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Abstract

Synthesis approaches to quantifying biodiversity change, tools and applications

by

Kari Elizabeth Norman

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Assistant Professor Carl Boettiger, Chair

Understanding the impacts of anthropogenic change on the world’s biodiversity is a fun-
damental goal of ecology. Assessing broad-scale patterns in biodiversity is especially
critical for appropriately allocating limited conservation resources amid the ongoing bio-
diversity crisis. Recent advances in data availability and computational tools have made
synthesis an increasingly powerful approach for exploring these patterns, allowing us to
assess previously intractable continental and global scale questions. However, contro-
versy over the use of synthesis methods is ongoing due to limitations in data and tools.
Further, synthesis largely focuses on species-based approaches, leaving unaddressed other
critical dimensions of biodiversity.

Over three chapters, I discuss the powerful opportunity synthesis represents and address
the critical need for improved methodology for understanding biodiversity change. In
chapter 1, I lay out a road map for overcoming limitations of biodiversity synthesis. I
advocate for improved metadata for constituent studies to facilitate better inclusion of
ecological context in synthesis work, adoption of best practices in code development and
sharing, and more explicit statements of inference grounded in data scope. In chapter
2, I present my contribution to synthesis software, the R package taxadb, a tool for
reconciling taxonomic discrepancies. taxadb uses a local database to interface with
taxonomic data providers allowing quick resolution of species names to taxonomic ID’s. In
chapter 3, I perform the first broad-scale synthesis of temporal functional diversity trends.
Bridging 1000’s of assemblage time series and functional trait data, I assess general
patterns of functional change. I find evidence of maintenance of functional structure
across communities, regardless of taxon, climate, or realm.
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Introduction

Earth is in the midst of what is being described as the Sixth Mass Extinction (Barnosky
et al. 2011). As a result of anthropogenic impacts such as habitat destruction, land use
intensification, pollution, and climate change, we are losing species at rates far exceeding
past extinction rates (Pimm et al. 2014). In addition to increasing extinctions, human
influence is also causing profound and fundamental changes to where species are found
and how they coexist in communities (Cardinale et al. 2012, Bartley et al. 2019). Un-
derstanding how biodiversity is changing is critical for assessing ongoing anthropogenic
impacts on the ecological process that support ecosystems and human life. However, spa-
tial and temporal patterns of biodiversity change are challenging to assess, as biodiversity
is inclusive of many dimensions of life on earth including variation in genomes, species,
traits, evolutionary history, and ecosystems, many aspects of which are profoundly data
limited (Magurran and McGill 2011, Hughes et al. 2021).
Recent advances in data availability and computational tools have facilitated a wave
of biodiversity synthesis work assessing broad-scale biodiversity patterns using existing
data. Already, synthesis analyses have led to significant advances in our understanding of
where biodiversity is (Norman 2003, Jenkins et al. 2015), how it is changing through time
(Vellend et al. 2013, Dornelas et al. 2014), and how it is responding to disturbance (Supp
and Ernest 2014, Li et al. 2020). Still, adoption of synthesis approaches is relatively
nascent and many challenges relating to best practices, software tools, and inference
from biased data, remain unaddressed (Cardinale et al. 2018). Synthesis is further
limited by the prevalence of a species-based lens for assessing biodiversity, reflecting
both the ubiquity of species approaches in biodiversity work and the kinds of data that
until recently have been available. My dissertation focuses on the utility of synthesis
approaches for understanding biodiversity change, looking at methodological process,
tools, and application.
The first chapter discusses the current state of synthesis work and outlines a path forward
for shoring up some serious limitations. Concern about the role of synthesis in ecology has
been ongoing since its adoption (Lindenmayer and Likens 2011), playing out recently in a
few high-profile discussions of synthesis-based studies of broad-scale biodiversity patterns
(e.g. Dornelas et al. 2014, Gonzalez et al. 2016, Vellend et al. 2017, Cardinale et al.
2018, Primack et al. 2018). Critiques of synthesis cite data biases, poor incorporation of
site-specific characteristics, and overreach in scope of inference as seriously undermining
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their efficacy (Desquilbet et al. 2020). Still, many broad-scale questions are simply
intractable with any other approach. I give my perspective on reconciling urgency in
understanding broad-scale patterns with methodological limitations.
The second chapter outlines an R package developed to fix taxonomic discrepancies in
biodiversity data synthesis. One of the fundamental and often hidden challenges of
combining biodiversity data from multiple sources is differences in the taxonomy used to
distinguish species (Dayrat 2005, Remsen 2016). Discrepancies arise from several sources
including splitting and merging of species, synonyms, common names, and misspellings.
Multiple sources of taxonomic data exist which provide a consistent taxonomic concept
for resolving these discrepancies, by translating scientific names to taxonomic ID’s (e.g.
Roskov Y. 2018, Biotechnology Information 2019, ITIS 2019). However, the tools for
accessing those providers in a traditional data processing workflow are computationally
limited. I develop a new approach for accessing taxonomic data from multiple providers
using a local database, allowing resolution of millions of names to taxonomic ID’s in
seconds.
The third chapter presents an analysis of broad-scale functional diversity change through
time. Multiple recent assessments of biodiversity change have found that the net trend
in local species diversity across many communities is not significantly different from zero,
despite increasing turnover in species identity (Vellend et al. 2013, Dornelas et al. 2014,
Supp and Ernest 2014). These results seemingly stand in opposition to expectations for
anthropogenic stress on ecological communities. While community structure is clearly
changing, species diversity metrics are unable to capture the nature of that change.
Functional diversity provides an alternative approach to measuring community structure,
by describing species in term of the traits which determine their ecological role (Mcgill
et al. 2006). Shifts in functional diversity are more tightly linked to ecosystem function,
resilience, and stability than species-based metrics and therefore give us an operational
measure for understanding how communities are changing (Hooper et al. 2002). I pair
thousands of existing community time series with functional trait data to assess broad
patterns in functional structure change through time.
The overall contribution of this dissertation is to general synthesis approaches, tools, and
applications. Chapter 1 develops the conversation around how synthesis can be appro-
priately applied even in situations of limited or biased data. Chapter 2 describes an R
package that automates a significant logistical challenge in biodiversity synthesis, taxo-
nomic inconsistencies. Chapter 3 uses the best practices described in Chapter 1 and the
tool presented in Chapter 2 to perform the first broad-scale analysis of functional diver-
sity change through time. Together, these chapters push forward further development of
synthesis approaches and demonstrate how synthesis can address previously inaccessible
biodiversity questions.
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Chapter 1

Power and limitations of synthesis
approaches for understanding
biodiversity change

Kari E. A. Norman Carl Boettiger

Abstract

Assessing broad-scale patterns of biodiversity distribution and change is a fundamental
goal of ecology and conservation. Recent advances in data availability and computational
tools have made biodiversity synthesis an increasingly powerful approach for exploring
these patterns, allowing us to assess previously intractable questions. However, concerns
about the efficacy of synthesis, particularly with limited and biased data, have called
to questions the role synthesis should play in addressing biodiversity change. Here, we
survey the current state of broad-scale biodiversity knowledge across species, functional,
phylogenetic, and interaction diversity, discuss the current state of the tension about
synthesis approaches, and lay out our perspective for best steps in moving synthesis
work forward. We advocate for improved metadata to incorporate ecological context into
synthesis work, higher standards of code reproducibility and transparency, and greater
nuance in how results from biased data are presented.

Introduction

Assessing the state of the globe’s biodiversity and how it is being impacted by human
pressures is a fundamental goal of ecology. From the formation of Conservation Biology
as a field focused on biodiversity’s protection over 30 years ago (Soulé 1985), a monu-
mental effort has been poured into describing biodiversity and how it relates to ecological
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processes. While we have a better understanding now than we ever have before of how
biodiversity is distributed across the globe and which areas are of greatest concern (Nor-
man 2003, IPBES 2019, Bradshaw 2020), fundamental gaps remain in our understanding
of biodiversity and how it is changing (McGill et al. 2015). Recent advances in data
availability and computational tools have facilitated a new wave of “big data” biodiver-
sity work, which seeks to address some of these gaps by establishing general biodiversity
patterns from syntheses of existing data (Farley et al. 2018, Runting et al. 2020). This
approach stands in contrast to a long history of place-based ecology, raising concerns
about inference based on data removed from its ecological context (Lindenmayer and
Likens 2011, Hampton et al. 2013).
Debate about the role of synthesis work in ecology has been ongoing since the beginning of
its use, with some skeptics going so far as to cite it as endangering the “culture of ecology”
(Lindenmayer and Likens 2018). Recently, the debate has further crystallized in a few
high profile and highly-polarized exchanges in the literature surrounding meta-analyses
of broad-scale biodiversity trends (Dornelas et al. 2014, Cardinale et al. 2018, Primack
et al. 2018, van Klink et al. 2020, Desquilbet et al. 2020). These studies found no net
change in species diversity across studies, and increases in abundance of some taxa, two
results that seemingly run counter to prevailing beliefs about how biodiversity is changing.
While no one disagrees about the importance of understanding these patterns and that
we should use best available tools to address them, there is profound disagreement about
whether or not synthesis is an appropriate or even trustworthy approach. Entrenchment
of the two perspectives has made charting a course forward for synthesis approaches to
broad-scale questions difficult. Here, we discuss the nature of the debate and offer our
perspective on how to reconcile criticisms of synthesis approaches with the urgent need
to better understand general biodiversity trends.
Comprehensively describing biodiversity is fundamentally challenging not just because
of the sheer scope of the world’s biota, but because biodiversity is inclusive of varia-
tion across ecosystems, species, functional traits, phylogenies, interactions, and genetic
composition (Magurran and McGill 2011, Miraldo et al. 2016). Recent work, such as
the Essential Biodiversity Variables framework, has made significant strides in defining
key variables representative of the many biodiversity dimensions (Pereira et al. 2013).
However, while biodiversity is conceptually inclusive of variation across biological scales,
in practice it is most often summarized by community-level metrics of a few facets of
biodiversity. Species-based metrics are by far the most common method of quantifying
biodiversity, as species are a ubiquitous unit of ecology and often the first thing measured
in an ecological system.
Both functional diversity and phylogenetic diversity have increasingly been incorporated
alongside species measures in comprehensive assessments of biodiversity and conservation
priorities (Albouy et al. 2017, Brum et al. 2017, Robuchon et al. 2021). Functional diver-
sity describes the span and structure of the functional space of a group of species, where
the functional space is constructed from the traits of constituent individuals. By directly
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measuring the traits that determine an organism’s role in ecological process, functional
diversity provides a more mechanistic summary of community structure (Petchey and
Gaston 2006). Phylogenetic diversity describes the length and span of the underlying
phylogenetic tree of a group of species (Faith 2018). Measuring the evolutionary history
represented by species provides an estimate of evolutionary capacity and therefore po-
tential capacity of a community to adapt to environmental change (Véron et al. 2019).
Most recently, species interactions have been recognized as a critical fourth dimension of
biodiversity, reflecting their role as a fundamental building block of ecological processes
(Tylianakis et al. 2010). Summaries of interaction diversity are often stated in terms of
the larger network of interactions in a community.
Synthesis methods are a potentially powerful bridge between increasing volumes of het-
erogeneous ecological data and gaps in biodiversity knowledge (Koricheva et al. 2013,
Heberling et al. 2021). Biodiversity data come from a variety of sources collected for
different purposes, including experiments testing specific hypotheses, individual obser-
vations from community scientists, specimens from museum collections, and long-term
monitoring programs (Farley et al. 2018). We have seen huge steps forward in making
these data available for synthesis, with an explosion in databases for different forms of
biodiversity data, many of which are accessible through existing analysis tools such as
R. This data allows us to assess for the first time similar patterns across many taxa and
systems. Still, many legitimate concerns have been raised about how to do synthesis in
a robust way, particularly when data may be fundamentally biased (Bayraktarov et al.
2018, Yen et al. 2019, Hughes et al. 2021).
Biodiversity science is at a critical time, with increasing urgency to provide a compre-
hensive scientific foundation for conservation action alongside increasing availability of
computational and data resources. Synthesis approaches are uniquely suited to address
the intersection of need and data availability, however concerns about their efficacy un-
dermine their integration into the biodiversity toolbox. We advocate for a more nuanced
conversation surrounding the applications of synthesis methods for biodiversity work. We
start with a brief summary of the major threads of agreement in our understanding of
biodiversity, outline some steps forward for reconciling the synthesis debate, and discuss
what that may look like for some of the outstanding questions of the field.

Agreement and knowledge gaps in biodiversity
understanding

While tension over the nature of broad-scale biodiversity trends has been prevalent over
recent years, there is significant agreement about many aspects of both the state of bio-
diversity and existing knowledge gaps. It is therefore first helpful to take a step back
and outline what we do and don’t know about biodiversity from a natural science per-
spective. We structure our summary loosely following the framework of McGill et al.
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(2015) looking at diversity across global, regional, and local scales, but expand beyond
species diversity to include functional diversity, phylogenetic diversity, and species inter-
actions. These four components represent the most commonly studied community-level
dimensions of biodiversity. We focus on macroscopic organisms, as they are largely the
systems within which the synthesis debate has played out. We assess the current known
state, temporal trends, and relevant data available for synthesis. Rather than replicating
existing comprehensive reviews of biodiversity (see for example Hortal et al. 2015, IPBES
2019), this section outlines understanding and questions at the forefront of large-scale
biodiversity science, and the resources available to assess them.

Species Diversity

Species are by far the most commonly studied unit of diversity (Chiarucci et al. 2011).
Species richness and species diversity are ubiquitous in assessments of the temporal and
spatial state of biodiversity and in work linking diversity to ecosystem function, resilience,
and stability. Multiple recent overviews of the state of species diversity illustrate that
while it may be the best understood facet of biodiversity, there are still clear fundamental
gaps in our current understanding (Cardinale et al. 2012, McGill et al. 2015).
An estimated 8.7 million eukaryotic species live on earth, with less than 15% of those
species currently described (Mora et al. 2011). Global trends in species diversity are some
of the best established patterns of biodiversity science. Of known species, extinction rates
are estimated to be up to 1000-fold higher than background rates (Pimm et al. 2014),
indicating magnitudes of loss consistent with the sixth mass extinction (Barnosky et al.
2011). Since recently described species are more likely to be critically endangered, this
rate is likely an underestimate of true loss. And while trends in global species diversity are
also a function of the speciation rate, no clade-level estimate of diversification outpaces
estimated levels of extinction, even in taxa with a relatively high speciation rate like
vascular plants (Pimm et al. 2014). There is no doubt that global species diversity is
decreasing at an accelerating rate.
Assessing biodiversity patterns at smaller geographic and temporal scales, our view
changes from evolutionary time to the last century of global change. At the regional
scale, trends in species diversity are quite different from global trends. Net regional
species diversity is being maintained or increasing even in areas of high impact for many
taxa, particularly plants, mammals, reptiles, and freshwater fish (Sax and Gaines 2003,
Winter et al. 2009, McGill et al. 2015). While extinctions are clearly occurring at
regional levels, they are compensated for by introductions of non-native species and on-
going biotic homogenization. Still, net increases are not necessarily an indication of no
conservation concern, as losses of specialist species and decreases in the regional species
pool will likely impact landscape resilience and result in a growing extinction debt (Sax
and Gaines 2003).
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Local species diversity change has been the topic of substantial debate in recent years. A
series of high-profile papers estimated trends in local species diversity and found no net
loss of species diversity for plant communities (Vellend et al. 2013), disturbed commu-
nities (Supp and Ernest 2014), or thousands of community time series spanning climate,
realm, and taxon (Dornelas et al. 2014). A series of critiques raised concerns about
a lack of data from areas expected to have high biodiversity impact, analyses with no
historical baselines, and extrapolation of trends from relatively short time windows (Car-
dinale 2014, Gonzalez et al. 2016, but for a defense see Vellend et al. 2017). Still,
despite clear limitations in these studies, a generous body of work has amassed finding
similar patterns using a variety of datasets in many systems (Elahi et al. 2015, Jones
et al. 2017, Gotelli et al. 2017, Dunic et al. 2017, Barnagaud et al. 2017). There
is now strong evidence that particularly in communities not experiencing direct human
impact (Sax and Gaines 2003), and even in some communities that experience significant
land use change (Finderup Nielsen et al. 2019, but see Li et al. 2020 for losses along
land use gradients), richness is maintained or increasing (Li et al. 2020, Trindade-Santos
et al. 2020). Such a consistent finding across studies suggests that in the absence of
catastrophic disturbance species richness is a strongly regulated quality of an ecosystem
(Brown et al. 2001, Gotelli et al. 2017).
As species diversity trends seem unable to capture the kind of change happening in many
communities, recent work focuses on potential alternative approaches for understanding
community change. Identifying elevated rates of turnover and what changes in species
identity mean for community structure is one potentially promising avenue (Magurran et
al. 2010, Hillebrand et al. 2017, Magurran et al. 2019, Blowes et al. 2019, Rishworth et
al. 2020). However it presents a number of challenges, including difficulty in determining
background rates of turnover (Dornelas et al. 2019), especially in communities with no
baseline. It also presents a significant departure from usual approaches in conservation
where the goal is to maintain as many species as possible. Conservation based on turnover
rates means identifying which communities are desirable when there are differences only
in species composition rather than number. Some have suggested that turnover should
be minimized as much as possible (Hillebrand et al. 2017), however higher levels of
turnover may actually be desirable, as they are evidence of communities adapting to
environmental shifts such as climate change.
Still another option for understanding biodiversity change is to move beyond simplistic
species-based metrics to capture shifts in different dimensions of biodiversity. Efforts to
understand trends in biodiversity change through functional, phylogenetic, and network
lenses will be discussed in greater detail in later sections.

Data

Accessibility of species data has increased rapidly over the last decade with multiple
efforts spanning a wide range of goals and included data types and quality. Databases



8

such as GBIF cast the widest net by collating biodiversity data of any form, ranging from
point observations from community scientists to data from rigorous long term monitoring
programs (“GBIF” 2021). It subsumes other more targeted efforts, such as iNaturalist
which focuses on community science data and eBird, which collects bird lists from birders
of a wide range of skill levels (Sullivan et al. 2009). Other databases collate only high-
quality data from studies with consistent sampling protocols and detailed metadata. For
example, bioTIME collates occurrence and abundance time series of communities follow-
ing rigorous data quality standards (Dornelas et al. 2018). PREDICTS collects data
from studies looking at the impacts of human disturbance on biodiversity (Hudson et al.
2017). Long term ecological research networks (LTER’s) like the National Ecological Ob-
servation Network are another source of high quality replicated biodiversity data. Many
LTER’s release data continuously as it is collected, constructing high quality biodiversity
time series with many geographic and temporal replicates.
Despite the wealth of biodiversity data now available, it does exhibit some systematic
biases in taxonomic and geographic coverage. Data largely reflect legacies of colonialism,
discrepancies in funding availability for different countries, and historical taxonomic pref-
erence (Nuñez et al. 2021). Only an estimated <7% of the globe is represented by the
largest sources of biodiversity data (Hughes et al. 2021). The majority of well sampled
areas are in the global North and severely mismatched to areas of highest conservation
concern (Cardinale 2014).
We examined GBIF data to identify general data distribution across taxa. For all non-
fossil occurrence records in the most recent version of the database (accessed 11/01/2021)
we found that for vertebrate species, birds have by far the most samples, especially rela-
tive to the number of species in the Aves class (Fig 1.1). Percentage of observations were
much more balanced for vascular plant classes, where percentage of observations follows
percentage of species relatively closely. Still, the vast majority of species are sample-
poor. We found almost half a million species only have a single recorded observation in
the database and approximately 1.2 million species have less than 10 observations. With
1.8 million total species represented in the database, only 0.6% of species represent 90%
of the observations. These patterns are in line with findings from other databases, where
for example open data of tree species have 20 high quality records for only 26% of species
(Serra-Diaz et al. 2018). Data gaps are especially profound for microbial species, for
which data only skims the surface of the number of species (Thaler 2021).

Functional Diversity

Functional diversity as a way of describing communities has become a fundamental ap-
proach over the last 15 years, building on a rich history of trait-based ecology (Mcgill et
al. 2006). Functional diversity work can be categorized in two main veins, 1) functional
diversity as a descriptor of community structure, often measuring response to a pertur-
bation and 2) functional diversity as a link between biodiversity and ecosystem function,
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Figure 1.1: Comparison of percentage of the total number of observations (in blue) to
percentage of total number of species (in red) for A) vertebrate classes and B) vascular
plant classes.

where functional traits provide a mechanistic representation of community structure. De-
spite a substantial body of observational and experimental work in both veins, synthesis
across studies is often hindered by methodological differences in the traits measured for
different taxa, trait selection, and metric calculation (Palacio et al. 2021), making for-
mal meta-analyses from existing studies difficult. Recent efforts to collate functional
trait data from existing data sets and museum specimens has facilitated a new wave of
functional diversity assessments starting from primary data (Villéger et al. 2014, Wong
et al. 2018, e.g. Newbold et al. 2020, Trindade-Santos et al. 2020). This work has
further allowed us to examine general functional diversity patterns across scale.
On a global scale we have an in-depth understanding of some commonly studied traits
and broad descriptions of the global trait space as a whole. Ecologists have been studying
traits long before the concept of a trait was fully articulated, with examples going back as
far as the beaks of Darwin’s finches, or Raup’s study of coiled shells (Raup 1966, Gerber
2017). More recent comprehensive assessments of multiple traits build on that foundation
while taking a more holistic approach. For example, work in vascular plants indicates that
the trait space can be described by two major axes of variation in size and features of the
leaf economic spectrum (Wright et al. 2004, Díaz et al. 2016). First assessments of the
global trait space based on species-level means give evidence that the distribution of traits
for multicellular organisms is uneven and characterized by a high degree of functional
redundancy, with non-redundant species also being mostly functionally unique (Mouillot
et al. 2021, Carmona et al. 2021). Many trait combinations are not realized by existing
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species (Cooke et al. 2019b). Studies in birds and mammals also suggest that the global
trait space is geographically structured, with higher redundancy in the tropics (Cooke et
al. 2019a).
Because the species-level trait means available for large-scale analysis are static identify-
ing how global functional diversity has changed through recent time is difficult. However,
we have some projections as to how it may continue to be impacted by anthropogenic
activity. Species losses are predicted to reduce both functional richness and functional
redundancy (Carmona et al. 2021, Toussaint et al. 2021). While initial losses may
be buffered by existing redundancy, disproportionate losses on the boundaries of the
trait space will likely have an erosive effect on overall functional diversity (Pimiento et
al. 2020a, Carmona et al. 2021). Generally, higher loss is expected to occur in large,
long-lived, and slow-reproducing species (Pimiento et al. 2020b).
Studies looking at functional diversity at a regional scale are rare, particularly those
looking at temporal trends (Rossi et al. 2020). Unlike species diversity, which has a well
established species-area relationship (SAR), the relationship between functional diversity
metrics and area is mixed particularly for metrics that incorporate abundances (Karadi-
mou et al. 2016). While we have no comprehensive assessments of temporal change in
regional functional diversity, we do know that it may not necessarily follow species trends.
The relative impact of species losses and gains on functional diversity is a function of the
uniqueness of those species. We would expect that the processes of homogenization and
invasion would also shift functional composition, however even when biological homoge-
nization is occurring for species there is not necessarily homogenization of the functional
space (White et al. 2018). Describing general trends in regional functional change will be
critical for understanding how ecosystem functions may be maintained at the landscape
level.
Local assessments of functional diversity are similarly limited and largely look at the
response of functional diversity to disturbance rather than trends in communities at a
relative equilibrium (Mouillot et al. 2013). We know the most about bird and plant
groups, reflecting trait and species data availability. For birds, local functional diversity
generally increased over the last fifty year, with declines at the continental scale begin-
ning around the year 2000 (Jarzyna and Jetz 2016, Barnagaud et al. 2017). In plants,
local functional diversity shows complex responses to disturbance, fragmentation, and
succession processes, with generally significant functional turnover, but not necessarily
functional gains or losses (Purschke et al. 2013, Chun and Lee 2019, Zambrano et al.
2019). Functional diversity response to disturbance for other taxa is also varied and a
function of disturbance type and intensity (Flynn et al. 2009).
The resolution of trait data is another critical dimension of functional diversity assess-
ment. Almost all work mentioned previously in this section is performed using species-
level means, which do not account for individual variation in traits. Intraspecific variation
has been estimated to account for ~25% of the overall variation in communities (Siefert
et al. 2015) and is critical for maintaining demographic resilience and evolutionary po-
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tential (Violle et al. 2012). It is also particularly prone to human impact (Des Roches
et al. 2018). Due to the significant costs associated with collecting individual-level traits
we don’t know much beyond these basic outlines of intraspecific variation, particularly
the degree of variation for different traits and how it may be changing.

Data

Access to functional trait data has greatly increased over the past decade with multiple
taxa-specific databases compiling species trait means or intraspecific observations. Efforts
to collate and standardize trait data have also followed suit, including collaborations like
the Open Traits Network, an open science community for gathering and standardizing
trait datasets. While there are too many datasets to comprehensively describe here, we
list some of the largest and most frequently used as an example of what is available
(Table 1.1).

Table 1.1: Summary table of the attributes for major trait databases, informed by meta-
data collated by the Open Traits Network.

Trait Source Taxa Number of Species Traits Trait Resolution
Amphibio Amphibians 6572 body mass, diet, active diel period species
BIEN Plants 464348 53 plant traits individual
Coral Trait Database Coral 1555 150 coral traits individual
eFlower Angiosperms 792 Sex, Ovary position, Number of perianth parts, Fusion

of perianth, Symmetry of perianth, Perianth
phyllotaxy, Number of perianth whorls, Perianth
merism, Perianth differentiation, Number of fertile
stamens, Filament, Anther orientation, Anther
attachment, Anther dehiscence, Androecium structural
phyllotaxy, Number of androecium structural whorls,
Androecium structural merism, Gynoecium phyllotaxy,
Number of structural carpels, Fusion of ovaries,
Number of ovules per functional carpel

individual

Elton Traits Mammals and Birds 15321 body mass, diet, nocturnality, forest foraging strata,
habitat, active diel period, activity seasonality, body
length, min maturation size, max maturation size, min
offspring, size, max offspring size, reproductive output,
breeding strategy

species

FishBase Finfishes >33,000 ecology, morphology, life history, habitat species and individual
FishTraits Freshwater Fish 809 trophic ecology, body size, reproductive ecology, life

history, habitat preferences, salinity and temperature
tolerances

species

PanTHERIA Mammals 5416 size, diet, life history, environmental conditions,
ecology

species

TRY Vascular Plants, Mosses, Lichens >69000 2091 plant traits species and individual

Phylogenetic Diversity

Phylogenetic diversity captures the evolutionary lineage represented by each species in
the community, thereby giving an indication of the future evolutionary potential of a
community (Véron et al. 2019). Phylogenetic diversity also captures at least some as-
pects of a community’s genetic scope, though likely not the significant intraspecific losses
occurring across the globe (Miraldo et al. 2016, Theodoridis et al. 2020). Further ex-
ploration of patterns of genetic diversity will undoubtedly be critical for understanding
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biodiversity change, but are outside the scope of this review. Assessments of phylo-
genetic diversity have been greatly facilitated by the availability of phylogenetic trees
that can be paired with existing species data. Patterns of phylogenetic diversity across
scales illustrate alongside functional diversity the ways community structure can change
independent of changes in species richness.
At the global scale, phylogenetic diversity patterns are broadly similar to species diversity.
Speciation does not outpace losses of PD due to extinctions despite high rates for some
taxa (Scholl and Wiens 2016). While the loss of any species results in at least a minor
reduction in phylogenetic diversity, simulations of random species loss indicate that the
majority of phylogenetic diversity can be maintained even after catastrophic species loss
(Nee and May 1997). Still, estimates for mammals indicate that it would take millions of
years to recover the PD already lost due to extinction, and that recent losses have resulted
in reductions in PD far higher than expected by chance for random species extinctions
(Davis et al. 2018). Generally the relationship between species and phylogenetic loss
is heavily dependent both on the order in which species go extinct and the underlying
phylogenetic structure (Erwin 2008, Maliet et al. 2018).
Work on regional and local phylogenetic diversity patterns reflect the complex relation-
ship between species richness and underlying phylogenetic structure. Locally, phyloge-
netic diversity losses in response to land use change or environmental stress are common
as phylogenetically distinct species are lost and replaced by less distinct species, if re-
placed at all (Winter et al. 2009, Li et al. 2019, Li et al. 2020). Significant phylogenetic
losses can occur alongside species gains, leading to hidden phylogenetic impoverishment
(Knapp et al. 2008). Phylogenetic diversity may be maintained regionally if species
losses are only local (Li et al. 2019), however Winter et al. (2009) found that for Eu-
ropean plants, phylogenetic diversity was lost at local, regional, and continental scales
despite gains in species richness. Generally, phylogenetic diversity is lost when species go
extinct or are extirpated even when net species richness at that scale remains the same,
as replacement species do not make up for phylogenetic losses.

Data

With the advent of modern genomics, phylogenetic data is available for a wide variety
of taxa. Databases such as TreeBASE (Piel et al. 2009) and the Open Tree of Life
(McTavish et al. 2015) store phylogenetic trees and their underlying data. Tools such
as Phylomatic make access to phylogenetic treeds even simpler, by requiring only lists of
species names to construct a phylogenetic tree for the community based on existing phy-
logenetic estimates. While existing tree-based tools already represent a huge step forward
in making phylogenetic data more accessible and usable, genomics data present another
significant pool of phylogeny-relevant data. Genomics data from sources like GenBank
are doubling every 18 months (Farley et al. 2018), providing an opportunity to improve
phylogenetic trees with inclusion of more genes and more taxa. And though mapping of
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genomic data to phylogenetic trees is non-trivial, more comprehensive phylogenies taking
advantage of this data are increasingly available (Kapli et al. 2020).

Species Interactions

Despite being one of the key mechanisms in ecological communities, species interactions
are not often considered alongside other facets of biodiversity in conservation considera-
tions. Work on interactions is severely data-limited, especially relative to the number of
interactions a single species or individual may take part in, spanning for example com-
petitive, predatory, and mutualistic relationships. The majority of ecological network
studies treat species interactions as static in both time and space, dependent only on
co-occurrence (Poisot et al. 2015), adding to difficulty in incorporating network con-
cepts into our understanding of biodiversity change. As such, our inventory of species
interactions and how they are changing is sparse.
There is a rich history of site and system focused work describing interactions and their
response to perturbations, however geographic and taxonomic coverage is not compre-
hensive enough to establish general rules for network structure at any scale. Initial
evidence suggests that some network characteristics such as connectance and nestedness
are largely maintained through time (Trøjelsgaard and Olesen 2016). Network patterns
seem inconsistent across latitude and dependent both on network type and habitat. Data
limitations and ambiguous expectations of common macroecological rules for networks
are both barriers for better understanding of the biogeography of networks (Baiser et al.
2019).
Predictions for consequences of human impact indicate that directly measuring changes
in species interactions is critical for understanding biodiversity change. There is strong
evidence that networks can rewire even when species composition remains largely the
same, both in response to disturbance and as part of natural community fluctuation
(CaraDonna et al. 2017, Tylianakis and Morris 2017, Bullock et al. 2018). Rare species
and their interactions are often the first to be lost from communities and subsequently
go extinct (Tylianakis and Morris 2017). Extinctions and extirpations may also have
cascading effects on other interactions in the network, leading to further network deteri-
oration.

Data

Species interaction data is available through a few key databases. GLOBI (Poelen et al.
2014), which stores interaction pairs between species, and Mangal (Poisot et al. 2016),
which collects complete interaction networks with their metadata. Biases in network
data reflect many of the issues also found in other ecological data including significant
geographic and taxonomic biases. Poisot et al. (2021) took a comprehensive look at
the Mangal database and found multiple other sampling limitations, including under
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sampling of some of the most common biomes, sampling of certain network types in only
a subset of possible biomes, and a general tendency towards small networks.

Incorporating ecological context into synthesis work
and interpretation

Debate about the role and efficacy of synthesis methods in biodiversity research has been
highlighted in multiple recent exchanges in the literature. The first, described in detail
in the species diversity section above, relates to our understanding of how biodiversity is
changing at a local scale. Multiple studies found that for different taxa and community
types the net change in diversity across communities is zero (Vellend et al. 2013, Dornelas
et al. 2014, Supp and Ernest 2014). These findings were criticized in multiple responses
based on a number of methodological grounds relating to the underlying data synthesis
(Cardinale 2014, Gonzalez et al. 2016, Cardinale et al. 2018, Primack et al. 2018).
A similar story played out in recent work around the nature of invertebrate population
declines, where van Klink et al. (2020) found increases in freshwater invertebrate abun-
dance across studies, a result that was also contested (Klink et al. 2020, Desquilbet et
al. 2020). In both cases criticisms and defenses of the studies had some common themes
surrounding the nature of biodiversity synthesis. We will discuss those themes and what
they mean for the future of synthesis work.
Criticisms of synthesis approaches center around data limitations and how they are
treated in analysis and interpretation. As outlined in the biodiversity knowledge sec-
tion, available biodiversity data is profoundly geographically and taxonomically biased,
with data missing more often for areas and taxa of highest vulnerability (Hughes et al.
2021). Studies that claim to make universal statements about global trends are there-
fore necessarily making inferences potentially far outside the scope of underlying data.
Included data are also inherently missing some potentially important dimensions of eco-
logical context, including level and type of anthropogenic impact, protection status, and
site specific land use history (Cardinale et al. 2018). Large-scale analyses may also
suffer from other widely acknowledged issues with processing of disparate data sources,
including taxonomic inconsistencies, difficulty in accounting for fundamental sampling
differences, reconciling data sources at different scales, and underlying coding errors
(Specht et al. 2015). Skeptics of large-scale syntheses also raise concerns that they are
unable to incorporate mechanisms that are known to be critical from system-specific
studies. For example, the freshwater invertebrate analysis did not include potential up-
stream impacts despite the fact they are widely accepted as a key mechanism determining
freshwater biodiversity (Desquilbet et al. 2020).
Proponents of synthesis argue that it is taking a first look at previously inaccessible
questions using best available tools and data. Establishing broad-scale patterns of biodi-
versity change is critical for directing future scientific and conservation action, but often
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must make due with incomplete data (Chaplin-Kramer et al. 2021). Far from being the
final word on the patterns in question, they serve as initial starting points upon which
to build. Synthesis advocates argue that many of the criticisms have unrealistic expecta-
tions of available data, or fundamentally misunderstand synthesis as a scaling up of finer
scale understanding, rather than an abstraction to assess general patterns (Vellend et al.
2017, Klink et al. 2020). Part of synthesis is exploring which dimensions of context are
important and which are not.
We acknowledge the potential power of synthesis methods for identifying the broad-scale
patterns critical for conservation alongside meaningful criticisms of their execution. We
advocate for a few steps by the community to bridge the two perspectives and move
synthesis work forward. First, synthesis work would greatly benefit from expansion and
inclusion of more complete metadata from original data sources. Expectations for bio-
diversity patterns are strongly related to site characteristics, but there is often little to
no metadata included in data aggregations about land use and disturbance histories or
biodiversity change drivers. Expansion of metadata will be most meaningful after some
consensus on which variables are most important and how they should be measured.
For example, recent efforts to develop a standardized framework for classifying and mea-
suring disturbance provide a strong starting point to identify key disturbance variables
(Buma 2021). For many existing datasets metadata may need to be recovered from pri-
mary sources or measured post hoc from additional data sources such as remote sensing
layers or datasets of human impact (Wildlife Conservation Society-WCS and Center For
International Earth Science Information Network-CIESIN-Columbia University 2005).
Second, synthesis analysis should follow best practices in data management and coding.
Code underpins almost all modern ecological work to some degree, but for synthesis
work in particular the code is the scientific process. Data cleaning, merging, and analysis
represent scientific decisions that must be documented, reproducible, and transparent.
Code sharing and review is not only critical for ensuring efficacy of code products, but
also speeds the scientific process by making code for common, shared tasks accessible
for later researchers. Recognition of code as a fundamental part of a manuscript is
increasing, however very few journals require code and data with submissions (but see
American Naturalist, Methods in Ecology and Evolution, and ESA Journals) (Mislan
et al. 2016). And while explicit and enforced standards are critical for achieving code
archiving goals (Sholler et al. 2019, Tedersoo et al. 2021), not even they are sufficient to
guarantee basic standards of reproducibility (Culina et al. 2020). Synthesis work should
hold itself to a higher standard of code availability, reflecting the fundamental role of
code in the scientific process.
Finally, we need greater clarity as a community on how to talk about broad-scale synthe-
ses that are nevertheless missing key data and regions. While they represent a significant
step forward and may be the most comprehensive looks at many biodiversity patterns
so far, they cannot be global using currently available data. Results should be framed
from the outset in terms of the biases of underlying data and what they may mean for
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measured phenomena. While this is by no means a novel call (Cardinale 2014), we feel
it is worth explicit statement as it runs counter to publishing incentives, which push
for broadest inference statements possible. Data limitations of conclusions should, to
the best of our ability, be propagated through to subsequent references of the findings.
Without both of these pieces we risk losing the thread of what we do and do not know
about broad biodiversity patterns.

Improved synthesis for addressing biodiversity
change questions

Survey of the four main biodiversity dimensions above illustrate multiple significant gaps
in our understanding of broad-scale biodiversity and how it is changing. A few key
questions emerge as being both common across the biodiversity facets and some of the
most pressing for understanding anthropogenic impact on biodiversity. We discuss in
further detail here two of those questions and how they could be better addressed by our
proposed steps for synthesis improvement.

What are background rates of turnover and change in community structure?

One of the emerging questions of biodiversity change is what the typical background
rate of change is for communities. All communities experience some level of background
species and interaction turnover due to stochasticity and in response to normal envi-
ronmental fluctuation. Typical rates will likely be heavily impacted by anthropogenic
influence (Rapacciuolo et al. 2019). Indeed, initial assessments of turnover rates indicate
that turnover is increasing over time in many communities, is generally lower in long-lived
taxa, and that there is generally high variance in turnover rates (Dornelas et al. 2014,
Blowes et al. 2019, Rishworth et al. 2020). Distinguishing elevated rates from base rates
will be key for identifying communities undergoing rapid shifts, both due to elevated
stress from external perturbation and as they adapt to novel environmental conditions
due to climate change.
Quality study-level metadata is critical for assessing background rates of turnover, as
rates are a function of multiple community characteristics including taxa, realm, organ-
ism life span, and climate (Blowes et al. 2019) and are likely perturbed by a number of
drivers. A key challenge of determining base turnover rates is that all ecological commu-
nities on earth are experiencing at least some level of perturbation, making it difficult to
empirically estimate the true background rate especially from synthesized data. Recent
attempts to separate expected turnover from elevated turnover often turn to null model
approaches using either mechanistic predictions of null turnover or community random-
ization models (Socolar et al. 2016, Magurran et al. 2019). Using datasets with detailed
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data on different change drivers would allow us to instead take an empirical approach,
assessing how turnover rates may change as a function of specific drivers.

How does biodiversity change differ between systems experiencing different
kinds of disturbance?

Identifying differences in general biodiversity trends under different kinds of disturbance
is a long-time outstanding question of conservation and fundamentally requires explicit
consideration of site-level characteristics (Newman 2019). Large-scale syntheses of biodi-
versity trends are frustrated by systems with multiple co-occurring disturbances. Further,
differences in timing of disturbances mean that communities may be simultaneously re-
covering from one event while experiencing another, resulting in complex expectations for
biodiversity trajectories (Graham et al. 2021). While we are prone to making sweeping
statements about the impacts of anthropogenic and environmental change on ecosystems,
in reality expectations for impact are highly heterogeneous across different ecological and
disturbance contexts.
Metadata on study-level disturbance types and timing would shed significant light on the
role different kinds of disturbance plays across systems. Metadata collection would build
on extensive existing work for classifying disturbances and their interactions (Peters et
al. 2011, Borics et al. 2013, Hobday et al. 2016, Jentsch and White 2019, Buma 2021,
Graham et al. 2021), defining disturbance type, duration, and intensity. Categories for
example may distinguish between relatively natural communities that experience little
human intervention but are subject to climate change shifts from systems experiencing
significant acute natural or human caused disturbance. Categories will likely be limited
initially by the kinds of study metadata available, but could also critically inform the
kinds of additional study-level data needed in future collection efforts.

Conclusion

Synthesis approaches are critical for most effectively leveraging biodiversity data to ad-
dress the ongoing biodiversity crisis. Broad-scale patterns of biodiversity change in par-
ticular are both essential for conservation decision making and only accessible through
synthesis approaches. We describe a few simple but powerful steps for reconciling syn-
thesis limitations and strengths by having higher methodological standards and better
incorporating ecological context in analysis and interpretation of results. Adoption of
these suggestions by the community should provide a strong starting point from which
to continue further biodiversity synthesis work.
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Transition between Chapter 1 and 2

In Chapter 1, I outlined the tension over synthesis approaches for addressing broad-
scale patterns of biodiversity change. Synthesis methods offer a potential opportunity to
leverage existing biodiversity data to assess aspects of biodiversity critical for conservation
efforts. Synthesis also suffers from multiple limitations related to data biases and scope
of inference. I laid out a few simple but powerful steps for reconciling synthesis need and
limitations, including improving metadata for better incorporation of ecological context
in synthesis, adoption of best practices in coding reproducibility, and explicit inclusion
of inference limitations with results.
As discussed in Chapter 1, developing tools for biodiversity synthesis following best cod-
ing and open software practices is essential for improving efficacy of synthesis pipelines.
By automating common tasks, scientists spend less time on data processing and reduce
potential for human error. Chapter 2 outlines a project motivated by those goals and
designed to address taxonomic inconsistencies in biodiversity synthesis. I outline the
structure and use of taxadb, an R package that accesses providers of taxonomic data to
translate scientific and common names to taxonomic ID’s.
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Chapter 2

taxadb: A High-Performance Local
Taxonomic Database Interface

Kari E. A. Norman Scott Chamberlain Carl Boettiger

Abstract

1) A familiar and growing challenge in ecological and evolutionary research is that
of establishing consistent taxonomy when combining data from separate sources.
While this problem is already well understood and numerous naming authorities
have been created to address the issue, most researchers lack a fast, consistent, and
intuitive way to retrieve taxonomic names.

2) We present taxadb R package which creates a local database, managed automati-
cally from within R, to provide fast operations on millions of taxonomic names.

3) taxadb provides access to established naming authorities to resolve synonyms, tax-
onomic identifiers, and hierarchical classification in a consistent and intuitive data
format.

4) taxadb makes operation on millions of taxonomic names fast and manageable.

Originally published in Methods in Ecology and Evolution (2020) (Norman et al. 2020)
and reproduced here with minor changes.

Introduction

As ecologists and evolutionary biologists synthesize datasets across larger and larger
assemblies of species, we face a continual challenge of maintaining consistent taxonomy.
How many species are in the combined data? Do the studies use the same names for the
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same species, or do they use different synonyms for the same species? Failing to correct
for such differences can lead to significant inflation of species counts and miss-aligned
datasets. These challenges have become particularly acute as it becomes increasingly
common for researchers to work across a larger number and diversity of species in any
given analysis, which may preclude the resources or substantive taxonomic expertise for
all clades needed to resolve scientific names (Patterson et al. 2010).
While these issues have long been recognized in the literature (Dayrat 2005, Bortolus
2008, Boyle et al. 2013, Maldonado et al. 2015, Remsen 2016), and a growing number
of databases and tools have emerged over the past few decades (e.g. Gries et al. 2014,
Rees 2014, Wagner 2016, Roskov Y. 2018, Alvarez and Luebert 2018, Foster et al. 2018,
Biotechnology Information 2019, ITIS 2019), it remains difficult to resolve taxonomic
names to a common authority in a transparent, efficient, and automatable manner. Here,
we present an R package, taxadb, which seeks to address this gap.
Databases of taxonomic names such as the Integrated Taxonomic Information System
(ITIS, ITIS 2019), the National Center for Biological Information’s (NCBI) Taxonomy
database (Biotechnology Information 2019), the Catalogue of Life (COL, Roskov Y.
2018), and over one hundred other providers have sought to address these problems by
providing expert-curated lists of accepted taxonomic names, synonyms, associated tax-
onomic rank, hierarchical classifications, and scientific authority (e.g. author and date)
establishing a scientific name. The R language (R Core Team 2019) is widely used in
ecology and evolution (Lai et al. 2019) and the taxize package (Chamberlain and Szöcs
2013) has become a popular way for R users to interact with naming providers and name
resolution services. taxize implements bindings to the web APIs (Application Program-
ming Interface) hosted by many popular taxonomic name providers. Nevertheless, this
means that functions in the taxize are impacted by several major drawbacks that are
inherent in the implementation of these central API servers, such as:

• Queries require internet access at all times.
• Queries are slow and inefficient to implement and perform; frequently requiring

separate API calls for each taxonomic name.
• The type of query is highly limited by the API design. For instance, it is usu-

ally impossible to make queries across the entire corpus of names, such as “which
accepted name has the most known synonyms?”

• Both query formats and responses differ substantially across different naming
providers, making it difficult to apply a script designed for one provider to different
provider.

• Most queries are not reproducible, as the results depend on the state of the central
server (and potentially the quality of the internet connection)(Rees and Cranston
2017b). Many names providers update the server data either continuously or at
regular intervals, including both revising existing names (for spelling or changes in
accepted name designation) and adding new names.
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Instead of binding existing web APIs, taxadb is built around a set of compressed text
files which are automatically downloaded, imported, and stored on a local database by
taxadb. The largest of the taxonomic naming providers today contain under 6 million
name records with uncompressed file sizes over a GB, which can be compressed to around
50 MB and downloaded in under a minute on a 1 MB/s connection. By using a local
database as the backend, taxadb allows R users to interact with large data files without
large memory (RAM) requirements. A query for a single name over the web API requires
a remote server to respond, execute the query, and serialize the response, which can
take several seconds. Thus it does not take many taxa before transferring the entire
data set to query locally is more efficient. Moreover, this local copy can be cached
on the user’s machine, requiring only the one-time setup, and enabling offline use and
reproducible queries. Rather than returning data in whatever format is given by the
provider, taxadb provides a data structure following a consistent, standardized layout
or schema following Darwin Core, which provides standard terms for biodiversity data
(Wieczorek et al. 2012). Table 2.1 summarizes the list of all naming providers currently
accessed by taxadb. More details are provided in the Data Sources Vignette, https:
//docs.ropensci.org/taxadb/articles/data-sources.html.

Table 2.1: Descriptions of the providers supported by taxadb with their reference abbre-
viation and the total number of identifiers contained by each provider.

Provider Abbreviation Number of Identifiers Description
Integrated Taxonomic
Information System (ITIS
2019)

itis 597120 originally formed to standardize taxonomic name usage
across many agencies in the United States federal
government

National Center for
Biological Information’s
Taxonomy database
(Biotechnology Information
2019)

ncbi 2175855 nomenclature for sequences in the International
Nucleotide Sequence Database Collaboration database

Catalogue of Life (Roskov
Y. 2018)

col 1998435 comprehensive taxonomic effort, includes some other
providers (e.g. itis)

Global Biodiversity
Information Facility
Taxonomic Backbone
(GBIF 2019)

gbif 3546672 taxonomic backbone of the GBIF database, assembled
from other sources including COL

Open Tree Taxonomy (J.
A. Rees and Cranston
2017)

ott 4455820 comprehensive tree of life based on phylogenetic trees
and taxonomic data

International Union for
Conservation of Nature and
Natural Resources (IUCN
2019)

iucn 131927 taxonomy for classification of species status

https://docs.ropensci.org/taxadb/articles/data-sources.html
https://docs.ropensci.org/taxadb/articles/data-sources.html
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Package Overview

library(tidyverse)
library(taxadb)

After loading our package and the tidyverse package for ease in manipulating function
output, we look up the taxonomic identifier for Atlantic Cod, Gadus morhua, and the
compliment:

get_ids("Gadus morhua")
get_names("ITIS:164712")

[1] "ITIS:164712"

[1] "Gadus morhua"

Our first call to any taxadb functions will automatically set up a local, persistent database
if one has not yet been created. This one-time setup will download, extract, and import
the compressed data into persistent database storage (using the appropriate location
specified by the operating system (see Ratnakumar et al. 2016), or configured using the
environmental variable TAXADB_HOME). The example above searches for names in ITIS,
the default provider, which can be configured using the provider argument. Any future
function calls to this function or any other function using data from the same provider
will be able to access this data rapidly without the need for processing or an internet
connection.
Users can also explicitly trigger this one-time setup using td_create() and specifying
the provider abbreviation (see Table 2.1), or simply using all to install all available
providers:

td_create("all")

taxadb functions like get_ids() and td_create() take an optional argument, db, to an
external database connection. taxadb will work with most DBI-compliant databases such
as MySQL or Postgres, but will be much faster when using a column-oriented database
engine such as duckdb or MonetDBLite. These latter options are also much easier for
most users, since each can be installed directly as an R package. taxadb will default to
the fastest available option. taxadb can also run without a database backend by setting
db=NULL, though some functions will require a lot (2-20 GB) of free RAM for this to work
with many of the larger providers.
taxadb uses the widely known SQLite database by default, but users are encouraged to
install the optional, suggested database backends by passing the option dependencies =
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TRUE to the install command. This installs a MonetDBLite database instance (Raasveldt
and Mühleisen 2018), a columnar-oriented relational database requiring no additional
installation while also providing persistent disk-based storage. This also installs duckdb,
another local columnar database which is rapidly emerging as an alternative to MonetDB
and SQLite. taxadb will automatically detect and use these database engines if available,
and automatically handles opening, caching, and closing the database connection. For
large queries, MonetDBLite or duckdb deliver impressive improvements. Our benchmark
on resolving the 750 species names in the Breeding Bird Survey against over 3 million
names known in the 2019 Catalogue of Life takes 8 minutes in SQLite but less than a
second in MonetDBLite.
Functions in taxadb are organized into several families:

• queries that return vectors: get_ids() and it’s complement, get_names(),
• queries that filter the underlying taxonomic data frames: filter_name(),

filter_rank(), filter_id(), and filter_common(),
• database functions td_create(), td_connect() and taxa_tbl(),
• and helper utilities, such as clean_names().

Taxonomic Identifiers

Taxonomic identifiers provide a fundamental abstraction which lies at the heart of man-
aging taxonomic names. For instance, by resolving scientific names to identifiers, we
can identify which names are synonyms – different scientific names used to describe the
same species – and which names are not recognized. Each naming authority provides its
own identifiers for the names it recognizes. For example, the name Homo sapiens has
the identifier 9606 in NCBI and 180092 in ITIS. To avoid possible confusion, taxadb
always prefixes the naming provider, e.g. NCBI:9606. Some taxonomic naming providers
include separate identifiers for synonyms, see Box 1. Unmatched names may indicate an
error in data entry or otherwise warrant further investigation. Taxon identifiers are also
easily resolved to the original authority (scientific publication) establishing the name.
The common practice of appending an author and year to a scientific name, e.g. Poa
annua annua (Smith 1912), serves a valuable role in disambiguating different uses of the
same name but can be notoriously harder to resolve to the appropriate reference, while
variation in this convention creates many distinct versions of the same name (Patterson
et al. 2010).
These issues are best illustrated using a minimal example. We’ll consider the task of
combining data on bird extinction risk as assessed by the IUCN (International Union
for Conservation of Nature and Natural Resources 2019) with data on average adult
biomass, as estimated in the Elton Traits v1.0 database (Wilman et al. 2016). To keep
the example concise enough for for visual presentation we will focus on a subset involving
just 10 species (Table 2.2, 2.3).
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trait_data <- read_tsv(
system.file("extdata", "trait_data.tsv", package="taxadb"))

status_data <- read_tsv(
system.file("extdata", "status_data.tsv", package="taxadb"))

Table 2.2: The subset of the IUCN status data used for subsequent taxonomic identifier
examples.

iucn_name category
Pipile pipile CR
Pipile cumanensis LC
Pipile cujubi LC
Pipile jacutinga EN
Megapodius decollatus LC
Scleroptila gutturalis LC
Margaroperdix madagarensis LC
Falcipennis falcipennis NT

Table 2.3: The subset of the Elton trait data used for subsequent taxonomic identifier
examples.

elton_name mass
Aburria pipile 1816.59
Aburria cumanensis 1239.22
Aburria cujubi 1195.82
Aburria jacutinga 1240.96
Megapodius reinwardt 666.34
Francolinus levalliantoides 376.69
Margaroperdix madagascariensis 245.00
Catreus wallichii 1436.88
Falcipennis falcipennis 685.61
Falcipennis canadensis 473.65

If we attempted to join these data directly on the species names provided by each table,
we would find very little overlap, with only one species name having both a body mass
and an IUCN threat status resolved (Table 2.4).

joined <- full_join(trait_data, status_data, by = c("elton_name" = "iucn_name"))

If we first resolve names used in each data set into shared identifiers, (for instance, using
the Catalogue of Life), we discover that there is far more overlap in the species coverage
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Table 2.4: Example IUCN and trait data joined directly on scientific name showing only
one match. While common, joining on scientific name does not account for nomenclatural
and taxonomic inconsistencies between databases and therefore results in seemingly very
little overlap in species representation between the two.

elton_name mass category
Aburria pipile 1816.59 -
Aburria cumanensis 1239.22 -
Aburria cujubi 1195.82 -
Aburria jacutinga 1240.96 -
Megapodius reinwardt 666.34 -
Francolinus levalliantoides 376.69 -
Margaroperdix madagascariensis 245.00 -
Catreus wallichii 1436.88 -
Falcipennis falcipennis 685.61 NT
Falcipennis canadensis 473.65 -
Pipile pipile - CR
Pipile cumanensis - LC
Pipile cujubi - LC
Pipile jacutinga - EN
Megapodius decollatus - LC
Scleroptila gutturalis - LC
Margaroperdix madagarensis - LC

than we might have initially realized. First, we just add an ID column to each table by
looking up the Catalog of Life identifier for the name provided:

traits <- trait_data %>% mutate(id = get_ids(elton_name, "col"))
status <- status_data %>% mutate(id = get_ids(iucn_name, "col"))

We can now join on the id column instead of names directly:

joined <- full_join(traits, status, by = "id")

This results in many more matches (Table 2.5), as different scientific names are rec-
ognized by the naming provider (Catalog of Life 2018 in this case), as synonyms for
the same species, and thus resolve to the same taxonomic identifier. While we have fo-
cused on a small example for visual clarity here, the get_ids() function in taxadb can
quickly resolve hundreds of thousands of species names to unique identifiers, thanks to
the performance of fast joins in a local MonetDBLite database.
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Table 2.5: Example IUCN and trait data joined on taxonomic ID. Multiple species have
a different scientific name in the Elton and IUCN Redlist databases but can be match
based on their COL taxonomic ID.

elton_name iucn_name mass category id
Aburria pipile Pipile pipile 1816.59 CR COL:35517887
Aburria cumanensis Pipile cumanensis 1239.22 LC COL:35537158
Aburria cujubi Pipile cujubi 1195.82 LC COL:35537159
Aburria jacutinga Pipile jacutinga 1240.96 EN COL:35517886
Megapodius reinwardt - 666.34 - COL:35521309
Francolinus levalliantoides - 376.69 - COL:35518087
Margaroperdix madagascariensis Margaroperdix madagarensis 245.00 LC COL:35521355
Catreus wallichii - 1436.88 - COL:35518185
Falcipennis falcipennis Falcipennis falcipennis 685.61 NT COL:35521380
Falcipennis canadensis - 473.65 - COL:35521381
- Megapodius decollatus - LC COL:35537166
- Scleroptila gutturalis - LC -

Box 1: Taxonomic Identifiers and Synonyms

get_ids() returns the acceptedNameUsageID, the identifier associated with the
accepted name. Some naming providers, such as ITIS and NCBI, provide taxo-
nomic identifiers to both synonyms and accepted names. Other providers, such as
COL and GBIF, only provide identifiers for accepted names. Common practice
in Darwin Core archives is to provide an acceptedNameUsageID only for names
which are synonyms, and otherwise to provide a taxonID. For accepted names,
the acceptedNameUsageID is then given as missing (NA), while for synonyms, the
taxonID may be missing (NA). In contrast, taxadb lists the acceptedNameUsageID
for accepted names (where it matches the taxonID), as well as known synonyms.
This is semantically identical, but also more convenient for database interfaces,
since it allows a name to mapped to its accepted identifier (or an identifier to map
to it’s accepted name usage) without the additional logic. For consistency, we will
use the term “identifier” to mean the acceptedNameUsageID rather than the more
ambiguous taxonID (which is undefined for synonyms listed by many providers),
unless explicitly stated otherwise.

Unresolved names

get_ids offers a first pass at matching scientific names to id, but names may remain un-
resolved for a number of reasons. First, a name may match to multiple accepted names,
as in the case of a species that has been split. By design, these cases are left to be resolved
by the researcher using the filter_ functions to filter underlying taxonomic tables for
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additional information. A name may also be unresolved due to typos or improper format-
ting. clean_names addresses common formatting issues such as the inclusion of missing
species epithets (e.g. Accipiter sp.) that prevent matches to the Genus, or intraspecific
epithets such as Colaptes auratus cafer that prevent matches to the binomial name.
These modifications are not appropriate in all settings and should be used with care.
Spell check of input names is outside the scope of taxadb, however existing tools such as
those developed by the Global Names Architecture (http://globalnames.org/apps/)
could be incorporated into a taxadb workflow.
Names may also have an ambiguous resolution wherein a name may be resolved by a
different provider than the one specified, either as an accepted name or a synonym.
Mapping between providers represent a meaningful scientific statement requiring an un-
derstanding of the underlying taxonomic concepts of each provider (Franz and Peet 2009,
Lepage et al. 2014, Franz and Sterner 2018). The spirit of taxadb is not to automate
steps that require expert knowledge, but provide access to multiple potential “taxonomic
theories.”

filter_ functions for access to underlying tables

Underlying data tables can be accessed through the family of filter_ functions, which
filter by certain attributes such as scientific name, id, common name, and rank. These
functions allow us to ask general questions such as, how many bird species are there?

filter_rank("Aves", rank="class", provider = "col") %>%
filter(taxonomicStatus == "accepted", taxonRank == "species") %>%
pull(taxonID) %>%
n_distinct()

[1] 10354

We can also use this to gain a detailed look at specific species or ids. For example, we
can explore why get_ids fails to resolve a seemingly common species:

multi_match <- filter_name("Abies menziesii", provider = "col")

We see that Abies menziesii is a synonym for three accepted names which the user will
have to choose between (Table 2.6). This is an example of how taxadb seeks to provide
users with information from existing authorities and names providers, rather than make
a potentially arbitrary decision. Because they return data.frames, filter_ functions
provide both potential matches. Note that the simpler get_ functions (get_ids())
consider multiple name matches as NA for the id, making them suitable for automated
pipelines where manual resolution of duplicates is not an option.

http://globalnames.org/apps/
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Table 2.6: Some names may not resolve to an identifier using get_ids() because they
match to more than one accepted ID. In such cases filter_ functions give further detail,
as in the example of Abies menziesii below which has three accepted ID matches.

sort taxonID scientificName acceptedNameUsageID taxonomicStatus acceptedScientificName
1 COL:18159104 Abies menziesii COL:18157974 synonym Pseudotsuga menziesii
1 COL:18160542 Abies menziesii COL:18158639 synonym Picea pungens
1 COL:18161226 Abies menziesii COL:18158652 synonym Picea sitchensis

Direct database access

The full taxonomic record in the database can also be directly accessed by taxa_tbl(),
allowing for whole-database queries that are not possible through the API or web interface
of many providers. For example, we can easily check the coverage of accepted species
names in each of the classes of vertebrates within the Catalogue of Life (Table 2.7):

verts <- taxa_tbl("col") %>%
filter(taxonomicStatus == "accepted",

phylum == "Chordata", taxonRank == "species") %>%
count(class)

Table 2.7: taxadb also provides direct access to the database, allowing dplyr or SQL
queries which can compute across the entire dataset, such as counting accepted species
in all vertebrate classes shown here. This kind of query is effectively impossible in most
REST API-based interfaces.

class n
Actinopterygii 32474
Aves 10354
Reptilia 10233
Amphibia 6439
Mammalia 5852
Ascidiacea 2925
Elasmobranchii 1223
Myxini 81
Thaliacea 78
Appendicularia 68
Holocephali 56
Cephalaspidomorphi 45
Leptocardii 30
Sarcopterygii 8
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Box 2: Common Names

taxadb can also resolve common names to their identifier by mapping common
name to the accepted scientific name. Common names have many of the same
issues as scientific names but even more frequent (e.g. matching to more than one
accepted name, non-standardized formatting). Common names are accessed via
filter_common which takes a vector of common names. The user can then resolve
discrepancies.

Discussion

Some taxonomic name providers (e.g. OTT, COL, NCBI) offer periodic releases of a
static names list, while many other providers (e.g. ITIS, FB, IUCN) offer name data on
a rolling basis (i.e. the data returned by a given download URL is updated continuously
or at arbitrary intervals without any additional indication if and how that data has
changed.) taxadb’s td_create() function downloads and stores cached snapshots from
each provider, which follow an annual release model to support reproducible analyses. All
taxadb functions that download or access data include an optional argument version
to indicate which version of the provider data should be used. By default, taxadb
will determine the latest version available (at the time of writing this is version 2019).
Appropriate metadata is stored with each snapshot, including scripts used to access and
reformat the data files, as described in the “Data Sources” vignette, https://docs.
ropensci.org/taxadb/articles/data-sources.html.
Taxonomic identifiers are an essential first step for maintaining taxonomic consistency, a
key task for a wide variety of applications. Despite multiple taxonomic standardization
efforts, resolving names to taxonomic identifiers is often not a standard step in the
research work flow due to difficulty in accessing providers and the time consuming API
queries necessary for resolving even moderately sized data sets. taxadb fills an important
gap between existing tools and typical research patterns by providing a fast, reproducible
approach for matching names to taxonomic identifiers. It could also be used to verify that
conclusions were robust to the choice of naming provider. taxadb is not intended as an
improvement or replacement for any existing approaches to taxonomic name resolution.
In particular, taxadb is not a replacement for the APIs or databases provided, but merely
an interface to taxonomic naming information contained within that data.
Lastly, we note that local database design used in taxadb is not unique to taxonomic
names. Despite the rapid expansion of REST API-based interfaces to ecological data
(Boettiger et al. 2015), in our experience, much of the data relevant to ecologists and
evolutionary biologists today would be also be amenable to the local database design.
The local database approach is much easier for data providers (who can leverage static

https://docs.ropensci.org/taxadb/articles/data-sources.html
https://docs.ropensci.org/taxadb/articles/data-sources.html
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scientific database repositories instead of maintaining REST servers) and often much
faster for data consumers.
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Transition between Chapter 2 and 3

Chapter 2 discusses the motivation behind and use of taxadb, an R package for deal-
ing with taxonomic inconsistencies. Differences in taxonomic concepts between data
providers presents a serious barrier to synthesizing multiple biodiversity datasets. Syn-
thesis is further frustrated by existing tools that are not designed to deal with large
volumes of data. taxadb moves beyond typical API approaches for accessing taxonomic
data, using a local database approach for resolving scientific and common names to tax-
onomic ID’s. This method can resolve millions of names to ID’s in seconds.
In chapter 3, I use taxadb to pair time series of community data with databases of func-
tional trait data to assess patterns of functional change through time. Multiple recent
assessments of temporal biodiversity change have found that species-based diversity met-
rics are not fully able to capture the kinds of shifts happening in communities in recent
decades. Functional diversity provides a potentially powerful alternative by describing
differences in species traits rather than simply counting species and individuals. I calcu-
late multiple metrics of functional diversity that describe complementary aspects of the
trait space and assess prevailing trends across communities.
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Chapter 3

Evaluating the evidence of
widespread maintenance of
functional composition in vertebrate
communities

Kari E. A. Norman Perry de Valpine Carl Boettiger

Abstract

Despite unprecedented environmental change due to anthropogenic pressure, recent work
has found increasing species turnover but no overall trend in species diversity through
time. Functional diversity provides a potentially powerful alternative approach for un-
derstanding this change in community composition by linking shifts in species identity to
mechanisms of ecosystem processes. Here we present the first multi-taxa, multi-system
analysis of functional change through time, pairing thousands of vertebrate assemblage
time series from the BioTIME database with existing functional traits representitive of
a species’ functional role. We found no overall trend in any calculated functional diver-
sity metric, despite similar species-based patterns of constant richness with increasing
turnover. The lack of trend held even after correcting for changes in species richness
and at the study-level, where only 3 of 54 studies experienced a significant trend in at
least one functional diversity metric. Results give evidence that across a variety of taxa,
climates, and biomes, these selected functional characteristics are maintained even in the
face of significant environmental and community change. We also discuss the potential
for underlying functional shifts to be obscured by current approaches and data and call
for targeted data collection efforts to combat existing biases in monitoring and trait data.
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Introduction

Ecological communities are experiencing unprecedented change as a result of anthro-
pogenic pressures such as climate change, land use change, and invasive species. Impacts
of these pressures are well documented at a global scale by an accelerating global ex-
tinction rate (Barnosky et al. 2011), and fundamental changes in some of the most
well-studied systems (e.g. coral bleaching, Sully et al. 2019). At the local scale however,
species diversity tells a different story. Recent syntheses of local trends in biodiversity
over time have found no net change in local species diversity despite ongoing turnover
(Brown et al. 2001, Vellend et al. 2013, 2017, Dornelas et al. 2014) and evidence of
significant shifts in community composition underlying consistent species richness (Brose
and Hillebrand 2016, Gotelli et al. 2017, Li et al. 2020). While communities are clearly
changing, our most common species-based approaches do not fully capture the nature of
that change.
Functional diversity offers a potentially powerful alternative for detecting and describing
community change by providing a mechanistic link between species’ response to environ-
mental change (response traits) and the processes they perform (effect traits) (Lavorel
and Garnier 2002, Mcgill et al. 2006, Suding et al. 2008). By describing the functional
trait space rather than species, functional diversity metrics capture the disproportionate
impact of losses or gains of functionally unique species. Functional diversity metrics are
therefore particularly well suited for assessing community shifts underlying even constant
species richness trends.
Beyond simply characterizing changes in community structure, trends in functional com-
position also have important implications for ecosystem stability, function, and resilience.
There is increasing evidence functional diversity is a better predictor of ecosystem func-
tion than species-based metrics (Cadotte et al. 2011, Gagic et al. 2015), and that differ-
ent facets of functional diversity play essential roles in maintaining ecosystem stability
(Morin et al. 2014, Craven et al. 2018). Indeed, almost all hypothesized mechanisms
underpinning the relationship between species diversity and ecosystem function are trait-
dependent (Hillebrand and Matthiessen 2009). Determining functional trends therefore
gives a more complete picture of potential trends in critical ecosystem processes.
It is critical to establish whether or not functional loss is the general rule for commu-
nities. While functional loss is frequently cited as one of the most pressing concerns
of the anthropocene (Cardinale et al. 2012, Dirzo et al. 2014, Young et al. 2016), it
is not necessarily inevitable even in scenarios of species loss (Dıáz and Cabido 2001).
Forecasts of functional loss range from negligible (Gallagher et al. 2013) to dire (Petchey
and Gaston 2002, Pimiento et al. 2020b). And while some observed trends show signif-
icant functional loss (Flynn et al. 2009) others document no loss even in some of the
most heavily impacted communities (Edwards et al. 2013, Matuoka et al. 2020). On
paleoecological time scales functional composition shows mixed responses to environmen-
tal change and extinction events (Jackson and Blois 2015, Dornelas et al. 2018), with
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significant impacts of species extinctions on functional diversity in some taxa and not
others (Pimiento et al. 2017). Some losses of functional diversity are indisputable on
both paleocological and contemporary timescales such as continued trophic downgrading
due to loss of large-bodied mammals, but implications of those losses for local diversity
patterns are less clear (Estes et al. 2011, Smith et al. 2018) .
Assessments of broad-scale temporal change in functional diversity have previously been
limited by a lack of functional trait data. The majority of work has therefore focused
largely on system-specific studies with traits collected in situ. Ongoing efforts to as-
semble functional traits for a variety of taxa have made synthesis of existing community
assemblage data and functional traits possible for the first time, providing initial insights
into the ways functional diversity changes on a broad scale for specific taxa (e.g. fish,
Trindade-Santos et al. 2020, birds, Jarzyna and Jetz 2016, Barnagaud et al. 2017).
However, to date there has been no cross-taxa assessment of temporal functional change
for a broad geographic and taxonomic extent.
Here we perform the first multi-taxa, multi-system assessment of functional diversity
change through time. We focus on mammal, bird, and amphibian species as a significant
subset of the world’s biodiversity heavily impacted by anthropogenic change. While
examining trends in plants, invertebrates, and other vertebrate species is of equal interest,
trait data for those taxa raise additional challenges such as limited and biased species
coverage (FitzJohn et al. 2014), a lack of accepted species-level means, and differences
in the types of traits collected. In order to ensure comparability across taxa in trait
type and data quality we therefore focus on mammals, birds, and amphibians. Traits
were intentionally selected to be representative of a species’ Eltonian niche, thereby
summarizing the functional role they play in the community (Wilman et al. 2014).
We assess thousands of mammal, bird, and amphibian functional diversity time series to
determine whether or not there is a general trend of functional change, both in observed
metrics and in metrics corrected for changes in species richness. We distinguish between
three possible scenarios of functional change: 1) significant loss of functional diversity
with accompanying shifts in other functional metrics, 2) no functional diversity loss, but
significant shifts in other functional metrics, 3) maintenance of functional diversity and
composition. Based on expectation due to human impacts, we expect to find a significant
functional loss with further restructuring indicated by the additional metrics.

Material and Methods

Data

We obtained mammal, bird, and amphibian time series from the BioTIME database,
a global repository of high quality assemblage time series. All studies included in the
database follow consistent sampling protocols and represent full assemblages rather than
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populations of single species (Dornelas et al. 2018). Following best practices for the
database (Blowes et al. 2019), studies with multiple sample locations were split into
individual time series following a standardized spatial scale. Scale was set by a global
grid with cell size determined based on the sample extent of studies with only a single
location (see Dornelas et al. 2018 for details on how sample extents were defined), with
the area of each cell set to one standard deviation away from the mean of the single
extent locations. All samples from a study within a single cell were considered to be a
single time series, and species abundances were combined for all samples. We gathered

Table 3.1: Summary of the data in the final trait database.

Taxa Number of
Time Series

Number of
Species

Trait Source Traits

Mammals 48 184 Elton Traits body mass, diet, active diel period
Birds 2380 700 Elton Traits body mass, diet, nocturnality, forest foraging strata,

pelagic specialist
Amphibians 11 184 Amphibio habitat, diet, active diel period, activity seasonality,

body mass, body length, min maturation size, max
maturation size, min offspring size, max offspring size,
reproductive output, breeding strategy

trait data from the Elton Trait Database (mammals and birds, Wilman et al. 2014)
and Amphibio (amphibians, Oliveira et al. 2017). These databases include species-level
means for traits that partially represent species’ multifaceted function in the community
including body size, diet, and behavioral characteristics. For the full list of traits included
in the analysis for each taxon see Table 3.1.
In order to ensure taxonomic consistency across datasets, BioTIME species were paired
with trait data based on their species identifier from the Integrated Taxonomic In-
formation System database (retrieved 09-15-2020 from the on-line database, https:
//doi.org/10.5066/F7KH0KBK), obtained through the taxadb R package (Norman et
al. 2020, R Core Team 2021). If more than one species in the assemblage data resolved
to the same identifier, observations were considered the same species. For trait data,
traits for all species of the same identifier were averaged. Only studies with at least
75% trait coverage were included and observations for species with no trait data were
excluded. In order to have a sufficient number of species to calculate functional diversity
metrics, years with fewer than 5 species observed were also excluded.
Many studies had a variable number of samples within years. To account for this in-
consistency in sampling effort we used sample-based rarefaction by bootstrap resampling
within years for each time series based on the smallest number of samples in a year for
that time series.
Our final dataset included 2,443 time series from 53 studies in 21 countries and 15 biomes
and 13 different traits (Fig 3.1). The earliest sample was in 1923 and the most recent was
in 2016. Only four studies (consisting of 11 time series) came from Amphibian studies
due to the limited availability of amphibian time series and low species richness values for

https://doi.org/10.5066/F7KH0KBK
https://doi.org/10.5066/F7KH0KBK
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Figure 3.1: A) Map of time series locations with points colored by taxa, and B) histograms
of time series duration broken down by taxa.

assemblages (Table 3.1). Amphibians are of particular concern due to impacts of habitat
loss and pollution (Gibbons et al. 2000), so we include data while acknowledging that
general inference for amphibians as a clade is not possible with the time series available.
For a full breakdown of studies and their characteristics, see Supplement Table 3.5.
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Diversity Metrics

We calculated yearly metrics of functional and species diversity for each time series.
Species-based metrics include species richness (S) and Jaccard similarity (J) as a measure
of turnover. Jaccard similarity was calculated relative to the first observed year for a
time series. A negative trend in J would therefore indicate increasing turnover.
Functional diversity metrics were calculated using the dbFD function from the FD R
package (Laliberté and Legendre 2010). Here we report functional richness (FRic), func-
tional evenness (FEve), and functional divergence (FDiv) which together describe three
complementary characteristics of the functional space (Mason et al. 2005, Hillebrand
and Matthiessen 2009). FRic assesses the volume of the trait space occupied by species
in the community, with higher values indicating communities with species of more ex-
treme trait values. FEve describes how species are distributed across the trait space
and how abundance is distributed across species. Higher values of FEve indicate more
even spacing of species in the trait space and individuals across species. FDiv measures
the degree to which species and their abundances maximize differences in the functional
space. Higher values of FDiv therefore correspond to communities where many highly
abundant species are on the edges of the trait space.
All available trait data for each study were included in functional diversity calculations
with the exception of traits that were the same value for all observed species in the study.
All continuous traits were z-score scaled to give each trait equal weight in the trait space
(Leps et al. 2006, Schleuter et al. 2010). The number of trait axes was limited to the
maximum number of traits that fulfills the criteria s >= 2t, where s is the number of
species and t is the number of traits. This restriction allows for a sufficient number
of axes to capture the trait space while maintaining computational feasibility (Blonder
2018). Metrics incorporated weighting based on species abundance where available (three
studies were presence only).

Null Models

To assess functional change independent of species richness we calculated the standard-
ized effect size (SES) for each metric from null estimates (Swenson et al. 2012). Null
model corrections allow us to assess the degree to which the observed functional diversity
metric deviates from the value expected by chance in a randomly assembled community.
Null estimates were calculated for each rarefied sample by randomly sampling species
from the species pool for each year and randomly assigning observed abundances to
species. Species pools included all species observed for a time series. This process was
repeated 500 times to get an estimate and standard deviation of the null expectation for
the metric for each rarefaction for that time series. We used these values to calculate SES
using the following formula: SES = [Fobs − mean(Fnull)]/SD(Fnull). We then calculated
the median SES estimate for each metric from all the rarefaction samples for a time
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series. SES estimates can be interpreted as how much of the functional characteristic
(richness, evenness, divergence) was observed beyond what was expected by chance for
a community of that species richness.

Analysis

We estimated general trends for each diversity metric using a linear mixed effects model
with a random slope and intercept for each study and each time series nested within
the study. We obtained study-level estimates of temporal change from the Best Linear
Unbiased Predictors (BLUPs) for each overall trend model. BLUP’s provide an estimate
for the conditional mean and variance of each level of a random effect from which we
calculated 95% confidence intervals to determine significance of study-level slopes. To
test for trends within and between different levels of taxa, biome, and realm we fit
separate models with each of those covariates added as a predictor to the original model
structure. We estimated within-level slopes and calculated between-level contrasts using
the emmeans package (Lenth 2021). We assessed the impact of time series duration and
start year on study-level trends using general linear models with duration and start year
as predictors. All models were executed using the lme4 package in R and p-values were
calculated by Satterthwaite’s degrees of freedom method using the lmerTest package with
a significance level of α = 0.05 (Bates et al. 2015, Kuznetsova et al. 2017, R Core Team
2021).

Results

We found no significant overall trend in species richness or functional diversity met-
rics (observed or standardized) (Fig 3.2). We did find a significant overall decrease in
Jaccard similarity, indicating increasing turnover through time. Non-significant overall
trends indicate that although some studies experience increasing or decreasing trends,
the average trend across studies was plausibly 0 (Table 3.2). Trends for different taxa,
biomes, or realms were also non-significant with the exception of a significantly increas-
ing slope for functional evenness of global studies (characterized by having samples on
multiple continents), and a significantly decreasing standardized functional richness slope
for freshwater studies. However, with only two global studies and two freshwater studies
these results are a characterization of the limited data rather than overall trends.
Table 3.2: Model estimates and statistics for general trend models for species richness (S)
and standardized metrics. Additional model estimates can be found in the supplement.

metric effect group term estimate std.error p.value

Jaccard fixed Intercept 0.61 0.02 <0.001
Jaccard fixed Year -0.05 0.01 <0.001
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Jaccard ran_pars timeseries:study Intercept sd 0.11
Jaccard ran_pars timeseries:study Intercept Year corr 0.02
Jaccard ran_pars timeseries:study Year sd 0.03

Jaccard ran_pars study Intercept sd 0.14
Jaccard ran_pars study Intercept Year corr -0.48
Jaccard ran_pars study Year sd 0.03
Jaccard ran_pars residual Observation sd 0.10
S fixed Intercept 2.49 0.09 <0.001

S fixed Year -0.06 0.04 0.15
S ran_pars timeseries:study Intercept sd 0.19
S ran_pars timeseries:study Intercept Year corr 0.36
S ran_pars timeseries:study Year sd 0.08
S ran_pars study Intercept sd 0.58

S ran_pars study Intercept Year corr -0.71
S ran_pars study Year sd 0.24
S ran_pars residual Observation sd 0.17
SES_FDiv fixed Intercept -0.22 0.10 0.04
SES_FDiv fixed Year 0.01 0.04 0.88

SES_FDiv ran_pars timeseries:study Intercept sd 0.60
SES_FDiv ran_pars timeseries:study Intercept Year corr 0.00
SES_FDiv ran_pars timeseries:study Year sd 0.23
SES_FDiv ran_pars study Intercept sd 0.56
SES_FDiv ran_pars study Intercept Year corr -0.12

SES_FDiv ran_pars study Year sd 0.11
SES_FDiv ran_pars residual Observation sd 0.62
SES_FEve fixed Intercept 0.09 0.16 0.58
SES_FEve fixed Year -0.01 0.02 0.65
SES_FEve ran_pars timeseries:study Intercept sd 0.40

SES_FEve ran_pars timeseries:study Intercept Year corr -0.21
SES_FEve ran_pars timeseries:study Year sd 0.17
SES_FEve ran_pars study Intercept sd 1.05
SES_FEve ran_pars study Intercept Year corr -0.62
SES_FEve ran_pars study Year sd 0.05

SES_FEve ran_pars residual Observation sd 0.90
SES_FRic fixed Intercept -0.25 0.07 <0.001
SES_FRic fixed Year 0.02 0.04 0.55
SES_FRic ran_pars timeseries:study Intercept sd 0.54
SES_FRic ran_pars timeseries:study Intercept Year corr 0.06

SES_FRic ran_pars timeseries:study Year sd 0.18
SES_FRic ran_pars study Intercept sd 0.27
SES_FRic ran_pars study Intercept Year corr -0.28
SES_FRic ran_pars study Year sd 0.11
SES_FRic ran_pars residual Observation sd 0.81

At the study level, 4 studies experienced a significant trend in species richness and only
10 of 54 studies for observed metrics and 3 of 54 studies for standardized metrics expe-
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Figure 3.2: Plots of time series-level trends with line color corresponding to climatic
region, with data points in grey and the overall metric mean in black for A) log species
richness, B) Jaccard similarity, C) Functional Richness SES, D) Functional Divergence
SES, and E) Functional Evenness SES
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rienced a significant trend for a metric other than Jaccard similarity (Table 3.3). Most
significant trends for observed functional metrics are in functional richness and disap-
peared after standardization, indicating that richness increases were likely due to changes
in the number of species. Hypothesis testing for study-level trends is likely affected by
multiple testing issues and some trends identified as significant are therefore potentially
erroneous. Rather than interpreting changes in specific studies, we present these results
as a general picture of the small number of studies experiencing a trend and highlight
that even those studies are likely an overestimate of the number of significant trends.
Study-level slopes for multiple metrics were significantly related to the duration and start

Table 3.3: Model estimates and statistics for general trend models for species richness
(S) and standardized metrics.

S Jaccard.Similarity FRic FEve FDiv SES.FRic SES.FEve SES.FDiv
+ 1 0 2 1 0 0 0 0
- 3 37 6 0 1 1 2 1

year of studies. Slopes for species richness were significantly more negative with later
start date and more positive shorter duration studies. Jaccard similarity and functional
evenness both had significantly more negative slopes with more recent start year, whereas
functional divergence was significantly more positive. Slopes for functional evenness were
also significantly more positive for longer duration studies. Results were consistent be-
tween standardized and observed metrics with exception of functional evenness, which
was negatively related to duration for observed data and positively related for standard-
ized data. See Supplement Table 3.4 for estimates and p-values for all models.

Discussion

Our study represents the largest broad-scale multi-taxa assessment of functional change
through time to date, giving a first look at aggregate and local trends in functional
diversity in mammal, bird, and amphibian communities. Surprisingly, we did not detect
an overall trend in any of the calculated functional diversity metrics. As with previous
species-based syntheses, we also found no overall trend in species richness accompanied by
increasing turnover through time (Dornelas et al. 2018), indicating that non-significant
trends in functional metrics may be consistent with similar well-documented species
derived trends. We found no evidence of systemic functional richness loss or functional
change. A lack of trend for almost all realms, biomes, and taxonomic groups gives further
evidence that directional functional change is absent from all systems observed in our
dataset.
This striking result could be a product of two possible processes, one ecological and one
methodological. Null trends appear to give strong evidence of systemic maintenance of
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functional structure due to common ecological processes, however multiple limitations of
current approaches in synthesis could potentially be obscuring a true underlying global
trend. We discuss both options further here.

Evidence of Ecological Processes

Communities demonstrated almost universal maintenance of functional composition.
While the majority of the studies (~70%) included in our data experienced significant
species turnover, only three (for standardized metrics) experienced a significant shift in
any functional dimension. This suggests certain characteristics of the functional space are
maintained even in the face of significant change in species identity, specifically the size
of the functional space occupied by the community (FRic) and the distribution of species
and individuals within that space (FEve and FDiv). On average, species additions have
similar functional characteristics as lost species and therefore maintain the structure of
the functional space.
These results challenge assumptions that functional loss is the default state of all or
even many communities. While we do not directly assess the disturbance histories of
included communities, trends were consistent even for the longest running and most
heavily impacted studies. The North American Breeding Survey for example is considered
an authoritative dataset on the state of bird populations on the continent and underpins
policy decisions about bird conservation (Sauer et al. 2017, Rosenberg et al. 2019,
Pardieck et al. 2020). No more robust dataset exists to capture North American avian
community change, yet we detected no general shifts in functional structure across the
dataset. Further, none of the 5 included studies that experienced a manual manipulation
(e.g. burning, grazing exclosure, etc) experienced any significant functional trends.
While we did not directly measure changes in rare species, our results also contradict likely
scenarios of loss predicted due to rare species extinction. Rare species, defined by small
populations and geographic restriction, are simultaneously more likely to be functionally
distinct and at higher risk for extinction (Davies et al. 2004, Harnik et al. 2012, Loiseau
et al. 2020). Locally, communities losing functionally rare species should exhibit strong
functional shifts as lost species can eventually no longer be replaced by functionally
similar species (Leitão et al. 2016). Observed patterns were instead consistent with
species replacement by functionally redundant species from the species pool. Still, for
many timeseries we likely did not have a large enough time window to capture community
and species pool impoverishment due to extinction.
What does local maintenance of functional structure mean for ecosystem function? The
vast majority of experimental and observational work links declines in function to de-
clines in functional or species diversity (Duffy et al. 2007, Cadotte et al. 2011, Brose
and Hillebrand 2016). By those criteria very few communities in our dataset are in a
state of concern for loss of functionality. However, shifts in metrics are only relevant
if the underlying traits are those most critical for ecosystem function. We were limited
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in this analysis to the traits available rather than those with strong empirical links to
function. Similarly, the dimensions of functional space most important for ecosystem
function are still a topic of ongoing debate, and at least some known aspects important
for multifunctionality were not measured here (e.g. dispersion, rarity, abundance of dom-
inant species, Bagousse-Pinguet et al. 2021). Still, the fact that we observed so many
communities maintaining structure across the most commonly used metrics for linking
biodiversity and function calls into question how previous work translates to natural
communities. Metrics need to be both closely linked to changes in ecosystem function
and also experiencing shifts in natural communities to be meaningful.

Potential Methodological Limitations

Here we approach the question of functional change using the best available data and
biodiversity synthesis approaches. However, a number of gaps in best practices may be
obscuring a true underlying trend. First, the BioTIME database, while the most compre-
hensive data source of time series available, is limited in temporal and geographic scope.
Most time series span only a few years (Figure 3.1) and may not provide the statistical
power necessary to detect trends. The database is also not a representative sample of the
world’s biodiversity or areas of greatest threat (Gonzalez et al. 2016, Vellend et al. 2017),
and the subset of data in this study exhibits a strong Northern Hemisphere bias. We may
simply not have data from those areas experiencing the greatest perturbation (Hughes et
al. 2021), particularly scenarios of conversion to urban, human-dominated landscapes.
While evidence from other work shows even disturbed communities can maintain func-
tional structure (Edwards et al. 2013, Matuoka et al. 2020), these results should not be
interpreted as evidence of low functional impact in areas of heavy human disturbance.
Second, despite using the most comprehensive trait databases for these taxa, we were still
limited to species-level means of the traits deemed important by database creators. The
importance of intraspecific variation is well documented (Violle et al. 2012, Des Roches
et al. 2018), however individual-level traits are rarely collected alongside monitoring
data, especially for the longest running efforts. Species-level traits may be obscuring
more subtle shifts in the trait space happening within species. Likewise, available trait
data may not capture the traits experiencing the greatest change.
Third, while we use here the most common metrics for describing functional diversity
they do not measure some potentially important aspects of the functional space. Most
notably, the metrics we calculated do not capture shifts in the location of the functional
space. For example, two communities could have very similar metric values but no overlap
in their trait spaces. This is especially relevant in the context of biodiversity change as a
species loss could be replaced by a species with very different functional attributes, but
the replacement would go undetected if the new species expanded the trait space by the
same degree and had similar abundance. This scenario may be common in communities
tracking changing environmental conditions. Approaches for assessing shifts and overlaps
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in functional space are still relatively new (Barros et al. 2016, Blonder 2018, Mammola
2019) but could shed critical insight into functional composition changes of this nature.

Policy Implications

Our results should not be interpreted as an indication that the ongoing biodiversity crisis
is less severe than described, or that there is no concern for functional change as a result
of anthropogenic impact. These findings do not negate a substantial body of work linking
functional degradation to direct human intervention in the form of land use change and
intensification or habitat fragmentation (Flynn et al. 2009, Tinoco et al. 2018, Magioli
et al. 2021), but rather illustrate the prevailing functional state for communities expe-
riencing background levels of environmental change. Rather than assuming functional
structure will be maintained in areas of concern, our work indicates that when measure-
ments of functional diversity show significant shifts, it should be considered outside the
normal expectation and a potential indicator of a system in distress.

Future Work

Here we make a significant first step in establishing a general trend for functional diversity
through time across a variety of taxa and systems. We present the conclusion best
supported by available data and acknowledge that it is still too early to confidently
distinguish between true ecological pattern and methodological limitations. The most
pressing next step is for intentional and targeted data collection efforts. We join others in
the call for increased monitoring in under sampled areas and continued efforts to centralize
existing data sources (Gonzalez et al. 2016, Vellend et al. 2017, Hughes et al. 2021).
Data that fill geographic, taxonomic and trait gaps should be prioritized over further
collection of data that replicate existing biases. One relatively low-cost high-reward data
investment is collation of additional species-level trait means. Intentional trait selection
is critical for linking functional patterns to ecological processes (Zhu et al. 2017), however
synthesis is constrained to the traits in a few taxa-specific databases. Trait collection
should explicitly consider existing frameworks for linking traits to processes (e.g. the
response and effect framework Lavorel and Garnier 2002) to facilitate clear ecological
interpretation of potential functional changes.

Data Availability

Code for the analyses in this chapter is archived on Zenodo at DOI:10.5281/
zenodo.5514335 (Norman 2021). Data products are on Github at https:
//github.com/karinorman/biodivTS_data. Original data sources are open access and
available at their respective providers.

DOI:10.5281/zenodo.5514335
DOI:10.5281/zenodo.5514335
https://github.com/karinorman/biodivTS_data
https://github.com/karinorman/biodivTS_data
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Conclusion

My dissertation focuses on the role of synthesis in understanding biodiversity change.
Assessing general patterns of local-scale biodiversity change is critical for informing man-
agement and giving us a broad view of human impacts on ecological process. Synthesis
methods are uniquely suited to examine biodiversity questions on a comprehensive scale.
Here, I explored multiple facets of synthesis work, advancing both the tools for and
application of synthesis for improved biodiversity understanding.
Synthesis will necessarily play a critical role in how we assess biodiversity in the years to
come, giving us an approach to leverage increasingly large volumes of biodiversity data.
Rather than replacing highly valuable place-based work, rooted in a deep understanding
of a system’s natural history, synthesis gives us tools to explore fundamentally different
questions. Much like the give and take between theory and empirical work, synthesis
should both inform and be informed by local-scale studies (Grainger et al. 2021). In
chapter 1, I discussed ways in which synthesis can incorporate greater site-level fidelity
by including important characteristics of constituent studies. Local-scale work further
plays the critical role of exploring the mechanisms by which patterns from large-scale
studies occur and identifying variables or processes that may have been overlooked.
Synthesis has traditionally focused on changes in species-level measures of biodiversity,
reflecting both the kinds of data available and a deep history of species as the unit of
ecological understanding. With improved computational tools and an expansion in avail-
able data, synthesis is now equipped to move beyond the limitations of a species lens.
In chapter 2, I presented one such tool I developed to facilitate synthesis of different
types of biodiversity data by resolving taxonomic inconsistencies between data sources.
In chapter 3, I used that R package taxadb to bridge community assemblage time series
and functional trait data, taking a first look at broad-scale patterns in functional change
through time. Through a functional lens, I found that most communities exhibit main-
tenance of functional structure alongside maintenance of species diversity, regardless of
taxa, climate, or realm.
In this dissertation I demonstrated some of the ways in which synthesis allow us to address
previously inaccessible broad-scale trends, and the kinds of tools that would facilitate fur-
ther synthesis. Future work should focus on developing tools for improved reproducibility
and transparency of synthesis workflows, improving richness of study metadata, and cre-
atively incorporating data sources beyond traditional biodiversity surveys. The next
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decades will see an explosion of automated biodiversity data from passive acoustic and
camera trap monitoring, remote sensing, and Long Term Ecological Research networks
(LTER’s) (Farley et al. 2018). How we leverage this data alongside existing biodiversity
data sources will determine how effectively we can respond to the coming years of the
biodiversity crisis.
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Supplement

Table 3.4: Complete table of all models run in Chapter 3.

metric effect group term estimate std.error statistic df p.value

Jaccard fixed Intercept 0.61 0.02 25.7422027 56.0351890 <0.001
Jaccard fixed Year -0.05 0.01 -6.8309185 19.2530973 <0.001
Jaccard ran_pars timeseries:study Intercept sd 0.11
Jaccard ran_pars timeseries:study Intercept Year corr 0.02
Jaccard ran_pars timeseries:study Year sd 0.03

Jaccard ran_pars study Intercept sd 0.14
Jaccard ran_pars study Intercept Year corr -0.48
Jaccard ran_pars study Year sd 0.03
Jaccard ran_pars residual Observation sd 0.10
Jaccard fixed Intercept 0.63 0.05 11.5582422 2.1925767 0.01

Jaccard fixed Year -0.05 0.01 -6.4834470 8.6992765 <0.001
Jaccard ran_pars timeseries:study Intercept sd 0.11
Jaccard ran_pars timeseries:study Intercept Year corr 0.02
Jaccard ran_pars timeseries:study Year sd 0.03
Jaccard ran_pars study Intercept sd 0.13

Jaccard ran_pars study Intercept Year corr -0.50
Jaccard ran_pars study Year sd 0.03
Jaccard ran_pars taxa Intercept sd 0.08
Jaccard ran_pars taxa Intercept Year corr 1.00
Jaccard ran_pars taxa Year sd 0.00

Jaccard ran_pars residual Observation sd 0.10
Jaccard fixed Intercept 0.59 0.07 8.7459136 1.6027167 0.02
Jaccard fixed Year -0.05 0.02 -2.8837019 1.4558223 0.15
Jaccard ran_pars timeseries:study Intercept sd 0.11
Jaccard ran_pars timeseries:study Intercept Year corr 0.02

Jaccard ran_pars timeseries:study Year sd 0.03
Jaccard ran_pars study Intercept sd 0.12
Jaccard ran_pars study Intercept Year corr -0.27
Jaccard ran_pars study Year sd 0.02
Jaccard ran_pars realm Intercept sd 0.10

Jaccard ran_pars realm Intercept Year corr -1.00
Jaccard ran_pars realm Year sd 0.02
Jaccard ran_pars residual Observation sd 0.10
Jaccard fixed Intercept 0.58 0.05 11.9504215 1.8144360 0.01
Jaccard fixed Year -0.05 0.01 -4.0741171 1.0825525 0.14

Jaccard ran_pars timeseries:study Intercept sd 0.11
Jaccard ran_pars timeseries:study Intercept Year corr 0.02
Jaccard ran_pars timeseries:study Year sd 0.03
Jaccard ran_pars study Intercept sd 0.13
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Jaccard ran_pars study Intercept Year corr -0.40

Jaccard ran_pars study Year sd 0.02
Jaccard ran_pars climate Intercept sd 0.07
Jaccard ran_pars climate Intercept Year corr -1.00
Jaccard ran_pars climate Year sd 0.01
Jaccard ran_pars residual Observation sd 0.10

S fixed Intercept 2.49 0.09 28.8288070 53.5701148 <0.001
S fixed Year -0.06 0.04 -1.4352855 52.5996525 0.16
S ran_pars timeseries:study Intercept sd 0.19
S ran_pars timeseries:study Intercept Year corr 0.36
S ran_pars timeseries:study Year sd 0.08

S ran_pars study Intercept sd 0.58
S ran_pars study Intercept Year corr -0.70
S ran_pars study Year sd 0.25
S ran_pars climate Intercept sd 0.00
S ran_pars climate Intercept Year corr -1.00

S ran_pars climate Year sd 0.00
S ran_pars residual Observation sd 0.17
S fixed Intercept 2.49 0.09 29.1417981 54.9920877 <0.001
S fixed Year -0.06 0.04 -1.4535101 53.6850668 0.15
S ran_pars timeseries:study Intercept sd 0.19

S ran_pars timeseries:study Intercept Year corr 0.36
S ran_pars timeseries:study Year sd 0.08
S ran_pars study Intercept sd 0.58
S ran_pars study Intercept Year corr -0.71
S ran_pars study Year sd 0.24

S ran_pars residual Observation sd 0.17
S fixed Intercept 2.33 0.18 13.2783848 2.7761230 <0.001
S fixed Year -0.05 0.04 -1.2382369 17.4916017 0.23
S ran_pars timeseries:study Intercept sd 0.19
S ran_pars timeseries:study Intercept Year corr 0.36

S ran_pars timeseries:study Year sd 0.08
S ran_pars study Intercept sd 0.54
S ran_pars study Intercept Year corr -0.73
S ran_pars study Year sd 0.24
S ran_pars realm Intercept sd 0.24

S ran_pars realm Intercept Year corr -1.00
S ran_pars realm Year sd 0.01
S ran_pars residual Observation sd 0.17
S fixed Intercept 2.46 0.12 20.1627311 1.9033415 <0.001
S fixed Year -0.06 0.04 -1.4250548 50.1995551 0.16

S ran_pars timeseries:study Intercept sd 0.19
S ran_pars timeseries:study Intercept Year corr 0.36
S ran_pars timeseries:study Year sd 0.08
S ran_pars study Intercept sd 0.58
S ran_pars study Intercept Year corr -0.71

S ran_pars study Year sd 0.25
S ran_pars taxa Intercept sd 0.13
S ran_pars taxa Intercept Year corr -1.00
S ran_pars taxa Year sd 0.00
S ran_pars residual Observation sd 0.17

SES_FDiv fixed Intercept -0.29 0.26 -1.1140885 2.0524273 0.38
SES_FDiv fixed Year 0.04 0.06 0.7072293 1.4772563 0.57
SES_FDiv ran_pars timeseries:study Intercept sd 0.60
SES_FDiv ran_pars timeseries:study Intercept Year corr 0.00
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SES_FDiv ran_pars timeseries:study Year sd 0.23

SES_FDiv ran_pars study Intercept sd 0.45
SES_FDiv ran_pars study Intercept Year corr 0.06
SES_FDiv ran_pars study Year sd 0.11
SES_FDiv ran_pars taxa Intercept sd 0.39
SES_FDiv ran_pars taxa Intercept Year corr -1.00

SES_FDiv ran_pars taxa Year sd 0.07
SES_FDiv ran_pars residual Observation sd 0.62
SES_FDiv fixed Intercept -0.23 0.11 -2.1347994 30.8012895 0.04
SES_FDiv fixed Year 0.01 0.04 0.1977322 16.9250898 0.85
SES_FDiv ran_pars timeseries:study Intercept sd 0.60

SES_FDiv ran_pars timeseries:study Intercept Year corr 0.00
SES_FDiv ran_pars timeseries:study Year sd 0.23
SES_FDiv ran_pars study Intercept sd 0.57
SES_FDiv ran_pars study Intercept Year corr -0.12
SES_FDiv ran_pars study Year sd 0.11

SES_FDiv ran_pars realm Intercept sd 0.00
SES_FDiv ran_pars realm Intercept Year corr
SES_FDiv ran_pars realm Year sd 0.00
SES_FDiv ran_pars residual Observation sd 0.62
SES_FDiv fixed Intercept -0.23 0.11 -2.1347978 30.8013822 0.04

SES_FDiv fixed Year 0.01 0.04 0.1977648 16.9157297 0.85
SES_FDiv ran_pars timeseries:study Intercept sd 0.60
SES_FDiv ran_pars timeseries:study Intercept Year corr 0.00
SES_FDiv ran_pars timeseries:study Year sd 0.23
SES_FDiv ran_pars study Intercept sd 0.57

SES_FDiv ran_pars study Intercept Year corr -0.12
SES_FDiv ran_pars study Year sd 0.11
SES_FDiv ran_pars climate Intercept sd 0.00
SES_FDiv ran_pars climate Intercept Year corr
SES_FDiv ran_pars climate Year sd 0.00

SES_FDiv ran_pars residual Observation sd 0.62
SES_FDiv fixed Intercept -0.22 0.10 -2.1239478 30.2380329 0.04
SES_FDiv fixed Year 0.01 0.04 0.1521845 16.1078718 0.88
SES_FDiv ran_pars timeseries:study Intercept sd 0.60
SES_FDiv ran_pars timeseries:study Intercept Year corr 0.00

SES_FDiv ran_pars timeseries:study Year sd 0.23
SES_FDiv ran_pars study Intercept sd 0.56
SES_FDiv ran_pars study Intercept Year corr -0.12
SES_FDiv ran_pars study Year sd 0.11
SES_FDiv ran_pars residual Observation sd 0.62

SES_FEve fixed Intercept 0.09 0.16 0.5614426 40.7147487 0.58
SES_FEve fixed Year -0.01 0.02 -0.5302651 1.9508512 0.65
SES_FEve ran_pars timeseries:study Intercept sd 0.40
SES_FEve ran_pars timeseries:study Intercept Year corr -0.21
SES_FEve ran_pars timeseries:study Year sd 0.17

SES_FEve ran_pars study Intercept sd 1.05
SES_FEve ran_pars study Intercept Year corr -0.62
SES_FEve ran_pars study Year sd 0.05
SES_FEve ran_pars residual Observation sd 0.90
SES_FEve fixed Intercept 0.08 0.17 0.4951251 3.1373722 0.65

SES_FEve fixed Year -0.02 0.03 -0.6423262 0.2137335 0.8
SES_FEve ran_pars timeseries:study Intercept sd 0.40
SES_FEve ran_pars timeseries:study Intercept Year corr -0.21
SES_FEve ran_pars timeseries:study Year sd 0.17
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SES_FEve ran_pars study Intercept sd 1.05

SES_FEve ran_pars study Intercept Year corr -0.64
SES_FEve ran_pars study Year sd 0.05
SES_FEve ran_pars taxa Intercept sd 0.09
SES_FEve ran_pars taxa Intercept Year corr 1.00
SES_FEve ran_pars taxa Year sd 0.03

SES_FEve ran_pars residual Observation sd 0.90
SES_FEve fixed Intercept 0.09 0.16 0.5613774 40.3844781 0.58
SES_FEve fixed Year -0.01 0.02 -0.5305799 1.9528686 0.65
SES_FEve ran_pars timeseries:study Intercept sd 0.40
SES_FEve ran_pars timeseries:study Intercept Year corr -0.21

SES_FEve ran_pars timeseries:study Year sd 0.17
SES_FEve ran_pars study Intercept sd 1.05
SES_FEve ran_pars study Intercept Year corr -0.62
SES_FEve ran_pars study Year sd 0.05
SES_FEve ran_pars climate Intercept sd 0.00

SES_FEve ran_pars climate Intercept Year corr -1.00
SES_FEve ran_pars climate Year sd 0.00
SES_FEve ran_pars residual Observation sd 0.90
SES_FEve fixed Intercept 0.08 0.15 0.5234394 43.9007306 0.6
SES_FEve fixed Year 0.01 0.01 0.4375161 27.2700294 0.67

SES_FEve ran_pars timeseries:study Intercept sd 0.40
SES_FEve ran_pars timeseries:study Intercept Year corr -0.21
SES_FEve ran_pars timeseries:study Year sd 0.17
SES_FEve ran_pars study Intercept sd 1.01
SES_FEve ran_pars study Intercept Year corr 1.00

SES_FEve ran_pars study Year sd 0.01
SES_FEve ran_pars realm Intercept sd 0.00
SES_FEve ran_pars realm Intercept Year corr
SES_FEve ran_pars realm Year sd 0.00
SES_FEve ran_pars residual Observation sd 0.90

SES_FRic fixed Intercept -0.23 0.09 -2.4264361 0.6001519 0.36
SES_FRic fixed Year 0.02 0.04 0.4567764 1.3686001 0.71
SES_FRic ran_pars timeseries:study Intercept sd 0.54
SES_FRic ran_pars timeseries:study Intercept Year corr 0.06
SES_FRic ran_pars timeseries:study Year sd 0.18

SES_FRic ran_pars study Intercept sd 0.28
SES_FRic ran_pars study Intercept Year corr -0.27
SES_FRic ran_pars study Year sd 0.12
SES_FRic ran_pars climate Intercept sd 0.09
SES_FRic ran_pars climate Intercept Year corr -1.00

SES_FRic ran_pars climate Year sd 0.02
SES_FRic ran_pars residual Observation sd 0.81
SES_FRic fixed Intercept -0.25 0.07 -3.6991139 38.0641105 <0.001
SES_FRic fixed Year 0.02 0.04 0.6154086 10.9427859 0.55
SES_FRic ran_pars timeseries:study Intercept sd 0.54

SES_FRic ran_pars timeseries:study Intercept Year corr 0.06
SES_FRic ran_pars timeseries:study Year sd 0.18
SES_FRic ran_pars study Intercept sd 0.27
SES_FRic ran_pars study Intercept Year corr -0.28
SES_FRic ran_pars study Year sd 0.11

SES_FRic ran_pars residual Observation sd 0.81
SES_FRic fixed Intercept -0.25 0.07 -3.6989768 38.0642115 <0.001
SES_FRic fixed Year 0.02 0.04 0.6153911 10.9377906 0.55
SES_FRic ran_pars timeseries:study Intercept sd 0.54
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SES_FRic ran_pars timeseries:study Intercept Year corr 0.06

SES_FRic ran_pars timeseries:study Year sd 0.18
SES_FRic ran_pars study Intercept sd 0.27
SES_FRic ran_pars study Intercept Year corr -0.28
SES_FRic ran_pars study Year sd 0.11
SES_FRic ran_pars taxa Intercept sd 0.00

SES_FRic ran_pars taxa Intercept Year corr 0.02
SES_FRic ran_pars taxa Year sd 0.00
SES_FRic ran_pars residual Observation sd 0.81
SES_FRic fixed Intercept -0.18 0.12 -1.5069779 2.2609264 0.26
SES_FRic fixed Year 0.00 0.05 0.0373018 1.6402024 0.97

SES_FRic ran_pars timeseries:study Intercept sd 0.54
SES_FRic ran_pars timeseries:study Intercept Year corr 0.06
SES_FRic ran_pars timeseries:study Year sd 0.18
SES_FRic ran_pars study Intercept sd 0.22
SES_FRic ran_pars study Intercept Year corr -0.14

SES_FRic ran_pars study Year sd 0.12
SES_FRic ran_pars realm Intercept sd 0.15
SES_FRic ran_pars realm Intercept Year corr -1.00
SES_FRic ran_pars realm Year sd 0.05
SES_FRic ran_pars residual Observation sd 0.81

Table 3.5: Details for all assemblage timeseries included in Chapter 3 analysis, adapted
from the original BioTIME metadata.

study_id realm climate taxa title

39 Terrestrial Temperate Birds Bird community dynamics in a temperate deciduous
forest Long-term trends at Hubbard Brook

41 Terrestrial Temperate Birds Time and space and the variation of species
46 Terrestrial Temperate Birds Skokholm Bird Observatory
47 Terrestrial Temperate Birds Detection of Density-Dependent Effects in Annual

Duck Censuses
56 Terrestrial Temperate Mammals Small Mammal Mark-Recapture Population

Dynamics at Core Research Sites

58 Terrestrial Tropical Birds Avian populations long-term monitoring dataset. San
Juan. Puerto Rico Luquillo Long Term Ecological
Research Site Database Grid points bird counts
DBAS 23

59 Terrestrial Temperate Mammals Long-term monitoring and experimental
manipulation of a Chihuahuan Desert ecosystem near
Portal. Arizona. USA

67 Terrestrial Temperate Birds Animal Demography Unit - Coordinated Waterbird
Counts (CWAC) (AfrOBIS)

69 Marine Temperate Birds Seabird 2000 (EurOBIS)
77 Marine Temperate Birds MEDITS Seabird surveys 1999 - 2000 - 2002

91 Marine Temperate Birds Baltic seabirds transect surveys
108 Marine Global Birds Seabirds of the Southern and South Indian Ocean

(Australian Antarctic Data Centre)
166 Marine Global All PIROP Northwest Atlantic 1965-1992 (SEAMAP)
169 Marine Temperate All CalCOFI and NMFS Seabird and Marine Mammal

Observation Data. 1987-2006 (SEAMAP)
171 Marine Temperate/Tropical Mammals Bahamas Marine Mammal Research Organisation

Opportunistic Sightings (SEAMAP)
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172 Marine Temperate All POPA cetacean. seabird. and sea turtle sightings in
the Azores area 1998-2009 (OBIS SEAMAP)

195 Terrestrial Temperate Birds Breeding birds survey North America
217 Terrestrial Temperate Birds Landbird Monitoring Program (UMT-LBMP)
311 Terrestrial Temperate Mammals Seasonal summary of numbers of small mammals on

14 LTER traplines in prairie habitats at Konza
Prairie

312 Terrestrial Tropical Mammals Stability in a Multi-Species Assemblage of Large
Herbivores in East Africa

321 Terrestrial Temperate Mammals Small Mammal Exclosure Study. Jornada LTER.
SMES rodent trapping data

328 Freshwater Temperate Amphibians The Rainbow Bay Long-term Study
333 Terrestrial Temperate Birds Weekly record of bird species observed on Konza

Prairie
337 Terrestrial Temperate Birds Mountain Birdwatch
339 Terrestrial Temperate Birds Species trends turnover and composition of a

woodland bird community in southern Sweden during
a period of 57 years.

341 Terrestrial Temperate/Tropical Amphibians Brazil Dataset 1
357 Terrestrial Temperate Mammals Small Mammal Trapping Webs on the Central Plains

Experimental Range
362 Terrestrial Tropical Mammals Plant and small-mammal responses to

large-herbivore exclusion in an African savanna
363 Terrestrial Temperate Birds The 37-year dynamics of a subalpine bird community

with special emphasis on the influence of
environmental temperature and Epirrita autumnata
cycles.

366 Terrestrial Temperate Mammals Small Mammal Exclosure Study (SMES)

372 Terrestrial Temperate Birds Monitoring site 1000 Village survey - Bird survey
data

373 Terrestrial Temperate Mammals Village survey Medium and large mammal survey
data

374 Marine Temperate Birds Monitoring site 1000 Shorebird Survey
376 Terrestrial Temperate Birds Monitoring site 1000 forest and grassland research -

Bird survey data -1st phase
377 Terrestrial Temperate Birds Monitoring site 1000 forest and grassland research -

Bird survey data -2nd phase

382 Terrestrial Temperate Mammals Small Mammals and Vegetation Changes After Fire
in a Mixed Conifer-Hardwood Forest

403 Freshwater Tropical Amphibians Community ecology of anura amphibia at Northwest
region of Sao Paulo state

420 Terrestrial Polar/Temperate Birds Species composition and population fluctuations of
alpine bird communities during 38 years in the
Scandinavian mountain range

439 Terrestrial Temperate Birds Long-term dynamics of bird populations in pine
forests of Ilmen Nature Reserve during the breeding
period individuals / km2

440 Terrestrial Temperate Birds Long-term dynamics of bird populations in pine-birch
forests of Ilmen Nature Reserve during the breeding
period individuals / km2

441 Terrestrial Temperate Birds Long-term dynamics of bird populations in birch
forests of Ilmen Nature Reserve during the breeding
period individuals / km2

442 Terrestrial Temperate Birds Composition and abundance of bird species in the
village Matabay in June 1980-1985 (absolute
indicators (area 025 km2))

443 Terrestrial Temperate Birds Composition and abundance of bird species in the
village Verhnjaja Elovka in June 1980-1985 (absolute
indicators (area 025 km2))
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444 Terrestrial Temperate Birds The dynamics of species composition and abundance
of migratory birds of prey in the Irkut River mouth
(absolute figures)

445 Terrestrial Temperate Birds A number of waterfowl after periods of breeding and
molting in the lower reaches of Ob River (thous.
individuals / 22 thous. km2)

446 Terrestrial Temperate Mammals The density of population (ind/1000ha.) of hunting
species of mammals in the Republic of Mordovia
(Chamzinsky district)

447 Terrestrial Temperate Mammals Long-term population dynamics of small mammals in
the Natural Boundary Morozova Gora (individuals /
100 trap-nights)

448 Terrestrial Temperate Mammals Number of small mammals in Verkhnyaya Angara
basin (accounting period since 20.07 to 20.08
individuals /100 trap-nights

449 Terrestrial Temperate Mammals Indicators of abundance (individuals / 100
trap-nights) of different species of small mammals in
different years with using trap grooves and a
coefficient characterizing the adverse conditions
winter

459 Terrestrial Temperate Birds Birds from the Bavarian Forest

475 Terrestrial Temperate Birds Structure and dynamics of a passerine bird
community in a spruce-dominated boreal forest

515 Terrestrial Tropical Mammals Assemblage-level responses of phyllostomid bats to
tropical forest fragmentation

516 Terrestrial Tropical Mammals A large-scale fragmentation experiment for
Neotropical bats
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