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Abstract Water temperature is a key characteristic defin-
ing chemical, physical, and biologic conditions in riverine
systems. Models of riverine water quality require many
inputs, which are commonly beset by uncertainty. This
study presents an uncertainty analysis of inputs to the
stream-temperature simulation model HFLUX. This pa-
per’s assessment relies on a Markov chain Monte Carlo
(MCMC) analysis with the DREAM algorithm, which has
fast convergence rate and good accuracy. The inputs herein
considered are the river width and depth, percent shade,
view to sky, streamflow, and the minimum and maximum
values of inputs required for uncertainty analysis. The
results are presented as histograms for each input specify-
ing the input’s uncertainty. A comparison of the observa-
tional data with the DREAMalgorithm estimates yielded a
maximum error equal to 7.5%, which indicates excellent
performance of the DREAM algorithm in ascertaining the
effect of uncertainty in riverine water quality assessment.

Keywords Uncertainty . DREAM algorithm .MCMC
algorithm . HFLUX simulation

Introduction

Hydrologic simulation models feature multiple parame-
ters whose specification may be uncertain in many
applications. Such parameter uncertainties are propagat-
ed to the simulations’ outputs.Methods for assessing the
uncertainty of simulation models commonly rely on
specialized algorithms that determine the most probable
values on uncertain model inputs. Kamali et al. (2012)
employed the particle swarm optimizer (PSO) to evalu-
ate the effect of parameters in Hydrologic Engineering
Center’s hydrologic Modeling System (HEC-HMS)
simulations. The PSO obtained the most probable
values of the HEC-HMS model parameters with fast
search convergence. Yang et al. (2008) compared the
Markov chain Monte Carlo (MCMC), the generalized
likelihood uncertainty estimation (GLUE), the sequen-
tial uncertainty fitting (SUFI)2, and the parameter solu-
tion (ParaSol) uncertainty methods to assess the uncer-
tainty of hydrologic simulations in a region of China.
The results demonstrated variable convergences of the
comparedmethods in the parameter space. Nkonge et al.
(2014) compared the SUFI2 and GLUE algorithms’
effectiveness in reducing the impacts of parameter un-
certainty in the analysis of flooding in the Tana region of
Kenya. The SUFI2 algorithm was found superior to the
GLUE algorithm in reducing the effect of parameter
uncertainty in their study. Shen et al. (2012) linked the
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GLUE uncertainty analysis algorithm and the soil water
assessment tool (SWAT) for hydrologic simulation and
analyzed the effect of uncertainty of the SWAT param-
eters in predictions of sediment transport and flow sim-
ulations during heavy precipitation, and their study’s
showed that sediment simulation presented greater un-
certainty than stream flow, and uncertainty was even
greater in high precipitation conditions (from May to
September) than during the dry season. Alazzy et al.
(2015) applied the GLUE algorithm to assess the uncer-
tainty of simulations with the Xinanjiang rainfall-runoff
(XAJ-RR) model. The results highlighted the key role
that the model’s parameters’ uncertainty has on runoff
simulations.

Markov chain Monte Carlo (MCMC) algorithms are
widely used in uncertainty analysis. These algorithms
generate random samples using Markov chains for the
analysis of uncertainty. Tuning automatically the scale
and orientation of the proposed distribution to derive the
target distribution and exhibiting excellent sampling effi-
ciencies on complex, high-dimensional, and multimodal
target distributions are these algorithms’ key advantages
(Vrugt 2016). The disadvantage of the MCMC algo-
rithms arises from the initial random samples that may
follow a poorly fitted distribution. One variant of the
MCMC algorithms is the DiffeRential Evolution Adap-
tive Metropolis (DREAM) algorithm (Vrugt et al. 2008,
2009; Shojai 2012). The speed and precision conver-
gence of the DREAM has been demonstrated in several
studies and proven superior to other adaptive MCMC
sampling approaches (Vrugt 2016). Shojai (2012)
employed the DREAM algorithm to assess the effective
parameters of the QUAL-2 K riverine water quality mod-
el. Koskela et al. (2012) applied the DREAM algorithm
to evaluate the effect of parameters’ uncertainty on pre-
dictions by the identification of unit hydrographs and
component flows from rainfall, evapotranspiration, and
streamflow (IHACRES) simulation model; their study’s
result showed that occasional snow water equivalent
(SWE) observations together with daily streamflow ob-
servations do not contain enough information to simulta-
neously identify model parameters, precipitation
uncertainty, and model structural uncertainty. Zheng and
Han (2016) evaluated the uncertainty of simulations of
watershed-scale water quality (WWQ) model with the
DREAM algorithm. Their study showed the MCMCUA
has to be management-oriented, that is, management
objectives must be factored into the design of the UA
rather than be considered after the UA. Joseph and

Guillaume (2013) employed the DREAM algorithm to
identify likelihood functions of SWAT simulations. Hy-
drologic simulationmodels require diverse inputs, among
which are parameters, environmental data, boundary and
initial conditions, spatial geometry, and the like. Liu et al.
(2017) developed a Bayesian-based multilevel factorial
analysis (BMFA) method to assess parameter uncer-
tainties and their effects on hydrological model responses.
In their study, the DREAM algorithm was applied to the
analysis of parameter uncertainty. The uncertainties of
four sensitive parameters, including soil conservation
service runoff curve number to moisture condition II
(CN2), soil hydraulic conductivity (SOL_K), plant avail-
able water capacity (SOL_AWC), and soil depth
(SOL_Z), were investigated, and their findings indicate
that significant parameters and their statistical
associations can be quantified. Farsi and Mahjouri
(2019) evaluated the impacts of human activities and
climate change on river flow. They applied the DREAM
algorithm for analyzing the model parameters uncertain-
ty. Their findings demonstrated the parameters of LSMX
(maximummoisture capacity of the lower soil layer), and
K3 (deep percolation coefficient) are the most significant
parameters controlling the uncertainty of simulated run-
off. Nourali et al. (2016) investigated the uncertainty of
parameters of the HEC-HMS model with the DREAM
algorithm with both formal and informal likelihood func-
tions. Also, the performance of seven different likelihood
functions (L1–L7) was assessed with the DREAM ap-
proach. Results showed the DREAM algorithm per-
formed better under formal likelihood functions L5 and
L7. Leta et al. (2015) adapted a method to incorporate
rainfall uncertainty in distributed hydrologic models.
Their study considered different sources of uncertainty
in semi-distributed hydrologic model and implemented
the DREAM algorithm to infer the parameter posterior
distributions and the output uncertainties of the SWAT
model. Leta et al. (2015) found that considering
heteroscedasticity and rainfall uncertainty leads to more
realistic parameter values, better representation of water
balance components, and prediction uncertainty intervals.
Aghakhani Afshar et al. (2019) investigated the applica-
tion of parameter uncertainty quantification methods and
their performance for predicting runoff. Their study im-
plemented the DREAM algorithm for the analysis of the
output uncertainty of the Soil andWater Assessment Tool
(SWAT) model. Their study result showed the DREAM-
ZS algorithm improved the model calibration efficiency
and led to more realistic values of the parameters for
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runoff simulation with the SWAT model. Liang et al.
(2016) evaluated the effect of water quality model param-
eter uncertainty on TMDLs. They employed the
DREAM algorithm for the model parameter uncertainty
analysis, and an allowable pollutant load calculation plat-
form was established with the Environmental Fluid Dy-
namics Code (EFDC), which is a widely applied
hydrodynamic-water quality model.

This study links the DREAM uncertainty analysis
algorithm and the HFLUX simulation model for the
purpose of ascertaining the effect of inputs uncertainty
onmodel’s predictions of streamwater temperature. The
probability distribution functions of selected model in-
puts are calculated, and their effect on model predictions
is evaluated. Figure 1 depicts the steps of this paper’s
methodology, where it is seen the first step is the selec-
tion of the simulation model. Changes in the simulation
model linked to the DREAM algorithm are applied
leading to the assessment of the effect of inputs’ uncer-
tainties on model simulations. The observational data
are compared with model simulations to evaluate the
performance of the uncertainty analysis. The HFLUX
model (Glose et al. 2017) simulates riverine water tem-
perature based on multiple inputs. It is an open-source
model amenable for the type of uncertainty analysis
proposed in this work.

Materials and methods

River water temperature: the HFLUX simulation model

Riverine water temperature is a fundamental water qual-
ity characteristic that affects the saturation of dissolved
oxygen, kinetic reactions and resulting pollutant con-
centrations and fish distribution, metabolism, growth,
reproduction, and mortality (Abdi and Endreny 2019).
This work implements the HFLUX water-temperature
simulation model (Glose et al. 2017) for the purpose of
uncertainty analysis. HFLUX is a 1D transient model
that calculates stream temperatures in space and time by
solving the mass and energy balance equations for tem-
perature transport in streams. HFLUX receives initial
spatial and temporal temperature conditions, stream ge-
ometry data, discharge data, and meteorological data to
calculate stream temperature employing a finite-
difference solver. The HFLUX solves the water balance
Eq. (1) and energy balance Eq. (2):

∂A
∂T

þ ∂Q
∂x

¼ qL ð1Þ

∂ ATWð Þ
∂t

þ ∂ QTWð Þ
∂x

¼ qLTL þ R ð2Þ

where A signifies the cross-sectional area of the stream
(m2), Q denotes the discharge of the stream (m3/s), x is
stream distance (m), t is time (s), qL is the groundwater
inflow per unit stream length (m2/s), Tw is the stream
temperature (°C), and TL denotes the groundwater tem-
perature (°C). This formulation is based on a thermal
datum of 0 °C governs the absolute value of the advec-
tive heat flux term. The first term on the right-hand side
of Eq. (2) becomes qLTw if qL is negative, which indi-
cates a losing stream. Also, in this Eq., R signifies the
energy flux (source or sink) per unit stream length that is
calculated based on Eq. (3):

R ¼ Bφtotal

ρwCw
ð3Þ

where B denotes the width of the stream (m), φtotal

represents the total energy flux to the stream per surface

Fig. 1 The steps of this paper’s methodology
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area (W/m2), ρw denotes the density of water (kg/m3),
and Cw is the specific heat of water (J/kg°C). Dispersive
heat transport is negligible where water temperature
longitudinal change is small in comparison to temporal
changes. Dispersive transport is omitted in Eq. (2).
Equations (1) and (2) are solved numerically with an
open-source MATLAB script that can be downloaded at
no cost from http://hydrology.syr.edu/hflux. Figure 2
depicts the steps of this simulat ion model.
Accordingly, the model first receives the required
inputs and solves the water and energy balance
equations at the nodes representing the numerical
longitudinal discretization of the stream length for all
time steps of the simulation.

HFLUX model inputs include meteorological data,
river geometric data, temperature initial conditions, spa-
tial conditions, and discharge data. The data employed
in this work’s uncertainty analysis corresponds to
June 13–19, 2012 (Glose et al. 2017).

The DREAM uncertainty algorithm

The DREAM algorithm is a variant of the generic
MCMC algorithms that has proven efficient in the

assessment of parameter and predictive uncertainty and
experimental design (Vrugt et al. 2009, 2011). The
DREAM algorithm has been proven superior to other
MCMC algorithms in previous studies and has yielded
accurate solutions in high-dimensional search/variable
spaces (Vrugt 2016). The DREAM algorithm iterates by
generating chains of d-dimensional candidate vectors zi

from the current values of vectors x, i = 1, 2, …, N,
where N denotes the number of vectors considered by
the DREAM algorithm, and d is the number of evaluat-
ed parameters or inputs in each vector. The DREAM
algorithm convergence to stationary or limiting distribu-
tions of parameters after repeated iterations has been
found to be faster than those of traditional MCMC
algorithms (Vrugt 2016). The generation of candidate
vector zi from current vector xi in the i-th iteration (i = 1,
2, …, N) is accomplished with the following equation
(Vrugt and Ter Braak 2011):

zi ¼ xi þ 1d þ edð Þγ δ; d
0

� �
∑
δ

j¼1
xr1 jð Þ− ∑

δ

n¼1
xr2 nð Þ

 !
þ εd ð4Þ

where zi is the candidate vector and xi is the current
vector (of parameters or inputs variables); ed and εd are
drawn from Ud(−b, b) [d-variate uniform distribution in

Fig. 2 The steps of the HFLUX simulation model Fig. 3 The steps of the DREAM algorithm
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(−b, b)], typically, b = 0.1, and Nd(0, b
∗) denotes the d-

variate normal distribution with zero mean and variance
b* small compared to the variance of the target distri-
bution; δ is the number of pairs used to generate the
candidate vector; γ denotes the value of the jump size,
which depends on δ and d′, the number of dimensions

updated jointly in an iteration step. A good choice is γ

¼ 2:4=
ffiffiffiffiffiffiffiffiffi
2δd

0p
(Vrugt and Ter Braak 2011); xr1 jð Þ and

xr2 nð Þ are randomly selected without replacement from
the population of vectors x without xi; r1(j) and r2(n) are
in the range [1, 2,…, N]. Replace the j-th (Zij) chain of
the generated candidate vector zi according to the fol-
lowing criterion to create a new vector (j = 1, 2,…, d):

Zi
j ¼

xij if U ≤1−CR
zij otherwise

(
ð5Þ

where CR is the crossover probability and U is drawn
from a uniform distribution U ∈ [0, 1].

The next step of the DREAM algorithm computes
π(Zi) and accepts the new vector Zi with Metropolis
acceptance probability, α(xi, Zi):

α xi; Zi� � ¼ min
π Zið Þ
π xið Þ

� �
; 1 if π xi

� �
> 0

1 if π xi
� � ¼ 0

8<
: ð6Þ

If the new vector is accepted, Zi = xi; otherwise, it
remains at the old location xi. The next step removes the
potential outlier vectors using the interquartile range (IQR)
statistic. The outlier vectors can significantly deteriorate
the performance of MCMC samplers and must be re-
moved to facilitate convergence to a limiting distribution.
The final step of the DREAM algorithm is evaluating the
Gelman and Rubin convergence diagnostic. This diagnos-
tic compares for each parameter the within-chain:

W j ¼ 2

N T−2ð Þ ∑
N

i¼1
∑
T

r¼ T=2½ �
xir; j−x

i

j

� �2

ð7Þ

in which

x
i

j ¼
2

T−2
∑
T

r¼ T=2b c
xir; j ð8Þ

and between-chain variance

Bj=T ¼ 1

2 N−1ð Þ ∑
N

i¼1
x
i

j−x j
� �2

ð9Þ

in which

Fig. 4 The study region and location of the 3 nodes (the gray map represents the state of New York)
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x j ¼ 1

N
∑
N

i¼1
x
i

j ð10Þ

where

σ2 jð Þ
þ ¼ T−2

T
W j þ 2

T
Bj ð11Þ

and defining

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

N
σ2 jð Þ
þ
W j

−
T−2
NT

s
ð12Þ

where T signifies the number of samples in each chain,
r= {1, ...,T}, ⌊.⌋ is the integer rounding operator, xri; jis the
parameter value at j-th dimension, i-th vector, and r-th

sample, σ2 jð Þ
þ is an estimate of the variance of the j-th

parameter of the target distribution, and Rj is the value of
this diagnostic. The value ofRjmust be less than 1.2 for all
parameters. Figure 3 depicts the steps of the DREAM
algorithm. Accordingly, the algorithm iterates by generat-
ing initial population of N vectors with dimension d.
According to Eqs. (4) and (5), each of the initial population
vectors convert to new vectors. The new vectors

Fig. 5 Graphs of the values at several sections along Meadowbrook Creek (a) creek width, (b) creek depth, (c) percent shade, (d) view to
sky, and (e) discharge
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acceptance is evaluated with Eq. (6). In the next step, the
outlier vectors are removed, and at last, the Gelman and
Rubin convergence is evaluated with Eqs. (7)–(12). The

open source of the DREAM algorithm is available at the
following link https://faculty.sites.uci.edu/jasper/software
(Vrugt et al. 2008; Vrugt and Ter Braak 2011; Vrugt 2016).

Fig. 5 continued.

Table 1 The HFLUX selected inputs and their upper and lower limits specified in the uncertainty analysis

Input Description Minimum Maximum Unit

W1 River width at the beginning of the river (0 m) 1 7 m

W2 River width at 375 m from the beginning of the river 1 7 m

W3 River width at the end of the river (475 m) 1 7 m

D1 River depth at the beginning of the river 0.001 1 m

D2 River depth at 375 m from the beginning of the river 0.001 1 m

D3 River depth at the end of the river 0.001 1 m

Sh1 Shade coefficient at the beginning of the river 0 1 –

Sh2 Shade coefficient at 375 m from the beginning of the river 0 1 –

Sh3 Percent hade coefficient at the end of the river 0 1 –

V1 View to sky coefficient at the beginning of the river 0 1 –

V2 View to sky coefficient at 375 m from the beginning of the river 0 1 –

V3 View to sky coefficient at the end of the river 0 1 –

Q1 Discharge river at the beginning of the river 0.05 0.1 m3/s

Q2 Discharge river at 375 m from the beginning of the river 0.05 0.1 m3/s

Q3 Discharge at the beginning of the river 0.05 0.1 m3/s
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The study region

The study region is the urban Meadowbrook Creek
catchment within the city of Syracuse, state of New
York (Glose et al. 2017). Meadowbrook creek is a
first-order stream with a catchment area equal to
6.3 km2 covered by residential, industrial, and open
spaces, which meanders through the city of Syra-
cuse. The creek serves fishing, recreational, and
tourism uses. The creek’s length equals four kilome-
ters, of which 475 m are herein simulated for water
temperature at three selected points shown in Fig. 4.
The reason of choosing these three points is the
identical sampling of the selected inputs at these
points. Also, the changes of inputs values relative
to each other at these points are greater than at other
points thus permitting improved evaluation of the
algorithm performance. Creek discharge variations
during the observational period (June 13–19, 2012)
fell in the range of 0.06–0.63 (m3/s) and increases
nearly linearly with increasing downstream distance.
Daily temperature in the observational period
(June 13–19, 2012) ranged between 8.9 and 28.2
(°C). The maximum and minimum relative humidity
varied in the range of 36–93%. The channel sedi-
ments consist of cobbles, clay, sand, and gravel, clay
being the predominate soil type. The urban land-
scape and local precipitation exert a primary control
on stream flow and water-quality characteristics.

Results and discussion

The inputs to the HFLUXmodel selected for uncertainty
analysis in this study include the depth and width of the
river, percent shade, view to sky, and creek discharge in
three distinct sections of the creek comprised within a
475 m reach shown in Fig. 4. An uncertainty analysis of
the selected HFLUX inputs and model predictions was
conducted by coupling HFLUX to the DREAM algo-
rithm. Figure 5 displays the values of selected inputs
along the study reach.

The DREAM algorithm was implemented to deter-
mine the posterior distribution function of the selected
inputs. The initial population of inputs was specified
from the minimum and maximum values for each input
based on field observations and known likely ranges for
each input in the study area. DREAM calculates the
posterior distribution functions of the selected inputs
and draws values from these posterior distributions to
be input to HFLUX. The selected inputs and their min-
imum and maximum values are listed in Table 1.

Creek flow and water temperature were simulated
with HFLUX employing a spatial step equal to 10 m
and time step equal to 30 min. The DREAM algorithm
iterated 55,000 times in N = 3 vector in the uncertainty
analysis. Acceptance of the DREAM-calculated proba-
bility distributions of selected inputs was based on the
Gelman and Rubin convergence criteria (Gelman and
Rubin 1992), which in this work establishes this

Fig. 6 Gelman and Rubin criterion chart for the model inputs
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convergence for selected inputs must have a criterion
less than 1.2 at the end of iterations, as shown in Fig. 6,
where the Gelman and Rubin convergence for all the
selected inputs at the end of iteration have a criterion
less than 1.2.

The posterior distribution functions for each of the
selected inputs were calculated and are represented as
histograms after linking the DREAM uncertainty algo-
rithm and the HFLUX simulation model in the uncer-
tainty analysis. The width of the range of the posterior
distribution function of the selected inputs measures the
uncertainty of an input: the wider the range, the more

uncertain the input. The average value or the most likely
value of the posterior distribution of an input are iden-
tified by the DREAM algorithm as suitable values for
that input to carry out simulations of stream water qual-
ity. The calculated posterior distribution functions for
the selected inputs produced by the linked DREAM
algorithm and HFLUX model are displayed in Figs. 7,
8, 9, 10, and 11. It is seen in Figs. 7, 8, 9, 10, and 11 the
posterior distributions of selected model inputs are not
symmetric. According to the Fig. 7, the uncertainty
range of the width of the stream at the first location is
between 5.0880 and 5.09, and the most likely value

Fig. 7 The histogram of HFLUX
inputs at three sections (a) creek
width at the beginning of reach
(0 m), (b) creek width at 375 m
from the beginning of the reach,
and (c) creek width at the end of
the each (475 m)
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predicted by DREAM equals 5.088. The uncertainty
range for this input at the second location is 3.4495
through 3.454 and most likely value equal to 3.451.
The range for the third location is 2.798 through 2.807
with most likely value equal to 2.803. According to the
Fig. 8, the uncertainty range of the depth of the stream at
the first location is 0.09011 through 0.0902 with most
likely value predicted by DREAM equal to 0.09017.
The uncertainty range for this input at the second loca-
tion is 0.1396 through 0.14005 with most likely value
equal to 0.13975. The range for the third location is
0.3498 through 0.3507 with most likely value equal to
0.3502. According to Fig. 9, the uncertainty range of the

percent shade coefficient at the first location is 0.2444
through 0.2465 with most likely value predicted by
DREAM equal to 0.2453. The uncertainty range for this
input at the second location is 0.203 through 0.2075
with most likely value equal to 0.2045. The range for
the third location is 0.193 through 0.202 with most
likely value equal to 0.199. According to Fig. 10, the
uncertainty range of the view to sky coefficient at the
first location is 0.7413 through 0.753 with most likely
value predicted by DREAM equal to 0.7465. The un-
certainty range for this input at the second location is
0.84 through 0.876 with most likely value equal to 0.86.
The range for the third location is 0.75 through 0.795

Fig. 8 The histogram of HFLUX
inputs at three sections (a) creek
depth at the beginning of the
reach, (b) creek depth at 375 m
from the beginning of the reach,
and (c) creek depth at the end of
the reach
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with most likely value equal to 0.77. According to the
Fig. 11, the uncertainty range of the discharge coeffi-
cient at the first location is 0.060303 through 0.060312
with most likely value predicted by DREAM equal to
0.060308. The uncertainty range for this input at the
second location is 0.07187 through 0.071915 with most
likely value equal to 0.07189. The range at the third
location is 0.07336 through 0.073405 with most proba-
ble value equal to 0.07339.

The coefficient of variation of an input measures its
spread about its mean value. The lower the coefficient of
variation, the higher the sensitivity of the simulation

model to an input. Table 2 lists the coefficient of varia-
tion of each of the input estimated by the DREAM
algorithm. It is seen in Table 2 the input Q1 with the
coefficient of variation 0.71% is the most sensitive
input, and the inputs Q2 and Q3 are the second and third
most sensitive, respectively.

The most probable values estimated by the DREAM
algorithm for each input were compared with the ob-
served values. Table 3 lists the DREAM estimation
error, where it is seen the largest error corresponds to
input V2 with 7.5% error. The estimates of the DREAM
algorithm forW2 with 0.03% error was the smallest. The

Fig. 9 The histogram of HFLUX
inputs at three sections (a) percent
shade coefficient at the beginning
of the reach, (b) percent shade
coefficient at 375 m from the
beginning of the each, and (c)
percent shade coefficient at the
end of the reach
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fact that the largest estimation error with the DREAM
algorithm is 7.5% is testimony to its good performance.

Conclusion

This paper assessed the uncertainties of the inputs to the
HFLUX stream water-quality model linked to the
DREAM MCMC algorithm. The Meadowbrook River,
Syracuse, New York, USA, was chosen as the case
study. The results of the uncertainty assessment of
HFLUX model inputs are presented in the form of
histograms or empirical distribution functions that

represent the uncertainty and most likely values for each
model input at selected river nodes. The width of the
range of these histograms measures the uncertainty of
each of the model inputs. Accordingly, the input Sh2
with largest width of the histogram and with a coeffi-
cient of variation equal to 63.43% is the most uncertain.
The input Q1 with smallest width of histogram range
and a coefficient of variation equal to 0.71% is the least
uncertain. Our results indicate the input Q1 is the most
sensitive input, and the input Sh2 is the least sensitive
input. The mean or the most likely value of the posterior
distribution function obtained for each of the inputs by
the DREAM analysis algorithm may be used for stream

Fig. 10 The histogram of
HFLUX inputs at three sections
(a) view to sky coefficient at the
beginning of the reach, (b) view
to sky coefficient at 375 m from
the beginning of the reach, and (c)
view to sky coefficient at the end
of the each
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quality simulations. These results and the observational
data indicate the input W2 with the smallest estimation
error of themost likely value of the posterior distribution
function equal to 0.03% is the most accurately estimated
input, and the input V2 with the largest error in estimat-
ing the most likely value of the posterior distribution
function equal to 7.5% is the least accurately estimated
input. The closeness of the model predictions and ob-
servational values demonstrates suitable performance of
the DREAM algorithm for identifying optimal model
inputs.

Fig. 11 The histogram of
HFLUX input at three sections (a)
discharge coefficient at the
beginning of the reach, (b)
discharge coefficient at 375 m
from the beginning of the each,
and (c) discharge coefficient at the
end of the reach

Table 2 The inputs’ coefficient of variation

Input Coefficient of variation
(percentage)

Input Coefficient of variation
(percentage)

W1 6.56 Sh3 46.53

W2 7.51 V1 6.91

W3 20.43 V2 19.51

D1 61.83 V3 17.38

D2 28.21 Q1 0.71

D3 13.38 Q2 0.81

Sh1 15.38 Q3 1.02

Sh2 63.43
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