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Hodgkin–Huxley ion channel models from literature were selected based on the ion channels found in single-neuron
transcriptomic data. The transcriptomic data were binarized to confer combinations of ion channel presence or absence
for each neuron in a library of parallel conductancemodels. Themodel-predicted electrophysiological behaviour reflects
the distribution of firing patterns observed experimentally. Thesemodels are a first step towards bridging the gap between
single-cell transcriptomic data and predictive models of physiology.
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Abstract The intrinsic cardiac nervous system (ICNS), termed as the heart’s ‘little brain’, is the
final point of neural regulation of cardiac function. Studying the dynamic behaviour of these
ICNS neurons via multiscale neuronal computer models has been limited by the sparsity of
electrophysiological data. We developed and analysed a computational library of neuronal electro-
physiological models based on single neuron transcriptomic data obtained from ICNS neurons.
Each neuronal genotype was characterized by a unique combination of ion channels identified
from the transcriptomic data, using a cycle threshold cutoff that ensured the electrical excitability
of the neuronal models. The parameters of the ion channel models were grounded based on
passive properties (resting membrane potential, input impedance and rheobase) to avoid biasing
the dynamic behaviour of the model. Consistent with experimental observations, the emergent
model dynamics showed phasic activity in response to the current clamp stimulus in a majority
of neuronal genotypes (61%). Additionally, 24% of the ICNS neurons showed a tonic response,
11% were phasic-to-tonic with increasing current stimulation and 3% showed tonic-to-phasic
behaviour. The computational approach and the library of models bridge the gap between widely
available molecular-level gene expression and sparse cellular-level electrophysiology for studying
the functional role of the ICNS in cardiac regulation and pathology.

(Received 30 August 2024; accepted after revision 14 February 2025; first published online 11 March 2025)
Corresponding author R. Vadigepalli: Daniel Baugh Institute for Functional Genomics/Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA. Email:
Rajanikanth.Vadigepalli@jefferson.edu

Key points
� Computational models were developed of neuron electrophysiology from single-cell trans-
criptomic data from neurons in the heart’s ‘little brain’: the intrinsic cardiac nervous system.

� The single-cell transcriptomic data were thresholded to select the ion channel combinations in
each neuronal model.

� The library of neuronal models was constrained by the passive electrical properties of the
neurons and predicted a distribution of phasic and tonic responses that aligns with experimental
observations.

� The ratios of model-predicted conductance values are correlated with the gene expression ratios
from transcriptomic data.

� These neuron models are a first step towards connecting single-cell transcriptomic data to
dynamic, predictive physiology-based models.

Introduction

Parasympathetic and sympathetic imbalance contributes
to the aetiology of many cardiovascular diseases. A
key regulator of sympathovagal balance is the heart’s

0 Rajanikanth Vadigepalli is currently a Professor and Vice Chair of Research in Pathology and Genomic Medicine at Thomas
Jefferson University, Philadelphia, PA, USA. He received his Bachelor’s in Chemical Engineering from the Indian Institute of
Technology–Madras and a PhD in Chemical Engineering from the University of Delaware in 2001, with a Specialization in
Systems and Control Engineering. His collaborative research programme is driven by a convergence of systems engineering,
computational modelling, bioinformatics, artificial intelligence and single-cell scale molecular omics to identify and target
key control points for intervention in chronic disease. Ongoing projects in his team are focused on central and peripheral
neural circuits controlling the heart and brainstem neuroimmune processes leading to hypertension, liver regeneration in
alcohol-associated liver disease and cell fate regulation underlying developmental defects.

‘little brain’, the intrinsic cardiac nervous system (ICNS),
which contains both cholinergic and catecholaminergic
neurons (Armour, 2008; Hadaya & Ardell, 2020; Hanna
et al., 2021; Moss et al., 2021). As the final neural
regulatory point for the heart, the ICNS mediates the

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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balance of parasympathetic and sympathetic inputs to the
cardiac tissue. Neural remodelling within the ICNS has
been linked to the progression of cardiovascular disease
(Beaumont et al., 2016; Salavatian et al., 2016; Vaseghi
et al., 2017). Both phasic and tonic firing responses have
been observed in mice, pigs and humans, and neural
remodelling to modulate these behaviours could regulate
sympathovagal balance in health and disease (Tompkins
et al., 2025).

Phasic and tonic electrophysiological behaviour arises
from a multitude of ion channel combinations through a
complex mapping relating variable molecular expression
to relatively more constrained functional responses.
Recently, the increased availability of high-throughput,
single-neuron transcriptomics has made it possible to
identify the exact combinations of ion channels present
in each cell to connect subcellular components to cellular
function (Moss et al., 2021). These transcriptomic datasets
have been mined to address questions of how ion channel
degeneracy contributes to firing robustness in neurons
(Drion et al., 2015; Foster et al., 1993; Goaillard &Marder,
2021; Nandi et al., 2022; Roy&Narayanan, 2023), but have
not been used to study how high-dimensional ion channel
expression collapses to a restricted set of phasic and
tonic responsive phenotypes. Differences in ion channel
conductances that drive transitions from phasic to tonic
firing in a neuron are potential regulatory points for
controlling sympathovagal balance in the ICNS.

To address this question, we use the well-established
Hodgkin–Huxley models and combine them with
single-cell transcriptomic data to identify specific
ion channel combinations for each neuron. This
computational approach allows us to explore the
contributions of individual ion channels that would not be
possible without inferring channel involvement through
time-consuming pharmacological blockades or without
assuming channel types (Schwaber et al., 1993; Shevtsova
et al., 2020). Instead, in silico screening can be performed
to identify the most important ion channels for further
experimental testing. In addition, neurons of the same
cell type have electrophysiological behaviour consistent
with each other in response to current clamp stimulus, but
vary in their ion channel conductance densities (Goaillard
& Marder, 2021). This heterogeneity may contribute to
the variable responses of neurons of the same type
to perturbations, muddling the association between
an ion channel and a particular function identified
via conventional experimental approaches (Goaillard
& Marder, 2021). Electrophysiological recording of
neuronal electrical activity has been a productive
approach to studying the ICNS to capture neuronal
firing rate and membrane electrical behaviour, but it is
labour-intensive and, therefore, low throughput. More
recently, systems biology provides a complementary
approach by capitalizing on high-throughput trans-

criptomic techniques (Hanna et al., 2021; Moss et al.,
2021) that are becoming increasingly available through
data-sharing initiatives, such as the National Institutes of
Health’s SPARC programme (https://sparc.science/).
In this work, we aim to connect the electrophysiological

behaviour of ICNS neurons to their gene expression using
transcriptomics-based single-cell parallel conductance
Hodgkin–Huxley neuronal genotype computational
models. We present a strategy for using single-neuron
transcriptomic data to predict neuronal membrane
physiology, demonstrating a workflow for building a
library of neuronal genotype models. We used data from
321 porcine right atrial ganglionic plexus (RAGP) neurons
to deduce the presence or absence of particular channel
types in each neuron. We then used Hodgkin–Huxley
ion-channel models from open-source model repositories
to construct a library of parallel conductance models
reflecting ion channel combinations and predicting
electrophysiological behaviour.

Methods

We propose a six-step workflow for the development of
electrophysiological neuronal models from single-neuron
transcriptomic data (Fig. 1). We expand upon steps I
and V in ‘Morphology, physiology and transcriptomics of
neurons’, step III in ‘Ion channel model selection’ and step
IV in ‘Parameter estimation’.

Morphology, physiology and transcriptomics of
neurons

The morphology of Yucatán minipig RAGP principal
neurons (PN) was obtained from previously reported
experimental data (Hanna et al., 2021). Porcine RAGP
PN somata are generally elliptical with a radius spanning
15–30 μm along their minor axis and 20–47 μm along
their major axis (Hanna et al., 2021; Moss et al., 2021).
The typical minipig RAGP neuron cross-sectional area is
∼1400 μm2 and ranges from 600 to 4000 μm2 (Hanna
et al., 2021). In our single-neuronmodels, we used a 21 μm
diameter and 21 μm length to achieve this area using the
NEURONsoftware’s cylindrical section (Awile et al., 2022;
Carnevale & Hines, 2006).
Neuronal models of RAGP PN were constrained on the

basis of passive electrical properties reported for Yucatán
minipig (Hanna et al., 2021), guinea pig (Edwards et al.,
1995), rat (Selyanko, 1992) and mouse ICNS (Harper &
Adams, 2021; Lizot et al., 2022). These properties were: (1)
resting membrane potential (RMP) near −60 mV(Hanna
et al., 2021); (2) input impedance (Rin) 40–300 M�

(Edwards et al., 1995;Hanna et al., 2021;Harper &Adams,
2021; Selyanko, 1992); (3) rheobase 0.02–0.08 nA (Lizot
et al., 2022); and (4) leak reversal potential (Epas) of −80
to −50 mV, corresponding to a range between EK and Eh.

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 1. Workflow for development of electrophysiological models starting with single neuron gene
expression data and model database of ion channel kinetics
(I) Single-neuron transcriptomic data were thresholded using a cycle threshold cutoff to select ion channel pre-
sence or absence for neuron models. (II) Unique neuronal genotypes were identified by removing redundant
ion channel combinations. (III) Ion channel models corresponding to genes identified in the transcriptomic data
were curated from public databases. (IV) Fixed conductance values were selected for each ion channel. (V)
Morphological properties of ICNS neurons were incorporated to construct a library of parallel conductance models.
(VI) Model responses to the current clamp stimulus were analysed and classified. [Colour figure can be viewed at
wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



J Physiol 603.7 Biophysical modelling of intrinsic cardiac neurons 2123

Previously published high throughput quantitative
polymerase chain reaction (HT-qPCR) data from 405
single RAGP neurons and 15 mRNA transcripts coding
for 14 ion channel genes were used to select ion channel
presence or absence in single-neuron models (Moss et al.,
2021; see Data availability statement). Each mRNA trans-
cript codes for one ion channel or ion channel sub-
unit. The co-expression of the transcripts Kcna1 and its
subunit ab1 were translated into equivalent biophysics,
as expanded in the subsequent section. Samples were
collected from twomale and two female Yucatánminipigs
using laser capture microdissection (Moss et al., 2021).
After examination of the dataset for quality control based
on the presence of Na+ channel expression, samples from
one female pig were removed, leaving samples from 321
neurons.

Owing to a gradient in ion channel gene expression,
we binarized the data to identify ion channels to include
in each neuronal model (Fig. 2). A cycle threshold (Ct),
which is inversely correlated to gene expression level,
was selected as the threshold metric and a value of 15
cycles was found to be a suitable cut-off. Analysis of the
effect of Ct threshold on the distribution of neuronal
genotypes and on the electrophysiological behaviour in
our population of neuronal genotype models was assessed
to justify the selection of 15 as a Ct threshold (Fig. 3).
After thresholding with our selected Ct threshold of 15,
we identified 104 unique combinations of ion channels
from the 321 single-neurons. We refer to each unique
combination of ion channels as a neuronal genotype.

Ion channel model selection

Ion channel models for each of the 14 ion channels
were selected from three public databases: Channelpedia

(channelpedia.epfl.ch; Ranjan et al., 2011), ModelDB
modeldb.science;McDougal et al., 2017), and IonChannel
Genealogy (icg.neurotheory.ox.ac.uk; Podlaski et al.,
2017). An in-house library of ion channel models mined
from the public databases and literature survey was
used to track ion channel model properties, gating
kinetics, physiological function, experimental protocol
and tissues/cells for model creation. We employed the
database to establish provenance and to compare each
ion channel isoform model against its counterparts. The
initial selection of ion channel models from the databases
relied on identifying the extent to which the model
could be assigned to a particular gene rather than being
a generic model. Multiple ion channel models of the
same genotype, mined from the different databases, were
compared on the basis of their activation and inactivation
dynamics to assess their regions of operation. We used
Hodgkin–Huxley parallel conductance models (Table 1)
with conductance values for Na+, K+ and HCN ion
channels (Table 2).
We simulated channel combinations to find an ion

channel model for each gene that worked in the full
parallel conductance model. The choice of a suitable
sodium (Scn1a, Nav1.1) channel is particularly important
due to its role in spiking. Multiple kinetic models were
available, even within a single database. We identified
five potential Nav1.1 models (Channelpedia ID no. 35,
ModelDB Accession no. 20756, no. 256632, no. 264834
and Na+ model reported in Rybak et al., 1997). We
ran comparative simulations to find one model for each
ion channel that yielded physiologically stable responses
across a range of conductance values. The criteria for
selection included Epas, Rin and rheobase within the range
of experimentally measured data (Edwards et al., 1995;
Hanna et al., 2021; Harper & Adams, 2021; Selyanko,

Figure 2. Selection of expression threshold for filtering transcriptomic data
Number of neurons identified with each ion channel transcript at Ct values from 13 to 17. Ct ≤ 15 was chosen to
denote ion channel presence. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 3. Neuronal genotypes resulting from thresholded single neuron gene expression data on ion
channels
A, top, binary map for the 104 unique channel combinations ordered by frequency of occurrence of ion channels
when using a cycle threshold Ct ≤15. Bottom, number of cells of each neuronal genotype (321 cells, 104 neuro-
nal genotypes). The eight common neuronal genotypes are highlighted in magenta, while the remaining neuro-
nal genotypes are in green. Neuronal genotypes were considered to be common if there were more than 10
occurrences. B and C, neuronal genotypes and frequency of occurrence for Ct ≤ 13 (B) and Ct ≤ 17 (C ). New
neuronal genotypes not defined by thresholding transcriptomic data withCt ≤ 15 are highlighted in brown. [Colour
figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 1. Kinetic model of ion channels employed in single-compartment RAGP principal neuron models.

Ion channel Model equations Governing equations of parameter

Nav 1.1 (Scn1a) iScn1a =
gScn1a × (vm − ENa)

gScn1a =
ḡScn1a ×m3 × h

αm = 0.182×(vm+35)

1−e− (vm+35)
9

βm = 0.124×(−vm−35)

1−e
(vm+35)

9

m∞ = αm
αm+βm

τm = 1
αm+βm

h∞ = 1

1+e
(vm+65)

6.2

τh = 1
0.024×(vm+50)

1−e
−(vm+50)

5

+ 0.0091×(−vm−75.000123)

1−e
−(−vm−75.000123)

5

HCN1 iHcn1 = ḡHcn1 ×m×
(vm − EHcn )

m∞ = 1

1+e
(vm+94)

8.1

τm = 30 ms
HCN2 iHcn2 = ḡHcn2 ×m×

(vm − EHcn )
m∞ = 1

1+e
(vm+99)

6.2

τm = 184 ms
HCN3 iHcn3 = ḡHcn3 ×m×

(vm − EHcn )
m∞ = 1

1+e
(vm+96)

8.6

τm = 265 ms
HCN4 iHcn4 = ḡHcn4 ×m×

(vm − EHcn )
m∞ = 1

1+e
(vm+100)

9.6

τm = 461 ms

Kv 1.1 (Kcna1 +
Kcnab1)

iKcna1+ab1 =
gKcna1+ab1 ×
(vm − EK)

gKcna1+ab1 =
ḡKcna1+ab1 × n4 × x

αn = 0.12889 × e
−(vm+45)
−33.90877

βn = 0.12889 × e
−(vm+45)
12.42101

n∞ = αn
αn+βn

τn = 1
4.171167511×(αn+βn )

x∞ = 0.95

(1+e
(vm+59)

3 )
0.5 + 0.05

τx = 500

14×e
(vm+28)

20 +29×e
−(vm+28)

10

+ 6

Kv 3.1 (Kcnc1) iKcnc1 =
gKcnc1 × (vm − EK)

gKcnc1 = ḡKcnc1 × (φ ×
n2) + ((1 − φ) × p)

n∞ = 1√
1+e

−(vm+15)
5

p∞ = 1

1+e
−(vm+23)

6

τn = 100

11×e
(vm+60)

24 +21×e
−(vm+60)

23

+ 0.7

τp = 100

4×e
(vm+60)

32 +5×e
−(vm+60)

22

+ 5

Kir 3.1 (Kcnj3, GIRK-1) iKcn j3 =
gKcn j3 × (vm − EK)

gKcn j3 = ḡKcn j3 ×
2.716898432 × n

αn = 0.001 × (vm+30)

1−e− (vm+30)
9

βn = −0.001 × (vm+30)

1−e
(vm+30)

9

n∞ = αn
αn+βn

τn = 1/2.716898432
αn+βn

P/Q-type (Cacna1a, Cav
2.1)

iCacna1a =
ḡCacna1a ×m× �Ca

αm = 8.5

1+e
(vm−8)
−12.5

βm = 35

1+e
(vm+74)

14.5

m∞ = αm
αm+βm

τm = 1
αm+βm

N-type (Cacna1b, Cav
2.2)

iCacna1b =
gCacna1b × �Ca

gCacna1b =
ḡCacna1b ×m2 × h

αm = 0.1×(vm−20)

1−e
−(vm−20)

10

βm = 0.4 × e
−(vm+25)

18

αh = 0.01 × e
−(vm+50)

10

βh = 0.1

1+e
−(vm+17)

17

i∞ = αi
αi+βi

i = m,h

τi = 1
αi+βi

i = m,h

(Continued)

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 1. (Continued)

Ion channel Model equations Governing equations of parameter

L-type (Cacna1c, Cav
1.2)

iCacna1c =
gCacna1c × �Ca

gCacna1c =
ḡCacna1c ×m2 × h

m∞ = 1

1+e
(vm+30.000)

−6

τm = 10 ms
h∞ = 1

1+e
(vm+80.000)

6.4

τh = 59 ms
L-type (Cacna1d, Cav

1.3)
iCacna1d =
gCacna1d × �Ca

gCacna1d =
ḡCacna1d ×m2 × h

m∞ = 1

1+e
(vm+33)

−6.7

h∞ = 1

1+e
(vm+13.4)

11.9

αm = 0.0398×(vm+8.124)

e
(vm+8.124)

9.005 −1

βm = 0.99 × e
vm
31.4

τm = 1
3×(αm+βm )

τh = 44.3/3ms
T-type (Cacna1g, Cav

3.1)
iCacna1g =
gCacna1g × �Ca

gCacna1g =
ḡCacna1g ×m× h

m∞ = 1

1+e
(vm+42.921064)

−5.163208

τm = {−0.855809 + (1.493527 × e
−vm

27.414182 ) vm < −10
1.0 ms vm ≥ −10

.

h∞ = 1

1+e
(vm+72.907420)

4.575763

τh = 9.987873 + (0.002883 × e
−vm

5.598574 )
T-type (Cacna1i, Cav

3.3)
iCacna1i =
gCacna1i × �Ca

gCacna1i =
ḡCacna1i ×m2 × h

m∞ = 1

1+e
−(vm+59)

6.2

h∞ = 1

1+e
(vm+83)

4.0

τm =
0.612+ 1

e
−(vm+134)

16.7 +e
(vm+18.8)

18.2
6.898648307

τh = {
e
(vm+469)

66.6
3.737192819 vm < −82

28+e
−(vm+24)

10.5
3.737192819 vm ≥ −82

.

Goldman–Hodgkin–Katz (GHK) flux equation for Cav channels. For ion S, where zS is the charge, [S]i and [S]o in mM, F Faraday’s
constant (C/mol), R is the gas constant (J/(mol K)), T is the temperature (K) and PS is permeability of the membrane (cm/s). The Ca2+

concentrations in the model remain constant with [Ca]i = 50 nM and [Ca]o = 2 mM.
�S = uS = PS zS10

−3 vmF
RT FzS10

−3([S]if (−uS) − [S]of (uS))
where

f (x) = { 1 − x
2 if |x| < 10−4

x
exp(x)−1 otherwise

.

1992). Three of the five models identified were not
suitable, usually due to a large window current, which
required an unphysiologically large Epas to compensate for
the current at rest, or a large Rin that produced a very
leaky cell (Fig. 4A). To choose between the remaining
two models, we then assessed the rheobase. Various
experimental studies have noted a rheobase near 100 pA
(Edwards et al., 1995; Hanna et al., 2021; Harper&Adams,
2021; Selyanko, 1992). A comparison of the two Na+
channel candidates in the full parallel conductance model
identified Channelpedia ID no. 35 as a better fit (Fig. 4A).
Potassium channel selection was also important for

ensuring the possibility of neuronal excitability.Kcna1 (Kv
1.1) is a delayed rectifier potassium (KDR) channel, which
is non- or slowly-inactivating (time scale of seconds)
(Song, 2002). Our data set a showed robust expression of
Kcna1 (α subunit of Kv 1.1). There was also a dominant

expression of Kcnab1 (β1 regulatory subunit) across
all neuronal genotypes. The subunit Kcnab1 has been
reported to confer fast inactivation in these channels
(Allen et al., 2020; Heinemann et al., 1996; Rettig et al.,
1994; Sewing et al., 1996). To account for the electro-
physiological effect of the β1 subunit, a fast inactivation
variable was introduced to our selectedKcna1KDRmodel
(ModelDB Accession no. 80769). The model for Kcnc1
(Kv 3.1), the most expressed potassium channel gene,
was adapted from Rothman & Manis (2003a,b,c). The
ion channel was fit to a two-component model with fast
and slow activation processes, the relative contribution of
whichwas established by a fractional amplitude parameter
(ɸ).
Similar to potassium channels, each variant of calcium

channels possesses unique activation and inactivation
kinetics. To ensure that we employ ion channel models

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 4. Comparison of activation and inactivation curves for alternative ion channel models
A, five alternative Nav1.1 models are compared, of which three were unsuitable due to a large window current
which required an unphysiologically large reversal potential to compensate for the current at rest, or a leaky
cell (large Rin). To choose between the remaining two models (Channelpedia ID no. 35 and ModelDB Accession
no. 264834), we assessed the rheobase. A comparison of the two Na+ channel candidates in the full parallel
conductance model identified Channelpedia ID no. 35 as a better fit (marked by an ∗). B, the Cav3.3 models
compared are Channelpedia ID no. 42 and ModelDB Accession no. 279. Channelpedia ID no. 42 generated a
large window current around the RMP, making ModelDB Accession no. 279 more suitable for the current model
(marked by an ∗). [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 2. Estimated model parameters.

Parameter Value Literature model value

ḡKcn j3 3.5 × 10−3 S/cm2 1 × 10−3 S/cm2

ḡKcna1+ab1 0.018 S/cm2 0.011 S/cm2

ḡKcnc1 0.018 S/cm2 0.011 S/cm2

ɸKcnc1 0.2 0.85
ḡCacna1a 0.00005 S/cm2 1 × 10−5 S/cm2

ḡCacna1b 0.0001 S/cm2 1 × 10−5 S/cm2

ḡCacna1c 0.006 S/cm2 1 × 10−5 S/cm2

ḡCacna1d 0.00045 S/cm2 1.7 × 10−6 S/cm2

ḡCacna1g 0.0003 S/cm2 1 × 10−5 S/cm2

ḡCacna1i 0.0006 S/cm2 2 × 10−4 S/cm2

ḡHcn1 0.003 S/cm2 1 × 10−5 S/cm2

ḡHcn2 0.009 S/cm2 1 × 10−5 S/cm2

ḡHcn3 0.01 S/cm2 1 × 10−5 S/cm2

ḡHcn4 0.0035 S/cm2 1 × 10−5 S/cm2

ḡScn1a 0.075 S/cm2 1 × 10−5 S/cm2

that most aptly describe their biophysics, we opted to
select the models from Channelpedia. Four out of the
six voltage-gated calcium channel models were taken
from Channelpedia. Cav 1.3 was taken from ModelDB
since its model in Channelpedia was unavailable. The
Channelpedia model of Cav 3.3 generated a large window
current around the RMP, which is uncharacteristic of
a T-type voltage-gated calcium channel, which is active
at voltages negative to the RMP (Fig. 4B). Owing to
this inconsistency, the Cav 3.3 model was selected from
ModelDB. The Cav 1.3 and 3.3 models were selected from
ModelDB based on the cell type/species, experiments
conducted and provenance, asmapped out by IonChannel
Genealogy.
Calcium channels used the Goldman–Hodgkin–Katz

(GHK) flux equation with a Maclaurin series expansion
of the voltage-dependent terms for numerical stability
(Hille, 1991). Intracellular and extracellular potassium
and sodium concentrations are tightly regulated during a
spike such that they are maintained within the same
order of magnitude, which results in their Nernst
potentials remaining largely a constant. On the other
hand, intracellular calcium concentration rises ∼10-fold
during a spike. Extracellular calcium concentration
is in the millimolar order, while basal intracellular
calcium concentration is of the order of hundreds
of nanomolar. The calcium transient, which under-
lies an action potential, causes intracellular calcium
concentration to rise to the order of micromolar, which
results in a ∼30 mV change in its Nernst potential. To
ensure that this change in electrochemical driving force is
accounted for in our models, we explicitly incorporated
the GHK model for calcium channels.

Parameter estimation

Once the ion channel models were chosen, simulations
were performed for each ion channel to narrow the range
of conductances so that the ensemble model’s behaviour
was physiologically stable. Ion channel conductances were
initialized to their default values that came from either
an original voltage clamp study in foreign tissue or a
published ion channel model. A range of conductances
around the default values for each ion channel model
was set. Maximal conductance values were constrained
sequentially in the order of Na+, K+ (Kcna1, Kcnc1,
Kcnj3), Ca2+ (a, b, c, d, g, i), andHCN (1, 2, 3, 4) channels.
This order was selected based on which ion channels
are known to contribute most significantly to electro-
physiological behaviour.
A randomly sampled conductance matrix was chosen

from the conductance ranges of respective ion channel
models. Preliminary simulations were run to evaluate
their passive properties. Combinations of conductances
that did not yield physiologically tenable RMPs, Rin
and rheobase were rejected. After the stable range for
each conductance value was identified, we randomly
sampled within this range to produce six models. From
six models, we identified three parameter sets with input
impedance (Rin), reversal potential (Epas) and rheobase
within experimentally observed ranges (Edwards et al.,
1995; Hanna et al., 2021; McAllen et al., 2011).
Channel conductances were primarily constrained

by the passive electrical properties of the neurons.
We had an additional degree of freedom in the
fractional amplitude parameter (ɸKcnc1), which
represents the relative contributions of the fast and
slow activation processes in the Kcnc1 channel.
We observed this parameter to mainly control the
firing rates (code and example analysis available on
GitHub, https://github.com/Daniel-Baugh-Institute/
BiophysicalModellingOfIntrinsicCardiacNeurons). We
varied ɸKcnc1 over a range of stimulus currents, and settled
on a value that restricted the firing rates in accordance
with experimental data (Harper & Adams, 2021; Vaseghi
et al., 2017).
Simulations were run using the three-parameter sets

identified. Additional tuning of the channel conductances
was required in cases where ensemble models were
dominated by artificial firing patterns. These patterns
included continued firing without the application of
a stimulus, sustained firing activity post-removal of
the stimulus and incomplete repolarization resulting in
elevated RMP for prolonged periods of time.
Classically, physiological arrest mechanisms exist to

establish the reliable operation of the cells’ electrical
machinery. This ensures the operating points are always
stable. This naturally embedded property needed to
be explicitly modelled in our framework and was

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

https://github.com/Daniel-Baugh-Institute/BiophysicalModellingOfIntrinsicCardiacNeurons
https://github.com/Daniel-Baugh-Institute/BiophysicalModellingOfIntrinsicCardiacNeurons


J Physiol 603.7 Biophysical modelling of intrinsic cardiac neurons 2129

Table 3. Model parameters from literature.

Parameter Value Parameter Value

Simulation time 1000 ms Time step (dt) 25 μs
Vrmp −61 mV Membrane threshold −10 mV
Soma length 21 μm Soma diameter 21 μm
Cm 1 μF/cm2 Ra 35.4 �-cm
No. of segments (nseg) 1 Temperature 35°C
ENa 50 mV EK −77 mV
Eh −45 mV

done via additional tuning of channel conductances. In
this paper, we report a single parameter set that was
most similar to the experimentally observed electro-
physiological behaviour (Tables 2 and 3).

Modelling and simulation tools

The model was implemented using NEURON v8.0 (http:
//neuron.yale.edu/) and the NetPyNE v1.0.0.2 Sobol
branch (http://netpyne.org/) (Dura-Bernal et al., 2019).
These modelling tools facilitated parallel simulations on
high-performance computing platforms, allowing us to
run over 400,000 simulations during model development.
Please see the Data availability statement for all model and
analysis files.

Results

The model development workflow builds on ion channel
expression data along with public resources on ion
channel kinetics towards developing integrated electro-
physiology models of ICNS neurons (Fig. 1). HT-qPCR
data from single neurons on ion channel genes were used
to select ion channel presence or absence in single-neuron
models (step I) (Moss et al., 2021). The datawere binarized
to represent ion channel presence or absence using a cycle
threshold (Ct) cutoff (Fig. 2). Several values for the Ct
threshold were considered ranging from 13 to 17, but a
threshold of 15 cycles was selected so that each neuron
included voltage-gated sodium channels and at least one
voltage-gated potassium channel to ensure the potential
for electrical excitability (Edwards et al., 1995; McAllen
et al., 2011). Redundant neurons with the same ion
channel combinations were removed to identify unique
neuronal genotypes (step II). Corresponding ion channel
models were identified from public databases (step III).
Fixed conductance values were selected for each (step IV).
Known morphological properties of RAGP neurons were
incorporated to construct a library of parallel conductance
models (step V). Finally, the model responses to the
current clamp stimulus were simulated, and the firing

properties of each neuronal genotype were analysed and
classified (step VI).
Based on thresholding for the apparent presence or

absence of the 15 ion channel genes from our thresholded
transcriptomic data, we identified 104 unique neuro-
nal genotypes from 321 sampled neurons (Fig. 3A).
A maximum of 13 of these ion channels were pre-
sent in a neuronal genotype. Figure 3A shows these
ordered from the most commonly (bottom) to least
commonly expressed ion channel gene. Three of the
Ca2+ channel types (Cacna1g, Cacna1a, Cacna1d) and
two of the Hcn types (1, 3) were rarely present. The
frequency of each neuronal genotype was non-uniform
(Fig. 3A). Fifty-seven neuronal genotypes occurred only
once; the most common neuronal genotype occurred
22 times. Forty-three percent (137/321) of neurons
belonged to eight common types with 14 or more cells
in each neuronal genotype: T4, T7, T14, T15, T23, T30,
T73 and T91. While only 79/312 neurons expressed
Hcn1, the commonly occurring types typically had the
Hcn1 channel. Trends in Hcn2, Hcn3 and Hcn4 were
not associated with large increases in the number of
occurrences of a neuronal genotype. We also examined
sex-based differences in types and whether they projected
to the sinoatrial node (SAN). Three of the eight common
types were from females, and T30 was found only in
female, non-SAN-projecting neurons. There were no
statistically significant sex-dependent differences in ion
channel expression between the SAN-projecting and
non-SAN-projecting RAGP neurons (Moss et al., 2021).
Varying Ct threshold from 13 to 17 caused new neuro-

nal genotypes to appear (Fig. 3B and C). Neuronal
genotypes 23 and 91 had 10 or more occurrences for four
of five Ct thresholds and neuronal genotypes 4, 30 and 73
were common at three of five Ct thresholds. These results
suggest that the majority of cells have common neuronal
genotypes that are robust to Ct threshold changes. The
percentage of new neuronal phenotypes for Ct thresholds
13, 14, 16 and 17 is 53%, 47%, 56% and 77%. While
this is a high percentage of the neuronal phenotypes,
further analysis of the frequency of these new neuronal
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phenotypes revealed that they account for only 11–20% of
the cells.
Responses to current clamp for all neuronal genotypes

matched experimentally observed patterns found in
multiple species (rodents, minipigs, dogs): phasic
responses and tonic firing (Fig. 5) (Armour, 1991;
Edwards et al., 1995; Hanna et al., 2021; Harper &
Adams, 2021; McAllen et al., 2011). As in experiments,
electrophysiological responses were dependent on current
clamp stimulus strength, such that some neurons would
transition with increased input current (Fig. 5A): 61%
were phasic only (Fig. 5D), 24% tonic only (Fig. 5E),
11% phasic-to-tonic (Fig. 5F), and 3% tonic-to-phasic
(Fig. 5G). The remaining firing patterns included stray
occurrences of the artificial firing patterns (spontaneous
firing, incomplete repolarization), which were filtered
out and removed from our analysis. Varying the cycle
threshold from 13 to 17 also did not significantly alter
the distribution of electrophysiological behaviour for Ct
thresholds of 13–17 (Fig. 5B and C). Phasic behaviour
remained dominant. An increase in the relative amount
of phasic-tonic firing compared to neurons with tonic
firing was observed forCt ≤ 13. The primarily phasic and
tonic firing patterns emerge from diverse combinations
of ion channels that contribute to different dynamics in
neuronal behaviours.
The contributions of Kcnc1 to tonic behaviour were

supported by a sensitivity analysis performed for a
fixed current stimulus. Firing frequency was observed
to be most sensitive to Kcnc1 and Cacna1g. AP peak
was most sensitive to Cacna1a and inactivating Kcna1,
while Cacna1c and Kcnj3 affected the maximum hyper-
polarization. The full width at half maximum was most
regulated by Cacna1b. Each metric was most significantly
affected by a different ion channel, highlighting the
strength of using single-cell transcriptomics to identify the
combinations of ion channels present in vivo.
To assess the sensitivity of the kinetic parameters of

the Na+ channel, we varied the inactivation parameter at
steady-state (h∞) by ±20% (Fig. 6). Increases in the slope
shifted the distribution of electrophysiological behaviour
so that phasic–tonic and tonic behaviours were pre-
dominant. Decreases in the slope maintained the pre-
dominance of phasic behaviour. Of the alternative Na+
channel models considered, two models had similar h∞
values while onemodel had an inactivation parameter two
times higher (Table 1). Thus, the uncertainty of kinetic
parameters in ion channel models should be considered
when analysing the model predictions.
Current–frequency curves for tonically active neuronal

models demonstrated a monotonic increase in frequency
with increased current for all tonically-firing neurons
(Fig. 7). The slopes of the f–I curves were clustered into
two groups. The neuronal genotypes which expressed
either bothCacna1d andKcna1+ab1 (inactivatingKcna1)

or neither, had slopes greater than the best-fit line. The
neuronal genotypes which expressed Cacna1d but lacked
Kcna1+ab1 had slopes less than the best-fit line. Despite
these differences, the firing frequencies of our neuro-
nal models ranged between 12 and 65 Hz for a stimulus
range of 0.01–0.5 nA, which is within the experimentally
observed limits of 5–60 Hz (guinea pigs: 5 Hz; rats:
9–15 Hz; mice: 2–60 Hz; dogs: 60 Hz; and humans
20–50 Hz) (Edwards et al., 1995; McAllen et al., 2011;
Tompkins et al., 2025).
To check the model’s relationship with the original

transcriptomic data from which it was derived, the
relative expression levels of the ion channels to the
maximal conductance values identified during model
development were compared (Fig. 8). Conductance values
and expression levels were calculated as fold difference
from Cacna1a, which had the lowest conductance value.
The model-predicted ratio of conductance values was
correlated with the ratio of expression levels in the
transcriptomic data (R2 = 0.67). The average relative
expression and conductance values for the ion channels
that are critical for firing behaviour, Scn1a and Kcna1,
also correspond (3.4 and 4.2, respectively). There are
some exceptions to the correlation, notably Hcn3 and
Cacna1b, whichwere removed for the correlation analysis.
It should be noted that the maximal conductance values
were selected based on the passive electrical properties
of the neurons, not the transcriptomic data. Taken
together, these findings suggest that the model pre-
dicted conductance values independently correlate with
the relative expression of ion channels.

Discussion

Computational systems biology approach augments
electrophysiology data

Biophysical models have long been limited by the electro-
physiology data available, sparse in most species due
to the time and skill required to collect it, and almost
entirely unavailable for humans. Sample sizes for electro-
physiology datasets are also limited, while transcriptomic
data can be gathered more quickly and obtained in
quantities of hundreds to thousands of single cells (Moss
et al., 2021; Zhao et al., 2022). Therefore, transcriptomics
coupled with a computational systems biology approach
can be used as a complementary resource that will allow
more rapid development of extensive cell activity libraries
(McDougal et al., 2017; Podlaski et al., 2017).
We aimed to connect single-neuron transcriptomic

data to cellular electrophysiology with quantitatively
validated electrophysiological models. Our model is
the latest iteration of our work to understand ion
channel contributions to electrophysiological behaviour
and cardiovascular regulation (Schwaber et al., 1993;
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Figure 5. Neuronal firing behaviour with increasing stimulus strength
A, number of neurons with each firing behaviour for Ct ≤ 15. B and C, firing pattern distribution for Ct ≤ 15 (B)
andCt ≤ 15 (C ). D–G, example traces for phasic (T1) (D), tonic (T51) (E), phasic-to-tonic (T2) (F) and tonic-to-phasic
(T52) (G). Scale: 10 mV, 100 ms. Blue, orange, green: 0.1, 0.3, 0.5 nA stimulus. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Vadigepalli et al., 2001), made possible by the increasing
availability of single-cell transcriptomic data. Despite
limitations due to gaps in datasets containing both trans-
criptomic data and electrophysiological recordings in
ICNS neurons, as are available for other neuronal classes
in the brain (Bernaerts et al., 2023; Nandi et al., 2022),
we developed a library of biophysically constrained ICNS
parallel conductance models. In this paper, we propose
an alternative modelling approach, built on the basis of
the more widely available and fine-grained transcriptomic
data to create electrophysiological models that match
the distribution of behaviour observed in populations of
similar neurons (Edwards et al., 1995;McAllen et al., 2011;
Tompkins et al., 2025). The advantage of our approach
is that the low throughput and laborious process of
collecting electrophysiology data can be augmented by
combining it with computational approaches to effectively
increase the sample size.

Distribution of tonic and phasic firing patterns

Our model yielded 61% phasic, 24% tonic, 11%
phasic-to-tonic, 3% tonic-to-phasic and ∼1% artificial

firing patterns (spontaneous firing, incomplete
repolarization). Our model parameters were additionally
tuned to ensure that the model does not generate firing
patterns that are artifacts of the modelling paradigm (see
Methods). Despite generating physiologically observable
patterns, the presence of these trace firing patterns leads
us to hypothesize that either the transcriptomic sequences
of ion channels in those respective neuronal genotypes
are inadequately identified, or these neuronal types may
have been erroneously identified as a RAGP PN, whereas
it may be a non-excitable neuron. Thus, the strength of
our workflow can be additionally employed to enhance
experimental protocols and insights.
Some of our models transitioned from phasic to tonic

behaviour with increasing stimulus strength (Fig. 5F and
G). Some neurons remain phasic (Fig. 5D) or tonic
(Fig. 5E) over the same stimulus range. In our set of
104 neuronal genotypes, 40/104 consistently exhibited a
robust phasic firing profile while, the remaining 64/104
elicited phasic and tonic firing patterns. This finding
lends itself to the qualitative segregation of our neuro-
nal models on the basis of their stability with respect
to parametric variations within physiological ranges. The

Figure 6. Effect of varying the Nav1.1 channel inactivation parameter (h∞) on electrophysiological
behaviour
Simulations are shown for a +20% change in h∞ (A and B) and a −20% change in h∞ (C and D). A Ct threshold of
15 was used so that results for the electrophysiological behaviour of neuronal genotype T1 can be compared to the
results in D, which shows that T1 has phasic behaviour at all three stimulus intensities. h∞ values varied within the
range of what would be expected for inter-model variability. [Colour figure can be viewed at wileyonlinelibrary.com]
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dominant firing behaviour in ourmodelswas phasic over a
range of 0.1–0.5 nA current clamp stimulus. Minipig, dog
and rat ICNS neurons show dominantly phasic responses
to current clamp (McAllen et al., 2011; Tompkins et al.,
2025; Xi et al., 1994), consistentwith ourmodel, whichwas
based on Yucatán minipig transcriptomic data. Different
studies on guinea pig neurons have reported them to be

Figure 7. Current–frequency relationship for tonically firing
neurons
Data fit (black line) with slope 60.5 Hz/nA. Each colour represents a
different neuronal genotype. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 8. Relative expression ratios correlate with maximal
conductances identified in the model
Conductance and expression ratios are relative to Cacna1a, which
had the lowest conductance in the model. Expression fold
differences relative to Cacna1a were log transformed before R2 was
calculated. The outliers Hcn3 and Cacna1b are not shown and were
excluded from the correlation analysis. [Colour figure can be viewed
at wileyonlinelibrary.com]

either phasic (Hoover et al., 2009) or tonic (Edwards et al.,
1995). By contrast, human neurons show predominantly
tonic responses (Edwards et al., 1995; Tompkins et al.,
2025). It will be interesting to see if transcriptomic
differences across species can be used to predict these
electrophysiological differences.

Strengths and limitations of the model

A significant challenge for our approach remains the
unknown effects of several steps between mRNA
transcription and placement of ion channels in the
membrane: post-transcription processing, translation
and post-translational processing, subunit aggregation,
and differential channel placement in dendrites, soma
and axons. Owing to these factors, the direct use of cycle
threshold as an indicator of ion channel density was not
successful. Instead, we employed a novel cutoff technique
to binarize transcriptomic data into ion channel presence
or absence in a neuron if the cycle threshold was above or
below 15. This technique was effective for themodel given
that post hoc analysis found that model-predicted relative
conductance correlated with the relative expression found
in the transcriptomic data.
Proteomic data would be closer to the physio-

logical product and, therefore, should be more useful
in improving omic-to-model translation by providing
a one-to-one match between the genetic and electro-
physiological profiles. Alternatively, patch-clamp data,
alongside transcriptomic data and electrophysiology
data from the same cell could further enhance model
translation (Bernaerts et al., 2023). Patch-clamp has been
used to generate models that demonstrate predicted
conductances that reflect gene expression differences
(Nandi et al., 2022). However, patch-clamp data use
is still limited by its low throughput. The limited
amount of protein expression data available on the
relative expression of ion channels shows that the
model-predicted relative conductances are reasonable.
For example, Nav1.1 expression is about 1.4 times greater
than Kv1.1 expression inmammalian central neurons (Gu
et al., 2018). The translation of ion channel expression
to conductance is further convoluted by differences in
single channel conductance between ion channels. Single
channel conductance is approximately 1.5-fold higher
for Nav1.1 (17 pS) compared to Kv1.1 (12 pS) (Streit
et al., 2014; Vanoye et al., 2006). The combination of
1.4-fold expression and 1.5-fold channel conductance
differences results in a 2-fold higher conductance for
Nav1.1 compared to Kv1.1, which is comparable to
4.2-fold higher model-predicted conductance.
A further limitation in the use of transcriptomic data

arose because of limitations in the ion channel models
found in the available databases. Themodels were selected
from three public databases: Channelpedia (Ranjan et al.,
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2011), ModelDB (McDougal et al., 2017) and Ion Channel
Genealogy (Podlaski et al., 2017). Channelpedia, an
initiative by the Blue Brain Project to develop ion channel
models from in-house electrophysiological experiments,
was our preferred database for ion channel models.
However, the models in Channelpedia described the
biophysics of the respective homomeric ion channels.
Physiologically, heteromeric forms of these ion channels
exist where the heteromers impart different biophysics
to the channel operation. In our case of Kv 1.1, the pre-
sence of Kcnab1 (β1 subunit of Kv 1.1) was accounted for
by introducing an inactivation variable to the published
KDR model. Owing to this multitude of ion channel
behaviour, we additionally employed those models from
ModelDB whose provenance could be established by Ion
Channel Genealogy. In cases where multiple ion channel
models from these databases appeared equally probable
to describe ion channel behaviour, we shortlisted them by
comparing their gating kinetics (Fig. 4). However, we were
limited by the rigour in the ion channel kinetic models
available to us.
A potential limitation is perhaps our choice of the

Hodgkin–Huxley formalism of ion channel models. We
propose a novel methodology to develop biophysically
constrained models informed by transcriptomics. Since
the inclusion of a gene-based ion channel model was
crucial for its demonstration, we did not explore
the applicability of gene-independent Izhikevich and
FitzHugh–Nagumo spiking neuron models. Alternatively,
unlike Hodgkin–Huxley models, we did not find
similar gene-specific multi-state Markov kinetic models
for the identified ion channel genes. Although the
Hodgkin–Huxley model continues to remain a gold
standard for ion channel modelling, it is restricted by the
identifiability of its parameters (Meunier & Segev, 2002;
Walch & Eisenberg, 2016). The 1952 Hodgkin–Huxley
model assigned the gating powers by careful curve-fitting
to the ionic current traces. In order to circumvent this
apparent shortcoming, Channelpedia was our preferred
database. Since Channelpedia kinetic models are based
on similar experiments on singularly expressed homo-
meric ion channels, the gating powers assigned to their
models are likely to be backed by a defensible rigour.
There has been a continued effort to bridge the gap
between model parameters and ion channel dynamics
by either determining the gating dynamics from single
channel currents (Sigg, 2014; Strassberg & DeFelice,
1993), by ascertaining conditions under which the gating
parameters are identifiable (Walch & Eisenberg, 2016), or
by leveraging neural networks (personal communication,
B. Prokop: Prokop et al., 2024). However, addressing the
strength of the gating dynamics in already published
models is beyond the scope of our current work. Our
proposed methodology is invariant to the formalism
of ion channel models that are linked to specific genes,

and thus any rigorously developed model with known
gene composition may be explored in the integrated
representation of neuronal electrical behaviour.
The ion channel models were derived either from large

cells such as mammalian cortical pyramidal cells or from
gene expression in oocytes, human embryonic kidney
(HEK) cells, or other heterologous cell types (McDougal
et al., 2017; Podlaski et al., 2017; Ranjan et al., 2011),
any of which will have dynamics different from that
of similar channels from RAGP neurons. In particular,
we encountered this difficulty with the Na+ channel, a
channel that is particularly difficult to measure in voltage
clamps due to fast kinetics. Multiple isomers of this
channel distributed along dendrites and axons of different
neurons, possess different kinetics. Because ourmodelling
approach utilizes transcriptomic data, this model more
specifically identifies the ion channels used compared
to prior parallel conductance models that only specify
current types such as the potassium delayed rectifier
which can be attributed to multiple ion channel genes
(Rybak et al., 1997; Yaghini Bonabi et al., 2014). Both
electrophysiological recordings and modelling of single
isolated neurons are also limited by the artificiality of
current-clamp inputs. The use of spike train inputs based
on vagal recordings and cellular recordings from intact
ganglion preparations will allow further development and
refinement of computational models (Machhada et al.,
2015; Rentero et al., 2002).
Several planned extensions of the current model will

address some of these limitations. The most immediate
extension is to link the single-neuronmodels into an ICNS
network model. One way to do this would be to add
synapsemodels based on electrophysiology data (McAllen
et al., 2011) and connect the neurons based on neural
tracing data (Cheng et al., 2004). The implementation
of spike train stimuli from vagal recordings could then
be used as inputs to the model to test it against ICNS
electrophysiology (Machhada et al., 2015; Rentero et al.,
2002). In addition, there have been instances where a
parameter shift in a single-neuronal Hodgkin–Huxley
model has resulted in changed firing characteristics
(Doi & Kumagai, 2005; Guckenheimer & Labouriau,
1993; Izhikevich, 2003; Postnova et al., 2007; Rush
& Rinzel, 1995). However, the firing characteristics of
single-neurons are rapidly adjusted when in a network.
In vivo, the PN forms a network within the RAGP
wherein the tonic, phasic-to-tonic and tonic-to-phasic
neuronal genotypes (Fig. 5D–G) will interconnect with
the robustly phasic neurons, and non-excitable small
intensely fluorescent cells (Hanna et al., 2021; Moss et al.,
2021). The individual firing characteristics of these single
neurons will thereby be mediated by the strength of their
connections as well as the inputs received from the vagus
nerve. While the strength of the couplings does not apply
for single-neuron models (Nowotny & Rabinovich, 2007;
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Postnova et al., 2007), a bifurcation analysis framework
may be an effective analysis strategy aswe extend this work
to examine our PN models in a network.

Our model is also primed to be coupled with other
cardiovascular physiology models to address questions on
ICNS regulation of heart function (Gee, Lenhoff, et al.,
2023; Park et al., 2020). In the context of ICNS function
in cardiovascular regulation, we hypothesize that the
neurons predisposed towards phasic and tonic behaviour
may have different functions. Due to their higher firing
rate, the tonic neural activity may carry beat-to-beat tone
from the nucleus ambiguus (NA) via the vagus to regulate
heart rate, while physically firing neurons may regulate
contractility with a slower drive from the dorsal motor
nucleus of the vagus (DMV). This is supported in part by
neural tracing studies, which showed the NA and DMV
project to distinct populations of PN within the same
ICNS ganglion, extending the two separate lanes of vagal
tone from the brainstem to the ICNS (Cheng et al., 2004;
Gee, Hornung, et al., 2023). Physiological evidence also
supports the notion of two distinct vagal lanes, as different
ICNS neuronal clusters, such as the RAGP, have been
found to primarily regulate heart rate versus contractility
(Fedele & Brand, 2020; Gourine et al., 2016). Our model,
in the present state, could be incorporated as a module
in a larger systemic model of autonomic regulation and
cardiovascular function (Gee, Hornung, et al., 2023; Park
et al., 2020) to test the functional implications of this hypo-
thesized connectivity.

Conclusion

We demonstrate a novel workflow to bridge the
gap between molecular-level gene expression and
cellular-level electrophysiological function, using
single-neuron HT-qPCR data from RAGP neurons
to derive ion channel combinations that generate a
library of single-neuron parallel conductance models
(Fig. 1). In order to develop biophysically detailed
models from single-cell transcriptomic data, we used
single-neuron HT-qPCR ion channel data from RAGP
PN to quantitatively derive ion channel combinations that
generate a library of single-neuron parallel conductance
models. We used a gene expression threshold to select
the presence or absence of ion channels in each parallel
conductance model. After thresholding, 104 unique
ion channel combinations were identified from the
321 single-neuron transcriptomic samples (Fig. 3).
The emergent firing patterns were in agreement with
experimental reports (Fig. 5) and the model-predicted
conductance ratios correlated with the expression ratios
in the transcriptomic data (Fig. 8). By this approach,
we demonstrate a use case of computational modelling
to relate molecular data to the electrical behaviour

of neurons. This library of transcriptomics-based
single-neuron models provides a framework for
developing parallel conductance models of neurons from
other regions and provides a platform for developing
network models that represent the interactions of various
neuronal genotypes involved in cardiovascular regulation.
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the reported results. The data is available at https://modeldb.
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Data availability statement

The model source and analysis code are available on
GitHub (https://github.com/Daniel-Baugh-Institute/
BiophysicalModellingOfIntrinsicCardiacNeurons) and the
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