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ABSTRACT OF THE DISSERTATION

Semistar Operations on Integral Domains and Multiplicative Lattices

by

Hyun Seung Choi

Doctor of Philosophy, Graduate Program in Mathematics
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Professor David E. Rush, Chairperson

The goal of this dissertation is to investigate the properties of semistar operations on

integral domains and multiplicative lattices in terms of their natural partial ordering.

We mainly focus on the relationships between different classes of integral domains in

terms of semistar operations.
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Chapter 1

Introduction

The notion of star operations on the set of fractional ideals of an integral do-

main originates from the work of Krull ([42]), and was considered by several authors;

Gilmer([29]), Jaffard ([40]) and Halter-Koch ([30]) to name a few. Semistar operations

were first introduced by Matsuda and Okabe in their 1994 paper ([47]), as a generaliza-

tion of star operations. Semistar operations has fewer axioms than star operations, and

is defined on the set of nonzero submodules of the quotient field of a domain instead of

the set of fractional ideals of a domain. Due to weaker regulation compared to that of

star operations, the theory on semistar operations has been proved to be an apt tool

to study the overrings of a domain. Many authors, for example, El Baghdadi, Fontana

and Picozza ([7]), Matsuda ([46]), Matsuda and Okabe ([47]), Mimouni ([51]), Mimouni

and Samman ([53]) and Picozza ([68]) studied and invetigated semistar operations on

overrings. The present thesis is aimed to follow the same path, focused on the set of

domains where the composition of two semistar operations yields a semistar operation

(such domains will be called c∗-domains. See Lemma 4.2.8). The author was unable

to find a nice ring-theoretical characterization of c∗-domains, but various classes of in-
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tegral domains could be linked together via it. On the other hand, the set of semistar

operations of an integral domain R whose quotient field is K can be partially ordered

as follows; given two semistar opeations ∗1 and ∗2 of an integral domain R, ∗1 ≤ ∗2 if

and only if I∗1 ⊆ I∗2 for each nonzero R-submodule I of K. The motivation of one of

the main result of this dissertation comes from the attempt to characterize the integral

domains whose set of semistar operations is totally ordered under ≤ (such domains will

be called t∗-domains in this dissertation). For instance, in section 4.5 we prove that

an integrally closed domain R is a t∗-domain if and only if R is a valuation domain.

We also show that given an integer n ≥ 3 there exists a nonintegrally closed (thereby

nonvaluation) t∗-domain Rn that has n semistar operations and the set of semistar

operations of Rn is totally ordered under ≤.

This thesis consists of three parts. In chpaters 2 and 3 we attempt to find

a condition when there is a semistar operation that lies in between two semistar op-

erations. Chapter 2 acts as a preliminary to the subsequent chapters. In section 2.1,

we briefly state the definition and some well-known properties of semistar operations.

Section 2.2 is about the ∗-cancellation ideals and ∗-invertible ideals which first appeared

in [1]. ∗-cancellation ideals are closely related to the constructions and proofs of the

theorems in the following section. We review their properties and obtain some general-

ized results in terms of spectral semistar operations. In chapter 3, we show that under

a certain restriction, there exists a semistar operation that lies between two semistar

operations; precisely, we prove that if ∗1 and ∗2 are distinct semistar operations of finite

type and stable such that I∗1 ⊆ I∗2 for each I ∈ F (R) and J∗1 = J∗2 for some J ∈ f(R),

then there exists a non-stable finite type semistar operation ∗ different from both ∗1

and ∗2 such that I∗1 ⊆ I∗ ⊆ I∗2 for each I ∈ F (R).
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The second topic is about the composition of two semistar operations on an in-

tegral domain. The composition of semistar operations were first considered by Picozza

([68]). He proved that if each composition of two arbitrary semistar operations on an

integral domain yields a semistar operation, then that domain must be conducive ([68,

Example 2.1(1)]). In section 4.1, we prove that the composition of a semistar operation

of finite type and a stable semistar operation is a semistar operation, and define a new

type of semistar operation induced by this composition. Using this semistar operation,

a characterization theorem of the P∗MD and a few other classes of Prüfer domains is

obtained in section 4.2. In particular, we show that an integral domain R is totally divi-

sorial valuation domain if and only if each semistar operation on R is of finite type and

stable. We also provide a partial answer to Fontana and Huckaba’s problem ([21, p.181])

concerning the characterization of a certain type of localizing systems. See section 2.1

for the definitions and some basic properties of localizing systems. The interested reader

may consult [21] for more details.

The third topic is about the operation v(I), and the integral domains whose

set of semistar operations is totally ordered under ≤ . Heinzer, Huckaba and Papick

showed that for a fixed ideal I of R with I : I = R, the map v(I) : F (R) → F (R)

defined by Lv(I) = I : (I : L) for each L ∈ F (R) is a star operation ([34, Proposition

3.2]). Picozza proved that for an arbitrary nonzero R-submodule I of K, the above

map v(I) defined on F (R) is a semistar operation ([69, Proposition 1.17(2)]). Some

intersesting results regarding this type of semistar operation is displayed in section 4.3.

In fact, we prove that an integral domain R is totally divisorial and conducive if and

only if R is a stable domain such that given a semistar operation ∗ on R there exists an

ideal I of R so ∗ = v(I).
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Section 4.4 is devoted to the classification of semistar operations on the ring L+X3L[[X]]

where L is a field and X an indeterminate, which acts as a counterexample to the

converse of some of the theorems in section 4.5.

In section 4.5, we prove that the set of semistar operations on a valuation domain is

totally ordered, and for integrally closed domains the converse is also true. On the

other hand, the proof that the set of overrings of a totally divisorial conducive domain

is totally ordered under inclusion is also provided.

In chapter 5 we turn our attention to semistar operations on PVDs, Mori domains and

Noetherian domains. For instance, in section 5.1, we prove that if R is a PVD, then

R has at most two star operations if and only if the set of semistar operations on R

is totally ordered if and only if each semistar operation ∗ on R is of the form v(I) for

some nonzero ideal I of R. In section 5.2, a characterization of integral domains having

exactly four semistar operations, and the examples of integral domains that correspond

to each of those cases are provided. In section 5.3, it is shown that given a Mori domain

R whose set of semistar operations is closed under composition, the set of overrings

of R is a finite set that is totally ordered under inclusion. We also provide a formula

regarding the calculation of the number of semistar operations on a totally divisorial

conducive domain. Moreover, it is proved that a numerical semigroup ring is a totally

divisorial conducive domain if and only if its set of semistar operation is totally ordered

if and only if the composition of two arbitrary semistar operations gives a semistar

operation. In section 5.4, some of the theorems are rephrased in more polished form,

illustrated with a diagram. In chapter 6, we switch our field of interest to multiplicative

lattices from integral domains. In particular, we study a class of multiplicative lattices

called quotient field lattices, which is could be considered as a lattice version of an
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integral domain. We define semistar operations on quotient field lattices, and prove

some theorems corresponding to commutative rings. For instance, we show that on

a Krull lattice the semistar operations induced by different subsets of prime elements

coincide. Lastly, we list some further research questions the author was unable to

answer.

All rings R are assumed to be integral domains. K will denote the quotient field of

R, S(R) the set of ideals of R , S ′(R) the set of proper ideals of R and fS(R) the set of

finitely generated ideals of R. F (R) will denote the set of nonzero R-submodules of K.

An overring of R is an integral domain T such that R ⊆ T ⊆ K. Given an overring T of

R and two R-submodules I, J of K, I :T J = {t ∈ T | tJ ⊆ I}. In case T = K, we will

use the notation I : J to denote I :K J and I−1 to denote R : I. O(R) will denote the

set of overrings of R. Given N ∈ F (R), N is said to be a fractional ideal if R : N 6= 0.

F (R)(respectively, f(R)) will denote the set of fractional ideals of R (respectively, the

set of finitely generated fractional ideals of R). The integral closure of R will be denoted

by R′. Given an R-modules S, l(S) denote the length of the composition series of S.

N,N0,Z,Q and R denote the set of positive integers, nonnegative integers, integers,

rational numbers and real numbers, respectively.
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Chapter 2

Preliminaries

2.1 Localizing systems and semistar operations

([21, Section 2]) Recall that a localizing system F of an integral domain R is

a nonempty family of ideals of R such that the following conditions hold:

(LS1) If I ∈ F and J is an ideal of R such that I ⊆ J , then J ∈ F .

(LS2) If I ∈ F and J is an ideal of R such that (J :R i) ∈ F for each i ∈ I, then J ∈ F .

Furthermore, given a localizing system F of R, Ff = {I ∈ F | J ⊆ I for some

finitely generated J ∈ F} is a localizing system ([21, Lemma 3.1]), and we say that F

is of finite type if F = Ff .

Definition 2.1.1. Let S be a subset of S(R) . We say S is multiplicatively closed if

the following conditions hold.

1. R ∈ S.

2. If I ∈ S and J ∈ S, then IJ ∈ S.
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Lemma 2.1.2. Let R be a domain, and S a multiplicatively closed subset of fS(R). If

FS = {I ∈ S(R) | J ⊆ I for some J ∈ S},

then FS is a finite type localizing system on R.

Proof. It is clear that (LS1) holds. We next claim that FS is multiplicatively closed

and is closed under finite intersections. Indeed, if I, I ′ ∈ FS , then there are J, J ′ ∈ S

with J ⊆ I, J ′ ⊆ I ′, so that JJ ′ ⊆ II ′ ⊆ I ∩ I ′, and since S is multiplicatively closed,

JJ ′ ∈ S. Hence II ′ and I ∩ I ′ are both in FS .

Now we show that FS satisfies (LS2). Choose ideals I, J of R so that I ∈ FS , (J :R iR) ∈

FS for all i ∈ I. We have to show that J ∈ FS . There exists I ′ ⊆ I with I ′ ∈ S. Let {ik}

be a finite generating set of I ′. It follows that (J :R I ′) = (J :R ΣikR) = ∩(J :R ikR),

so (J :R I ′) ∈ FS and I ′(J :R I ′) ∈ FS by the above claim. Then J ∈ FS since

I ′(J :R I ′) ⊆ J and by (LS1). Lastly, by definition it follows that FS is of finite

type.

Now we can turn our attention to semistar operations.

Definition 2.1.3. A semistar operation on an integral domain R is a map ∗ : F (R)→

F (R) such that for any I, J ∈ F (R) and x ∈ K \ {0},

1. I ⊆ I∗.

2. I ⊆ J implies I∗ ⊆ J∗.

3. (xI)∗ = xI∗.

4. (I∗)∗ = I∗.

A semistar operation ∗ on R is called a (semi)star operation if R∗ = R.

Semistar operations were first introduced by Matsuda and Okabe in their 1994 paper

[62], extending the notion of ‘classical’ star operation ([29, Chapters 32 and 34],[48]).
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Definition 2.1.4. [29, Chapter 32]A star operation on an integral domain R is a map

∗ : F (R)→ F (R) such that for any I, J ∈ F (R) and x ∈ K \ {0},

1. I ⊆ I∗.

2. I ⊆ J implies I∗ ⊆ J∗.

3. (xI)∗ = xI∗.

4. (I∗)∗ = I∗.

5. R∗ = R.

Throughout this paper SStar(R) (respectively, Star(R)) will denote the set of

semistar operations on R (respectively, the set of star operations on R).

Example 2.1.5. [21, Example 1.3(a)] The following are standard examples of semistar

operations:

1. The identity operation d : F (R) → F (R) defined by Id = I for all I ∈ F (R) is a

semistar operation on R.

2. The trivial operation e : F (R) → F (R) defined by Ie = K for all I ∈ F (R) is a

semistar operation on R.

3. The v-operation v : F (R)→ F (R) defined by Iv = (R : (R : I)) for all I ∈ F (R) is a

semistar operation on R.

4. The t-operation t : F (R) → F (R) defined by It =
⋃
{Jv | J ⊆ I, J ∈ fS(R)} for all

I ∈ F (R) is a semistar operation on R.

5. The w-operation w : F (R)→ F (R) defined by Iw =
⋃
{(I : J) | J ∈ fS(R), Jv = R}

for all I ∈ F (R) is a semistar operation on R.

6. the extension to an overring T of R, the operation ∗T : F (R) → F (R) defined by

I∗T = IT for all I ∈ F (R) is a semistar operation on R.

7. Given semistar operations {∗α}α∈A on R, the operation ∧α∈A∗α defined by I∧α∈A∗α =

8



∩{I∗α | α ∈ A} for all I ∈ F (R) is a semistar operation on R.

8. ([68, Proposition 1.6]) Given an overring T of R and a semistar operation ∗ on T ,

∗ι : F (R)→ F (R) defined by L∗
ι

= (LT )∗ for each L ∈ F (R) is a semistar operation on

R.

9. ([68, Proposition 1.6]) Given an overring T of R and a semistar operation ∗ on R,

∗ι : F (T )→ F (T ) defined by L∗ι = L∗ for each L ∈ F (T ) is a semistar operation on T .

10. ([69, Proposition 1.17]) Given I ∈ F (R), v(I) : F (R) → F (R) defined by Lv(I) =

I : (I : L) for each L ∈ F (R) is a semistar operation on R.

We say a semistar operation ∗ on a domain R is stable if (I ∩J)∗ = I∗ ∩J∗ for

all I, J ∈ F (R). Given a semistar operation ∗ on R, define ∗f such that I∗f =
⋃
{J∗ |

J ⊆ I, J ∈ f(R)} for all I ∈ F (R). Then ∗f is a semistar operation on R, and we say

∗ is of finite type if ∗ = ∗f . Every localizing system F on a domain R yields a stable

semistar operation ∗F , given as follows ([21, Proposition 2.4]): If I ∈ F (R), then

I∗F =
⋃
J∈F

(I : J).

On the other hand, given a semistar operation ∗ on R, the set F∗ = {I ∈ S(R) | I∗ =

R∗} is a localizing system of R ([21, Proposition 2.8], [21, Remark 2.9]). We adopt the

notation ∗ for the semistar operation ∗F∗ and ∗̃ for the semistar operation ∗f . That is,

I ∗̄ =
⋃
{(I : J) | J ∈ S(R), J∗ = R∗},

I ∗̃ =
⋃
{(I : J) | J ∈ S(R), J∗f = R∗} for all I ∈ F (R) (cf.[22, Section 3]).

The theorem below gives a relationship between localizing systems of finite

type and semistar operations of finite type.

Theorem 2.1.6. [21, Proposition 3.2] Let F be a localizing system and ∗ a semistar

operation defined on R.
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1. If F is of finite type, then ∗F is of finite type.

2. If ∗ is of finite type, then F∗ is of finite type.

Lemma 2.1.7. [21, Proposition 3.7.(2)] If ∗ is a semistar opration, then F∗ = F∗.

Given two semistar operations ∗1, ∗2, we write ∗1 ≤ ∗2 if I∗1 ⊆ I∗2 for all

I ∈ F (R). We say ∗1 < ∗2 if ∗1 ≤ ∗2 and ∗1 6= ∗2. The following lemmas will be

frequently used throughout this thesis.

Lemma 2.1.8. [21, Proposition 1.6] Let ∗1, ∗2 be semistar operations on R. Then

(a) ∗1 ≤ ∗2 implies (∗1)f ≤ (∗2)f and ∗1 ≤ ∗2.

(b) ((∗1)f )f = (∗1)f and ∗1 = ∗1.

(c) The following are equivalent.

1. ∗1 ≤ ∗2.

2. (I∗1)∗2 = I∗2 for all I ∈ F (R).

3. (I∗2)∗1 = I∗2 for all I ∈ F (R).

Lemma 2.1.9. [69, Lemma 1.18, Propositions 1.17 and 1.20] Let I ∈ F (R). If v(I) is

the semistar operation defined in Example 2.1.5.10, then

1. Iv(I) = I.

2. Given a semistar operation ∗ on R, ∗ ≤ v(I) if and only if I∗ = I.

Lemma 2.1.10. Let ∗ be a semistar operation on R and F a localizing system on R.

Then

1. ∗̄ ≤ ∗ and F∗F = F .

2. ∗ is stable if and only if ∗̄ = ∗.

3. ∗f ≤ ∗, and if ∗′ is a finite semistar operation such that ∗′ ≤ ∗, then ∗′ ≤ ∗f . Hence

∗f is the largest semistar operation of finite type dominated by ∗.
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4. ∗̄ ≤ ∗, and if ∗′ is a stable semistar operation such that ∗′ ≤ ∗, then ∗′ ≤ ∗̄. Therefore

∗̄ is the largest stable semistar operation dominated by ∗.

5. ∗ is finite and stable if and only if ∗ = ∗̃.

Proof. 1 and 2 follow from [21, Theorem 2.10].

3. If ∗′ is a semistar operation of finite type on R and ∗′ ≤ ∗, then ∗′ = (∗′)f ≤ ∗f by

Lemma 2.1.8(a).

4 and 5 are direct consequences of [21, Proposition 3.7(1)] and [21, Corollary 3.9(2)],

respectively.

Lemma 2.1.11. Let R be a domain and S a multiplicatively closed subset of fS(R).

Then if FS is as in Lemma 2.1.2, then for any I ∈ F (R),

I∗FS =
⋃
J∈FS

(I : J) =
⋃
L∈S

(I : L).

Proof. Since FS is a localizing system, the first equality is by definition of ∗FS . We now

prove the second equality holds. Let I ∈ F (R). Then since S ⊆ FS , obviously

∪L∈S(I : L) ⊆ ∪J∈FS (I : J).

Conversely, if J ∈ FS , then there exists L′ ∈ S with L′ ⊆ J . Thus (I : J) ⊆ (I : L′) ⊆

∪L∈S(I : L), and since this is true for every J ∈ FS , we have ∪J∈FS (I : J) ⊆ ∪L∈S(I :

L).

Corollary 2.1.12. Given a semistar operation ∗, define S∗ = {J ∈ fS(R) | J∗ = R∗}.

Then

1. S∗ is multiplicaitively closed.

2. If ∗ is a semistar operation, then I ∗̃ = ∪{I : J | J ∈ S∗}.

3. ∗̃ = d if and only if S∗ = {R}.
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Proof. 1. Note that S∗ = {J ∈ F∗ | J ∈ fS(R)}. Clearly R ∈ S∗, and given I, J ∈ S∗,

IJ ∈ fS(R) and (IJ)∗ = (I∗J∗)∗ = (R∗R∗)∗ = R∗, so IJ ∈ S∗ and S∗ is multiplicatively

closed.

2. Since S∗ = fS(R) ∩ F∗, it follows that FS∗ = F∗f . Thus by Lemma 2.1.11, the

statement is proved.

3. ⇒: If ∗̃ = d, then by part 2, for any I ∈ F(R) and J ∈ S∗, I ⊆ I : J ⊆ ∪{I : L | L ∈

S∗} = I ∗̃ = I, so I = I : J . In particular, J = J : J ⊃ R, so J = R. Hence S∗ = {R}.

⇐: If S∗ = {R}, then by part 2, I ∗̃ = ∪{I : L | L ∈ S∗} = I : R = I for any I ∈ F(R),

so ∗̃ = d.

Corollary 2.1.13. Let ∗1, · · ·, ∗n be semistar operations of finite type and stable on R.

Then ∗ = ∧ni=1∗i is a semistar operation of finite type and stable on R.

Proof. By induction, we may assume that n = 2. To show that ∗ is stable, note that

(I ∩ J)∗ = (I ∩ J)∗1 ∩ (I ∩ J)∗2 = I∗1 ∩ J∗1 ∩ I∗2 ∩ J∗2 = I∗ ∩ J∗ for each I, J ∈ F (R).

On the other hand, if x ∈ I∗, then there exist J1, J2 ∈ f(R) such that x ∈ J∗ii and

Ji ⊂ I for i = 1, 2. Let J = J1 + J2. Then J ∈ f(R) and x ∈ J∗, so x ∈ I∗f . Thus

∗ = ∗f and ∗ is of finite type.

We say a semistar operation ∗ is spectral semistar operation associated with ∆

if there exists ∆ ⊆ Spec(R) such that I∗ = ∩{IRP | P ∈ ∆} for all I ∈ F (R).

Lemma 2.1.14. If ∗ is stable and of finite type, then ∗ is spectral. In this case, I∗ =

∩{IRP | P ∈ ∆} for all I ∈ F (R), where ∆ is the set of maximal elements of {I ∈

S(R) | I∗ ∩ R = I ⊆ R, I∗ ( R∗}. From now on such ∆ will be denoted by ∗Max(R).

Moreover, if P ∈ ∗Max(R) and P ( Q, then Q∗ = R∗.

Proof. Follows from [21, Theorem 4.12], [21, Corollary 4.21] and [21, Remark 4.22].
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2.2 ∗-cancellation ideals and ∗-invertible ideals

Definition 2.2.1. Let ∗ be a semistar operation on R. A fractional ideal J of R is said

to be a ∗-cancellation ideal if (JL1)∗ = (JL2)∗ implies L∗1 = L∗2 for any Li ∈ F (R). If

∗ = d, then we use the term cancellation ideal instead of d-cancellation ideal. We say J

is a ∗-invertible ideal if (JJ−1)∗ = R∗. Again, we will use the term invertible ideals for

d-invertible ideals.

Let us begin with an elementary lemma.

Lemma 2.2.2. Let ∗, ∗1, ∗2 be semistar operations on R. Then

1. Every ∗-invertible ideal is a ∗-cancellation ideal .

2. If ∗1 ≤ ∗2, then every ∗1-invertible ideal is a ∗2-invertible ideal.

Proof. 1. If I is a ∗-invertible ideal, then we have

(IJ)∗ = (IL)∗

⇒ (IJ)∗(I−1)∗ = (IL)∗(I−1)∗

⇒ ((IJ)∗(I−1)∗)∗ = ((IL)∗(I−1)∗)∗

⇒ (J(II−1)∗)∗ = (L(II−1)∗)∗

⇒ (JR∗)∗ = (LR∗)∗

⇒ J∗ = L∗. Hence I is a ∗-cancellation ideal.

2. If I is a ∗1-invertible ideal, then by Lemma 2.1.8,

(II−1)∗1 = R∗1

⇒ ((II−1)∗1)∗2 = (R∗1)∗2

⇒ (II−1)∗2 = R∗2 .

Thus I is ∗2-invertible.
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Lemma 2.2.3. [1, Lemma 1] Let ∗ be a semistar operation on R. TFAE.

1. J is a ∗-cancellation ideal.

2. I∗ = (IJ)∗ : J for all I ∈ F (R).

3. (JI1)∗ ⊆ (JI2)∗ implies I∗1 ⊆ I∗2 for every I1, I2 ∈ F (R).

Lemma 2.2.4. 1. Let I ∈ F (R), J ∈ f(R) and ∗ a stable semistar operation on R.

Then (I : J)∗ = I∗ : J∗ = I∗ : J .

2. Let J ∈ f(R) and ∗1, ∗2 semistar operations on R such that ∗1 ≤ ∗2 and ∗2 is stable.

If J is ∗1-cancellation ideal, then J is also a ∗2-cancellation ideal.

Proof. 1. Let J = j1R+ · · ·+ jnR. Then

(I : J)∗ = (I : Σn
r=1jrR)∗ = (∩nr=1(I : jr))

∗ = (∩nr=1Ij
−1
r )∗ = ∩nr=1(Ij−1

r )∗ =

∩nr=1(I∗j−1
r ) = ∩nr=1(I∗ : jr) = (I∗ : Σn

r=1jr) = (I∗ : J). It remains to show that

I∗ : J = I∗ : J∗. Since J ⊆ J∗, I∗ : J∗ ⊆ I∗ : J . On the other hand, if x ∈ I∗ : J , then

xJ ⊆ I∗ ⇒ xJ∗ = (xJ)∗ ⊆ (I∗)∗ = I∗, so x ∈ I∗ : J∗. Therefore I∗ : J = I∗ : J∗, and

we are done.

2. Let J be a ∗1-cancellation ideal. Then I∗1 = (IJ)∗1 : J for all I ∈ S(R) by Lemma

2.2.3. Now by part 1, I∗2 = (I∗1)∗2 = ((IJ)∗1 : J)∗2 = ((IJ)∗1)∗2 : J = (IJ)∗2 : J , for

all I ∈ S(R), so again by Lemma 2.2.3, J is a ∗2-cancellation ideal.

Corollary 2.2.5. Let I ∈ F (R), J ∈ f(R), and S a multiplicatively closed subset of R.

Then

1. (I : J)RS = IRS : JRS.

2. Let ∗ be a spectral semistar operation associated with ∆ and J a ∗-cancellation ideal.

Then JRM is a (finitely generated) cancellation ideal of RM for each M ∈ ∆.

Proof. 1. Define the map ∗RS : F (R)→ F (R) by I 7→ IRS for all I ∈ F (R). Then ∗RS

is a stable semistar operation, so it is just a consequence of Lemma 2.2.4.1.
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2. Suppose that J is a ∗-cancellation ideal. Then since ∗ ≤ ∗RM , by Lemma 2.2.4 J

is a ∗RM -cancellation ideal and JRM = IJRM : J for all I ∈ S(R). Hence JRM is a

cancellation ideal of RM .

Lemma 2.2.6. Let R be a quasilocal domain and I ∈ fS(R). Then TFAE.

1. I is a principal ideal.

2. I is an invertible ideal.

3. I is a cancellation ideal.

Proof. 1⇒ 2⇒ 3: Trivial.

3⇒ 1: See [30, 13.8].

Lemma 2.2.7. Let ∗ be a spectral semistar operation associated with ∆ and I ∈ f(R).

Then I is a ∗-invertible ideal if and only if I is a ∗-cancellation ideal.

Proof. By Lemma 2.2.2, every ∗-invertible ideal is a ∗-cancellation ideal.

Conversely, let I be a ∗-cancellation ideal and choose M ∈ ∆. Then by Corollary 2.2.5.2,

IRM is a cancellation ideal of RM , and by Lemma 2.2.6, IRM is invertible in RM and

so IRM (RM : IRM ) = RM . By Corollary 2.2.5.1, I−1RM = (R : I)RM = RM : IRM .

Therefore, we have (II−1)RM = IRMI
−1RM = IRM (RM : IRM ) = RM .

Now (II−1)∗ = ∩{(II−1)RM | M ∈ ∆} = ∩{RM | M ∈ ∆} = R∗, so I is ∗-invertible.

Lemma 2.2.8. [29, Corollary 6.4(b)] If I ∈ S(R), J ∈ fS(R) are nonzero and IJ = J ,

then I = R.

Lemma 2.2.9. Let ∆ be a nonempty subset of prime ideals of R and ∗ a spectral

semistar operation associated with ∆. If I ∈ S(R), J ∈ fS(R) and (IJ)∗ = J∗, then

I∗ = R∗.
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Proof. Fix M ∈ ∆. Since ∗ ≤ ∗RM , (IJ)∗ = J∗ implies IRMJRM = IJRM = JRM ,

and by Lemma 2.2.8 IRM = RM . Hence I∗ = ∩{IRM |M ∈ ∆} = ∩{RM |M ∈ ∆} =

R∗.
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Chapter 3

When is there a semistar

operation that properly sits

between two semistar operations?

Let us begin with the following lemma and its corollary.

Lemma 3.0.1. Let L ∈ f(R) and {Jα}α∈A a directed set under inclusion (i.e., given

α, β ∈ A, there exists γ ∈ A so Jα ⊆ Jγ and Jβ ⊆ Jγ). If L ⊆ ∪{Jα | α ∈ A} then

L ⊆ Jγ for some γ ∈ A.

Proof. Let L = l1R + · · · + lnR. If L ⊆ ∪{Jα | α ∈ A}, then li ∈ ∪{Jα | α ∈ A} for

each i, so there exists α1, · · ·, αn ∈ A such that li ∈ Jαi . Now since {Jα}α∈A is directed,

by induction there exists γ ∈ A such that Jαi ⊆ Jγ for all i ∈ {1, 2, · · ·, n}. Hence

L ⊆ Jγ .

Corollary 3.0.2. Let L ∈ f(R), I ∈ F (R), S a multiplicatively closed subset of S(R)

and ∗ : F (R) → F (R) such that I1 ⊆ I2 implies (I1)∗ ⊆ (I2)∗ for all I1, I2 ∈ F (R).
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Then

1. If L ⊆ {H∗ | H ⊆ I,H ∈ f(R)}, then L ⊆ H∗ for some H ⊆ I,H ∈ f(R).

2. If L ⊆ {I : J | J ∈ S}, then LJ ⊂ I for some J ∈ S.

Proof. By Lemma 3.0.1 it suffices to show that both {H∗ | H ⊆ I,H ∈ f(R)} and

{I : J | J ∈ S} are directed under inclusion.

1. Given H1, H2 ∈ f(R) with H1 ⊆ I, set H = H1 + H2. Then H ⊆ I, H ∈ f(R) and

H∗1 ⊆ H∗, H∗2 ⊆ H∗. Thus {H∗ | H ⊆ I,H ∈ f(R)} is a directed set under inclusion.

2. Given J1, J2 ∈ S, J1J2 ∈ S since S is multiplicatively closed. Also, since J1J2 ⊆ Ji

for i = 1, 2, we have I : J1 ⊆ I : J1J2 and I : J2 ⊆ I : J1J2, so {I : J | J ∈ F∗2} is a

directed set under inclusion.

The following generalizes [24, Proposition 4.5].

Lemma 3.0.3. Given a semistar operation ∗ on R and a multiplicatively closed subset

S of F (R), let ∗S : F (R)→ F (R) be the function defined by

H∗S = ∪{(HJ)∗ : J | J ∈ S} for each H ∈ f(R), and

I∗S = ∪{H∗S | H ⊆ I,H ∈ f(R)} for each I ∈ F (R). Then

1. ∗S is a semistar operation of finite type.

2. If ∗ is a semistar operation of finite type on R and S ⊆ f(R), then I∗S = ∪{(IJ)∗ :

J | J ∈ S} for each I ∈ F (R).

Proof. 1. Note that if ∗S is a semistar operation on R, then it must be of finite type by

definition. Thus we only need to show that ∗S is a semistar operation on R.

Let I, I1, I2 ∈ F (R). If x ∈ I, then for any J ∈ S, xJ ⊆ xJ∗ = (xJ)∗ and x ∈ (xJ)∗ :

J ⊆ ∪{H∗S | H ⊆ I,H ∈ f(R)} = I∗S . Hence I ⊆ I∗S .

Secondly, assume I1 ⊆ I2. Then for each x ∈ (I1)∗S , there exists H ∈ f(R) such that

H ⊆ I1 ⊆ I2 and x ∈ H∗S , so x ∈ (I2)∗S and (I1)∗S ⊆ (I2)∗S .
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Thirdly, for any x ∈ K − {0} and H ∈ f(R), (xH)∗S = ∪{(xHJ)∗ : J | J ∈ S} =

∪{x(HJ)∗ : J | J ∈ S} = ∪{x((HJ)∗ : J) | J ∈ S} = x(∪{(HJ)∗ : J | J ∈ S}) = xH∗S .

Hence (xI)∗S = ∪{H∗S | H ⊆ xI,H ∈ f(R)} = ∪{x(x−1H)∗S | x−1H ⊆ I,H ∈

f(R)} = x(∪{(H ′)∗S | H ′ ⊆ I,H ′ ∈ f(R)}) = xI∗S .

Finally, it remains to show that (I∗S )∗S = I∗S . Let x ∈ (I∗S )∗S , then x ∈ H∗S for

some H ⊆ I∗S , H ∈ f(R). Hence x ∈ ∪{(HJ)∗ : J | J ∈ S} and x ∈ (HJ)∗ : J for

some J ∈ S, so xJ ⊆ (HJ)∗. On the other hand, since H ⊆ I∗S = ∪{(H ′)∗S | H ′ ⊆

I,H ′ ∈ f(R)}, by Corollary 3.0.2 H ⊆ (H ′)∗S for some H ′ ⊆ I,H ′ ∈ f(R). Similarly,

since (H ′)∗S = ∪{(H ′J ′)∗ : J ′ | J ′ ∈ S}, again by Corollary 3.0.2 H ⊆ (H ′J ′)∗ : J ′ and

HJ ′ ⊆ (H ′J ′)∗ for some J ′ ∈ S. Thus xJJ ′ ⊆ (HJ)∗J ′ ⊆ (HJ ′J)∗ ⊆ ((H ′J ′)∗J)∗ =

(H ′J ′J)∗, and x ∈ (H ′JJ ′)∗ : JJ ′ ⊆ (H ′)∗S ⊆ I∗S . Thus (I∗S )∗S ⊆ I∗S . Therefore ∗S is

a semistar operation.

2. Clearly I∗S ⊆ ∪{(IJ)∗ : J | J ∈ S} for each I ∈ F (R), even if ∗ is not of finite type.

Suppose that ∗ is of finite type and choose I ∈ F (R). If x ∈ ∪{(IJ)∗ : J | J ∈ S}, then

x ∈ (IJ)∗ : J for some J ∈ S and xJ ⊆ (IJ)∗. Now since ∗ is of finite type, xJ ⊆ L∗

for some L ∈ f(R) with L ⊆ IJ by Corollary 3.0.2. Now let L = l1R + · · ·+ lnR, and

given r ∈ {1, · · ·, n}, there exists a finite set Ar and elements ik ∈ I, jk ∈ J for each

k ∈ Ar such that lr = Σk∈Ar ikjk. Now set A = ∪nr=1Ar and set H = Σk∈AikR. Then

H ∈ f(R), H ⊆ I and L ⊆ HJ ⊆ IJ . Hence xJ ⊆ (HJ)∗ and x ∈ (HJ)∗ : J ⊆ I∗S .

Lemma 3.0.4. Let ∗ be a semistar operation of finite type and S a multiplicatively

closed subset of f(R). Then

1. ∗ ≤ ∗S, and the equality holds if and only if every element of S is a ∗-cancellation

ideal.
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2. ∗ = ∗S.

3. ∗S∗ = ∗.

Proof. Note that by Lemma 3.0.3, I∗S = ∪{(IJ)∗ : J | J ∈ S} for each I ∈ F (R).

1. Since given I ∈ F (R), I∗ ⊆ (IJ)∗ : J for any J ∈ F (R), we have I∗ ⊆ I∗S . Hence

∗ ≤ ∗S . For the second assertion, fix I ∈ F (R). Suppose that I∗S = I∗. Then for any

J0 ∈ S, we have I∗ ⊆ (IJ0)∗ : J0 ⊆ ∪{(IJ)∗ : J | J ∈ S} = I∗S = I∗, so I∗ = (IJ0)∗ : J0.

Hence by Lemma 2.2.3, J0 is a ∗-cancellation ideal .Conversely, if every element of S

is ∗-cancellation ideal, then again by Lemma 2.2.3, I∗ = (IJ)∗ : J for all J ∈ S and

I ∈ F(R), and I∗ = I∗S . So ∗ = ∗S .

2. Let I ∈ F∗S . Then since ∗S is of finite type by Lemma 3.0.3, F∗S is a localizing system

of finite type by Lemma 2.1.6. Now for each M ∈ S∗S , we have R ⊆ R∗S = M∗S =

∪{(MJ)∗ : J | J ∈ S}, so 1 ∈ ∪{(MJ)∗ : J | J ∈ S} and J ⊂ (MJ)∗ ⇒ J∗ = (MJ)∗,

so again by Lemma 2.2.9 M∗ = R∗. Hence by Lemma 2.1.10.2 and Corollary 2.1.12,

I∗S = ∪{I : M | M ∈ S∗S} ⊆ ∪{I : M | M ∈ S∗} = I∗ for each I ∈ F (R). and ∗S ≤ ∗.

Since ∗ ≤ ∗S we have ∗ ≤ ∗S by Lemma 2.1.8(a). Thus ∗ = ∗S .

3. Choose I ∈ F (R). Then I∗S∗ = ∪{(IJ)∗ : J | J ∈ S∗} = ∪{(IJ∗)∗ : J | J ∈ S∗} =

∪{(IR∗)∗ : J | J ∈ S∗} = ∪{I∗ : J | J ∈ S∗} = (I∗)∗̃ = I∗ by Lemma 2.1.8(c) and

Corollary 2.1.12.

Now we are ready for the main theorem and its proof.

Theorem 3.0.5. Let ∗1, ∗2 be semistar operations on R and assume that ∗1 is of fiinite

type and ∗2 is stable. Set ∗ = (∗1)S∗2 .

(a) ∗1 ≤ ∗ ≤ ∗1∗2.

(b) Suppose that ∗1 is stable. Then

1. If ∗1 6= ∗1∗2, then ∗ < ∗1∗2.
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2. If ∗1 6= ∗1∗2, ∗2 is of finite type and there exists I ∈ f(R) such that I∗2 ⊆ I∗1, then

∗1 < ∗.

3. ∗ is stable if and only if ∗ = ∗1.

Proof. (a) ∗1 ≤ ∗ follows from Lemma 3.0.4. On the other hand, (IJ)∗ : J ⊆ I∗ : J

for each J ∈ S∗2 , so I∗ ⊆ ∪{I∗1 : J | J ∈ S∗2} = I∗1∗2 . Hence I∗1 ⊆ I∗ ⊆ I∗1∗2 for all

I ∈ F (R) and the statement follows.

(b) Now suppose that ∗1 < ∗1∗2. Then there exists an ideal L such that L∗2 = R∗2

and L∗1 ( R∗1 (otherwise, F∗2 ⊆ F∗1 and ∗2 = ∗2 ≤ ∗1 ≤ ∗1, so ∗1∗2 = ∗1, which is a

contradiction). Note also that 1 ∈ R∗2 ⊆ L∗1∗2 .

1. Assume that ∗ = ∗1∗2. Then L∗ = L∗1∗2 ⇒ 1 ∈ L∗ ⇒ 1 ∈ ∪{(IJ)∗1 : J | J ∈ S∗2} ⇒

1 ∈ (IJ)∗1 : J for some J ∈ S∗2 ⇒ J ⊆ (IJ)∗1 for some J ∈ S∗2 ⇒ J∗1 = (IJ)∗1 .

Since ∗1 is spectral by Lemma 2.1.14, we have I∗1 = R∗1 by Lemma 2.2.9, which is a

contradiction. Thus ∗ < ∗1∗2.

2. Assume that given conditions hold. Then (I∗2)∗1 ⊆ (I∗1)∗1 = I∗1 , and by Lemma

4.1.3, (I∗1)∗2 = (I∗2)∗1 = I∗1 . Since ∗2 is stable and finite, this means I∗1 = ∪{I∗1 :

L | L ∈ S∗2}, and I∗1 = I∗1 : L for all L ∈ S∗2 . Since I ⊆ I : L, we must have

I∗1 ⊆ (I : L)∗1 ⊆ I∗1 : L and thereby I∗1 = (I : L)∗1 . Now suppose that ∗1 = ∗. Then

by Lemma 3.0.4.1, every element of S∗2 is ∗1-invertible, so L is ∗1-invertible and I∗1 =

(IR∗1)∗1 = (I((R : L)L)∗1)∗1 ⊆ ((I : L)L)∗1 = ((I : L)∗1L)∗1 = (I∗1L)∗1 = (IL)∗1 ([21,

Theorem 1.2(3)]). Since (IL)∗1 ⊆ (IR)∗1 = I∗1 , we have (IL)∗1 = I∗1 and L∗1 = R∗1

by Lemma 2.2.9. Hence L ∈ S∗1 . But then ∗2 = ∗̃2 ≤ ∗̃1 = ∗1 by Corollary 2.1.12 and

Lemma 2.1.10.5, so ∗1 = ∗1∗2, which is a contradiction. Thus ∗1 < ∗.

3. Just a corollary of Lemma 3.0.4.2.

Theorem 3.0.5 gets neater under a certain restriction.
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Corollary 3.0.6. Let ∗1 ≤ ∗2 be semistar operations of finite type and stable and set

∗ = (∗1)S∗2 . Then

1. ∗1 ≤ ∗ ≤ ∗2.

2. If ∗1 < ∗2 and I∗2 = I∗1 for some I ∈ f(R), then ∗1 < ∗ < ∗2, and ∗ is a nonstable

semistar operation of finite type.

The following corollary of Theorem 3.0.5 yields a new semistar operation.

Corollary 3.0.7. Let ∗ = dGV (R), where GV (R) = {I ∈ fS(R) | Iv = R} is the set of

Glaz-Vasconcelos ideals of R ([75]). Then d ≤ ∗ ≤ w. If d 6= w, then d < ∗ < w and ∗

is a nonstable semistar operation of finite type.

Proof. Note that d and w are finite and stable with Rw = Rd = R ∈ f(R). Now it is

just a special case of Corollary 3.0.6.
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Chapter 4

On the composition and partial

ordering of the set of semistar

operations

4.1 Composition of two semistar operations

Given two semistar operations ∗1, ∗2 of R, we can think of the map ∗1∗2 :

F (R) → F (R) defined by I∗1∗2 = (I∗1)∗2 for each I ∈ F (R). In general, this map is

not a semistar operation on R ([68, Example 2.1.(1)]), but we will show that under a

certain restriction it is.

Lemma 4.1.1. [68, Proposition 2.5] Let ∗1 be semistar operation on R and ∗2 a semis-

tar operation on T , where T is an integral domain such that R ⊆ T ⊆ R∗1. Then ∗1∗2

is a semistar operation on R if and only if I∗2∗1 ⊆ I∗1∗2 for all I ∈ F (T ).
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Lemma 4.1.2. Let ∗1 be semistar operation of finite type on R and ∗2 be a stable

semistar operation on T , where T is an integral domain such that R ⊆ T ⊆ R∗1. Then

∗1∗2 is a semistar operation on R.

Proof. Pick I ∈ F (T ). Choose x ∈ K − {0} such that x ∈ (I∗2)∗1 . Then since ∗1

is of finite type, there exists N ∈ f(R) such that N ⊆ I∗2 and x ∈ N∗1 . On the

other hand, since ∗2 is stable, we have I∗2 = ∪{I : J | J ∈ F∗2}. By Corollary 3.0.2

there exists L ∈ F∗2 such that NL ⊆ I. Now xL ⊆ N∗1L ⊆ (NL)∗1 ⊆ I∗1 , and

x ∈ I∗1 : L ⊆ ∪{I∗1 : J | J ∈ F∗2} = (I∗1)∗2 . Hence we have shown that I∗2∗1 ⊆ I∗1∗2 .

Now by Lemma 4.1.1, ∗1∗2 is a semistar operation on R.

Picozza proves that when both ∗1 and ∗2 are stable and of finite type, then

∗1∗2 is stable and of finite type if ∗1∗2 is a semistar operation ([68, Proposition 2.7 (3)

and (4)]). The next lemma shows that the assumption that ∗1∗2 is a semistar operation

is unnecessary.

Lemma 4.1.3. 1. Let ∗1, ∗2 be semistar operations on R. If both ∗1 and ∗2 are stable

and of finite type, then

(a) ∗1∗2 = ∗2∗1 is a semistar operation on R.

(b) ∗1∗2 is stable and of finite type.

2. The set of semistar operations on an integral domain R that is stable and of finite

type forms a distributive lattice with ∗1 ∨ ∗2 = ∗1∗2.

Proof. 1. (a) Follows from Lemma 4.1.1 and Lemma 4.1.2.

1. (b) Note that since ∗1∗2 is a semistar operation, S∗1∗2 is a multiplicativley closed

set and S∗1 ∪ S∗2 ⊂ S∗1∗2 . Hence ∗1 ≤ ∗̃1∗2 and ∗2 ≤ ∗̃1∗2 by Corollary 2.1.12. Thus

∗1∗2 ≤ (∗̃1∗2)(∗̃1∗2) = ∗̃1∗2 ≤ ∗1∗2. Therefore ∗1∗2 = ∗̃1∗2 and ∗1∗2 is finite and stable

by Lemma 2.1.10.5.

24



2. Let Σ be the set of stable and of finite type semistar operations on an integral domain

R. Note that Σ is partially ordered under ≤. Given ∗1, ∗2 ∈ Σ, define ∗1 ∨ ∗2 = ∗1∗2.

Then by (b), ∗1 ∨ ∗2 ∈ Σ, ∗1 ≤ ∗1 ∨ ∗2 and ∗2 ≤ ∗1 ∨ ∗2. Moreover, if ∗ ∈ Σ such that

∗1 ≤ ∗ and ∗2 ≤ ∗, then ∗1 ∨ ∗2 = ∗1∗2 ≤ ∗∗ = ∗. Hence ∗1 ∨ ∗2 is the supremum of ∗1

and ∗2.

On the other hand, ∗1∧∗2, as defined in Example 2.1.5.7, is an element of Σ by Corollary

2.1.13. The fact that ∗1 ∧ ∗2 is the infimum of ∗1 and ∗2 follows from definition. Hence

Σ is a lattice. Finally, for each I ∈ F (R) and ∗i ∈ Σ for i = 1, 2 and 3, I∗1∨(∗2∧∗3) =

I∗1(∗2∧∗3) = (I∗1)∗2 ∩ (I∗1)∗3 = I(∗1∗2)∧(∗1∗3) = I(∗1∨∗2)∧(∗1∨∗3), and ∗1 ∨ (∗2 ∧ ∗3) =

(∗1 ∨ ∗2) ∧ (∗1 ∨ ∗3). Thus Σ is a distributive lattice.

We may now investigate some basic properties of a certain type of semistar

operation induced by Lemma 4.1.2.

Lemma 4.1.4. For each semistar operation ∗ on R, set ∗g = ∗f∗. Let ∗, ∗1, ∗2 be

semistar operations on R. Then,

(a) 1. ∗g is semistar operation on R.

2. ∗f ≤ ∗g ≤ ∗ and ∗ ≤ ∗g ≤ ∗.

3. ∗1 ≤ ∗2 implies (∗1)g ≤ (∗2)g.

4. (∗f )g = (∗g)f = ∗f , (∗)g = ∗g = ∗ and (∗g)g = ∗g.

(b) The following are equivalent.

1. ∗g is stable.

2. ∗g = ∗.

3. ∗f ≤ ∗.

4. ∗f = (∗)f .

5. ∗ is finite stable (a semistar operation ∗ on R is finite stable if (I ∩ J)∗ = I∗ ∩ J∗
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for each I, J ∈ f(R)).

(c) The following are equivalent.

1. ∗g is of finite type.

2. ∗g = ∗f .

3. ∗ ≤ ∗f .

4. ∗ = ∗̃.

5. ∗ is of finite type.

Proof. (a) 1. Since ∗f is of finite type and ∗ is stable, the conclusion follows from Lemma

4.1.2.

2. Note that ∗f ≤ ∗ and ∗ ≤ ∗, so ∗f ≤ ∗f∗ ≤ ∗∗ = ∗. Similarly ∗ ≤ ∗f∗ ≤ ∗∗ = ∗.

3. Suppose that ∗1 ≤ ∗2. Then (∗1)f ≤ (∗2)f and ∗1 ≤ ∗2, so (∗1)g = (∗1)f∗1 ≤

(∗2)f∗2 = (∗2)g.

4. We have (∗f )g = (∗f )f∗f = ∗f ∗̃ = ∗f and ∗f = (∗f )f ≤ (∗g)f ≤ ∗f by Lemma 2.1.8,

so the first equality follows. The second one follows similarly. On the other hand, Since

∗g ≤ ∗ for each semistar operation ∗ on R, we have (∗g)g ≤ ∗g. On the other hand,

(∗g)g = (∗g)f∗g = (∗f∗)f (∗f∗) ≥ (∗f )f∗ = ∗f∗ = ∗g. Therefore (∗g)g = ∗g.

(b) Note that ∗ ≤ ∗g and ∗f ≤ ∗g. Also, ∗g = ∗f∗ ≤ ∗∗ = ∗.

1⇒ 2: By Lemma 2.1.10, 1 implies 2.

2⇒ 3: Follows from Lemma 2.1.8(c).

3⇒ 4: If 3 is true, then by Lemma 2.1.8, ∗f = (∗f )f ≤ (∗)f ≤ ∗f , so ∗f = (∗)f .

4 ⇒ 5: Let ∗ be a semistar operation and I, J ∈ f(R). Then I∗ ∩ J∗ = I∗f ∩ J∗f =

I(∗)f ∩ J (∗)f = I∗ ∩ J∗ = (I ∩ J)∗ ⊆ (I ∩ J)∗ ⊆ I∗ ∩ J∗. Hence ∗ is finite stable.

5⇒ 1: Let ∗ be finite stable. Then given I ∈ f(R), choose x ∈ I∗ and set J = (I : x)∩R.

Then J is an ideal of R, and J∗ = ((I : x)∩R)∗ = (x−1I∩R)∗ = (x−1I)∗∩R∗ = x−1I∗∩
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R∗ ⊇ R, so J∗ = R∗ and J ∈ F∗. Now xJ ⊆ I, so x ∈ I : J ⊆ ∪{I : L | L ∈ F∗} = I∗.

Thus I∗ = I∗. Since I was arbitrary element of f(R), it follows that ∗f = (∗)f .

(c) 1⇒ 2: Since ∗f ≤ ∗g ≤ ∗, by Lemma 2.1.10, 1 implies 2.

2⇒ 3: Follows from Lemma 2.1.8(c).

3⇒ 4: If 3 is true, then by Lemma 2.1.8, ∗ = ∗ ≤ ∗f = ∗̃ ≤ ∗ and ∗ = ∗̃.

4⇒ 5: since ∗̃ is of finite type, 4 implies 5.

5⇒ 1: If 5 holds, then by Lemma 2.1.10, ∗ ≤ ∗f . Hence ∗g = ∗f∗ = ∗f , so ∗g is of finite

type.

Lemma 4.1.5. If ∗ is a semistar operation of finite type, then ∗ is stable if and only if

it is finite stable.

Proof. Let ∗ be a semistar operation of finite type. Then ∗ = ∗f , so ∗g = (∗f )g = ∗f = ∗

by Lemma 4.1.4(a).4. Therefore the conclusion follows from Lemma 4.1.4.(b).

Lemma 4.1.6. Let ∗ be a semistar operation on R. Let ∗h = ∗f ∧ ∗ (that is, I∗h =

I∗f∩I∗ for each I ∈ F (R)). Then ∗h = ∗f and (∗h)f = (∗)f . In particular, (∗h)g = (∗)f .

Proof. For the first assertion, it suffices to show that F∗h = F∗f . Let I ∈ F∗f = F∗f .

Then I∗f = R∗f , so I∗ = R∗ and I∗ = R∗, so I∗h = R∗h . Thus F∗f ⊆ F∗h . Since

∗h ≤ ∗f , we have F∗h ⊆ F∗f .

Now consider the second assertion. If I ∈ f(R), then I∗h = I∗ ∩ I∗f = I∗ ∩ I∗ = I∗.

Hence ∗h and ∗ coincides on f(R), and it follows that (∗h)f = (∗)f .

Lemma 4.1.7. Let ∗ be a semistar operation on R. TFAE.

1. (∗)f = ∗̃.

2. (∗)f is stable.

3. (∗)f is finite stable.
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4. Let S = {I ∈ F (R) | I∗ = I(∗)f }. Then S is closed under finite intersection.

5. ∗h is finite stable.

6. For any semistar operation ∗′ of finite type such that ∗̃ ≤ ∗′ ≤ ∗ , ∗′ is stable.

Proof. Note that ∗f ≤ ∗ by Lemma 2.1.10, and since ∗̃ = ∗f is of finite type by Theorem

2.1.6, ∗̃ = (∗f )f ≤ (∗)f ≤ ∗.

1⇒ 2: Obvious, since ∗̃ is stable.

2 ⇒ 1: It suffices to show that (∗)f ≤ ∗̃ since the other inequality is always true, as

indicated in the first line of this proof. Assume 2. Then since (∗)f is stable (∗)f =

(∗)f ≤ ∗f = ∗̃ by Lemma 2.1.8 and Lemma 2.1.10.

2⇔ 3: Follows from Lemma 4.1.5.

2 ⇒ 4: Assume 2 holds, and let I, J ∈ S. Then (I ∩ J)∗ = I∗ ∩ J∗ = I(∗)f ∩ J (∗)f =

(I ∩ J)(∗)f , so 4 follows.

4 ⇒ 3: Suppose that 3 is true. Then given I, J ∈ f(R), I ∩ J ∈ S since f(R) ⊆ S.

Therefore, (I ∩ J)(∗)f = (I ∩ J)∗ = I∗ ∩ J∗ = I(∗)f ∩ J (∗)f and (∗)f is finite stable.

1 ⇔ 5: By Lemma 4.1.4, ∗h is finite stable if and only if (∗h)g is stable if and only if

(∗h)f ≤ ∗h. But by Lemma 4.1.6, this happens if and only if 1 holds.

1 ⇒ 6: Let ∗′ of finite type such that ∗̃ ≤ ∗′ ≤ ∗. If 1 is true, then (∗)f ≤ ∗′ ≤ ∗, and

by Lemma 2.1.10.3 ∗′ = (∗)f . Then again by 1, ∗ = ∗̃ and ∗ is stable.

6⇒ 2: Obvious from the first line of this proof.

Fontana and Huckaba raised a question concerning the characterizations of

a localizing system F on a domain R such that ∗Ff = (∗F )f ([21, p.181]). Now the

following corollary partially answers this question, extending [57].

Corollary 4.1.8. Let R be an integral domain and F a localizing system on R. TFAE.

1. ∗Ff = (∗F )f .
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2. (∗F )f is stable.

3. (∗F )f is finite stable.

4. Let S = {I ∈ F (R) | I∗F = I(∗F )f }. Then S is closed under finite intersection.

5. For any semistar operation ∗ of finite type such that ∗Ff ≤ ∗ ≤ ∗F , ∗ is stable.

Proof. Note that F∗f = (F∗)f by [21, Corollary 3.8]. Now let ∗ = ∗F . Then by Lemma

2.1.10.1, F∗ = F . Thus (∗)f = (∗F∗)f = (∗F )f and ∗̃ = ∗F∗f = ∗(F∗)f = ∗Ff . Now the

corollary follows from Lemma 4.1.7.

Recall that an integral domain R is said to be coherent if the intersection of

any two finitely generated ideals of R is a finitely generated ideal.

Corollary 4.1.9. Let R be a coherent domain. Then (∗)f = ∗̃ for each semistar

operation ∗ on R. In particular, ∗Ff = (∗F )f for each localizing system F of R.

Proof. Choose a semistar operation ∗ on R. Given two I, J ∈ f(R), I ∩ J ∈ f(R) and

(I ∩ J)(∗)f = (I ∩ J)∗ = I∗ ∩ J∗ = I(∗)f ∩ J (∗)f . Thus (∗)f is finite stable and (∗)f = ∗̃

by Lemma 4.1.7. The second assertion follows similarly.

4.2 Prüfer domains and P∗MDs

Recall that given a semistar operation ∗, we say R is a Prüfer ∗-multiplication

domain, or P∗MD for short, if every nonzero element of f(R) is ∗f -invertible. It is

well known that R is a P∗MD if and only if RP is a valuation domain (an integral

domain R is said to be a valuation domain if the set of ideals of R is totally ordered

under inclusion) for each P ∈ ∗fMax(R) ([23, Theorem 3.1]). The following yields a

characterization of P∗MD.
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Lemma 4.2.1. Let R be a domain and ∗ a semistar operation on R. TFAE.

1. R is a P∗MD.

2. For a semistar operation ∗′ on R such that ∗f ≤ ∗′, R is a P∗′MD.

3. For a semistar operation ∗′ of finite type on R such that ∗f ≤ ∗′, ∗′ is stable.

4. For a semistar operation ∗′ on R such that ∗f ≤ ∗′, ∗′ is finite stable.

5. For a semistar operation ∗′ on R such that ∗f ≤ ∗′, (∗′)g is stable.

6. ∗f is stable and I is a ∗f -cancellation ideal for all I ∈ f(R).

Proof. 1⇒ 2: Assume that 1 holds, and let ∗′ be a semistar operation on R such that

∗f ≤ ∗′. Now for each I ∈ f(R), I is ∗f -invertible, and by Lemma 2.1.8 and Lemma

2.2.2 I is ∗′-invertible. Thus 2 follows.

2⇒ 3: Suppose that 2 holds, ∗′ a semistar operation of finite type on R such that ∗f ≤

∗′. Pick a nonzero finitely generated ideal I of R. Then I∗
′ ⊆ IRP for all P ∈ ∗′Max(R).

Otherwise, there exists x ∈ I∗′ \IRP . Now IRP ( xRP since R is a P∗′MD and RP is a

valuation domain. In particular, x−1 ∈ IPRP . Now x−1 = ips−1 for some i ∈ I, p ∈ P

and s ∈ R\P since RP is a valuation domain. Therefore s = pix ∈ pI∗′ ⊂ P ∗′ . But then

since P ∈ ∗′Max(R), by Lemma 2.1.14, P ∗
′

= (P ∗
′
)∗
′

= (P ∗
′
+sR)∗

′
= (P+sR)∗

′
= R∗

′
,

which is a contradiction. Hence I∗
′ ⊆ ∩{IRP | P ∈ ∗′Max(R)} = I ∗̃

′ ⊆ I∗
′
. Therefore

∗′ = ∗̃′ on the set of finitely generated ideals, and it follows that ∗′ = ∗̃′ on f(R). Since

both ∗′ and ∗̃′ are of finite type, we have ∗′ = ∗̃′. Since ∗̃′ is stable, ∗′ must be stable.

3⇒ 4: Let I, J ∈ f(R) and ∗′ a semistar operation on R such that ∗ ≤ ∗′. If 3 is true,

then (∗′)f is stable, so (I ∩ J)∗
′ ⊆ I∗

′ ∩ J∗′ = I(∗′)f ∩ J (∗′)f = (I ∩ J)(∗′)f ⊆ (I ∩ J)∗
′
.

Therefore ∗′ is finite stable.

4⇒ 5: Immediate conseqeunce of Lemma 4.1.4(b).

5⇒ 6: Suppose that 5 is true. Then (∗f )g is stable. Hence by Lemma 4.1.4(b), we have
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(∗f )f = ∗f ≤ ∗f = ∗̃ ≤ ∗f and ∗f ≤ ∗. Thus ∗̃ = ∗f ≤ ∗, so ∗f is stable.

Now let ∗′ = (∗f )f(R). Then by Lemma 3.0.3, ∗f ≤ ∗′ and ∗′ is of finite type. Hence

(∗′)g is stable by assumption, and ∗′ = (∗′)f ≤ ∗′ ≤ ∗′. Thus ∗′ is stable. Therefore

by Lemma 3.0.4(b) ∗′ = ∗f , and by Lemma 3.0.4(a) every element of f(R) is a ∗f -

cancellation ideal.

6 ⇒ 1: Assume 6. Then ∗f is stable, so by Lemma 2.2.7 I is ∗f -invertible for all

I ∈ f(R). Hence R is a P∗MD.

Recall that a Prüfer domain is a domain such that every nonzero finitely

generated ideal is invertible. It follows that a Prüfer domain is exactly a PdMD, where

d is the identity operation (see Example 2.1.5). Prüfer domains could be characterized

in a surprisingly many ways; for example, R is a Prüfer domain if and only if RP is a

valuation domain for each prime ideal P of R ([41, Theorem 64]). At least twenty-six

different characterizations of a Prüfer domain were known in 1970s ([29, Theorems 22.1,

24.3, 24.7, 25.2]), and nowadays there are maybe more than half a hundred of them

available here and there in the literature. The next lemma gives yet another description

of Prüfer domains in terms of semistar operations, which is a slight extension of [70,

Proposition 2.2].

Lemma 4.2.2. Let R be a domain. Then the following are equivalent.

1. R is a Prüfer domain.

2. Every semistar operation of finite type on R is stable.

3. Every semistar operation is finite stable.

4. ∗g is stable for each semistar operation ∗ on R.

5. I is a cancellation ideal for every I ∈ f(R).

6. ∗f = ∗̃ for each semistar operation ∗ on R.
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7. The map φ from the set of semistar operations of finite type of R to the set of

localizing systems of finite type of R, defined by φ(∗) = F∗ for each ∗ ∈ SStar(R), is

an injective map.

Proof. 1⇔ 2⇔ 3⇔ 4⇔ 5: This is just a special case of Lemma 4.2.1 when ∗ = d.

3⇒ 6: Suppose that 3 holds. Let ∗ be a semistar operation. Then ∗f is finite stable by

assumption, and ∗f = (∗f )f ≤ ∗̃ ≤ ∗f by Lemmas 2.1.10 and Lemma 4.1.4.3.(b). Hence

6 follows.

6⇒ 3: Since ∗̃ ≤ (∗)f ≤ ∗f for each semistar operation ∗ on R, this is immediate from

Lemma 4.1.4.3.(b).

2 ⇒ 7: Suppose that 2 holds. Then given two semistar operations ∗1, ∗2 of finite type

such that F∗1 = F∗2 , we have ∗1 = ∗1 = ∗F∗1 = ∗F∗2 = ∗2 = ∗2 by Lemma 2.1.10.2.

Thus φ is injective.

7⇒ 2: Note that given a semistar operation ∗ of finite type, F∗ = F∗ by Lemma 2.1.7.

Hence if φ is an injective map, then for each semistar operation ∗ of finite type on R,

we have ∗ = ∗ and ∗ is stable by Lemma 2.1.10.2.

Lemma 4.2.3. Let R be a domain. Then the following are equivalent.

1. ∗g is of finite type for each semistar operation ∗ on R.

2. ∗ = (∗)f for each semistar operation ∗ on R.

3. ∗ = ∗̃ for each semistar operation ∗ on R.

4. Every stable semistar operation on R is of finite type.

5. Every localizing system on R is of finite type.

Proof. 1 ⇒ 2: Suppose that 1 is true. Given a semistar operation ∗, (∗)g is of finite

type, so by Lemma 4.1.4 (c), ∗ = ∗ ≤ (∗)f ≤ ∗. Hence ∗ = (∗)f .

2⇒ 3: Suppose 2 holds. Then given a semistar operation ∗ on R, ∗ = ∗ = (∗)f ≤ ∗f =
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∗̃ ≤ ∗ by Lemmas 2.1.8 and 2.1.10. Hence 3 follows.

3 ⇒ 4: Note that given a semistar operation ∗ on R, ∗̃ = ∗F∗f is of finite type by

Theorem 2.1.6. Now the conclusion follows from Lemma 2.1.10.2.

4⇒ 5: Let F be a localizing system on R. Then ∗F is a stable semistar operation ([21,

Proposition 2.4]). Therefore, if 3 is true, then ∗F must be of finite type. Moreover,

since F = F∗F by Lemma 2.1.10.1, F is a localizing system of finite type by Theorem

2.1.6.

4 ⇒ 1: Note that given a semistar operation ∗, F∗ is a localizing system of R ([21,

Proposition 2.8]). Now suppose that 4 is true. Then F∗ is a localizing system of finite

type, and ∗ = ∗F∗ is of finite type by Theorem 2.1.6. Hence ∗ ≤ ∗f by Lemma 2.1.10

and ∗g = ∗f∗ = ∗f . Hence ∗g is of finite type.

Recall that a Prüfer domain R is said to be a generalized Dedekind domain if

given two localizing systems F1 and F2 of R, R∗F1 = R∗F2 if and only if F1 = F2([22,

Chapter 5.2]). We now present a new characterizations of generalized Dedekind domains

in terms of ∗g.

Theorem 4.2.4. Let R be a domain. Then the following are equivalent.

1. R is a generalized Dedekind domain.

2. R is a Prüfer domain and every localizing system on R is of finite type.

3. ∗g is stable and of finite type for each semistar operation ∗ on R.

4. ∗ = ∗f for each semistar operation ∗ on R.

5. R is a Prüfer domain and every stable semistar operation on R is of finite type.

6. A semistar operation is stable if and only if it is of finite type.

Proof. 1⇔ 2 follows from [22, Theorem 5.2.1]. 3⇔ 4 follows from Lemma 4.1.4. Other

implications follow from Lemma 4.2.2 and Lemma 4.2.3.
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One may wonder when the composition of two arbitrary semistar operations

on an integral domain yields a semistar operation. Let us study the properties of such

integral domains.

Definition 4.2.5. An integral domain R is conducive if each overring of R other than

K is a fractional ideal of R. Given an overring T of R, if Iv(R) = R for I ∈ f(R) implies

(IT )v(T ) = T , then we say that T is a t-linked overring of R. R is said to be t-linkative if

every overring of R is t-linked, and super t-linkative if every overring of R is t-linkative.

For a more detailed treatment of t-linkative domains one may refer to [18] and

[19].

Theorem 4.2.6. [17, Theorem 3.2], [59, Proposition 7] 1. For a domain R, TFAE.

(a) R is a conducive domain.

(b) R : V 6= 0 for some valuation overring V of R.

(c) R : T 6= 0 for each T ∈ F (R) \ {K}.

(d) Each overring of R is of the form I : I.

2. Every valuation domain is conducive.

We now introduce the notion of a c∗-domain.

Definition 4.2.7. If R is an integral domain such that the composition of any two

semistar operation on R is also a semistar operation on R, then we say R is c∗-domain.

The following are some basic properties of c∗-domains.

Lemma 4.2.8. 1. An integral domain R is a c∗-domain if and only if ∗1∗2 = ∗2∗1 for

any two semistar operation ∗1 and ∗2 of R.

2. Each c∗-domain is conducive.

3. Given a semistar operation ∗ on a c∗-domain R, an overring T of R and J ∈ F (R),
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we have (JT )∗ = J∗T . In particular, every overring of R other than K is a divisorial

fractional ideal of R.

4. Each overring of a c∗-domain is a c∗-domain.

5. Each c∗-domain is super t-linkative.

6. v(I)∗ ≤ v(I∗) for each nonzero I ∈ F (R) and semistar operation ∗ on a c∗-domain

R.

7. If (SStar(R),≤) is a totally ordered set, then R is a c∗-domain.

Proof. 1. Follows from Lemma 4.1.1.

2. ([68, Example 2.1(1)]). Let R be a c∗-domain. Suppose that R is not conducive.

Then there exists an overring T 6= K of R such that R : T = 0. Now set ∗1 = v(R)

and ∗2 = ∗T . Then R∗1∗2 = T and R∗2∗1 = K, so R∗2∗1 6⊆ R∗1∗2 . Hence ∗1∗2 is not a

semistar operation by Lemma 4.1.1, and we have a contradiction.

3. By 1, (JT )∗ = J∗T ∗ = (J∗)∗T = J∗T . Now since T v(R) = (RT )v(R) = Rv(R)T = T

for each overring T of R, the second assertion follows from 2.

4. If ∗1 and ∗2 are semistar operations on T , then ∗1ι and ∗2ι are semistar operation

on R. Thus given I ∈ F (T ) ⊆ F (R),

I∗2∗1 = ((IT )∗2T )∗1 = I∗2
ι∗1ι = I∗1

ι∗2ι = I∗1∗2 .

So by Lemma 4.1.1 ∗1∗2 is a semistar operation on T .

5. Let T be an overring of R. From 3 and Lemma 2.1.9 it follows that v(R) ≤ v(T ).

Therefore, if I ∈ f(R) such that Iv(R) = R, then Iv(T ) = (Iv(R))v(T ) = Rv(T ) = T and

(IT )v(T ) = Iv(T )T = T . Hence R is t-linkative, and by 4 R is super t-linkative.

6. Note that (I∗)v(I) = (Iv(I))∗ = I∗ and v(I) ≤ v(I∗) by Lemma 2.1.9. Moreover,

∗ ≤ v(I∗) since (I∗)∗ = I∗. Therefore ∗v(I) ≤ v(I∗).

7. Follows from Lemma 4.5.1.
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From Lemma 4.1.3 we can immediately see that if each semistar operation

on an integral domain R is of finite type and stable, then R is a c∗-domain. So the

resulting question is to ask the possible characterizations of such domains. The next

lemma shows that any such domain must be a totally divisorial valuation domain.

Definition 4.2.9. A nonzero ideal I of R is a divisorial ideal of R if Iv(R) = I. R is

said to be a divisorial domain if every nonzero ideal of R is divisorial. If each overring

of R is a divisorial domain, then we say that R is a totally divisorial domain. A Prüfer

domain R is said to be strongly discrete if P 2 6= P for each nonzero prime ideal P of R.

Lemma 4.2.10. Let R be a domain. Then the following are equivalent.

1. Each semistar operation on R is stable and of finite type.

2. R is a totally divisorial valuation domain.

3. R is a strongly discrete valuation domain.

4. R is integrally closed, totally divisorial and conducive.

5. R is integrally closed and each semistar operation on R is an extension to some

overring of R.

6. R is a Prüfer domain and each semistar operation on R is of finite type.

7. ∗ = ∗̃ for each semistar operation ∗ on R.

Proof. 1⇒ 2: Suppose that 1 is true. Then R is a Prüfer domain by Lemma 4.2.2. Now

v = t = ∗Rt = ∗R = d by assumption and the fact that each finite semistar operation

on a Prüfer domain is an extension to some overring ([69, Lemma 2.40]), so R is a

divisorial domain and must be h-local by [34, Proposition 2.4]. On the other hand, the

composition of any two semistar operations on R is a semistar opreation by 4.1.2, so

R is conducive by Theorem 4.2.8.2. Therefore R is must be a valuation domain ([69,

Lemma 2.42]). Since each semistar opreation on R is an extension to an overring of R,
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R is totally divisorial by Theorem 4.3.9.

2⇔ 3: Follows from [69, Theorem 2.43].

2⇒ 4: Follows from the fact that each valuation domain is conducive (Theorem 4.2.6)

and integrally closed ([50, Theorem 10.3]).

4⇔ 5: Follows from Theorem 4.3.9.

5 ⇒ 6: If 5 holds, then each semistar operation on R is an extension to some overring

on R, so in particular every semistar operation on R is of finite type. Moreover, since

t = ∗Rt = d and R is integrally closed, R is a Prüfer domain by [76, Theorem 8].

6⇒ 7: Immediate corollary of Lemma 4.2.2.

7⇒ 1: Immediate corollary Lemma 2.1.10.5.

In the next corollary, we summarize the characterizations of a certain classes

of Prüfer domains in the language of semistar operations.

Corollary 4.2.11. Let R be an integral domain. Then

1. R is a Prüfer domain ⇔ ∗f = ∗̃ for each ∗ ∈ SStar(R).

2. R is a generalized Dedekind domain ⇔ ∗f = ∗ for each ∗ ∈ SStar(R).

3. R is a strongly discrete valuation domain ⇔ ∗ = ∗̃ for each ∗ ∈ SStar(R).

Proof. 1. By Lemma 4.2.2.

2. By Theorem 4.2.4.

3. By Lemma 4.2.10.

4.3 Semistar operations of type v(I)

Recall that given an ideal I of R, the map v(I) : F (R) → F (R) defined by

Lv(I) = I : (I : L) for each L ∈ F (R) is a semistar operation ([69, Proposition 1.17]).

37



We may ask a natural question; which integral domain R has the property that given a

semistar operation ∗ on R, there exists an ideal I of R so ∗ = v(I)? Valuation domains

are one such, as the following result due to Picozza ([69, Proposition 2.35]) shows.

Theorem 4.3.1. Let R be a valuation domain. Then the following hold;

1. Given P ∈ Spec(R), v(P ) = ∗RP .

2. Given a semistar operation ∗ on R there exists an ideal I of R such that ∗ = v(I).

3. Given an ideal I of R and P ∈ Spec(R), v(I) = ∗RP if and only if I = xP for some

nonzero x ∈ K.

One can immediately see that condition 3 implies condition 1 in Theorem

4.3.1. In fact, we are going to prove that they are equivalent to the statement that R is

a valuation domain. First, recall that an ideal I of R is said to be an m-canonical ideal

of R if Jv(I) = J for each nonzero ideal J of R. Now consider the following lemma.

Lemma 4.3.2. ([11, Proposition 4.1]) Let R be a quasilocal domain with maximal ideal

M . Then R is a valuation domain if and only if M is an m-canonical ideal of R.

Theorem 4.3.3. Let R be an integral domain. Then the following are equivalent.

1. R is a valuation domain.

2. Given an ideal I of R and P ∈ Spec(R), v(I) = ∗RP if and only if I = xP for some

nonzero x ∈ K.

3. v(P ) = ∗RP for each prime ideal P of R.

4. v(M) = ∗RM for each maximal ideal M of R.

Proof. 1⇒ 2: Follows from Theorem 4.3.1.

2⇒ 3⇒ 4: Trivial.

4 ⇒ 1: Assume that 3 is true. Choose a maximal ideal M of R. Then we have
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v(M) = ∗RM and M = Mv(M) = M∗RM = MRM . Hence for any r ∈ R −M , r−1M ⊆

MRM = M and M ⊆ rM ( rR, so r is a unit. Therefore R is quasilocal with maximal

ideal M , and by assumption Jv(M) = J∗RM = JRM = J for each nonzero ideal J of R.

Thus M is an m-canonical ideal of R and R is a valuation domain by Lemma 4.3.2.

By Theorems 4.3.1 and 4.3.3, condition 1 and condition 3 of Theorem 4.3.1

are equivalent to R being a valuation domain. Thus the following question arises; is

condition 2 of Theorem 4.3.1 equivalent to the other two? i.e., if each semistar operation

on R is of the form v(I) for some ideal I of R, then is R a valuation domain? The answer

is negative, as we are going to show in this section.

Definition 4.3.4. An integral domain R is said to be of finite character if for each

nonzero ideal I of R there exists only finitely many maximal ideals of R that contains I.

A pm-domain is an integral domain R such that each nonzero prime ideal is contained

in a unique maximal ideal of R. An h-local domain is a pm-domain of finite chracter.

Lemma 4.3.5. 1. A conducive pm-domain is quasilocal.

2. A conducive domain with an m-canonical ideal is quasilocal.

Proof. 1. Let R be a conducive domain. Then there exists a nonzero prime ideal P of

R such that given any prime ideal Q of R, either P ⊆ Q or Q ⊆ P , and {N ∈ Spec(R) |

N ⊆ P} is totally ordered by inclusion ([17, Corollary 3.3]). Since R is a pm-domain,

P must be contained in a maximal ideal M . Hence R must be a quasilocal domain.

2. An integral domain that has an m-canonical ideal is h-local ([34, Proposition 2.4]).

Thus the conclusion follows from 1.

For the sake of brevity, we will say that R has property * (respectively, weak

property * ) if R is an integral domain that is not a field such that for each semistar
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operation ∗(respectively, for each semistar operation on R that is an extension to an

overring of R) there exists an ideal I of R such that ∗ = v(I).

Lemma 4.3.6. Let R be an integral domain that has weak property ∗. Then

1. For each overring T of R, T has weak property ∗. In particular, every overring of R

has an m-canonical ideal.

2. R is a conducive quasilocal domain.

3. For each overring T of R, Spec(T) is totally ordered under inclusion. In particular,

T is quasilocal.

4. Let ∗ be a semistar operation on R that is stable and of finite type. Then ∗ is an

extension to a localization of R.

5. An overring T of R is flat R-module if and only if T = RP for some prime ideal P

of R.

6. If R∗ = R∗̃ for each semistar operation ∗ on R that is an extension to an overring

of R, then R is a valuation domain.

Proof. 1. Assume that R has weak property ∗ and let T be an overring of R and ∗ a

semistar operation on T that is an extension to an overring of T . Then consider ∗ι (see

Example 2.1.5.8). Since L∗
ι

= (LT )∗ = LTT ∗ = LT ∗ = LR∗
ι

for each L ∈ F (R), ∗ι is

a semistar operation on R that is an extension to R∗. Thus ∗ι = v(I) for some ideal I

of R by assumption. Now T ∗ = R∗
ι

= Rv(I) = I : I, so I ⊆ IT ⊆ IT ∗ = I, and I is an

ideal of T . Hence for each N ∈ F (T ), N∗ = (NT )∗ = N∗
ι

= Nv(I), and ∗ = v(I). Thus

T has weak property ∗.

2. Suppose that R has weak property ∗. Given an overring T 6= K of R, ∗T = v(I) for

some nonzero ideal I of R. Then T = R∗T = Rv(I) = I : I and IT = I(I : I) = I, so T

is a fractional ideal of R. Hence R is conducive. On the other hand, since ∗R = v(J)
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for some ideal J of R by assumption, J is an m-canonical ideal of R. Therefore R is

quasilocal by Lemma 4.3.5.2.

3. Combining 1 and 2, we can conclude that if R has weak property ∗, then each

overring T of R is a quasilocal domain. It follows that Spec(R) is totally ordered under

inclusion, and so is Spec(T ) for each overring T of R by 1.

4. Let ∗ be a semistar operation of finite type and stable. Then the set of maximal

elements of {I ∈ S(R) | I∗ ∩R = I ⊆ R, I∗ ( R∗} is nonempty and must be a singleton

set {P} for some P ∈ Spec(R) by 3, so I∗ = IRP for each I ∈ F (R) by Lemma 2.1.14.

5. Follows from [43, Proposition 4.14].

6. Suppose that R has weak property ∗ and R∗ = R∗̃ for each semistar operation ∗ on

R. Then given an overring T of R, T = R∗T = R∗̃T is a localization of R by 4 and

Lemma 2.1.10.5, so R must be a Prüfer domain ([29, Page 334]). Since R is a quasilocal

Prüfer domain, it is a valuation domain.

Remark 4.3.7. Note that similar statements holds for domains that possess property

∗. For example, the proof of Lemma 4.3.6 can be modified to show that if a domain R

has property ∗, then each overring of R has property ∗.

Lemma 4.3.6 yields a characterization theorem of domains with weak property

∗.

Lemma 4.3.8. Let R be an integral domain. Then the following are equivalent.

1. R has weak property ∗.

2. R is a conducive domain and each overring of R has an m-canonical ideal.

3. R is a conducive domain that has an m-canonical ideal.

Proof. 1⇒ 2: Follows from Lemma 4.3.6.

2⇒ 3: Trivial.
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3⇒ 1: Assume that 3 is true. It follows from [34, Proposition 5.1] that each overring T

of R has an m-canonical ideal IT . Hence J∗T = JT = (JT )v(IT ) = (J∗T )v(IT ) = Jv(IT )

for all J ∈ F (R). Moreover, there exists d ∈ R − {0} such that dIT is an ideal of R.

Then v(IT ) = v(dIT ), so ∗T = v(dIT ) and R has weak property ∗.

Recall that an ideal I of R is said to be stable if I is an invertible ideal of the

ring I : I. If every nonzero ideal of R is stable, then we say that R is a stable domain.

Clearly each integral domain that has property ∗ also has weak property ∗,

but the converse is false in general (see Remark 4.4.5). However, it turns out that these

two properties are equivalent on stable domains. The following theorem extends [69,

Proposition 2.51].

Theorem 4.3.9. Let R be an integral domain. TFAE.

1. R is a stable domain that has property ∗.

2. R is a stable domain that has weak property ∗.

3. R is conducive and v(I) = ∗I:I for each nonzero ideal I of R.

4. R is totally divisorial and conducive.

5. Each semistar operation of R is an extension to some overring of R.

6. Given two semistar operations ∗1 and ∗2 of R, ∗1 = ∗2 if and only if R∗1 = R∗2.

We need the following preparatory lemmas for the proof of this theorem.

Lemma 4.3.10. ([68, Theorem 2.54]) For an integral domain R, TFAE.

1. R is a stable domain.

2. v(I) = v(I : I) for each nonzero ideal I of R.

3. If I and J are nonzero ideals of R such that I : I = J : J , then v(I) = v(J).

4. I is divisorial in I : I for each nonzero ideal I of R.
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Lemma 4.3.11. ([68, Theorem 2.57]) For an integral domain R, TFAE.

1. R is totally divisorial.

2. Each nonzero ideal I of R is an m-canonical ideal of I : I.

3. I : I is a divisorial domain for each nonzero ideal I of R.

Proof of Theorem 4.3.9.

1⇒ 2: Trivial.

2 ⇒ 3: Suppose that R is a stable domain that has weak property ∗. Then R is

conducive by Lemma 4.3.6. Let I be a nonzero ideal of R, and ∗I:I = v(J) for some

ideal J of R. Note that since I : I = R∗I:I = Rv(J) = J : J , v(I) = v(J) and v(I) = ∗I:I .

3⇒ 4: If R a conducive domain, then a nonzero ideal I of R is an m-canonical ideal of

I : I if and only if v(I) = ∗I:I ([69, Lemma 2.34]). Hence, by Lemma 4.3.11, 3 implies

4.

4⇔ 5: [69, Proposition 2.51].

5⇒ 6: If 5 holds, then given two semistar operations ∗1, ∗2 of R, ∗i = ∗R∗i for i = 1, 2.

Therefore 6 follows.

6 ⇒ 1: Suppose that 6 is true. Then, given two nonzero ideals I, J of R such that

I : I = J : J , Rv(I) = I : I = J : J = Rv(J) and v(I) = v(J). Hence by Lemma

4.3.10 R is stable. On the other hand, since Rv(R) = Rd = R, we have v(R) = d

by assumption. Now if T 6= K is an overring of R, then R : T 6= 0. For otherwise

T = T v(R) = R : (R : T ) = R : 0 = K, which is a contradiction. Therefore R is

conducive. Now it follows that given a semistar operation ∗, R∗ = I : I for some ideal

I of R. Then R∗ = Rv(I), and ∗ = v(I) by assumption and R has property ∗. �

The stablilty of an ideal I is related to v(I)-cancellativity, as the following

lemma shows.
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Lemma 4.3.12. 1. An integral domain R is stable if and only if I is a v(I)-cancellation

ideal for each nonzero ideal I of R.

2. Suppose that each nonzero ideal I of R is a v(I)-invertible ideal of R. Then R is a

stable domain.

Proof. 1. Given L ∈ F (R), Lv(I:I) = (I : I) : ((I : I) : L) = I : I(I : IL) = (I : (I :

IL)) : I = (IL)v(I) : I. Hence by Lemma 2.2.3 I is a v(I)-cancellation ideal if and only

if Lv(I:I) = Lv(I) for each L ∈ F (R). Therefore by Lemma 4.3.10 we are done.

2. Follows immediately from Lemma 2.2.2.

The converse of Lemma 4.3.12.2 is false, as the following theorem and remark

show.

Theorem 4.3.13. For an integral domain R that is not a field, the following are equiv-

alent.

1. R is a Noetherian valuation domain.

2. R satisfies the following properties;

(a) Given a nonzero ideal I of R, I is v(I)-invertible ideal of R.

(b) R has weak property ∗.

Proof. 1⇒ 2: Let R be a Noetherian valuation domain. Then R is a PID ([50, Theorem

11.2]), so for a nonzero ideal I of R, I is invertible. Since d ≤ v(I), I is v(I)-invertible

by Lemma 2.2.2.2, so (a) follows. On the other hand, Theorem 4.3.1 yields (b).

2 ⇒ 1: Suppose that 2 is true. Then by Lemma 4.3.6, R is a quasilocal domain with

the maximal ideal M , and given an overring T 6= K there exists a nonzero ideal I such

that T = I : I and v(I) = ∗I:I . Now for any X ∈ F (R), we have (IX)v(I) = (IX)∗I:I =

IX(I : I) = IX. Then R ⊆ I : I = Rv(I) = (I(R : I))v(I) = I(R : I) ⊆ R since I

is v(I)-invertible in R. Hence T = I : I = R and R is a one-dimensional valuation
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domain since R has no overring other than R and K ([50, Exercise 10.5]). It remains to

show that R is Noetherian. Now, M is an m-canonical ideal by Lemma 4.3.2 and M is

v(M)-invertible by assumption, so it follows that M is invertible. Since invertible ideals

are finitely generated ([41, Theorem 58]), M must be finitely generated. On the other

hand, Spec(R)= {0,M} since R is a one-dimensional quasilocal domain. Hence every

prime ideal of R is finitely generated and R is Noetherian by Cohen’s theorem.

Remark 4.3.14. From Theorem 4.3.3 it follows that the first and the third statements of

Theorem 4.3.1 are equivalent to the statement that R is a valuation domain. Moreover,

this result is sharp in the sense that even if R is an integral domain that satisfies the

second statement of Theorem 4.3.1, R may not be a valuation domain. Indeed, let L

be a field, X an indeterminate, R = L[[X2, X3]] = {a0 + Σn≥2anX
n | an ∈ L, n ≥

0} and M = (X2, X3)R. It is well-known that R has only three overrings and three

semistar operations (cf. [58, Example 72]), and we suggest a proof of these facts using

multiplicative ideal theoretic method. Consider the following theorem proved by Vassilev.

Theorem 4.3.15. [74, Proposition 4.1] Let I be a nonzero proper ideal of R. Then

either I = (Xn + aXn+1)R for some a ∈ L, n ≥ 2 or I = XnM = (Xn+2, Xn+3)R for

some n ≥ 0.

Therefore given an ideal I of R, we have

I : I =



R, if I is nonzero principal

M : M, if I = XnM for some n ≥ 0

K, if I = 0.

Now consider the overring L[[X]] of R. Since L[[X]] is a quasilocal PID, it is

a (Noetherian) valuation domain. Moreover, since ML[[X]] ⊆ R, we have 0 6= M ⊆ R :
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L[[X]] and R is conducive by Theorem 4.2.6. Therefore again by Theorem 4.2.6 each

overring of R is of the form I : I for some ideal I of R. Hence R,M : M and K are

the only overrings of R. Since L[[X]] is an overring of R different from R and K, we

must have L[[X]] = M : M . We want to show that R is totally divisorial. Even though

it is an immediate consequence of Theorem 4.3.15 and [8, Proposition 4.8], we present

another proof based on multiplicative ideal theory.

Note that a nonzero principal ideal is divisorial, and each nonprincipal ideal of R is

XnM for some n ≥ 0 by the preceding theorem. Therefore to show that R is divisorial it

suffices to show that M is divisorial. Note that R is a one-dimensional quasilocal domain

since it is conducive and Noetherian ([17, Corollary 2.7]), and M is the only nonzero

prime ideal of R. Hence v(R)fMax(R) = {M} ([21, Lemma 4.20]) and Mv(R) =

Mv(R)f = M . (alternately, one may use [45, Theorem 3.8], or [41, Exercise 4-5.1] and

[41, Theorem 222]). Finally, since every PID is divisorial, L[[X]] and K are divisorial

domains.

Therefore R is totally divisorial and conducive. Hence, by Theorem 4.3.9, R

has only three semistar operations {∗R(= d), ∗L[[X]], ∗K(= e)} and R satisfies the second

statement of Theorem 4.3.1. However, since M is a finitely generated nonprincipal ideal

of R, R is not a valuation domain.

Hence R is a Noetherian totally divisorial conducive domain, and must be stable by

Theorem 4.3.9. On the other hand, since R is not a valuation domain there exists a

nonzero ideal I of R that is not v(I)-invertible by Theorem 4.3.13 (in particular, M is

not v(M)-invertible). Thus the converse of Lemma 4.3.12.2 is false.
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4.4 Semistar operations on the ring R = L+X3L[[X]]

Let L be a field, X an indeterminate and R = L+X3L[[X]]. Throughout the

remainder of this section, R will denote this particular integral domain unless stated

otherwise.

The fact that R has three star operations and six semistar operations is not quite new

([46, Proposition 6.1], [34, Theorem 3.8]), but with the aid of the following theorem by

Vassilev, something more could be said. R will act as examples and counterexamples

often throughout the remainder of this thesis.

Theorem 4.4.1. ([73, Proposition 3.6]) The nonzero nonunit ideals of R can be ex-

pressed in the forms Pn,a,b = (Xn+aXn+1+bXn+2), In,a = (Xn+aXn+1, Xn+2), Jn,a,b =

(Xn+aXn+2, Xn+1 +bXn+2) or Mn = (Xn, Xn+1, Xn+2) for some n ≥ 3 and a, b,∈ L.

Theorem 4.4.2. [37, Theorems 3.8 and 4.2] Let R be a Noetherian quasilocal domain

with nonprincipal maximal ideal M and k = R/M the residue field of R. Suppose that

R : M is a quasilocal domain, M is not the maximal ideal of R : M and dimk((R :

M)/M) = 3. Then

1. R has exactly three star operations.

2. Each nonprincipal ideal I of R such that I : I = R is an m-canonical ideal.

3. There exists only one proper overring between R and R : M .

The following theorem will be used frequently.

Theorem 4.4.3. [53, Theorem 2.2] Let R be an integral domain with a proper overring

T . Then |Star(R)| + |SStar(T )| ≤ |SStar(R)| and the equality holds if and only if R

is a quasilcoal conducive domain and each proper overring of R contains T .
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Now we are ready to prove that R has exactly six semistar operations.

Theorem 4.4.4. 1. R has exactly three (semi)star operations.

2. Given n ≥ 3 and a, b ∈ L, Mn : Mn = L[[X]], In,a : In,a = L + X2L[[X]], Pn,a,b :

Pn,a,b = Jn,a,b : Jn,a,b = R.

3. R has exactly four overrings R ( L+X2L[[X]] ( L[[X]] ( K.

4. R has exactly six semistar operations d, ∗′, v(R), ∗L+X2L[[X]], ∗L[[X]], and e, where

∗′ = ∗L+X2L[[X]] ∧ v(R).

5. {Jn,a,b | a, b ∈ L, n ≥ 3} is the set of m-canonical ideals of R.

Proof. 1. It is straightforward to verify that R : M3 = M3 : M3 = L[[X]] is quasilo-

cal and M3 = X3L[[X]] is not a maximal ideal of L[[X]]. Moreover, since L[[X]] =

R + RX + RX2, dimk(L[[X]]/M3) = 3. Thus R has exactly three star operations by

Theorem 4.4.2. Therefore R has exactly three (semi)star operations ([68, Proposition

3.11(2)]).

2. For each n ≥ 3 and a, b ∈ L, X2 ∈ In,a : In,a and In,a : In,a is an overring of

L + X2L[[X]]. Since X 6∈ In,a : In,a, we must have In,a : In,a = L + X2L[[X]] by

Remark 4.3.14. Similarly Mn : Mn = L[[X]] since X ∈ Mn : Mn and Mn : Mn 6= K.

Pn,a,b : Pn,a,b = R : R = R and 0 : 0 = K follows easily.

We must show that Jn,a,b : Jn,a,b = R. Since L[[X]] is the integral closure of R,

Jn,a,b : Jn,a,b a ring between R and L[[X]]. Moreover, L+X2L[[X]] is the only overring

of R that properly lies between R and R : M3 = L[[X]] (See the proof of [37, Theorem

3.8]). Thus it suffices to show that X2 6∈ Jn,a,b : Jn,a,b. Assume that X2 ∈ Jn,a,b : Jn,a,b.

ThenX2(Xn+aXn+2)−aX3(Xn+1+bXn+2) = Xn+2−bXn+5 = Xn+2(1−bX3) ∈ Jn,a,b,

so Xn+2 ∈ Jn,a,b and Jn,a,b = Mn, which is a contradiction.
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3. Since X3 ∈ R : L[[X]], every overring of R is of the form I : I for some ideal I

of R by Lemma 4.2.6. Hence the conclusion follows from Theorem 4.4.4.2.

4. Since R has three star operations by Theorem 4.4.2 and L + X2L[[X]] has three

semistar operations by Remark 4.3.14, R has six semistar operations by Theorem 4.4.3.

On the other hand, d < ∗′ < v(R) by [37, Theorem 2.6(1)]. Also, R ( R
∗L+X2L[[X]] (

R∗L[[X]] ( Re. Therefore d, ∗′, v(R), ∗L+X2L[[X]], ∗L[[X]], and e are pairwise distinct semis-

tar operations and the only semistar operations on R.

5. The fact that Rv(In,a) = In,a : In,a = L + X2L[[X]] 6= R and Rv(Mn) = Mn : Mn =

L[[X]] 6= R implies that neither In,a nor Mn is an m-canonical for each n ≥ 3, a ∈ L.

On the other hand, if Pn,a,b is an m-canonical ideal for some n ≥ 3 and a, b ∈ L,

then R must be a divisorial domain, which contradicts Theorem 4.4.4. Therefore

{Jn,a,b | n ≥ 3, a, b ∈ L} is the set of m-canonical ideals of R by Theorem 4.4.2.2.

Remark 4.4.5. Given n ≥ 3 and a, b ∈ L, v(Pn,a,b) = v(R), v(Mn) = ∗L[[X]], v(In,a) =

∗L+X2L[[X]], v(Jn,a,b) = d = ∗R and v(0) = ∗K by Theorem 4.4.4. Hence R does not have

property ∗ since ∗′ 6= v(I) for each ideal I of R, but R has weak property ∗. Note that

since R is a Noetherian conducive domain, it must be one-dimensional ([17, Corollary

2.7]) and (M3)v(R) = (M3)v(R)f = M3 ([21, Corollary 4.21 and Remark 4.9]). Thus

v(R) ≤ v(M3) = v(Mn) for each n ≥ 3. Now given two semistar operations ∗1 and ∗2

of R, if ∗1 < ∗2 and there exists no semistar operation ∗ such that ∗1 < ∗ < ∗2, place

∗2 above ∗1 and connect ∗1 and ∗2 with a node. Then we have the following tower.
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e = v(0)

∗L[[X]] = v(Mn)

∗L+X2L[[X]] = v(In,a) v(R) = v(Pn,a,b)

∗′

d = v(Jn,a,b)

Figure 4.4.1: The tower of semistar operations on L + X3L[[X]] for each n ≥ 3 and
a, b ∈ L.

Now it follows that R is not a c∗-domain. Indeed, consider the composition map

∗ = v(R)∗L+X2L[[X]]. If ∗ is a semistar operation, then ∗ = ∗L[[X]] since ∗L[[X]] is the

smallest semistar operation that dominates both v(R) and ∗L+X2L[[X]] (Lemma 4.1.3.2).

But R∗ = R
v(R)∗L+X2L[[X]] = L+X2L[[X]] ( L[[X]] = R∗L[[X]], a contradiction.

4.5 When (SStar(R),≤) is a totally ordered set

We saw in Lemma 4.2.10 that a strongly discrete valuation domain is a c∗-

domain. In fact, on a strongly discrete valuation domain each semistar operation is an

extension to overring and each overring is totally ordered under inclusion, so the set of

semistar operations is totally ordered. Moreover, any such domain must be a c∗-domain

by Lemma. The next lemma gives a characterization for such domains.

Lemma 4.5.1. Let R be an integral domain. Then the following are equivalent.

1. (SStar(R), ≤) is a totally ordered set.
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2. R is a conducive domain such that

(a) (Star(T), ≤) is a totally ordered set for each overring T of R.

(b) The set of overrings of R is totally ordered under inclusion.

(c) v(T ) < ∗S for each pair of overrings T ( S of R.

Proof. 1⇒ 2: Suppose that (SStar(R), ≤) is a totally ordered set. ThenR is conducive

by Lemma 4.2.8. Now given T ∈ O(R) and ∗1, ∗2 ∈ Star(T ), (∗1)ι, (∗2)ι ∈ SStar(R) and

without loss of generality (∗1)ι ≤ (∗2)ι. Then I∗1 = (IT )∗1 = I(∗1)ι ⊆ I(∗2)ι = (IT )∗2 =

I∗2 for each I ∈ F (T ), so (a) is proved. (b) Follows from the fact that ∗T ∈ SStar(R)

for each T ∈ O(R). Finally, if T ( S are overrings of R then Rv(T ) = T ( S = R∗S ,

and v(T ) < ∗S by the assumption and (c) follows.

2 ⇒ 1: Suppose that 2 holds and choose two semistar operations ∗1 and ∗2 on R. If

R∗1 = R∗2 = T ∈ O(R), then (∗i)ι|F (T ) are star operations on T ([69, Theroem 2.21])

and without loss of generality we may assume that (∗1)ι|F (R) ≤ (∗2)ι|F (R). Then given

I ∈ F (R), I∗1 = (IT )∗1 = (IT )(∗1)ι|F (R) ⊆ (IT )(∗2)ι|F (R) = (IT )∗2 = I∗2 . Since R is

conducive, F (R) = F (R) ∪ {K} by Theorem 4.2.6.1 and ∗1 ≤ ∗2 . On the other hand,

if R∗1 6= R∗2 , then without loss of generality R∗1 ( R∗2 and ∗1 ≤ v(R∗1) < ∗R∗2 ≤ ∗2

by assumption. Hence (SStar(R), ≤) is totally ordered.

From now on, we say the integral domain R is a t*-domain(respectively, λ-

domain) if (SStar(R),≤) (respectively, (O(R),⊆)) is a totally ordered set.

Let us recollect the well-known facts concerning the valuation domains. The

proof is included for completeness.

Theorem 4.5.2. 1. If R is a conducive domain, then given two semistar operations ∗1

and ∗2, ∗1 ≤ ∗2 if only if I∗1 ⊆ I∗2 for each nonzero ideal I of R.

2. Let R be an integral domain. TFAE.
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(a) R is a valuation domain.

(b) F (R) is totally ordered under inclusion.

(c) F (R) is totally ordered under inclusion.

Proof. 1. ‘Only if’ implication is obvious. Suppose that I∗1 ⊆ I∗2 for each nonzero ideal

I of R. Now choose J ∈ F (R). We must show that J∗1 ⊆ J∗2 . Since K∗1 = K∗2 = K,

we may assume that J 6= K. Then by Theorem 4.2.6.1, there exists nonzero r ∈ R such

that rJ is a nonzero ideal of R. Hence rJ∗1 = (rJ)∗1 ⊆ (rJ)∗2 = rJ∗2 and J∗1 ⊆ J∗2 .

Therefore ∗1 ≤ ∗2.

2. (c)⇒ (b)⇒ (a) follows from definition.

(a)⇒ (c): Choose I, J ∈ F (R). We have to show that either I ⊆ J or J ⊆ I. If I = K

or J = K, then we have nothing to prove. Assume that I 6= K and J 6= K. Then

I, J ∈ F (R) since R is conducive by Theorem 4.2.6. Therefore there exists nonzero

r ∈ R such that rI and rJ are ideals of R. Since R is a valuation domain, either

rI ⊆ rJ or rJ ⊆ rI. Hence either I ⊆ J or J ⊆ I.

Lemma 4.5.3. ([69, Proposition 2.30], [69, Proposition 2.31], [22, Proposition 4.2.5])

Let R be a valuation domain with maximal ideal M . Then

1. |Star(R)| ≤ 2.

2. TFAE.

(a) R is a divisorial domain.

(b) |Star(R)| = 1.

(c) M is principal.

(d) M is divisorial.

(e) M2 6= M .

3. Given a prime ideal P of R, |Star(RP )| = 1 if and only if P 2 6= P .
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4. If R is a nondivisorial domain, then each nondivisorial ideal of R is of the form xM

for some nonzero x ∈ K.

5. For each ∗ ∈ SStar(R), there exists a prime ideal P of R such that either ∗ = v(P ) =

∗RP or ∗ = v(RP ).

We are ready to prove that on a valuation domain, the set of semistar opera-

tions is totally ordered.

Theorem 4.5.4. Each valuation domain is a c∗-domain. In fact, the following are

equivalent for an integral domain R.

1. R is a valuation domain.

2. R is an integrally closed t∗-domain.

3. R is an integrally closed λ-domain.

4. R is integrally closed and the set of valuation overrings of R is totally ordered under

inclusion.

Proof. 1⇒ 2: Let R be a valuation domain. It is well-known that R is integrally closed

([50, Theorem 10.3]). Next, we will prove that R satisfies the conditions of Lemma

4.5.1.2. It follows that R is a conducive domain by Theorem 4.2.6.2, and the set of over-

rings of R is totally ordered by Theorem 4.5.2.2. Moreover, the set of star operations

of a valuation domain is totally ordered ([69, Proposition 2.30]) and each overring of R

is a valuation domain, so Lemma 4.5.1.2(b) holds true for R. It remains to prove that

(c) of Lemma 4.5.1.2 is true for R.

We first claim that v(R) < ∗RP if P is a nonmaximal prime ideal of R (since RP = K

for P = 0, we may assume that P 6= 0). Indeed, for each divisorial ideal I of R we

have Iv(R) = I ⊆ IRP . In particular, Rv(R) = R ( RP = R∗RP . If I is a nondivi-

sorial (nonzero) ideal of R, then I = xM for some nonzero x ∈ K and M is not a
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divisorial ideal by Lemma 4.5.3. Thus Iv(R) = (xM)v(R) = xMv(R) = xR ( xRP =

xMRP = I∗RP . Hence v(R) < ∗RP and the claim is proved. Now given two overrings

T ( S of R, there exists prime ideals P ( Q of R so T = RQ and S = RP . Then

v(T ) = v(RQ) < ∗(RQ)PRQ
= ∗RP = ∗S by the claim, so R satisfies condition (c) of

4.5.1.2. Therefore (SStar(R), ≤) is a totally ordered set.

2⇒ 3: Follows from Lemma 4.2.8.7.

3⇒ 4: Trivial.

4 ⇒ 1: Suppose that 4 is true and Let {Vα}α∈A the set of valuation overrings of

R. Then R = ∩{Vα | α ∈ A} ([41, Theorem 57]). Now given x ∈ K \ R, there

exists β ∈ A so x 6∈ Vβ. Then x 6∈ Vα for all α ∈ A with Vα ⊆ Vβ. Hence

x−1 ∈ ∩{Vα | α ∈ A, Vα ⊆ Vβ} = ∩{Vα | α ∈ A} = R since the set of valuation

overrings of R is totally ordered under inclusion. Hence R is a valuation domain.

From Theorem 4.5.4 it follows that not every c∗-domain is a totally divisorial

domain (for example, any non-Noetherian one-dimensional valuation domain works).

On the other hand, there exists a c∗-domain that is not integrally closed (Remark

4.3.14). These two examples are actually t∗-domains. Hence one may ask whether

there is a c∗-domain that is not a t∗-domain. The author was unable to answer this

question, but on many classes of integral domains these two notions actually coincide.

First, consider the following theorem, which is just a consequence of [65, Theorem 3.12].

Theorem 4.5.5. Let R be an integral domain. Then the following are equivalent.

1. R is totally divisorial.

54



2. R is a stable divisorial domain.

3. R is a stable domain with an m-canonical ideal.

Proof. 1⇔ 2: This is exactly [65, Theorem 3.12].

2⇒ 3: Since R is a divisorial domain, R is an m-canonical ideal of R.

3⇒ 2: If I is an m-canonical ideal of R, then I is an invertible ideal of R since I : I = R

is a stable domain. Hence v(I) = v(R) and R is a divisorial domain.

One may suspect that totally divisorial conducive domains are t∗-domains,

and this indeed turns out to be true as we will see in the following lemmas. Moreover,

it will be shown later that a totally divisorial conducive domain has only finitely many

semistar operations if and only if its Krull dimension is finite (Lemma 5.3.5).

Lemma 4.5.6. (cf. [4, Lemma 2.4]) Let R be an integral domain and M a divisorial

maximal ideal of R. Then

1. M is invertible if and only if M : M = R.

2. M is not invertible if and only if R : M = M : M ) R.

Proof. 1: If M is invertible, then clearly M : M = R. For the converse, suppose that

M is not invertible. Then MM−1 = M and R : M = M : M . If R : M = R, then

Mv(R) = R : (R : M) = R : R = R, which contradicts the divisoriallity of M . Hence

M : M 6= R. Taking the contrapositive, we have the conclusion.

2: Follows similarly.

Lemma 4.5.7. Let R be an integral domain such that

1. Each overring of R is either a valuation domain or a conducive quasilocal domain

with noninvertible divisorial maximal ideal.
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2. T v(S) = T for each S, T ∈ O(R) with S ⊆ T .

Then R is a λ-domain.

Proof. Suppose that there exist S, T ∈ O(R) so S 6⊆ T and T 6⊆ S. Then U = S ∩ T is

an overring of R, and U cannot be a valuation domain since S and T are incomparable

overrings of U . Hence by assumption U is a quasilocal domain with noninvertible

divisorial maximal ideal N and N : N ∈ O(U) \ {U} by Lemma 4.5.6. Now, we claim

that each proper overring of U must contain N : N = U : N . Indeed, if V ∈ O(U)\{U},

then U : V ( U and U : V ⊆ N , so N : N = U : N ⊆ V v(U) = V by assumption.

Since both S and T are proper overrings of U , it follows that N : N ⊆ S ∩ T = U and

U = N : N which contradicts Lemma 4.5.6. Hence R is a λ-domain.

Lemma 4.5.8. Each totally divisorial conducive domain is a t∗-domain.

Proof. Let R be a totally divisorial conducive domain and U an overring of R. Then U

is divisorial by assumption, conducive by [17, Lemma 2.0] and quasilocal by Theorem

4.3.9 and Lemma 4.3.6. Let N be the maximal ideal of U . If N : N = U , then

v(N) ≤ v(U) and N is an m-canonical ideal of U , so U is a valuation domain by Lemma

4.3.2. Otherwise, U is a conducive quasilocal domain and N is noninvertible divisorial

maximal ideal of U by Lemma 4.5.6. Since each semistar operation on R is an extension

to some overring (Theorem 4.3.9), it follows easily that R is a c∗-domain, so T v(S) = T

for each S, T ∈ O(R) with S ⊆ T by Lemma 4.2.8. Hence by Lemma 4.5.7, R is a λ-

domain. Since given two semistar operations ∗1, ∗2 on R, both ∗1 and ∗2 are extensions

to overrings of R by Theorem 4.3.9, it follows that either ∗1 ≤ ∗2 or ∗2 ≤ ∗1. Hence R

is a t∗-domain.

56



In Theorem 4.3.9 we showed that a stable domain R has property ∗ if and only

if it has weak property ∗. In the following lemma we will show that a stable domain is

a c∗-domain if and only if it is a t∗-domain.

Lemma 4.5.9. Let R be an integral domain. Then the following are equivalent.

1. R is a totally divisorial conducive domain.

2. R is a stable t∗-domain.

3. R is a stable c∗-domain.

Proof. 1⇒ 2: Follows from Theorem 4.5.5 and Lemma 4.5.8.

2⇒ 3: Follows from Lemma 4.2.8.7.

3⇒ 1: Assume that R is a stable c∗-domain. Then given a nonzero ideal I of R, I : I is

a divisorial fractional ideal of R by Lemma 4.2.8.3. Hence by Lemmas 2.1.9 and 4.3.10

v(R) ≤ v(I : I) = v(I), and I is divisorial. Therefore R is a divisorial domain, and

must be a totally divisorial domain by Theorem 4.5.5. It follows that R is conducive by

Lemma 4.2.8.2.

There are nonstable domains where the set of c∗-domains and t∗-domains

coincide.

Lemma 4.5.10. 1. Let R be an integral domain. Then the following are equivalent.

(a) R is a valuation domain.

(b) R is a Prüfer t∗-domain.

(c) R is a Prüfer c∗-domain.

(d) R is a PvMD that is a c∗-domain.

2. Suppose that |SStar(R)| <∞. Then R is a (finite-dimensional) valuation domain if

and only if R is an integrally closed c∗-domain.
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Proof. 1. (a)⇒ (b): Follows from Theorem 4.5.4.

(b)⇒ (c): Follows from Lemma 4.2.8.7.

(c)⇒ (d): Follows from Lemma 2.2.2 and the fact that d ≤ v.

(d)⇒ (a): Assume that R is a PvMD. Then R is integrally closed ([29, Theorem 34.6]),

t = w ([23, Proposition 3.1]) and w = d by Lemma 4.2.8.5 and [51, Proposition 2.7(b)].

Therefore R is a Prüfer domain by [76, Theorem 8]. Now since R is a c∗-domain, each

overring of R is a divisorial fractional ideal by Lemma 4.2.8. Therefore R is a valuation

domain by [51, Propositions 4.1 and 4.4(3)].

2. ⇒: Let R be a valuation domain. Then R is integrally closed, and R is a c∗-domain

by Theorem 4.5.4 and Lemma 4.2.8.7.

⇐: Let R be an integrally closed c∗-domain. Then R is a Prüfer domain with finitely

many prime ideals ([36, Theorem 4.5]). Therefore R must be a finite-dimensional valu-

ation domain by Lemma 4.5.10.1.
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Chapter 5

Semistar operations on PVDs,

Noetherian domains and Mori

domains

5.1 Semistar operations on PVDs

In this section, we will briefly investigate the properties of PVDs, Noetherian

domains and Mori domains in terms of semistar operations. In particular, as it is well-

known that PVDs are one of the most successful generalization of valuation domains,

we are interested in the classification of PVDs that are t∗-domains, as a continuation

of Theorem 4.5.4. We also want to find the classes of Noetherian domains where c∗-

domains are t∗-domains.

Let us begin with the definition of a PVD. Recall that a prime ideal P of R

is strongly prime if x, y ∈ K with xy ∈ P implies that either x ∈ P or y ∈ P . If every
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prime ideal of R is strongly prime, then we say that R is a Pseudo-vaulation domain,

or a PVD for short ([31]). Let us begin with the following lemma.

Lemma 5.1.1. 1.Let P be a strongly prime ideal of an integral domain R. Then

(a) For each x ∈ K \R, x−1 ∈ P : P .

(b) Each proper ideal of P : P is also a proper ideal of R.

(c) P : P is a valuation domain with P its unique maximal ideal. Therefore, P is an

m-canonical ideal of P : P .

2. If R is a PVD, then v(P ) = ∗P :P for each P ∈ Spec(R).

Proof. 1. (a): Follows from [31, Proposition 1.2].

(b): Let I be a proper ideal of P : P . If x ∈ I \R, then x−1 ∈ P : P and I = P : P by

(a), which is a contradiction. Hence I is a proper ideal of R.

(c): The fact that P : P is a valuation domain follows from (a). Since (P : P )P = P , P

is an ideal of P : P . Now let x ∈ (P : P ) \P . Then for any a ∈ P , (ax)x ∈ P and a
x ∈ P

since P is strongly prime. Therefore x−1P ⊆ P and x−1 ∈ P : P . Thus P is the unique

maximal ideal of P : P , and must be an m-canonical ideal of P : P by Lemma 4.3.2.

2: By 1(c), P is an m-canonical ideal of P : P . Since a PVD is conducive ([17,

Proposition 2.1]), we have v(P ) = ∗P :P for each prime ideal P by [69, Proposition

2.34].

Remark 5.1.2. Note that the converse of Lemma 5.1.1.2 is false. Indeed, let (R,M)

be the domain from Remark 4.3.14. Then v(M) = ∗M :M since M : M = L[[X]] is a

divisorial domain. On the other hand, M is not a strongly prime ideal since X2 ∈ M

but X 6∈M .

The following are well-known.
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Theorem 5.1.3. 1. ([31, Proposition 2.10], [4, Lemma 2.4]) Let R be a quasilocal

domain with maximal ideal M that is not a valuation domain. Then R is a PVD if and

only if M : M is a valuation domain with maximal ideal M .

2. ([4, Proposition 2.6]) Let V be a valuation domain with maximal ideal M

and L is a subfield of V/M . Then the domain R arises from the following pullback is a

PVD, where the map φ : V → V/M is the canonical surjection. Conversely, every PVD

R with maximal ideal M that is not a valuation domain arises from the pullback. In

that case, L = R/M and V is the associated valuation domain with maximal ideal M .

R L

V V/M
φ

3. ([52, Corollary 3.5]) Let R be a PVD with maximal ideal M that is not a

valuation domain. Let V = M : M . Then R is divisorial if and only if [V/M : R/M ] =

2.

Corollary 5.1.4. Let R be a PVD with maximal ideal M and associated valuation

domain V . Then RP = VP for each nonmaximal prime ideal P .

Proof. Since V = M : M by Theorem 5.1.3.1, RP ⊆ VP = (M : M)P ⊆ MP : MP =

RP : RP = RP for each nonmaximal prime ideals P of R.

Park thoroughly investigated the cardinality of star operations on a PVD and

proved the following, among many other interesting results ([67, Lemmas 2.1 and 2.2,

Proposition 2.4, Theorems 2.5 and 2.6, Remark 2.9]);

Lemma 5.1.5. Let R be a PVD with maximal ideal M and V its associated valuation

overring. Then

1. Let I be a nonzero divisorial fractional ideal of R. If R ⊆ I ⊆ V , then either I = R
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or I = V .

2. If I is a nonzero nondivisorial ideal of R, then there exists nonzero a ∈ I such that

R ( a−1I ( V .

3. (a) Given two fractional ideals I and J of R, define a relation ∼ by I ∼ J if and

only if I = aJ for some nonzero a ∈ K. Then ∼ is an equivalence relation on the set

of fractional ideals of R.

(b) If I ∼ J , then either I and J are both divisorial or both nondivisorial.

(c) Let the relation ∼′ be define on the set of L-vector spaces between L and V/M by

U ∼′ W if and only if U = bW for some nonzero b ∈ V/M . Then ∼′ is an equivalence

relation and U ∼′ W if and only if φ−1(U) ∼ φ−1(W ).

(d) If I is a nondivisorial ideal, then I ∼ J for some J lying properly between R and

V . In this case, we define the rank of I to be dimLφ(J). Then it is independent of the

chopice of J ; hence, well-defined.

4. Assume that dimL(V/M) = n ≥ 3. Then for each integer m with 2 ≤ m < n, let Xm

be the complete set of class representatives under ∼ on the set of fractional ideals of R

of rank m. Now for given 2 ≤ m < n and S ⊂ Xm, the map ∗S : F (R)→ F (R) defined

by

I 7→ I∗S =


I, if I ∈ ∪{Xr | r < m} ∪ S

Iv(R), otherwise

is a star operation on R. Moreover, for a fixed m, distinct subset S of Xm gives a

distinct ∗S.

5. |Star(R)| ≤ 2 if and only if dimL(V/M) ≤ 3.

6. If dimL(V/M) = n ≥ 4, then |X2| ≥ bn/2c, where bn/2c is the largest integer less

than or equal to n/2.
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Another characterization of valuation domain is as follows.

Lemma 5.1.6. Let R be an integral domain. Then the following are equivalent.

1. R is a valuation domain.

2. R is an integrally closed PVD with at most two star operations.

Proof. 1⇒ 2: Follows from [50, Theorem 10.3], [31, Proposition 1.1] and Lemma 4.5.3.

2 ⇒ 1: Assume that 2 holds. Recall that every PVD is a quasilocal domain ([31,

Corollary 1.3]). Thus R is a (quasilocal) Prüfer domain by [35, Theorem 3.3], so it must

be a valuation domain.

We have already seen that a valuation domain is t∗-domain (Theorem 4.5.4)

that has property ∗ (Theorem 4.3.1) and has at most two star operations (Lemma

4.5.3). Therefore we may conjecture that those types of domains are closely related to

each other, and indeed, the following lemma shows that a PVD must have either all or

none of the properties mentioned above.

Lemma 5.1.7. Let R be a PVD. Then the following are equivalent.

(a) |Star(R)| ≤ 2.

(b) R is a t∗-domain.

(c) R has property ∗.

Proof. We denote the maximal ideal of R by M and the associated overring by V , as

usual.

(a) ⇒ (b): If R is a valuation domain, then the conclusion follows from Theorem 4.3.1

and Theorem 4.5.4. Let R be a PVD that is not a valuation domain and |Star(R)| ≤ 2.

Then V = M : M is a valuation domain with maximal ideal M ([31, Theorem 2.10]),

and [V/M : R/M ] ≤ 3 by Lemma 5.1.5.5. But then O(R) = {R} ∪O(V ) ([51, Theorem

63



4.5]). Thus R is a λ-domain and R is conducive ([17, Proposition 2.1]). Also, since

|Star(T )| ≤ 2 for each T ∈ O(R), (Star(T ),≤) is a totally ordered set for each T ∈ O(R).

Moreover, v(R) < ∗V . Indeed, for a (nonzero) principal ideal I of R, Iv(R) = I ( IV .

For nonprincipal ideal I of R, Iv(R) = IV by [31, Proposition 2.14]. Hence v(R) < ∗V

by Theorem 4.5.2. This, combined with Theorem 4.5.4 and Corollary 5.1.4, yields that

T ( S implies v(T ) < ∗S for S, T ∈ O(R). Therefore R is a t∗-domain by Lemma 4.5.1.

(b)⇒ (a): If |Star(R)| > 2, then |X2| ≥ 2 by 5 and 6 of Lemma 5.1.5 and we can choose

distinct I1, I2 ∈ X2. Given i ∈ {1, 2}, set Si = {Ii}. Then (I1)∗S2 = (I1)v(R) ) I1 =

(I1)∗S1 and (I2)∗S1 = (I2)v(R) ) I2 = (I2)∗S1 , so ∗S1 � ∗S2 and ∗S2 � ∗S2 . Hence R is

not a t∗-domain. Taking the contrapositive, we have the desired result.

(a) ⇒ (c): Suppose that (a) is true. Given a semistar operation ∗ on R such that

R∗ 6= R, R∗ = VP = RP for some nonmaximal prime ideal P of R by Corollary 5.1.4.

Since RP is a valuation domain, either ∗ = v(P ) or ∗ = v(RP ) by Lemma 4.5.3.5. On

the other hand, if R∗ = R, then either ∗ = d or ∗ = v(R) by assumption and the fact

that R is conducive. Note that given an ideal I of R, d 6= v(I) implies v(R) ≤ v(I)

since R is a t∗-domain. Then Iv(R) = I by 2.1.9, and this means that if R does not

have a proper m-canonical ideal, then R is a divisorial domain. But then v(R) = d by

Theorem 4.5.2.1. Therefore R has an m-canonical ideal I, and d = v(I). Thus R has

property ∗.

(c) ⇒ (a): Assume that (c) holds. We first claim that for each S ⊂ X2, ∗S = v(I) for

some I ∈ S. Indeed, we must have ∗S = v(J) for some nonzero ideal J by assumption.

Now J∗S = Jv(J) = J , so either J ∼ I for some I ∈ S or J is divisorial by Lemma

5.1.5.4. If J is divisorial, then ∗S = v(R), and S consists of divisorial ideals, which

contradicts Lemma 5.1.5.1 since X2 consists of nondivisorial ideals. Hence J ∼ I for
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some I ∈ S and J = aI for some nonzero a ∈ K. Now v(J) = v(I) and ∗S = v(I).

Hence the claim is proved. Now if |Star(R)| > 2, then |X2| ≥ 2 by 5 and 6 of Lemma

5.1.5 and we can choose distinct I1, I2 ∈ X2. Given i ∈ {1, 2}, set Si = {Ii} and

T = {I1, I2}. Then we must have ∗Si = ∗T = v(Ii) for some i ∈ {1, 2} by the claim,

which contradicts the second assertion of Lemma 5.1.5.4.

Remark 5.1.8. Lemma 5.1.7 sharpens both Theorem 4.3.1 and Theorem 4.5.4.

From now on, given a PVD R with maximal ideal M a valuation overring

associated to R will denote the valuation overring M : M .

Remark 5.1.9. Even a totally divisorial PVD may not be a valuation domain. For

example, consider R = Q + XQ(
√

2)[[X]], M = XQ(
√

2)[[X]], K the quotient field of

R and V = Q(
√

2)[[X]]. Then O(R) = {T + M | T is a ring such that Q ⊆ T ⊆

Q(
√

2)} ∪ {V,K} = {R, V,K} by [12, Theorem 3.1]. It follows that M is the unique

maximal ideal of R ([12, Theorem 2.1]) and R is a PVD with maximal ideal M by ([31,

Theorem 2.7]). Moreover, since [V/M : R/M ] = [Q(
√

2) : Q] = 2, R is divisorial by

Theorem 5.1.3. V is a Noetherian valuation domain, so it must be divisorial. Hence R

is a totally divisorial PVD, but it is not a valuation domain ([8, Theorem 2.1 (e)]).

Recall that an ideal I of R is said to be recurrent if R : (I : I) = I ([60]). Recall

that I is strong if I(R : I) = I and strongly divisorial if I is strong and divisorial([9]).

The next lemma shows that an ideal is recurrent if and only if it is strongly divisorial.

Lemma 5.1.10. Let R be an integral domain. Then

1. An ideal I of R is strongly divisorial if and only if it is recurrent.

2. Let R be a PVD with maximal ideal M that is also a c∗-domain. If R is not a

valuation domain, then Spec(R) ∪ {R} is the set of recurrent ideals of R and O(R) =

{R} ∪O(V ) where V = M : M .
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Proof. 1. Let I be a strongly divisorial ideal. Then since I(R : I) = I, we have

R : I = I : I. Hence R : (I : I) = R : (R : I) = I and I is recurrent. Conversely, if I

is a recurrent ideal of R, then R : (R : I) ⊆ R : (I : I) = I, so I is a divisorial ideal.

Therefore v(R) ≤ v(I) by Lemma 2.1.9.2, and R : I = R : (R : (I : I)) = Rv(I)v(R) =

Rv(I) = I : I by Lemma 2.1.8(c), so I(R : I) = I(I : I) = I. Therefore I is strongly

divisorial.

2. Since R is a c∗-domain, every overring of R is a divisorial fractional ideal by Lemma

4.2.8. Now the conclusion follows from [51, Proposition 4.1] and [51, Theorem 4.5].

We also have the characterization of PVDs with weak property ∗.

Theorem 5.1.11. Let R be a PVD with maximal ideal M and R ( V = M : M . Then

the following are equivalent.

1. R has weak property ∗.

2. Given an overring T of R, T is a PVD with maximal ideal MT and valuation ring

VT = MT : MT such that [VT /MT : T/MT ] <∞.

3. [V/M : R/M ] <∞.

4. R has an m-canonical ideal.

Proof. By Corollary 4.3.8, [3, Corollary 2.2] and [11, Theorem 3.1].

5.2 Integral domains having four semistar operations

Mimouni and Samman classified integral domains having precisely three semis-

tar operations ([54, Proposition 15]). In this section, we attempt to find a similar classi-

fication for integral domains that possess exactly four semistar operations. First recall

the following well-known results.
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Lemma 5.2.1. Let R be an integral domain.

1. The following are equivalent.

(a) |O(R)| = 1.

(b) |SStar(R)| = 1.

(c) R is a field.

2. The following are equivalent.

(a) |O(R)| = 2.

(b) R is a one-dimensional valuation domain.

3. The following are equivalent.

(a) |SStar(R)| = 2.

(b) R is a Noetherian valuation domain.

4. The following are equivalent.

(a) |SStar(R)| = 3 and |O(R)| = 2.

(b) R is a one-dimensional non-Noetherian valuation domain.

Proof. 1. (a) ⇒ (b): If |O(R)| = 1, then R = K and xR = xK = K for each nonzero

x ∈ K. Thus ∗ = e for each semistar operation ∗ on R.

(b)⇒ (c): If R has only one semistar operation, then R = Rd = Re = K.

(c)⇒ (a): Clear.

2. By [50, Exercise 10.5].

3. By [70, Theorem 2.7].

4. (a)⇒ (b): Follows from 2 and 3.
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(b) ⇒ (a): Assume that (b) is true. Then |O(R)| = 2 by 2, and |SStar(R)| =

|Star(R)| + |SStar(K)| by Theorem 4.4.3 since a valuation domain is conducive and

quasilocal. |SStar(K)| = 1 follows from 1. Since R is non-Noetherian, M is nonprinci-

pal and |Star(R)| = 2 by Lemma 4.5.3 and |SStar(R)| = 3.

The following lemma gives a classification of domains with four semistar op-

erations. Note that it tells us that any integral domain that has exactly four semistar

operations is either totally divisorial or a PVD.

Lemma 5.2.2. Let R be an integral domain. Then R has exactly four semistar opera-

tions if and only if one of the following holds;

(a) |O(R)| = 4 and R is a totally divisorial conducive domain.

(b) R is a two-dimensional valuation domain with exactly one idempotent nonzero prime

ideal (recall that an ideal I of a commutative ring R is called idempotent if I2 = I).

(c) R is a divisorial PVD with one-dimensional non-Noetherian valuation domain as

its associated valuation overring.

(d) R is a Noetherian quasilocal domain that has two star operations. In this case R is

a PVD.

Moreover, any integral domain that has exactly four semistar operations is a t∗-domain

and has property ∗.

Proof. ⇒: Suppose that |SStar(R)| = 4. If |O(R)| ≤ 2, then |SStar(R)| ≤ 3 by Lemma

5.2.1, a contradiction. Hence |O(R)| ≥ 3. On the other hand, if |O(R)| ≥ 5 so there

exists distinct overrings T1, ···, T5 of R, then {∗Ti | 1 ≤ i ≤ 5} is a set of distinct semistar

operations and |SStar(R)| ≥ 5, another contradiction. Therefore |O(R)| ≤ 4.

If |O(R)| = 3 with O(R) = {R ( T ( K}, then O(R) is totally ordered under inclu-

sion. Therefore Spec(R) is totally ordered. In particular, R is quasilocal with a unique
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maximal ideal M . It also follows that dim(R) ≤ 2, since if R has an ascending chain

of three prime ideals, then the localization of R at each of those prime ideal would

form four distinct overrings, which is a contradiction. Finally, since |O(T )| = 2, T is a

one-dimensional valuation domain by Lemma 5.2.1.2.

(a): Now consider the case when |O(R)| = 4. Then there are four semistar operations

that are extension to overrings of R, and they must be the only semistar operations on

R. Hence R is totally divisorial and conducive and has property ∗ by Theorem 4.3.9.

Moreover, R is a t∗-domain by Lemma 4.5.8.

(b): Assume that |O(R)| = 3 and R is integrally closed. Then by Theorem 4.5.4

R must be a valuation domain. Moreover, R is two-dimensional by [51, Theorem

2.5 (1)]. Let P be the nonzero nonmaximal prime ideal of R. Hence |SStar(R)| =

|Star(R)|+ |SStar(RP )| by Theorem 4.4.3. Thus |Star(R)| = 1 and |SStar(RP )| = 3 or

|Star(R)| = 2 and |SStar(RP )| = 2. Assume the former. Then M 6= M2 and P 2 = P

by Lemma 4.5.3. Similarly, M = M2 and P 6= P 2 for the latter. Thus R is a two-

dimensional valuation domain with exactly one nonzero idempotent prime ideal.

(c): Assume that |O(R)| = 3 and R is not integrally closed. Then T must be the

integral closure of R, and R must be one-dimensional. Now assume that R is a divi-

sorial domain. Then since R is not a valuation domain, it follows that M : M 6= R

by Lemma 4.3.2. Therefore M : M = T must be the integral closure of R. Since

R : (M : M) = M 6= 0, it also follows that R is a conducive domain by Theorem

4.2.6. Now |Star(R)| + |SStar(M : M)| = |SStar(R)| = 4 by Theorem 4.4.3, and

69



|SStar(M : M)| = 3. Since |O(M : M)| = 2, M : M is a non-Noetherian valuation

domain by Lemma 5.2.1.4. It also follows that R must be a PVD. Indeed, suppose that

M is not the maximal ideal of M : M . Then by [13, Theorem 5.7], N2 ⊆M ( N , where

N is the maximal ideal of M : M . But then M : M is a divisorial domain by Lemma

4.5.3.2, and must be a Noetherian valuation domain, a contradiction. Hence M is the

maximal ideal of M : M and R must be a PVD ([31, Theorem 2.10]). It is a t∗-domain

with property ∗ by Lemma 5.1.7.

(d): Finally, suppose that |O(R)| = 3 and R is neither integrally closed nor diviso-

rial. Then |Star(R)| ≥ 2 and |SStar(T )| ≥ 2 where T is the overring other than R and

K. On the other hand, |Star(R)|+ |SStar(T )| ≤ |SStar(R)| = 4 (Theorem 4.4.3) and we

must have |Star(R)| = |SStar(T )| = 2. Therefore R is a conducive quasilocal domain

by Theorem 4.4.3 and T is a Noetherian valuation domain by Lemma 5.2.1. Moreover,

R must be a one-dimensional domain since T is the integral closure of R. We claim

that M is a divisorial ideal. If not, then Mv(R) = R and R = M : M = R : M , so

Rv(M) = R and v(M) ≤ v(R) by Lemma 2.1.9. Since M is not divisorial, v(M) 6= v(R)

by Lemma 2.1.9 and we must have v(M) = d. But then M is an m-canonical ideal and

R is a valuation domain by Lemma 4.3.2, a contradiction.

Hence v(M) 6= d and either v(M) = v(R) or v(M) = ∗T . If v(M) = v(R), then M

must be invertible by Lemma 4.5.6. Thus M = mR for some m ∈ R ([41, Theorem 59]).

Since R is a one-dimensional domain, we must have ∩n∈NmnR = 0 ([56, Corollary 1.4]).

Therefore given a nonzero x ∈ R, there exists a unique n ∈ N0 so x ∈ mnR \mn+1R.

Then x = mnu for some unit u of R, and the map x 7→ n defines a discrete valuation

ν on K such that R = {x ∈ K | ν(x) ≥ 0}. But then R is a Noetherian valuation
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domain, which is a contradiction. Hence M is not invertible and v(M) 6= v(R), and

v(M) = ∗T . Therefore, from the fact that M is divisorial, we have v(R) ≤ v(M) = ∗T

by Lemma 2.1.9. Thus d < v(R) < ∗T < e and R is a t∗-domain. Finally, R has an

m-canonical ideal. If not, then v(I) ≥ v(R) for each nonzero ideal I of R and I is

divisorial by Lemma 2.1.9, which contradicts the assumption that R is not a divisorial

domain. Therefore R has property ∗. To show that R is a Noetherian domain, we

claim that R has a nonzero finitely generated ideal that is not a divisorial ideal of R.

Indeed, if not, then for any x ∈ T \R, (1, x)R is a divisorial (fractional) ideal of R. Now

R ⊆ (1, x)R ⊆ T , and M = R : T ⊆ R : (1, x)R ⊆ R, so M = (1, x)R since (1, x)R 6= R.

Thus T = R : M = ((1, x)R)v(R) = (1, x)R, so T is a finitely generated R-module. But

then since T is a Noetherian domain, R must be a Noetherian domain by Eakin-Nagata

theorem. Therefore v(R) = v(R)f = d and R is divisorial, which is a contradiction.

Hence there must be a finitely generated nondivisorial ideal I of R. Since v(R) � v(I)

by Lemma 2.1.9, we must have v(I) = d and I is a finitely generated m-canonical ideal

I. Then T is a finite R-module by [11, Corollary 2.5]. Thus again by Eakin-Nagata

theorem R must be a Noetherian domain. The fact that R is a PVD follows from [35,

Theorem 4.1.3] and [31, Theorem 2.10].

⇐: Suppose that R is one of (a), (b), (c) and (d).

(a): If R is totally divisorial and conducive with |O(R)| = 4, then since each semis-

tar operation on R is extension to overring by Theorem 4.3.9, R has four semistar

operations.
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(b): Let R be a two-dimensional valuation domain with exactly one nonzero idem-

potent prime ideal. Then |SStar(R)| = |Star(R)|+ |SStar(RP )| by Theorem 4.4.3. Now

the conclusion follows from Lemma 4.5.3.3.

(c): If R is a divisorial PVD whose associated valuation overring is a one-dimensional

non-Noetherian domain V , then [V/M : R/M ] = 2 by [67, Theorem 2.15(1)], so

O(R) = {R} ∪ O(V ) = {R, V,K} by [51, Theorem 4.5]. Moreover, R is conducive

([17, Proposition 2.1]). Therefore |SStar(R)| = |Star(R)| + |SStar(V )| = 1 + 3 = 4 by

Theorem 4.4.3.

(d): If R is a Noetherian quasilocal domain with maximal ideal M that has two star

operations, then V = M : M is a Noetherain valuation domain, O(R) = {R, V,K},

[V/M : R/M ] = 3 and M is the maximal ideal of V by [35, Theorem 4.1]. Thus R

is a PVD by [31, Theorem 2.10]. Hence R is conducive and |SStar(R)| = |Star(R)| +

|SStar(V )| = 2 + 2 = 4.

Let us provide the examples of the domains that have exactly four semistar

operations, as described in Lemma 5.2.2.

Example 5.2.3. Recall that given a nonzero field L there exists a one-dimensional non-

Noetherian valuation domain V with maximal ideal M such that V = L + M . Indeed,

let L be a field, α an irrational number and X,Y indeterminates over L. Then the map

φ : L[X,Y ] → R ∪ {∞} defined by φ(Σn,m≥0cn,mX
nY m) = min{n + mα | cn,m 6= 0}

determines a valuation of L(X,Y ) with value group Z+ αZ ([45, Exercise 10.11]). Let

V be the valuation domain of L(X,Y ) that corresponds to this valuation. Then since the

value group of V is a subgroup of R that is not isomorphic to Z, V is a one-dimensional
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non-Notherian valuation domain ([45, Theorem 10.7]). Moreover, V = L + M where

M is the maximal ideal of V ([29, Exercise 20.12]).

(a) Consider L[[X2, X5]] where L is a field and X is an indeterminate. Then it is

a totally divisorial conducive domain with four overrings and four semistar operations

(Lemma 5.3.7).

(b) Let V be the valuation domain described in the beginning of this example and set

F be the quotient field of V . Then choose an indeterminate W and set T = F [[W ]]

and N = WT . Now R = V +N is a two-dimensional non-divisorial valuation domain

with Spec(R) = {0, N,M + N} by [12, Theorem 2.1, Corollary 4.4]. Now M + N is

an idempotent ideal and RN = T is a Noetherian valuation domain, so N2 6= N . On

the other hand, if L = Q(Z) for some indeterminate Z, then given a one-dimensional

non-Noetherian valuation domain V = L + M , S = Q[[Z]] + M is a two-dimensional

valuation domain with Spec(R) = {0,M,M +ZL} by [12, Theorem 2.1, Corollary 4.4].

It follows that M2 = M and (M + ZL)2 6= M + ZL.

(c) Let L = Q(
√

2), V = L + M a one-dimensional non-Noetherian valuation do-

main with maximal ideal M and set R = Q + M . Then R is a divisorial PVD with V

its associated valuation overring by Theorem 5.1.3.

(d) Let V = Q( 3
√

2)[[X]], where X is an indeterminate. Set M = XV and R = Q+M .

Then R is a Noetherian PVD with maximal ideal M and assocaited valuation overring

V by Theorem 5.1.3, and [V/M : R/M ] = 3. Hence |Star(R)| = 2 ([67, Theorem 2.6]).
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5.3 On Mori c∗-domains and totally divisorial conducive

domains

Recall that an integral domain R is called a Mori domain if it has the ascending

chain condition on divisorial ideals of R. The next lemma shows that the overrings of

a Mori c∗-domain behave nicely.

Lemma 5.3.1. Let R be a Mori c∗-domain. Then R is a one-dimensional λ-domain,

and O(R) is a finite set.

Proof. It follows that by Lemma 4.2.8.4 and [51, Proposition 4.1 and Corollary 4.2]

that R is a one-dimensional quasilocal domain and either R is a Noetherian valuation

domain or R has a strongly divisorial maximal ideal M and M : M ⊆ T for each

T ∈ O(R) \ {R} where M is the maximal ideal of R. In other words, either R is a

DVR or M : M is the unique minimal (proper) overring of R. Moreover, M : M is a

Mori c∗-domain ([10, Proposition 15], Lemma 4.2.8.4). Now set R0 = R, M0 = M and

Rn+1 = Mn : Mn, where Mn is the maximal ideal of Rn. Then {Rn}n≥0 is an ascending

chain of O(R) consisting of Mori c∗-domains. Since R has ascending chain property on

O(R) ([51, Corollary 4.3]), Rn = Rn+1 for some n ∈ N. Such Rn must be a Noetherian

valuation domain by above argument. Choosing n to be the smallest such number, it is

straightforward to verify that O(R) = {Ri}ni=0 ∪ {K}.

Corollary 5.3.2. Let R be an integral domain. Then R is an integrally closed Mori

c∗-domain if and only if it is a Noetherian valuation domain.

Proof. ⇒: The fact that R is a valuation domain follows from Theorem 4.5.4 and Lemma

5.3.1. Now R is Noetherian by [71, Corollary 2].
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⇐: Let R be a Noetherian valuation domain. Then R is clearly an integrally closed

Mori domain, and R is a c∗-doman by Theorem 4.5.4 and Lemma 4.2.8.7.

Remark 5.3.3. Note that the condition ‘integrally closed’ in Corollary 5.3.2 cannot be

replaced by ‘seminormal’ (an integral domain is seminormal if for each x ∈ K such that

x2 ∈ R and x3 ∈ R, x ∈ R). Indeed, the integral domain described in Lemma 5.2.2 is a

PVD, which is a seminormal ([5, Proposition 3.1(a)]) Noetherian t∗-domain, but it is

not a valuation domain.

Lemma 5.3.4. A divisorial Noetherian PVD is totally divisorial. Moreover, it has at

most three semistar operations.

Proof. Let R be a divisorial Noetherian PVD. Then by Lemma 5.1.7 and Lemma 4.2.8.7,

R is a c∗-domain. Hence R is a one-dimensional domain by Lemma 5.3.1. Moreover,

O(R) = {R,M : M,K} where M is the maximal ideal of R. Hence it suffices to show

that M : M is a divisorial domain. If R is a valuation domain, then M : M = R is a

Noetherian valuation domain and |SStar(R)| = 2 by Lemma 5.2.1. Suppose that R is

not a valuation domain. Now [V/M : R/M ] = 2 where V = M : M is the associated

valuation overring of R. It follows that V is a Noetherian valuation domain since V is

a finite R-module. Hence R is totally divisorial and |SStar(R)| = |O(R)| = 3.

Next, we prove that on a quasilocal Noetherian domain with infinite residue

field that has only finitely many semistar operations, c∗-domains are actually t∗-domains.

Moreover, it is ‘almost totally divisorial’ in some sense.

Lemma 5.3.5. Let R be a Noetherian c∗-domain. Then R is a λ-domain and O(R) is

a finite set that consists of Noetherian c∗-domains. Moreover, if the residue field of R

is infinite and Star(R) is a finite set, then R is a t∗-domain and at most one overring
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of R is a nondivisorial domain. Such nondivisorial domain, if it exists, must be a PVD

that has exactly two star operations.

Proof. The first assertion follows from Lemma 5.3.1,[10, Corollary 7] and Lemma 4.2.8.4.

Now assume thatR/M is an infinite set and Star(R) is a finite set. Then by [38, Theorem

1.13], only one of the following three cases happen;

(a). R is a Noetherian valuation domain.

(b). dimR/M (M : M/M) = 2 and R is a divisorial domain.

(c). dimR/M (M : M/M) = 3 and R is a PVD with exactly two star operations.

If R is a Noetherian valuation domain then we have nothing to prove. Assume that

dimR/M (M : M/M) = 2 and R is a divisorial domain. Then the residue field of M : M

is infinite by [38, Theorem 2.4]. On the other hand, if dimR/M (M : M/M) = 3 and R

is a PVD with exactly two star operations, then the associated valuation overring V is

Noetherian, and it must be the domain described in Lemma 5.2.2(d). Hence from the

induction on |O(R)|, we have that R is a t∗-domain and at most one overring of R is

nondivisorial.

The following lemma provides a way to count the total number of semistar

operations on a totally divisorial conducive domain.

Lemma 5.3.6. Let R be a totally divisorial conducive domain. Then R′ is a finitely

generated R-module and |O(R)| = |SStar(R)| = l(R′/R) + dim(R) + 1. In particular,

R has only finitely many semistar operations if and only if the Krull dimension of R

is finite. Moreover, R = R0 ( R1 ( · · · ( Rn = R′ forms a composition series of

R-modules, where {Ri}0≤i≤n is the set of overrings of R that is contained in R′.

Proof. Note first that the equality |SStar(R)| = |O(R)| follows from Theorem 4.3.9. Set

R0 = R and M0 = M . Then inductively define Rn+1 = Mn : Mn for each n ∈ N, where
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Mn is the unique maximal ideal of Rn. We now claim that n(R) = inf{r ∈ N0 | Rr =

Rr+1} is a finite number. Indeed, when R is Noetherian, we have |O(R)| = n(R) + 2

and n(R) is finite by the proof of Lemma 5.3.1. Moreover, dim(R) = 1 by [17, Corollary

2.7]. Hence |O(R)| = |SStar(R)| = n(R) + dim(R) + 1.

Consider the case when R is non-Noetherian. Then the Krull dimension of R is at least

2 ([13, Proposition 7.1]). Now by [65, Lemma 3.10], R′ = Rr for some r ∈ N, and

O(R) = {R1, · · ·, Rr} ∪ {RP | P ∈ Spec(R)}. Again, it follows that n(R) = r <∞ and

Spec(R) is totally ordered under inclusion by Lemma 4.3.6.3 and Theorem 4.3.9. Thus

|O(R)| = n(R)+dim(R) + 1.

It remains to show that n(R) = l(R′/R). It suffices to show that Rn/Rn−1 is a simple

R module for n = 1, 2, · · ·, n(R). But this follows from the proof of [13, Proposition

6.1].

The domain described in the following lemma is a well-known example of

nonintegrally closed totally divisorial conducive domains, and finding the number of its

semistar operations is easy.

Lemma 5.3.7. Let L be a field, X an indeterminate and Rn = L[[X2, X2n+1]] for each

n ∈ N0. Then

1. Each semistar operation on Rn is an extension to some overring of Rn.

2. O(Rn) = {Ri}ni=0 ∪ {K} where K is the quotient field of R0. Therefore SStar(Rn) =

{∗Ri}ni=0 ∪ {e} is totally ordered under ≤.

Proof. 1. Given n ∈ N0, each ideal of Rn can be generated by at most two elements

([73, Proposition 3.4]), so Rn is a (Noetherian) totally divisorial domain ([8, Proposition

4.8]). On the other hand, since R0 = L[[X]] is a valuation overring of Rn and Rn : R0 =

X2n+1R0 6= 0, Rn is conducive by Theorem 4.2.6. Hence the conclusion follows from
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Theorem 4.3.9.

2. Since L[[X]] = R′n = Rn +XRn +X3Rn + · · ·+X2n−1Rn, so {X2i−1 +Rn}1≤i≤n is a

minimal generating set of R′n/Rn as an Rn-module. Thus l(R′n/Rn) = n. Since Rn has

Krull dimension 1, |O(Rn)| = |SStar(Rn)| = n+2. SinceK,L[[X]](= R0), R1, R2, ···, Rn

are n + 2 overrings of Rn, these are the only overrings of Rn. Therefore O(Rn) =

{Ri}1≤i≤n ∪ {K} and SStar(Rn) = {∗Ri}1≤i≤n ∪ {e}.

Remark 5.3.8. With a slight modification of the example given by Mimouni and Samman([55,

Example 3.3(2)]), given (n,m) ∈ N2 with n ≥ 2 and m ≥ n + 2, we can construct an

integral domain Sn,m that satisfies the following conditions.

1. Sn,m is a nonintegrally closed non-Noetherian t∗-domain.

2. |O(Sn,m)| = |SStar(Sn,m)| = m.

3. Sn,m has Krull dimension n.

Indeed, let L be a field and X1, X2, · · ·, Xn be indeterminates over L. Set Ln = L,

Li = L(Xi+1, · · ·, Xn) so Li−1 = Li(Xi) for 1 ≤ i ≤ n. Now set K = L0, and

Vi = Li[[Xi]] + Mi−1 for 1 ≤ i ≤ n where Mi is the maximal ideal of Vi (V0 = L0

and M0 = 0 by convention). Then Vi are valuation domains of Krull dimension i

([12, Theorems 2.1 and 3.1]), and Mi = XiVi, so Vi = Li + Mi. Now set Ri,j =

Li+1[[X2
i+1, X

2j+1
i+1 ]] and Ti,j = Ri,j + Mi for each j ∈ N0. Then dim(Ti,j) = i + 1

and O(Ti,j) = {S + Mi | S ∈ O(Ri,j)} ∪ O(Vi) = {Ti,r}0≤r≤j ∪ O(V ) (Lemma 5.3.7,

[12, Theorems 2.1 and 3.1]). Moreover, Ri,j is totally divisorial and conducive by

Lemma 5.3.7, so Ti,j is divisorial by [12, Corollary 4.4]. Since this is true for ar-

bitrary i and j, we have that Ti,j is totally divisorial. Ti,j conducive since Ti,0 is a
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valuation domain and X2j
i+1Ti,0 = Ti,j : Ti,0. Now T ′i,j = R′i,j + Mi = Ri,0 + Mi, so

l(T ′i,j/Ti,j) = j. Hence |O(Ti,j)| = |SStar(Ti,j)| = i + j + 2 by Lemma 5.3.6. In fact,

O(Ti,j) = {Ti,j ( Ti,j−1 ( Ti,j−2 ( · · · ( Ti,0 ( Vi ( Vi−1 ( · · · ( V1 ( V0}.

Now set Sn,m = Tn−1,m−n−1 and we have the desired domain.

Lastly, we will briefly investigate the property of numerical semigroup rings

from the perspective of semistar operations. Precisely speaking, we establish the char-

acterizations of numerical semigroup rings that are c∗-domains. Recall that a nu-

merical semigroup is a nonempty set H ⊆ N that is closed under addition and con-

tains the zero element such that N \ H is a finite set. It is known that a numerical

semigorup can be generated by finitely many natural numbers α1 < · · · < αn such that

gcd(α1, · · ·, αn) = 1. Conversely, the semigroup generated by natural numbers α1, · · ·, αn

is a numerical semigorup if gcd(α1, · · ·, αn) = 1 ([28, Lemma 2.1]). Given a field L and a

numerical semigroup α =< α1, · · ·, αn > we can consider the numerical semigroup ring

L[[Xα1 , · · ·, Xαn ]] where X is an indeterminate of L. The following lemma shows that

on a numerical semigroup ring, many classes of integral domains coincide.

Lemma 5.3.9. Let L be a field, X an indeterminate, α = {αi}ni=1 a subset of N with

αi < αj for each i < j and αj 6∈ Σ1≤i<jαiN. Define Rα = L[[Xα1 , · · ·, Xαn ]] for each

such α and let β the greatest common divisor of {αi}ni=1. Then the quotient field of Rα

is that of L[[Xβ]], and the following are equivalent.

1. Rα is a t∗-domain.

2. Rα is a c∗-domain.

3. α1 ≤ 2β.

4. Rα = L[[X2β, X(2n+1)β]] for some n ∈ N0.

5. Each semistar operation on Rα is an extension to some overring of Rα.
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6. Rα has property ∗.

7. Rα is stable.

8. R is totally divisorial.

Proof. The first assertion follows from the assumption that Σn
i=1αiZ = βZ. Now set

Y = Xβ. Note that Y is still an indeterminate over L.

1⇒ 2: Follows from Lemma 4.2.8.7.

2 ⇒ 3: Suppose that 2 is true. If α1 > 2β, then since β is a gcd of {α}ni=1 we have

α1 ≥ 3β. Hence L+Y 3L[[Y ]] is an overring of Rα that is a c∗-domain by Lemma 4.2.8.4.

But this contradicts Remark 4.4.5.

3⇒ 4: Suppose that 3 is true. Then again since β is a gcd of {α}ni=1, either α1 = β or

α1 = 2β. If α1 = β, then Rα = L[[Y ]]. If α1 = 2β, then α2 = (2n+ 1)β for some n ∈ N

and Rα = L[[Y 2, Y 2n+1]].

4⇒ 1 and 5: Follows from Lemma 5.3.7.

5⇒ 6: Follows from Theorem 4.3.9.

6 ⇒ 3: If α1 > 2β, then α1 ≥ 3β, L + Y 3L[[Y ]] is an overring of Rα and Rα does not

have property ∗ by Remarks 4.3.14 and 4.4.5.

5⇒ 8: Follows from Theorem 4.5.4.

8⇒ 7: By Theorem 4.5.5.

7⇒ 3: Suppose thatRα is stable. Then each overring ofRα is stable ([66, Theorem 5.1]).

Therefore if α1 > 2β, then L+ Y 3L[[Y ]] is a stable overring of Rα. Now L+ Y 3L[[Y ]]

has weak property ∗ by Remark 4.4.5. Hence L+Y 3L[[Y ]] is a totally divisorial domain

by Theorem 4.3.9, but L+ Y 3L[[Y ]] is not even divisorial (Theorem 4.4.4), so we have

a contradiction.
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5.4 Summarization of implications and equivalencies

The following lemma shows that for a completely integrally closed domain R

is a c∗-domain if and only if (SStar(R),≤) is a totally ordered set.

Lemma 5.4.1. Let R be a completely integrally closed domain. Then the following are

equivalent.

1. R is a valuation domain.

2. |SStar(R)| ≤ 3.

3. R is a t∗-domain.

4. R is a c∗-domain.

5. R is a conducive domain.

Proof. 1⇒ 2: Since a completely integrally closed valuation domain is one-dimensional

([29, Theorem 17.5]) the fact follows from Lemma 5.2.1.

2⇒ 3: Obvious.

3⇒ 4: By Lemma 4.2.8.7.

4⇒ 5: By Lemma 4.2.8.2.

5⇒ 1: By [10, Corollary 5].

On a stable domain several classes of domains turn out to be equivalent.

Corollary 5.4.2. Let R be a stable domain. TFAE.

1. R has property ∗.

2. R has weak property ∗.

3. R is a totally divisorial conducive domain.

4. R is a divisorial conducive domain.

5. R is a conducive domain that has an m-canonical ideal.
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6. R is a t∗-domain.

7. R is a c∗-domain.

Proof. 1⇔ 2⇔ 3: By Theorem 4.3.9.

3⇔ 4⇔ 5: By Theorem 4.5.5.

3⇒ 6: By Lemma 4.5.8.

6⇒ 7: By Lemma 4.2.8.

7⇒ 3: By Lemma 4.5.9.1.

In addition, if R is integrally closed, then we could say more.

Corollary 5.4.3. Let R be an integrally closed stable domain. TFAE.

1. R has property ∗.

2. R has weak property ∗.

3. R is a totally divisorial conducive domain.

4. R is a divisorial conducive domain.

5. R is a t∗-domain.

6. R is a c∗-domain.

7. R is a strongly discrete valuation domain.

8. R is a valuation domain.

9. R is quasilocal.

10. Each semistar operation on R is of finite type.

Proof. Note that R is a Prüfer domain ([72, Proposition 2.1]).

1⇔ 2⇔ 3⇔ 4⇔ 5⇔ 6: By Corollary 5.4.2.

3⇒ 7: By Lemma 4.2.10.

7⇒ 8⇒ 9: Trivial.

9⇒ 10: If 9 holds, then R is a valuation domain, so it has property ∗ by Theorem 4.5.4
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and must be totally divisorial by Theorem 4.3.9. Hence each semistar operation on R

must be of finite type by Lemma 4.2.10.

10⇒ 7: By Lemma 4.2.10.

7⇒ 1: By Theorem 4.3.9.

We also have the following diagram that summarizes the implications of a few

of domains that have been discussed so far.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

The corrensonding classes of integral domains are as follows;

(1): Strongly discrete valuation domains.

(2): Totally divisorial conducive domains.

(3): t*-domains.

(4): c*-domains.

(5): Conducive super-t-linkative domains.

(6): Valuation domains.

(7): PVDs that have at most two star operations.

(8): Domains with Property ∗.

(9): Domains with Weak Property ∗.

(10): Conducive domains such that the set of prime ideals of each overring is totally
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ordered under inclusion.

On stable domains (respectively, integrally closed stable domains), the domains inside

the thickly (respectively, thinly) dashed line are equivalent by Corollary 5.4.2 (respec-

tively, Corollary 5.4.3). The other implications are derived from the theorems and

lemmas in the past chapters. For example,

(1)⇒ (6): Follows from definition.

(1)⇒ (2): Follows from Lemma 4.2.10.

(6)⇒ (7): See remark 5.1.8.

(7)⇒ (3) and (7)⇒ (8): Follows from Lemma 5.1.7.

(2)⇒ (3): Follows from Lemma 4.5.8.2(a).

(2)⇒ (8): Follows from Theorem 4.3.9.

(3)⇒ (4): Follows from Lemma 4.2.8.7.

(4)⇒ (5): Follows from Lemma 4.2.8.5.

(8)⇒ (9): Follows from definition.

(9)⇒ (10): Lemma 4.3.6.3.

(10)⇒ (5): Let R be a conducive domain such that set of prime ideals of each overring

is totally ordered under inclusion. Then w operation and d operation coincide on each

T ∈ O(R). Hence R is super-t-linkative ([51, Proposition 2.7(b)]).

Remark 5.4.4. The author was unable to find neither an example that shows (4) 6⇒ (3)

nor a proof of (4)⇒ (3), but all the other arrows in the above diagram are irreversible;

(2) 6⇒ (1), (8) 6⇒ (7) and (3) 6⇒ (7): Let R = L[[X2, X3]]. Then R is totally divi-
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sorial conducive domain, so must be stable. But R is neither integrally closed nor a

PVD, so this shows that the domains inside the thickly dashed line in general are not

equivalent to the ones outside it.

(9) 6⇒ (8): See Remark 4.4.5.

(7) 6⇒ (6): Consider the domain described in Lemma 5.2.2(d). It is a PVD, but it

cannot be a valuation domain since it is Noetherian and has 4 semistar operations

(Lemma 5.2.1).

(8) 6⇒ (2), (6) 6⇒ (1) and (3) 6⇒ (2): Let R be any one-dimensional non-Noetherian

valuation domain. Then R is a t∗-domain that has property ∗ that is not totally diviso-

rial (Lemma 5.2.1).

(10) 6⇒ (9): Let L be the set of all algebraic numbers, X a transcendental number

and V = L[[X]], M = XV and R = Q + M . Then since Q ( L are fields, R is a

PVD ([31, Example 2.1]), and thereby a conducive domain. Moreover, since V/M is

an algebraic extension of R/M , each overring of R is a PVD ([20, Corollary 1.4 (c)]).

Therefore the set of prime ideals of T is totally ordered for each overring T of R ([31,

Corollary 1.3]). On the other hand, since [V/M : R/M ] = ∞, R does not have weak

property ∗ by Theorem 5.1.11.

(5) 6⇒ (4), and (5) 6⇒ (10): Given a transcendental number X, let V = Q[[X]],

M = XV , S = Z−(2Z∪3Z) and D = ZS, N1 = 2D, N2 = 3D and R = D+M . Then R
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is a semilocal Prüfer domain with two maximal ideals M1 = N1 +M and M2 = N2 +M

([8, Theorem 2.1]) and must be conducive since V is a valuation overring and X ∈ R : V

(Theorem 4.2.6). We next claim that R is stable. Indeed, recall that an integral domain

is integrally closed and stable if and only if it is a strongly discrete Prüfer domain that

has finite character ([64, Theorem 4.6]). R has finite character since R is semilocal,

and since M is the only nonzero nonmaximal prime ideal of R, it follows that R is

strongly discrete. Hence R is stable. On the other hand, since R is not quasilocal, R is

not a c∗-domain by Lemma 4.5.10.1. Moreover, since each Prüfer domain is t-linkative

([18, Corollary 2.7]), and every overring of a Prüfer domain is a Prüfer domain, R

is super-t-linkative. Note that this example shows that domains described in (10) may

not be equivalent to the domains inside the thinly dashed line even for integrally closed

stable domains.
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Chapter 6

Semistar operations on

Multiplicative lattices

If you consider an ideal of a commutative ring as an object, rather than a

set of elements of a ring, and endow a suitable operation on the collection of all the

ideals, then it becomes a multiplicative lattice, another mathematical object. Com-

mutative rings have two binary operations; addition and multiplication. Multiplicative

lattices have only multiplication, but a good deal of statements in ring theory have a

corresponding version in multiplicative lattice theory that can be rewritten in terms of

lattice elements instead of ring elements. In other words, ideals are used as ‘building

blocks’ in multiplicative ideal theory instead of the elements of a ring/ideal as in the

classical commutative ring theory. Precisely speaking, elements of multiplicative lat-

tices may correspond to ideals in commutative rings, and vice versa. So almost every

results that has been already investigated in multiplicative ideal theory can be directly

applied to multiplicative lattices. Therefore we can consider multiplicative lattices to be

a more abstract and generalized version of commutative rings. At the same time other
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algebraic objects like graded modules and commutative semigroups also have an inner

structure that can be considered as multiplicative lattices ([63, Example 2.1]). Thus,

if we prove a theorem about multiplicative lattices, then the corresponding theorems

for commutative rings, graded modules and commutative semigroups are automatically

proven.

6.1 Multiplicative lattices

A monoid is a set with an associative binary operation that has an identity.

For any pair of elements I, J of a partially ordered set L, we define the meet(respectively,

join) of I and J to be the infimum(respectively, supremum) of I and J and denote by

I ∧ J(respectively, I ∨ J). A lattice (L,≤) is a partially ordered set such that for every

I, J ∈ L, I ∧ J ∈ L and I ∨ J ∈ L. A lattice is called complete if every subset {Iα}α∈A

of L has an infimum and supremum (denoted
∧
α∈A Iα and

∨
α∈A Iα, respectively) in

L. A complete lattice monoid (cl-monoid) (L,≤) is a complete lattice that has a multi-

plicative monoid structure such that

(1) if the smallest element of L is 0, then 0I = 0 for every I ∈ L;

(2) for any I ∈ L and family (Jα)α∈A ⊂ L, I(
∨
α∈A Jα) =

∨
α∈A IJα.

The multiplicative identity of L is denoted by R. The set {X ∈ L | X ≤ R} is de-

noted I. If there is an element R′ ∈ L such that R′R′ ≤ R′ and R ≤ R′, then we call

R′ a ring element of L. The residuation is defined as I : J =
∨
{X ∈ L | XJ ≤ I}, for

each I, J ∈ L. A cl-monoid L is said to be integral if R is the largest element in L. We

will use the notations L(R′) = {IR′ | I ∈ L}, I(R′) = {IR′ | I ≤ R}, and L = L(R),

I = I(R).

88



Example 6.1.1. Let R be a ring. Then the set of ideals of R, ordered under the set

inclusion, forms an integral cl-monoid by defining I ∨J = I+J , I ∧J = I ∩J for ideals

I, J of R.

The notion of multiplicative lattice is to consider the ideal as an element instead

of a subset of a ring that is closed under addition and multiplication by a ring element.

For example, given a ring (that may not be commutative) R, an ideal P of R is a prime

ideal if and only if for any pair of ideals I, J of R with IJ ⊂ P , either I ⊂ P or J ⊂ P .

Here, the point is that the definition of a prime ideal can be stated in terms of ideals

without mentioning the elements of a ring. The goal of this thesis is to obtain the

multiplicative lattice version of some of theorems in ring theory (especially multiplicatie

ideal theory). Of course, such transition is not always possible. In general, we abandon

the algebraic structure of ideals to gain a greater generality of theorems, and because of

that, we cannot hope to wield the powerful machinery developed in commutative ring

theory (for instance, technics in homological algebra, the extension of a commutative

ring to polynomial rings, etc). The notion of principal elements of a multiplicative

lattice is one such example.

Definition 6.1.2. Let L be a cl-monoid, and C, I, J,M, Iα be elements of L. An element

M ∈ L is meet principal (respectively, join principal) if ((I : M) ∧ J)M = I ∧ JM

(respectively, (IM ∨ J) : M = I ∨ (J : M)) for all I, J ∈ L. If M is both meet principal

and join principal, it is a principal element of L. Let I and {Iα}α∈A be elements of a

cl-monoid L. We say that an element I ∈ L is generated by {Iα}α∈A if I =
∨
α∈A Iα. I

is finitely generated if it is generated by finitely many principal elements.

L is principally generated if each element of L is generated by principal elements. A

compact element is an element C ∈ L such that whenever C ≤
∨
{Iα | α ∈ A}, there
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exists a finite subset A′ of A such that C ≤
∨
{Iα | α ∈ A′}. I ∈ L is called an invertible

element if there exists some element J ∈ L such that IJ = R.

Definition 6.1.3. Let L be a cl-monoid. L is a quotient field lattice (abbreviated q.f.

lattice) if the following hold:

1. AK = K for every nonzero A ∈ L, where K = ∨L is the largest element of L.

2. L is principally generated.

3. There exists a compact, invertible element in L.

4. For every A ∈ L \ {0}, A ∧R 6= 0.

The definition of principal elements was first introduced by Dilworth [16]. One

can easily check that if L is multiplicative lattice from Example 1.1, then every principal

ideal of R is a principal element of L. Actually, if L is the lattice of ideals of an integral

domain R, with lattice structure defined as in Example 6.1.1, then an element I of L

is a principal element of L if and only if I is a finitely generated ideal of R such that

IRM is a principal ideal of RM for each maximal ideal M of R ([6]); in particular,

if R is an intgeral domain, then I is a principlal element of the lattice of ideals of

R if and only if R is an invertible ideal of R. Therefore, we can easily see that the

definition of ’principality’ in multiplicative lattice is weaker than that of commutative

rings. However, using it, we can define other ring-theoretic properties on multiplicative

lattices localization.

Definition 6.1.4. We say a subset S of I is multiplicatively closed set for R if S is

a multiplicatively closed set of nonzero principal nonzero-divisors in I. Then for each

element A ∈ L, we define the localization of A by AS =
∨
{(A : s) | s ∈ S}.

Definition 6.1.5. An element P < R of L is called a prime element if IJ ≤ P implies

either I ≤ P or J ≤ P for every I, J ≤ R.
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Note that for each prime element P , S(P ) = {s ∈ L | s is principal, s 6≤ P}

is a multiplicatively closed set. We denote AS(P ) by AP . Following are some basic

properties of localizations, inherited from classical ring theory.

Theorem 6.1.6. [15, Section 2] Let L be a q.f. lattice and S a multiplicatively closed

set of I. Then

1.RS is a ring element.

2. If A ∈ L, then (AS)S = AS .

3. If A,B ∈ L, then (A ∧B)S = AS ∧BS , (A ∨B)S = AS ∨BS , (AB)S = ASBS . If B

is finitely generated, then (A : B)S = AS : BS .

We have to define b-dependent elements in order to define integrally closed

lattices.

Definition 6.1.7. Let L be a q. f. lattice. An element A ∈ L is b-dependent on R if and

only if there exists a finite join B of L-principal elements and a positive integer n such

that (R ∨A)n ≤ B and AB ≤ B. The element of L, Rb = ∨{Bi | Bi is b-dependent on

R is called the b-closure of R in L. Brithinee [14, Definition 3.38] defined an element

A ∈ L to be integral over R if it is a join of elements in L that are b-dependent on R.

Hence Rb is also called the integral closure of R in L. I is integrally closed if R = Rb.

Definition 6.1.8. Let L be a q. f. lattice. An element A ∈ L is fractionary if there is

a nonzero D ∈ I such that DA ∈ I.

Theorem 6.1.9. I is integrally closed if and only if I : I = R for any finitely generated

fractionary element I of L.

Proof. ⇒: Suppose that I is integrally closed, and let I = a1 ∨ · · · ∨ an for some

principal elements ai ∈ L. Let X ≤ I : I be a principal element. Then X ≤ Ia−1
1 . Now

91



R ∨ X ≤ Ia−1
1 and XIa−1

1 ≤ Ia−1
i , so X is integral over R and X ≤ R, which yields

I : I ≤ R. The opposite inequality is trivial, and we obtain I : I = R.

⇐: If I : I = R for any finitely generated fractionary element I of L, then every

b-dependent element is an element of I by definition and R = Rb follows.

6.2 Semistar operations on q.f. lattices

Now we will introduce the lattice version of a semistar operation. Before

presenting the actual definition, We will introduce some of the notations; given a q.f.

lattice L and a ring element R′ of L, L(R′)′ will denote the set of all nonzero elements

of L(R′), f(L(R′)) the set of finitely generated elements of L(R′), F (L(R′)) the set of

fractionary elements in L(R′). Most of the time we will use the notations L′, f(L) and

F (L), where L = L(R) as mentioned in the preceding section.

Definition 6.2.1. Let L be a q. f. lattice and let F denote the set of nonzero elements

of L. A map ∗ : L′ → L′ is a semistar operation if for all A,B ∈ L′ and all principal

elements a ∈ L′, the following hold:

1. (aA)∗ = aA∗,

2. A ≤ A∗.

3. A ≤ B ⇒ A∗ ≤ B∗.

4. (A∗)∗ = A∗.

If R∗ = R, we will call ∗ a (semi)star operation.

Example 6.2.2. v-operation is defined as Iv = R : (R : I) for each I ∈ L′. w-operation

is defined as Iw =
∨
{I : J | Jv = R, J is a finitely generated element of I} for each

I ∈ L′. These two operations are (semi)star operations on L′ (cf. [44, Definition 2.2.1,

Proposition 4.1.6])
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Semistar operations of finite type and stable semistar opreations are defined

similarly.

Definition 6.2.3. Let L be a q. f. lattice and ∗ : L′ → L′ be a semistar operation on

L. We say that ∗ is of finite type if for every A ∈ L′, A∗ =
∨
{B∗ | B ∈ L is finitely

generated and B ≤ A}. On the other hand, ∗ is said to be stable if (A∧B)∗ = A∗ ∧B∗

for each A,B ∈ L′.

Theorem 6.2.4. (cf. [21, Theorem 1.2]) Let L be a q.f.lattice and ∗ be a semistar

operation on L. Then for all I, J ∈ L′ and nonempty family of {Iα}α∈A ⊂ L′,

1. (
∨
α∈A Iα)∗ = (

∨
α∈A I

∗
α)∗;

2.
∧
α∈A I

∗
α = (

∧
α∈A I

∗
α)∗, if

∧
α∈A I

∗
α 6= (0);

3. (IJ)∗ = (I∗J)∗ = (IJ∗)∗ = (I∗J∗)∗.

4. (I : J)∗ ≤ I∗ : J∗ = I∗ : J .

5. If R′ is a ring element of L, then R′∗ is a ring element. In particular, R∗ is a ring

element.

6. Let R = {Rα | α ∈ A} be a family of ring elements of R. Then I 7→ I∗ where

I∗ = ∧α∈AIRα is a semistar operation on R. Moreover, I∗Rα = IRα for each α ∈ A.

Proof. 1. Since Iα ≤ I∗α for each α, (
∨
α∈A Iα) ≤

∨
α∈A I

∗
α and (

∨
i∈I Iα)∗ ≤ (

∨
α∈A I

∗
α)∗.

On the other hand, since Iβ ≤
∨
α∈A Iα for each β ∈ A, we have I∗β ≤ (

∨
α∈A Iα)∗ for each

β ∈ A and
∨
α∈A I

∗
α ≤ (

∨
α∈A Iα)∗. Thus (

∨
α∈A I

∗
α)∗ ≤ ((

∨
α∈A Iα)∗)∗ = (

∨
α∈A Iα)∗.

2.
∧
α∈A I

∗
α ≤ (

∧
α∈A I

∗
α)∗ follows immediately from the definition of semistar opera-

tions. Conversely, since
∧
α∈A I

∗
α ≤ I∗β for all β ∈ A, we have (

∧
α∈A I

∗
α)∗ ≤ (I∗β)∗ = I∗β

for all β ∈ A. Therefore (
∧
α∈A I

∗
α)∗ ≤

∧
α∈A I

∗
α.

3. It suffices to show the first equality. Since J ≤ J∗, (IJ)∗ ≤ (IJ∗)∗ is obvious. To

show the other direction, We will prove IJ∗ ≤ (IJ)∗. Choose a principal element X of
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L such that X ≤ ((IJ)∗ : J). Then XJ ≤ (IJ)∗, so XJ∗ = (XJ)∗ ≤ ((IJ)∗)∗ = (IJ)∗,

and X ≤ ((IJ)∗ : J∗). It follows that I ≤ (IJ : J) ≤ ((IJ)∗ : J) ≤ ((IJ)∗ : J∗), and

thereby IJ∗ ≤ (IJ)∗.

4. The first inequality follows since (I : J)∗J∗ ≤ ((I : J)∗J∗)∗ = ((I : J)J)∗ ≤ I∗ by

part 3. For the equality, consider a principal element X ≤ I∗ : J . Then XJ ≤ I∗ so

XJ∗ = (XJ)∗ ≤ (I∗)∗ = I∗, and X ≤ I∗ : J∗. Thus I∗ : J ≤ I∗ : J∗. Conversely, since

J ≤ J∗, we have I∗ : J∗ ≤ I∗ : J . Thus the equality follows.

5. Let R′ be a ring element of L. Then clearly R ≤ R′∗, and by part 3, (R′∗)2 =

R′∗R′∗ ≤ (R′∗R′∗)∗ = (R′R′)∗ ≤ R′∗. So R′∗ is a ring element.

6. The first condition of Definition 6.2.1 follows since for any I ∈ L and a nonzero princi-

pal element X ∈ L, we have (XI)∗ =
∧
α∈AXIRα = X(

∧
α∈A IRα) = XI∗. The second

condition holds trivially. For the last one, it suffices to show that (I∗)∗ ≤ I∗. Note

that for any γ ∈ A, (I∗)∗ = (
∧
α∈A IRα))∗ =

∧
β∈A(

∧
α∈A IRα)Rβ ≤ (

∧
α∈A IRα)Rγ ≤

IRγRγ ≤ IRγ , so (I∗)∗ ≤
∧
γ∈A IRγ = I∗. The last part of this theorem also follows

similarly; IRα ≤ I∗Rα ≤ (
∧
β IRβ)Rα ≤ IRαRα ≤ IRα for each α ∈ A.

Before proving an analogous version of the famous theorem by Cohen, we need

more definitions. An element I ∈ L is said to be a quasi-∗-element if I∗ ∧R = I. Note

that each ∗-element of I is a quasi-∗-element, and if ∗ is a (semi)star operation, then

the notion of ∗-elements and quasi-∗-elements coincide. We say that a q.f. lattice L is

∗-Noetherian if it has the ascending chain condition on quasi-∗ elements; i.e., if {In}n∈N

is a collection of quasi-∗ elements on L such that I1 ≤ I2 ≤ ..., then there exists k ∈ N

such that In = Ik for all n ≥ k.

Theorem 6.2.5. For a q.f. lattice L and a semistar operation ∗ of finite type on L,

TFAE.
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1. L is ∗-Noetherian.

2. Each ∗-element of L is of finite type.

3. Each prime ∗-element of L is of finite type.

Proof. 3 ⇒ 2: (cf.[41, Theorem 7]) Assume 3 holds. If S = {I ∈ I | I is a non-

finite type ∗-element} 6= ∅, then by Zorn’s lemma S has a maximal element, say P .

Suppose that P is not a prime element. Then there exists principal elements A,B ∈ I

with A � P,B � P and AB ≤ P . Then P < (P : A) and (P : A) is a ∗-element

, so (P : A) = (
∨
i∈I Ci)

∗ for some finitely many principal elements Ci ≤ (P : A) by

maximality of P . Thus we have

P = A(P : A) = A(
∨
i∈I Ci)

∗ ≤ (A
∨
i∈I Ci)

∗ = (A(P : A))∗ = P ∗ = P ,

so P = (A
∨
i∈I Ci)

∗ = (
∨
i∈I ACi)

∗, and P is of finite type, which is a contradiction.

Thus P must be a prime ∗-element, but that contradicts the assumption.

2⇒ 3: Trivial.

1⇔ 2: [7, Lemma 3.3]) Let L be a ∗-Noetherian lattice. I ≤ I ′, and choose a principal

element A1 ≤ I. If I∗ 6= A∗1, then clearly I∗ � A∗1 ∧ R and there exists a principal

element A2 ≤ I∗ and A2 � A∗1 ∧ R. Iterating this process, we get an asending chain of

element of I {In = (A1 ∨ · · · ∨ An)∗ ∧ R}n∈N. Then by assumption there exists k ∈ N

so In = Ik for all n ≥ k. Therefore I∗ = (A1 ∨ · · · ∨Ak)∗.

Conversely, if 2 is true, then for an ascending chain {In}n∈N of quasi-∗-elements of L′,

set I = ∨n∈NIn. Now since ∗ is of finite type, we must have a finitely generated J ≤ I

such that I∗ = J∗ by assumption. Thus there exists k ∈ N such that J ≤ Ik. Thus

I∗ = J∗ = I∗k , and Ik = I∗k ∧R = I∗ ∧R = I, so the chain is stationary.
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6.3 Localizing systems on q.f. lattices

We will also define the localizing system of q.f. lattices as a generalization of

that of integral domains. The proofs of almost every theorem, proposition and lemma

presented in the remainder of this section are just a simple, almost word-by-word tran-

sition of that of [21], and included only for the sake of the completeness.

Definition 6.3.1. Let L be a q. f. lattice. We say that F is a localizing system of R if

F is a collection of elements of I(R) such that

1. If I ∈ F and J is an element of I(R) such that J ≥ I, then J ∈ F ;

2. If I ∈ F and J is an element of I(R) such that (J :I(R) X) ∈ F for each principal

element X ≤ I, then J ∈ F .

We will assume that a localizing system F is nontrivial, i.e., F is nonemepty

and (0) /∈ F . The following are basic properties of a localizing system.

Proposition 6.3.2. 1.If I, J ∈ F , then IJ ∈ F and I ∧ J ∈ F .

2.
∨
{X | X is L-principal and (J :I(R) X) ∈ F} =

∨
{(J : I) | I ∈ F} for each J ∈ L.

3. (cf. [21, Proposition 2.4]) For each J ∈ L, the map J 7→ JF =
∨
{(J : I) | I ∈ F}

for each J ∈ L is a stable semistar operation on R. We call this operation the semistar

operation associated with F and denote this semistar operation by ∗F .

Proof. 1. For any principal X ≤ I we have J ≤ (IJ :I(R) I) = (IJ :I(R) X), so by 1 of

Definition 6.3.1, (IJ :I(R) X) ∈ F . Now by 2 of Definition 6.3.1, IJ ∈ F . Since I ≤ R

and J ≤ R, we have IJ ≤ I and IJ ≤ J . Hence IJ ≤ I ∧ J , and I ∧ J ∈ F by 1 of

Definition 6.3.1.

2. Choose an L-principal X such that (J :I(R) X) ∈ F . Then X(J :I(R) X) ≤

X(J : X) ≤ J , so X ≤ (J : (J :I(R) X) ≤
∨
{(J : I) | I ∈ F} for each J ∈ L.

96



Therefore
∨
{X | X is L-principal and (J :I(R) X) ∈ F} ≤

∨
{(J : I) | I ∈ F} for each

J ∈ L. Conversely, if a principal element X satisfies X ≤ (J : I) for some I ∈ F , then

I ≤ (J :I(R) X), so by 1 of Definition 6.3.1, (J :I(R) X) ∈ F . So
∨
{(J : I) | I ∈ F} for

each J ∈ L and
∨
{X | X is L-principal and (J :I(R) X) ∈ F} ≤

∨
{X | X is L-principal

and (J :I(R) X) ∈ F}.

3. Let X be a principal element. Then (XI : J) = (I : X−1J) = ((I : J) : X−1) = (I :

J)(X−1)−1 = X(I : J) for any I, J ∈ L ([15, lemma 1.19.2]), so (XI)F =
∨
{(XI : J) |

J ∈ F} =
∨
{X(I : J) | J ∈ F} = X(

∨
{(I : J) | J ∈ F}) = XIF , so the first condition

of Definition 6.2.1 is proved.

Since R ∈ F , I ≤ IF for any I ∈ L. Clearly I ≤ J implies IF ≤ JF . This

gives us the second condition of Definition 6.2.1. To show the last condition of being

a semistar operation, it is enough to prove that (JF : I) ≤ JF for all I ∈ F . Fix

I ∈ F . For a principal element X ≤ (JF : I), we have XI ≤ JF and XY ≤ JF ,

for every principal element Y ≤ I. Then XY is principal ([15, lemma1.10.3]) and

XY ≤
∨
{(J : I ′) | I ′ ∈ F}. Since XY is compact ([15, lemma1.28.2 and 1.28.5]),

XY ≤
∨n
i=1(J : Ii) ≤ (J : I1 · · · In) for some Ii ∈ F . Thus XI ≤ (J : I1 · · · In) and

X ≤ (J : I1 · · · InI) ≤ JF . The last inequality follows from part 1 of this proposition

since Ii, I ∈ F . Thus we have shown that (JF : I) ≤ JF .

Therefore the given operation is a semistar operation. It is a stable semistar

operation since for any X ∈ L, (I ∧ J : X) = (I : X) ∧ (J : X).

For a multiplicatively closed subset S of R, F = {I ≤ R | X ∈ S for some

principal X ≤ I} is a localizing system of R. In particular, F(P ) = {I | I ≤ R, I 6≤ P}

is a localizing system. If {Fα}α∈A is a family of localizing systems, then F =
⋂
α∈AFα
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is a localizing system. Therefore, if ∆ is a nonempty subset of Spec R, then F(∆) =⋂
P∈∆F(P ) is a localizing system.

Theorem 6.3.3. (cf. [21, Proposition 2.8]) If ∗ is a semistar operation on then F∗ =

{I | I ideal of R with I∗ ∧R = R} is a localizing system on R.

This localizing system is called the localizing system associated to ∗.

Proof. Clearly I ∈ F∗ and J ≥ I implies that J ∈ F∗. Let (J :I(R) X)∗∧R = R for each

principal X ≤ I. Now X∗(J :I(R) X)∗ ≤ (X∗(J :I(R) X)∗)∗ = (X(J :I(R) X))∗ ≤ (J ∧

R)∗ ≤ J∗ ∧ R∗ and (J :I(R) X)∗ ≤ (J∗ :I(R∗) X
∗). Moreover, (J∗ :I(R) X) = (J∗ :I(R∗)

X∗). Indeed, (J∗ :I(R∗) X
∗) ≤ (J∗ :I(R) X) since X ≤ X∗. On the other hand, for any

principal Y ≤ (J∗ : X) we have Y X ≤ J∗. Hence Y X∗ = (Y X)∗ ≤ (J∗)∗ = J∗ and

Y ≤ (J∗ : X∗).

Thus (J∗ :I(R) X) = (J∗ :I(R∗) X
∗). Now we have

R = (J :I(R) X)∗ ∧ R = (J :I(R) X)∗ ∧ R ≤ (J∗ :I(R∗) X
∗) ∧ R = (J∗ :I(R)

X)∧R, so X ≤ J∗. This shows that I ≤ J∗ and J∗ ∈ F∗. Hence J∗∧R = (J∗)∗∧R = R,

and J ∈ F∗. Therefore F∗ is a localizing system.

Nextly we introduce the lattice version of localizing systems of finite type.

Again, many of the properties carry over smoothly.

Definition 6.3.4. A localizing system of finite type is a localizing system F such that

for each I ∈ F there exists a finitely generated J ∈ F with J ≤ I.

Definition 6.3.5. Let L be a q.f. lattice and ∗ : L′ → L′ be a semistar operation on L.

We say that I ∈ L is of finite type if I = J∗ for some finitely generated element J ≤ I.
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Lemma 6.3.6. (cf. [21, Lemma 3.1]) Given a localizing system F of a q.f. lattice L,

Ff = {I ∈ F | I ≥ J for some nonzero finitely generated J ∈ F} is a localizing system

of finite type of L.

Proof. Ff obviously satisfies the first condition of being a localizing system, so we can

focus on the second condition. Let I ∈ Ff and J is an element of I(R) such that

(J :I(R) x) ∈ Ff for each principal element x ≤ I. We may assume that I is finitely

generated. Indeed, since I ∈ Ff , there exists a finitely generated element I ′ of F with

I ′ ≤ I, so if I is not finitely generated, we can replace I with I ′. Let I = x1 ∨ · · · ∨ xn

with xi principal. Then since xi ≤ I, there exists a finitely generated Hi ∈ F such that

Hi ≤ (J :I(R) xi). If H = H1 · · ·Hn, then H is a finitely generated element of F , so H ∈

Ff and HI ∈ Ff . Also, Hxi ≤ J for each i and HI = H(x1 ∨ · · · ∨ xn) =
∨

(Hxi) ≤ J ,

which implies J ∈ Ff .

Proposition 6.3.7. (cf. [21, Proposition 3.2]) Let L be a q.f. lattice and ∗ : L′ → L′

be a semistar operation and F a localizing system on L.

1. If F is of finite type, then ∗F is of finite type.

2. If ∗ is of finite type, then F∗ is of finite type.

Proof. 1. We have to show that for nonzero I ∈ L, IF
∗

=
∨
JF
∗

where the join is taken

over every finitely generated J ≤ I. Choose a principal element X such that XJ ≤ I

for some J ∈ F∗. Then since F is of finite type there exists finitely generated J ′ ≤ J

such that J ∈ F∗. Then X ≤ (XJ ′ : J ′) ≤ (XJ ′)F
∗
, and XJ ′ ≤ I is finitely generated.

2. Let I ∈ F∗. Then R∗ = I∗ =
∨
{J∗ | J ≤ I, J is finitely generated} and R is

compact, so R∗ =
∨n
i=1 J

∗
i for some finitely generated Ji ≤ I. Let J =

∨n
i=1 Ji. Then J

is finitely generated, J∗ = R∗ and J ≤ I.

Spectral semistar operations will be the next topic we will be concerned.
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Lemma 6.3.8. (cf. [21, Lemma 4.1]) Let L be a q.f. lattice and Spec(I) the set of prime

elements of I. Given a nonempty set ∆ ⊂ Spec(I), define I∗
∆

=
∧
{IRP | P ∈ ∆} for

each I ∈ L′.

(1) If ∆ ⊂ Spec(I) is nonempty, then the mapping I 7→ I∗
∆

, for each I ∈ L defines a

semistar operation.

(2) For each I ∈ L′ and for each P ∈ ∆, IRP = I∗
∆
RP .

(3) ∗∆ is a stable semistar operation on L.

(4) For each P ∈ ∆, P ∗
∆ ∧R = P .

(5) For each I ≤ R such that I∗
∆ ∧R 6= R, there exists P ∈ ∆ such that I ≤ P .

Proof. (1) and (2) follows from 6 of Theorem 6.2.4.

(3) Note that IRP ∧ JRP = (I ∧ J)RP [15, Proposition 2.12]. Thus I∗
∆ ∧ J∗∆ =

(
∧
P∈∆ IRP ) ∧ (

∧
P∈∆ JRP ) =

∧
P∈∆(IRP ∧ JRP ) =

∧
P∈∆(I ∧ J)RP = (I ∧ J)∗

∆
.

(4) By [15, Corollary 3.12] and [15, Proposition 3.15], we have

P ∗
∆ ∧R =

∧
Q∈∆ PRQ =

∧
Q∈∆,Q≥P PRQ ≤

∧
Q∈∆,Q≥P Q = P.

(5)If I ≤ R such that I∗
∆ ∧ R 6= R, then I∗

∆
< R and I∗

∆
RP 6= RP for some P ∈ ∆.

Hence by [15, Corollary 3.12], I∗
∆
RP ≤ PRP and thus I ≤ I∗

∆
RP ∧ R ≤ PRP ∧ R =

P .

Definition 6.3.9. Let ∗ be a semistar operation on L. If there exists a nonempty

set ∆ ⊂ Spec (I) such that ∗ = ∗∆, then say that ∗ is a spectral semistar operation

associated to ∆ .

Lemma 6.3.10. (cf.[21, Lemma 4.20]) Let ∗ be a semistar operation of finite type on

R, with R∗ 6= K. where K =
∨
L. Let S = {I | 0 6= I ≤ R, I∗ ∧ R 6= R}. Then for

every I ∈ S, I is contained in a maximal element of S. Furthermore, every maximal

element of S is a prime element of L.
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Proof. Let S′ = {J | J ∈ S, J ≥ I}. We’re first show that S′ has a maximal element

using Zorn’s lemma, and that each maximal element of S′ is prime.

1. S′ has a maximal element.

For choose a nonzero element X ≤ R that is not L(R∗)-principal (such X exists since

otherwise every element of L, in particular K, is L(R∗)-principal, which implies K is

L(R∗)-invertible [15, Corollary 1.28] and R∗ = K, which contradicts the assumption)

and X∗ ∧ R ∈ S, so S is nonempty. S′ is nonempty since I ∈ S′. Now choose an

ascending chain {Iα | α ∈ A} in S′. Then obviously
∨
α I
∗
α ≤ (

∨
α Iα)∗. To show the

converse inequality, choose a principal X ≤ (
∨
α Iα)∗. We have to show that X ≤

∨
α I
∗
α.

Since ∗ is of finite type, (
∨
α Iα)∗ =

∨
{J∗ | J ≤

∨
α Iα, J is finitely generated}. Thus

X ≤
∨n
i=1 J

∗
i for some finitely generated Ji ≤

∨
α Iα, since X is compact [15, Corollary

1.28.7]. Set J =
∨n
i=1 Ji, then J is finitely generated and J ≤

∨
α Iα, X ≤ J∗. Now we

claim that J ≤ Iα for some α ∈ A. Indeed, J = X1∨· · ·∨Xn for some principal Xi, and

since {Iα | α ∈ A} is a chain and each Xi is compact, Xi ≤ J ≤
∨
α Iα implies Xi ≤ Iαi

for some αi ∈ A. Thus J ≤
∨n
i=1 Iαi = Iα where Iα = max1≤i≤n.(Iαi). Therefore

X ≤ J∗ ≤ I∗α ≤
∨
α I
∗
α, and we have

∨
α I
∗
α = (

∨
α Iα)∗. It remains to show that∨

α Iα ∈ S′. Assume that (
∨
α Iα)∗∧R = R. Then R ≤ (

∨
α Iα)∗ =

∨
α I
∗
α, so R ≤ I∗α for

some α ∈ A since R is compact and {Iα | α ∈ A} is a chain. Then I∗α ∧ R = R, which

is a contradiction. Thus
∨
α Iα ∈ S′, and S′ has a maximal element by Zorn’s lemma.

2. Every maximal element of S′ is prime.

Let P be a maximal element of S′. Then suppose that X,Y ∈ I with X � P , Y � P .

We will assume that XY ≤ P and derive a contradiction. We have P < P ∨X, so by

maximality (P ∨ X)∗ ≥ R and (P ∨ X)∗ = R∗. Then Y (P ∨ X) = (Y P ∨ Y X) ≤ P ,

so we have Y ≤ Y R∗ ∧ R = Y (P ∨ X)∗ ∧ R ≤ (Y (P ∨ X)∗ ∧ R ≤ P ∗ ∧ R. But since
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P ≤ P ∗ ∧ R and P ∗ ∧ R ∈ S, P ∗ ∧ R = P by maximality, and it follows that Y ≤ P ,

which is a contradiction.

The proof of following corollary is now immediate.

Corollary 6.3.11. Let ∗ be a semistar operation of finite type on L and set ∗Max(I)

be the set of maximal elements of {I | 0 6= I ≤ R, I∗ ∧ R 6= R}. Then for I ≤ R with

I∗ ∧R 6= R, there exists a prime element P ∈ ∗Max(I) such that I ≤ P .

Lemma 6.3.12. (cf. [21, Lemma 4.2]) Let ∆ be a nonempty set of prime elements of

I. Then ∗∆ = ∗F(∆) and F∗∆ = F(∆).

Remark 6.3.13. (cf. [21, Remark 4.5]) If ∆ is a nonempty subset of Spec (I), then

F(∆) = F(∆′) where ∆′ = {Q ∈ Spec R | Q ≤ P for some P ∈ ∆}. In fact,

F(Λ) = F(∆) for any Λ with ∆ ⊂ Λ ⊂ ∆′, so we have ∗∆ = ∗Λ.

Proof. Note that ∆ ⊂ Λ implies F(Λ) ⊂ F(∆). Thus it suffices to show that F(∆) ⊂

F(∆′). But I ∈ F(∆) ⇒ I � P for every P ∈ ∆ ⇒ I � Q for every Q ∈ ∆′ ⇒ I ∈

F(∆′). The last assertion follows from Lemma 6.3.12.

Consider the set Π∗ = {P | P is a nonzero prime elment of I, P ∗ ∧R 6= R}. If

this set is nonempty, then we call ∗sp = ∗Π∗ the spectral semistar operation associated

to ∗.

6.4 Invertibility of semistar operations on q.f. lattices

In this section, we will consider the invertibility of semistar operations on q.f.

lattices.

102



Definition 6.4.1. Let L be a q.f. lattice, R′ a ring element of L, and ∗ a semistar

operation on L(R′). For A ∈ L(R′) \ {0} we say that A is ∗-invertible in L(R′) (respec-

tively, quasi ∗-invertible in L(R′)) if (A(R′ : A))∗ = R′∗ (respectively, (AB)∗ = R′∗ for

some B ∈ L(R′) \ {0}).

From now on, we will use the term ∗-invertible (respectively, quasi-∗-invertible)

instead of ∗-invertible in L(R) (respectively, quasi ∗-invertible in L(R)). Note that every

∗-invertible element is quasi ∗-invertible, but the converse may not be true ([25, Example

2.9]).

Lemma 6.4.2. Given A ∈ L, A is quasi ∗-invertible in L if and only if A is ∗-invertible

in L(R∗).

Proof. Let A be a quasi-∗-invertible element of L so (AB)∗ = R∗ for some B ∈ L. Then

B ≤ R∗ : A, and R∗ = (AB)∗ ≤ (A(R∗ : A)∗ ≤ R∗. Thus A is a ∗-invertible element of

L(R∗). The other implication is obvious.

The following generalizes [44, Proposition 5.1.2].

Proposition 6.4.3. Let L be a q.f. lattice and ∗ a (semi)star operation of finite type

on L. For an element A ∈ L′, TFAE:

1. A is ∗-invertible.

2. J ≤ AA−1 for some finitely generated J ∈ F∗.

3. A∗ is ∗-invertible.

4. A is quasi ∗-invertible.

Proof. 1 ⇒ 2: Let (AA−1)∗ = R∗. Then AA−1 ∈ F∗. Since ∗ is of finite type, so is F∗

by Proposition 6.3.7. Thus J ≤ AA−1 for some finitely generated J ∈ F ∗.

2 ⇒ 3: Supoose that J ≤ AA−1 for some finitely generated J ∈ F∗. Then A∗A−1 ≥ J ,
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so R∗ = J∗ ≤ (A∗A−1)∗ = (AA−1)∗ ≤ R∗, and (A∗A−1)∗ = R∗.

3 ⇒ 4: It is an immediate consequence of Lemma 6.4.2, since R∗ = R.

4 ⇒ 1: Since (A∗B)∗ = (AB)∗ for any A,B ∈ L′, it is an immediate consequence of

Lemma 6.4.2.

The following generalizes [44, Proposition 5.1.5].

Proposition 6.4.4. Let L be a q.f. lattice, ∗ a semistar operation of finite type on L

and A ∈ L′ a ∗-invertible element. Then A∗ is ∗-finite.

Proof. By the preceding proposition, J ≤ AA−1 for some finitely generated J ∈ F∗. Let

{ai}i∈I be a set of principal elements such that A =
∨
i∈I ai. Then J ≤ (

∨
i∈I ai)A

−1 =∨
i∈I aiA

−1, and since J is compact([15, Corollary 1.28.7]), for some finitely many indices

ik ∈ I we have J ≤
∨n
ik
aikA

−1, so A∗ = (AJ)∗ ≤ (
∨n
ik=1 aik)∗ ≤ A∗, and A∗ is

∗-finite.

Notice that, the theorem in commutative ring theory that every invertible ideal

of an integral domain is finitely generated ([41, Theorem 58]), can be obtained by letting

∗ be the identity operation in Proposition 6.4.4.

The following theorem generalizes [39, Theorem 2.1], whose proof can be easily adapted

to q.f. lattices.

Theorem 6.4.5. Let L be a q.f. lattice and ∗ a semistar operation on L of finite type

such that every prime ∗-element of I is ∗-invertible. Then every ∗-element of I is

∗-invertible.

Recall that if a prime element of a q.f.lattice L can be written as (A :I B)

for some A,B ∈ L with B � A and B a principal element, then we call that prime

element an associated prime element of A. We say a prime element P of a q.f.lattice L
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is a weakly associated prime element of A if P is a minimal prime of (A :I B) for some

principal element B with B � A.

The following lemma is an analogous form of [39, Lemma 1.2] in a q.f.lattice.

Lemma 6.4.6. Let L be a q.f.lattice. Then for any prime element P ∈ I such that

PP−1 � P , P is an associated prime element of a principal element.

Proof. Since PP−1 ≤ P , there exists principal elements X,Y ∈ I such that X ≤ P, Y ≤

P−1, XY � P . Suppose that X ≤ Q < P for some prime element Q. Then there exists

a principal element Z ∈ I such that Z ≤ P and Z � Q. Now XY ≤ PP−1 ≤ R,

and XY � Q since XY � P . Hence (XY )Z � Q since Q is prime, but at the same

time XY Z ≤ QR = Q, which is a contradiction. Therefore P is a minimal prime of X.

Now we claim that P = (X :I XY ). Indeed, since XY P ≤ XP−1P ≤ XR ≤ X, so

P ≤ (X :I XY ). Conversely, if there exists W ≤ (X :I XY ), then W ∈ I, XYW ≤

X ≤ P , and XY � P . Thus W ≤ P since P is prime, and thereby (X :I XY ) ≤ P , and

the claim follows. Since the product of two principal elements is principal ([15, Lemma

1.10.3]), the proof of our lemma is immediate.

Corollary 6.4.7. Let L be a q.f. lattice and ∗ a semistar operation on L. Then every

∗-invertible prime ∗-element of I is an associated prime element of a principal element.

Proof. If P ∈ I is a ∗-invertible prime ∗-element, then (PP−1)∗ = R and P ∗ < R, so

PP−1 � P . Now the conclusion follows from Lemma 6.4.6.

Proposition 6.4.8. (cf. [32, Proposition 1.1(5)]) Let ∗ is a semistar operation that is

stable and of finite type on a q.f. lattice L. Then every prime element of I minimal

over a ∗-element is a ∗-element.

Proof. Change w to ∗ in the proof of [44, Lemma 4.5.16].
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Theorem 6.4.9. For a q.f.lattice L, let B(L)(respectively, Bw(L)) be the set of asso-

ciated prime (respectively, weakly associated prime) elements of principal elements of

L. If ∗ is a (semi)star operation of finite type on L such that every maximal ∗-element

is ∗-invertible, then the spectral semistar operations induced by ∗Max(I), Bw(L) and

B(L) coincide.

Proof. For a nonempty set ∆ of prime elements of L, set ∆′ = {P | P is a prime ele-

ment and P ≤ Q for some Q ∈ ∆}. We will show that ∗Max(I) ⊂ B(L) ⊂ Bw(L) ⊂

∗Max(I)′; then by Remark 6.3.13 and Lemma 6.3.12, the theorem will follow.

1. ∗Max(I) ⊂ B(L) : Let P ∈ ∗Max(I). Then by assumption, P is ∗-invertible.

It follows that P ∗ < R and (PP−1)∗ = R, so PP−1 � P . Hence by Corollary 6.4.7,

P ∈ B(L).

2. B(L) ⊂ Bw(L): Obvious from definition.

3. Bw(L) ⊂ ∗Max(I)′: Let P ∈ Bw(L). Then P is a minimal prime over I = (A :I B)

for some principal elements A,B ∈ I with B � A. It follows that I∗ = (A :I B)∗ ≤

(A∗ :I(R∗) B) = (A :I B) = I, so I is a ∗-element. Thus by Proposition 6.4.8, P is a

∗-element and by Lemma 6.3.11, there exists Q ∈ ∗Max(I) such that P ≤ Q. Thus

P ∈ ∗Max(I)′.

Remark 6.4.10. Note that above theorem also holds if ∗ is a spectral semistar operation.

Lastly, we consider the lattice version of Krull domains, and prove a corollary

of Theorem 6.4.9.

Definition 6.4.11. Let L be a q.f. lattice. Then the height of a prime element P is

defined to be sup{n | 0 ≤ P1 ≤ P2 ≤ · · ·Pn = P, Pi prime elements of I}. L is a

valuation lattice if the set of L-principal elements are totally ordered under ≤.
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Definition 6.4.12. [63, Definition 15] Let L be a q.f. lattice and P the set of prime

element of height one. Then L is a Krull lattice if

1. I(RP ) is a Noetherian valuation lattice for each P ∈ P.

2. Given an L-principal element I ≤ R, I ≤ P for only finitely many P ∈ P.

3. R = ∧{RP | P ∈ P}.

Corollary 6.4.13. If L is a q.f. lattice and I is a Krull lattice, then w = ∗Bw(L) =

∗B(L).

Proof. By Theorem 6.4.9, it is enough to show that each w-element is w-invertible. Let

L be a Krull lattice and let A be a w-element of I. Then by [15, Theorem 4.27] and

[15, Lemma 4.11], (AA−1)−1 = R, which means (AA−1)v = R. Also, by [15, Lemma

4.19], there exists finitely generated J ≤ AA−1 such that (AA−1)v = Jv. Then J ≤ R,

Jv = R and R ≥ Jw = ∨{J : I | Iv = R, I ≤ R and I is finitely generated} ≥ J : J ≥ R,

so J ∈ Fw. Now from Proposition 6.4.3, it follows that A is w-invertible.
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Chapter 7

Further questions

The author was unable to answer the following questions.

1. From Lemma 4.1.7 it follows that if R is coherent, then (∗)f is stable for each

semistar operation ∗ on R. What could be the conditions on the semistar operations on

R so the converse is also true, if such conditions exist?

2. What could be said of an integral domain R such that ∗ = ∗g for each semistar

operation ∗ on R?

3. When is ∗g neither stable nor of finite type? If there is an integrally closed do-

main R that is neither a v-domain nor an H-domain (recall that R is a v-domain if I is

v-invertible for all I ∈ f(R), and an H-domain if Fv is of finite type. cf.[26, Theorem

2.4], [68, Proposition 4.15]), then vg is neither stable nor of finite type. Indeed, v is

not finite stable ([2, Theorem 3.2]), so by Lemma 4.1.4(b), vg is not stable. On the

other hand, since R is not an H-domain, Fv is not of finite type, and v is not of finite
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type (if v is of finite type, then by Theorem 2.1.6, Fv = Fv is of finite type, which is a

contradiction). Hence by Lemma 4.1.4(c) vg is not of finite type.

4. If R has property ∗, then is R divided (i.e., for each r ∈ R and a nonzero prime ideal

P of R, either r ∈ P or P ⊆ rR)? Note that this is true for Noetherian domains since

a Noetherian domain with property ∗ is one-dimensional quasilocal.

5. Is there a c∗-domain that is not a t∗-domain? The set of c∗-domains and that

of t∗-domains coincide on stable domains (Lemma 4.5.9), PvMDs (Lemma 4.5.10), nu-

merical semigroup rings (Lemma 5.3.9), completely integrally closed domains (Lemma

5.4.1), integrally closed Mori domains (Corollary 5.3.2) and Noetherian quasilocal do-

mains with infinite residue field having only finitely many star operations (Lemma 5.3.5).

6. Let R be an integrally closed domain. If R is a c∗-domain, is it necessarily true

that R is a valuation domain? What if R has property ∗?

7. Does every t∗-domain have property ∗? This holds true for integrally closed do-

mains and PVDs.

8. If R has infinitely many star operations, is Lemma 5.3.5 still true?
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