
UC San Diego
UC San Diego Previously Published Works

Title
Formalizing Opponent Modeling with the Rock, Paper, Scissors Game

Permalink
https://escholarship.org/uc/item/05703342

Journal
Games, 12(3)

ISSN
2073-4336

Authors
Brockbank, Erik
Vul, Edward

Publication Date
2021

DOI
10.3390/g12030070

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/05703342
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ADVERSARIAL FORMALISMS 1

Formalizing opponent modeling with the rock, paper, scissors game

Erik Brockbank, Edward Vul

Department of Psychology

University of California San Diego

9500 Gilman Drive La Jolla, CA 92093

Author Note

Erik Brockbank https://orcid.org/0000-0001-8702-239X

Correspondence concerning this article should be addressed to Erik Brockbank,

Department of Psychology, University of California San Diego, 9500 Gilman Drive, La

Jolla, CA 92093. E-mail: ebrockbank@ucsd.edu

https://orcid.org/0000-0001-8702-239X


ADVERSARIAL FORMALISMS 2

Abstract

In simple dyadic games such as rock, paper, scissors (RPS), people exhibit peculiar

sequential dependencies across repeated interactions with a stable opponent. These

regularities seem to arise from a mutually adversarial process of trying to outwit their

opponent. What underlies this process, and what are its limits? Here, we offer a novel

framework for formally describing and quantifying human adversarial reasoning in the rock,

paper, scissors game. We first show that this framework enables a precise characterization

of the complexity of patterned behaviors that people exhibit themselves, and appear to

exploit in others. This combination allows for a quantitative understanding of human

opponent modeling abilities. We apply these tools to an experiment in which people played

300 rounds of RPS in stable dyads. We find that although people exhibit very complex

move dependencies, they cannot exploit these dependencies in their opponents, indicating a

fundamental limitation in people’s capacity for adversarial reasoning. Taken together, the

results presented here show how the rock, paper, scissors game allows for precise

formalization of human adaptive reasoning abilities.

Keywords: adversarial reasoning, sequential reasoning, competition,

rock-paper-scissors
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Formalizing opponent modeling with the rock, paper, scissors game

Introduction

At a basic level, human conflict and coordination is rooted in the ability to predict

the behavior of others and make plans accordingly. While this may sometimes involve

ad-hoc coordination from first principles, such as well-known Schelling point behavior

(Schelling, 1980), more often we find ourselves in repeated interactions, wherein we have

the opportunity to adapt to past outcomes. Everyday life is replete with such dynamics,

whether playing basketball or chess, or simply commuting in traffic among other drivers

that are all trying to get home as fast as possible. Broadly, competitive interactions

highlight our ability to anticipate and respond to others in diverse settings. What cognitive

processes underlie our remarkable ability to anticipate and adapt to the behavior of others

around us across repeated interactions? We argue that this question can be addressed by

examining people’s behavior in repeated adversarial games, such as rock-paper-scissors,

where success is a matter of outsmarting one’s opponent, often by identifying predictable

patterns in their choices.

To better understand how people manage the cognitive challenges of adapting to

others in adversarial interactions, researchers have traditionally turned to iterated zero-sum

games. Zero-sum games have the unique character that any player’s gain comes at a loss to

their opponent: they are the “limiting case of pure conflict” (Schelling, 1958). Here, we

focus on the game of rock, paper, scissors (RPS), or roshambo. In this game, two players

simultaneously produce a hand signal indicating their choice of “rock”, “paper”, or

“scissors”. The rules are simple: “rock” beats “scissors”, “paper” beats “rock”, and

“scissors” beats “paper”. The game is perhaps most popular with children, but it has been

used in official contexts to settle court disputes (Liptak, 2006) and art auctions (Vogel,

2005). Large scale RPS tournaments have been held with human entrants (Hegan, 2004),

while the potential to test a diverse set of algorithmic strategies has also inspired

tournaments modeled after Axelrod (1984) in which various bots compete against each
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other (Billings, 2000a, 2000b) (and more recently on the data science site Kaggle, see:

https://www.kaggle.com/c/rock-paper-scissors). Finally, the dynamics of the game have

made it popular for modeling diverse biological ecosystems (Allesina & Levine, 2011;

Claussen & Traulsen, 2008; Kerr et al., 2002; Kirkup & Riley, 2004; Sinervo & Lively,

1996; Zhang et al., 2013), offering predictions in evolutionary game theory

(Garrido-da-Silva & Castro, 2020; Hu et al., 2019; Szolnoki et al., 2014; Toupo & Strogatz,

2015; Yang et al., 2017), and even studying large scale market behavior (Cason et al., 2005;

Hauert et al., 2002; Hopkins & Seymour, 2002; Lach, 2002; Lakhar, 2011; Noel, 2007;

Semmann et al., 2003).

Beyond its role in popular culture and in various academic disciplines, the rock,

paper, scissors game offers a unique means of studying human adversarial behavior during

repeated interactions. Here, our focus is on decision making across many iterated rounds

against a stable opponent—often hundreds, rather than the “best of 3” used to resolve

household disputes. In such laboratory studies of rock, paper, scissors, the large number of

interactions allow people to detect and adapt to potentially complex patterns in their

opponent’s behavior. In fact, due to the game’s simple rules and constrained space of

choices, better performance by one individual over many rounds will not likely be a result

of general game “expertise”, but rather a result of superior reasoning about dependencies

in their specific opponent’s move choices. This reliance on adaptation to a particular

opponent, rather than general game expertise, distinguishes RPS from other adversarial

games like chess, and makes it a purer form of adversarial reasoning. Finally, RPS, like

other mixed strategy equilibrium games, is characterized by its Nash Equilibrium solution

(Nash, 1950) which dictates random move selection, a strategy which presents unique

cognitive challenges for human players. For these reasons, a large body of literature has

examined human behavior over repeated interactions in the rock, paper, scissors game,

motivated by diverse questions about the nature of human learning, sequential behavior,

and perceptions of randomness (Budescu & Rapoport, 1994; Dyson, 2019; Zhou, 2016).



ADVERSARIAL FORMALISMS 5

In the present work, we argue that the rock, paper, scissors game represents an ideal

means of studying human adaptive, adversarial reasoning capacities, i.e., the ability to

outwit another person by discovering patterns in their behavior, and offer a novel set of

results illustrating the limits of this ability. First, we briefly examine the findings from

previous literature on the rock, paper, scissors game with an eye to what existing results

tell us about human adversarial reasoning. We argue that by focusing on failures of Nash

Equilibrium and on coarse heuristics, prior work has largely overlooked the question of how

people adapt to a fallible human opponent over repeated interactions. In this vein, we next

discuss how the structure of the game offers a tractable way of describing the flexibility and

limitations of people’s adaptive reasoning capacities. To illustrate this, we present an

analysis of existing results which suggests that the ability to recognize and exploit

sequential patterns in RPS is highly constrained, revealing the limits of human adaptive

reasoning.

Human RPS behavior reflects adversarial reasoning

First, we consider what is known about human behavior in iterated rock, paper,

scissors games. This literature often starts with the behavioral economics perspective of

comparing human behavior to optimal play and, upon finding a difference, seeks to explain

it in terms of human heuristics or biases. In RPS, optimal behavior is taken to be uniform

random choices, and failures to achieve such randomness are explained as human failures to

generate random sequences. Here we instead argue that the deviations from optimality

documented in this literature are more consistent with people attempting to adapt to, and

outwit, their opponent, rather than trying and failing to generate truly random move

choices. In short, we argue that the existing literature supports the claim that human RPS

behavior reflects adaptive adversarial reasoning.
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Normative strategies

The starting point for exploring human behavior in the rock, paper, scissors game

has traditionally focused on whether people adhere to the normative standards of Nash

Equilibrium (Nash, 1950), in which a strategy is chosen to optimize performance under the

assumption of an equivalently rational, optimizing opponent. RPS belongs to the class of

zero-sum cyclic dominance games (Morgenstern & Neumann, 1953). Their cyclic nature is

best illustrated with the well-known rules of RPS, where “rock” beats “scissors” and

“paper” beats “rock”, but “paper” is beaten by “scissors” (see Figure 1a for an illustration

of this). Thus, every choice is dominated by one other and no choice is better than another,

unless you have some information about what the opponent will choose. Such games are

not limited to three-choice paradigms like RPS; cyclic games with many more choices

provide a unique means of studying large-scale group behaviors (Frey & Goldstone, 2013).

Given that no move is better than any other in a cyclic dominance game, how

should one make strategic decisions in rock, paper, scissors? The zero-sum nature of the

game ensures that for a single player, their opponent’s win is always their loss, so any

degree to which a player’s decisions are predictable will allow their opponent to exploit

them for a greater gain. Therefore, the best strategy for a rational player paired with an

equally rational opponent is to choose moves so as to not create any exploitable patterns in

their choices: to choose the three options randomly, with equal probability. Cyclic

dominance games belong to the broader class of mixed strategy equilibrium (MSE) games

(see Camerer (2011) ch. 3 for review), with a single Nash Equilibrium (NE) (Nash, 1950)

that requires a mixed strategy of playing each move (e.g., “rock”, “paper”, and “scissors”)

in equal proportion, with no conditional dependence from one game to the next. Indeed,

the appeal of studying decision making in RPS and other similar games has been in large

part due to the fact that they impose such strong, testable constraints on optimal play;

constraints that human behavior often fails to exhibit.
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(a) Cyclic dominance in rock, paper, scissors (b) Categorizing move transitions

Figure 1

The rock, paper, scissors game. (a) Shows the cyclic dominance relations of the three move

choices: “rock” beats “scissors”, “scissors” beats “paper”, “paper” beats “rock”. (b) These

cyclic dominance relations mean that the relationship between one move and the next can

be characterized into one of three “transitions”: a “positive” transition or shift “up” to the

move that would beat the previous move (+), a “negative” transition or shift “down” to the

move that would lose to the previous move (−), and a “stay” transition which repeats the

same move (0).

Human behavior exhibits sequential patterns

Some of the earliest research in mixed strategy equilibrium games like RPS puzzled

over whether people could in fact meet the high standards of random play under the Nash

Equilibrium strategy (Brown & Rosenthal, 1990; Kalisch et al., 1954; O’Neill, 1987); for an

overview of significant early results, see Camerer (2011) ch. 3. A large body of work has

shown that in rock, paper, scissors and other MSE games, people exhibit a range of

sequential regularities or dependencies in their move choices that run counter to

equilibrium play. A full review of these results is beyond the scope of the current paper,

but here we offer a sample, surveying evidence for sequential dependencies in order of

increasing behavioral complexity (Dyson, 2019).
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A first pass analysis of people’s behavior in the rock, paper, scissors game often

looks at whether their overall distribution of move choices is consistent with the mixed

strategy equilibrium proportions of 1/3 for each move. In repeated games of RPS, a number

of studies have found people to have a slight overall bias towards “rock”, though this is not

always significant (Dyson et al., 2020; Dyson et al., 2016; Forder & Dyson, 2016; Wang

et al., 2014; Xu et al., 2013). Further, other results have observed a modest preference for

“paper” or “scissors” (Aczel et al., 2012) and in many cases people show no distinguishable

preference at all (Cook et al., 2012; Kangas et al., 2009; Lie et al., 2013; Stöttinger,

Filipowicz, Danckert, et al., 2014). In the broader space of MSE games, Camerer (2011)

notes that marginal choice probabilities tend to align with equilibrium proportions.

Though marginal move distributions are often approximately consistent with

equilibrium random selection, a key feature of the Nash Equilibrium strategy is that

players not display any conditional dependence on their own or their opponents’ previous

moves. Thus, a player that continually cycles from “rock” to “paper” to “scissors” will

produce an overall distribution of moves that appears identical to the mixed strategy

equilibrium but the statistical dependence on their own previous move will be highly

exploitable by a perceptive opponent. Following prior work (Dyson, 2019), we will refer to

a transition from one move to the move that beats it (e.g., “rock” to “paper”) as shifting

up (denoted with a + in tables and figures); a transition from one move to the same move

(e.g., “rock” to “rock”) as staying (denoted with a 0 in tables and figures), and a transition

from one move to the move that loses to it (e.g., “rock” to “scissors”) as shifting down

(denoted with a − in tables and figures). See Figure 1b for a complete illustration of the

transitions between moves.

Evidence of transition dependencies in people’s moves is not widespread, but Wang

et al. (2014) find a slight overall preference for staying compared to shifting up or down

which diminishes with the relative value of wins over ties, suggesting that stronger reward

incentives may improve people’s tendency to approximate equilibrium play. Indeed, related
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work has argued for a relationship between transition dependencies in competitive settings

and limitations in executive control; Baek et al. (2013) found that people with

schizophrenia had a strong dependence on their opponent’s previous move, tending to

select moves that would beat what their opponent had just played (this is often referred to

as a Cournot Best Response strategy (Cournot, 1838)). Finally, Dyson et al. (2016) find

evidence for a stickiness of transition dependencies, namely that participants who shifted

up in a previous transition were more likely to continue shifting up and participants who

shifted down in a previous transition were more likely to shift down again (no such

persistence was found for staying).

The best documented higher-order move dependencies in rock, paper, scissors are

transitions conditioned on prior outcome. This is exemplified by win-stay, lose-shift

(WSLS) behavior. In the context of rock, paper, scissors, such a strategy amounts to

changing the rates of particular transitions (+, −, 0) depending on whether the preceding

game outcome was a win, loss, or tie. The appeal of WSLS as a possible explanatory

mechanism for people’s decisions in games like RPS comes from its prominence in other

settings where it can be seen as a computationally simple heuristic that enables broadly

adaptive behavior (Gigerenzer & Goldstein, 1996; Posch, 1999). A number of studies have

found evidence of outcome-dependent transition behavior in rock, paper, scissors (Cason

et al., 2014; Hoffman et al., 2012; Wang & Xu, 2014; Wang et al., 2014; Xu et al., 2013).

Subsequent work has further explored the separability of win-stay and lose-shift behaviors

(Forder & Dyson, 2016), as well as the factors mediating their respective magnitudes

(Dyson et al., 2020; Dyson et al., 2018; Dyson et al., 2016).

Finally, Brockbank and Vul (2020) find that in many rounds of paired human dyad

play, people exhibit a range of additional dependencies, with more complex dependencies

being more pronounced. Taken together, these results have broad agreement that people’s

move choices exhibit unique sequential dependencies which violate NE. This raises an

important question: given the failure to implement equilibrium strategies in mixed strategy
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games like RPS, what accounts for people’s behavior, particularly the various sequential

dependencies in their move choices?

Existing accounts of empirical behavior are insufficient

The most prominent account of why human behavior in rock, paper, scissors and

other MSE games displays such sequential dependencies focuses on people’s

misapprehensions about what it means to be random in the first place. A large body of

work on subjective randomness has revealed that people often have poor intuitions about

what constitutes a random sequence (Bar-Hillel & Wagenaar, 1991; Lopes, 1982).

Concretely, when prompted to evaluate or produce a sequence of simulated coin flips (or

simulate any other random variable) people tend to favor sequences that (i) have an equal

number of heads and tails, (ii) under-represent “runs” (e.g., HHH) and (iii) over-represent

alternations (HTH) (Lopes & Oden, 1987; Tversky & Kahneman, 1971). In a series of

studies exploring these biases in adversarial settings, Rapoport and Budescu propose a

model in which randomness is a matter of “local representativeness” across a limited

memory of prior events (Budescu & Rapoport, 1994; Rapoport & Budescu, 1992, 1997).

Essentially, their model suggests that behavior in mixed strategy equilibrium games like

rock, paper, scissors represents people doing their best to produce random outcomes. With

only a limited memory for prior events, participants will make choices that exemplify the

features of subjective randomness exhibited in prior literature.

While there is ample evidence that our judgments of random events depart

systematically from true randomness, this is unlikely to explain human behavior in

repeated games of rock, paper, scissors. Empirical support for behaviors that show a

conditional dependence on opponent choices and prior outcomes suggests that people are

doing something more complicated than merely attending to the (subjective) randomness

of their own move choices (see West and Lebiere (2001) for discussion of complex

opponent-responsive properties). What then can explain people’s behavior, particularly the
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sequential patterns they exhibit, in repeated MSE games?

Another common explanation is that people may be using stable heuristics that

produce winning, or at least adequate, outcomes in the long run. For instance, win-stay,

lose-shift (WSLS) is a “fast and frugal” decision rule (Gigerenzer & Goldstein, 1996) that

can be applied in a variety of adversarial settings; indeed, WSLS outperforms the

well-known “tit-for-tat” strategy in evolutionary Prisoner’s Dilemma simulations

(M. Nowak & Sigmund, 1993). This finding fits within a broad literature on the evolution

of cooperation examining the strength of various heuristic-based strategies across many

interactions, though such findings typically describe population dynamics rather than

individual behavior (Axelrod, 1984; M. Nowak & Sigmund, 1990; M. A. Nowak & Sigmund,

1992, 2004). Nonetheless, fixed heuristics like WSLS might drive people’s choices in

repeated adversarial interactions and may explain behavioral regularities in the rock,

paper, scissors game (Dyson et al., 2016; Wang et al., 2014; Zhou, 2016). Dyson et al.

(2018) propose a variation of a stable heuristic like win-stay, lose-shift, suggesting that it is

not one heuristic, but a result of two independent heuristic processes that separately react

to reward and loss. Consistent with this, participants respond more quickly to losses than

wins (Dyson et al., 2018) and exhibit fairly distinct EEG signatures when responding to

different game outcomes (Dyson et al., 2020; Dyson et al., 2018). Further, it appears that

win-stay behavior may not arise as consistently as lose-shift (Dyson et al., 2020; Dyson

et al., 2016) and may be more vulnerable to fluctuations in game rewards (Forder & Dyson,

2016). Whether win-stay and lose-shift reflect a single mechanism or not, this class of

accounts suggests that human behavior in the rock, paper, scissors game is best explained

by a conjunction of stable heuristics.

While win-stay, lose-shift and other heuristic strategies may offer people a simple

decision process, they are also insufficient to explain human behavior in repeated games of

rock, paper, scissors. For one, dependencies in people’s move choices extend beyond such

heuristics to a variety of other complex sequential regularities which cannot be as easily
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accounted for (Brockbank & Vul, 2020). Second, an emphasis on heuristics as a basis of

people’s decision making in repeated RPS interactions fails to address the ways in which

people exhibit more dynamic, adaptive behavior, such as exploiting biases in their

opponent’s choices (Kangas et al., 2009; Lie et al., 2013; West & Lebiere, 2001).

Recent results suggest people are trying to outwit their opponents

A complete account of human behavior in repeated MSE games like rock, paper,

scissors should accommodate the adaptive character of people’s decision making over many

interactions. Consider, for example, playing repeated games with an opponent that simply

plays “rock” over and over. Here, subjective randomness or win-stay, lose-shift responding

would be surprising. Though trivial, this illustrates a critical underlying dynamic in

repeated MSE games: Optimal play depends on the predictability of the opponent.

Heuristics or subjectively random behavior may be adaptive against an unexploitable

opponent, and may serve as a useful fallback when one is losing, but they are not the best

policy when facing a fallible opponent. In large scale algorithmic RPS tournaments,

random strategies often under-perform precisely because they fail to detect stable

dependencies in their opponent’s moves that could be exploited (Billings, 2000a, 2000b).1

Despite its intuitive appeal, the role of adaptive, adversarial reasoning in repeated

RPS interactions has been largely overlooked in the prior literature. Most empirical studies

of rock, paper, scissors behavior pair participants either against automated opponents

employing a random strategy (Dyson et al., 2020; Dyson et al., 2018; Dyson et al., 2016;

Forder & Dyson, 2016; Gallagher et al., 2002; Kangas et al., 2009; Lie et al., 2013;

Stöttinger, Filipowicz, Danckert, et al., 2014), or against a shuffled group of human

opponents (Frey & Goldstone, 2013; Hoffman et al., 2012; Wang & Xu, 2014; Wang et al.,

2014; Xu et al., 2013). In both cases, participants cannot adapt to the dependencies of

1 Successful algorithmic strategies in a recent Kaggle RPS tournament highlight this dynamic:

https://www.kaggle.com/c/rock-paper-scissors.
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their opponent. Random computer choices are simply unexploitable, while random

assignment of opponents ensures that sequential choices are independent and identically

distributed, and thus equally unexploitable through more sophisticated adversarial

reasoning. Thus, these results cannot address whether decision-making over repeated

interactions, including the sequential regularities observed in prior empirical work, may

result from an effort to outwit one’s opponent.

What happens when people play against opponents that are exploitable, such as

stable human adversaries? A handful of recent studies asking this question yield behavior

consistent with flexible, adaptive reasoning, rather than simple heuristics or subjective

randomness. First, in repeated interactions with opponents that exhibit a strong bias

towards certain moves, people often show an above-chance capacity to exploit the opponent

(Kangas et al., 2009; Lie et al., 2013) consistent with basic reinforcement learning

mechanisms (Sepahvand et al., 2014). Notably, this adaptability appears to be limited to

very strong opponent biases, even over many trials (Danckert et al., 2012; Filipowicz et al.,

2016; Stöttinger, Filipowicz, Marandi, et al., 2014). However, efforts to outwit a stable

opponent extend beyond reinforcement learning and draw on more structured pattern

recognition abilities when opponent behavior is more nuanced. Stöttinger, Filipowicz,

Danckert, et al. (2014) find that people adapt to bots that exhibit a Cournot Best

Response transition strategy, but their ability to do so is limited by prior exposure to an

opponent with a simple move bias, suggesting a strong role of context in adversarial

reasoning. West and Lebiere (2001) provide a relatively thorough investigation of people’s

ability to adapt to neural network opponents with a memory for various numbers of

previous moves, showing that people are reliably able to beat a lag1 opponent whose moves

are primarily based on the previous move, but behave more similarly to a lag2 opponent

that draws on the two previous rounds. However, recent work has found that people can

detect even more complex transition and outcome-dependent transition strategies over

many rounds (Brockbank & Vul, in prep; Dyson et al., 2020; Dyson et al., 2018). Finally,
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results in Brockbank and Vul (2021) indicate that when paired with opponents that exploit

regularities in participants’ own move choices, people are able to counteract such

exploitation for simpler behavioral dependencies. Taken together, these results suggest that

over many RPS interactions with a stable opponent, people are highly attuned to the

structured dependencies which make players themselves and their opponents exploitable.

In sum, recent results suggest that people’s behavior over many rounds against a

potentially exploitable opponent can be explained by the desire to outwit that opponent,

rather than merely attempting to respond randomly or relying on stable heuristics. But

how flexible is this ability, and what are its limitations? What sorts of hypotheses about

behavioral structure can people entertain and track on the basis of an opponent’s

sequential decisions? Addressing these questions requires characterizing the space of

uniquely identifiable strategies that may be exploited, and estimating whether people

attend to these regularities when playing repeated rounds of RPS. The rest of the paper

focuses on these technical challenges.

RPS behavior reveals structure of adversarial reasoning

Human behavior during repeated interactions in mixed strategy games like rock,

paper, scissors may be explained by ongoing attempts to outwit one’s opponent. However,

it remains an open question how people are able to adapt to regularities in an opponent’s

behavior. What kind of dependency structures can people detect and respond to? Prior

work has examined the ways that different sequential patterns in RPS can be categorized

(Dyson, 2019). Building on these results, we begin by providing an overview of how the

complex dependencies observed in people’s move decisions are structured and show how

people’s exploitability along these dimensions can be quantified. We then demonstrate how

such measures can be used to explore which behavioral regularities people successfully

exploit against a stable opponent. We apply these methods to experimental data from

prior work by Brockbank and Vul (2020) to explore how well different sequential
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regularities predict people’s move decisions and the degree to which they successfully

exploit regularities in an opponent’s behavior. In this way, we show that behavior in the

rock, paper, scissors game offers novel insights into how people perform adaptive,

adversarial reasoning.

Sequential dependencies in RPS can be systematically described

Individual dependencies

The level at which people are able to outwit their opponents (i.e., the scope of their

adversarial reasoning abilities) is reflected in the structure and complexity of the sequential

dependencies they can detect and exploit, and how much they do so over many rounds.

How can we define this structure, and how do we then assess whether these dependencies

are exploited by a savvy player? In the rock, paper, scissors game, the space of exploitable

dependencies can be described in increasing order of complexity based on the number of

prior events that impact a player’s move choices (Brockbank & Vul, 2020; Dyson, 2019). In

other words, sequential dependencies in a player’s RPS moves are expressible in terms of

how the probability of a particular decision—either a move selection or a transition

between moves—is statistically impacted by some form of previous event: the player’s own

previous move, their opponent’s previous move, etc. If a player or bot is behaving

randomly, the probability of any decision will be equal no matter what previous event is

considered; every move or transition is just as likely given every previous move or outcome.

However, to the degree that a player’s behavior is exploitable, they will exhibit non-uniform

move or transition probabilities conditioned on a particular event, such as their previous

move. The greater the departure from a uniform distribution conditioned on the prior

event, the more exploitable a player is, i.e., the more they exhibit this dependency.

Broadly, the more prior events required to evaluate the dependency, the more complex it is.

Questions about a person’s adversarial reasoning abilities in RPS therefore come down to

measuring whether and how much they can recognize these dependencies in their opponent.
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Figure 2

Sample schematic for illustrating dependencies exhibited during rock, paper, scissors play.

Above are three distinct versions of an outcome-dependent transition dependency like

win-stay, lose-shift. Shaded squares indicate gradations in the probability of a given

transition (column) given each prior event (row).

To illustrate, the tables in Figure 2 show how outcome-based transition dependencies

like win-stay, lose-shift can be represented. Here, each state of a dependency event like

previous outcome is given a unique row on the left side of the table. The dependencies in

Figure 2 have a row for each possible outcome from the previous round—win (W), tie (T),

and loss (L)—but a simpler dependency based on, e.g., one’s own previous move might

instead have a row for “rock”, “paper”, and “scissors”. Each column indicates a possible

decision based on that row-wise dependency event. In Figure 2, these decisions are move
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transitions: shift up (+), stay (0), or shift down (−). Once again, a simple dependency in

which move choices are based on one’s own previous move could be expressed with possible

move decisions (“rock”, “paper”, “scissors”) in each column instead of transitions. Each

cell in the tables in Figure 2 then represents the probability that the player chooses the

action in the cell’s column following the dependency event in the corresponding row. If

players did not exhibit any dependency on a row-wise outcome, the probabilities in each

cell in that row would be 1/3, signaling that each transition (column value) is equally likely

given that row value. However, the more a player exhibits a particular dependency, the

greater the disparity between their transition probabilities given each possible outcome.

This encoding of patterned behavior therefore allows us to express each unique class of

dependencies that a player could exploit in their opponent through the choice of different

row-wise events and column-wise actions. The ability to express RPS dependencies in this

way is not limited to outcomes affecting transition choices, as in Figure 2, but applies at

every level of behavioral complexity. This structure for expressing classes of sequential

patterns therefore provides a formal mechanism for outlining the hypothesis space of

behavioral regularities people exhibit and can adapt to. In the next section, we discuss this

space, in particular, the relationship between different dependencies.

Combining dependencies

Critically, the various classes of sequential dependencies that a player can exhibit in

her move choices are not independent, but rather are arranged in an expressive hierarchy.

Dependencies exhibited at one level will affect other levels that rely on the same

information. For example, a player’s distribution over moves given her previous move

subsumes her marginal distributions over transitions and moves—any pattern in her overall

move or transition distributions will be reflected in the distribution of moves given her

previous move. Why is this important when describing people’s adaptive behavior? If a

player exhibits a tendency toward a particular move following each previous move, this will
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in part reflect any lower level biases in their moves and transitions. Describing their

behavior as following a strategy of gravitating toward particular moves after each previous

move must factor in the degree to which they are simply favoring some moves or

transitions. Similarly, if a player is able to exploit an opponent seemingly on the basis of

regularities in the opponent’s moves following each previous move, we want to know that

they are not primarily sensitive to simpler dependencies in the opponent’s transition or

move base rates. Broadly, the dependency signal for a given dependency structure will

include the dependency signal from its lower level subsidiaries.

The schematic in Figure 3 shows the inheritance relationship among increasingly

complex sequential move and transition dependencies. As the dependencies become more

complex, they inherit from a greater number of simpler regularities. While this does not

show the full space of possible regularities (such a space is technically infinite), we include

any behavioral dependencies that have been observed in prior work (i.e., all of those

discussed in our review of existing literature) or in previous attempts to frame these

structures (Brockbank & Vul, 2021; Dyson, 2019). For researchers attempting to quantify

how much people are exploitable or are successfully exploiting opponents on the basis of

these dependencies, this structure poses a credit assignment problem: how to identify when

a dependency is being exploited above and beyond the lower level dependencies it is based

on? The key to attributing behavior at the right level of complexity is to use this

hierarchical dependency structure when evaluating the regularities in people’s move

choices. In other words, to untangle the unique contribution of a higher-order dependency

structure from the exploitability arising from its subsidiaries, we partial out the subsidiary

dependencies based on the relationships in Figure 3. This allows us to ask how much each

dependency contributes to explaining individual behavior. As we show below, this logic can

be applied not only to estimating a given player’s level of exploitability within a given

structure, but also to estimating how much this dependence is exploited by their opponent.
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Figure 3

Schematic for quantifying complexity of dependencies exhibited during rock, paper, scissors

play. On the left are three levels of increasing complexity for regularities in players’ move

choices. In the middle and right columns are equivalent complexity levels for dependencies

players exhibit in their transitions between moves, either relative to their own previous

move, or relative to the opponent’s. The arrows illustrate the hierarchical relationship

across these regularities, indicating for example how second-level move dependencies carry

some of the dependency signal captured by first-level move and transition dependencies.

Quantifying how much people exhibit and exploit sequential dependencies

In the previous section, we showed that the exploitable dependencies people exhibit

over repeated rounds of rock, paper, scissors can be described in terms of how events like
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previous moves or outcomes impact the probability of subsequent move decisions. We

further showed that the relationship among different dependencies of this sort prevents us

from treating them independently without correcting for the shared structure across

dependencies. How then can we quantify how much a player exhibits a given dependency

and, relatedly, how much their opponent is able to exploit it?

Measuring exploitability with information gain

We measure how predictable a player’s behavior is subject to a particular

dependency via conditional entropy and information gain. In rock, paper, scissors, the

player has three choices, a1−3 ∈ A. This action space A can either represent the move

choices (“rock”, “paper”, and “scissors”), or the transitions (+, −, 0) relative to the

player’s previous move or relative to the opponent’s previous move (the set of transitions

encodes additional information about either the player or their opponent’s previous move

but is otherwise the same). A player’s propensity to make some choices more than others

in a given context c (i.e., how exploitable they are in this context), can be summarized as

the probability distribution P (ai | c). The Shannon entropy (Shannon, 1948) of the

distribution over those choices describes how unpredictable they are:

H(A | c) = −
3∑

i=1
P (ai | c) log2 P (ai | c)

,

and will take on a value, in bits, between 0—for completely deterministic behavior,

where one of the three actions is always chosen in a given context—and log2 3 for uniform

behavior where all three actions are equally likely.

In the base case, where the context, c is an empty set, this definition is sufficient,

and reduces to entropy over actions H(A). However, for all non-trivial contexts, we

calculate the Shannon entropy for each possible state in the context and average over them.

For instance, a strategy such as “win-stay, lose-shift” describes a distribution over
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self-transitions that varies with context defined as the outcome of the preceding round.

Our entropy calculation must factor in the full partition over contexts C that a dependency

structure imposes. In the case of win-stay, lose-shift, the relevant dependency structure

defined by the context partition is: C = {win, loss, tie}. The unpredictability of choices

given a context partition is therefore given by the conditional entropy marginalized over

the contexts in that dependency structure:

H(A | C) =
∑
c∈C

P (c)H(A | c)

.

To characterize how much behavioral regularity may be captured via a particular

dependency structure defined by the partition over contexts (C), we ask how much

information is gained about actions by taking that dependency structure into account.

Specifically, we can subtract the conditional entropy under that dependency structure from

a uniform distribution over choices, to calculate the information gained by using that

dependency structure to predict a player’s moves or transitions:

I(A | C) = log2 3−H(A | C)

.

Intuitively, this measure quantifies the improvement gained by predicting a player’s

moves or transitions using a particular dependency relative to a random baseline. Large

information gain for a given dependency structure suggests that a player is highly

exploitable via that dependency. Low values suggest that their behavior is not easily

distinguished from random choices given the prior events in C.

While information gain provides an intuitive measure for how much a player

exhibits a particular dependency, it fails to reflect the hierarchical structure of

dependencies described previously. In other words, the information gain associated with a

given dependency structure will not capture just the information unique to that structure.
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For instance, if a player shows a bias toward choosing “rock”, that predictable dependency

will also show up in the information gain over each move conditioned on the previous

move. To uniquely identify the information gained for a particular dependency structure,

we must consider the hierarchical structure of different dependencies shown in Figure 3.

Given the hierarchical relationship among dependency structures in Figure 3, we

can define an operation Φ(C) which yields all the upstream nodes (parents, grandparents,

etc.) of a given dependency structure. For instance, the dependency structure capturing

the tendency to choose “rock”, “paper”, or “scissors” given one’s previous choice has two

parents: an overall move bias to choose “rock”/“paper”/“scissors”, and a preference for

particular self-transitions (+/−/0). Using this, we can calculate a corrected information

gain for a particular dependency structure by subtracting the information gained from the

parent dependency structures:

I∗(A | C) = I(A | C)−
∑

B∈Φ(C)
I∗(A | B)

.

This calculation yields a measure of the information about actions that can be

uniquely captured in a given dependency structure. The ability to attribute sequential

patterns in behavior to a particular dependency structure is critical for understanding the

cognitive processes underlying adversarial reasoning in the rock, paper, scissors game.

Prior work has shown that certain patterns of outcome-based transition behavior (i.e.,

win-stay, lose-shift) are isomorphic to much simpler patterns of Cournot best responding

when a player’s self-transitions are re-cast as transitions relative to their opponent’s

previous move (Dyson, 2019). Because of this isomorphism, conclusions about whether a

savvy player is exploiting complex outcome-based patterns in their opponent, or is simply

sensitive to the pattern of Cournot transition responses may be ambiguous. Here, by

correcting the information gain for a given dependency structure to reflect all upstream

parents, we can identify the extent to which people exhibit dependencies of a certain
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complexity, without being misled by the possibility of a complex dependency being

mimicked by a simpler one. More broadly, this provides a means of quantifying how much

players exhibit rich and complex patterns in their move choices over many rounds.

Answering this allows us to then address questions at the heart of adversarial reasoning in

the rock, paper, scissors game: which behavioral patterns do people exploit in their

opponents? Generally, what is the relationship between how much people exhibit a

particular behavioral regularity and how much their opponents are able to exploit it?

Measuring how much players are exploited with expected win count

differentials

To understand the relationship between a player’s exploitable behavior patterns and

whether their opponent in fact uses these patterns to their advantage, we extend the

information gain measure described previously to reflect the outcomes that might be

expected by fully exploiting a given dependency in a player’s moves. Intuitively, the level at

which a player’s decisions over repeated rounds are exploitable can be thought of as the

number of games their opponent could expect to win by taking advantage of the patterns

their choices exhibit. We refer to this as the expected win count differential for a given

dependency structure. The win count differential is simply the number of games that one

player wins over the course of many rounds minus the number of games won by their

opponent. A positive win count differential for one player indicates that they were able to

win more often than their opponent and higher win count differentials indicate more

successful exploitation of the opponent. The expected win count differential, then, captures

how much advantage a player could theoretically obtain by choosing moves which

maximally exploit a particular dependency in their opponent’s moves. Given a non-uniform

(exploitable) distribution over an opponent’s actions P (ai | c), a player’s expected win

count differential for a given action aj is equal to ∑
i P (ai | c) · v(ai, aj), where

v(ai, aj) ∈ {−1, 0, 1} is the outcome of playing a particular move aj against the opponent’s
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move ai: increasing the player’s win count by 1, decreasing by 1, or tying for a change of 0.

Given this, the player has an optimal action j∗ that maximizes their expected win count

differential over all possible opponent moves:

j∗ = arg maxj
∑

i P (ai | c) · v(aj, ai).

This optimal choice in turn yields an expected win-count differential of:

E[v | c] = ∑
i P (ai | c) · v(j∗, ai). And averaging over all contexts (for example, the set of all

previous moves by the player), this yields:

E[v | C] =
∑
c∈C

E[v | c]P (c)

.

The expected win count differential for a given dependency context C captures how

exploitable a player is along that dimension, much like the information gain measure

described previously. In fact, the difference between the expected win count differential

and the information gain for a particular dependency structure is often small, since lots of

information in a given dependency will translate directly into expected win count

differentials. However, not all low-entropy distributions are equally exploitable. For

instance, a player that chooses their moves with the distribution 60% “rock”, 30% “paper”,

and 10% “scissors”, can be exploited to achieve an average win count differential (per

round) of 0.5 by playing “paper”. Meanwhile, a move distribution of 60% “rock”, 10%

“paper”, and 30% “scissors” only yields an expected win count differential of 0.3 (by

playing “scissors”; playing “paper” yields an expected win count differential of only 0.2).

These two distributions have the same entropy and information gain, but one is nearly

twice as exploitable as the other, in terms of the achievable win count differential. Thus,

expected win count differential tells us not just how much information is available at a

given dependency structure, but how exploitable such information is.

As a measure of how exploitable a player’s behavior is, expected win count

differential also enables us to investigate the relationship between how much a player’s
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opponent could theoretically exploit patterns in their behavior, and how much their

opponent actually did so. This is because expected win count differentials can be directly

compared to observed win count differentials in dyads, indicating whether regularity at a

particular dependency structure might explain the observed pattern of advantage seen in a

pair of players. Given a set of many repeated RPS games between pairs of stable

opponents, we can use each player’s level of exploitability for a given dependency—their

expected win count differential—as predictors in a regression over the true win count

differentials in each dyad. This provides a first approximation of how much of the variance

in empirical win count differentials can be explained by the different ways that players

exhibit exploitable behavior across many dyads.

However, this approach faces the same fundamental challenge as the uncorrected

information gain measure described earlier; expected win count differentials for different

behavioral regularities will be influenced by the rich interdepencence of these regularities

shown in Figure 3. Thus, predicting empirical win count differentials using raw expected

win count differentials fails to accommodate the role of lower level dependencies in higher

level expected win count differentials. In this context, to correct expected win count

differentials for upstream dependencies, we cannot simply subtract them, as we can for

information gain. Instead, we correct for the hierarchy in Figure 3 within the observed win

count differential regression itself. To illustrate, when predicting observed win count

differentials across experimental dyads, we only use the simplest dependencies in Figure 3

as direct predictors. To partial out the role of these lower level dependencies in more

complex dependencies, we include the residuals from separate regressions of expected win

count differentials for each higher level dependency predicted by expected win count

differentials for the dependencies they inherit from. For example, a player’s level of

exploitability using 2nd-level move strategies in Figure 3, such as their choice given their

prior choice, can be predicted based on their exploitability using 1st-level move strategies

(base rate of “rock”, “paper”, and “scissors”) and 1st-level transition strategies (base rate
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of +, −, and 0 transitions). The residuals from this prediction using expected win count

differentials indicate how much of the variance in a given 2nd-level move strategy cannot

be accounted for by the 1st-level strategies. These residuals can then serve as predictors for

the 2nd-level variables in the original regression of observed dyad win count differentials.

In this manner, we can isolate the unique dependency arising at a certain level of behavior,

rather than attributing lower level dependencies to the more abstract, higher-order

structure.

To summarize, we have argued that behavior in repeated games of rock, paper,

scissors provides a window into how people perform the sort of adaptive, adversarial

reasoning that allows them to outwit a stable opponent. We first showed that a player’s

exploitable behavior—patterns that their opponent might use to their advantage—contains

structure illustrated in their conditional move or transition probabilities subject to various

contingencies like their previous move. We further showed how these regularities are

hierarchically arranged. Given this, we next showed how a player’s exploitability, i.e., the

degree to which they exhibit a given dependency structure, can be quantified using

measures of information gain and expected win count differential. The former indicates

exactly how much signal is contained in a player’s patterned behavior, and the latter

incorporates the way this signal can be exploited. Finally, we showed how the level of

exploitability that a player exhibits can be used to investigate which sources of

exploitability contribute to the observed pattern of players exploiting their opponents, thus

providing clues about the underlying nature of people’s adversarial reasoning in this

setting. In the next section, we show how these measures can be applied to empirical data

to explore the flexibility and limitations of people’s ability to outwit an opponent.

Adversarial reasoning in RPS relies on detecting simple regularities

In the previous section, we showed how sequential regularities in people’s move

decisions in rock, paper, scissors can be formally described, and quantified. This might
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serve as the basis for a more precise characterization of the dependencies people exhibit in

their own behavior in adversarial settings, as well as the patterns they can detect and

exploit in opponents. In other words, this framework offers a unified view of the decision

making biases shown in rock, paper, scissors move choices (Baek et al., 2013; Brockbank &

Vul, 2020; Dyson et al., 2016; Wang et al., 2014), and the complexities of modeling

opponent behavior in the same setting (Brockbank & Vul, 2021, in prep; Dyson et al., 2018;

Stöttinger, Filipowicz, Danckert, et al., 2014; West & Lebiere, 2001).

Here, we show how the measures from the previous section can be applied to

empirical data from a set of rock, paper, scissors dyads. Brockbank and Vul (2020) paired

116 participants into stable dyads and collected data for 300 rounds of rock, paper, scissors

in each dyad. Because participants in this experiment were playing with the same opponent

for 300 consecutive rounds, players had ample time to try and learn sequential patterns in

their opponent’s moves. Indeed, the authors find that the distribution of empirical win

count differentials across the 58 dyads is overall significantly larger than would be expected

under random play, suggesting that players found ways to outwit their opponents. How did

some participants perform the adaptive, adversarial reasoning necessary to gain a steady

advantage over their opponents? Here, we attempt to answer this question using the

measures outlined in the previous section. We first examine the average information gain

for a range of sequential dependencies proposed in Brockbank and Vul (2020) to quantify

how much participants exhibited exploitable patterns. Next, we explore the relationship

between observed win count differentials and expected win count differentials to assess

which patterns best explain participants’ ability to outwit their opponents.

People exhibit complex behavioral dependencies

The data from Brockbank and Vul (2020) suggest that across 300 rounds, people

exhibit stable predictable behaviors that might form the basis of exploitation by their

opponents. Here we ask how predictable their behavior was for a range of sequential
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Figure 4

Change in average information gain (bits) as a result of incorporating the hierarchical

structure in Figure 3. The information gain reflects how exploitable individuals were for

each of the dependencies shown. For more complex dependencies, individual exploitability

decreases when corrected for simpler low-level dependencies. Error bars show one SEM.

regularities. In particular, we ask how the Shannon entropy over RPS choices for a given

player is reduced when conditioning on some prior dependency. As outlined above, the

reduction in entropy compared to chance behavior represents the information gain from

taking each dependency structure into account. Figure 4 shows average information gain

across participants for eight different dependency structures that increase in complexity

from left to right. We plot the “Uncorrected” information gain values for each dependency

alongside the “Corrected” information gain to account for the hierarchical structure of

these dependencies as described previously. Larger information gain (in bits) indicates a
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greater level of predictability for that particular dependency. The uncorrected values show

a steady increase in information gain as the complexity of the dependency increases on x,

suggesting greater and greater predictability for more complex sequential patterns.

However, the corrected values suggest that some of this increase can be attributed to higher

level patterns carrying signal from lower level ones. Nonetheless, the complex dependencies

at the right retain some signal even after correction, providing evidence that people’s move

choices are exploitable using a range of sequential patterns that vary in their complexity.

Players exploit simple behavioral dependencies in their opponents

Across repeated games of rock, paper, scissors with a stable opponent, Brockbank

and Vul (2020) show that some players are able to reliably outwit their opponents. But

among dyads that exhibit higher win count differentials, what kinds of regularities in one

player’s move choices form the basis of this exploitation by their opponent? In other words,

which dependencies do people successfully exploit?

As described in the previous section, we can begin to address this question by

exploring the relationship between the observed win count differentials in each dyad and

the average expected win count differentials in each dyad for each of the sequential

dependencies that players may have relied on to exploit their opponent. Critically, we

correct for the hierarchical relationship among dependencies using the residuals from

separate regressions for complex dependencies where some of the predictability may derive

from simpler underlying dependencies. Using the dyad results from Brockbank and Vul

(2020) as the basis for this regression, we find that expected win count differential based on

transition dependencies (the transition base rate (+/-/0)) and opponent previous move

dependencies (player’s choice given opponent’s prior choice) are both significant predictors

of empirical win count differentials in each dyad (Transition: β̂ = 0.19, p = 0.027;

Opponent previous choice: β̂ = 0.45, p = 0.015). In other words, the degree to which

players exploit their opponents over 300 rounds is best explained by simple biases that
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players in the dyad exhibit toward particular transitions, as well as regularities in player

moves given their opponent’s previous move.

Figure 5

Change in the relationship between expected win count differential for each behavioral

dependency and empirical win count differentials as a result of incorporating the

hierarchical structure in Figure 3. For more complex dependencies, the role they play in

exploitation among dyads decreases when we factor in the role of lower level dependencies.

Error bars show one SEM.

But what might the regression look like if we did not correct for the hierarchical

structure of the dependencies? Figure 5 plots the correlation between expected win count

differentials—how much players in each dyad exhibited each dependency—and true win

count differentials, i.e., how much players in each dyad exploited their opponents overall.

Critically, we first plot these correlations using the expected win count differentials for each
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dependency (“Uncorrected” correlations), and then substitute them for the the residuals as

described in the previous section (the “Corrected” correlations). Figure 5 illustrates the

importance of this correction; revised correlations are broadly lower across the board, but

especially for the most complex dependencies on the right. Therefore, incorporating the

hierarchical structure of the dependencies into the correlation shows that people’s use of

complex regularities when exploiting their opponent may in fact draw heavily on simpler,

low-level behavioral patterns.

Discussion

Here we argued that games like rock, paper, scissors offer a precise and tractable

way to study adaptive adversarial reasoning. We started with the observation that human

play in simple cyclic-dominance games, such as matching pennies or rock, paper, scissors,

systematically deviates from the mixed strategy Nash Equilibrium of purely random play.

In particular, people exhibit a range of sequential regularities in their move choices that are

most consistent with an intuitive, but understudied account: people are constantly trying

to outwit their opponents, and behavioral dependencies arise from such adaptive reasoning.

How can we make sense of the behavioral regularities that emerge as a result of

adaptive reasoning in the rock, paper, scissors game? Building on prior work exploring the

cognitive and computational resources required to identify such dependencies (Dyson,

2019), we outline a schema for formally describing the ways that rock, paper, scissors

behavior can reflect stable patterned regularities. We show that the predictability and

subsequent exploitability of a given dependency can be precisely quantified using measures

of conditional entropy and expected win count differentials. Prior work in this space raised

important concerns about the identifiability of complex dependency structures in a player’s

behavior due to isomorphisms between different patterns in behavior which make distinctly

different cognitive demands of an adaptive opponent (Dyson, 2019). To overcome this

challenge, we introduce analytical techniques that can correct for the hierarchical
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inheritance structure among different dependencies, and can thus identify both the extent

to which people exhibit, and exploit, complex behavioral patterns.

Finally, we validate our approach by applying the proposed measures of

exploitability and adversarial reasoning to a large empirical dataset comprised of repeated

rock, paper, scissors games between a set of stable dyads from Brockbank and Vul (2020).

Our results show that incorporating the hierarchical structure of sequential dependencies

into analysis of human behavior allows for a clear description of how each dependency is

reflected in individual decisions. Concretely, our results offer two key findings which

highlight the value of repeated rock, paper, scissors interactions in understanding human

adaptive reasoning capacities. First, we show that over many rounds against a stable

opponent, people exhibit a range of exploitable dependencies, including some that reflect a

high level of complexity. These however, are attenuated by the expression of simpler

dependencies. Next, we show that despite the range of predictable behavior patterns in

people’s decisions, their opponents largely fail to exploit these same dependencies. Instead,

people rely on simple transition and previous move dependencies in order to outwit their

opponents, an intuitive finding that our results provide concrete, quantitative support for.

The current results show that the rock, paper, scissors game can be fruitfully used

to study the flexibility of human adversarial reasoning. In particular, we show how people’s

behavior across repeated interactions reveals the limits of our capacity to detect and adapt

to sequential behavior patterns. Critically, rock, paper, scissors presents just one avenue by

which these and other similar questions can be addressed. Applying a similar approach to

other mixed strategy equilibrium games, or even a broader set of strategic interactions

altogether, may reveal further insights about adversarial reasoning. In particular, one

interpretation of the current results is that the failure to exploit more complex

dependencies arises from limits in memory. Prior work has considered the impact of

memory length on strategic behavior in a range of domains including RPS (Posch, 1999;

West & Lebiere, 2001); the current results may open the door to a more precise account of
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such resource limits in adversarial reasoning.

Together, our results show how the simple game of rock, paper, scissors can support

a quantitative perspective on the rich adaptive reasoning and opponent modeling that

underlies human competition. What kinds of complex, patterned behavior can people

detect and adapt to in strategic settings, and how does dyadic behavior reflect exploitation

of these patterns across repeated interactions? We hope that our framework for

constructing and analyzing dependencies in rock, paper, scissors allows researchers to

better characterize human adaptive adversarial capacities.
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