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Abstract

This paper uses a finite mixture logit (FML) model to investigate the heterogeneity of preferences
of beach users for water quality at beaches in Southern California. The results are compared with
conventional approaches based conditional logit (CL) and random parameters logit (RPL). The FML
approach captures variation in preferences by modeling individual recreator preferences as a mixture of
several distinct preference groups, where group membership is a function of individual characteristic and
seasonal variables. The FML parameter estimates are used to calculate welfare measures for improve-
ments in beach quality through a reduction of water pollution. These bound the traditional CL and
RPL mean welfare estimates, and have the advantage of highlighting the distribution of the population
sample’s preferences. The data indicate the existence of four representative preference groups. As a
result, willingness to pay measures for improvements in water quality can be weighted across individuals
to calculate the distribution of individual welfare measures.

One of the groups is people who go to the beach with small children. An interesting finding is that
these people have a lower mean WTP for improving water quality than people who go without a small
child. This may well be an example of cognitive dissonance: parents find they go to the beach more often
than others who don’t have small children, since that keeps the children occupied and happy, and they
adapt their perception of the water quality to be consistent with their behavior.

Previous environmental and resource economic applications of the FML have been limited to appli-
cations with small choice sets (6) and group membership variables (4). This paper extends the FML
model through the estimation of a large (51) choice set with 9 membership variables. This application
is the first to incorporate seasonal variables into the group membership function to capture seasonal
heterogeneity.

∗This reasearch was made possible by funding from the National Marine Fisheries Service and California Sea Grant.
This paper is posted at the eScholarship Repository, University of California.
http://repositories.cdlib.org

†Ph.D. Candidate and Chancellor’s Professor, respectively; Department of Agricultural and Resource Economics, University
of California, Berkeley, California 94720. Address correspondences to hilger@are.berkeley.edu
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1 INTRODUCTION

Environmental resource protection and management requires the ability to assign values to

non-market goods. While the literature has generally focused on the average valuation and

preferences for these goods, the importance of the distribution of preferences for environ-

mental amenities for populations with diverse preferences has often been neglected.

With over 150 million visits a year, the beaches of Southern California provide environ-

mental and recreational amenities to a diverse user population (USFS , 2000). However this

coastal resource is strained by pollution that has led to increases in beach closures and pol-

lution advisories in Southern California for the past nine years, with 1,469 postings in Los

Angeles County in 2004 alone. The closure of beaches and the poor water quality even when

beaches are open impair the public’s use and enjoyment of the beaches of Southern Califor-

nia; and create loss of business and a significant reduction in the public welfare. However

the costs associated with the widespread water management plan is estimated to be in the

billions (Gordon, 2002). The magnitude of the cost estimates raises serious policy questions

about the economic benefits of storm water pollution control.1

Not only is there a loss of welfare due to impaired use and enjoyment of the public

beaches , but there can also be health impacts from swimming in polluted ocean waters,

including upper respiratory infection and other illnesses.2 Public concern regarding this

degradation has prompted the approval of several Legislative and Assembly bills,3 promoted

cleanup and monitoring efforts, and increased the need for careful estimation of the welfare

impact of water pollution at Southern California beaches for cost benefit analyses used in

litigation, remediation, and general management. This paper investigates the willingness

to pay for a reduction in beach water pollution and illustrates how these values vary by

recreator characteristics and season.

Varying preferences of recreational users and the multiple use nature of beach sites com-

plicate the estimation of willingness to pay measures for improvements in water quality and

1Another arena where the valuation of beach recreation has arisen is the prevention of oil spills and the
measurement of damages caused by oil spills and benefits from oil spill prevention. In 1969 there was a major
oil spill near Santa Barbara which attracted serious attention from economists interested in measuring the
economic value of the damages caused by the spill (Sorensen, 1975). In February 1990 there was an oil spill
off the coast at Huntington Beach which triggered a law suit by the State of California against the vessel
owner that actually went to trial in the fall of 1997 and led to the award of damages amounting to $12.75
million as the value of the public’s lost use and enjoyment due to the closure of beaches following the spill
(Chapman and Hanemann 2001).

2A large epidemiological study, The Santa Monica Bay Restoration Project study, found an increase in
the risk of contracting an illness when swimming near storm drains. Recreators that swam near storm drains
were 57% more likely to suffer symptoms of a fever than other swimmers (Haile et. al., 1996). For a recent
review of health risks associated with beach water pollution see NRDC (2005).

3California Assembly Bill 411, the “Right to Know” bill, was passed in 1999.
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other beach attributes. Systematic preference heterogeneity can lead to bias in parameter

estimates if left unaccounted for. This paper addresses systematic preference heterogeneity

by utilizing a finite mixture logit (FML) random utility model. A panel trip diary data set

documenting 4,462 Southern California winter and summer beach trips for 595 recreators

from December 2000 to November 2001 is analyzed using the FML approach. Estimation

results indicate that beach recreators can be characterized by one of four distinct represen-

tative groups by beach recreational decisions, and individual and seasonal attributes. This

information is then used in calculating welfare estimates for each individual in the sample

and the weighted average measure for the population. I find that the welfare estimates as-

sociated with an environmental improvement vary significantly both within the population

and across seasons. One interesting result is that the presence of children on a beach trip

that involves water contact is associated with lower mean WTP estimates for improvements

in water quality.

1.1 CONTRIBUTION OF THIS PAPER

While FML models have been estimated previously in the environmental and resource eco-

nomics literature this paper makes three main contributions. First, this paper is the first

FML application focused on modeling the welfare and behavioral impacts of an environ-

mental good associated with health outcomes. Water pollution is a widespread problem in

many coastal and fresh water areas, and recreational swimming is the second most popular

recreation activity in the United States with over 90 million participants (NRDC, 2004). Un-

fortunately, countless recreators swim in water that does not meet the EPA health standards

(NRDC, 2004). This drives an increasing interest in determining what draws recreators to

specific beaches (Hanemann et. al., 2004, and Lew and Larson, 2005) and what influences

where they choose to recreate once at a particular beach (Pendleton, 2001). This paper fur-

thers the understanding of the impact that water pollution has on beach recreation through

the estimation of preferences coefficients for a diverse group of beach recreators. Preference

estimates can be used to forecast and explain beach choice behavior conditional on beach

attributes, such as water pollution. The ability to investigate the composition of these pref-

erence groups conditional of individual and season data is a useful tool for managers and

policy makers in both the resource and public health arenas.

Second, this application contributes to the modeling of heterogeneity with the FML

through the incorporation of a seasonal variable in the beach choice occasion preference
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membership function. This enables the analyst to capture seasonal variation in preferences

for beach attributes. Other studies have not utilized the model to account for seasonal

changes in site attribute preferences.

Lastly, this paper represents a substantial step forward in the technique’s empirical ap-

plication. Previous applications have been applied to fairly restrictive choice sets, primarily

modeling binary participation choice or multinomial choice for up to 6 options (Boxall and

Adamowicz, 2002). In contrast, this application models recreator decisions among a choice

set of 51 beaches using a revealed choice data set. This model specification utilizes 9 indi-

vidual trip membership function variables consisting of seasonal, activity participation, and

demographic variables. This marks a substantial increase in the number of parameters esti-

mated relative to other applications in the literature (Provencher et. al. use three (2002),

Boxall and Adamowicz use 6 (2002), and Shonkwiler and Shaw use 3 (2003)).

I generate statistical estimates of the welfare impact to beach users due to changes in

water quality for beaches in Southern California. Accounting and controlling for preference

heterogeneity is the key objective of this research. To this end, I utilize the finite mixture

logit random utility model which allows for variation in preferences across individuals and

seasons.

Comparison of the welfare estimation results from the competing models indicates that

the FML model provides an important insight into the heterogeneity of individual’s willing-

ness to pay (WTP) for improvements in water quality. The FML model’s average estimate

of mean WTP is roughly 4.64 times that of the standard logit model’s mean WTP, while the

RPL’s WTP point estimate of the mean WTP is roughly 0.13 of the standard logit model’s

mean WTP. However, the estimated mean WTP for individual beach recreators ranges from

zero or negative to 14 times the logit’s mean WTP, depending on the type of recreators and

the type of quality change. For example, trips involving water-contact recreation during

the winter by male college graduates who are working full-time are associated with a high

value for an improvement in water quality. Trips taken during the summer by male college

graduates who are not working full time and who do not enter the water are associated with

a low value for an improvement in water quality.

The remainder of this paper is organized as follows. Sections 2 and 3 further motivate

the application and the model, respectively. In section 4, I describe the base model frame-

work. In section 5, I describe the problem of heterogeneity in a discrete choice setting. I will

then review the standard conditional logit (CL) framework and describe several econometric

techniques that have been developed in order to account for heterogeneity. In section 6, the

finite mixture logit model and estimation strategies are discussed. Section 7 describes the

data and the model specification is outlined in section 8. Section 9 reports on the estimation
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results for the CL, RPL, and FMLmodels and is followed by the paper’s conclusion in section

10.

2 APPLICATION BACKGROUND

Coastal and marine health play an important role not only in the prosperity of the fisheries

industry but also in the welfare of the communities which border the California coast and

rely on the coastal environment for recreation and tourism.4 Beach trips serve as a primary

recreational activity for some and as a source of income for others.

However, coastal environmental resources are increasingly strained and affected by pollu-

tion and overuse. In California there were 6,568 beach closures and advisories in 2001. This

was a 14% statewide increase from 2000 and marked the fifth consecutive year that beach

closures and advisories have increased (NRDC, 2002). The public awareness of poor water

quality is so widespread in the Los Angeles area that, in a focus group a few years ago, eight

out of ten participants said that they do not go into the water when they go to local beaches

(Hanemann, 2005).

The main cause of the beach closures in the Los Angeles area is storm water runoff.

Although rainfall events are infrequent, when they do occur they generate a large volume

of runoff from the streets, parking lots and other paved surfaces containing high pollution

loads that bypasses sewage treatment plants. This runoff is discharged directly to the ocean

through storm drains at or the near the local beaches. Storm water pollution is now coming

under increasing regulatory pressure, but is extremely costly to manage. An engineering

study conducted for the California Department of Transportation in 1998 estimated that to

divert and treat flows from about 90% of the annual expected storm events in Los Angeles

County would cost almost $54 billion, and the Los Angeles County Sanitation District revised

this cost estimate to $65 billon. A 2002 report by engineers at the University of Southern

California estimated the cost at $156 billion to cover 97% of the expected storm events

(Gordon et. al., 2002). Other pollution sources include discharges from point sources,

and sewage spills. The resulting degradation of the coastal environment damages marine

and coastal flora and fauna, and adversely affects the welfare and possible health of beach

recreators.

The risk of becoming ill while swimming at the beach reduces the welfare of those who

venture in the water and contract an illness,5 and diminishes the welfare for those who

4Lew and Larson estimate the mean value of a recreational beach day to be $28.28 (2004).
5Rabinovici et. al. (2004) review the valuation of health status literature and report that Mauskopf

and French (1991) estimate the WTP for government programs to aid in the avoidance of gastrointestinal
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forgo swimming because of the risk.6 Public concern regarding this coastal degradation has

prompted several studies focusing on the adverse health effects of coastal pollution and has

generated the approval of several Legislative and Assembly bills (NRDC, 2002).

The differences in the values placed on beach recreation by different user groups can have

important practical implications for beach management. For example, shoreline anglers care

about different aspects of the beach recreation experience than surfers or mothers taking

young children to the beach. What is considered an amenity to one may be an unwanted

nuisance to others. Moreover, the resource manager may be forced to make trade-offs in

meeting the needs of different groups. The information developed in this research can lead

to improved management of coastal and beach resources.

3 MODELING BACKGROUND

A rich diversity of preferences among decision makers creates difficulties in terms of accu-

rately modeling recreational site choice and estimating the economic value associated with

a change in resource attributes. Diverse user groups often value different attributes of recre-

ation sites and demand different services from them. If preference heterogeneity can be

easily controlled by segmenting the sample population by a variable known to the analyst, a

standard logit random utility model (RUM) can be used to estimate coefficients and welfare

measures for each group separately. For example, beach recreators who swim in the ocean are

likely to have different preferences for water quality and other beach attributes than those

lying on the sand. However it is often unclear where to draw the line in defining sub-samples

of the population.7 This may lead to bias in welfare measures for changes in site attributes

and hinder proper aggregation of welfare measures across individuals or time periods and

adversely affect policy and management decisions.

The logit model handles variation in preferences by averaging over the individuals. In

cases where the population is fairly homogenous in their preferences this may not cause a

major problem; however, if the population is characterized by considerable systematic prefer-

ence heterogeneity, the model’s results may be misleading due to an averaging out effect over

preferences from distinct groups. Additionally, the distribution of preferences over individu-

als or time are commonly lost due to the restrictive single point or even modal distribution

symptoms at $280 for a 2-4 day case and $1,125 for a 5-7 day case.
6Walsh et. al. (1992) report a mean value per visitor day of recreational swimming at $35.60 ($2001)
7If the analyst differentiated between beach and water users there would still be heterogeneity within

users. For example, among water users, surfers may care about different aspects of the beach recreation
experience than mothers taking young children to the beach to swim. Although both of these groups likely
view clean water as desirable, they may differ in the level of importance they place on water quality.
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which the model imposes on the data. The preservation of the preference distribution may

aid analysts focused on the welfare changes between user groups, or to a specific type of

user, due to changes in the attributes of the choice set. Similarly, an understanding of the

temporal fluctuations in preferences could have important policy implications.

Suppose there are two different groups of beach users: novice and expert surfers, who

prefer small and large waves respectively. Membership in either group is unobservable to the

analyst, but may be statically correlated with observable demographic and seasonal data.

Imagine further that there are several means of undertaking a coastal project which can

have the secondary effect of increasing or decreasing the size of waves. Estimation with the

standard logit model causes the opposing preferences for waves of the two user groups to be

averaged out, resulting in model estimates that call for the medium sized waves, which are

not preferred by either group. In contrast, a model that could statistically distinguish the two

different types of users and estimate their separate preferences could lead to a policy whereby

a variety of waves are maintained at specific beaches, resulting in a welfare improvements

for both groups.8

The finite mixture logit (FML) model used in this paper accounts for systematic het-

erogeneity by sorting the agents into separate behavioral groups or latent segments, with

different attribute preferences.9 Within each latent segment, individuals are assumed to have

homogeneous preferences. The segments are termed "latent" since individual membership

in a particular segment, as well as the segments themselves, are not observable. The FML

model simultaneously assigns an agent a probability of membership to each latent segment,

and estimates the discrete choice probabilities for the random utility model. This approach

captures the variation in preferences across the population through a discrete distribution

with multiple probability masses. The model is distinctive in that it not only accounts for

heterogeneity, but is able to explain the sources of that heterogeneity.

4 BASIC FRAMEWORK: RANDOM UTILITY MODEL

Random utility models have a long history as a powerful tool for resource managers. The

random utility model is the standard statistical framework used to estimate the value of the

change in consumer welfare due to an incremental change in the level of resource attributes

in a setting characterized by consumer choice between several alternative recreation sites

8Note, the emphasis on the word statistically. In practice, preference groups are often not clearly defined
into easily identifiable groups.

9This model was first proposed by McFadden (1986) and implemented by Swait (1994).
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with varying attributes.10

Consider the utility maximization problem that an individual solves in relation to a

recreation choice occasion between a set of J alternatives (j = 1, ..., J):

Max
j
: ui = vi(Mi − Cij, Qj, Zi) + �ij. (1)

Where u(.) is a function of individual income, Mi, the travel cost of individual i visiting

site j, Cij, the quality and attribute mix of the chosen site, j, in the recreational choice set,

Qj, and individual socioeconomic characteristics, Zi. The unobservable portion of utility

is denoted by �ij and is assumed to be a random variable. The decision to recreate at a

particular area is viewed as the decision to consume, or incorporate into one’s utility function,

the specific attributes that uniquely identify the chosen recreational site from others in the

choice set. When individual i chooses to consume bundle j out of her choice set J , j ⊂ J ,

it is assumed that uij is the maximum of the J possible utilities in the choice set. The

conditional probabilities of individual i choosing choice j can be derived as

Pr
ij
= Pr(uij > uik) ∀ k 6= j. (2)

Maximum likelihood estimation can then be used to estimate the parameters of the indirect

utility function (McFadden, 1973; and Bockstael, Hanemann, and Strand, 1986).

The outcome of an individual choice occasion, designated by Yi, is a random variable. If

and only if the disturbances associated with j, ∀j ⊂ J , are independently and identically

distributed with the generalized extreme value distribution, the choice probabilities are given

by

Pr
ij
= Pr(Yi = j) =

eβ
0Γij

JP
j=1

eβ
0Γij

(3)

where Γij is a vector of individual and alternative specific variables (McFadden, 1973). This

model is known as the conditional logit model (CL). This formulation of the CL model

causes individual variables, Zi, that do not vary over the choice set to drop out of the choice

probability. The choice probability is then determined by choice specific variables.11

10The Conditional Logit Random Utility Model (CL RUM) is a widely used research tool. An early
application of this model to recreational choice application is Hanemann (1978). For technical discussions
refer to Greene (2000) and Wooldridge (2002). For a discussion of the application of RUMs to environmental
economics refer to Haab and McConnell (2003).
11However, through construction of interaction variables that vary over both individuals and choice at-

tributes, individual specific information can be retained as an argument in the choice probabilities.
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Several econometric and modeling issues commonly arise with the Random Utility Model.

Econometric consideration should be given to the independence of irrelevant alternatives

property12 and to identification issues surrounding the scaling parameter. In terms of mod-

eling, the construction of the travel cost variable13 and the formation of the choice set are

major issues that have been the focus of considerable research.14

5 ECONOMETRIC ACCOUNTING OF HETEROGENEITY

Heterogeneous preferences are difficult to account for in behavioral choice models due to

the formulation of the conditional logit (CL) model which has historically been the tool of

random utility models. Within demand system models, the analyst can directly incorporate

demographic, temporal, or other individual characteristic data directly into the individual’s

utility function to address preference heterogeneity. However under the specification of the

CL, these characteristics drop out of the probability of an individual selecting a specific

choice, thus preventing the direct identification of these characteristics in the model.

If heterogeneity is not accounted for, RUM estimates are characterized by bias and lead

to inaccurate forecasts pertaining to changes in resource attribute levels and management

policies (Chamberlain, 1978, 1980; and Jones and Landwehr, 1988). This bias adversely

affects welfare estimates for simulated changes in resource attributes and/or management

decisions.
12The analyst must take note that in the standard multinomial or conditional logit models the odds ratios

for a specific pair of choices, Prj /Prk, is independent of the remaining alternatives. This property is known
as independence of irrelevant alternatives (IIA). This property is fairly restrictive because in implies that
the relative probability of choosing between alternatives remains constant after the introduction of a perfect
substitute of one of the alternatives to the choice set. Several models such as the nested logit and random
parameters logit models have been developed, in part, as a solution to IIA (Haab and McConnell (2003)).
13The assumption that travel cost prices are exogenously determined deserves comment, as the endogeneity

in prices assumption is one of the primary issues critiqued in the discrete choice literature (Berry, Levinsohn,
and Pakes, 1995; and Nevo, 2000). However as discussed in Train (2003), this issue is not of great importance
outside of market-level demand models. Within customer-level demand models it is assumed that individual
demand does not affect price. Moreover, within the recreational demand literature the price associated with
choosing a specific good is determined by the cost of travel to that location. One alternative is that the
consumption of the good is of large enough proportion in the individual’s utility function that the individual
incorporates the location of the recreational site as an important argument in the residential location decision
making process. Secondly, site characteristics to some degree all relate to visitation. For most site attributes
individual trips do not affect the attribute level. However, some attributes, such as solitude, offered by the
site are highly sensitive to small changes in the number of trips taken to the site. Assuming that individual
residence location and travel infrastructure is determined exogenously, the travel cost price is exogenous. See
Parsons (1991) for a discussion on housing location.
14For a thorough review on the optimal size of the choice set see Kurisawa (2003).
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To address heterogeneity, researchers have primarily focused on structural approaches

requiring the a priori selection of typically demographic or choice variables. In "cluster

models" individuals are segmented into demographically homogenous/similar groups. An

alternative method incorporates into the indirect utility function and interaction variable

composed of individual demographic variables, such as income, race, and family composition

and various choice attributes (Adamowicz et al., 1997). These methods are limited by the

assumption that preference groups can be accurately determined a priori by demographic

variables, and theoretical issues pertaining to the choice of an interaction variable (Boxall

and Adamowicz, 2003). Other related solutions to this problem include the fixed effects

and random effects specification of the conditional logit model (McFadden, 1986). However,

these methods are difficult to employ when the heterogeneity structure is complex and the

sample consists of a large number of decision makers.

An additional structural method, the Generalize Extreme Value (GEV) Logit (or nested

logit) disaggregates the decision between alternatives into subsets of similar alternatives,

relaxing the IIA restriction (McFadden, 1978). In the context of beach recreation, the GEV

framework has been used to model recreational beach choice conditional on the type of

activity engaged in during the beach visit (Hanemann et. al., 2004). The primary benefits

of this approach are that the model may be useful in highlighting the differences in choice

behavior and welfare estimates for different user groups, and that it is not restricted by the

IIA property. However, the approach requires that the "nesting" rules are defined a priori.

Another approach, the random parameter model, controls for heterogeneity across pref-

erences by allowing estimated coefficients to randomly vary across individuals according to

a continuous probability distribution, typically the normal or log-normal. By allowing for

variation in coefficients over people, the unobserved portion of the respondent’s utility is cor-

related over sites and time (Train, 1997). To set up the single choice occasion RPL model, we

begin with the standard logit choice probability for individual i and relax the standard as-

sumption that preferences for all individuals are equal. Assuming that individual tastes vary

in the population we can write the probability density function of the preference parameters

as

f(β|Θ∗),

where Θ∗ are the true parameters of the distribution of the preference parameters. The

actual probability that an individual i chooses choice j is the integral of the standard logit

probability for all possible values of the preference parameter weighted by the density of the
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preference parameters:

Pr
ij
=

Z ⎛⎜⎜⎜⎝ evi(Cji,Qj)

JP
j=1

evi(Cji,Qj)

⎞⎟⎟⎟⎠ f(β|Θ∗)dβ.

The parameters are estimated by using simulation to evaluate the integral in the choice

probabilities. The RPL can easily be extended to a multiple choice occasion panel data

setting (Train, 1997). Additionally, the RPL model is not restricted by the IIA property due

to interactions within the choice probabilities of the attributes of all elements in the choice

set (Train, 2003).

The RPL approach has two weaknesses. First, it assumes that preferences vary contin-

uously across economic agents. Second, it does not offer a behavioral explanation for the

source of the heterogeneity across people. Although the continuous distribution assumption

is likely to be valid in many applications, for example the spiciness that one likes their food,

there are many situations where actual preferences may be more accurately captured by

multiple discrete probability masses. Moreover, from a management perspective a coarse

grouping of preferences may sometimes be more useful. For instance, the presence of mo-

torized watercraft likely enters either positively or negatively into the majority of individual

beach recreator’s utility functions. Resource managers are often concerned with obtaining

the best possible estimates for specific individuals or user groups relevant to policy and

equity concerns.

6 FINITE MIXTURE LOGIT APPROACH

An alternative solution is the finite mixture logit (FML), or latent segmentation (LS) ap-

proach. This approach was suggested in a RUM setting by McFadden (1986), and was

implemented by Swait (1994). There has been a recent increase in the application of this ap-

proach, including several recreational choice models applications (Provencher et. al (2002),

Boxall and Adamowicz (2002), and Shonkwiler and Shaw (2003). The FML approach is

based on two important assumptions. First, individual preferences are neither homogeneous

nor continuously distributed, but can be represented as discretely distributed with multi-

ple probability mass points. Second, individual preferences are not purely a function of

demographic variables, but can also be formed by perceptions, attitudes, behavior, past

experiences, and unobserved variables.

Each "latent segment" is composed of like-minded individuals with homogeneous pref-

erences. The segments are termed latent because individual membership to a particular
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segment is not observable, nor are the segments themselves. The FML model simultane-

ously assigns the economic agent the probability of membership to each latent segment and

estimates the discrete choice probability for the random utility model. This approach cap-

tures the variation in preferences across the population through a discrete distribution with

multiple probability masses. The model is unique in that it not only accounts for heterogene-

ity, but is able to explain the sources of that heterogeneity. This is of particular importance

in regards to management decisions where user groups may either be demographically ho-

mogenous or where there is little correlation between user group preferences and the standard

demographic variables. The FML model can estimate the coefficients associated with the

choice occasion for each latent segment’s utility function. The FML model additionally es-

timates the composition of the latent segments and can be used to help researchers and

managers understand the processes involved in the formation of behavioral groups. The

ability to segment the sample population through the estimation of the latent segment type

may aid resource managers with welfare analysis and management policy.

The FML RUM is an extension of the CL model, and follows the assumption that individ-

ual i’s indirect utility is maximized on a choice occasion by selecting alternative j ⊂ J . The

probability that alternative j is chosen is the probability that the utility gained from choice

j is greater than or equal to the utility forgone by not picking one of the other alternatives

in the choice set, J .

Under the assumption that there exists some degree of heterogeneity in preferences across

the sample, let S be the number of segments that the population is to be grouped into.15

Individuals are assumed to belong to a segment s(s = 1, .., S) within the sample population.

Individuals within a segment are assumed to be characterized by homogeneous preferences.

Additionally, in all but the trivial case, S = 1, the probability ratio between any two alterna-

tives includes arguments from all other alternatives in the complete choice set, J . It has been

shown that in these cases the FML model is not constrained by the IIA property.(Shonkwiler

and Shaw, 1997).

6.1 Single Choice Occasion

In a cross sectional data setting, the optimal solution to the recreational choice decision for

individuals within a given segment s, is to maximize

ui|s = v(βsXij), (4)

15The optimal choice of S is discussed below.
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where the βs vector is the coefficients representing individual preferences conditional on

individual i’s membership in segment s.

The parameter coefficients for a specific segment of the population are estimated using

the following probabilities.

Pr
ij|s
=

evi|s(−Cji,Qj)

JP
j=1

evi|s(−Cji,Qj)

. (5)

Consider a latent membership likelihood functionM∗ that assigns individuals to segment

s ⊂ S (Swait, 1994). Arguments to M∗ can include variables associated with the unobserv-

able tastes, attitudes, and preferences of the members of the group as well as socioeconomic

variables represented by the vector Zi. Segments can be identified using standard demo-

graphic variables, behavioral and preference data. Assume the following equation:

M∗
is = γ0sZi + ζis, s = 1, ..S, (6)

where γs is a vector of segment specific parameters and ζis represents the error terms.

The membership likelihood function, M∗, is a random variable. To use the function

in an econometric model requires assumptions about the distribution of its error terms.

Following Kamakura and Russell (1989), Swait (1994) and Boxall and Adamowicz (2003)

the error terms are assumed to be independently distributed across individuals with Type I

extreme value distribution. The probability of individual i belonging to segment s can then

be calculated as

πis = Pr(Mi = s) =
eγ

0
sZi

SP
s=1

eγ0sZi
. (7)

This probability is modeled as multinomial logit framework where the independent variables

in this function vary over individuals, unlike the conditional logit where the variation is in

the choice specific variables. Addressing an indeterminacy in the model caused by the lack

of normalization the following restriction must be imposed:

πis =
eγ

0
szi

1 +
SP
s=2

eγ0szi
for s = 2, ...S, (8)

πi1 =
1

1 +
SP
s=2

eγ0szi
, and (9)
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0 5 πis 5 1, such that
SX
s=1

πis = 1.

To model choice behavior under the assumption that the sample population can be

grouped into finite segments, the researcher estimates individual i’s utility maximizing choice

between J alternatives conditional on membership to a specific segment, s. The joint prob-

ability Prins that an individual i is a member of segment s, and chooses alternative j is

defined as

Pr
ijs
= πis Pr

ij|s
. (10)

It follows that for a single choice occasion the probability of individual i choosing alternative

j unconditional on segment membership can be written as

Pr
ij
=

SX
s=1

πis Pr
ij|s
. (11)

Defining dij as and indicator variable that takes the value of 1 if an individual i chooses site

j and 0 if not, allows the writing of the individual likelihood function as

L =
SX
s=1

⎡⎣πisÃ JY
j=1

Pr
ij|s

!dij
⎤⎦ . (12)

The individual likelihood function can be rewritten as

L =
JY

j=1

"
SX
s=1

µ
πis Pr

ij|s

¶#dij
, (13)

and the cross section likelihood function as

L =
IY

i=1

JY
j=1

"
SX
s=1

µ
πis Pr

ij|s

¶#dij
, (14)

which yields the log likelihood function

lnL =
IX

i=1

JX
j=1

dij ln

"
SX
s=1

πis Pr
ij|s

#
. (15)
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6.2 Panel Data: Constant and Variation over Time Model Speci-

fications

The extension of the single choice occasion likelihood function to incorporate a time di-

mension utilizing panel data introduces a few complications in terms of the assumptions of

segment membership independence across choice occasions. One assumption is that prefer-

ences are constant over time, although there is preference heterogeneity across individuals

(Figure 1). This assumption is most appropriate when the set of choice occasions are tem-
porally close (such as multiple decision choice occasions), or when preferences and choice

attributes are stable over time. This specification has been applied in both the marketing

and transportation literature (Ramaswamy et al., 1999, Greene and Hensher, 2003).

An alternative modeling specification, implemented in this paper, assumes that prefer-

ences can be allowed to vary both over individuals and time. This can be useful as preferences

often tend to vary with seasonal tastes as the underlying choice decision changes. Seasonal

variation in unobserved or unmeasured attributes necessitates the need to allow for seasonal

variation in an individual’s segment membership. Allowing for variation over time in pref-

erence membership relaxes the correlation between individual segment membership (Figure

2).

Write the probability of individual i choosing alternative j at time t as

Pr
ijt
=

SX
s=1

πis Pr
ijt|s

. (16)

This leads to the likelihood function

L =
IY

i=1

TY
t=1

"
SX
s=1

πist

Ã
JY

j=1

µ
Pr
ijt|s

¶dijt
!#

(17)

which simplifies as

L =
IY

i=1

TY
t=1

JY
j=1

"
SX
s=1

πist Pr
ijt|s

#dijt
, (18)

and leads to the log likelihood function16

lnL =
IX

i=1

TX
t=1

JX
j=1

dijt ln

⎡⎢⎢⎢⎣
SX
s=1

⎛⎜⎜⎝ eαγ
0
sZit

SP
s=1

eαγ0sZit

⎞⎟⎟⎠
⎛⎜⎜⎜⎝ eβ

0
sXijt

JP
j=1

eβ
0
sXijt

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ . (19)

16Note the individual demographic variables, Zit, have a time index.
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The above likelihood function has been utilized in both the marketing (Swait, 1994)

and recreation (Boxall and Adamowicz, 2004) literature. Both applications utilized stated

preference data where each respondent made a series of sequential choices from a structured

choice experiment where all choice decisions are made at the same time, weakening the

basis for the preference variation over time assumption. The basis of the FML is that

decisions made by different members of the same preference segment will be more correlated

than decisions made by members of different segments.17 This holds true unless there is

a mechanism for an individual’s segment membership to change between choice decisions

(Morey, 2003).

The correct time specification choice is dependent on the goals of the analysis and what

data is used. As a general rule, the constant over time specification is appropriate for models

over short time durations which do not utilize membership covariates that vary over time and

where preferences are assumed to be constant. The varying over time specification better

suits applications that seek to model FM membership as a function of seasonality, the effect

of previous choices, or individual characteristics that vary over time (the decision to get into

the water on a specific beach trip). This paper utilizes the varying over time specification,

as individual preferences are expected to vary over time due to both seasonal effects and

variety seeking throughout the survey year.

6.3 Additional Econometric Issues

6.3.1 Scale Parameter

In addition to attribute preference parameters, the variance of the disturbance terms may

also differ across segments of the population. In the standard CL framework the analyst

assumes that the unobserved factors have constant variance, hence utility is of the same

scale across respondents. However, this restriction is not implicitly held in the FML spec-

ification. Therefore FML model parameter estimates cannot be compared across segments

directly. Researchers that do not take the differences in scaling parameters into account

may incorrectly infer that the members of the segment with a larger coefficient estimate care

about the attribute more than those individuals in the other segment. To properly interpret

parameter results across segments analysts can compare the signs or ratios of parameter

point estimates.18

17This assumes that the information set and individual characteristics are constant across choice decisions.
18Alternatively, the scaling parameter can be normalized for one segment so that the variance of the

disturbance term is the same across both segments. This leads to the identification of the scaling parameter
(Train, 2003).
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6.3.2 Determining the Number of Segments

The appropriate number of segments is not identifiable in the FM class of models and is

treated as exogenous. However, one can statistically test for improvements in the appropri-

ate number of segments by estimating a series of models that iteratively increase the size

of S. Improvements in model specification in terms of the number of latent segments in

the population can be tested for through the use of McFadden’s ρ2, Bayesian Information

Criterion, and Akaike Information Criterion test statistics. The use of traditional Likelihood

Ratio tests in determining the number of segments should be used with caution as the reg-

ularity conditions are violated (Ben-Akiva and Swait, 1986, Jedidi, 1997, and Boxall and

Adamowicz, 2003). In addition to the statistical tests, the analyst’s judgment in regards to

which model specification in terms of the number segments best describes the respondent

population and addresses the relative policy questions should be applied.

Upon inspection of the FMLmodel it is clear that through the selection of the appropriate

number of segments the above model can mimic both the traditional CL and the RPmodels.19

For instance, when γs = 0, βs = β, us = u, ∀s, the FML reduces to the CL.

6.4 Welfare Estimation Theory

The generation of welfare measures associated with a change in the attributes of the choice

alternatives is a primary use of the RUM. The economic marginal value associated with

a change in water quality grades and other beach attributes can be calculated for each

classification of user groups using model parameter estimates. Note that an individual’s

income does not vary over the alternatives in the choice set, so this term drops out of the

probability. However the relevant measure of income in regards to the choice occasion is the

individual’s total income less the cost of the utility maximizing choice.

The FML model allows the calculation of more accurate welfare measures. The proba-

bility of membership into a latent segment is a function of individual demographic variables.

Welfare measures can be calculated for each individual by properly weighting the welfare

measures of the representative consumer of each latent segment by the membership proba-

bility to each latent segment.

Pr
j∗
(i) =

evi(−Cji,Qj ,Zi)

JP
j=1

evi(−Cji,Qj ,Zi)

(20)

19In the present form FML is theoretically similar to the RPL where each respondent undertakes one
choice occasion.
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Changes in welfare due to a marginal change in a given attribute can be calculated

using the marginal mean willingness to pay measure (WTP). This measure is defined as the

maximum amount of income a person will pay in exchange for an improvement in the level

of a given attribute provided and can be calculated as:

WTP ∗i =
β

γ
(21)

where β is the parameter on the attribute of interest and γ is the travel cost parameter. Both

parameters measure the marginal utility of the object in question. This result can easily be

applied using FML parameter estimates:

WTP ∗i|s =
βs
γs

(22)

Because the degree of heterogeneity in preferences is assumed to be considerable in many

recreational choice optimization problems, the ability to segment the changes in welfare over

latent user types is important. However if the resource managers are interested in aggregate

welfare measures over the sample, these can be calculated by adding up the welfare measures

weighted by the latent segment probability (Boxall and Adamowicz, 2003).

WTP ∗ji =
SX

πs
s=1

∙
βs
γs

¸
(23)

This welfare measurement is an improvement over the traditional welfare calculation

using coefficient estimates from the standard CL model due to the proper weighting of each

segments’ marginal willingness to pay.

7 DATA

The empirical choice model application utilizes an extensive recreational beach choice panel

data set. The data come from a survey of households in Southern California. Respondents

were asked to keep a diary of all their trips to beaches in Southern California from December

2000 through November 2001. The data consists of observation for 4,642 beach recreation

choice occasions of 595 beach recreators throughout the 12 month period. Recreators include

fishers, boaters, divers, surfers, sunbathers, runners, cyclists and other beach users. Beach

recreator data contains demographic and behavioral data. An attribute data set contains

individual beach attributes including water quality data and the travel times and distances
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between each beach and respondent residence.20 The CL and RPL models are estimated

using the same choice probability specification as the FML model.

Each respondent is assigned a unique numeric identifier in order to link survey responses

from all segments of the project and thus create a large panel data set. The screener and

recruitment surveys collect standard socioeconomic household data, as well as beach and

non-beach recreation data. Respondents were asked to keep a record of every Southern

California beach trip in a bi-monthly diary throughout the survey period.21 For each trip,

respondents were asked a series of trip details including the date of the trip, the specific beach

they went to, the number of minors in their group, and information about up to four beach

activities. Beach recreational activities are expected to be affected by seasonal variables. To

control for this effect the data set is split into three time periods: winter (December and

January), summer (June through September) and the remaining shoulder season months.

Summary statistics on the seasonal distribution of trips, the probability of the average beach

recreator’s immersion rate, the percentage of trips that involves water immersion, and the

proportion of recreators that enter the water are listed in Table 1.22 Summary statistics on

beach site trip counts are displayed in Table 2.

The implicit price of visiting each beach used in modeling is the travel cost construct.

This construct is a function of the respondents reported income, and the estimated vehicle

operational cost ($0.145/mile), travel time and the distance between the respondent’s resi-

dence and each beach in the choice set.23 One way travel distance and travel time between

a respondent’s address and the beach address are calculated using the computer program

PC-Miler. The time and distance data is transformed into the round trip travel cost of each

trip, and is one of the model’s primary explanatory variables.24

20The complete data set consists of a screener and recruitment survey, 6 bi-monthly diary surveys, and
7 supplementary modules that focus on a variety of topics. The original data set comes from a random
telephone sample of 1,848 respondents. Of these, 824 respondents were classified as non-beach users and
202 declined to take part in the survey The remaining 822 respondents agreed to be included in a large
panel data set. Analysis shows that the demographics of the final sample is similar to those who declined
to participate and therefore it is assumed that there is not a substantial amount of systematic self-selection
bias. For a thorough discussion of the data see Hanemann et. al. (2003).
21Individual recreators frequented several beaches. 73% of all beach trips were to the recreator’s most

frequently visited beach.
22Due to multiple site trips or inconsistencies among the screener, recruitment, and diary surveys 14.2%

of the trip observations have been dropped from the dataset. Multiple site trips make up 3.9% of the dataset
and have been excluded from this analysis due to complications in capturing the percentage cost of travel
from one beach to another for the price matrix, and the proper weighting of beach attributes. Multiple site
trips are commonly handled in the literature by assuming that they are independent trips.
23This cost is calculated as

Costij = 2 ∗ [one way travel dist ∗ 0.145 + (one way travel time) ∗ (0.5 ∗ hourly wage)] (24)

24For a discussion on the percentage choice of wage rate in a travel cost model in a beach recreation
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Beach water pollution data is obtained from Heal the Bay, a Southern California non-

profit group. This data contains weekly ratings on a scale of A+ to F for beach water

quality for dry days at many monitoring stations throughout Southern California between

June 1998 and April 2001. Three water quality variables are constructed utilizing this

data: yearly average grade, bimonthly average for all years, and the bimonthly worst grade

reported during the survey year (Mohn et. al., 2003). In addition to these three measures a

set of discrete water quality variables, indicating an F or D grade, were constructed. Table 3

reports summary statistics on the bi-monthly occurrence of water quality grade ratings, the

bimonthly within beach variance for water grades, and the number of trips taken by water

quality grade and variance category.

8 RECREATIONAL BEACH CHOICE MODEL

Following the literature, recreational site choice decision occasions are modeled using the

discrete choice RUM as a function of site attributes, individual characteristics, and seasonal

data holding the number of trips taken as exogenously determined. The CL, RPL, and

FML variants of the RUM are estimated using an identical specification for the site choice

probability. The FMLmodel uses additional variables as arguments to the group membership

function.

To capture the seasonal variation in preferences, a seasonal dummy is included into the

segment membership function. Previous recreational modeling studies which have focused

on trip temporal characteristics, such as season or part of the week, have operationalized

the temporal data as an interaction variable or used it to segment the data set a priori.

The use of the time variable in the FML enables the analyst to capture the probabilistic

nature of seasonal influences on beach recreation in Southern California where there are often

unseasonably warm and cold days during the winter and summer respectively.

Explanatory variables used in the RUM specifications can be categorized into beach

choice and group membership variables. Modeling individual site choices for beach recreation

requires explanatory variables in terms of how the beaches in the choice set differ from one

another. Binary composite variables for development, very developed, wild, and ugly beaches

serve to collapse twenty component attributes into four composite indicator variables (Table

4).25

application see Lew and Larson (2004).
25The data set includes a large number of beach attribute variables (42) relative to the number of beaches

in the choice set (51). Therefore, a composite choice variable strategy for the appropriate right hand side
variables was developed in part to handle correlation within the beach attribute data set (Mohn et. al., 2003).
The variables that are used to construct the composites are 0/1 indicator variables for the absence/presence of
the relevant attributes. For a detailed discussion on the formation of the composite choice set, see Hanemann
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Beach choice variables incorporated into the CL, RPL, and FML model specifications

include beach travel cost, water quality, the length of the beach, and a set of binary composite

variables for capturing the developed, very developed, wild, or ugly nature of the beaches.

Beach attribute summary statistics and correlation matrices are displayed in Table 5 and

Table 6 respectively.

Group membership dummy variables used in the FML specifications indicate whether

the trip occurred during winter, the recreator got in the water, the recreator is male, kids

are present on the trip, the recreator is a student, the recreator works full time, and the

recreator is a college graduate (Table 7 and Table 8).

The model specification reported upon in this paper is a preliminary specification de-

signed to illustrate the level of heterogeneity which characterizes preferences for attributes

that describe beach recreation site choices. The objective of this paper is to illustrate the

importance of handling systematic preference heterogeneity in a discrete choice setting char-

acterized by diverse user groups. Estimation results indicate that the FML model is a useful

tool in analyzing Southern California beach choice recreational decisions. The choice model

specification reported in this paper focuses on broad composite beach attribute variables and

excludes several activity specific variables. Inclusion of these omitted variables is expected to

impact the parameter and welfare estimates reported in this paper. Additionally, inclusion is

expected to strengthen the preference group separation of the FML model due to an increase

in the dimensionality of preference space.26

9 CHOICE MODEL ESTIMATION RESULTS

Estimation of the CL, RPL, and FML models is implemented using numerical solutions with

the GAUSS programming language and the Maxlik maximum likelihood software.27 The CL

and RPL model estimation is performed using the Newton-Raphson (NR) search algorithm

and the FML is estimated using the Broyden-Fletcher-Goldfarb-Shanno method (BFGS)

followed by the NR method. The model specification for beach choice variables is the base

model specification from the preliminary report by the Southern California Beach Valuation

Project (Hanemann et. al., 2004). White’s standard errors are calculated for all regressions

to correct for violations of independence between observations from a respondent.

Three specifications of the model, with respect to the water quality variable, are esti-

(2004).
26Whereas use of composite categorical data variables as a data reduction tool leads to a loss of information

in the pattern of data over the attributes and respondents; as it is the pattern of data which allows the
identification of latent segments (Ramaswamy, 1999).
27Gauss code for the RPL is available on-line from Kenneth Train (2001).
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mated. Although the results of all estimated models are qualitatively robust, the continuous

yearly grade water quality variable specification is chosen over the competing specifications

based on improved measure of fit statistics, improved coefficient robust standard errors, and

ease of convergence. This result indicates that beach recreators may base their recreational

decisions based on impressions about water quality that are formed over many years as op-

posed to current information. Hanemann et. al. report a similar finding regarding GEV

beach choice model estimation (2004).

The CL model parameter estimates are of the expected and plausible sign, except for one

variable. Parameter estimates for travel cost, and very developed are negative. Parameter

estimates for water quality rating, beach length, and developed beach dummy variables are

positive. Counter intuitively the ugly beach dummy variable coefficient is positive.28 The

wild beach dummy coefficient is negative and not statistically different than zero. CL model

parameter estimates are presented in Table 9.

The RPL model parameter estimates are of the same sign as those of the CL model.

This result is expected. However the coefficient estimate for water quality is negative and

not statistically significant, and the wild beach dummy’s coefficient estimate is negative

and statistically significant. As expected, the RPL has greater explanatory power than the

CL model indicated by high pseudo R2 and other test statistics (Table 10). RPL model

parameter estimates are presented in Table 9.

9.1 Finite Mixture Logit Segment Testing and Results

Model estimation using the FML specification allows for an increased focus regarding the het-

erogeneous nature of the sample population’s preferences. The FML is estimated iteratively

with an increasing number of preference segment groups per specification. For specification

of the FML model, a complete set of beach attribute coefficients is estimated for each latent

segment. Additionally, a set of probabilities for each segment is estimated assigning segment

membership as a function of the individual characteristics incorporated into the model.29

The FML model is estimated for specifications with 2, 3, and 4 segments. Following the

segment testing methodology from the literature, the 4 segment model is chosen as having

the greatest explanatory power. The 4 segment model (FML-4) has the highest R2 com-

pared to the CL, RPL, and 2 and 3 segment FML specifications. The 4 segment model

also shows statistical significant improvements over the 3 segment model for several other

test statistics: AIC, AIC-3, and BIC (Table 10). A 5 segment model is programmed in

28This is likely due to an ommited variable.
29The number of segments minus one set(s) of segment membership function coefficients are estimated in

order to account for the indeterminacy in the model.
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Gauss, but did not converge despite using a variety of parameter starting values and search

techniques.30 The lack of convergence with the 5 segment model signals that 5 segments is

too many, as parameter estimates are known to tend towards negative and positive infinity

when an N +1 segment FM model is implemented on data which actually has N preference

segments (Beard et. at., 1991). Additionally the literature cautions against absolute reliance

on statistical tests to determine the number of segments in a finite mixture and suggests the

use of common sense (Beard et. al., 1991, McKachlan and Barford, 1988, and Boxall and

Adamowicz, 2003). It is suggested that in most cases no more than 5 segments are needed in

the FM framework (Heckman and Singer, 1984). The maximum number of feasible segments

for a 7 dimensional preference space is 8 segments. Taking all of these factors into account,

I conclude that a 4 segment FML model is the best model.

The 4 segment FML model estimates the probability that an individual is a member of

each preference group conditional on the season of trip and individual recreator characteris-

tics. Each individual choice occasion in the sample thus has a probability of being in each

segment.31 For some choice occasions the probability is high (up to 70%), while for others

it approaches zero (Table 9). Segments 4, 3, and 2 are the most likely preference groups

to characterize the largest number of beach choice occasions at 34.8%, 33.8%, and 25.1% of

the total number of trip. Segment 1 is least likely preference group to characterize a choice

occasion (6.4%) with the lowest mean percentage of group membership, 10.6%. However it

has a 64.2% probability of characterizing some choice occasions.

9.2 Marginal WTP Estimates

The average beach recreator in the sample has an estimated marginal willingness to pay

(WTP) of $5.71 for a water pollution rating increase of one letter grade when estimated using

the 4 segment FML specification. This FML estimate is 4.64 times greater relative to the

CL specification estimate of $1.23 (the WTP measure for the RPL is $0.1632). However, this

valuation estimate ranges from negative to $17.66 for individual beach recreators (roughly

14.35 times the CL WTP measure).33

30FML model for 1 to 6 segments are programmed and estimated with simulated data consisting of 1 to
6 preference segments.
31Choice occasions are the individual recreator, water use, season triples that characterize each trip.
32Note the parameter estimate on water quality is not statistically different than zero for the RPL model.
33Theoretically I expect that WTP is greater or equal to 0. However, a non-negativity constraint is not

imposed during the process of estimation. In the case of RPL, although the RPL mWTP is positive, a
portion of the distribution of the mWTP takes on negative values. In the case of FML, I believe the negative
estimates of mWTP for Group 1 and 4 are likely due to an omitted variables bias, because the model fitted
here does not include certain activity-specific beach characteristic variables that are expected to impact the
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Latent groups 3 and 1, respectively, have the highest and lowest mean WTP estimates

for a one letter grade increase in water quality. With a mean WTP point estimate of roughly

20 times the CL WTP estimate, Group 3 membership is particularly likely for winter trips

taken by male college graduates that work full time and do not have children accompanying

them to the beach. Individuals with Group 3 preferences are likely to choose beaches that

have long beach length, development, but are not very developed, wild, or ugly (Table 9 and

Table 10).

On the bottom half of the WTP distribution, Group 1 has a mean WTP point estimate of

roughly negative 10 times the CL WTP point estimate. Trips that occur during the winter,

where the respondent went into the water by recreators that work full time are less likely to

be characterized by Group 1 preferences. Additionally, recreators that are male, students,

do not work full time, and are not college graduates are more likely to be characterized by

Group 1 than Group 3. Those with Group 1 preferences are likely to choose beaches that

are very developed, ugly, and have poor water quality.

The ability to construct the distribution of welfare estimates for the sample population

is one of the primary benefits of the FML model. In the beach choice application each trip

occasion is characterized by a constant and 8 individual and trip specific binary variables.

This simple characterization of each trip by agent and seasonal characteristics results in 256

different probability assignments which are used to assign beach choice preference group

membership to each choice occasion triple. The existence of multiple preference groups al-

lows the construction of a multi-modal welfare distribution. A major strength of the FML

approach is that the location within the distribution of specific welfare measures is recover-

able conditional on individual and trip specific characteristics. The WTP distribution for an

improvement in water quality of one letter grade illustrates the heterogeneity in preferences

for coastal water quality (Figure 3). Trips that occur during the winter, involve getting in

the water, and are taken by male college graduates are associated with the representative

groups that have a high valuation for an improvement in water quality. Conversely, trips

taken during by students are strongly associated with representative groups with low WTP

for water quality.

To analyze the relationship between the estimated WTP for individual trip occasions and

the group membership variables, I regress the weighted estimated WTP for each beach trip

on the individual and seasonal characteristics of the trip with ordinary least squares (OLS),

and both cross-section and panel specifications of generalized least squares (GLS)(Table 11).

Coefficient estimates for the winter trip, in the water, and college graduate variables are

positive for all three estimators. The coefficient estimate for the student variable is negative

parameter estimates.
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for all three estimators.

The coefficient estimate on the children present on trip variable is of particular interest.

The OLS coefficient estimate for this variable is negative, whereas both GLS models produce

coefficient estimates that are not significantly different than zero. However, the introduction

of an interaction term for trips characterized by both the presence of children and getting

into water produces negative and significant coefficient estimates for all three estimators.

One would expect that beach trips that are taken with children and involve water recreation

would have a higher probability of occurring at beaches with higher levels of water quality

and would be associated with higher WTP for water quality. One explanation for this result

may be that the polluted beaches are characterized by features that are perceived by parents

to provide safer environments for their children to swim, such as a lack of surf, but at the

same time perpetuate water pollution. This result suggests further research. As illustrated

by the paradoxical above result above the ability to construct the distributions of the relative

importance which site attributes have on site choice is an important tool for resource and

health officials charged with the management of resources used by diverse user groups.

10 CONCLUSION

Coastal water quality impacts recreation and tourism. Southern California beach recreators

cite pollution as a primary reason for abstaining from swimming, a belief supported by stud-

ies linking swimming in polluted water with illness. While there is interest in understanding

the impact of water quality on beach recreation to improve resource and public health man-

agement, this task is complicated by the diversity of user preferences and the multiuse nature

of the beach.

This paper implements the FMLRUM to highlight the importance of capturing preference

heterogeneity. Exploiting an extensive beach recreational panel data set, this paper furthers

the literature by applying the FML approach to model preference heterogeneity regarding

the impact of an environmental variable related to health and seasonality on recreational

choice. The application also increases the number of choice alternatives and the number of

variables included in the segment membership function estimated with the FML model in

the literature.

Application of the FML model to the Southern California beach recreation data set

recovers 4 preference groups, highlighting the variation in the importance of water pollution

on beach choice for a diverse sample of beach users. For these groups, the impact that water

quality has on recreational site choice, as measured by the mean WTP, ranges from negative

to $17.66, with an average of $5.71, for an improvement in water quality of one letter grade.
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The WTP estimate calculated with the CL model is $1.23. The RPL coefficient estimate on

water quality is not significantly different from 0, and yields a WTP estimate of $0.16.

The FML approach facilitates the estimation of the distribution of water quality pref-

erences and welfare measures across a diverse user-base, and enables researchers to identify

user preference groups characterized by several variables. This increases the ability of re-

source managers to forecast the impact that changes in site characteristics will have on the

beach choice and welfare across segments of society.

Estimation results indicate that recreators who enter the water have a higher estimated

WTP for water quality. Gender, employment, education, and seasonal variables are also

important in estimating one’s preferences. One troubling result of the model is the finding

that the presence of children on beach trips which include water activity is not associated
with a higher WTP for improvements in water quality. This result highlights the model’s

ability to identify groups that resource managers and public health officials may desire to

concentrate their educational outreach efforts.

The FML approach is likely to become increasingly important as diversity continues to

grow, and the identification of user groups by a small number of variables becomes less

feasible. The application of the model to a unique beach recreation data set is of major

significance from the environmental management perspective. The powerful combination of

being able to specify a model which simultaneously estimates the marginal benefits associated

with different attributes for different groups and assigns group membership makes FML a

particularly attractive model for policy analysis.
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Figure 1: 
Constant over Time LS Membership 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: 
Variation over Time LS Membership 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 
Indexes: i= individual, j=site choice, t=time 
Segment membership types are denoted by S={A,B} where A & B are segment types 
Pri11 | A  indicates the probability of individual i choosing site 1 in time period 1, 

conditional on membership in segment A. 
Choice outcomes, Yjt , are indexed by choice then by time. 
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Trips Recreators
Trip %

Total 4642 595 27% 23%
Winter 987 222 14% 6%
Summer 1749 378 38% 62%
Shoulder Season 1906 377 23% 58%

Trips Count per Beach Total Trips Winter
Winter In 

Water
Shoulder 
Season

Shoulder 
Season In 

Water Summer
Summer In 

Water
Minimum 0 0 0 0 0 0 0
Average 91.02 16.67 2.69 28.90 8.47 21.27 13.02
Maximum 659 214 32 154 66 124 110
Standard Deviation 357.11 119.03 17.75 81.85 35.91 66.31 60.10
Total 4642 850 137 1474 432 1085 664

GRADE F D C B A
Occurrence 7 8 22 62 207
% Occurrence 2.5% 2.5% 7.0% 17.0% 58.0%
Trips 53 329 483 1542 2232
% Trips 1.2% 7.0% 10.0% 33.0% 48.0%

GRADE VARIANCE 0 0.25 0.5 0.75 1 1.25 1.5
Occurrence 34 6 2 0 2 0 4
% Occurrence 71.0% 13.0% 4.0% 0.0% 4.0% 0.0% 8.0%
Trips 3883 369 5 0 289 0 96
% Trips 84.0% 8.0% 0.0% 0.0% 6.0% 0.0% 2.0%

COMPOSITE VARIABLES COMPONENT VARIABLES
Developed Beach 3 or more Access_Street
Very Developed Beach 8 or more Public Transit

Restaurants
Stores
Concessions
Rentals
Beach Clubs
Houses
Condos/Hotels
Pier
Concerts
Volley Ball Tournaments

Wild Beach 1 or more Pedestrian Access Only
Rocky
Tide pools
Dogs Allowed

Ugly Beach 1 or more Oilpumps
Oilrigs
PowerSewer
Stormdrains

22%

Table 1: Probablility of Water Recreation

Average individual % Recreator %

22%
9%

30%

Table 2: Beach Site Trip Counts

Table 4:  Composite Variables and Their Components

Table 3: Grade and Grade Variance
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Choice Variables Mean Min Max Std Dev.
Cost 5.546 3.183 10.027 2.375
Water Quality 3.602 1.373 4.333 0.757
Beach Length (ln) 0.352 -2.207 2.088 0.940
Developed 0.549 0.000 1.000 0.503
Very Developed 0.196 0.000 1.000 0.401
Wild 0.314 0.000 1.000 0.469
Ugly 0.275 0.000 1.000 0.451

Cost
Water 
Quality

Beach 
Length (ln)

Develope
d

Very 
Develope

d Wild Ugly
Cost 1 0.034 -0.347 -0.168 -0.215 -0.013 -0.329
Water Quality 0.034 1 -0.099 -0.293 -0.009 0.094 0.038
Beach Length (ln) -0.347 -0.099 1 0.302 0.385 -0.137 0.108
Developed -0.168 -0.293 0.302 1 0.448 -0.236 0.116
Very Developed -0.215 -0.009 0.385 0.448 1 -0.227 -0.082
Wild -0.013 0.094 -0.137 -0.236 -0.227 1 -0.132
Ugly -0.329 0.038 0.108 0.116 -0.082 -0.132 1

Membership Variables Mean Min Max Std Dev.
Constant 1.000 0.000 1.000 0.000
Winter 0.213 0.000 1.000 0.409
Summer 0.377 0.000 1.000 0.485
In Water 0.266 0.000 1.000 0.442
Male 0.561 0.000 1.000 0.496
Kids 0.266 0.000 1.000 0.442
Student 0.175 0.000 1.000 0.380
Work Fulltime 0.649 0.000 1.000 0.477
College Grad 0.534 0.000 1.000 0.499

Winter Summer In Water Male Kids Student
Work 

Fulltime
College 

Grad
Winter 1 -0.404 -0.149 0.061 -0.079 -0.032 0.068 0.089
Summer -0.404 1 0.201 -0.056 0.098 -0.017 -0.064 -0.011
In Water -0.149 0.201 1 0.082 0.064 0.010 0.003 -0.010
Male 0.061 -0.056 0.082 1 -0.210 -0.075 0.238 0.037
Kids -0.079 0.098 0.064 -0.210 1 -0.014 -0.058 -0.125
Student -0.032 -0.017 0.010 -0.075 -0.014 1 -0.148 -0.116
Work Fulltime 0.068 -0.064 0.003 0.238 -0.058 -0.148 1 0.134
College Grad 0.089 -0.011 -0.010 0.037 -0.125 -0.116 0.134 1

Table 8: Correlation of Membership Variablesa

a Constant Excluded

Table 5: Choice Variable Summary Statistics

Table 6: Correlation of Choice Variables

Table 7: Membership Variable Summary Statistics
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Variable Logit

Choice Variables
Mean SD Segment 1 Segment 2 Segment 3 Segment 4

Cost -0.085 -0.182 0.109 -0.653 -0.021 -0.408 -0.366
(-50.887) (-34.016) (23.921) (-6.074) (-11.919) (-15.980) (-10.415)

Water Quality 0.105 0.028a -0.007a -7.950 0.047a 10.382 -0.637
(4.316) (1.008) (-0.055) (-4.395) (0.852) (10.673) (-5.606)

Beach Length (ln) 0.470 0.567 -0.006a -0.871 0.259 2.160 0.814
(18.627) (19.184) (-0.114) (-2.320) (5.166) (9.73) (7.508)

Developed 0.789 1.192 -1.885 1.422 0.527 1.998 -0.448
(17.456) (5.770) (-4.317) (3.541) (5.200) (11.693) (-2.226)

Very Developed -0.097 -2.271 9.546 8.857 0.637 -6.347 1.836
(-2.458) (-2.728) (3.252) (4.482) (5.746) (-14.289) (8.261)

Wild -0.008a -0.662 2.200 -2.291 0.206 -6.253 1.706
(-0.192) (-4.040) (7.537) (-3.995) (2.271) (-7.288) (8.754)

Ugly 0.073 0.100 -0.364a 10.343 0.537 -8.461 0.748
(2.122) (2.186) (-0.889) (4.156) (6.220) (-13.663) (6.369)

Membership Variables

Segment 1 Segment 2 Segment 3 Segment 4
Constant -2.674 -0.788 -1.322 0

(-8.781) (-4.943) (-8.871)
Winter 0.299a -0.204a 0.704 0

(1.392) (-1.295) (5.162)
Summer 1.195 0.282 0.516 0

(6.006) (2.058) (3.994)
In Water -6.814 0.294 0.028a 0

(-2.119) (1.962) (0.205)
Male 1.907 -0.129a 0.855 0

(7.321) (-0.929) (6.334)
Kids 0.204a 0.446 0.120a 0

(0.977) (3.219) (0.888)
Student 0.083a 0.313a -0.786 0

(0.287) (1.775) (-3.823)
Work Fulltime -0.980 0.480 -0.309 0

(-4.972) (3.757) (-2.597)
College Grad 1.235 0.209a 1.006 0

(5.764) (1.616) (8.206)

Segment Membership Probability Segment 1 Segment 2 Segment 3 Segment 4
Minimum 0.0% 5.7% 3.2% 10.2%
Mean 10.6% 29.8% 27.2% 32.4%
Maximum 64.2% 70.4% 69.8% 55.9%

Segment 1 Segment 2 Segment 3 Segment 4
6.4% 25.1% 33.8% 34.9%

T-statistics are calculated using White's standard errors.

aIndicates that the parameter is not significantly different than 0 at the 5% level.

 4 Segment ModelRandom Parameters Model

Table 9: Parameters (t-statistic) on Choice and Membership Variables

Percent Sgement Membership by 
Max. Probability
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Model Logit RPLc

Number of Segments 1 2 3 4
Log Likelihood at Convergence (LL) -14014.08 -12863.50 -12317.03 -12066.10 -13380.74
Log Likelihood Evaluated at 0 (LL0) -18251.55 -18251.55 -18251.55 -18251.55 -18251.55
Number of Parameters (P) 7 23 39 45 14
AICd 28042.16 25773.01 24712.06 24222.20 26789.48
AIC-3e 42063.25 38659.51 37068.08 36333.31 40184.23
BICf 14043.63 12960.60 12481.66 12256.07 13439.84
ρ 2g 0.2322 0.2952 0.3252 0.3389 0.2669

Willingness to Pay by Segment -$6.87 -$7.66 -$12.18
$18.40 $7.37 $2.19

 $21.03 $25.46
-$1.74

Average Willingness to Payh $1.23 $5.64 $5.89 $5.71 $0.16

gρ 2 is calculated as 1-(LL)/LL(0).
hAverage Willingness to Pay is a weighted average of the willingness to pay by segment, using estimates of 
segment membership.  Weighted WTP ranges from -$4.06 to $17.66

bFML represents the finite mixed logit model.
cRPL represents the random parameters logit model.
dAIC (Akaike Information Criterion) is calculated using {-2(LL-P)}.
eAIC-3 (Akaike Information Criterion-3) is calculated using {-3(LL-P)}.

FMLb

aSample size is 4642 choices from 595 individuals (N).

Table 10: Model Selection Statistics and Welfare Estimates

fBIC (Bayesian Information Criterion) is calculated using {-LL+[(P/2)*ln(N)]}.

Finite Mixture Logit, Conditional Logit, and Random Parameters Logit Model Estimation Resultsa
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Regressors from Group 
Membership Function Coefficientsa

restricted restricted restricted
Intercept 2.451 2.366 2.680 2.691 2.294 2.234

(0.058) (0.058) (0.041) (0.039) (0.149) (0.148)
Winter 3.803 3.780 3.640 3.746 4.120 4.043

(0.058) (0.057) (0.400) (0.035) (0.213) (0.211)
Summer 0.138 0.129 0.464 0.324 0.247 0.228

(0.049) (0.048) (0.040) (0.038) (0.182) (0.180)
Water 3.626 4.016 2.241 3.023 3.941 4.273

(0.050) (0.058) (0.049) (0.063) (0.141) (0.160)
Male 1.085 1.057 1.478 1.365 1.050 1.028

(0.046) (0.045) (0.032) (0.031) (0.100) (0.098)
Kids Present -0.145 0.237 0.033 0.023 -0.165 0.218

(0.050) (0.058) (0.038) (0.029) (0.110) (0.142)
Student -3.656 -3.660 -3.355 -3.516 -3.654 -3.657

(0.057) (0.056) (0.045) (0.045) (0.125) (0.123)
Work Full-time -0.272 -0.260 -0.369 -0.263 -0.273 -0.261

(0.047) (0.046) (0.039) (0.036) (0.102) (0.101)
College Graduate 3.154 3.165 2.769 2.671 3.134 3.149
 (0.044) (0.043) (0.033) (0.031) (0.096) (0.095)
Kids Present on Water Trip -1.318 -1.119 -1.312

(0.105) (0.088) (0.312)

Regression Statistics
R Squared 0.828 0.83318111 0.8552 0.8736   
R Squared - overall 0.8261 0.8322
Adjusted R Squared 0.827 0.83285698 0.8549 0.8733
Observations 4642 4642 4177 4264 4642 4642

a All coefficient estimates are significant at the 1% level.
b Standard Errors are in parenthesis.
c bold indicates signicantly different from 0, at the 1% level.

OLS GLS GLS panel

Table 11: Results for Estimated mWTP for Improvements in Water Quality
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