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ABSTRACT OF THE THESIS

ALE Analytics: A Software Pipeline and Web Platform for the Analysis of Microbial
Genomic Data from Adaptive Laboratory Evolution Experiments

by

Patrick Phaneuf

Master of Science in Computer Science and Engineering

University of California, San Diego, 2016

Professor Bernhard Palsson, Chair

Adaptive Laboratory Evolution (ALE) methodologies are used for studying micro-

bial adaptive mutations that optimize host metabolism. The Systems Biology Research

Group (SBRG) at the University of California, San Diego, has implemented high-throughput

ALE experiment automation that enables the group to expand their experimental evolutions

to scales previously infeasible with manual workflows. The data generated by the high-

throughput automation now requires a post-processing, content management and analysis

framework that can operate on the same scale. We developed a software system which

solves the SBRG’s specific ALE big data to knowledge challenges. The software system

xi



is comprised of a post-processing protocol for quality control, a software framework and

database for data consolidation and a web platform named ALE Analytics for report genera-

tion and automated key mutation analysis. The automated key mutation analysis is evaluated

against published ALE experiment key mutation results from the SBRG and maintains

an average recall of 89.6% and an average precision of 71.2%. The consolidation of all

ALE experiments into a unified resource has enabled the development of web applications

that compare key mutations across multiple experiments. These features find the genomic

regions rph, hns/tdk, rpoB, rpoC and pykF mutated in more than one ALE experiment pub-

lished by the SBRG. We reason that leveraging this software system relieves the bottleneck

in ALE experiment analysis and generates new data mining opportunities for research in

understanding system-level mechanisms that govern adaptive evolution.
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Chapter 1

Introduction

Adaptive Laboratory Evolution (ALE) is a tool for studying biological molecular

mechanisms of evolutionary adaptation through coupling with whole genome sequencing

WGS [8]. Researchers involved in the study of microbial evolution and metabolic engineer-

ing use ALE experiment methodologies to explore adaptive mutations that optimize system

level functions [17]. The Systems Biology Research Group (SBRG) at the University of

California, San Diego, has implemented high-throughput ALE experiment automation that

enables the group to expand their experimental evolutions to scales previously infeasible

with manual workflows. The data generated by the high-throughput automation now requires

a post-processing, content management and analysis framework that can operate on the same

scale; in other words, the SBRG’s ALE operations need a big data to knowledge solution, a

circumstance common in biomedical fields [16]. The ALE big data to knowledge solution

described herein is defined by a set of challenges; the goal of the work described by this

thesis is to provide solutions for each of these challenges in the form of a cohesive system

that can be leveraged for the SBRG’s ALE mutation analysis.

Raw data often contains artifacts related to the methodologies used in its acquisition.

1
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During analysis and interpretation, these artifacts can disrupt the process of finding mean-

ingful information. It is therefore crucial to leverage a post-processing protocol to report on

and refine the relative quality of acquired data. We have developed a quality reporting and

control protocol for ALE sample sequencing data that provides stage dependent feedback

for experiment data refinement.

Data consolidation consistently challenges efforts in providing comprehensive infor-

mation on an ALE. High-throughput experimentation exponentially escalates this challenge.

This thesis describes a framework we have developed to automate the consolidation of ALE

mutation data. Automating consolidation will additionally enable experimentalists to pro-

cess more samples into an ALE’s mutation data set, therefore providing more resolution on

an evolution. Consolidation of all experimental data into a unified resource will additionally

allow for analysis and research across multiple ALE experiments.

Challenges that coincide with data consolidation are result reporting and accessibility;

users require an accessible medium to review the reports on their consolidated ALE data and

interpret results. We automate ALE experiment mutation report generation and deployment

through a web platform named ALE Analytics. This platform makes all ALE experiment

reports available for review to researchers and collaborators via web access.

The manual execution of analysis on ALE experiments can be inconsistent between

researchers, is prone to human error and is often impractical to re-execute with updated

protocols. Leveraging the ALE Analytics platform, we automate common ALE analysis

to provide solutions to the challenges of consistency, accuracy and amendment of analysis

results. In this thesis, we also evaluate the automated analysis according to a set of ALE

experiments whose data and result have been published by the SBRG.

This thesis will therefore describe these challenges, their solutions and the culmina-
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tion of their deployment as an ALE big data to knowledge solution. Being that the product

of this work is a system meant to service users on a consistent basis through a web interface,

we discuss an overview of the ALE Analytics web platform and its features. This thesis

will also describe current features that leverage the database of multiple ALE experiments’

mutations to identify significant mutations shared across experiments. With the features

implemented to address the SBRG’s ALE big data to knowledge challenges, it is the goal of

the work described by this thesis to enable the post-processing, content management and

analysis of ALE experiments at a rate that matches the automated high-throughput ALE

experiment execution and ultimately reduce the effort and time necessary to understand

system-level genetic mechanisms that govern adaptive evolution.



Chapter 2

Motivation and Specific Aims

2.1 Background

2.1.1 ALE Experiment

The foundational work to which this thesis builds on are the ALE experimental wet

lab methodologies. Beginning with a well known starting strain, an ALE experiment is

commonly executed by serially passing a selected cell culture to a fresh flask of media

(Figure 2.1), enabling the particular strain passed to continue evolving under the experimental

conditions. The selection of cells to pass on to the next flask is often based on growth rate

since we assume that the most adapted strain population will outgrow their competition. ALE

experiments can also involve replicate ALEs, which are identical experimental evolutions

that execute in parallel. This approach reveals additional mutational data on the dynamics

of adaptation and evolution for an organism and can describe a convergence of adaptations

across multiple ALEs [18]. As shown with Figure 2.1, ALE experiments can involve

multiple ALEs with multiple flasks and isolates. In addition, each isolate can have one or

4
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more technical replicates, which are used to serialize duplicate isolates with the goal of

increasing the quality of a previous isolate. The work described by this thesis serializes

each sample with an abbreviation for each ALE layer and a count value representing a

sample’s identity within an ALE layer’s sequence. For example, the serialization A6 F21 I2

R1 represents the first technical replicate of the second isolate from the 21st flask of the 6th

ALE in an ALE experiment. The output of an ALE experiment are populations or clonal

Figure 2.1: A An illustration of an ALE from an ALE experiment where both
a clonal and population sample are isolated from a midpoint flask. The petri
dish illustrates the streaking out of a colony for capturing clonal samples. The
Eppendorf tube illustrates a population sample of possible heterogeneous strains.
B An illustration of how an ALE experiment can have many ALEs, flasks, isolates
and technical replicates and how they are associated with each other.
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isolates which were derived from the original strain and additionally include the mutations

in the cells according to the environmental stresses introduced in the ALE experiment. This

output is then processed by additional foundational technologies leveraged with ALE: the

DNA sequencer and mutation identifying software. The output sample to be analyzed is

sequenced, typically by an Illumina platform, and resequenced primarily using the Breseq

computational pipeline [9]. Breseq’s resequencing process aligns all of the DNA reads to a

provided genome reference and reports single-nucleotide mutations, point insertions and

deletions, large deletions, missing coverage and new junctions according to the differences

between the aligned reads and the reference genome.

Generally, researchers compare the mutations from each ALE’s endpoint samples

to identify genomic regions with many alleles. If a researcher sequenced ALE midpoint

or intermediate samples, an ALE’s mutations can be organized in chronological order to

identify mutations that fix. The mutations that are involved in multiple alleles of a genomic

region or are shown to fix from starting or midpoint to endpoint samples are considered

the key mutation sets and are investigated for their possible fitness benefit according to the

genomic region they affect.

2.1.2 ALE Machine

ALE methodologies are becoming increasingly popular for their potential in reveal-

ing novel discoveries on evolution and designing organisms, though their wet lab execution

is often labor intensive and requires significant run-time. To impose a balance on the re-

quired labor, many ALE experiments are designed to allow for approximately 24 hours

between sessions. Executing manual ALE experiments often additionally restricts the pos-

sible experimental parameters according to the feasible amount of experiment monitoring.
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Current technologies in automation can be leveraged to automate many of the ALE pro-

cesses, therefore alleviating these restrictions. Automation additionally can contribute to

the consistency of the ALE experiments, better ensuring that artifacts in results are due to

experimental conditions and not inconsistencies in experiment protocol execution. Finally,

automation can enable the scale of an experiment to be greatly expanded at a much lower

cost of effort to the experimentalists. This results in the potential for a larger amount of

data to be generated on an ALE experiment, providing more resolution on the evolutions.

These possible benefits have lead to the Systems Biology Research Group to develop an

ALE automation platform, referred to as an ALE Machine [15].

The ALE Machine eliminates many of the constraints that manual ALE experiments

are subjected to, therefore enabling larger ALE experiments with more consistent data.

These outcomes are a boon to those studying evolution and encourage experimentalists to

further leverage ALE methodologies to explore the dynamics of evolution.

2.2 Challenges

The potential for more diverse and greater scale ALE experiments enabled by the

ALE Machine’s automation exacerbates existing challenges and introduces new challenges.

The following is an itemization and description of each challenge considered for this thesis.

2.2.1 Post-Processing Protocol

Many tools exist for the quality control of sequencing data and the identification

of mutations. Each tool comes with an inherent set of strengths and weaknesses. For the

case of the SBRG’s ALE operations, consistency in data quality is a primary priority that
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has been seen to vary between experiments. Additionally, a tool-set capable of identifying

the majority of important genomic artifacts describing the difference between a reference

genome and that of an evolved strain is necessary for the analysis of an ALE.

2.2.2 Experiment Data Consolidation Effort

As the scale of an ALE experiment grows, so too does the effort necessary to curate

the data of the experiment’s samples into a report that describes the ALE experiment’s

mutation lineages. These manual curations are additionally prone to human error, which is

more likely to occur with larger experiments.

2.2.3 Result Accessibility

ALE experiments often involve multiple experimentalists and collaborators. The

input of many collaborators may be necessary to fully capture and understand the results

of an experiment. These collaborators may be locally or remotely located. The logistics

of sharing results is often challenging between local collaborators and more problematic

between remote collaborators. This is especially true when comparing multiple experiment

results from both current and past ALE experiments.

2.2.4 Experiment Analysis Effort, Consistency and Accuracy

The issues of data consolidation with larger scale experiment also manifest with

the analysis of the experiment results. The key mutation analysis of experiments may be

inconsistent between investigators. Key mutations may be excluded from the analysis of

the results depending on the amount of experience of an ALE experimentalist. Different
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methods of reporting experiment results may be used between experimentalists, therefore

making the comparison of different ALE experiments more difficult.

2.3 Specific Aims

We have defined a specific set of aims that would lead to solutions to these challenges.

The aims are as follows:

2.3.1 Aim 1: Establish a Post-Processing Protocol

To ensure the consistency of quality and format of ALE experiment data, we aim

to establish a post-processing protocol. This pipeline will take as input ALE experiment

sample sequence data and output reports on each sample’s mutation set with regards to a

reference genome. Before the mutation reports are generated, reports on the sequencing

data quality are generated and inspected; if necessary, measures will be taken to improve the

quality of the sequencing data.

2.3.2 Aim 2: Automate ALE Experiment Data Consolidation and Ac-

cessible Report Generation

To reduce the effort in generating consistent ALE experiment mutation lineage

reports that combine all appropriate ALE experiment samples, we must develop software

to automate the parsing and databasing of ALE experiment mutation data. This database

will then be leveraged by a reporting application that will produce mutation lineage reports.

To address the challenge of results accessibility, the application used to generate ALE

experiment reports will be developed as a web application which can be made accessible
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to collaborators over the web. This application will be able to present all available ALE

experiment mutation and results reports.

2.3.3 Aim 3: Automate Common ALE Experiment Analysis

The common methods of identifying an ALE experiment’s key mutations will be

defined and automated; their results will be presented by the reporting features alongside

the mutation lineage reports.



Chapter 3

Aim 1: Establish a Post-Processing

Pipeline

Figure 3.1: The term resequencing describes the alignment and variant identifica-
tion process with given reads relative to a reference genome.

We have established a post-processing protocol for the quality control of the se-

11
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quencing data and to capture each sample’s mutations. The protocol uses the following

software: FastQC [2] for sequenced reads quality analysis, the FASTX-Toolkit [13] for

trimming sequenced reads, and Breseq [9] to align reads to a reference genome and identify

mutations relative to a reference genome.

The protocol first requires that the reads for all sequenced ALE samples are inspected

for their per base sequence quality and per base sequence content using FastQC. The per

base sequence quality report presents the cumulative quality score of the bases in specific

read positions as having good, reasonable or bad quality. From these results, we can

understand which 3’ and 5’ read end positions have the lowest cumulative quality and

trim these positions out using the FASTX-Toolkit. We additionally inspect the per base

sequence content for any abnormalities such as the biasing for particular bases in specific

positions. In a random set of sequenced reads, you would expect that each read position

has approximately equal counts of each base, though in our more recent samples, we often

experience a biasing of base types in the first 17 positions and the final 25 positions of each

read. At this point, we additionally noticed that many alignment artifacts being identified as

mutations in our subsequent variant calling were located in these read regions. This base

type biasing is likely due to the sequencing library preparation chemistry that inherits an

intrinsic DNA fragmentation sequence bias [10]. Though this bias does occur, it should

theoretically not result in inappropriate base calling. Even so, trimming these biased regions

out of our reads has lead to less mutation calling due to sporadic non-consensus bases. The

process of quality inspection and trimming may iterate multiple times before moving on.

Once the reads report acceptable quality, Breseq is used to align each sample’s reads to a

reference genome and identify mutations. In addition to mutations, Breseq reports return

the alignment statistics of mean coverage and mapped read count. In combination with the
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amount of unassigned missing coverage evidence, regions where no reads could be aligned

to the reference, these statistics are used to evaluation the alignment performance, where

we compare each statistic and unassigned missing coverage artifact count to an empirically

derived threshold. If the mean coverage or mapped read values fall below our thresholds

or the unassigned missing coverage artifact count exceeds our thresholds, we consider the

sequencing library of the sample they belong to as potentially problematic in our analysis of

the evolution and may again sequence the sample or discard them from the analysis.

Besides the actual generation of mutation data, the key functionality of our post-

processing protocol is the stage dependent feedback provided. This feedback offers the

opportunity for experimental protocol and data acquisition refinement that can be acted on

by the many individuals involved in the sample preparation and processing pipeline.



Chapter 4

Aim 2: Automate ALE Experiment Data

Consolidation and Generate Accessible

Reports

The products of this thesis have been primarily driven by the need to consolidate

and report on large amounts of ALE data in such a way as to describe adaptive mutations in

evolved strains. We have done so by leveraging a full stack of industry standard technologies

that enable the parsing and databasing of experiment data and the generation of reports on

said data.

14
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Figure 4.1: An illustration of the flow of ALE experiment data to the deployment
of result report generation for end users.

The automation manifests as the programmatic parsing of the mutation reports gen-

erated by Breseq for all ALE experiment samples and with the mutational data subsequently

loaded into an ALE mutation database. During the initiation of an ALE experiment, ex-

perimentalists generate meta data which can be additionally parsed and uploaded to the

ALE mutation database by the automated parsing of ALE experiment data. This process

consolidates all experiment mutation data and meta data into one resource. This database is

used for all ALE experiments and therefore has resulted in all available ALE experiments

being consolidated into one database, enabling further cross-experiment analysis.

The ALE mutation database is leveraged by a web application to automate the

generation of reports for each ALE experiment that describe the mutational lineages of their

ALEs. This application is deployed on the web, allowing for ubiquitous accessibility to

ALE experiment reports for all experimentalists and collaborators. We have named this web

application ALE Analytics.
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4.1 ALE Analytics Web Platform

The ALE Analytics web platform enables and automates much of the analysis

necessary for interpreting ALE experiment mutational data. For this thesis, we primarily

describe the automated mutation analysis and reporting features, though this platform

additionally includes ALE mutation filtering, mutation search, ALE experiment export to

CSV, ALE experiment comparison, sample sequencing data alignment quality statistics and

mutation database overview. The fundamental focus of the ALE Analytics web platform

is report generation. Each ALE experiment can be described as a series of samples which

contain both new mutations and mutations from ancestors relative to a reference genome.

Ordering the samples as columns from earliest to latest in an ALE, where each row describes

the manifestation of a specific mutation among samples, can serve as a visualization to grant

intuition on mutational trends. The occurrence of a mutation in a sample is annotated as

a value between 0 and 1 within the cell of a mutation row for the sample. The annotated

value represents the estimated frequency of this mutation among the sample population [9].

Among the many mutations that manifest within an ALE experiment, mutation rows that

describe the alleles of a gene in the ALE experiment will cluster together due to the sorting

of mutations according to their positions on the genome. Due to the chronological sorting

of the sample columns per ALE, a mutation that fixes across samples will manifest as a

sequence of cells in a mutation row annotated with the manifestation of that mutation. These

patterns are obvious to an observer and serve well to describe the mutation trends in an ALE

experiment.
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Figure 4.2: Illustration of a mutation lineage report. The hns, tdk intergenic
mutation and a corA mutation can be seen to fix in samples over time. The multiple
mutation rows describing the corA alleles cluster together.

Before the ALE Analytics platform was deployed for use, experimentalists would

work to identify ALE experiment key mutations by manually annotating all ALE experiment

sample mutations within a spreadsheet and investigate for significant mutation patterns. The

task of manually annotating mutations proved to be time consuming and error-prone, causing

delay of ALE experiment result interpretation. This initial bottleneck in the post-processing

of ALE experiment results lead to the efforts that began the ALE Analytics project. The

time cost of this manual curation additionally set an implicit limit on how many samples

experimentalists were willing to sequence and process into their output data set, therefore

potentially limiting the resolution on an ALE experiment’s mutational trends. Additionally,

the type of sample obtained from a flask was limited by the cost of manual curation according

to the amount of mutations annotated per sample, where population samples can include

an order of magnitude more mutations than clonal samples; this can therefore cause an

experimentalist to limit the inclusion of population samples into an ALE experiment’s

output data set. The primary function of the ALE Analytics platform is to automate the

annotation and reporting of all ALE experiment sample mutations in a single location with

a uniform format. This automated functionality enables experimentalists to more quickly



18

interpret results and include more sequenced samples into their mutation set, without fear

of the effort necessary in processing and consolidating their experiment’s mutational data.

Alongside the ALE Machine, ALE Analytics further enables more resolution on evolution.

This automation may additionally result in more consistent reporting and accurate results

since it removes the potential for human error in data processing, consolidation and report

generation.

Since August 2015, the ALE Analytics web application has deployed a production

version for experimentalists and collaborators to use in the analysis of their ALE experiments.

Though we have many development versions that are launched and shutdown for testing and

demonstrating new features to target audience, our production version of ALE Analytics

has constant uptime and is available online for access by local and remote experimentalists

and collaborators. To end-users, ALE Analytics represents a web platform and database of

experimental evolution results that is ubiquitously available and ever growing in features

and content.
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Figure 4.3: Screenshot of the ALE Analytics production version dashboard con-
taining counts of significant ALE mutation database details.

The current production deployment of ALE Analytics contains 14,765 observed

mutations and 7,633 unique mutations. These mutations are housed in 42 separate ALE

experiments with a total of 325 ALEs and 819 isolates or samples. This large volume of

mutations and samples is evidence to how the the automation of consolidating ALE experi-

ment data has been leveraged to create a substantial resource on experimental evolutions.

Being that ALE Analytics is being leveraged in investigating current experiments, full access

hasn’t yet been made available to the public. Our intent is to ultimately make public on ALE

Analytics the results of the ALE experiments that have been published.
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Chapter 5

Aim 3: Automate Common ALE

Experiment Analysis

Using the ALE Analytics mutation reporting mechanism, we have implemented

features that automate the finding and reporting of mutations which describe significant

mutational patterns within an ALE experiment. These features describe the significant

mutation patterns as enrichment and fixed mutations. The methodologies encapsulated

in the enrichment and fixed mutation analysis are those which have been developed to

manually identify key mutations within the results of published ALE experiments ([5], [21],

[20], [14]) and are therefore considered common ALE experiment key mutation analysis.

As with the manual consolidation of ALE experiment mutational data, the analysis of

key mutations can be prone to human error, inconsistent between researchers and time

consuming. The automation of these common analyses will contribute to more accurate

results, more consistent analysis and the shortening of turnaround time from ALE experiment

execution to results interpretation.

21
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5.1 Enrichment Mutation Analysis

Early ALE experiments only sequenced ALE endpoint samples. Key mutations

were identified as those involved in the following two cases. If a mutation manifested in

more than one sample, it signified that this mutation was likely correlated to the dominant

phenotype. If a genomic region was mutated via different mutations across multiple samples,

it was hypothesized that simply perturbing the gene may have rendered a benefit to the

phenotype. Considering that these circumstances all involve populations with the same

mutated genomic region, we can also consider a single sample with multiple alleles of the

same region to represent multiple populations which benefit from this region’s perturbation.

The identification of these cases can be accomplished by finding genomic regions within an

ALE experiment that have more than one observed mutation; we consider these enriched

genomic regions and their mutations as enrichment key mutations. Previous to ALE An-

alytics, this analysis was accomplished as additional steps in manually curating the ALE

experiment’s mutation report such that mutations affecting the same genomic region would

cluster together within a matrix of mutations and their samples. The enrichment mutation

analysis automates this approach and reports the mutations in the same mutation reporting

format given in Figure 4.2.
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Figure 5.1: Enrichment mutation analysis flowchart

5.2 Fixed Mutation Analysis

A fixed mutation is one in which a mutation manifests in an ALE’s midpoint, or

intermediate sample, and is propagated to all following samples in the ALE. Fixed mutations

are the strongest indicators of key mutations. This analysis is possible if an ALE experiment

includes midpoint samples, so as to provide for the possibility of more than one data point

per mutation. Previous to ALE Analytics, the identification of Fixed mutations was accom-

plished as an additional curation step in results reporting by manually organizing mutations

according to their ALE’s sample chronology and subsequently identifying mutations that
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emerge in a midpoint and manifest in all remaining ALE samples. The fixed mutation

analysis automates this approach and reports the mutations in the same mutation reporting

format given in Figure 4.2.
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Figure 5.2: Fixed mutation analysis flowchart

Ideally, fixed mutations should have frequencies equal to or larger than their preced-
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ing occurrences within an ALE. This trend demonstrates the most obvious key mutations

within a ALE experiment. The fixed mutation analysis has a filtering option that results in

only those fixed mutations with equal-to or ascending population frequency trends to be

returned. This feature is referred to as the ascending frequency fixed mutation analysis and

reports these mutations in the same mutation report format given in Figure 4.2.
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Figure 5.3: Ascending frequency fixed mutation analysis flowchart
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5.3 Results

To ensure that our automated key mutation analysis returns key mutations based on

published criteria, we evaluate the automated analysis results against those found in ALE

experiments published by the SBRG. The automated analysis key mutations are generated

by processing the sample reads available from these published ALE experiments through

the post-processing protocol, ALE Analytics platform and key mutation automated analysis.

Intuitively, our task can be described as finding all of the key mutations within the complete

set of mutations in an ALE experiment and comparing the set for equality against the

published key mutation set of the same experiment. The post-processing protocol will be

configured to reproduce, as well as possible, the mutation set used by the authors in defining

the published key mutations by using the same reference genome and Breseq version. This

does not guarantee that the mutation set produced will be identical to those used by the

authors and therefore introduces the issue of having different starting conditions between

key mutation analysis.

We find a more practical comparison for our automated key mutation analysis

evaluation to avoid issues due to possible different ALE experiment mutation sets between

the published material and those generated by the post-processing protocol. Clarification

of gene function is a primary result in ALE experiments. Organisms studied in ALE

experiments are selected for their phenotype which is derived from their genotype. For

ALE experiments, the areas of highest interest in a genotype are those genomic regions

perturbed by mutations. With ALE experiment mutation sets, experimentalists investigate

the known functions of the perturbed genomic regions along with the phenotypic results of

the perturbation and infer additional functions of genomic regions. We can therefore reason

that a better evaluation between the results of the published ALE experiments and the ALE
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Analytics automated analysis is a comparison of the genomic regions found to be perturbed

by key mutations. We discuss any false positives and false negatives and determine why

they manifest and what can be implemented to handle their specific cases. The following is

the set of publications that we use in our evaluation and their ALE experiment names:

• The PGI ALE experiment: Genetic Basis of Growth Adaptation of Escherichia coli

after Deletion of pgi, a Major Metabolic Gene. [5]

• The 42C ALE experiment: Evolution of Escherichia coli to 42 ÂřC and Subsequent

Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations. Molecular

Biology and Evolution. [21]

• The 13C ALE experiment: Evolution of E. coli on [U-13C]Glucose Reveals a

Negligible Isotopic Influence on Metabolism and Physiology. [20]

• The GLU ALE experiment: Use of Adaptive Laboratory Evolution To Discover Key

Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose

Minimal Medium. [14]

5.4 Evaluation

In this section we describe our approach to formally evaluating the performance

of our key mutation automate analysis. The task of finding key mutations is a binary

classification problem, where a mutation is or is not a key mutation. To accomplish binary

classification on a set of mutations, we have defined a set of features that describe how

a mutation should be classified: the enrichment mutation feature and the fixed mutation

feature. If a mutation qualifies for either feature, we will classify this mutation as a key

mutation.
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Table 5.1: The key mutation count is obtained from the ALE experiment published
materials and the insignificant mutation count is obtained by finding the difference
between the key mutation count and the total mutation count from our variant
finding results of an ALE experiment. We use our variant finding total mutation
count for consistency since some published ALE experiments didn’t include the
total set of observed mutations in their supplementary material

In establishing our classification evaluation metrics, we observe that there are many

more insignificant mutations than key mutations, or in other words, there exists a class

imbalance. We demonstrate this imbalance in Table 5.1. All but the PGI ALE experiment

have an obvious class imbalance. Relying on accuracy alone to measure classification

performance with a class imbalance can be misleading since one could naively classify all

mutations as the majority class of the imbalance and still obtain a high accuracy. We consider

avoiding the exclusion of significant mutations from our results as our highest priority; in

other words, we consider recall as our primary performance metric. In performing with

high recall, we can better ensure that all key mutations are returned in our results, therefore

providing the best identification of all significant genomic regions in an experimental

evolution. Avoiding insignificant mutations in our results is of secondary importance

since they can be later excluded by secondary manual investigations performed by the

experimentalist. We will use precision as the metric to evaluate our approach’s ability to

avoid insignificant mutations in our results.
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PGI ALE Experiment

The PGI ALE experiment and publication focused on the observed adaptive muta-

tions selected for during an experimental evolution due to knocking out the phosphoglucose

isomerase PGI gene from the K-12 MG1655 strain of E. coli. The PGI gene plays a major

role in the central metabolism of E. coli and is a good candidate for studying how a strain

learns to compensate for a loss of such significant impact. The experiment executed 10

parallel ALEs on replicates of E. coli K-12 MG1655 lacking the PGI gene using ALE

methodologies for 50 days in minimal media. Clones were taken from each ALE’s final

flasks and their mutations were defined by first whole-genome sequencing through both

Nimblegen hybridization-base tiling arrays and Illumina Solexa technologies, then lever-

aging the Nimblegen’s built-in variant calling capabilities and in-house software. PCR

and Sanger sequencing was additionally used to verify mutations identified and the entire

sequence of host genomic regions [5]. Our analysis of the PGI ALE experiment samples

was executed by processing the same reads generated by the authors using the Breseq 0.23

software pipeline against the E. coli K-12 MG1655 reference genome (NCBI accession

NC_000913.2).
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Table 5.2: PGI ALE experiment key mutation genomic region matching summary
between the paper and the ALE Analytics automated enrichment key mutation
analysis.

The PGI ALE experiment paper doesn’t explicitly list the key mutations as does

the other ALE experiment papers involved in our evaluation. We therefore rationalize the

paper’s key mutations according to the findings presented on each mutation and their host

genomic region. The PGI experiment publication identified the perturbation of the following

genes as being important for the experiment’s observed fitness:

• rpoS: mutations observed suppresses stress response by modulating transcription;

likely fitness selection in relation to the adaptation to loss of PGI.

• rpoA, rpoB, rpoC, cpxR and cyaA: mutations observed result in global network-level

transcriptional regulation adaptations.

• sthA, pntA, pntB: mutations observed counter the redox imbalance of excess NADPH
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production due to PGI knockout.

• e14 prophage deletion: target and mutations observed are mechanistically unknown,

yet experimental data shown to provide fitness.

The authors speculate that the deletion of the e14 prophage is a unique contributor to the

fitness of its host strain. This was determined due to not being able to reproduce the fitness

of the host strain with any combination of other key mutations in followup ALEs. The e14

prophage deletion manifests as unassigned missing coverage in our mutation reports, which

we include in our ALE Analytics database but currently do not yet include in reports. The

authors do mention the potential importance of the icd SNPs coinciding with this deletion.

It is speculated that these SNPs may have a fitness benefit in their potential to induce better

translation efficiency to icd. Due to the high frequency of these icd SNPs, the enrichment

analysis did include them in its results as key mutations. Though no solid evidence could be

found on the icd allele’s fitness benefit, since the authors speculate that the icd mutations

are significant and the objective of the ALE Analytics automated analysis is to highlight the

mutation that may be a result of the ALE’s selective pressures, we consider the paper’s icd

SNPs to be key mutations.

Of the 12 key mutations alleles published in the paper, the enrichment analysis is

successful in finding 7. The ALE Analytics enrichment analysis finds multiple icd alleles in

both ALE 1 and ALE 5. icd alleles were reported to be associated with the e14 prophage

deletion, published as occurring in the ALE 1. The evidence of high icd enrichment in ALE

5 motivated an investigation into the possibility of an ALE 5 e14 prophage deletion that

was in fact found by manually investigating the missing coverage artifacts of the Breseq

reports. This investigation serves to demonstrate the importance of automating key mutation

identification for ALE experiments.
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A minority of the published key mutations which didn’t manifest more than once

were included in the paper’s key mutation set according to their functional association with

significantly enriched genes. SNPs uniquely affecting transcription modulation genes cyaA,

rpoB, and rpoC were included as key mutations in the paper in addition to the mutations

of the more frequently mutated rpoA, rpoS and cpxR genes. These key mutations could

be included in future enrichment analysis implementations by additionally considering the

mutational enrichment of functional groups rather than only single genes.

The fabZ SNP was speculated as important by the authors due to their knowledge

of the potential metabolic perturbations caused by the PGI knockout and the idea that the

this mutation may reduce its impact. This type of key mutation could be included in future

enrichment analysis by including functional data on any type of perturbation introduced

into the initial strain of the experimental evolution and identify mutations affecting genes

functionally related to the initial perturbation. This approach would therefore also leverage

the enrichment of functional groups of genes.

Published mutations in the rep, yfeH, fruK, rodA, bipA and ispU genes only manifest

once and weren’t discussed by the publication as being key mutations. These mutations

were therefore not considered for either the publication’s significant mutation set and the

ALE Analytics enrichment analysis evaluation.

The ALE Analytics enrichment mutation analysis found 3 additional possible signif-

icant genomic regions described in Table 5.3 due to their frequency of mutation. Though

these new enriched genomic regions contributed to the lessening of the enrichment analysis’

precision metric, they present an opportunity for identifying further significant adaptations

not caught by the authors.
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Table 5.3: The value 1 used to denote the presence of a mutation describes the ap-
proximate frequency in which the mutation was found within the sample population
represented in the sample reads [9].

No fixed mutations can be established with the PGI ALE experiment data set since

all samples are endpoints of different ALEs and therefore do not provide any mutation

time-course information for the fixed mutation analysis to work with.

Table 5.4: PGI ALE experiment classification performance.

42C ALE Experiment

The 42C ALE experiment and publication focused on the observed adaptive muta-

tions selected for during an experimental evolution with a selective pressure of a culture

temperature of 42◦C. The experiment executed 10 parallel ALEs on replicates of E. coli

K-12 MG1655 for 45 days in minimal media. Clones were taken from each ALE’s final

flask, sequenced using the Illumina MiSeq platform and their mutations defined using whole

genome re-sequencing with the Breseq 0.22 software pipeline against the E. coli K-12

MG1655 reference genome (NCBI accession NC_000913.2) [21].
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The authors of the 42C paper considered key mutations as those that perturbed a gene

in more than one ALE endpoint. Their key mutation results were clearly annotated in a Table

2 [21]. This ALE experiment experienced two different hypermutator strains, proposed as

independently manifesting in ALE 2, where mutL was mutated, and ALE 6, where dnaQ

was mutated. The ALE 2 hypermutator strain went on to contaminate ALE 3 and the

hypermutator strain in ALE 6 went on to contaminate ALE 8. Due to this contamination, the

authors didn’t consider mutations recurring between ALE endpoints derived from the same

hypermutator strain as key mutations. The authors recognized unique mutations occurring

within the same genomic region within and between hypermutator strain pairs and therefore

did not completely disregard the hypermutator samples.
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Table 5.5: The 42C ALE experiment key mutation genomic region matching
summary between the paper and the ALE Analytics automated key mutation
analysis.

The ALE Analytics enrichment key mutation analysis finds all 14 of the genomic

regions affected by the published key mutations. The ALE Analytics enrichment analysis is

successful in finding all key mutations because its implementation is partly based on the key
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mutation protocol establish by this paper.

Table 5.6: New enrichment key mutations found by the automated analysis. ALE
endpoint pair (2, 3) and (6, 8) are each derived from the same hypermutator
strain, therefore explaining the large amount of mutations shared between the
endpoints. The value of 1 used to denote the presence of a mutation describes
the approximate frequency in which the mutation was found within the sample
population represented in the sample reads [9].

The ALE Analytics enrichment mutation analysis finds 22 additional genomic

regions affected by more than one mutation. The mutL and dnaA mutations mentioned

by the paper as the cause for ALE 2, 3, 6 and 8 endpoints to become hypermutators were

included in the automated analysis’ enrichment key mutations. The paper does not include

these in their table of key mutations, though do describe their importance; we therefore do
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not consider the mutL and dnaA mutations as false positives.

These 22 additional genomic regions of interest only manifest in the ALEs that have

been identified by the authors as being overcome by the same hypermutator strain except for

the yjiT alleles. yjiT was mutated in the ALE 3 and 6 endpoints, hypermutators of separate

origins, and therefore make its mutations candidate for classification as key mutations. The

exclusion of the yjiT mutations in the author’s key mutation set may have been an oversight

in their manual workflow; the automated enrichment key mutation analysis will reduce

the possibility for these errors with its future usage. If our evaluation were to exclude

hypermutator mutations from both the published significant mutation set and our results,

both the subsets of the published non-hypermutator and automated analysis key mutations

would match without any additional key mutations.

The obvious contamination made clear by the amount of hypermutator mutations in

contaminated strains lends us intuition on how to automate the identification of contamina-

tion among samples. Additionally, one could automate the identification of contamination

among samples by recognizing when samples share a large subset of the exact same point

mutations.

No fixed mutations can be established with the 42C ALE experiment data set since

all samples are endpoints of different ALEs and therefore do not provide any mutation

time-course information for the fixed mutation analysis to process.

Table 5.7: The 42C ALE experiment classification performance.
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C13 ALE Experiment

The C13 ALE experiment and publication focused on the observed adaptive muta-

tions selected for during an experimental evolution using 13C-glucose as a carbon source for

E. coli growth. The key mutations found by this experiment were compared to those of [14],

which uses 12C-glucose, to investigate if there is any evidence of differing adaptations and

therefore additional metabolic stress from using the 13C-glucose isotope. The experiment

executed 6 parallel ALEs on replicates of E. coli K-12 MG1655 for approximately 1000

generations per ALE. Two clonal samples were taken from each ALE; one sample served as

a midpoint clone and the other as the endpoint clone. The clones were sequenced using the

Illumina MiSeq platform and their mutations defined using whole genome re-sequencing

with the Breseq 0.23 software pipeline against the E. coli K-12 MG1655 reference genome

(NCBI accession NC_000913.2).

The authors of the C13 published material considered the mutations for genes that

were enriched in more than one endpoint to be key mutations. Their key mutation results

were clearly stated as those mutations which affected the pyrE/rph, rpoB, hns/tdk and rhsE

genomic regions. The ALE Analytics enrichment key mutation analysis finds all 4 of the

published genomic regions affected by key mutations.

Table 5.8: The value of 1 used to denote the presence of a mutation describes
the approximate frequency in which the mutation was found within the sample
population represented in the sample reads [9]
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The ALE Analytics enrichment mutation analysis found 1 additional possible sig-

nificantly enriched allele described in Table 5.8: rpoC. The authors did not include rpoC

mutations as a key mutation since their approach was limited to high frequency alleles among

different ALEs. The ALE Analytics enrichment analysis additionally returns mutations

found to affect genomic regions within multiple samples of the same ALE.

The ALE Analytics fixed mutation analysis finds 2 of the 4 published key mutation

alleles; those key mutations missed were due to only manifesting in ALE endpoint samples.

The ALE Analytics ascending frequency fixed mutation analysis finds the same results.

If the C13 ALE experiment had more midpoint samples, the fixing of these mutations

may be more evident and would ultimately be captured by the fixed key mutation analysis.

Significant mutations should ultimately be all caught by the fixed key mutation analysis with

enough samples, though the question that remains is how many samples from an ALE are

adequate to provide enough resolution on mutation lineages to capture all fixing mutations.

Table 5.9: The C13 ALE experiment key mutation genomic region matching
summary between the paper and the ALE Analytics automated key mutation
analyses.

Table 5.10: The C13 ALE experiment classification performance.
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GLU ALE Experiment

The GLU ALE experiment and publication focused on establishing and leveraging

novel ALE methods and observing the adaptive mutations selected for using these ALE

methods and E. coli on glucose minimal media at 37◦C. This experiment isolated the

selection pressure to the growth rate of the strain by propagating batch cultures to new flasks

during their exponential growth phase rather than the stationary growth phase; this avoids

the fixing of mutations that grant fitness to attributes other than growth rates. The experiment

executed 8 parallel ALEs on replicates of E. coli K-12 MG1655, capturing samples from

both the final and intermediate ALE flasks for whole genome sequencing with the Illumina

MiSeq platform and re-sequencing using the Breseq 0.23 software pipeline against the E.

coli K-12 MG1655 reference genome (NCBI accession NC_000913.2).

The authors employed two strategies for identifying key mutations. The first was

to find genomic regions that were mutated in the endpoint of multiple ALEs. The second

was to identify genomic regions within an ALE that experienced the replacement of one

mutation with another; both mutations involved were considered key mutations.

Table 5.11: The only difference between the two sets is that the fixed key mutation
set does not include the wecA alleles.
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The ALE Analytics enrichment key mutation analysis finds all 8 of the genomic

regions affected by the published key mutations. This analysis also finds 15 additional

possible significant genomic regions, described in Table 5.11, due to the frequency in which

a many mutations reoccurred within an ALE. The ALE Analytics fixed key mutation analysis

finds 14 unpublished key mutations. The ascending frequency fixed mutation analysis finds

the same results. The subset of unpublished fixed mutations are identical to the subset

of unpublished enrichment mutations, with the exception of wecA. The wecA alleles do

manifest in such a way that conforms to the key mutation protocol published for this ALE

experiment, though were not included in the paper’s key mutation results. Besides the

wecA alleles, the new key mutations were not published by the authors as being significant

since they did not exhibit the criteria of mutating the same genomic region in more than

one ALE or replacing a mutation within an ALE. Though the new key mutation genomic

regions contributed to the lessening of the enrichment and fixed key mutation analysis’

precision metric, they present an opportunity for identifying further significant adaptations

not identified by the authors.
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Table 5.12: The GLU ALE experiment key mutation genomic region matching
summary between the paper and the ALE Analytics automated key mutation
analysis.

Table 5.13: The GLU ALE experiment classification performance.
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Chapter 6

Discussion

6.1 Key Mutation Analysis

The implementation of our automated analysis aims to distill the multiple methods

published in identifying key mutations, though each of these published methods make no

guarantee of including all significant mutations or excluding artifacts such as hitchhiker

mutations [14]. A successful key mutation analysis will ultimately leverage multiple factors

to judge a mutation’s significance in an ALE experiment. Additional factors to those we

have implemented in this thesis would be ALE growth rate profiles and gene functional

group mutational enrichment.

In executing an evolution, the ALE Machine must track the growth rate of sample

for its operations. The compilation of these growth rates contain vital fitness data for

the experiment, such as which sample manifested a jump in growth rate during an ALE.

Mutations in a population that occur immediately before the growth rate jump and gain

dominance once the growth rate stabilizes are likely candidates for key mutations. This

fitness data can be integrated into key mutation analysis to serve as an additional dimension

46
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in judging the significance of a mutation [14]. Mutations can also be evaluated according

to if their host gene is functionally similar to other mutated genes or is associated with the

selection pressure such as experimental conditions or initial perturbations. This list of factors

ultimately describe the many additional dimensions that can be further incorporated into

automatically evaluating whether a mutation is strongly correlated to the selection pressures

of an evolution.

The enrichment key mutation analysis rendered the best classification performance

for this thesis; this was likely due to the small amount of samples per ALE with the ALE

experiments used in the evaluation. Future ALE experiments may be enabled by ALE

Analytics to incorporate more samples per ALE, with each sample being a population rather

than clone. In general, more samples would grant more data points in the time-course of

an evolution, allowing for more mutation data to describe the evolution. If these samples

were populations, our analysis would be able to investigate the population dynamics of

evolutions and track not only the consensus mutations but the balance of mutations found in

only subsets of the entire population. This higher resolution of samples would enable the

fixed key mutation analysis to have a higher probability of finding fixed mutation patterns.

The enrichment key mutation analysis may ultimately be identifying mutations that, with

more samples, would be identified with fixed key mutation analysis. The fixed key mutation

analysis is more clear and intuitive in its intent in describing as to why a mutation may be

significant, which is an advantage that the enrichment mutational pattern analysis lacks.

The work of this thesis justifies more population samples per evolution. Before this

work, the decision on the sample count to sequence per ALE was based on investigating the

genotypes of endpoint samples. Now that we have tools to quickly process a previously infea-

sible volume of samples, we have the opportunity to investigate new strategies in identifying
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key mutations and exploring population dynamics within experimental evolutions.

6.2 Shared Enrichment and Fixed Mutations

A significant opportunity of the consolidation of ALE experiment reporting is

that one can easily compare the mutations of multiple ALE experiments and search for

mutational trends among all provided ALE experiments. We have leveraged this opportunity

and implemented the shared enrichment and shared fixed key mutation features. These

features leverage the nature of the ALE Analytics platform to automate the identification

of genomic regions that share key mutations across ALE experiments. In this section, we

present the shared enrichment and fixed mutations and elaborate on their significance.

Table 6.1: Shared enrichment and fixed mutation genomic regions among all ALE
experiments evaluated.

rph was host to enrichment and fixed key mutations in all ALE experiments used

in our evaluation. The meta data for the samples hosting these key mutations shows us

that each experiment shares a parent strain yet differ by a single feature. Besides the GLU

project, these differing features describe the selection pressure on the experiments, therefore

each ALE experiment sharing the rph enrichment theoretically involves a different selection

pressure. We can therefore conclude from the comparison of experimental conditions
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through the experiment meta data that the enrichment of rph is a general optimization

that the parent strain of these experiments can obtain when under any pressure. The rph

mutations seen in these ALE experiments are in fact thought to help manage a specific defect

in the E. coli K-12 MG1655 strain in which the starting strain for these ALE experiments

derive from [7].

The hns-tdk intergenic region was the second most mutated among all enrichment

mutations. This region along, with rpoB and rpoC, has been associated with global tran-

scriptional regulation. Mutating these genes in some manner may have benefited a host’s

growth rate according to changes in transcription levels [12, 3, 6, 23]. The GLU and C13

ALE experiments sharing the rpoB enrichment and fixed mutations were in fact very similar

in that the experiments were designed to select for growth rate, where C13 only differed in

the isotope of the carbon source provided. These shared mutated key genomic regions there-

fore confirm the conclusion of the [20], that the C13 carbon source does not significantly

affect the host metabolism and therefore enabled the evolutions of the C13 and GLU ALE

experiments to follow a significantly similar track.

The pykF genomic region is enriched in the 42C and GLU ALE experiments. These

experiments have very similar conditions beyond their sample temperatures. Mutations in

pykF have in fact been associated with enabling an increase in uptake of glucose by reducing

or disabling the metabolism of phosphoenolpyruvate to pyruvate [24, 11, 4]. This fitness

benefit is likely enabled by the fact that both experiments use M9 glucose minimal media,

therefore providing an abundance of glucose to the populations.
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6.3 ALE Analytics Platform Feature Overview

The ALE Analytics platform was built to support the analysis needs of its users;

many features were therefore implemented to service various perspectives of analysis. This

section presents an overview of the current capabilities of the ALE Analytics platform to

exemplify how all current analysis features fit together.

On login, users are greeted with the ALE Analytics homepage, known as the dash-

board, which presents an overview of the mutational database currently available to the

platform. This page presents the most frequently mutated genes, the most frequent mutation

descriptions and the frequency of mutation types within the mutation database. An example

of the dashboard can be seen in Figure 6.1. From the dashboard, users have access to their

ALE experiments and all other platform features. Each ALE experiment has a similar home

page with the same type of statistics as the dashboard. This page additionally includes

alignment statistics for all experiment samples and a mutation needle plot [22] for presenting

the spread of mutations across the experiment’s reference genome. Users can quickly gain a

sense of mutation hot-spots in their experiment according to the mutation needle plot. The

experiment home page is exemplified in Figure 6.2. From the ALE experiment home page,

users have access to experiment specific applications, such as the experiment’s mutation

lineage and key mutation analysis reports. Users can also view a report of the meta data

associated with each sample of an experiment, shown in Figure 6.3. The experimental

condition details, crucial to analysis, are contained within this meta data report.
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Figure 6.1: A screenshot of the dashboard for the instance of ALE Analytics used
to accomplish the analysis contained within this thesis.
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Figure 6.2: A screenshot of the C13 ALE experiment home page for the instance
of ALE Analytics used to accomplish the analysis contained within this thesis.
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Figure 6.3: A screenshot of the PGI ALE experiment’s meta data for the instance
of ALE Analytics used to accomplish the analysis contained within this thesis.

Users often need to compare ALE experiments to identify shared mutations. ALE

Analytics includes a feature named compare that will summarize the combination of ALE

experiments similar to the experiments home page and build a mutation lineage reporting

page from their combined mutations. Along with the mutation lineages, this feature builds

the combined enrichment and fixed mutation tables, automating the comparison of the

obvious significant mutations among compared ALE experiments.

Mutation filters play a critical role in all ALE experiment analysis. Both experimen-

talists and automated analysis require functionality that ignore mutations inappropriate for

analysis. Mutations are often judged as inappropriate due to being identified as sequencing

or alignment artifacts. Mutations can also be filtered on the basis of not containing any

information pertaining to an experiment, such as those exhibited by an experiment’s starting

strain in relation to the reference genome used in alignment. We have defined two levels of

filters: global and experiment levels. Global filters exclude the occurrence of a mutations

for all ALE experiment analysis, where experiment filters ignore mutations for specific

experiments. The parameters for global mutation filtering are unique mutations and genes.
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The parameters for experiment mutation filtering are unique mutations, genes, and observed

mutation frequency. The experiment mutation filtering is shown in Figure 6.4.

Figure 6.4: A screenshot of the PGI ALE experiment mutation filter page for the
instance of ALE Analytics used to accomplish the analysis contained within this
thesis.

The compilation of all ALE experiments into one resource enables our ALE Ana-

lytics platform to implement a mutation search feature. This feature generates reports of

mutations and their host samples according to a set of search parameters. An example of the
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search feature is shown in Figure 6.5

Figure 6.5: The search functionality uses as mutation query parameters the gene,
start and end positions, mutation type, sequence change, protein change and ALE
experiment of mutations.

Experimentalists invent many different data mining protocols for exploring the data

housed within the mutation database. It would not be practical to implement all of these

protocols into ALE Analytics, though it is clear that experimentalists should have the ability

to easily extract data sets from the mutation database for their own investigations. The ALE

experiment export feature was implemented to support this case; it enables users to extract

all mutations from one or more ALE experiments. Experimentalists and investigators are

then free to implement data mining protocols of their own design on the ALE data. Figure

6.6 presents histograms generated using the export feature and external tools to explore the

position and frequency of mutations affecting the genomes of the ALE experiments used in

the analysis contained within this thesis.
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Figure 6.6: Mutation positions are divided into 100 bins and the results of the dif-
ferent ALE experiments involved are stacked to visualize the cumulative mutation
frequency within a genomic region.
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6.4 ALE Analytics Platform Deployment Overview

A production version of ALE Analytics has been deployed since August 2015 and

has therefore been a live solution for more than a year to the ALE big data to knowledge

challenges of the SBRG and the Novo Nordisk Center for Biosustainability of Lyngby,

Denmark. Since this deployment, the ALE mutation database and the ALE Analytics

platform have seen a dramatic increase in usage and ALE experiment data. Effort was

devoted into designing a deployment environment using industry standard technologies and

methodologies that would enable the platform’s data to be secure and have redundant copies

on external secure file servers.

Figure 6.7: An illustration of the deployment environment for the ALE mutation
database and ALE Analytics platform that describes important data security and
redundancy measures.
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The platform makes use of the Linux, Django [1] and Nginx [19] web application

technology stack to deploy ALE Analytics from a dedicated server hosted by the San

Diego Supercomputer Center. The static files that are used in populating the ALE mutation

database and contain mutation reports referenced by ALE Analytics analyses are hosted

on the same server and have backups on external servers through the Amazon Glacier file

storage service (Amazon Web Services, Seattle, WA). The Amazon Glacier service is used

due to the cumulative static file storage footprint of approximately 1.8 terabytes and this

service’s competitive storage costs. The ALE mutation database has a small enough storage

footprint that it can have backups on a file server internal to UCSD and accessible only to

SBRG members and IT staff. All reads used in generating the static files are also stored on

the same internal file server. User access to the ALE Analytics data is controlled through a

user account management system provided by the Django and Nginx technologies and all

browsing traffic is encrypted via HTTPS protocol.
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Conclusion

The SBRG’s ALE experiment automation has scaled the rate of experiment execution

and data generation to the point that data post-processing, consolidation, reporting and

common analysis have become a primary bottleneck in interpreting results. The SBRG’s

ALE methodologies therefore require a big data to knowledge solution that automates these

bottlenecks to match the rate of high-throughput ALE experimentation. We have developed a

software system that addresses each challenge that defines the big data to knowledge solution.

To address quality control and mutation data formatting challenges, we investigate and

establish a post-processing software pipeline. To address the challenge of high-throughput

ALE experiment data consolidation, data reporting and common analysis, we implement the

ALE Analytics software platform. The automated common analysis are evaluated against

currently published ALE experiment key mutation results and show that they are precise,

maintain high recall and can be expanded upon for more comprehensive predictions. We

have additionally developed the ALE Analytics reporting and analysis platform as a web

application to address the challenge of accessible experiment reporting. We go beyond these

challenges and their solutions and have implemented features that leverage the consolidated

60
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data to find key mutations shared among all ALE experiments. Finally, we have shown how

ALE Analytics has implemented beyond the core challenge solving features to culminate in

a platform that supports the multitude of services experimentalists currently need to execute

their ALE experiment analysis.

Quality control protocols and tools have been investigated and combined into an

ALE post-processing protocol. This protocol provides stage-dependent feedback that is

crucial for all those involved in the ALE sample preparation and processing, as it informs

them of their work’s quality and better enables root-causing of quality issues.

Our system’s automated common ALE experiment mutation analysis has been shown

to be precise and maintain high recall in finding key mutations of published data sets. Of

the published ALE experiments, an average recall of 89.6% and an average precision of

71.2% is achieved when excluding hypermutators. The automated key mutation analysis

additionally identified key mutations in genes wecA and yjiT that were not included in

the published material yet were aligned with their published key mutation protocols. Our

automated key mutation analysis may lead to better result accuracy due to less potential for

human error and variation in protocol between experimentalists.

The consolidation of ALE experiment data offers an opportunity for cross-experiment

analysis. ALE Analytics has leveraged this opportunity with the implementation of the

shared key mutations feature, which generates reports identifying genomic regions affected

by key mutations in multiple ALE experiments. The ALE experiments used in evaluating

the automated key mutation features manifests five of these shared key mutation genomic

regions: rph, hns-tdk, rpoB, rpoC and pykF. The rph genomic region is mutated by key

mutations in all provided ALE experiments and is proposed to be an adaptation for a defect

that exists with the starting strain of these experiments [7]. The hns-tdk, rpoB and rpoC
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genomic regions are each affected by key mutations in at least two ALE experiments and

are proposed to be adaptive adjustments to global transcriptional regulation that benefit host

growth rates [12, 3, 6, 23]. Key mutations affect the pykF gene in two ALE experiments

and are speculated to contribute to the hosts growth rate by enabling a larger rate of

glucose uptake through the disabling of a phosphenopyruvate metabolic process [24, 11, 4].

Disrupting pykF could render a fitness benefit in conjunction with the glucose rich media

used in these experiments.

The work of this thesis does not stop at proposing and prototyping a possible big

data to knowledge solution, but has in fact been deployed as a tool for ALE experimentalists

at the System Biology Research Group and the Novo Nordisk Center for Biosustainability

of Lyngby, Denmark, since August 2015. The current deployment leverages an industrial

strength technology stack and production environment of Django, Nginx and Linux on

a dedicated server hosted by the San Diego Supercomputer Center and strives to ensure

security through user accounts and HTTPS encrypted browsing.

With this thesis’ work, it is clear that the SBRG’s ALE operations can now overcome

its consolidation and reporting bottlenecks. This is exemplified by the current count of

42 ALE experiments, 325 ALEs and 14,765 observed mutations currently housed within

the ALE experiment and mutation database, where each mutation is represent in an ALE

experiment’s mutation reports. The SBRG’s ALE operations should in fact increase the

number of samples per ALE experiment analysis sample set to better enable the automated

analysis in predicting key mutations by effectively increasing the resolution of mutations in

an evolution. Population samples, which reveal both consensus and population mutations,

can additionally be included at higher frequencies in analysis sample sets to enable the

exploration of population evolution dynamics. This research has yet to be thoroughly
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examined within high-throughput ALE experiments due to the effort necessary in the

curation of the magnitude of mutations involved with population samples.

ALE Analytics automated key mutations analysis could be enhanced by including

ALE sample growth rate data and by investigating perturbations in the context of functionally

related gene groups. ALE sample growth rate data, which describes the growth rate of

samples during the progression of an ALE, can be used to automate the identification

of mutations correlated with growth rate spikes. Mutations uniquely affecting genomic

regions can be considered significant if they perturb a functionally related gene group which

hosts additional mutations. Using these new data types and contexts, the automated key

mutation analysis can therefore be expanded to consider multiple categories of evidence for

significance.

Going forward, the ALE experiment mutation database presents an amazing oppor-

tunity for research into mutational trends across all ALE experiments available to the SBRG.

Already, data mining protocol have made use of ALE Analytic’s experiment export feature

and have been used to characterize the general topology of mutations across the E. coli K-12

MG1655 genome from multiple ALE experiments. As ALE Analytics continues to integrate

new ALE experiments, current and new data mining protocols can scan the ALE experiment

mutation database in the hope of identifying previously unseen trends.
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