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ABSTRACT OF THE THESIS

ALE Analytics: A Software Pipeline and Web Platform for the Analysis of Microbial
Genomic Data from Adaptive Laboratory Evolution Experiments

by

Patrick Phaneuf

Master of Science in Computer Science and Engineering

University of California, San Diego, 2016

Professor Bernhard Palsson, Chair

Adaptive Laboratory Evolution (ALE) methodologies are used for studying micro-
bial adaptive mutations that optimize host metabolism. The Systems Biology Research
Group (SBRG) at the University of California, San Diego, has implemented high-throughput
ALE experiment automation that enables the group to expand their experimental evolutions
to scales previously infeasible with manual workflows. The data generated by the high-
throughput automation now requires a post-processing, content management and analysis
framework that can operate on the same scale. We developed a software system which

solves the SBRG’s specific ALE big data to knowledge challenges. The software system

X1



is comprised of a post-processing protocol for quality control, a software framework and
database for data consolidation and a web platform named ALE Analytics for report genera-
tion and automated key mutation analysis. The automated key mutation analysis is evaluated
against published ALE experiment key mutation results from the SBRG and maintains
an average recall of 89.6% and an average precision of 71.2%. The consolidation of all
ALE experiments into a unified resource has enabled the development of web applications
that compare key mutations across multiple experiments. These features find the genomic
regions rph, hns/tdk, rpoB, rpoC and pykF mutated in more than one ALE experiment pub-
lished by the SBRG. We reason that leveraging this software system relieves the bottleneck
in ALE experiment analysis and generates new data mining opportunities for research in

understanding system-level mechanisms that govern adaptive evolution.
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Chapter 1

Introduction

Adaptive Laboratory Evolution (ALE) is a tool for studying biological molecular
mechanisms of evolutionary adaptation through coupling with whole genome sequencing
WGS [8]. Researchers involved in the study of microbial evolution and metabolic engineer-
ing use ALE experiment methodologies to explore adaptive mutations that optimize system
level functions [17]. The Systems Biology Research Group (SBRG) at the University of
California, San Diego, has implemented high-throughput ALE experiment automation that
enables the group to expand their experimental evolutions to scales previously infeasible
with manual workflows. The data generated by the high-throughput automation now requires
a post-processing, content management and analysis framework that can operate on the same
scale; in other words, the SBRG’s ALE operations need a big data to knowledge solution, a
circumstance common in biomedical fields [16]. The ALE big data to knowledge solution
described herein is defined by a set of challenges; the goal of the work described by this
thesis is to provide solutions for each of these challenges in the form of a cohesive system
that can be leveraged for the SBRG’s ALE mutation analysis.

Raw data often contains artifacts related to the methodologies used in its acquisition.



During analysis and interpretation, these artifacts can disrupt the process of finding mean-
ingful information. It is therefore crucial to leverage a post-processing protocol to report on
and refine the relative quality of acquired data. We have developed a quality reporting and
control protocol for ALE sample sequencing data that provides stage dependent feedback
for experiment data refinement.

Data consolidation consistently challenges efforts in providing comprehensive infor-
mation on an ALE. High-throughput experimentation exponentially escalates this challenge.
This thesis describes a framework we have developed to automate the consolidation of ALE
mutation data. Automating consolidation will additionally enable experimentalists to pro-
cess more samples into an ALE’s mutation data set, therefore providing more resolution on
an evolution. Consolidation of all experimental data into a unified resource will additionally
allow for analysis and research across multiple ALE experiments.

Challenges that coincide with data consolidation are result reporting and accessibility;
users require an accessible medium to review the reports on their consolidated ALE data and
interpret results. We automate ALE experiment mutation report generation and deployment
through a web platform named ALE Analytics. This platform makes all ALE experiment
reports available for review to researchers and collaborators via web access.

The manual execution of analysis on ALE experiments can be inconsistent between
researchers, is prone to human error and is often impractical to re-execute with updated
protocols. Leveraging the ALE Analytics platform, we automate common ALE analysis
to provide solutions to the challenges of consistency, accuracy and amendment of analysis
results. In this thesis, we also evaluate the automated analysis according to a set of ALE
experiments whose data and result have been published by the SBRG.

This thesis will therefore describe these challenges, their solutions and the culmina-



tion of their deployment as an ALE big data to knowledge solution. Being that the product
of this work is a system meant to service users on a consistent basis through a web interface,
we discuss an overview of the ALE Analytics web platform and its features. This thesis
will also describe current features that leverage the database of multiple ALE experiments’
mutations to identify significant mutations shared across experiments. With the features
implemented to address the SBRG’s ALE big data to knowledge challenges, it is the goal of
the work described by this thesis to enable the post-processing, content management and
analysis of ALE experiments at a rate that matches the automated high-throughput ALE
experiment execution and ultimately reduce the effort and time necessary to understand

system-level genetic mechanisms that govern adaptive evolution.



Chapter 2

Motivation and Specific Aims

2.1 Background

2.1.1 ALE Experiment

The foundational work to which this thesis builds on are the ALE experimental wet
lab methodologies. Beginning with a well known starting strain, an ALE experiment is
commonly executed by serially passing a selected cell culture to a fresh flask of media
(Figure 2.1), enabling the particular strain passed to continue evolving under the experimental
conditions. The selection of cells to pass on to the next flask is often based on growth rate
since we assume that the most adapted strain population will outgrow their competition. ALE
experiments can also involve replicate ALEs, which are identical experimental evolutions
that execute in parallel. This approach reveals additional mutational data on the dynamics
of adaptation and evolution for an organism and can describe a convergence of adaptations
across multiple ALEs [18]. As shown with Figure 2.1, ALE experiments can involve

multiple ALEs with multiple flasks and isolates. In addition, each isolate can have one or



more technical replicates, which are used to serialize duplicate isolates with the goal of
increasing the quality of a previous isolate. The work described by this thesis serializes
each sample with an abbreviation for each ALE layer and a count value representing a
sample’s identity within an ALE layer’s sequence. For example, the serialization A6 F21 I2
RI represents the first technical replicate of the second isolate from the 21° flask of the 6

ALE in an ALE experiment. The output of an ALE experiment are populations or clonal

[
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ALE Experiment ::ALE 1=
ALE 2qFIask 1=
Flask 2—lsolate 1::
Isolate 2 —Technical Replicate 1
Technical Replicate 2

Figure 2.1: A An illustration of an ALE from an ALE experiment where both
a clonal and population sample are isolated from a midpoint flask. The petri
dish illustrates the streaking out of a colony for capturing clonal samples. The
Eppendorf tube illustrates a population sample of possible heterogeneous strains.
B An illustration of how an ALE experiment can have many ALEs, flasks, isolates
and technical replicates and how they are associated with each other.



isolates which were derived from the original strain and additionally include the mutations
in the cells according to the environmental stresses introduced in the ALE experiment. This
output is then processed by additional foundational technologies leveraged with ALE: the
DNA sequencer and mutation identifying software. The output sample to be analyzed is
sequenced, typically by an Illumina platform, and resequenced primarily using the Breseq
computational pipeline [9]. Breseq’s resequencing process aligns all of the DNA reads to a
provided genome reference and reports single-nucleotide mutations, point insertions and
deletions, large deletions, missing coverage and new junctions according to the differences
between the aligned reads and the reference genome.

Generally, researchers compare the mutations from each ALE’s endpoint samples
to identify genomic regions with many alleles. If a researcher sequenced ALE midpoint
or intermediate samples, an ALE’s mutations can be organized in chronological order to
identify mutations that fix. The mutations that are involved in multiple alleles of a genomic
region or are shown to fix from starting or midpoint to endpoint samples are considered
the key mutation sets and are investigated for their possible fitness benefit according to the

genomic region they affect.

2.1.2 ALE Machine

ALE methodologies are becoming increasingly popular for their potential in reveal-
ing novel discoveries on evolution and designing organisms, though their wet lab execution
is often labor intensive and requires significant run-time. To impose a balance on the re-
quired labor, many ALE experiments are designed to allow for approximately 24 hours
between sessions. Executing manual ALE experiments often additionally restricts the pos-

sible experimental parameters according to the feasible amount of experiment monitoring.



Current technologies in automation can be leveraged to automate many of the ALE pro-
cesses, therefore alleviating these restrictions. Automation additionally can contribute to
the consistency of the ALE experiments, better ensuring that artifacts in results are due to
experimental conditions and not inconsistencies in experiment protocol execution. Finally,
automation can enable the scale of an experiment to be greatly expanded at a much lower
cost of effort to the experimentalists. This results in the potential for a larger amount of
data to be generated on an ALE experiment, providing more resolution on the evolutions.
These possible benefits have lead to the Systems Biology Research Group to develop an
ALE automation platform, referred to as an ALE Machine [15].

The ALE Machine eliminates many of the constraints that manual ALE experiments
are subjected to, therefore enabling larger ALE experiments with more consistent data.
These outcomes are a boon to those studying evolution and encourage experimentalists to

further leverage ALE methodologies to explore the dynamics of evolution.

2.2 Challenges

The potential for more diverse and greater scale ALE experiments enabled by the
ALE Machine’s automation exacerbates existing challenges and introduces new challenges.

The following is an itemization and description of each challenge considered for this thesis.

2.2.1 Post-Processing Protocol

Many tools exist for the quality control of sequencing data and the identification
of mutations. Each tool comes with an inherent set of strengths and weaknesses. For the

case of the SBRG’s ALE operations, consistency in data quality is a primary priority that



has been seen to vary between experiments. Additionally, a tool-set capable of identifying
the majority of important genomic artifacts describing the difference between a reference

genome and that of an evolved strain is necessary for the analysis of an ALE.

2.2.2 Experiment Data Consolidation Effort

As the scale of an ALE experiment grows, so too does the effort necessary to curate
the data of the experiment’s samples into a report that describes the ALE experiment’s
mutation lineages. These manual curations are additionally prone to human error, which is

more likely to occur with larger experiments.

2.2.3 Result Accessibility

ALE experiments often involve multiple experimentalists and collaborators. The
input of many collaborators may be necessary to fully capture and understand the results
of an experiment. These collaborators may be locally or remotely located. The logistics
of sharing results is often challenging between local collaborators and more problematic
between remote collaborators. This is especially true when comparing multiple experiment

results from both current and past ALE experiments.

2.2.4 Experiment Analysis Effort, Consistency and Accuracy

The issues of data consolidation with larger scale experiment also manifest with
the analysis of the experiment results. The key mutation analysis of experiments may be
inconsistent between investigators. Key mutations may be excluded from the analysis of

the results depending on the amount of experience of an ALE experimentalist. Different



methods of reporting experiment results may be used between experimentalists, therefore

making the comparison of different ALE experiments more difficult.

2.3 Specific Aims

We have defined a specific set of aims that would lead to solutions to these challenges.

The aims are as follows:

2.3.1 Aim 1: Establish a Post-Processing Protocol

To ensure the consistency of quality and format of ALE experiment data, we aim
to establish a post-processing protocol. This pipeline will take as input ALE experiment
sample sequence data and output reports on each sample’s mutation set with regards to a
reference genome. Before the mutation reports are generated, reports on the sequencing
data quality are generated and inspected; if necessary, measures will be taken to improve the

quality of the sequencing data.

2.3.2 Aim 2: Automate ALE Experiment Data Consolidation and Ac-

cessible Report Generation

To reduce the effort in generating consistent ALE experiment mutation lineage
reports that combine all appropriate ALE experiment samples, we must develop software
to automate the parsing and databasing of ALE experiment mutation data. This database
will then be leveraged by a reporting application that will produce mutation lineage reports.
To address the challenge of results accessibility, the application used to generate ALE

experiment reports will be developed as a web application which can be made accessible
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to collaborators over the web. This application will be able to present all available ALE

experiment mutation and results reports.

2.3.3 Aim 3: Automate Common ALE Experiment Analysis

The common methods of identifying an ALE experiment’s key mutations will be
defined and automated; their results will be presented by the reporting features alongside

the mutation lineage reports.



Chapter 3

Aim 1: Establish a Post-Processing

Pipeline
ALE Wet Lab Experiment
Sequendng Describes
performance of
* sequencing
Describes Read Qua“ty - Read Quality

validity of Reporting = Filtering/Trimming

sequencing \ *

Resequencing

=3 Workflow
* —3 feedback

ALE Mutation
Database

Figure 3.1: The term resequencing describes the alignment and variant identifica-

tion process with given reads relative to a reference genome.

We have established a post-processing protocol for the quality control of the se-

11
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quencing data and to capture each sample’s mutations. The protocol uses the following
software: FastQC [2] for sequenced reads quality analysis, the FASTX-Toolkit [13] for
trimming sequenced reads, and Breseq [9] to align reads to a reference genome and identify
mutations relative to a reference genome.

The protocol first requires that the reads for all sequenced ALE samples are inspected
for their per base sequence quality and per base sequence content using FastQC. The per
base sequence quality report presents the cumulative quality score of the bases in specific
read positions as having good, reasonable or bad quality. From these results, we can
understand which 3’ and 5’ read end positions have the lowest cumulative quality and
trim these positions out using the FASTX-Toolkit. We additionally inspect the per base
sequence content for any abnormalities such as the biasing for particular bases in specific
positions. In a random set of sequenced reads, you would expect that each read position
has approximately equal counts of each base, though in our more recent samples, we often
experience a biasing of base types in the first 17 positions and the final 25 positions of each
read. At this point, we additionally noticed that many alignment artifacts being identified as
mutations in our subsequent variant calling were located in these read regions. This base
type biasing is likely due to the sequencing library preparation chemistry that inherits an
intrinsic DNA fragmentation sequence bias [10]. Though this bias does occur, it should
theoretically not result in inappropriate base calling. Even so, trimming these biased regions
out of our reads has lead to less mutation calling due to sporadic non-consensus bases. The
process of quality inspection and trimming may iterate multiple times before moving on.
Once the reads report acceptable quality, Breseq is used to align each sample’s reads to a
reference genome and identify mutations. In addition to mutations, Breseq reports return

the alignment statistics of mean coverage and mapped read count. In combination with the
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amount of unassigned missing coverage evidence, regions where no reads could be aligned
to the reference, these statistics are used to evaluation the alignment performance, where
we compare each statistic and unassigned missing coverage artifact count to an empirically
derived threshold. If the mean coverage or mapped read values fall below our thresholds
or the unassigned missing coverage artifact count exceeds our thresholds, we consider the
sequencing library of the sample they belong to as potentially problematic in our analysis of
the evolution and may again sequence the sample or discard them from the analysis.
Besides the actual generation of mutation data, the key functionality of our post-
processing protocol is the stage dependent feedback provided. This feedback offers the
opportunity for experimental protocol and data acquisition refinement that can be acted on

by the many individuals involved in the sample preparation and processing pipeline.



Chapter 4

Aim 2: Automate ALE Experiment Data
Consolidation and Generate Accessible

Reports

The products of this thesis have been primarily driven by the need to consolidate
and report on large amounts of ALE data in such a way as to describe adaptive mutations in
evolved strains. We have done so by leveraging a full stack of industry standard technologies
that enable the parsing and databasing of experiment data and the generation of reports on

said data.

14
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Figure 4.1: An illustration of the flow of ALE experiment data to the deployment
of result report generation for end users.

The automation manifests as the programmatic parsing of the mutation reports gen-
erated by Breseq for all ALE experiment samples and with the mutational data subsequently
loaded into an ALE mutation database. During the initiation of an ALE experiment, ex-
perimentalists generate meta data which can be additionally parsed and uploaded to the
ALE mutation database by the automated parsing of ALE experiment data. This process
consolidates all experiment mutation data and meta data into one resource. This database is
used for all ALE experiments and therefore has resulted in all available ALE experiments
being consolidated into one database, enabling further cross-experiment analysis.

The ALE mutation database is leveraged by a web application to automate the
generation of reports for each ALE experiment that describe the mutational lineages of their
ALEs. This application is deployed on the web, allowing for ubiquitous accessibility to
ALE experiment reports for all experimentalists and collaborators. We have named this web

application ALE Analytics.
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4.1 ALE Analytics Web Platform

The ALE Analytics web platform enables and automates much of the analysis
necessary for interpreting ALE experiment mutational data. For this thesis, we primarily
describe the automated mutation analysis and reporting features, though this platform
additionally includes ALE mutation filtering, mutation search, ALE experiment export to
CSV, ALE experiment comparison, sample sequencing data alignment quality statistics and
mutation database overview. The fundamental focus of the ALE Analytics web platform
is report generation. Each ALE experiment can be described as a series of samples which
contain both new mutations and mutations from ancestors relative to a reference genome.
Ordering the samples as columns from earliest to latest in an ALE, where each row describes
the manifestation of a specific mutation among samples, can serve as a visualization to grant
intuition on mutational trends. The occurrence of a mutation in a sample is annotated as
a value between 0 and 1 within the cell of a mutation row for the sample. The annotated
value represents the estimated frequency of this mutation among the sample population [9].
Among the many mutations that manifest within an ALE experiment, mutation rows that
describe the alleles of a gene in the ALE experiment will cluster together due to the sorting
of mutations according to their positions on the genome. Due to the chronological sorting
of the sample columns per ALE, a mutation that fixes across samples will manifest as a
sequence of cells in a mutation row annotated with the manifestation of that mutation. These
patterns are obvious to an observer and serve well to describe the mutation trends in an ALE

experiment.
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GLU GLU GLU GLU
A4 Ad Ad Ad
F66 F149 F237 F403
Mutation Sequence 11 11 11 11
Position Type Change Gene Protein change R1 R1 R1 R1
x Y 1,292,255 MOB IS1(-)+8bp  hns, tdk intergenic (-110/-488) 1.00 1.00 1.00
x Y 1,551,658 SNP G-A adhP P69S (CCA—~TCA) 1.00
x Y 2,130,811 SNP A-C wcaA 1204S (ATC —~AGC) 1.00
x Y 3,999,668 DEL A5 bp corA coding (220-224/951 nt) 1.00 1.00 1.00
x Y 4,000,174 DEL A3 bp CorA coding (726-728/951 nt) 1.00

Figure 4.2: Illustration of a mutation lineage report. The hns, tdk intergenic
mutation and a corA mutation can be seen to fix in samples over time. The multiple
mutation rows describing the corA alleles cluster together.

Before the ALE Analytics platform was deployed for use, experimentalists would
work to identify ALE experiment key mutations by manually annotating all ALE experiment
sample mutations within a spreadsheet and investigate for significant mutation patterns. The
task of manually annotating mutations proved to be time consuming and error-prone, causing
delay of ALE experiment result interpretation. This initial bottleneck in the post-processing
of ALE experiment results lead to the efforts that began the ALE Analytics project. The
time cost of this manual curation additionally set an implicit limit on how many samples
experimentalists were willing to sequence and process into their output data set, therefore
potentially limiting the resolution on an ALE experiment’s mutational trends. Additionally,
the type of sample obtained from a flask was limited by the cost of manual curation according
to the amount of mutations annotated per sample, where population samples can include
an order of magnitude more mutations than clonal samples; this can therefore cause an
experimentalist to limit the inclusion of population samples into an ALE experiment’s
output data set. The primary function of the ALE Analytics platform is to automate the
annotation and reporting of all ALE experiment sample mutations in a single location with

a uniform format. This automated functionality enables experimentalists to more quickly
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interpret results and include more sequenced samples into their mutation set, without fear
of the effort necessary in processing and consolidating their experiment’s mutational data.
Alongside the ALE Machine, ALE Analytics further enables more resolution on evolution.
This automation may additionally result in more consistent reporting and accurate results
since it removes the potential for human error in data processing, consolidation and report
generation.

Since August 2015, the ALE Analytics web application has deployed a production
version for experimentalists and collaborators to use in the analysis of their ALE experiments.
Though we have many development versions that are launched and shutdown for testing and
demonstrating new features to target audience, our production version of ALE Analytics
has constant uptime and is available online for access by local and remote experimentalists
and collaborators. To end-users, ALE Analytics represents a web platform and database of
experimental evolution results that is ubiquitously available and ever growing in features

and content.
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Figure 4.3: Screenshot of the ALE Analytics production version dashboard con-

taining counts of significant ALE mutation database details.

The current production deployment of ALE Analytics contains 14,765 observed

mutations and 7,633 unique mutations. These mutations are housed in 42 separate ALE

experiments with a total of 325 ALEs and 819 isolates or samples. This large volume of

mutations and samples is evidence to how the the automation of consolidating ALE experi-

ment data has been leveraged to create a substantial resource on experimental evolutions.

Being that ALE Analytics is being leveraged in investigating current experiments, full access

hasn’t yet been made available to the public. Our intent is to ultimately make public on ALE

Analytics the results of the ALE experiments that have been published.
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Chapter 5

Aim 3: Automate Common ALE

Experiment Analysis

Using the ALE Analytics mutation reporting mechanism, we have implemented
features that automate the finding and reporting of mutations which describe significant
mutational patterns within an ALE experiment. These features describe the significant
mutation patterns as enrichment and fixed mutations. The methodologies encapsulated
in the enrichment and fixed mutation analysis are those which have been developed to
manually identify key mutations within the results of published ALE experiments ([5], [21],
[20], [14]) and are therefore considered common ALE experiment key mutation analysis.
As with the manual consolidation of ALE experiment mutational data, the analysis of
key mutations can be prone to human error, inconsistent between researchers and time
consuming. The automation of these common analyses will contribute to more accurate
results, more consistent analysis and the shortening of turnaround time from ALE experiment

execution to results interpretation.
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5.1 Enrichment Mutation Analysis

Early ALE experiments only sequenced ALE endpoint samples. Key mutations
were identified as those involved in the following two cases. If a mutation manifested in
more than one sample, it signified that this mutation was likely correlated to the dominant
phenotype. If a genomic region was mutated via different mutations across multiple samples,
it was hypothesized that simply perturbing the gene may have rendered a benefit to the
phenotype. Considering that these circumstances all involve populations with the same
mutated genomic region, we can also consider a single sample with multiple alleles of the
same region to represent multiple populations which benefit from this region’s perturbation.
The identification of these cases can be accomplished by finding genomic regions within an
ALE experiment that have more than one observed mutation; we consider these enriched
genomic regions and their mutations as enrichment key mutations. Previous to ALE An-
alytics, this analysis was accomplished as additional steps in manually curating the ALE
experiment’s mutation report such that mutations affecting the same genomic region would
cluster together within a matrix of mutations and their samples. The enrichment mutation
analysis automates this approach and reports the mutations in the same mutation reporting

format given in Figure 4.2.
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Figure 5.1: Enrichment mutation analysis flowchart

5.2 Fixed Mutation Analysis

A fixed mutation is one in which a mutation manifests in an ALE’s midpoint, or
intermediate sample, and is propagated to all following samples in the ALE. Fixed mutations
are the strongest indicators of key mutations. This analysis is possible if an ALE experiment
includes midpoint samples, so as to provide for the possibility of more than one data point
per mutation. Previous to ALE Analytics, the identification of Fixed mutations was accom-
plished as an additional curation step in results reporting by manually organizing mutations

according to their ALE’s sample chronology and subsequently identifying mutations that
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emerge in a midpoint and manifest in all remaining ALE samples. The fixed mutation
analysis automates this approach and reports the mutations in the same mutation reporting

format given in Figure 4.2.
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Figure 5.2: Fixed mutation analysis flowchart

Ideally, fixed mutations should have frequencies equal to or larger than their preced-
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ing occurrences within an ALE. This trend demonstrates the most obvious key mutations
within a ALE experiment. The fixed mutation analysis has a filtering option that results in
only those fixed mutations with equal-to or ascending population frequency trends to be
returned. This feature is referred to as the ascending frequency fixed mutation analysis and

reports these mutations in the same mutation report format given in Figure 4.2.
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5.3 Results

To ensure that our automated key mutation analysis returns key mutations based on
published criteria, we evaluate the automated analysis results against those found in ALE
experiments published by the SBRG. The automated analysis key mutations are generated
by processing the sample reads available from these published ALE experiments through
the post-processing protocol, ALE Analytics platform and key mutation automated analysis.
Intuitively, our task can be described as finding all of the key mutations within the complete
set of mutations in an ALE experiment and comparing the set for equality against the
published key mutation set of the same experiment. The post-processing protocol will be
configured to reproduce, as well as possible, the mutation set used by the authors in defining
the published key mutations by using the same reference genome and Breseq version. This
does not guarantee that the mutation set produced will be identical to those used by the
authors and therefore introduces the issue of having different starting conditions between
key mutation analysis.

We find a more practical comparison for our automated key mutation analysis
evaluation to avoid issues due to possible different ALE experiment mutation sets between
the published material and those generated by the post-processing protocol. Clarification
of gene function is a primary result in ALE experiments. Organisms studied in ALE
experiments are selected for their phenotype which is derived from their genotype. For
ALE experiments, the areas of highest interest in a genotype are those genomic regions
perturbed by mutations. With ALE experiment mutation sets, experimentalists investigate
the known functions of the perturbed genomic regions along with the phenotypic results of
the perturbation and infer additional functions of genomic regions. We can therefore reason

that a better evaluation between the results of the published ALE experiments and the ALE
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Analytics automated analysis is a comparison of the genomic regions found to be perturbed
by key mutations. We discuss any false positives and false negatives and determine why
they manifest and what can be implemented to handle their specific cases. The following is

the set of publications that we use in our evaluation and their ALE experiment names:

e The PGI ALE experiment: Genetic Basis of Growth Adaptation of Escherichia coli

after Deletion of pgi, a Major Metabolic Gene. [5]

e The 42C ALE experiment: Evolution of Escherichia coli to 42 AFC and Subsequent
Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations. Molecular

Biology and Evolution. [21]

e The I13C ALE experiment: Evolution of E. coli on [U-13C]Glucose Reveals a

Negligible Isotopic Influence on Metabolism and Physiology. [20]

e The GLU ALE experiment: Use of Adaptive Laboratory Evolution To Discover Key
Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose

Minimal Medium. [14]

5.4 Evaluation

In this section we describe our approach to formally evaluating the performance
of our key mutation automate analysis. The task of finding key mutations is a binary
classification problem, where a mutation is or is not a key mutation. To accomplish binary
classification on a set of mutations, we have defined a set of features that describe how
a mutation should be classified: the enrichment mutation feature and the fixed mutation
feature. If a mutation qualifies for either feature, we will classify this mutation as a key

mutation.
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Table 5.1: The key mutation count is obtained from the ALE experiment published
materials and the insignificant mutation count is obtained by finding the difference
between the key mutation count and the total mutation count from our variant
finding results of an ALE experiment. We use our variant finding total mutation
count for consistency since some published ALE experiments didn’t include the
total set of observed mutations in their supplementary material

ALE Total observed Published key Insignificant
Experiment mutation count mutationcount mutation count
PGI 58 26 32
42C 204 50 154
C13 50 13 37
GLU 281 27 254

In establishing our classification evaluation metrics, we observe that there are many
more insignificant mutations than key mutations, or in other words, there exists a class
imbalance. We demonstrate this imbalance in Table 5.1. All but the PGI ALE experiment
have an obvious class imbalance. Relying on accuracy alone to measure classification
performance with a class imbalance can be misleading since one could naively classify all
mutations as the majority class of the imbalance and still obtain a high accuracy. We consider
avoiding the exclusion of significant mutations from our results as our highest priority; in
other words, we consider recall as our primary performance metric. In performing with
high recall, we can better ensure that all key mutations are returned in our results, therefore
providing the best identification of all significant genomic regions in an experimental
evolution. Avoiding insignificant mutations in our results is of secondary importance
since they can be later excluded by secondary manual investigations performed by the
experimentalist. We will use precision as the metric to evaluate our approach’s ability to

avoid insignificant mutations in our results.
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PGI ALE Experiment

The PGI ALE experiment and publication focused on the observed adaptive muta-
tions selected for during an experimental evolution due to knocking out the phosphoglucose
isomerase PGI gene from the K-12 MG1655 strain of E. coli. The PGI gene plays a major
role in the central metabolism of E. coli and is a good candidate for studying how a strain
learns to compensate for a loss of such significant impact. The experiment executed 10
parallel ALEs on replicates of E. coli K-12 MG1655 lacking the PGI gene using ALE
methodologies for 50 days in minimal media. Clones were taken from each ALE’s final
flasks and their mutations were defined by first whole-genome sequencing through both
Nimblegen hybridization-base tiling arrays and Illumina Solexa technologies, then lever-
aging the Nimblegen’s built-in variant calling capabilities and in-house software. PCR
and Sanger sequencing was additionally used to verify mutations identified and the entire
sequence of host genomic regions [5]. Our analysis of the PGI ALE experiment samples
was executed by processing the same reads generated by the authors using the Breseq 0.23
software pipeline against the E. coli K-12 MG1655 reference genome (NCBI accession

NC_000913.2).
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Table 5.2: PGI ALE experiment key mutation genomic region matching summary
between the paper and the ALE Analytics automated enrichment key mutation
analysis.

ALE
Genomic Analytics
Region Erichment

rpoA

rpoS

udhA (sthA)
pntA

pntB

cpxR

icd

rpoB

rpoC

e14 prophage
cyaA

fabZ

trxB, Irp

crr

pyrE, rph X

X X X X X X X X X X X X
X X X X X X X

> X

The PGI ALE experiment paper doesn’t explicitly list the key mutations as does
the other ALE experiment papers involved in our evaluation. We therefore rationalize the
paper’s key mutations according to the findings presented on each mutation and their host
genomic region. The PGI experiment publication identified the perturbation of the following

genes as being important for the experiment’s observed fitness:

e rpoS: mutations observed suppresses stress response by modulating transcription;

likely fitness selection in relation to the adaptation to loss of PGI.

e 1poA, rpoB, rpoC, cpxR and cyaA: mutations observed result in global network-level

transcriptional regulation adaptations.

e sthA, pntA, pntB: mutations observed counter the redox imbalance of excess NADPH
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production due to PGI knockout.

e ¢14 prophage deletion: target and mutations observed are mechanistically unknown,

yet experimental data shown to provide fitness.

The authors speculate that the deletion of the e/4 prophage is a unique contributor to the
fitness of its host strain. This was determined due to not being able to reproduce the fitness
of the host strain with any combination of other key mutations in followup ALEs. The e/4
prophage deletion manifests as unassigned missing coverage in our mutation reports, which
we include in our ALE Analytics database but currently do not yet include in reports. The
authors do mention the potential importance of the icd SNPs coinciding with this deletion.
It is speculated that these SNPs may have a fitness benefit in their potential to induce better
translation efficiency to icd. Due to the high frequency of these icd SNPs, the enrichment
analysis did include them in its results as key mutations. Though no solid evidence could be
found on the icd allele’s fitness benefit, since the authors speculate that the icd mutations
are significant and the objective of the ALE Analytics automated analysis is to highlight the
mutation that may be a result of the ALE’s selective pressures, we consider the paper’s icd
SNPs to be key mutations.

Of the 12 key mutations alleles published in the paper, the enrichment analysis is
successful in finding 7. The ALE Analytics enrichment analysis finds multiple icd alleles in
both ALE 1 and ALE 5. icd alleles were reported to be associated with the e/4 prophage
deletion, published as occurring in the ALE 1. The evidence of high icd enrichment in ALE
5 motivated an investigation into the possibility of an ALE 5 el4 prophage deletion that
was in fact found by manually investigating the missing coverage artifacts of the Breseq
reports. This investigation serves to demonstrate the importance of automating key mutation

identification for ALE experiments.
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A minority of the published key mutations which didn’t manifest more than once
were included in the paper’s key mutation set according to their functional association with
significantly enriched genes. SNPs uniquely affecting transcription modulation genes cydA,
rpoB, and rpoC were included as key mutations in the paper in addition to the mutations
of the more frequently mutated rpoA, rpoS and cpxR genes. These key mutations could
be included in future enrichment analysis implementations by additionally considering the
mutational enrichment of functional groups rather than only single genes.

The fabZ SNP was speculated as important by the authors due to their knowledge
of the potential metabolic perturbations caused by the PGI knockout and the idea that the
this mutation may reduce its impact. This type of key mutation could be included in future
enrichment analysis by including functional data on any type of perturbation introduced
into the initial strain of the experimental evolution and identify mutations affecting genes
functionally related to the initial perturbation. This approach would therefore also leverage
the enrichment of functional groups of genes.

Published mutations in the rep, yfeH, fruK, rodA, bipA and ispU genes only manifest
once and weren’t discussed by the publication as being key mutations. These mutations
were therefore not considered for either the publication’s significant mutation set and the
ALE Analytics enrichment analysis evaluation.

The ALE Analytics enrichment mutation analysis found 3 additional possible signif-
icant genomic regions described in Table 5.3 due to their frequency of mutation. Though
these new enriched genomic regions contributed to the lessening of the enrichment analysis’
precision metric, they present an opportunity for identifying further significant adaptations

not caught by the authors.
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Table 5.3: The value 1 used to denote the presence of a mutation describes the ap-
proximate frequency in which the mutation was found within the sample population
represented in the sample reads [9].

Mutation

Position Type Sequence Change Gene Protein change

931,808 SNP G—A trxB, Irp  intergenic (5635/-10) 1

931,811 SNP A—-C trxB, Irp  intergenic (-538/-7) 1
2,534,334 MOB A1::1S186 (-) +6 bp :: A1 crr coding (479484/510 nt) 1 1
2,534,334 MOB A1::1S186 (+) +6 bp :: A1 crr coding (479484/510 nt) 1 1 1
3,813,824 DEL A1 bp pyrE, rph intergenic (33/+62) 1
3,813,832 DEL A1 bp pyrE, rph intergenic (41/+54) 1

No fixed mutations can be established with the PGI ALE experiment data set since
all samples are endpoints of different ALEs and therefore do not provide any mutation
time-course information for the fixed mutation analysis to work with.

Table 5.4: PGI ALE experiment classification performance.

True False False
Positive Positive Negative Recall Precision
7 3 5 0.583 0.700
42C ALE Experiment

The 42C ALE experiment and publication focused on the observed adaptive muta-
tions selected for during an experimental evolution with a selective pressure of a culture
temperature of 42°C. The experiment executed 10 parallel ALEs on replicates of E. coli
K-12 MG1655 for 45 days in minimal media. Clones were taken from each ALE’s final
flask, sequenced using the Illumina MiSeq platform and their mutations defined using whole
genome re-sequencing with the Breseq 0.22 software pipeline against the E. coli K-12

MG1655 reference genome (NCBI accession NC_000913.2) [21].
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The authors of the 42C paper considered key mutations as those that perturbed a gene
in more than one ALE endpoint. Their key mutation results were clearly annotated in a Table
2 [21]. This ALE experiment experienced two different hypermutator strains, proposed as
independently manifesting in ALE 2, where mutL was mutated, and ALE 6, where dnaQ
was mutated. The ALE 2 hypermutator strain went on to contaminate ALE 3 and the
hypermutator strain in ALE 6 went on to contaminate ALE 8. Due to this contamination, the
authors didn’t consider mutations recurring between ALE endpoints derived from the same
hypermutator strain as key mutations. The authors recognized unique mutations occurring
within the same genomic region within and between hypermutator strain pairs and therefore

did not completely disregard the hypermutator samples.
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Table 5.5: The 42C ALE experiment key mutation genomic region matching
summary between the paper and the ALE Analytics automated key mutation
analysis.

ALE
Genomic Analytics
Region Paper Enrichment

secD X X
nagC
nagA

e

hns, tdk
ydhZ, pykF
pykF

yfdl (gtrS)
ygaH, mprA
mlaE
dinQ, arsR
rph

ivL, ilvX
rpoC

hfq

hrpB

frmR, yaiO
ybfK, kdpE
ymfE

abgB
ynaE, ttcC
ydcD
dmsD, clcB
ydgC

araG
yeeP, flu
yehC
yehQ

yffP, yffQ
yffS

ygcB, cysH
yhhZ, yrhA
tisB, emrD
wecC

pgi, yibE
yiiT

viil

X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

The ALE Analytics enrichment key mutation analysis finds all 14 of the genomic
regions affected by the published key mutations. The ALE Analytics enrichment analysis is

successful in finding all key mutations because its implementation is partly based on the key



38

mutation protocol establish by this paper.

Table 5.6: New enrichment key mutations found by the automated analysis. ALE
endpoint pair (2, 3) and (6, 8) are each derived from the same hypermutator
strain, therefore explaining the large amount of mutations shared between the
endpoints. The value of 1 used to denote the presence of a mutation describes
the approximate frequency in which the mutation was found within the sample
population represented in the sample reads [9].

42C 42C 42C 42C
A2 A3 A6 A8

Mutation Sequence F163 F120 F164 F164

Position Type Change Protein change MR1T MR1T MR1 MR1

162,973 SNP G—A hrpB C290Y (TGT—-TAT) 1 1

379,237 DEL A1 bp frmR, yaiO intergenic (132/+56) 1 1

720,169 SNP C-T ybfK, kdpE intergenic (+106/+110) 1 1
1,196,962 SNP A—-G ymfE S167P (TCC—CCC) 1 1
1,399,868 SNP A-G abgB 1471T (ATC—ACC) 1 1
1,432,483 SNP C-T ynaE, ttcC intergenic (235/+499) 1 1
1,628,093 INS +A ydcD coding (148/483 nt) 1 1
1,663,212 INS +T dmsD, clcB intergenic (+68F127) 1 1
1,679,956 SNP T—-C ydgC P33P (CCA—-CCQG) 1 1
1,981,785 SNP C-oT araG E437K (GAA—AAA) 1 1
2,069,345 SNP A-G yeeP, flu intergenic (+110/218) 1 1
2,189,454 SNP C-oT yehC G72S (GGC—AGC) 1 1
2,208,833 SNP C-T yehQ pseudogene (1712/2001 nt) 1 1
2,561,535 INS +A yffP, yffQ intergenic (+396/79) 1 1
2,562,547 SNP G-A yffS M1l (ATG—ATA) 1 1
2,885,374 SNP T-A ygcB, cysH intergenic (133/+226) 1 1
3,580,229 DEL A1,222bp  [yhhZ], yrhA IS1-mediated 1 1
3,851,932 SNP A-G tisB, emrD intergenic (+267+13) 1 1
3,969,713 SNP A—C wecC Q144P (CAG—CCQG) 1 1
4,233,708 INS +A pgi, yjbE intergenic (+278/221) 1 1
4,570,302 SNP A—T yiiS, yjiT intergenic (+364+135) 1
4,571,551 SNP A—G yijiT pseudogene (1115/1503 nt) 1
4,613,882 SNP T-G yiil T403P (ACC—CCC) 1 1

The ALE Analytics enrichment mutation analysis finds 22 additional genomic
regions affected by more than one mutation. The mutL and dnaA mutations mentioned
by the paper as the cause for ALE 2, 3, 6 and 8 endpoints to become hypermutators were
included in the automated analysis’ enrichment key mutations. The paper does not include

these in their table of key mutations, though do describe their importance; we therefore do
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not consider the mutL and dnaA mutations as false positives.

These 22 additional genomic regions of interest only manifest in the ALEs that have
been identified by the authors as being overcome by the same hypermutator strain except for
the yjiT alleles. yjiT was mutated in the ALE 3 and 6 endpoints, hypermutators of separate
origins, and therefore make its mutations candidate for classification as key mutations. The
exclusion of the yjiT mutations in the author’s key mutation set may have been an oversight
in their manual workflow; the automated enrichment key mutation analysis will reduce
the possibility for these errors with its future usage. If our evaluation were to exclude
hypermutator mutations from both the published significant mutation set and our results,
both the subsets of the published non-hypermutator and automated analysis key mutations
would match without any additional key mutations.

The obvious contamination made clear by the amount of hypermutator mutations in
contaminated strains lends us intuition on how to automate the identification of contamina-
tion among samples. Additionally, one could automate the identification of contamination
among samples by recognizing when samples share a large subset of the exact same point
mutations.

No fixed mutations can be established with the 42C ALE experiment data set since
all samples are endpoints of different ALEs and therefore do not provide any mutation
time-course information for the fixed mutation analysis to process.

Table 5.7: The 42C ALE experiment classification performance.

Hypermutators True False False

Included Positive Positive Negative Recall Precision
Yes 14 22 0 1 0.389
No 14 0 0 1 1
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C13 ALE Experiment

The C13 ALE experiment and publication focused on the observed adaptive muta-
tions selected for during an experimental evolution using '3C-glucose as a carbon source for
E. coli growth. The key mutations found by this experiment were compared to those of [14],
which uses '>C-glucose, to investigate if there is any evidence of differing adaptations and
therefore additional metabolic stress from using the '3C-glucose isotope. The experiment
executed 6 parallel ALEs on replicates of E. coli K-12 MG1655 for approximately 1000
generations per ALE. Two clonal samples were taken from each ALE; one sample served as
a midpoint clone and the other as the endpoint clone. The clones were sequenced using the
Illumina MiSeq platform and their mutations defined using whole genome re-sequencing
with the Breseq 0.23 software pipeline against the E. coli K-12 MG1655 reference genome
(NCBI accession NC_000913.2).

The authors of the C13 published material considered the mutations for genes that
were enriched in more than one endpoint to be key mutations. Their key mutation results
were clearly stated as those mutations which affected the pyrE/rph, rpoB, hns/tdk and rhsE
genomic regions. The ALE Analytics enrichment key mutation analysis finds all 4 of the

published genomic regions affected by key mutations.

Table 5.8: The value of 1 used to denote the presence of a mutation describes
the approximate frequency in which the mutation was found within the sample
population represented in the sample reads [9]

Sequence
Position Mutation Type Change Gene Protein change

4,183,563 SNP C-T rpoC P64L (CCG—-CTG) 1
4,184,121 INS +9 bp rpoC coding (749/4224 nt) 1
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The ALE Analytics enrichment mutation analysis found 1 additional possible sig-
nificantly enriched allele described in Table 5.8: rpoC. The authors did not include rpoC
mutations as a key mutation since their approach was limited to high frequency alleles among
different ALEs. The ALE Analytics enrichment analysis additionally returns mutations
found to affect genomic regions within multiple samples of the same ALE.

The ALE Analytics fixed mutation analysis finds 2 of the 4 published key mutation
alleles; those key mutations missed were due to only manifesting in ALE endpoint samples.
The ALE Analytics ascending frequency fixed mutation analysis finds the same results.
If the C13 ALE experiment had more midpoint samples, the fixing of these mutations
may be more evident and would ultimately be captured by the fixed key mutation analysis.
Significant mutations should ultimately be all caught by the fixed key mutation analysis with
enough samples, though the question that remains is how many samples from an ALE are
adequate to provide enough resolution on mutation lineages to capture all fixing mutations.

Table 5.9: The C13 ALE experiment key mutation genomic region matching
summary between the paper and the ALE Analytics automated key mutation

analyses.
ALE ALE

Genomic Analytics Analytics
Region Paper Enrichment Fixed
pyrE, rph X X X
rpoB X X X
hns, tdk X X
rhsg X X
rpoC X

Table 5.10: The C13 ALE experiment classification performance.

True False False

Analysis Positive Positive Negative Recall Precision
Enrichment 4 1 0 1 0.8
Fixed 2 0 2 0.5 1
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GLU ALE Experiment

The GLU ALE experiment and publication focused on establishing and leveraging
novel ALE methods and observing the adaptive mutations selected for using these ALE
methods and E. coli on glucose minimal media at 37°C. This experiment isolated the
selection pressure to the growth rate of the strain by propagating batch cultures to new flasks
during their exponential growth phase rather than the stationary growth phase; this avoids
the fixing of mutations that grant fitness to attributes other than growth rates. The experiment
executed 8 parallel ALEs on replicates of E. coli K-12 MG1655, capturing samples from
both the final and intermediate ALE flasks for whole genome sequencing with the Illumina
MiSeq platform and re-sequencing using the Breseq 0.23 software pipeline against the E.
coli K-12 MG1655 reference genome (NCBI accession NC_000913.2).

The authors employed two strategies for identifying key mutations. The first was
to find genomic regions that were mutated in the endpoint of multiple ALEs. The second
was to identify genomic regions within an ALE that experienced the replacement of one

mutation with another; both mutations involved were considered key mutations.

Table 5.11: The only difference between the two sets is that the fixed key mutation
set does not include the wecA alleles.

GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU
A3 A6 A6 A6 A6 A8 A8 A9 A9 A10 A10 A10 A10

Mutation F244 F40 F76 F238 F406 F76 F380 F262 F433 F75 F247 F320 F418

Position Type Sequence Change Gene Protein change MRIMRTMRTMRTIMRTMRTMR1TMR1T MR1 MR1 MR1 MR1 1R1

139,326 SNP CoT ged G634S (GGC—AGC) 1 1

354,036 SNP CoT prpE, codB intergenic (+220110) 1 1 1 1
1,088,445 SNP GoA pgaB D212D (GAC—GAT) 1 1 1 1
1,628,622 MOB IS5 (+) +4 bp ydfl coding (313316/1461 nt) 1 1
1,753,449 DEL A1 bp ydhZ, pykF intergenic (284/273) 1 1
1,877,853 MOB A1::1S186 (+) +6 bp :: A1 yeaR coding (115120/360 nt) 1 1 1 1
2,222,310 MOB IS5 (+) +4 bp pbpG coding (580:583/933 nt) 1 1
2,531,514 SNP A-T cysK, ptsH intergenic (+112/272) 1 1
2,626,666 SNP A-T yfgF C99S (TGT—AGT) 1 1 1 1
2,775,999 SNP A-T ypjF, ypjA intergenic (+195/+169) 1 1
2,984,674 SNP -G yqeG V269G (GTC—GGC) 1 1
3,179,196 SNP G—A ygiC G252S (GGC—AGC) 1 1 1 1
3,796,675 DEL A1bp waaU coding (661/1074 nt) 1 1 1 1
3,966,245 DEL A1bp wecA coding (307/1104 nt) 1
3,966,923 MOB IS5 (-) +4 bp wecA coding (985988/1104 nt) 1

4,508,547 SNP CoA yjhV, fecE intergenic (+391/+166) 1111



43

The ALE Analytics enrichment key mutation analysis finds all 8 of the genomic
regions affected by the published key mutations. This analysis also finds 15 additional
possible significant genomic regions, described in Table 5.11, due to the frequency in which
a many mutations reoccurred within an ALE. The ALE Analytics fixed key mutation analysis
finds 14 unpublished key mutations. The ascending frequency fixed mutation analysis finds
the same results. The subset of unpublished fixed mutations are identical to the subset
of unpublished enrichment mutations, with the exception of wecA. The wecA alleles do
manifest in such a way that conforms to the key mutation protocol published for this ALE
experiment, though were not included in the paper’s key mutation results. Besides the
wecA alleles, the new key mutations were not published by the authors as being significant
since they did not exhibit the criteria of mutating the same genomic region in more than
one ALE or replacing a mutation within an ALE. Though the new key mutation genomic
regions contributed to the lessening of the enrichment and fixed key mutation analysis’
precision metric, they present an opportunity for identifying further significant adaptations

not identified by the authors.



Table 5.12: The GLU ALE experiment key mutation genomic region matching
summary between the paper and the ALE Analytics automated key mutation
analysis.

ALE ALE

Genomic Analytics Analytics
Region Paper Enrichment Fixed

rph X
rpoB
hns, tdk
corA

>

X X X X X

ygaZ
iap
metL

X X X X X X X

ygeW

gcd

prpE, codB
pgaB

ydfl

ydhZ, pykF
yeaR
pbpG
cysK, ptsH
yfgF

yPiF, YpiA
yqeG

ygiC

waau
wecA
yjhV, fec

XXX X X X X X X X X X X X X X X X X X X X
XX X X X X X X X X X X X X X

x

Table 5.13: The GLU ALE experiment classification performance.

True False False

Analysis Positive Positive Negative Recall Precision
Enrichment 8 15 0 1 0.348
Fixed 7 14 1 0.875 0.333
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Chapter 6

Discussion

6.1 Key Mutation Analysis

The implementation of our automated analysis aims to distill the multiple methods
published in identifying key mutations, though each of these published methods make no
guarantee of including all significant mutations or excluding artifacts such as hitchhiker
mutations [14]. A successful key mutation analysis will ultimately leverage multiple factors
to judge a mutation’s significance in an ALE experiment. Additional factors to those we
have implemented in this thesis would be ALE growth rate profiles and gene functional
group mutational enrichment.

In executing an evolution, the ALE Machine must track the growth rate of sample
for its operations. The compilation of these growth rates contain vital fitness data for
the experiment, such as which sample manifested a jump in growth rate during an ALE.
Mutations in a population that occur immediately before the growth rate jump and gain
dominance once the growth rate stabilizes are likely candidates for key mutations. This

fitness data can be integrated into key mutation analysis to serve as an additional dimension
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in judging the significance of a mutation [14]. Mutations can also be evaluated according
to if their host gene is functionally similar to other mutated genes or is associated with the
selection pressure such as experimental conditions or initial perturbations. This list of factors
ultimately describe the many additional dimensions that can be further incorporated into
automatically evaluating whether a mutation is strongly correlated to the selection pressures
of an evolution.

The enrichment key mutation analysis rendered the best classification performance
for this thesis; this was likely due to the small amount of samples per ALE with the ALE
experiments used in the evaluation. Future ALE experiments may be enabled by ALE
Analytics to incorporate more samples per ALE, with each sample being a population rather
than clone. In general, more samples would grant more data points in the time-course of
an evolution, allowing for more mutation data to describe the evolution. If these samples
were populations, our analysis would be able to investigate the population dynamics of
evolutions and track not only the consensus mutations but the balance of mutations found in
only subsets of the entire population. This higher resolution of samples would enable the
fixed key mutation analysis to have a higher probability of finding fixed mutation patterns.
The enrichment key mutation analysis may ultimately be identifying mutations that, with
more samples, would be identified with fixed key mutation analysis. The fixed key mutation
analysis is more clear and intuitive in its intent in describing as to why a mutation may be
significant, which is an advantage that the enrichment mutational pattern analysis lacks.

The work of this thesis justifies more population samples per evolution. Before this
work, the decision on the sample count to sequence per ALE was based on investigating the
genotypes of endpoint samples. Now that we have tools to quickly process a previously infea-

sible volume of samples, we have the opportunity to investigate new strategies in identifying
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key mutations and exploring population dynamics within experimental evolutions.

6.2 Shared Enrichment and Fixed Mutations

A significant opportunity of the consolidation of ALE experiment reporting is
that one can easily compare the mutations of multiple ALE experiments and search for
mutational trends among all provided ALE experiments. We have leveraged this opportunity
and implemented the shared enrichment and shared fixed key mutation features. These
features leverage the nature of the ALE Analytics platform to automate the identification
of genomic regions that share key mutations across ALE experiments. In this section, we

present the shared enrichment and fixed mutations and elaborate on their significance.

Table 6.1: Shared enrichment and fixed mutation genomic regions among all ALE
experiments evaluated.

Shared Enrichment Shared Fixed

Genomic Mutations Mutations
Region PGl 42C C13 GLU C13 GLU
rph X X X X X X

hns, tdk X X X

rpoB X X X X

rpoC X X

pykF X X

rph was host to enrichment and fixed key mutations in all ALE experiments used
in our evaluation. The meta data for the samples hosting these key mutations shows us
that each experiment shares a parent strain yet differ by a single feature. Besides the GLU
project, these differing features describe the selection pressure on the experiments, therefore
each ALE experiment sharing the rph enrichment theoretically involves a different selection

pressure. We can therefore conclude from the comparison of experimental conditions
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through the experiment meta data that the enrichment of rph is a general optimization
that the parent strain of these experiments can obtain when under any pressure. The rph
mutations seen in these ALE experiments are in fact thought to help manage a specific defect
in the E. coli K-12 MG1655 strain in which the starting strain for these ALE experiments
derive from [7].

The hns-tdk intergenic region was the second most mutated among all enrichment
mutations. This region along, with rpoB and rpoC, has been associated with global tran-
scriptional regulation. Mutating these genes in some manner may have benefited a host’s
growth rate according to changes in transcription levels [12, 3, 6, 23]. The GLU and C13
ALE experiments sharing the rpoB enrichment and fixed mutations were in fact very similar
in that the experiments were designed to select for growth rate, where C13 only differed in
the isotope of the carbon source provided. These shared mutated key genomic regions there-
fore confirm the conclusion of the [20], that the C13 carbon source does not significantly
affect the host metabolism and therefore enabled the evolutions of the C13 and GLU ALE
experiments to follow a significantly similar track.

The pykF genomic region is enriched in the 42C and GLU ALE experiments. These
experiments have very similar conditions beyond their sample temperatures. Mutations in
pykF have in fact been associated with enabling an increase in uptake of glucose by reducing
or disabling the metabolism of phosphoenolpyruvate to pyruvate [24, 11, 4]. This fitness
benefit is likely enabled by the fact that both experiments use M9 glucose minimal media,

therefore providing an abundance of glucose to the populations.
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6.3 ALE Analytics Platform Feature Overview

The ALE Analytics platform was built to support the analysis needs of its users;
many features were therefore implemented to service various perspectives of analysis. This
section presents an overview of the current capabilities of the ALE Analytics platform to
exemplify how all current analysis features fit together.

On login, users are greeted with the ALE Analytics homepage, known as the dash-
board, which presents an overview of the mutational database currently available to the
platform. This page presents the most frequently mutated genes, the most frequent mutation
descriptions and the frequency of mutation types within the mutation database. An example
of the dashboard can be seen in Figure 6.1. From the dashboard, users have access to their
ALE experiments and all other platform features. Each ALE experiment has a similar home
page with the same type of statistics as the dashboard. This page additionally includes
alignment statistics for all experiment samples and a mutation needle plot [22] for presenting
the spread of mutations across the experiment’s reference genome. Users can quickly gain a
sense of mutation hot-spots in their experiment according to the mutation needle plot. The
experiment home page is exemplified in Figure 6.2. From the ALE experiment home page,
users have access to experiment specific applications, such as the experiment’s mutation
lineage and key mutation analysis reports. Users can also view a report of the meta data
associated with each sample of an experiment, shown in Figure 6.3. The experimental

condition details, crucial to analysis, are contained within this meta data report.
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Figure 6.1: A screenshot of the dashboard for the instance of ALE Analytics used
to accomplish the analysis contained within this thesis.
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Figure 6.2: A screenshot of the C13 ALE experiment home page for the instance
of ALE Analytics used to accomplish the analysis contained within this thesis.
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Figure 6.3: A screenshot of the PGI ALE experiment’s meta data for the instance
of ALE Analytics used to accomplish the analysis contained within this thesis.

Users often need to compare ALE experiments to identify shared mutations. ALE
Analytics includes a feature named compare that will summarize the combination of ALE
experiments similar to the experiments home page and build a mutation lineage reporting
page from their combined mutations. Along with the mutation lineages, this feature builds
the combined enrichment and fixed mutation tables, automating the comparison of the
obvious significant mutations among compared ALE experiments.

Mutation filters play a critical role in all ALE experiment analysis. Both experimen-
talists and automated analysis require functionality that ignore mutations inappropriate for
analysis. Mutations are often judged as inappropriate due to being identified as sequencing
or alignment artifacts. Mutations can also be filtered on the basis of not containing any
information pertaining to an experiment, such as those exhibited by an experiment’s starting
strain in relation to the reference genome used in alignment. We have defined two levels of
filters: global and experiment levels. Global filters exclude the occurrence of a mutations
for all ALE experiment analysis, where experiment filters ignore mutations for specific

experiments. The parameters for global mutation filtering are unique mutations and genes.
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The parameters for experiment mutation filtering are unique mutations, genes, and observed

mutation frequency. The experiment mutation filtering is shown in Figure 6.4.
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Figure 6.4: A screenshot of the PGI ALE experiment mutation filter page for the
instance of ALE Analytics used to accomplish the analysis contained within this
thesis.

The compilation of all ALE experiments into one resource enables our ALE Ana-
lytics platform to implement a mutation search feature. This feature generates reports of

mutations and their host samples according to a set of search parameters. An example of the
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search feature is shown in Figure 6.5
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Figure 6.5: The search functionality uses as mutation query parameters the gene,
start and end positions, mutation type, sequence change, protein change and ALE
experiment of mutations.

Experimentalists invent many different data mining protocols for exploring the data
housed within the mutation database. It would not be practical to implement all of these
protocols into ALE Analytics, though it is clear that experimentalists should have the ability
to easily extract data sets from the mutation database for their own investigations. The ALE
experiment export feature was implemented to support this case; it enables users to extract
all mutations from one or more ALE experiments. Experimentalists and investigators are
then free to implement data mining protocols of their own design on the ALE data. Figure
6.6 presents histograms generated using the export feature and external tools to explore the
position and frequency of mutations affecting the genomes of the ALE experiments used in

the analysis contained within this thesis.
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6.4 ALE Analytics Platform Deployment Overview

A production version of ALE Analytics has been deployed since August 2015 and
has therefore been a live solution for more than a year to the ALE big data to knowledge
challenges of the SBRG and the Novo Nordisk Center for Biosustainability of Lyngby,
Denmark. Since this deployment, the ALE mutation database and the ALE Analytics
platform have seen a dramatic increase in usage and ALE experiment data. Effort was
devoted into designing a deployment environment using industry standard technologies and
methodologies that would enable the platform’s data to be secure and have redundant copies

on external secure file servers.
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Figure 6.7: An illustration of the deployment environment for the ALE mutation
database and ALE Analytics platform that describes important data security and
redundancy measures.
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The platform makes use of the Linux, Django [1] and Nginx [19] web application
technology stack to deploy ALE Analytics from a dedicated server hosted by the San
Diego Supercomputer Center. The static files that are used in populating the ALE mutation
database and contain mutation reports referenced by ALE Analytics analyses are hosted
on the same server and have backups on external servers through the Amazon Glacier file
storage service (Amazon Web Services, Seattle, WA). The Amazon Glacier service is used
due to the cumulative static file storage footprint of approximately 1.8 terabytes and this
service’s competitive storage costs. The ALE mutation database has a small enough storage
footprint that it can have backups on a file server internal to UCSD and accessible only to
SBRG members and IT staff. All reads used in generating the static files are also stored on
the same internal file server. User access to the ALE Analytics data is controlled through a
user account management system provided by the Django and Nginx technologies and all

browsing traffic is encrypted via HTTPS protocol.



Chapter 7

Conclusion

The SBRG’s ALE experiment automation has scaled the rate of experiment execution
and data generation to the point that data post-processing, consolidation, reporting and
common analysis have become a primary bottleneck in interpreting results. The SBRG’s
ALE methodologies therefore require a big data to knowledge solution that automates these
bottlenecks to match the rate of high-throughput ALE experimentation. We have developed a
software system that addresses each challenge that defines the big data to knowledge solution.
To address quality control and mutation data formatting challenges, we investigate and
establish a post-processing software pipeline. To address the challenge of high-throughput
ALE experiment data consolidation, data reporting and common analysis, we implement the
ALE Analytics software platform. The automated common analysis are evaluated against
currently published ALE experiment key mutation results and show that they are precise,
maintain high recall and can be expanded upon for more comprehensive predictions. We
have additionally developed the ALE Analytics reporting and analysis platform as a web
application to address the challenge of accessible experiment reporting. We go beyond these

challenges and their solutions and have implemented features that leverage the consolidated
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data to find key mutations shared among all ALE experiments. Finally, we have shown how
ALE Analytics has implemented beyond the core challenge solving features to culminate in
a platform that supports the multitude of services experimentalists currently need to execute
their ALE experiment analysis.

Quality control protocols and tools have been investigated and combined into an
ALE post-processing protocol. This protocol provides stage-dependent feedback that is
crucial for all those involved in the ALE sample preparation and processing, as it informs
them of their work’s quality and better enables root-causing of quality issues.

Our system’s automated common ALE experiment mutation analysis has been shown
to be precise and maintain high recall in finding key mutations of published data sets. Of
the published ALE experiments, an average recall of 89.6% and an average precision of
71.2% is achieved when excluding hypermutators. The automated key mutation analysis
additionally identified key mutations in genes wecA and yjiT that were not included in
the published material yet were aligned with their published key mutation protocols. Our
automated key mutation analysis may lead to better result accuracy due to less potential for
human error and variation in protocol between experimentalists.

The consolidation of ALE experiment data offers an opportunity for cross-experiment
analysis. ALE Analytics has leveraged this opportunity with the implementation of the
shared key mutations feature, which generates reports identifying genomic regions affected
by key mutations in multiple ALE experiments. The ALE experiments used in evaluating
the automated key mutation features manifests five of these shared key mutation genomic
regions: rph, hns-tdk, rpoB, rpoC and pykF. The rph genomic region is mutated by key
mutations in all provided ALE experiments and is proposed to be an adaptation for a defect

that exists with the starting strain of these experiments [7]. The hns-tdk, rpoB and rpoC
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genomic regions are each affected by key mutations in at least two ALE experiments and
are proposed to be adaptive adjustments to global transcriptional regulation that benefit host
growth rates [12, 3, 6, 23]. Key mutations affect the pykF gene in two ALE experiments
and are speculated to contribute to the hosts growth rate by enabling a larger rate of
glucose uptake through the disabling of a phosphenopyruvate metabolic process [24, 11, 4].
Disrupting pykF could render a fitness benefit in conjunction with the glucose rich media
used in these experiments.

The work of this thesis does not stop at proposing and prototyping a possible big
data to knowledge solution, but has in fact been deployed as a tool for ALE experimentalists
at the System Biology Research Group and the Novo Nordisk Center for Biosustainability
of Lyngby, Denmark, since August 2015. The current deployment leverages an industrial
strength technology stack and production environment of Django, Nginx and Linux on
a dedicated server hosted by the San Diego Supercomputer Center and strives to ensure
security through user accounts and HTTPS encrypted browsing.

With this thesis’ work, it is clear that the SBRG’s ALE operations can now overcome
its consolidation and reporting bottlenecks. This is exemplified by the current count of
42 ALE experiments, 325 ALEs and 14,765 observed mutations currently housed within
the ALE experiment and mutation database, where each mutation is represent in an ALE
experiment’s mutation reports. The SBRG’s ALE operations should in fact increase the
number of samples per ALE experiment analysis sample set to better enable the automated
analysis in predicting key mutations by effectively increasing the resolution of mutations in
an evolution. Population samples, which reveal both consensus and population mutations,
can additionally be included at higher frequencies in analysis sample sets to enable the

exploration of population evolution dynamics. This research has yet to be thoroughly



63

examined within high-throughput ALE experiments due to the effort necessary in the
curation of the magnitude of mutations involved with population samples.

ALE Analytics automated key mutations analysis could be enhanced by including
ALE sample growth rate data and by investigating perturbations in the context of functionally
related gene groups. ALE sample growth rate data, which describes the growth rate of
samples during the progression of an ALE, can be used to automate the identification
of mutations correlated with growth rate spikes. Mutations uniquely affecting genomic
regions can be considered significant if they perturb a functionally related gene group which
hosts additional mutations. Using these new data types and contexts, the automated key
mutation analysis can therefore be expanded to consider multiple categories of evidence for
significance.

Going forward, the ALE experiment mutation database presents an amazing oppor-
tunity for research into mutational trends across all ALE experiments available to the SBRG.
Already, data mining protocol have made use of ALE Analytic’s experiment export feature
and have been used to characterize the general topology of mutations across the E. coli K-12
MG1655 genome from multiple ALE experiments. As ALE Analytics continues to integrate
new ALE experiments, current and new data mining protocols can scan the ALE experiment

mutation database in the hope of identifying previously unseen trends.
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