Sensors

	Related Work
	Summary

	Operating System Support for Adaptation in Emerging MPSoCs
	Smart Balancing : An Operating System Adaptation Mechanism
	Motivation and Related Work
	Heterogeneous Computing Elements and Thread Model
	SmartBalance Approach
	Sensing
	Prediction of Performance and Power
	Performance and Power Estimation of Each Thread on a Core
	Performance and Power Prediction for Different Core Types

	Thread Balancing and Allocation
	Optimization Methodology

	Experimental Setup and Implementation
	SmartBalance Implementation

	Experimental and Evaluation Results
	Comparison with state-of-the-art
	Predictor Evaluation
	Overheads and Scalability

	Future work
	Summary

	FPGA Prototyping of CPSoC
	Introduction
	FPGA Prototyping Library for CPSoC
	CPSoC Architecture and Design
	Heterogeneous Tiled Cluster Architecture
	Tile and cNIC
	Processor Cores
	Memory Hierarchy
	Interconnect Architecture
	Network-on-Chip (NoC)
	cNIC Cluster Bridge
	cNIC Chipset

	On-chip Sensors and Sensor Network (sNoC)
	Multi-purpose On-chip Sensors
	Built-in Sensors and System Monitors
	On-Chip Actuation Mechanism
	CPSoC Runtime and OS Support
	CPSoC FPGA Prototyping Platforms

	Platform Features
	Tool-Chain and OS Support
	API and Software Development Kit
	CPSoC Simulation Framework

	Evaluation Results
	Validation
	FPGA Boards

	Enabled Use Cases
	Platform Limitations
	Related Work
	Summary

	Conclusions and Future Work
	Future Work

	Bibliography

