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Abstract

Essays in Applied Microeconomics

By Edson Roberto Severnini

Doctor of Philosophy in Economics

University of California, Berkeley

Professor David Card, Chair

This dissertation consists of three studies analyzing causes and consequences of
location decisions by economic agents in the U.S.

In Chapter 1, I address the longstanding question of the extent to which the geo-
graphic clustering of economic activity may be attributable to agglomeration spillovers
as opposed to natural advantages. I present evidence on this question using data on the
long-run effects of large scale hydroelectric dams built in the U.S. over the 20th century,
obtained through a unique comparison between counties with or without dams but with
similar hydropower potential. Until mid-century, the availability of cheap local power
from hydroelectric dams conveyed an important advantage that attracted industry and
population. By the 1950s, however, these advantages were attenuated by improvements
in the efficiency of thermal power generation and the advent of high tension transmis-
sion lines. Using a novel combination of synthetic control methods and event-study
techniques, I show that, on average, dams built before 1950 had substantial short run
effects on local population and employment growth, whereas those built after 1950 had
no such effects. Moreover, the impact of pre-1950 dams persisted and continued to
grow after the advantages of cheap local hydroelectricity were attenuated, suggesting
the presence of important agglomeration spillovers. Over a 50 year horizon, I estimate
that at least one half of the long run effect of pre-1950 dams is due to spillovers. The
estimated short and long run effects are highly robust to alternative procedures for
selecting synthetic controls, to controls for confounding factors such as proximity to
transportation networks, and to alternative sample restrictions, such as dropping dams
built by the Tennessee Valley Authority or removing control counties with environmen-
tal regulations. I also find small local agglomeration effects from smaller dam projects,
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and small spillovers to nearby locations from large dams. Lastly, I find relatively small
costs of environmental regulations associated with hydroelectric licensing rules.

In Chapter 2, I study the joint choice of spouse and location made by individuals
at the start of their adult lives. I assume that potential spouses meet in a marriage
market and decide who to marry and where they will live, taking account of varying
economic opportunities in different locations and inherent preferences for living near the
families of both spouses. I develop a theoretical framework that incorporates a collective
model of household allocation, conditional on the choice of spouse and location, with a
forward-looking model of the marriage market that allows for the potential inability of
spouses to commit to a particular intra-household sharing rule. I address the issue of
unobserved heterogeneity in the tastes of husbands and wives using a control-function
approach that assumes there is a one-to-one mapping between unobserved preferences
of the two spouses and their labor supply choices. Estimation results for young dual-
career households in the 2000 Census lead to three main findings. First, I find excess
sensitivity of the sharing rule that governs the allocation of resources among couples to
the conditions in the location they actually choose, implying that spouses cannot fully
commit to a sharing rule. Second, I show that the lack of commitment has a relatively
larger effect on the share of family resources received by women. Third, I find that the
failure of full commitment can explain nearly all of the gap in the interstate migration
rates of single and married people in the U.S.

Finally, in Chapter 3, I examine unintended consequences of environmental regula-
tions affecting the location of power plants. I present evidence that while hydroelectric
licensing rules do conserve the wilderness and the wildlife by restricting the development
of hydro projects in some counties, they lead to more greenhouse gas emissions in those
same locations. Such environmental regulations aimed to preserve natural ecosystems
do not seem to really protect nature. Basically, land conservation regulations give rise
to a replacement of hydropower, which is a renewable, non-emitting source of energy,
with conventional fossil-fuel power, which is highly pollutant. Restrictions imposed by
hydroelectric licensing rules might be used as leverage by electric utilities to get permits
to expand thermal power generation. Each megawatt of hydropower potential that is
not developed because of those regulations induces the production of the average emis-
sions of carbon dioxide per megawatt of U.S. coal-fired power plants. Environmental
regulations focusing only on the preservation of ecosystems appears to stimulate dirty
substitutions within electric utilities regarding electricity generation.
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Chapter 1

The Power of Hydroelectric Dams:
Agglomeration Spillovers

1.1 Introduction
Economic activity is geographically concentrated (e.g., Ellison and Glaeser, 1997, 1999;
Duranton and Overman 2005, 2008; Ellison, Glaeser and Kerr, 2010; and Moretti,
2011). However, the mere occurrence of agglomeration does not imply the existence
of agglomeration spillovers. The location of economic agents in space might be due
to agglomeration economies (increasing returns, knowledge spillovers, and pooling of
specialized skills) and/or natural advantages (topography, climate, and resource en-
dowments). Although there is recent evidence that locational choices are not uniquely
determined by fundamentals (e.g., Redding, Sturm, and Wolf, 2011; Bleakley and Lin,
2012; and Kline and Moretti, 2012), influential studies have found a major role for
natural advantages by examining growth in the aftermath of war bombing (e.g., Davis
and Weinstein, 2002, 2008; Brakman, Garretsen and Schramm, 2004; and Miguel and
Roland; 2011). Despite significant losses during war, bombed cities almost all returned
to their prewar growth paths. In this paper, I present new evidence on the impor-
tance of agglomeration spillovers in population density by keeping natural advantages
constant, and evaluate whether such spillovers are strong enough to generate long-run
effects. Instead of bombing, I use installation of large hydroelectric dams.

Throughout my analysis, I use a unique database of U.S. counties with similar
natural endowments associated with comparable suitability for hydroelectric projects.
In the 1990s, a team of engineers determined the hydropower potential across the nation
at the request of the U.S. Department of Energy. I define counties with hydroelectric
dams as "treated" counties, and counties with no dams but with hydropower potential
as "control" counties. To identify agglomeration spillovers, I split the treated counties
into two groups: (i) those which have a dam constructed before 1950, and (ii) those
which have a dam constructed after 1950. The time horizon of my analysis is the
entire twentieth century. I argue that counties hosting dams in the first half of the
century have a temporary advantage because of the local availability of cheap electricity.
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This advantage gives rise to a strong concentration of economic activity around dam
sites. In the second half of the century, technological improvements in thermal power
generation make fossil fuels (mostly coal and natural gas) and nuclear energy almost
as competitive as hydropower in producing electricity. In addition, the construction
of high-voltage transmission lines weakens the need for electricity generation next to
consumers. Therefore, the appeal of local cheap hydroelectricity reduces considerably
after 1950.

The growth in population density of counties with pre-1950 dams over and above
the growth of counties with post-1950 dams, in post-1950 years, when the advantage
of cheap local electricity is attenuated, provides an estimate of agglomeration exter-
nalities1. The subtraction of the impact of post-1950 dams refines the identification of
spillovers, since it eliminates any direct impact of changes in stock of capital2. At the
same time, though, it removes any potential agglomeration effects of post-1950 dams.
In this sense, my estimate represents a lower bound of agglomeration spillovers. To
illustrate my approach, Figure 1.1 plots the log population density from 1900 to 2000
for two counties: one with a hydroelectric dam built before 1950, and the other with
a dam built after 1950. The solid line with solid circles displays the observed time se-
ries of log population density for each county, and the dashed line with hollow squares
depicts the predicted time series of a counterfactual county, as I explain below.

The left chart, for Blount County, Tennessee, shows a high degree of agglomera-
tion after the construction of the Calderwood Dam, in the 1930s. There is also clear
evidence of agglomeration spillovers, over and above the agglomeration accumulated
until 1950 (dotted line with hollow triangles), which one could see as arising solely from
the advantage of cheap local hydroelectricity in the first half of the twentieth century.
In addition, there seems to be strong evidence of path dependence. While the local
economic advantage of nearby hydroelectricity is decreasing in the second half of the
century, population density is still increasing. It is fair to say that the trend flattens
out after 1950, but the upward slope is still unequivocally positive. The right chart,
for Lincoln County, North Carolina, depicts a low degree of agglomeration, even right
after the installation of the Cowans Ford Dam, in the 1960s, when increases in the
stock of capital were still recent. As mentioned above, this feature of the data helps
to strengthen the interpretation of the effects of pre-1950 dams in post-1950 years as
agglomeration spillovers. Though less extreme, I find similar patterns for the impact of
a broad sample of large hydroelectric dams on the economic activity of U.S. counties.

To obtain average estimates of agglomeration spillovers, I need credible impact
estimates of hydroelectric dams. Despite the number of large hydro dams in the U.S. -

1In a related study, Bleakley and Lin (2012) use a fading locational advantage - obsolescence of
portage sites - to examine the role of path dependence in the spatial distribution of economic activity
the U.S.

2This is related to Greenstone, Hornbeck and Moretti’s (2010) strategy to identify agglomeration
economies. They examine whether attracting a Million Dollar Plant (MDP) leads to increases in total
factor productivity (TFP) of incumbent manufacturing plants, over and above the mechanical effect
of the new plant on the TFP of the winning county.
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185 dams with a capacity of 100 megawatts or more - there is surprisingly little research
on their local economic impacts. Hence, in this paper, I also present the first evaluation
of the short- and long-run effects of new hydropower facilities on local economies3.
To estimate the causal effects of hydro dams, I employ a novel empirical strategy.
I combine synthetic control methods (Abadie and Gardeazabal, 2003; and Abadie,
Diamond and Hainmueller, 2010) with event-study techniques (Jacobson, LaLonde, and
Sullivan, 1993). First, I use the synthetic control estimator to generate a counterfactual
for each treated county. Each counterfactual, which I refer to as a "synthetic control
county", is a weighted average of the originally defined control counties that reproduces
more closely the outcome trajectory that the affected county would have experienced in
the absence of dams. Then, I pool all pairs of treated and synthetic control counties, and
proceed with my event-study analysis. A byproduct of the synthetic control approach
is the estimation of the impact of hydro dams for each treated county separately. This
allows me to examine heterogeneity in dam effects by plotting the distribution of effects
across treated counties for each decade after dam installation.

My impact estimates of hydro dams show that counties with dams built before 1950
have population density increased by approximately 51 percent after 30 years, and 139
percent after 60 years, indicating substantially different short- and long-term effects.
Kline’s (2010) theoretical argument that assessing place-based policies requires under-
standing the long-run effects of temporary interventions finds clear empirical support
here. On the other hand, counties with dams built after 1950 have no statistically
significant effects. I argue that the large difference in the impact of pre- and post-1950
hydro dams can be accounted for by the attenuation of the advantage of cheap local
hydroelectricity in the second half of the twentieth century, as mentioned above.

Regarding agglomeration spillovers, the causal effects of hydro dams imply an aver-
age lower bound of up to 45 percent five decades after dam construction (three decades
after spillovers kick in). This long-run estimate represents almost half of the full im-
pact of hydro dams over the same time span. Interestingly, my short-run estimate of
agglomeration externalities is very close to that of Greenstone, Hornbeck and Moretti
(2010). My lower bound nearly a decade after spillovers kick in is around 11.5 percent,
while their estimate five years after the opening of a Million Dollar Plant is 12 percent.
Taken together, my short- and long-run estimates point to an amplification of spillovers
over time. This suggests that spillovers may sustain high levels of local development in
the long-run.

I also find that the estimated short- and long-run effects are highly robust to alter-
native procedures for selecting synthetic controls, to controls for confounding factors
such as proximity to transportation networks, and to alternative sample restrictions,
such as dropping dams built by the Tennessee Valley Authority or removing control
counties with environmental regulations. I also provide evidence of small local agglom-
eration effects from smaller dam projects, and small spillovers to nearby locations from

3Other studies that examine long-term adjustments to temporary shocks are, for example, Blan-
chard and Katz (1992), Davis and Weinstein (2002, 2008), Redding and Sturm (2008), Miguel and
Roland (2011), Hornbeck (2012), and Kline and Moretti (2012).
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large dams.
Lastly, I use the causal effects of hydro dams to also obtain a novel estimate of costs

of environmental regulations associated with preservation of wilderness and wildlife.
Based on the long-run estimates of hydro dams built before 1950, I uncover the forgone
earnings of workers that would have come to the counties with hydropower potential
had land regulations not inhibited the installation of hydroelectric facilities. (I do not
include forgone gains of landowners because I find no statistically significant effects of
dams on the average value of farmland.) My decadalized estimate turns out to be $1.3
billion, or 26,708 jobs, for all the 55 control counties in my sample. This represents
a third of a comparable estimate based on the effects of air quality regulations on
manufacturing plants in the U.S. found in Greenstone, List and Syverson (2012).

The remainder of the paper is organized as follows. Section 1.2 provides a historical
discussion of the process of electrification in the U.S., focusing on the local importance
of hydroelectricity in the first half of the twentieth century. Section 3.2 presents a
simple theoretical framework to identify agglomeration spillovers. Section 1.4 discusses
the research design and related issues. Section 2.5 describes the databases used in
the study. Section 1.6 outlines the methodology for the empirical analysis. Section
2.6 reports and discusses results regarding the impact estimates of hydro dams, the
estimate of agglomeration spillovers, and the persistence of dam effects. Section 1.8
presents my novel estimate of costs of environmental regulations. Section 2.7 provides
some concluding remarks.

1.2 Historical Background
The invention of the continuous direct current (D.C.) dynamo in 1870 was a break-
through in the history of electrification. Lighting and traction (i.e., electric streetcars)
were among the first benefits of the new technology, but the most important conse-
quence of the dynamo revolution was the process of industrial electrification following
the invention of the polyphase alternating current (A.C.) motor in 1888 (see chronology
in table 1.1). Between 1880 and 1930, the production and distribution of mechanical
power rapidly evolved from water and steam-driven line shafts connected by belts to
electric motors that drove individual machines.

During this rapid transition in energy use, the U.S. power industry became highly
specialized and electric utilities gained prominence. In early 1900s, around 60 percent of
the electricity used in manufacturing was generated by the establishments themselves.
By 1917, however, eletric utilities were already generating more power than industrial
plants. By the late 1950s, their production had reached almost 90 percent of total
generation, as shown in table 1.2. This shift of electricity generation to the power
sector led manufacturing to become sensitive to local availability of power.

In the beginning, hydroelectricity prevailed as a source of motive power. This was
probably due to familiarity with water power and the high cost of coal to drive steam
turbines. The availability of (cheap) hydroelectricity significantly affected the locational
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decisions of industrial plants. After the first hydroelectric generating station was built
near Niagara Falls in 1881, manufacturing flourished around hydro dam sites. Although
"its supply is limited and plants have to locate where favourable sites exist" (Schramm,
1969, p.220), hydroelectricity continued having a large comparative advantage in the
U.S. until the 1950s. The costless energy content of falling water, and the high me-
chanical efficiency of hydraulic turbines, were among the key factors maintaining that
advantage.

Important innovations, however, took place in the field of thermal power generation.
Technological improvements increased boiler temperatures and operating pressures sub-
stantially, attaining greater thermal efficiencies. As depicted in figure 1.2, thermal ef-
ficiencies increased gradually until the early 1940s, and rapidly in the post-World War
II years, reaching their current level around 1960. At the same time, electric utilities
started constructing larger generating plants to capture economies of scale. As a result,
steam power gave location flexibility to firms. Thermal power plants could be built
almost anywhere, provided that fuels and a minimum amount of boiler and cooling
water were available.

Summarizing the transformation of the electricity industry around the middle of
the twentieth century, Schramm (1969) states that "the historical cost advantage of
hydropower vis-à-vis other generating methods has been (...) drastically reduced. (...)
Fifteen to twenty years ago [1949-1954], power-intensive industries found it advanta-
geous to move their plants to sites where cheap hydropower was still available. Today,
with generating cost differentials reduced so drastically, these advantages have all but
disappeared." (p.225-226). The tremendous post-1950 growth of steampower relative to
hydropower, presented in figure 1.3, corroborates his conclusions.

Yet another major change happened in the electricity sector in the 1950s: the emer-
gence of higher voltage transmission lines. The nineteenth century inventors who first
began to harness electricity to useful purposes did so by putting their small generators
right next to the machines that used electricity. The development of the A.C. system
allowed power lines to transmit electricity over much longer distances. In 1896, for
instance, an eleven-kilovolt A.C. line was built to connect a hydroelectric generating
station at Niagara Falls to Buffalo, twenty miles away. From then on, the voltage of
typical transmission lines grew rapidly.

Nevertheless, until 1950, the number of circuit miles of high-voltage transmission
lines - 230 kilovolts and above - was extremely small in the U.S. That number more
than tripled to over 60,000 circuit miles in the 1960s (Brown and Sedano, 2004). This
was a huge expansion: approximately 40 percent of all high-voltage transmission lines
installed in the U.S. at the end of the twentieth century had been constructed in the
1950s and 1960s. Such developments gave utilities access to ever more distant power
sources, further reducing the appeal of cheap local hydroelectricity4.

Advances in hydropower, steampower, and transmission lines all contributed to the
4In subsection 7.2, I provide empirical evidence on the advantage of cheap local hydropower using

historical data.
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rise of the power sector. At first, private electric utility companies dominated the mar-
ket. The proliferation, consolidation, and complexity of such companies coincided with
a number of financial and securities abuses, sometimes inflating costs that were passed
through to the retail customers. As a response, "Georgia, New York and Wisconsin
established State public service commissions in 1907, followed quickly by more than 20
other states. Basic state powers included the authority to franchise the utilities, to reg-
ulate their rates, financing, and service, and to establish utility accounting systems"
(EIA, n.d.).

The foundations for strong federal involvement in the electricity industry were also
established between 1900 and 1930 (EIA, n.d.). First, the electric power industry
became recognized as a natural monopoly in interstate commerce subject to federal
regulation (Supreme Court Ruling of 1927 - see chronology). Second, the federal gov-
ernment owned most of the nation’s hydroelectric resources. Third, federal economic
development programs accelerated, including electricity generation. After 1930, the
federal government became a regulator of private utilities, and a major producer of
electricity. Both regulation and production were aimed at generating less expensive
electricity for customers.

Federal participation also increased because of national efforts to overcome the Great
Depression in the 1930s, and to meet the massive electricity requirements for wartime
production in the 1940s. Considerable funding was provided for the construction of
large federal dams and hydroelectric facilities. This is the period known as the Big
Dam Era (Billington, Jackson and Melosi, 2005). Bonneville Dam, completed in 1938,
was a public works project to help relieve regional unemployment during the Great
Depression. Grand Coulee Dam, opened in 1942, supplied the electricity needed to
produce planes and other war material in support of World War II efforts. Later on,
to meet escalating electricity needs in response to the dramatic expansion of consumer
demand and industrial production throughout the decades of the 1950s, 1960s, and
1970s, many new electric generating facilities, including hydroelectric developments,
were constructed.

From this discussion, it is clear that many hydroelectric projects in the first half of
the century can be characterized as shocks of federal investment to local economies. By
generating benefits in the hosting localities, federal funds created rents to be exploited
by local consumers and firms. Indeed, Billington, Jackson and Melosi (2005) notice
that "power production, in particular, gave dams a great reach well beyond the site of
their construction, transforming hinterland into cities." (p.384).

1.3 Theoretical Framework
In this section, I enrich Greenstone, Hornbeck and Moretti’s (2010) framework with
insights from Duflo and Pande (2007) to illustrate how the installation of hydroelectric
dams could affect the attractiveness of hosting counties through advantage of local cheap
electricity and agglomeration spillovers. I focus on the profitability of firms in hosting
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counties, and I assume factor-neutral spillovers related to the impact of hydro dams.
Then, I provide a case study to show that the framework seems to match historical
evidence.

1.3.1 Simple model

Assume that all firms have a production technology that uses labor, capital, and elec-
tricity to produce a nationally traded good whose price is fixed and normalized to one.
Firms choose their amount of labor, L, capital, K, and electricity, E, to maximize
profits:

maxL,K,T,Ef(A,L,K,E)− wL− rK − sE,
where w, r and s are input prices, and A is a productivity shifter (TFP). I ignore local
land inputs. As noted below, I find little or no effect of dams on the local price of land,
so this simplification is innocuous.

More specifically, A includes all factors that affect the productivity of labor, capital,
and electricity equally, such as technology and agglomeration spillovers of hydro dams,
if they exist. To explicitly allow for such agglomeration externalities, I let A depend on
the population density in a county, N :

A = A(N).

Factor-neutral agglomeration spillovers exist if A increases in N : ∂A/∂N > 0.
Let L∗(w, r, s) be the optimal level of labor inputs, given the prevailing wage, cost

of capital, cost of electricity, and population density. Similarly, let K∗(w, r, s) and
E∗(w, r, s) be the optimal level of capital and electricity, respectively. In equilibrium,
L∗, K∗ and E∗ are set so that the marginal product of each of the three factors is
equal to its price. I assume that capital is internationally traded, so its price r does not
depend on local demand or supply conditions. On the other hand, I allow the wage to
depend on local economic conditions: w(N). In particular, I allow the supply of labor
to be less than infinitely elastic at the county level. Hence, w(N) represents the inverse
of the reduced-form labor supply function that links population density in a county, N ,
to the local wage level, w (Greenstone, Hornbeck and Moretti, 2010).

Regarding the (inverse of the) electricity supply function, I assume it is infinitely
elastic until a threshold EM , and then perfectly inelastic, as shown in figure 1.4. EM

represents the maximum amount of electricity that a county can generate using its
cheapest source of motive power. Since the electricity supply function has a "hockey
stick" shape, this simplifying assumption is not restrictive. Also, I suppose s does
not depend on local economic conditions. Indeed, most U.S. retail electricity prices
are determined through rate hearings where regulated firms can recover rates through
average cost pricing. Recall from the historical section that regulated electric utilities
have been monopolies in their service areas since the beginning of the twentieth century.

The equilibrium level of profits, Π∗, can be written as

Π∗ = f [A(N), L∗(w(N), r, s), K∗(w(N), r, s), E∗(w(N), r, s)]
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−w(N)L∗(w(N), r, s)− rK∗(w(N), r, s)− sE∗(w(N), r, s),

where now I make explicit the fact that TFP and wages depend on the population
density in a county.

Consider the total derivative of profits with respect to a change in electricity price
and in population density:

dΠ∗

ds
=

∂L∗

∂s

(
∂f

∂L
− w

)
+
∂K∗

∂s

(
∂f

∂K
− r
)

+
∂E∗

∂s

(
∂f

∂E
− s
)
− E∗, (1.1)

dΠ∗

dN
=

(
∂f

∂A
× ∂A

∂N

)
−
(
∂w

∂N
L∗
)

(1.2)

+
∂w

∂N

{
∂L∗

∂w

(
∂f

∂L
− w

)
+
∂K∗

∂w

(
∂f

∂K
− r
)

+
∂E∗

∂w

(
∂f

∂E
− s
)}

.

If all firms are price takers and all factors are paid their marginal product, equations
(1.1) and (1.2) simplify to

dΠ∗

ds
= −E∗ < 0, (1.3)

dΠ∗

dN
=

(
∂f

∂A
× ∂A

∂N

)
−
(
∂w

∂N
L∗
)
. (1.4)

Equation (1.3) is just Hotelling’s lemma, implying that profits are higher when local
electricity prices are lower. Equation (1.4) points out that the effect of an increase in
N is the sum of two opposing forces. The first term,

(
∂f
∂A
× ∂A

∂N

)
, represents the effect of

positive agglomeration spillovers, if they exist. Agglomeration spillovers of hydro dams
allow firms to produce more output using the same amount of inputs. On the other
hand, the second term,

(
∂w
∂N
L∗
)
, represents negative effects from increases in the cost

of production, specifically, wages. Intuitively, an increase in N is an increase in the
level of economic activity in the county and therefore an increase in the local demand
for labor (∂w/∂N > 0). Unlike the beneficial effects of agglomeration spillovers, the
increase in factor prices is costly for firms because they now have to compete more for
locally scarce resources5.

Equations (1.3) and (1.4) provide useful guidance on what would happen after in-
stallation of hydroelectric dams. Assuming free entry, firms would move to counties
hosting hydro dams to exploit rents arising from cheaper electricity (dΠ∗/ds < 0).
Supposing imperfect substitution between labor and electricity, firms would hire lots
of workers. This would potentially pull individuals from other locations, leading to an
increase in population density. In the presence of strong agglomeration spillovers, this

5In many standard models, the supply of labor to a location is infinitely elastic in the real wage,
which includes a local component due to the local cost of housing. As discussed below, I find no
evidence that dams affect land prices. In this case, it may be reasonable to assume that ∂w/∂N is
small or even zero.
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increase in population density would trigger a positive feedback mechanism that would
continue attracting both firms and workers to those places (dΠ∗/dN > 0). Strong
spillovers would keep attracting businesses even when cheap electricity had become
available everywhere.

The same story is evident in figure 1.4. There, the dashed curve ES0 represents
power supply in a county with no hydro dams, and the solid curve ES1 the supply in
a county with dams. Because large hydropower facilities generate cheap and abundant
electricity, ES1 has a lower intercept and a larger maximum. If firms had electricity
demand curves like ED, they could exploit rents by moving to counties with dams.
Rents are represented by the shaded trapezoid. Hence, it is reasonable to think that
before 1950 firms would move to counties hosting dams mainly to take advantage of
lower costs of electricity6.

After 1950, technological improvements in thermal power generation and construc-
tion of high-voltage transmission lines made cheap electricity available to most counties
across the country. ES0 and ES1 became just one curve within a grid area, which
is much larger than a county. Currently, there are only three power grids in the U.S.:
Eastern, Western, and Texas. Therefore, rents may have reduced considerably. As a re-
sult, if firms still move to counties with hydroelectric facilities, they might do so to take
advantage of agglomeration spillovers, as shown in equation (1.4). Indeed, dΠ∗/dN > 0
only if spillovers are sufficiently large.

1.3.2 Case Study

To illustrate the predictions of the model with some historical evidence, I provide a case
study about the Bonneville Dam, a hydropower plant built in the 1930s. In an effort
to prevent extortion against the public by giant electric utilities, and to provide em-
ployment during the Great Depression, the U.S. government started large hydroelectric
projects in the West. One of them was the Bonneville Dam, on the Columbia River
between the states of Washington and Oregon. Construction began in June 1934, and
commercial operation was achieved in 1938.

In 1937, Congress created the Bonneville Power Administration (BPA) to deliver
and sell the power from Bonneville Dam (see important historical facts in table 1.1).
The first line connected the dam to Cascade Locks, a small town just three miles
away. Major construction from the 1940s through the 1960s created networks and
loops of high-voltage wire touching most parts of BPA’s current service territory, which
includes Idaho, Oregon and Washington, and small portions of California, Montana,
Nevada, Utah and Wyoming (BPA, n.d.). During that time, Congress authorized BPA

6It is important to mention that, in the context considered here, free entry would not drive electricity
prices up so rapidly. First, the hydroelectric dams were very large: there was capacity enough to
accommodate many additional firms in the local economy. Second, the federal government wanted to
keep electricity prices as low as possible, as discussed in the historical section. Acting as regulator and
major producer, the federal government managed to provide cheap electricity for many years. In the
case study that follows, for example, the price of electricity was kept constant for 28 years.
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to commercialize power from other federal dams on the Columbia and its tributaries.
By 1940, however, the federal pricing policy was set: all federal power was marketed at
the lowest possible price while still covering costs.

The initial wholesale cost of power from Bonneville Dam was $17.50/kW year (0.2
cents/kWh), a rate that was maintained for 28 years. To take advantage of this cheap
and abundant electricity, the Aluminum Company of America (ALCOA) and Reynolds
Metals started to mobilize to build aluminum smelters in the Northwest. ALCOA
purchased property in Vancouver, Washington, in December 1939 and poured the first
ingot on September 23, 1940 (Voller, 2010). Reynolds Metals purchased the property for
a smelter in Longview, Washington, in 1940. By this time, with war raging in Europe,
the U.S. government saw a strategic need to increase aluminum production for the
impending defense effort and agreed to underwrite the construction of the Longview
facility. The smelter opened in September 1941, just in time to meet the aircraft
industry’s increased need for aluminum (McClary, 2008).

Hydroelectric dams brought prosperity to their hosting locations, attracting hun-
dreds of workers. Vancouver, for instance, saw an industrial boom in the 1940s, includ-
ing the Kaiser shipyard and the Boise Cascade paper mill, besides ALCOA (Jollata,
2004). Over the years, though, as many heavy industries left the U.S., Vancouver’s
economy has largely changed to high tech and service industry jobs. The city contains
the corporate headquarters for Nautilus, Inc. and The Holland (parent company of the
Burgerville, U.S. restaurant chain). It seems that nowadays other forces attract people
to Vancouver. They might be agglomeration spillovers.

1.4 Location Decisions and Research Design
In testing for the presence of agglomeration spillovers, a key econometric challenge is
that concentration of economic activity also can be generated by natural advantages.
Specific geographical features that bring people and businesses to an area, such as
detailed topography, resource endowments, and climate, are often unobserved, but they
are problematically correlated to those location decisions.

Therefore, a naive comparison of population growth across counties with distinct
natural endowments is likely to yield biased estimates of agglomeration spillovers. Some
places might attract people because of such externalities, but some others might pull
people in just because of an unobserved geographical attribute. Credible estimates of
spillovers require the identification of locations which are similar in natural advantages.

The first appealing characteristic of my research design is the narrowing of my sam-
ple to encompass counties that are comparable in some natural features. Indeed, I
compare only counties that have similar potential to generate hydroelectricity, as de-
termined by an engineering team in the beginning of the 1990s, at the request of the
U.S. Department of Energy. As is well-known in the engineering literature, suitability
of sites for hydro dams depends on parameters associated with topography and inflow
in the catchment area, morphology of the river valley, geological and geotechnical con-
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ditions, and climate and flood regime. Therefore, I believe my approach controls for
important geographical peculiarities of counties in my sample.

Locations with similar geography tend to have similar economic activity. It would
then be desirable to have temporary shocks that would make some of these areas more
attractive than others. In that case, workers and firms would concentrate in certain
areas even if they could enjoy the same geographical features in other places. After the
interruption of the shocks, affected areas would have higher population density. If they
continued having higher population growth after the cessation of the shocks, this would
be an indication of the presence of agglomeration spillovers.

The second valuable feature of my research design is the use of the appeal of cheap
local hydroelectricity in the first half of the twentieth century as such a shock. Not
every county with suitable dam sites ever had hydropower plants constructed. There-
fore, not every county with appropriate dam sites had access to the cheapest source
of electricity until 1950. By the middle of the century, however, such advantage was
reduced considerably, as argued in previous sections. As thermal power generation was
enjoying major technological improvements, and high-voltage transmission lines were
being constructed, cheap electricity was becoming available to most counties across the
nation.

Obviously, the validity of my research design depends on the assumption that places
with hydro potential where dams were not built provide a valid counterfactual for
similar places where dams were built. This in turn requires a clearer understanding of
why dams were not built in some counties with hydroelectric potential. Prior to World
War I, hydroelectric power development was mostly a private venture. However, with
private hydro plants increasingly interfering with navigation in the East and Midwest,
government regulation evolved to become stricter. Congress initially attempted to
regulate dam construction through the Rivers and Harbors Acts of 1890 and 1899,
requiring that dam sites and plans for dams on navigable rivers be approved by the
U.S. Army Corps of Engineers and the Secretary of War. Then, the Right-of-Way Act
of 1901 gave the Secretary of the Interior the authority to grant rights-of-way over
public lands for dams, reservoirs, waterpower plants, and transmission lines (see table
1.1 for key historical facts related to hydroelectricity in the U.S.).

Although "between 1894 and 1906 Congress issued 30 permits for private dams,
mostly along the Mississippi River" (Billington, Jackson and Melosi, 2005, p.37), the
federal government began to reserve waterpower sites for conservation and wise use,
and to enter the business of hydroelectricity. Indeed, "in the 1903 veto of private
construction of a dam and power stations on the Tennessee River at Muscle Shoals,
Alabama, Roosevelt protected the site for later government development, but he also
helped to establish the principle of national ownership of resources previously considered
only of local value." (Billington, Jackson and Melosi, 2005, p.37).

The General Dam Act of 1906 was, perhaps, the legislation that most discouraged
the entrance of private enterprise into the hydroelectric sector. It "standardized regu-
lations concerning private power development, requiring dam owners to maintain and
operate navigation facilities - without compensation - when necessary at hydroelectric
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power sites." (Billington, Jackson and Melosi, 2005, p.38). Private companies fought
for more favorable legislation, but ended up accepting the permit system. At the same
time, the federal government started to link hydropower to plans for waterway improve-
ments. A 1910 amendment to the 1906 act, for instance, underscored hydropower as
a mechanism for navigation and flood control projects. The connection between hy-
dropower and local development grew considerably until the 1930s and 1940s, when
the federal government gained prominence in the construction of large hydro dams, as
pointed out in the historical section above.

As we can see, the decision of where to construct hydroelectric dams basically
changed from the private sector to the federal government in the first quarter of the
twentieth century. Environmental issues, which became very salient in the second half
of the century, and regional development concerns frequently guided the allocation of
dams throughout the nation. Therefore, counties with higher economic growth potential
have not always attracted more investments than counties with lower growth potential.
Instead, Hansen et al. (2011) argue that politics might have shifted the eventual lo-
cation of major water infrastructure projects away from what otherwise might have
been the optimal location. They provide evidence suggesting that membership in con-
gressional committees for water resources, agriculture, and appropriations, often times
unrelated to population pressures, generally has a positive and significant impact on
the number of dams and the proportion of dams constructed in a state.

As the discussion above attests, my research design may be valid under relatively
mild assumptions. In my main estimation, I end up using the group of counties with
hydropower potential that was not developed as my potential control group. Neverthe-
less, I also control flexibly for climate variables and geographic coordinates, allowing
them to vary with time, and use synthetic control methods to match treated and control
counties more closely (details are presented in section 6). In my robustness checks, I in-
clude other sets of controls such as proximity to transportation networks, and consider
alternative definitions for my potential control group, such as counties with hydropower
potential but no environmental regulations.

A third and last notable feature of my research design is its ability to control for the
effect of direct investment in the estimation of agglomeration externalities. Counties
that hosted hydroelectric dams in the first half of the twentieth century might have had
another important initial stimulus in their local economies, on top of the appeal of cheap
local hydroelectricity. The construction of hydropower plants might have increased the
local stock of capital substantially, and might have attracted workers and firms as well.
Because not all counties with hydro dams had their facilities built at the same time,
I use the counties with dams built after 1950 to refine my identification of spillovers.
Since these counties experienced the same infusion of capital as the counties with pre-
1950 dams, but did not enjoy the advantage of cheap local power, they can be used to
purge the estimates of agglomeration economies of this source of confoundedness.
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1.5 Data Description
My basic dataset is a balanced panel of 154 U.S. counties covering the period from
1900 to 2000. It includes all counties with a hydropower potential of 100 megawatts or
more. This choice of sample ensures that counties are similar with respect to natural
endowments. County-level data on population and employment are drawn from the U.S.
census of population (Haines and ICPSR, 2010; Minnesota Population Center - NHGIS,
2011). Variables of interest include population density and employment density, which
have usually been used as proxies for economic activity. Other data sources include
climate data from Schlenker and Roberts (2009), market access data from Donaldson
and Hornbeck (2012), and hydropower data from INL (1998) and eGRID (2010), as
presented below. To account for county border changes, data are adjusted in later
periods to maintain the 1900 county definitions (Hornbeck, 2010).

A natural measure of hydropower potential is capacity installed in hydro plants plus
undeveloped capacity. A unique feature of my database is the inclusion of a measure
for the undeveloped capacity. It comes from the 1998 U.S. Hydropower Resource As-
sessment, prepared by the Idaho National Engineering and Environmental Laboratory
(INL) for the U.S. Department of Energy (DOE) (Conner, Francfort, and Rinehart,
1998; INL, 1998). A measure of installed capacity comes from the U.S. Environmental
Protection Agency’s Emissions and Generation Resource Integrated Database (eGRID)
for 2007 (eGRID, 2010).

The INL report presents DOE’s efforts to produce a more definitive assessment of
undeveloped hydropower resources within the U.S. No agency had previously estimated
the undeveloped hydropower capacity based on site characteristics, stream flow data,
and available hydraulic heads. Initial efforts began in 1989 and information from the
last state was received in 1998. State agencies such as departments of dam safety, water
resources, environmental quality, fish and game, history, and commerce, contributed in-
formation about hydropower resources within their states. The report summarizes and
discusses the undeveloped conventional hydropower capacity for the 5,677 sites within
the country. It does not include the capacity produced by pumped storage sites. How-
ever, for conventional hydropower, the resource assessment contains site identification
information, geographic coordinates, and crucially the estimated nameplate capacity7.

The eGRID is a comprehensive inventory of the generation and environmental at-
tributes of all power plants in the U.S. Much of the information in this database,
including plant opening years, comes from DOE’s Annual Electric Generator Report
compiled from responses to the EIA-860, a form completed annually by all electric-
generating plants. In addition, eGRID includes plant identification information, ge-
ographic coordinates, number of generators, primary fuel, plant nameplate capacity,
plant annual net generation, and whether the plant is a cogeneration facility.

My sample consists of counties that have either (i) non-cogeneration plants with
installed capacity of 100 megawatts or more, generating electricity only through con-

7Nameplate capacity refers to the intended technical full-load sustained output of a facility.
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ventional hydropower, or (ii) undeveloped sites with estimated nameplate capacity of
100 megawatts or more. Because often capacity builds up gradually, I assume that a
county has hydroelectric dams only when it reaches the 100-megawatt nameplate. I use
the same cut-off to determine the year in which a dam is completed. Counties with hy-
droelectric facilities are my "treated" counties, and those with undeveloped sites are my
"control" counties. Here, "undeveloped" means with no dams at all, or with dams for
purposes other than power generation (e.g., flood control, irrigation, and navigation).

Figure 1.5 displays the sample counties. As we can see clearly, most of them are
located in two regions of the country: South (44.8 percent) and West (38.3 percent). Be-
cause they have similar hydropower potential, they likely have comparable topography.
However, because they are somewhat spread within regions, climate variables (50-year
average rainfall and 50-year average temperature for each season of the year) and ge-
ographic coordinates (latitude and longitude) are included in the empirical analysis to
control for other possible natural advantages.

Table 1.3 reports county statistics for my main outcomes (population and employ-
ment density) and some hydroelectric-related variables. Among the reported statistics,
notice that pre-1950 treated counties have the highest levels of outcomes throughout
the twentieth century, followed by post-1950 treated counties, and then by control coun-
ties. (Figures A1 and A2, in the Appendix, display outcome trajectories from decade
to decade.) Also, observe that most of the hydroelectric dams were constructed from
the 1920s to the 1980s, with a boom around the 1950s. In the beginning of the century,
they were small, then became larger to tap economies of scale in electricity generation,
and finally came to be small again because of environmental concerns. Last, note the
increase in hydroelectricity capacity after installation of the first plants. In some cases,
hydropower facilities were upgraded; in others, new plants were constructed. Because
these changes in installed capacity may affect outcomes directly, I control for them in
my empirical analysis.

1.6 Empirical Framework
In this section, I present my novel empirical approach to obtain impact estimates of
hydroelectric dams in the short and long run and my strategy to estimate agglomeration
spillovers. My new approach is a two-step procedure that combines synthetic control
methods and event-study techniques. In the first step, I use synthetic control analysis to
uncover the effect of dams for each treated county separately and, more importantly, to
construct counterfactuals, which I refer to as "synthetic control counties". In the second
step, I pool all pairs of treated and synthetic control counties, and run an event-study
analysis to find the average treatment effect of dams across all treated counties. My
strategy to estimate agglomeration spillovers follows the intuition provided by figure
1.1 in the introduction.
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1.6.1 Estimation by County - Synthetic Control Analysis

Initially, I estimate the impact of hydroelectric dams on population density for each
treated county separately. I use synthetic control methods (Abadie and Gardeazabal,
2003; and Abadie, Diamond and Hainmueller, 2010), which basically compare the evo-
lution of population density for a treated county to the evolution of the same outcome
for a synthetic control county. The synthetic control county is a weighted average of
potential control counties chosen to approximate the treated county in terms of the
outcome predictors. The evolution of the outcome for the synthetic control county is
an estimate of the counterfactual of what would have been observed for the affected
county in the absence of dam installation. Once treated and synthetic control counties
have similar outcome behavior over extended periods of time before dam installation,
a discrepancy in the outcome variable following installation is interpreted as produced
by the dam itself.

To provide a more formal summary of this approach, suppose that there is a sample
of C + 1 counties indexed by c, among which unit c = 1 is the treated county and
units c = 2 to c = C + 1 are potential controls. Also, assume a balanced panel which
includes a positive number of pre-intervention periods, T0, as well as a positive number
of post-intervention periods, T1, with T0 + T1 = T .

Let Yct be the outcome of unit c at time t. For a post-intervention period t (with
t ≥ T0), the synthetic control estimator of the effect of dam installation is given by
the comparison between the outcome for the treated county and the outcome for the
synthetic control at that period:

Y1t −
C+1∑
c=2

w∗cYct.

LetW = (w2, ..., wC+1)
′ be a (C×1) vector of positive weights that sum to one. Also,

let X1 be a (k×1) vector containing the values of the pre-intervention characteristics of
the treated county, and let X0 be the (k × C) matrix collecting the values of the same
variables for the counties in the "donor pool"8. Abadie and Gardeazabal (2003) and
Abadie, Diamond and Hainmueller (2010) choose W ∗ as the value of W that minimizes

‖X1 −X0W‖V =
√

(X1 −X0W )′V (X1 −X0W ),

where an optimal choice of V assigns weights to linear combinations of the variables
in X0 and X1 to minimize the mean squared error (MSE) of the synthetic control
estimator.

The matching variables in X0 and X1 are meant to be predictors of post-intervention
outcomes, which are not themselves affected by the intervention. Notwithstanding,
using a linear factor model, Abadie, Diamond, and Hainmueller (2010) argue that if the
number of pre-intervention periods in the data is large, the inclusion of pre-intervention

8"Donor pool" is defined as the set of potential control counties out of which the synthetic control
unit is constructed.
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outcomes in X0 and X1 helps control for unobserved factors affecting the outcome of
interest as well as for heterogeneity of the effect of the observed and unobserved factors.
This approach ends up extending the traditional difference-in-differences framework,
allowing the effects of unobserved variables on the outcome to vary with time. In my
analysis, I use the following matching variables in X0 and X1 : (i) pre-dam log of
population density up to the year before installation, (ii) dummies for the four regions
of the country (Northeast, Midwest, South, and West), (iii) cubic function in latitude
and longitude, and (iv) 50-year average rainfall and 50-year average temperature for
each season of the year.

A byproduct of the synthetic control estimation is the construction of synthetic
control counties. Using the weights that minimize the MSE of the synthetic control
estimator, I generate a counterfactual for each treated county in my sample. Each
counterfactual, or synthetic control county, represents a weighted average of the counties
contained in the donor pool. Hence, it has outcomes and characteristics representing
weighted averages of outcomes and characteristics, respectively, of the originally defined
control counties. In the end, I obtain a pair of treated and synthetic control counties
for each county hosting hydroelectric dams.

1.6.2 Pooled Estimation - Event-Study Analysis

To provide an average estimate of the impact of hydroelectric dams on population
density, with dams built in different decades, I pool all pairs of treated and synthetic
control counties, and use an event-study research design (e.g., Jacobson, LaLonde, and
Sullivan, 1993; McCrary, 2007; and Kline, 2012). An event-study analysis can recover
the dynamics of the impact of those dams in the short and long run, and test whether
hydro dams were constructed in response of county-specific trends in population density.
I follow Kline’s (2012) exposition of such an approach here.

Consider the following econometric model of population density:

Yct =
∑
y

βyD
y
ct + αc + γrt + Z

′

cφt +X
′

ctλ+ εct, (1.5)

where Yct is the log of population density in county c in calendar year t, αc is a county
effect, γrt is a region-by-year fixed effect, Zc is a vector of time-invariant county char-
acteristics (cubic function in latitude and longitude, and 50-year average rainfall and
50-year average temperature for each season of the year) whose coefficients are allowed
to vary in each year, Xct is a vector of time-varying county attributes (cubic function
in dam size and in capacity of thermal power plants), and εct is an error term that
may exhibit arbitrary dependence within a county but is uncorrelated with the other
right-hand side variables9.

The Dy
ct are a series of event-time dummies that equal one when dam installation is

y years away in a county. Formally, we may write

Dy
ct ≡ I[t− ec = y],

9The reason for this exact specification will be clear in section 7, subsection "Specification Issues".
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where I[.] is an indicator function for the expression in brackets being true, and ec is
the year a dam is installed in county c.

Thus, the βy coefficients represent the time path of population density relative to the
date of dam installation, conditional on observed and unobserved heterogeneity. If dams
are randomly assigned to counties, the restriction βy = 0 should hold for all y < 0. That
is, dam installation should not, on average, be preceded by trends in county-specific
population density. Because not all of the β’s can be identified due to the collinearity of
D’s and county effects, I normalize β0 = 0, so that all post-installation coefficients can
be thought of as treatment effects. Lastly, I impose the following endpoint restrictions:

βy =

{
β, if y ≥ 80
β, if y ≤ −80,

which simply state that any dynamics wears off after eighty years. This restriction helps
to reduce some of the collinearity between the region-by-year and event-time dummies.
As explained in Kline (2012), because the sample is unbalanced in event time, these
endpoint coefficients give unequal weight to counties installing hydro dams early or
late in the sample. For this reason, I focus the analysis on the event-time coefficients
falling within an eighty-year window that are identified off of a nearly balanced panel
of counties.

Reweighting/Matching Empirical Strategy

My two-step procedure to obtain impact estimates of hydroelectric dams can be seen as
a reweighting/matching strategy to estimate treatment effects that accounts for time-
varying unobserved heterogeneity. First, I find a synthetic control unit for each treated
county using synthetic control methods. As discussed above, a synthetic control is a
weighted average of potential control counties that replicates the counterfactual out-
come that the treated county would have experienced in the absence of the treatment
(dam installation). Recalling that time-varying unobserved heterogeneity is taken into
account in the estimation of the synthetic-control optimal weights (Abadie, Diamond
and Hainmueller, 2010), synthetic control counties represent reweighted aggregations
of the originally defined control counties that account for time-varying unobserved het-
erogeneity.

Second, I match each treated county with its corresponding synthetic control to
generate the sample with which I run the event-study analysis. Because synthetic
controls are objects intrinsically associated with their treated counterparts, I conduct
hypothesis testing using standard errors clustered at the case level, where a case is a
pair of a treated and its corresponding synthetic control county10.

10In Appendix C, I discuss an alternative approach to this reweighting-matching strategy. I consider
the "synthetic propensity score reweighting".
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1.6.3 Agglomeration spillovers

Having described my methodology to estimate the effects of hydroelectric dams on
population density over a long period of time, I present my strategy to uncover lower
bound estimates of agglomeration spillovers. As exemplified in the introduction, my
measure of spillovers is the growth in population density in pre-1950 treated counties
over and above (i) the growth experienced by them until 1950, which is mostly due
to the advantage of cheap local hydroelectricity, and (ii) the growth experienced by
post-1950 treated counties, which probably results from changes in stock of capital,
given the attenuation of the appeal of cheap local hydropower in the second half of the
twentieth century. Hence, this measure reflects the dynamics of population growth that
might arise when the effects of cheap electricity and direct investment fade away. It
represents a lower bound for the agglomeration spillovers of pre-1950 dams because the
subtraction of the impact of post-1950 dams eliminates not only the effects of changes
in stock of capital, but also any potential agglomeration effects of those dams.

Although my measure of agglomeration economies is easily illustrated in figure 1.1,
it can be less clear when I average it across pre-1950 treated counties because of different
dam completion dates. For any number of years y after dam installation, I can express
it as

ÂSy = β̂CTB1950
y − ĜCTB1950until1950 − β̂CTA1950y , (1.6)

where β̂CTB1950
y is the coefficient of an event-time dummy for Counties Treated Before

1950 (CTB1950), Ĝ is the estimate of the average growth of population density from
the time of dam installation until 1950 for CTB1950, and β̂CTA1950y is the coefficient of
an event-time dummy for Counties Treated After 1950 (CTA1950).

To accommodate treated counties with hydroelectric plants built in different decades,
Ĝ is a weighted average of the impact of dams up to forty years after installation of the
facilities, depending on the county-specific completion date. That is,

ĜCTB1950until1950 = (d1910s ∗ β̂40) + (d1920s ∗ β̂30) + (d1930s ∗ β̂20) + (d1940s ∗ β̂10), (1.7)

where d19_0s is the number of counties with dams built in a specific decade.

1.7 Results
In this section, I present two sets of results. First, I discuss the effects of hydro dams
case by case for a representative group of treated counties. These are my county-specific
estimates, found through synthetic control methods. Then, I discuss the average impact
of hydroelectric facilities for all treated counties in my sample. These are my pooled
estimates, arising from event-study analyses. The evidence of agglomeration spillovers
is examined within this last subsection.
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1.7.1 Synthetic Control Approach: County-Specific Estimates

Pre-1950 Dams

Emblematic Case. In figure 1.1, I have introduced the synthetic control estimator
for Blount County, Tennessee, where Calderwood Dam was installed in the 1930s. In
that figure, population density grows rapidly from dam completion until 1950, and then
slows down afterwards. Had the dam not been constructed, there would have been just
slight growth after 1930s, probably due to the Great Depression. Therefore, the impact
of the hydropower plant until 1950 was approximately 0.40 log points (49 percent).
From 1950 to 2000, the effect was roughly 0.50 log points (65 percent). This second
number is also an approximate measure of agglomeration spillovers for Blount County,
since the advantage of cheap local hydroelectricity weakened around 1950.

No Agglomeration Economies. Figure 1.6, panel A, displays a case of strong
short-run effect of hydroelectric facilities, but almost no agglomeration economies. From
completion in the 1930s until 1950, Norris Dam induced growth of approximately 1.17
log points (223 percent) in population density of Anderson County, Tennessee, relative
to the counterfactual. Despite this enormous short-run impact, Anderson County grew
only 0.12 log points (13 percent) afterward. Thus, the dam generated virtually no
agglomeration externalities once cheap electricity spread around the country.

Reversion. A disturbing result of a public investment is illustrated by Hawks
Nest Dam, installed in the 1930s in Fayette County, West Virginia. Following dam
completion, the county experienced a growth of almost 0.15 log points (16 percent)
in population density relative to its counterfactual, as shown in figure 1.6, panel B.
Nevertheless, in the second half of the twentieth century, when the appeal of cheap
local hydroelectricity became attenuated, that trend reversed and the county had a
drop of 0.45 log points (36 percent) in population density. This is an emblematic case
of lack of path dependence. Once the advantage of cheap local power reduces, and
capital depreciates, people fly away.

Constant Growth. An interesting outcome is the one exemplified by Travis
County, Texas, which had Mansfield Dam (formerly Marshall Ford Dam) constructed
in the 1940s. As displayed in figure 1.7, panel A, once the dam was built, the county
embarked on a stable path of population density growth, with a rate that remained
constant until the end of the twentieth century. In the first decade, Travis County
expanded nearly 0.39 log points (48 percent) relative to its counterfactual. From 1950
to 2000, that trend did not become flatter, and the county grew approximately 1.07 log
points (191 percent). From a local perspective, this is what every policymaker would
like to witness. After the initial push, agglomeration spillovers kicked in vigorously,
producing a sustainable dynamic of growth.

Indifference. An unattractive situation from a policymaking point of view is the
one portrayed by Fort Loudoun Dam, built in the 1940s in Loudoun County, Tennessee.
The trajectories of population density of treated and synthetic control counties, shown
in figure 1.7, panel B, do not differ significantly after the installation of the plant. Ap-
parently, the county would have grown steadily even without the hydropower facilities.
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Timing of Attenuation of Cheap Local Power Advantage

In the emblematic example of figure 1.1, the path of population density flattens out in
1950. As discussed in the historical section, this might be a good estimate of the period
in which the appeal of cheap local hydroelectricity started to fade away. However,
most of the high-voltage transmission lines were constructed in the 1950s and 1960s,
and thermal efficiency increased gradually from the 1940s to the 1960s, as displayed in
figure 1.2. So it is possible that some counties experienced the compression in growth
rates earlier or later than 1950. Indeed, figure 1.8 presents two emblematic cases of such
possibilities. Haywood County, North Carolina, for instance, witnesses the flattening
in 1940, just a decade after Walters Dams was completed. San Bernardino County,
California, on the other hand, sees its growth rates in population density reduce only
in 1960, two decades after Parker Dam had been completed. Therefore, the use of 1950
as the turning point of the attenuation of the advantage of cheap local hydroelectricity
must be seen as an approximation only.

Post-1950 Dams

Figures 1.9 and 1.10 display the dynamics of population density for four counties where
hydroelectric plants were installed in the second half of the twentieth century. These
cases illustrate the typical effects that I find in my analysis with post-1950 dams:
moderately positive, small but positive, nonexistent, and somewhat negative.

First, consider the case of Lewis County, Washington, which had both Mayfield
Dam and Mosyrock Dam constructed in the 1960s (Figure 1.9, Panel A). Notice that
the initial jump in population density, representative of the impact of pre-1950 dams,
was relatively small here: around 0.16 log points (17 percent) relative to the coun-
terfactual, after a decade. This small effect seems to reinforce hydroelectricity as an
advantageous local attribute in the first half of the century. Moreover, it indicates that
direct investment might also play a role in generating growth following dam completion.
The impact grew gradually to nearly 0.35 log points (42 percent) in 2000. It is quite
possible that some agglomeration spillovers are present here, over and above the effect
of changes in stock of capital, but I cannot separate them out.

In the second case (Figure 1.9, Panel B), the initial impact is even smaller, and
potential agglomeration externalities look negligible. Indeed, after installation of Ke-
owee Dam in the 1970s, Pickens County, South Carolina, grew only approximately 0.09
log points (10 percent) in the first decade. Subsequently, the growth was minimal. In
2000, three decades after dam completion, the impact was just under 0.17 log points
(18 percent). Therefore, agglomeration economies seem insignificant.

The third case, of Detroit Dam (Figure 1.10, Panel A), concluded in the 1950s in
Marion County, Oregon, shows no effect at all. It appears that the county would have
grown as much as it did without the hydro plant. Lastly, the fourth case (Figure 1.10,
Panel B) depicts a decrease in population density. After completion of Roanoke Rapids
Dam, in the 1950s, and Gaston Dam, in the 1960s, people started to leave Halifax
County, North Carolina. Part of such population decline might be due to displacement,
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but it seems odd that the county had not recovered even its pre-dam level of population
density as of 2000.

Distribution and Heterogeneity of County-Specific Dam Impacts

The cases mentioned above illustrate reasonably well typical dynamics of population
density growth in my sample. To provide a summary of all counties, I plot the dis-
tribution of pre-1950 dam effects in figure 1.11, and of post-1950 dams in figure 1.12.
When we examine each column of figure 1.11, we can see clearly that the distribution
of impacts of hydroelectric plants is shifting to the right. This movement happens de-
spite the attenuation of the appeal of cheap local hydroelectricity and the fading of the
direct investment effect. It is then quite plausible that agglomeration spillovers kick in
at some point, and give rise to such a path dependence.

Figure 1.12, on the other hand, portrays a rather different story. Each column
shows a distribution of dam effects somewhat inert around zero even after fifty years.
This observation reinforces the idea of cheap local hydroelectricity as a driving force of
concentration of economic activity and subsequent agglomeration externalities.

Besides allowing me to plot the distribution of effects, county-specific estimates give
me the possibility of analyzing the heterogeneity of dam impact in a very simple and
direct way. All that is necessary is to run panel data regressions of dam effects on
characteristics of dams or locations hosting them, for example, controlling for years
relative to dam completion. Doing so, I find that pre-1950 dam effects are, on average,
nearly 6 percent stronger (coefficient: 0.0575; s.e.: 0.0210) when dam size at completion
is a hundred megawatts larger. In my sample, dam size at completion ranges from one
to approximately nine hundred megawatts for pre-1950 dams. On the other hand, I
do not find any statistically significant heterogeneity regarding population density a
decade before dam completion (coefficient: -0.0499; s.e.: 0.0385).

1.7.2 Event-Study Analysis: Pooled Estimates

Short- and Long-Run Impact of Hydro Dams

When I pool all pairs of treated and synthetic control counties and estimate equation
(1.5), I find quite interesting results11. First, the timing of dam installation appears
to be crucial to the pattern of observed effects. Hosting hydropower facilities in the
first half versus the second half of the twentieth century means enjoying a period of
great prosperity versus no detectable changes, as depicted in figure 1.13 and table 1.4.
Indeed, counties with pre-1950 dams experience average increases in population density

11I discuss my results using the group of synthetic control counties. As explained in the methodology
section, because both observed and unobserved heterogeneity are taken into account in the estimation of
synthetic controls, and are allowed to vary flexibly over time, the comparison between treated counties
and these controls might provide a more accurate estimate of the treatment effect. Nevertheless, for
comparison purpose, I present results using the originally defined control counties as well. Both sets
of estimates are shown side-by-side in tables and figures.
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of approximately 0.41 log points (51 percent) after 30 years12, and 0.87 log points
(139 percent) after 60 years, as shown in table 1.4. On the other hand, counties with
post-1950 dams experience no statistically significant effects.

Second, the enormous magnitude of the impact of hydroelectric plants seems some-
what remarkable. On average, county sizes more than double five decades after dam
completion. Actually, population density grows nearly 0.79 log points (120 percent) af-
ter 50 years of pre-1950 dam installation. Third, the difference in short- and long-term
effects is revealing. The 30-year estimate presented above is less than half its 60-year
counterpart. This suggests that the assessment of large infrastructure projects does
require understanding of long-run effects, as advocated by Kline (2010). The compre-
hensive report of the World Comission on Dams, in 2000, does provide some evidence
of long-term effects of a few dams around the world, but my study seems to provide
the first systematic evaluation of impact of dams in the long run. Fourth, and last, the
strength of economic growth in the long run looks rather surprising. The annualized
growth rate of population density is roughly 1.6 percent in the first 40 years, and still
1 percent in the following 40 years. This might indicate the presence of either slow
adjustment of capital stock to shocks or strong agglomeration economies. Below, I pro-
vide evidence that agglomeration spillovers may explain a great part of the late growth
in population density.

Specification Issues

The first specification that I estimate in this study is equation (1.5), but without Xct.
Such specification, which I refer to as the "basic specification", includes event-time
dummies, county effects, region-by-year fixed effects, and time-invariant county char-
acteristics (cubic function in latitude and longitude, and 50-year average rainfall and
50-year average temperature for each season of the year) interacted with year effects.
Because this set of covariates does not seem enough to eliminate all pre-treatment
trends, as evident in table 1.5 and in figure 1.14, I add controls for dam size to the
basic specification. As explained in section 5, dams above the 100-megawatt cutoff still
differ in size, and might expand over time. When I include a cubic function in dam
capacity, the post-treatment estimates remain unchanged, and the coefficients of such
controls are statistically insignificant. What seems to drive the effects of hydro dams
is timing, not size. However, the inclusion of controls for dam size does remove any
pre-treatment trends.

Next, I add controls for the size of thermal power plants present in my sample
counties. My concern is that counties with lower hydropower potential might respond

12Duflo and Pande’s (2007) pioneer study of the impact of large irrigation dams on agricultural
production and poverty rates in India provides estimates over a time span of only three decades.
Notwithstanding, their work produces credible estimates of the impact of irrigation dams. Instead
of just comparing outcomes of districts with and without irrigation dams, they use variation in dam
construction induced by differences in river gradient across districts within Indian states to obtain
instrumental variable estimates.
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to this natural constraint by building fossil fuel and/or nuclear power plants. In that
case, the impact of hydro dams would be underestimated. My estimates do increase
when I include such controls, but just a little bit.

Also, I add controls for the interaction of year effects with three county-specific
measures of market access in 1890: mileage of railroad tracks, distance to closest wa-
terway, and log of market access as estimated by Donaldson and Hornbeck (2012). One
could argue that my control group, while appealing in some respects, does not necessar-
ily have the same natural advantages simply because they have the same hydropower
potential. A concern will be that if a county has good hydro potential and is near a
river or a rail line, the value of installing hydroelectric facilities there would be higher
because then local manufacturers could easily ship out their products. That could lead
to bribes and political deals that would get the dams built in those places, and not in
isolated places where, even if a dam was built, it would be hard to get manufacturers
to move in. In such case, the impact of hydro dams would be overestimated. After con-
trolling for pre-dam proxies of market access, my post-dam estimates do decrease, but
not significatively. However, pre-treatment trends seem to be slightly more pronounced
than in the previous specification.

Lastly, I check how state-by-year fixed effects versus region-by-year fixed effects
would change my findings. One can argue that most energy policies are made at the
state level, so the impact of hydro dams may reflect only state-specific effects. As
evident in the chart with original control counties, this is not the case here. (I could
not run this specification with the synthetic control group because there were fewer
observations than parameters to be estimated.) In the end, the specification that I use
to report my findings throughout the paper - my main specification: equation (1.5) in
the text - is the one with region-by-year fixed effects, controls for dam size, and controls
for capacity of thermal power plants.

Placebo Tests

In order to check whether my research design is capturing the impact of hydroelectric
dams rather than the effect of some unobserved intervention, I run placebo tests. The
estimated impact of dams would be undermined if I obtained effects of similar or even
greater magnitudes in cases where/when the intervention did not take place (Heckman
and Hotz, 1989; Abadie and Gardeazabal, 2003; Bertrand, Duflo, and Mullainathan,
2004; and Abadie, Diamond and Hainmueller, 2010). Therefore, I pool all counties
and select randomly treated before 1950, treated after 1950, and controls, and redo
my analysis fifty times. For artificially treated counties, I also set the year of dam
completion at random.

The estimated effects of artificial treatments are shown in figures 1.15 and 1.16.
For comparison purposes, I plot the impact of the real treatment as well. As we can
see clearly, the effect of pre-1950 hydro plants in counties that actually hosted them
are distinguished from the placebo effects. This effect is higher than any other effect
in figure 1.15. On the other hand, the impact of post-1950 dams is completely mixed
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with placebo impacts. These pieces of evidence reinforce the importance of pre-1950
hydroelectric dams in driving my results.

Evidence on the Advantage of Cheap Local Hydroelectricity

The difference in findings based on the timing of dam installation might be due to
the appeal of cheap local hydroelectricity in the first half of the twentieth century, as
discussed in the historical section. In fact, electricity was much cheaper in counties
hosting pre-1950 dams than in counties with hydropower potential but no hydroelectric
facilities. When I regress the log of the unit value of electricity purchased by manu-
facturing in 1947 (Bureau of the Census, 1949) on a dummy for pre-1950 treatment,
controlling for state fixed effects, a cubic function on latitude and longitude, and 50-
year average rainfall and 50-year average temperature for each season of the year, I find
a coefficient of approximately -0.60 (s.e. 0.22). This means that electricity price was
roughly 45 percent lower in pre-1950 treated counties relative to controls. This was not
the case, however, for counties which had hydropower plants constructed only in the
second half of the century. The estimated coefficient for the post-1950 treatment in
a regression similar to the one described above was not statistically significant (-0.28,
with s.e. 0.34)13.

Indirect evidence that may reinforce cheap electricity as the force driving my results
comes from the dispersion of prices across counties. If electricity could be transmitted
costlessly from suppliers to consumers, and electricity markets were nationally compet-
itive, then we would observe no difference in prices over the country. Because there was
no major change in regulation around the middle of the century, variations in disper-
sion in that period might be associated with transmission costs. The standard deviation
of the log of the unit value of electricity purchased by manufacturing decreased from
nearly 0.46, in 1947, to 0.38 (Davis et al., forthcoming), in 1972. As mentioned in the
historical review, most of the high-voltage transmission lines were built in the 1950s and
1960s, so this 17 percent drop in the standard deviation may reflect a higher degree of
spatial interconnection of the electrical grid. Thus, improvements in the power network
may help explain the difference in the effects of pre-1950 versus post-1950 hydro dams.

Agglomeration Spillovers

The effects of hydroelectric dams long after dam completion suggest that economic
growth may be amplified by additional forces such as agglomeration spillovers. The
installation of large hydropower facilities combined with the local appeal of hydro-
electricity in the first half of the twentieth century might have induced a process of
cumulative causation in counties hosting pre-1950 dams. The initial investments and

13I run similar regressions using electricity prices in 2000, constructed from data available from the
Energy Information Administration (EIA) form 861, as in Kahn and Mansur (2012). Relative to the
control group, neither pre-1950 nor post-1950 treated counties have lower prices that are statistically
significant. For pre-1950, the coefficient of the dummy of treatment is approximately -0.10 (s.e. 0.06),
and for post-1950, it is nearly -0.07 (s.e. 0.05).
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the resulting cheap electricity might have set in motion a chain reaction with multiple
changes in population density.

As illustrated by figure 1.1, and described in the methodology, in order to pro-
vide evidence of agglomeration economies I make two simplifying assumptions. First, I
attribute any growth in population density until 1950 to the advantage of cheap local
hydroelectricity. Second, I suppose that the effects of post-1950 dams are driven mostly
by changes in the stock of capital associated with dam installation, and, potentially,
small agglomeration externalities. Hence, a lower bound of agglomeration economies
can be found by subtracting any impact of post-1950 dams from the post-1950 popula-
tion density growth of counties hosting pre-1950 dams.

Figure 1.17 displays the impact of pre- and post-1950 dams in the top charts, and
the difference of those effects in the bottom charts14. The dotted line in the bottom
charts represents the growth of population density from the completion of pre-1950 dams
until 1950. Therefore, the lower bound of agglomeration spillovers (or the magnitude
of "pure" agglomeration externalities) is up to 45 percent (0.37 log points) five decades
after dam installation. The advantage of cheap local hydroelectricity might explain most
of the concentration of economic activity in the first 20 years after dam completion.
Subsequently, spillovers seem to kick in, and may account for roughly 47 percent of the
50-year impact of hydroelectric dams.

My lower bound for agglomeration economies seems to be very large compared to
other estimates in the literature. For instance, Greenstone, Hornbeck and Moretti
(2010) find that, five years after the opening of a Million Dollar Plant, incumbent
plants’ TFP is 12 percent higher in hosting counties. Thus, my estimate appears to
be almost four times larger than theirs. Most of the difference, however, is due to the
time horizons of our analyses. Theirs is a short-run estimate, mine is a long-run one.
When I consider the lower bound nearly a decade after spillovers kick in, my estimate
is around 11.5 percent (0.11 log points), which is close enough to theirs. (My estimate
then becomes 34 percent (0.29 log points) after two decades of prominence of spillovers,
and 45 percent (0.37 log points) after three decades.)

Potential Mechanism: Manufacturing

Although I have described my results in terms of population density, I find similar
patterns for employment density. As depicted in figure 1.18, and reported in tables 1.4
and 1.6, the effects of hydroelectric dams on population and employment are closely
related, but there is a lot of heterogeneity in the impact on different sectors of the econ-
omy. In fact, the sectoral decomposition in table 1.7 and figure 1.18 shows construction
and trade (trade defined as wholesale plus retail) with the weakest effects, manufac-
turing and agriculture with intermediate effects, and other sectors with the strongest
effects. "Other sectors" consists basically of the nontradable sector of local economies.
It includes employment in industries that provide local goods and services such as real
estate, cleaning services, legal services, medical services, and personal services.

14Differences are shown in columns 5 and 6 of table 1.4.
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The patterns of sectoral employment after dam installation seem to make sense. In
many hydro projects, dams serve multiple purposes such as navigation, flood control,
irrigation and hydropower. So, it is expected that agriculture benefits from them,
especially in the West, where agricultural production depends heavily on irrigation.
It is also not surprising that construction goes up when dams are being built, and
down afterwards. The dynamics of employment in trade is the only puzzling result. In
general, it follows the pattern of other industries in the nontradable sector. The strong
long-run impact on the nontradable sector might reflect a local multiplier induced by
manufacturing growth, which in turn might have been driven by cheap hydroelectricity.
Indeed, Hornbeck and Keskin (2012) provide evidence that agricultural production does
not appear to generate local economic spillovers. On the other hand, Moretti (2010)
finds that, for each additional job in manufacturing in a given city, 1.6 jobs are created
in the nontradable sector in the same city. My results indicate a local multiplier of
1.5 five decades after dam completion, very close to Moretti’s estimate. Therefore, it is
likely that the main mechanism generating agglomeration spillovers is the concentration
of manufacturing next to hydropower plants.

Neighboring Counties

Because hydroelectricity seems to be the main driving force of agglomeration, and
power could be transmitted to neighboring areas at low cost, even in the first half of
the twentieth century, we should see some impact of hydroelectric dams in contiguous
counties as well. Figure 1.19 displays the short- and long-term effects of dams in
contiguous counties. As expected, they look strong enough: they represent more than
half of the effects in the treated counties 10 years after dam completion, nearly a third
50 years after, and roughly a fifth 80 years after. Detailed estimates are presented in
table 1.8.

Notice, however, that there is a steep upward trend before dam completion. This
might be due to two things. First, my definition of completion refers to the point at
which a dam reaches 100 megawatts of capacity. So, it is possible to observe some effects
in decades before "completion", especially if hydropower facilities are expanded step-
by-step. Indeed, it is common to see a generator being installed in a year, and the next
ones years later. Second, during dam construction population might be temporarily
or permanently displaced, and then economic activity might flourish in neighboring
locations. Upon dam completion, though, people might return to their original counties,
flattening the trend.

Smaller Hydro Dams (30-100 Megawatts)

The focus of my analysis is large hydroelectric dams: 100 megawatts or more of capacity.
The goal of my study is to estimate the impact of new, independent hydropower plants
on the economic activity of local economies. Plants smaller than 100 megawatts were
excluded because they tend to be built in connection with existing industrial facilities.
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It is interesting, however, to check how the results change when we use these smaller
dams as treatment. It can give us some insights about potential nonlinearities of the
agglomeration effects. If larger dams induce proportionately larger effects than smaller
dams, one might infer that larger interventions are more efficient than smaller ones
from the point of view of a social planner.

Table 1.9 reports and figure 1.20 plots the results of my main analysis along with
the effects of smaller dams. I estimate the impact of smaller plants using two different
groups of controls: (i) original control counties, and (ii) counties with hydropower po-
tential between 30 and 100 megawatts but with no hydroelectric facilities. The analysis
with the first control group reveals effects proportionally larger than the difference in
average dam size. The average size of smaller dams is a quarter of the average size
of larger dams, but the impact of smaller dams is up to half of the impact of larger
dams. This suggests the presence of nonlinear agglomeration effects but with direction
opposite to that expected. Taken seriously, this would imply diminishing agglomera-
tion returns to investments in hydropower plants. Nevertheless, when I use the second
control group, which makes treated and control counties more comparable in the es-
timation, I find effects proportional to the difference in average dam size. Therefore,
larger dams appear not to induce larger agglomeration effects. If anything, potential
nonlinearities indicate dispersion forces prevailing against agglomeration.

Tennessee Valley Authority (TVA) versus Non-TVA Counties

As we can see in figure 1.5, many counties treated before 1950 are located in the TVA
region. The TVA was one of the most ambitious place-based economic development
policies in the history of the U.S. It was created in the 1930s to boost economic activity
in the region by investing in large scale infrastructure programs, particularly hydroelec-
tric dams, and in an extensive network of new roads, canals, and flood control systems.
Kline and Moretti (2012) conduct an evaluation of the dynamic effects of the TVA
on local economies. They find that it led to short-run gains in agricultural employ-
ment that were eventually reversed, but impacts on manufacturing employment that
continued to intensify well after the program’s subsidies had lapsed.

Given that my results mirror the amplifying effects of the TVA, and that in my
sample a third of counties with pre-1950 dams are situated in the TVA region, one can
argue that my findings are driven by the TVA. One can attribute most of my results to
infrastructure projects not related to hydroelectricity. However, as shown in table 1.10
and in figure 1.21, when I estimate the effects of hydro dams without TVA counties,
the pattern is very similar to the one with the counties all together. Hence, hydropower
may indeed be the main force behind my findings.

All versus No Control Counties with Environmental Regulations

One concern with my impact estimates of hydro dams is that my originally defined
control counties may be subject to environmental regulations. If a county has sites
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suitable for hydroelectric dams, but construction is not allowed by law or by pressure
of civil society, population changes in that county may be severely constrained. As a
consequence, my estimates would be overestimated15.

It is true that most of my originally defined control counties - 78 percent - have
some kind of land regulation aimed at preserving wilderness and wildlife. However,
only two out of 55 would have hydro projects completely forbidden under hydroelectric
licensing rules. Being extremely conservative, and eliminating all control counties with
some environmental regulations from my analysis, I find no significative changes in my
estimates, as shown by figure 1.22 and table 1.11. The number of originally defined
control counties, however, decreases considerably.

To make sure that my results are not driven by environmental constraints in my
originally defined control counties, I redefine my control group to include every county
with hydropower potential above ten megawatts but with no land regulations. Al-
though geographical features of treated and control counties might be less comparable
than before, when both groups had 100 megawatts or more of capacity, this procedure
increases my sample size substantially - from 55 to 192 control counties. Nevertheless,
the new estimates are still within the 95 percent confidence of my main analysis.

Hydroelectric Dams as Big Push?

In order to shed light on the sustainability of the higher steady states reached with
dam installation, I construct an empirical agglomeration function. Basically, I compute
decadal increments of log population density after treatment for counties treated before
1950, and plot a smoothed version of them against time relative to dam completion.
The increments are derived from my short- and long-run estimates, and the smoothing
is done with locally weighted regressions (lowess). Figure 1.23 displays the shape of the
resulting function: concave until approximately 60 years, and positive flat afterwards.
This implies that the rate of population growth decreases as investments depreciate,
but not indefinitely. At a certain point, the declines in that rate stop, and population
continues growing at a smaller constant rate. Given the high degree of agglomeration
spillovers found previously, it is not surprising that local economies tend to keep their
higher/better steady states reached with the help/push of large hydro dams.

1.8 Costs of Environmental Regulations
The economic costs of environmental regulations have been widely debated in the U.S.
Most of the discussion, however, revolves around pollution restrictions that began more
than four decades ago through the Clean Air and Water Acts. Instead, I attempt to shed
light on such costs based on hydroelectric licensing rules. I assume that my originally

15Even more troublesome would be the fact that regulations have become stricter over time. Nev-
ertheless, this has already been considered in the analysis: my empirical strategy takes into account
time-varying unobserved heterogeneity.
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defined "control" counties were, in fact, "treated" with land regulations constraining
hydroelectric projects. Then, I use the effects of hydro dams to infer how much those
counties would have prospered had the regulations not restricted the development of
dams. The forgone prosperity is my measure of the costs of environmental regulations.

Land regulations have been long enacted in the U.S. to preserve wilderness and
wildlife. They have protected the natural habitat of many threatened/endangered
species. At the same time, they have limited the development of new hydroelectric
dams, which are renewable, non-emitting sources of energy, and an important force
pulling economic activity to a location, as found previously. I use a crucial piece of
information from the 1998 U.S. Hydropower Resource Assessment, introduced in sec-
tion 5, to proceed with my analysis. That report provides a list of all land regulations
that reduce the viability of potential hydroelectric sites, as well as the probability of
development of each site based on each regulation.

I focus on the regulations meant to preserve wilderness and wildlife, presented in
Appendix B. I assume that the regulations in place in the 1990s are informally in
effect since the beginning of the twentieth century. In fact, although the designation
of wilderness areas became official only with the Wilderness Act of 1964, preservation
has been carried out by the National Park Service since its creation in 1916 (U.S.
Department of the Interior, 2011). All designated wilderness areas so far are within the
National Park System. Wilderness designation has not added or removed land from the
parks: it has just ensured they are kept free from permanent improvements or human
habitation.

1.8.1 Suitability Factor Determination

A key element of my analysis here is the suitability factor of a potential hydropower
site. Such a factor reflects the probability that environmental considerations might
make a project site unacceptable, prohibiting its development. Suitability factors were
developed by the Idaho National Engineering and Environmental Laboratory (INL),
in conjunction with Oak Ridge National Laboratory staff who are experienced in hy-
dropower licensing cases. Five potential values were selected, as shown in table 1.13.
(The discussion that follows is heavily based on Conner, Francfort, and Rinehart [1998].)

The crucial step in evaluating the environmental suitability of each project site is
to combine the suitability factors for the individual environmental attributes into a
single factor for each project site. This overall suitability factor is an estimate of the
probability of a project’s successful development, considering all the attributes described
in Appendix B. The presence of more than one environmental attribute means that
more than one environmental concern affects a project. The overall suitability factor
should obviously be no greater than the lowest factor for individual attributes, and it
should be less than the lowest factor if multiple significant environmental constraints
are present. For example, if an undeveloped project has both fish values (suitability
factor = 0.25) and wildlife values (suitability factor = 0.25), the cumulative effects of
these two concerns will make its overall suitability even less than 0.25, so an overall
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suitability factor of 0.1 is assigned.
If the environmental suitability factors for individual attributes were truly the proba-

bility of the project’s being developed, then the overall probability of development could
be mathematically calculated. And, if the individual suitability factors were true and
independent probabilities, then the probability of developing the project site because
of environmental concerns would be equal to the product of all the individual factors.
However, the Federal Energy Regulatory Commission’s (FERC’s) licensing process is
not a statistical probability function, and it cannot be assumed that suitability factors
can be handled as independent probabilities (for example, there is a strong correlation
between the scenic, recreational, and fishing values of a stream). The procedure outlined
in table 1.14 is used for assigning overall suitability factors. It was developed by the lab-
oratories mentioned above and assumes that the lowest suitability factor dominates the
likelihood of a project’s development. However, it also considers the reduced likelihood
of development resulting from the occurrence of multiple low suitability factors.

After finding the overall suitability factor for each potential hydropower site, I obtain
the probability of development at the county level. First, I weight the potential capacity
of each site with its own probability, and sum the weighted capacities over all sites in
the county. Then, I divide this weighted sum by the total potential capacity. This
quotient is my county suitability factor.

1.8.2 Cost estimates

To obtain an estimate of the costs of environmental regulations, I crucially use the prob-
ability that development of hydroelectric projects will not happen, which is one minus
the county suitability factor. This probability of non-development is then multiplied
by my estimates of the long-run impact of hydro dams. I assume that the potential
capacity of each control county in my sample could have been installed before 1950,
but part of it was not developed because of the environmental regulations. Recall that
I have supposed that such regulations were informally in effect since the first half of
the twentieth century. In order to provide a conservative estimate of the costs of those
regulations, I further assume that hydropower facilities would have been constructed
right before 1950 had the regulations not been in place. Because I compute the costs
for 2000, I use the effect of hydro dams 50 years after installation.

The estimate that I focus on in this exercise is the impact of hydro dams on em-
ployment density. Hence, the 50-year effect from column 1 of table 1.6 multiplied by
the average wage at the county level in 2000, and weighted by the probability of non-
development, gives us the forgone earnings of the extra residents per square mile that
a large hydropower plant would have attracted. I then multiply this amount by the
land area of each county to get a county-specific estimate of the costs induced by en-
vironmental regulations. My final estimate is just the sum of the county-specific costs.
It is important to mention that, in principle, I could have included the effect of hydro
dams on the average value of farmland in my cost estimate, since it reflects gains of
landowners. However, as shown in table 1.12, that effect is broadly not statistically
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significant at conventional levels.
The point estimate of the 50-year effect of dams on employment density implies an

estimated cost of $6.3 billion (dollars of 2000) for all the 55 controls counties in my
sample. This represents a loss of approximately 133,541 jobs. Decadalized estimates
are $1.3 billion and 26,708 jobs, respectively. They represent a third of a 55-county
decadal equivalent estimate of the effects of air quality regulations on manufacturing
plants in the U.S. found in Greenstone, List and Syverson (2012). Therefore, it seems
that land regulations associated with preservation of the wilderness and the wildlife
also induce sizable costs to regulated entities, but not as large as the costs induced by
air quality regulations.

1.9 Concluding Remarks
How much of the geographic clustering of economic activity is attributable to agglom-
eration spillovers as opposed to natural advantages? I present evidence on this question
using data on the long-run effects of large scale hydroelectric dams built in the U.S. over
the twentieth century, obtained through a unique comparison between counties with or
without dams but with similar hydropower potential. Using a novel combination of
synthetic control methods and event-study techniques, I show that, on average, coun-
ties with dams built before 1950 have population density increased by approximately 51
percent after 30 years, and 139 percent after 60 years, indicating substantially different
short- and long-term effects. This suggests that the assessment of large infrastructure
projects does require understanding of long-run effects, as advocated by Kline (2010).
On the other hand, counties with dams built after 1950 have no statistically significant
effects. I argue that the large difference in the impact of pre- and post-1950 hydro
dams can be accounted for by the attenuation of the advantage of cheap electricity in
the second half of the twentieth century. Until mid-century, the availability of cheap
local power from hydroelectric dams conveyed an important advantage that attracted
industry and population. By the 1950s, however, these advantages were weakened by
improvements in the efficiency of thermal power generation and the advent of high
tension transmission lines.

By using a unique sample of counties with or without hydroelectric dams but with
similar hydropower potential, as determined by a team of engineers at the request of the
U.S. Department of Energy, I hold natural advantages constant and provide evidence
that the persistence and amplification of the dam effects in the long-term is due in great
part to agglomeration spillovers. In fact, my lower bound of agglomeration spillovers is
up to 45 percent five decades after dam construction, representing almost half of the full
effect of hydro dams over the same time span. Interestingly, my short-run estimate of
agglomeration externalities is very close to that of Greenstone, Hornbeck and Moretti’s
(2010). My lower bound nearly a decade after spillovers kick in is around 11.5 percent,
while their estimate five years after the opening of a Million Dollar Plant is 12 percent.

I also find that the estimated short- and long-run effects are highly robust to alter-
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native procedures for selecting synthetic controls, to controls for confounding factors
such as proximity to transportation networks, and to alternative sample restrictions,
such as dropping dams built by the Tennessee Valley Authority or removing control
counties with environmental regulations. I also provide evidence of small local agglom-
eration effects from smaller dam projects, and small spillovers to nearby locations from
large dams.

Given that many counties with hydropower potential but with no hydroelectric
facilities could not develop their dam sites because of environmental regulations aiming
to preserve wilderness and wildlife, I also use the long-run estimates of hydro dams to
obtain a novel estimate of costs of environmental regulations. My estimate turns out to
be sizable, but smaller than recent estimates based on air quality regulations. It is $1.3
billion, or 26,708 jobs, per decade for all the 55 control counties in my sample. This
represents a third of a comparable estimate based on the effects of air quality regulations
on manufacturing plants in the U.S. found in Greenstone, List and Syverson (2012).

This study opens up the possibility of some other research projects. First, a similar
evaluation of short- and long-run impacts can be done with flood control dams. Because
the U.S. Army Corps of Engineers has flood maps available for most of the country, a
control group can be constructed in the same spirit as this paper. Second, further inves-
tigation on the shape of the agglomeration function may be feasible with my database.
Given that the eGRID has information of hydro dams of all sizes, and the INL report
contains hydropower potential of all possible capacities as well, variation in dam size
could be used to identify potential nonlinearities of that function. Third, an analysis of
the tradeoff between land conservation regulations and air quality regulations can also
be done with my dataset. The eGRID also contains information about air emissions
for pollutants such as nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and
nitrous oxide. Thus, it is possible to examine whether land regulations that restrict the
development of new hydroelectric dams, which are renewable, non-emitting sources of
energy, induce electricity generation by highly polluting firms: the conventional fossil-
fuel power plants. These are interesting questions for future research.
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1.10 Appendix

1.10.1 Appendix A: Trends of Population and Employment
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Figure 1.A1. Log Density - 1900-2000

Notes: This figure displays time series of log density of population (panel A) and employment (panel B) throughout the twentieth century.

The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point

for the attenuation of the advantage of cheap local hydroelectricity. In each panel, the solid line with solid circles depicts the dynamics

for counties that have hydroelectric dams built before 1950. The dashed line with hollow squares depicts the dynamics for counties that

have dams built after 1950. Lastly, the thick solid line shows the dynamics of log density for counties in the control group.
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Figure 1.A2. Log Density by Decade Treated - 1900-2000

Notes: This figure displays time series of log density of population (panel A) and employment (panel B) throughout the twentieth century.

The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point

for the attenuation of the advantage of cheap local hydroelectricity. In each panel, the solid lines with solid symbols (circles, squares, and

triangles) depict the dynamics for counties that have hydroelectric dams built before 1950. The dashed lines with hollow symbols (circles,

squares, triangles, and diamonds) depicts the dynamics for counties that have dams built after 1950. Lastly, the thick solid line shows the

dynamics of log density for counties in the control group.
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1.10.2 Appendix B: Description of Environmental Regulations

The assessment report provides information about a handful of environmental, legal,
and institutional attributes associated with land regulations. In my analysis, I use
only the ones directly related to preservation of wilderness and wildlife. They are
summarized/reproduced below.

Wild/Scenic Protection. This attribute identifies project sites that are included
in the federal wild and scenic rivers system, under consideration for inclusion in the
federal system, included in a state river protection program, in a designated wilderness
area, or protected from development under another program. Relatively few sites have
this status, but those that do are highly unlikely to be developed. The suitability factor
assigned to all such projects at undeveloped sites is 0.1. It is highly unlikely that a
project at an existing dam would be on a wild and scenic river since rivers are usually
designated as wild and scenic only if they are free of developments such as dams. A
suitability factor of 0.5 is assigned for such unusual cases.

Wild and Scenic Tributary or Upstream or Downstream of a Wild and
Scenic Location. This attribute is assigned to a project if it is at the upstream or
downstream end of a wild and scenic river reach or is on a tributary of a wild and
scenic river. A project at a developed site would affect a downstream wild and scenic
river if additional alterations to the flow regime resulted. A suitability factor of 0.75 is
assigned for such projects. Projects at undeveloped sites are highly likely to alter the
flow regime and may cause changes in downstream water quality, so a suitability factor
of 0.5 is assigned to undeveloped sites.

Fish Presence Value. A stream reach may or may not have legally protected
fisheries. In either case, however, strong state opposition to new development must
be expected if a valuable fishery resource exists. Relatively high instream flow release
requirements can mitigate the impact on fisheries, but a high instream flow release
would reduce the economic viability of the project. Projects at developed sites could
have some impact, such as increased turbine mortality. A suitability factor of 0.75 is
assigned to projects at developed sites. Development at undeveloped sites could have
a major impact on aquatic habitat through inundation, migration blockage, turbine
mortality, water quality, and altered flows. Some of these can be mitigated, but such
mitigation could be expensive. A suitability factor of 0.25 is assigned to undeveloped
sites.

Wildlife Value. Terrestrial wildlife and wildlife habit are protected by fish and
game agencies that are influential in determining mitigation requirements for hydropower
projects. Development at existing sites would have little effect on wildlife unless reser-
voir pool elevations are altered or construction of major facilities is required. A suitabil-
ity factor of 0.75 is assigned for projects at existing sites. Development at undeveloped
sites could inundate wildlife habitat, and construction would cause a great deal of dis-
turbance. It is difficult to mitigate for such impacts, so opposition to such a project
could be strong. Undeveloped projects are assigned a suitability factor of 0.25.

Threatened and Endangered Fish or Wildlife. The presence of threatened
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and endangered species near a project site requires additional consultations with wildlife
agencies and can result in additional studies and mitigation requirements. The presence
of threatened and endangered fish species may preclude development of new storage
projects because new projects can involve the greatest alteration of aquatic habitat.
Terrestrial threatened and endangered species are unlikely to be highly affected by
run-rivers projects, but storage reservoirs could affect terrestrial habitat. For existing
sites, a suitability factor of 0.75 is assigned when threatened and endangered species
are present. For projects at undeveloped sites, a suitability factor of 0.5 is assigned
when threatened and endangered species are present.

Federal Land Code 104. National Forest or Grassland. These lands are not
legally protected from development, but the managing agency has the right to impose
additional mitigation requirements on projects. A suitability factor of 0.75 is assigned to
projects at existing sites, since these projects typically have fewer impacts. A suitability
factor of 0.5 is assigned for undeveloped sites.

Federal Land Code 105. National Wildlife Refuge, Game Preserve, or Fish
Hatchery. These lands are managed for fish and wildlife habitats, and hydropower
development would almost always be incompatible. A suitability factor of 0.1 is assigned
for such projects.

Federal Land Code 106. National Scenic Waterway or Wilderness Area. These
lands are legally protected from development. A suitability factor of 0.1 is assigned for
such projects.
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1.10.3 Appendix C: Synthetic Propensity Score Reweighting

As an alternative to my reweighting-matching strategy, we can use a propensity score
reweighting approach with weights from the synthetic control method (Abadie and
Gardeazabal, 2003; and Abadie, Diamond and Hainmueller, 2010). I refer to such an
approach as the "synthetic propensity score reweighting". If we treat the synthetic
control weights as non-random, then we can just average the weights each untreated
county gets across the synthetic control estimation of all treated counties and run the
event-study analysis by weighted least squares in the full sample, giving each treated
county a weight of one. Intuitively, the synthetic control weights provide us with a set
of propensity score weights, and we can use them to compute average treatment effects
on the treated.

An advantage to this approach over the reweighting-matching strategy is that we
can easily cluster for more aggregated levels, such as state, in the estimation of standard
errors. In the reweighting-matching case, the "location" of each synthetic control county
is a weighted average of all originally defined control counties. On the other hand, in
the reweighting-matching strategy we do not have to assume non-random weights in
the estimation of standard errors. Each pair of treated and synthetic control counties
is allowed to have arbitrary within-pair dependence, including the one arising from
the uncertainty in the estimation of the synthetic control. Furthermore, because each
synthetic control is matched to its treated county by construction, the comparison
between synthetic control and treated counties becomes much more transparent.

In the table C1 below, I compare four sets of estimates: (i) reweighting-matching
with standard errors clustered at the case level16, as in my main analysis; (ii) standard
event-study with standard errors clustered at the county level (all treated and control
counties are assumed to have weight one); (iii) synthetic propensity score reweighting
with standard errors clustered at the county level; and (iv) synthetic propensity score
reweighting with standard errors clustered at the state level. As we can see, the syn-
thetic propensity score reweighting estimates are similar to the reweighting-matching
ones. Regarding the cluster at the state level versus the county level, observe that
there is a loss of power when using the state level but the long run estimates are still
statistically significant at conventional levels.

16Recall that a case is just a pair of a treated and its corresponding synthetic control county.
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ln(Pop Density) TS TC TC_SPSR_C TC_SPSR_S

(1) (2) (3) (4)

40 years before dam -0.2428 -0.1441 0.1993 0.1993

(0.2365) (0.2740) (0.2771) (0.2497)

30 years before dam -0.2564 -0.1493 -0.0547 -0.0547

(0.1893) (0.1941) (0.2062) (0.1649)

20 years before dam -0.1536 -0.1253 -0.0614 -0.0614

(0.1528) (0.1740) (0.1626) (0.1305)

10 years before dam -0.0398 -0.0337 -0.0248 -0.0248

(0.1445) (0.1544) (0.1267) (0.1080)

10 years after dam 0.1103** 0.0652 0.0603 0.0603

(0.0451) (0.0461) (0.0524) (0.0564)

20 years after dam 0.3063*** 0.1574* 0.2146* 0.2146

(0.0979) (0.0811) (0.1120) (0.1332)

30 years after dam 0.4129*** 0.2207** 0.2962** 0.2962

(0.1131) (0.0942) (0.1332) (0.1749)

40 years after dam 0.6551*** 0.4118*** 0.5194*** 0.5194**

(0.1408) (0.1138) (0.1586) (0.2000)

50 years after dam 0.7897*** 0.5176*** 0.6693*** 0.6693***

(0.1681) (0.1293) (0.1840) (0.2177)

60 years after dam 0.8699*** 0.6036*** 0.7835*** 0.7835***

(0.2047) (0.1514) (0.2179) (0.2494)

70 years after dam 0.9584*** 0.6026*** 0.8759*** 0.8759***

(0.2454) (0.1663) (0.2663) (0.2964)

80 years after dam 1.0494*** 0.6448*** 0.9246*** 0.9246**

(0.3052) (0.2094) (0.3382) (0.3611)

Observations 660 935 935 935

R-squared 0.9837 0.9781 0.9836 0.9836

Table 1.C1. The Impact of Pre-1950 Hydro Dams on Population Density - Comparison of Methodologies

Notes : This table presents the short- and long-run effects of pre-1950 hydroelectric dams on population density.

The estimated coefficients are the b's in equation (5) in the text. They are coefficients of event-time dummies.

"TS" in the labels of the columns represents treatment vs. synthetic control, "TC" treatment vs. control, and

"SPSR" synthetic propensity score reweighting. The synthetic control group consists of synthetic control

counties. Each synthetic control county is a weighted average of the originally defined control counties that

reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced

in the absence of hydro dams. The control group contains the originally defined control counties. Standard

errors are shown in parentheses. In column 1, they are clustered at a case level. A case is a pair of a treated

county and its corresponding synthetic control. In columns 2 and 3, they are clustered at the county level ("C").

In column 4, they are clustered at the state level ("S"). "Observations" reports the number of county-year

observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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Chapter 2

Who to Marry and Where to Live:
Estimating a Collective Marriage
Market Model

2.1 Introduction
Since Mincer (1978)’s seminal work on family migration, many researchers have studied
the implications of the location choices made by couples. A key reason for such long-
lasting interest is the enormous increase in female labor participation over the past four
decades, which has made the dual-career concerns associated with locational choices
more salient. Another important reason is Mincer’s insight that family mobility may
reinforce observed differences in labor market outcomes of men and women. Curiously,
though, few studies treat the household as a collection of agents rather than a single
unit, and deal with spousal bargaining behind locational decisions [e.g., Costa and
Kahn (2000), Lundberg and Pollak (2003), and Gemici (2011)]. Even more surprising,
very few studies try to link locational and marital choices [e.g., Compton and Pollak
(2007)]. As shown in table 2.1, however, the locational choices of couples who are
born in the same state are quite different from those who are not. Marrying someone
from another state substantially reduces the probability that a man or a woman will
live in their own state of birth. In this paper, I develop a framework to study the
joint spouse/location choices in the presence of intra-household transfers and of both
observable and unobservable preferences for location. Secondly, I develop a simple test
to check if in equilibrium spouses can commit to ex-ante Pareto-efficient household
decisions associated with those choices. Thirdly, I analyze potential implications of
(no-)commitment on the observed migration behavior of married individuals.

My theoretical framework is, essentially, a collective marriage market model. It
combines Chiappori’s (1988, 1992) collective approach to modelling households with
Choo and Siow’s (2006) matching model of the marriage market, and Choo, Seitz and
Siow’s (2008a, 2008b) model of the determination of the individual share of household
resources in the equilibrium of the marriage market. I assume that in the marriage
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market potential spouses anticipate utilities from the choice of spouse and location
that reflect the payoffs from a collective household allocation model. As a result, such
framework allows me to test full commitment in intra-household allocations associated
with spouse/location arrangement choices. Indeed, it makes it possible to investigate if
the sharing rule that rationalizes the ex-post equilibrium in the model is identical to the
one that would rationalize the ex-ante Pareto-efficient equilibrium. I borrow the idea
for this test from Mazzocco’s (2007) test of full commitment in household intertemporal
behavior. His basic insight is that, if family members can commit formally or informally
to future plans, only the individual decision power at the time of household formation
affects household decisions. By contrast, in the absence of commitment, such decisions
depend on the decision power in each period. My similar idea here is that, under
full commitment, only a sufficient statistic representing the earnings potential in all
arrangements (e.g., the mean) is relevant to the determination of the sharing rule within
the household. Under limited commitment, on the other hand, arrangement-specific
deviations from that mean also affect the sharing rule. That is, the earnings potential
of the particular arrangement the individual is in also influences the share of resources
he/she can get within the household.

To implement my theoretical framework empirically, I assume a functional form
for the individual indirect utility, and I estimate its key parameters through standard
discrete choice techniques originally developed by McFadden (1974). However, before
estimating my parameters of interest, I must overcome an important data-driven ob-
stacle. While spouses observe the preferences of each other regarding marriage and
locations, researchers do not so. To get over the potentially serious selection problem
in spouse/location arrangement choices arising from the unobservability of preferences,
I extend Olley and Pakes’s (1996) control function approach to a two-dimensional set-
ting. I show that conditional on observed covariates there is a one-to-one relationship
between the observed labor supply choices of the two spouses and the unobserved pref-
erence variables of the two spouses. Then, I use a function of labor supplies plus
covariates to control for unobserved preferences.

I estimate the parameters of the individual indirect utility in three steps. Noticing
that wage, non-labor income, and labor supply are observed only in the arrangement
that individuals have chosen, in my first step I predict these variables for all arrange-
ments using a novel approach to control for self-selection. I estimate outcome equations
using a selection-correction term that is a functional of a parametric function arising
from the multinomial logit structure. Basically, I estimate conditional choice probabili-
ties for all arrangements using a nonparametric sieve logit method [see Bajari, Hong and
Nekipelov (2010)], assuming that spouse’s state of birth and individual’s and spouse’s
preferences for locations are excluded from the outcome equations. Based on the rela-
tionship between unobserved preferences and observed labor supplies mentioned above,
I implement such estimation using labor supplies. Then, I estimate the outcome equa-
tions semiparametrically using a power series approximation for the selection-correction
term [Newey (2009)]. This correction term ends up depending on a simple parametric
function, whose arguments are the predicted conditional choice probabilities. Although
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derived in such a different manner, this selection-correction term turns out to be very
similar to Dahl’s (2002).

With predicted wage, labor supply and non-labor income in hand, I proceed to
the estimation of the parameters of the indirect utility function using a non-linear
conditional logit. Following Olley and Pakes’s (1996), in my second step I replace
the unobserved preference terms of both spouses with a function of labor supply of
both spouses plus covariates. This procedure makes the coefficients of many variables
to reflect not only their own effect on the arrangement choice, but also part of the
impact of unobserved preferences on that choice. Since the main variable of interest
- the share of the earnings potential - is among those covariates, in my third step I
develop an instrumental variable approach to isolate its own effect from its impact
through unobserved preferences. Basically, I rearrange the non-linear conditional logit
probabilities and generate new estimable equations which have only the covariates with
biased coefficients in the R.H.S. It turns out that the only endogeneity left in those
equations comes from the correlation between three variables - wage, share of earnings
potential, and non-labor income - with labor supplies, which are the only elements of
the control function representing unobserved preferences that are excluded from the
R.H.S. of such equations. Then, I construct instruments for those three variables by
regressing each of them on labor supply of both spouses, and taking the residuals. Such
technique ends up being an extension to cross-sections of the Hausman and Taylor’s
(1981) approach to generate instruments for endogenous variables in panel data settings.

I implement my three-step methodology using the 2000 Census data. My sample
includes only U.S.-born, white, non-hispanic, heterosexual couples, with both spouses
20-35 years old, not attending school anymore, working, and present in households of
only one family. Estimation results lead to three main findings. First, there seems to
be no full commitment in intra-household decisions associated with broad locational
choices. Arrangement-specific deviations from the sharing rule that incorporates infor-
mation of all arrangements do appear to affect allocations within the household. The
following might be happening: at the outset of the marriage, spouses agree to a place
of residence and a rule to split the household resources regardless of the place they
eventually live. That rule is supposed to reflect their potential bargaining positions
in all outside options. Yet, upon settling down in the selected location, they let such
rule change because of the particularities of the local labor market. Second, limited
commitment related to locational decisions tends to be deleterious to females. Indeed,
women have higher probability to live in arrangements where their share of the couple’s
earnings potential is smaller. Consequently, they end up getting a smaller portion of the
household resources. Third, those commitment issues seem to inhibit couple migration
considerably. They can actually explain all the difference between migration rates of
single and married individuals observed in U.S. data.

This paper is organized as follows. In Section 2.2, I discuss the literature associated
with my study. In Section 2.3, I introduce my theoretical framework: a collective
marriage market model. In Section 2.4, I present my empirical strategy, which is a
three-step procedure aimed to take into account all the information that spouses use in
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their decision process. In Section 2.5, I proceed to the presentation of my sample, and
in Section 2.6, I report my results. Finally, in Section 2.7, I present some concluding
remarks.

2.2 Related Literature
The present paper is related to at least four branches of the economic literature:
family migration, commitment in household behavior, interdependence between intra-
household allocations and marriage-market conditions, and matching models of mar-
riage. Starting with family migration, the seminal contribution is Mincer (1978), as
mentioned before. In such original work, Mincer treats households as single agents
making a lifetime decision of where to settle down. He then advances the idea that
family ties represent negative "personal" externalities which are not always internal-
ized within the household. He argues that such ties tend (i) to deter migration, (ii) to
reduce employment and earnings of migrating wives, who are generally tied spouses in
the households, (iii) to increase the employment and earnings of their husbands, and
(iv) to contribute to marital instability. In addition, he points out that tied migration
can adversely affect women’s wage growth even in the absence of after-moving unem-
ployment spells. In his own words, "tied migration ranks next to child rearing as an
important dampening influence in the life-cycle wage evolution of women" (p.771). The
large literature following Mincer’s influential insights just provide empirical evidence
corroborating his main theoretical predictions. Despite of describing the implications
of family mobility in many details, unfortunately most of the evidence suffers with the
biases originating from self-selection. Furthermore, most of the papers disregard the
family aspect of migration by treating households as single units rather than groups of
agents. A notable exception is Gemici (2011).

Gemici (2011) models household migration decisions in a dynamic framework with
intra-household bargaining. She assesses the implications of joint location constraints
on migration patterns, labor market outcomes, and marital stability of men and women.
Her results depict a rich portrait of how family ties related to migration decisions affect
mobility, wage growth, and marital stability1. Nevertheless, her model excludes an
important decision that my model incorporates: the marriage decision. Since rational
agents antecipate the joint location constraints they might face within marriage, there
might be some effects of location ties on the timing of marriage and sorting patterns
that her model does not capture. In this study, I consider the sorting patterns explicitly,
but I still ignore timing-of-marriage issues. And last but not least, my framework also
differs from Gemici’s in a crucial aspect: it allows each spouse to have his/her own
home location. In her general model, Gemici defines home as being just an attractive

1Without family ties 25 percent of men and 23 percent of women move, whereas when married
only 18 percent move. Without family ties men’s and women’s wages are 10 and 3 percent higher,
respectively, compared to when they are married. Finally, without location ties divorce rates fall from
24 to 16 percent.
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location that gives the couple a higher utility. In her empirical implementation using
data from the Panel Study of Income Dynamics (PSID), she strongly assumes that, for
both spouses, home is the place (Census Division) where the head of the household grew
up. This assumption clearly rules out spousal compensations associated with family
migration, which is in the heart of my research questions.

Other studies that consider location decisions of two-earner couples are Costa and
Kahn (2000) and its "companion" Compton and Pollak (2007). These papers try to
explain the mechanisms behind the increased concentration of the so-called "power
couples", couples whose both spouses have college education, in large metropolitan
areas2. Costa and Kahn (2000) advance the idea that such change in the locational
choice of the college educated emerges from the growth of dual career households and
the consequent severity of the "colocation problem", defined as the difficulty of finding
two jobs commensurate with the skills of each spouse within a reasonable commute
from home. Implicitly, those authors are arguing that, because of their diversified
labor markets, large metropolitan areas offer dual career households an opportunity to
preserve their marriages and to reduce the degree to which both husband and wife must
compromise in their individual gains from marriage. If at all true, such explanation
would be consistent with power couples being more likely to migrate to the largest
cities than part-power couples or power singles. However, when testing such Costa and
Kahn’s colocation hypothesis using data from the PSID, Compton and Pollak (2007)
find no support for their hypothesis. Instead, they provide evidence that observed
location trends are better explained by higher rates of power couple formation in larger
metropolitan areas. In light of this result, it is encouraging that my framework focuses
on understanding sorting patterns on the basis of location in the marriage market.

Now, let us move to the second area that the present study is associated with: the
commitment in household behavior. The first paper worth mentioning is Lundberg
and Pollak (2003), which investigates the efficiency of bargaining in family migration
decisions under limited commitment. Such authors argue that current location decisions
affect future bargaining power, and, consequently, inefficient outcomes are plausible.
Their theory shows that if spouses could make binding commitments - commitments to
refrain from exploiting the future bargaining advantage -, then the inefficiency would
disappear. Discussing some anecdotal evidence, they claim that spouses can seldom
make such binding commitments in modern societies. My study, on the other hand,
tests the household ability to commit to future plans in location decisions.

Lich-Tyler (2004) also examines the plausability of household commitment. He
presents three different models of intertemporal household bargained decisions: a re-
peated static collective model, a model with commitment, and a model without com-
mitment. He derives a unique modified Euler equation for each model, and then uses
such competing specifications to determine which procedure, if any, accurately describes
household behavior in the PSID. He shows that, except for newlyweds and couples with

2Indeed, using data from the U.S. censuses, Costa and Kahn (2000) show that in 1970, 39 percent
of such couples lived in metropolitan areas with a population of at least 2 million. In 1990, this number
had jumped to 50 percent.
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many children, few households seem to commit to bargained decisions. For some, mar-
riage appears to be a repeated game: each year’s decision is made on its own, with no
regard for the future, as if agents know that they can easily change partners. For oth-
ers, especially households with children, multi-period household bargaining problems
are solved by backwards induction, knowing that renegotiations can and will occur.
Despite advancing interesting ideas, Lich-Tyler does not provide a test of household
commitment. Mazzocco (2007), in the most important paper of this literature, does
derive and perform a formal test of intra-household commitment in intertemporal be-
havior. He shows that the full-efficiency household Euler equations are nested in the
no-commitment Euler equations. Using this result, he tests the full commitment hy-
pothesis using data from the Consumer Expenditure Survey, and strongly rejects it. As
discussed previously, apart from its static characterization, my test of full commitment
in location decisions follows Mazzocco’s insights.

Another topic that my paper is closely related to is the interdependence between
intra-household allocations and marriage market conditions. The study of intra-household
allocations begins with, among others, Becker (1973, 1974; summarized in 1991), the
bargaining models of Manser and Brown (1980) and McElroy and Horney (1981),
McElroy (1990), and the collective model of Chiappori (1988, 1992). The study of
the relationship between marriage market conditions and marriage rates is also pio-
neered by Becker (1973). Moving towards integration, Grossbard-Schectman (1984)
builds a model where marriage market conditions affect the bargaining power within
the household. One important implication is that improvement in the marriage mar-
ket conditions for women translates into greater allocation of household resources to-
wards them. Such implication has received extensive empirical support in the literature
[e.g., Grossbard-Schectman (1984), and Chiappori, Fortin and Lacroix (2002)]. More
recently, researchers have formally integrated the collective model and the marriage
market [e.g., Choo, Seitz and Siow (2008a, 2008b)] and have extended the integrated
model to consider pre-marital investiments [e.g., Iyigun and Walsh (2007)]. In all of
these recent papers, the sharing rule arises endogenously in the marriage market. My
approach is associated with Iyigun and Walsh’s (2007) in the sense that it also consid-
ers pre-marital attributes in the determination of the bargaining power. However, my
emphasis is on birthplace, an attribute not chosen by the individuals. Now, the paper
I am mostly indebted here is Choo, Seitz and Siow (2008a, 2008b): my framework
depends heavily from theirs. Choo, Seitz and Siow (2008a, 2008b) develop and esti-
mate an empirical collective model with endogenous marriage formation, participation,
and family labor supply. By introducing the marriage market in the collective model,
they are able to independently estimate transfers from labor suplies and from marriage
decisions. Using 2000 U.S. Census data, they then find that estimates of the model
using marriage data are more consistent with the theoretical predictions than estimates
derived from labor supply. In light of these results, my approach goes in the right
direction by modelling spouse/location choices along with intra-household decisions.

Lastly, the present study relates to the literature dealing with matching models of
marriage. Since the seminal contribution of Becker (1973), economists have modeled
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marriage markets as a matching problem in which each potential match generates a
marital surplus. As is well-known, if the types of the partners are one-dimensional
and are complementary in producing surplus, then the socially optimal matches exhibit
positive assortative matching. While this result is both simple and powerful, it is at odds
with the imperfect assortative matching observed in the data. Therefore, researchers
have long felt the need to accomodate such imperfect matching. Shimer and Smith
(2000) introduce search frictions, but their model is hard to handle empirically. Choo
and Siow (2006), on the other hand, propose a simpler solution: to allow the joint
surplus of a match to incorporate heterogeneity that is unobserved by the analyst.
Such pioneer study has influenced more theoretical and empirical work since then.
Chiappori, Salanie and Weiss (2010), for example, extend Choo and Siow’s approach
to study partner choice and the marital college premium. Galichon and Salanie (2010,
2011) enrich Choo and Siow’s framework to study identification in matching models
more generally, and to analyze matching with competing characteristics. As will be
clear next section, I take great advantage of Choo and Siow’s and these new insights.

2.3 Modelling Marriage/Migration Decisions: Guid-
ance to Empirical Analysis

In this study, I model the individual decision of spouse/location arrangement. My
ultimate goals are (i) to test full commitment in household decisions in the context
of spouse/location arrangement choice, (ii) to provide evidence of transfers between
spouses arising from that choice, and (iii) to examine some implications of commitment
issues on the observed migration behavior of married individuals. To elucidate the
mechanisms behind those spousal transfers, I develop a collective marriage market
model based on Chiappori (1988, 1992), Chiappori, Fortin and Lacroix (2002), Choo
and Siow (2006), and Choo, Seitz and Siow (2008a, 2008b).

To explain the idea of my model intuitively, I use figure 2.1. First notice that when
individual are searching for spouses, in knot A, they consider people from their home
state, defined here as the state of birth (SOB), or other states. If they cope with
potential partners from their birth state, at knot B they have to jointly decide if they
live there or elsewhere. If they become involved with someone from other state, at knot
C they have three options regarding place of residence: their SOB, their spouse’s SOB,
or a third state. As a result, the choice set has five possible arrangements:

(1) to marry someone from SOB and to live there,
(2) to marry someone from SOB and to live in other state,
(3) to marry someone from other state and to live in SOB,
(4) to marry someone from other state and to live in spouse’s SOB,
(5) to marry someone from other state and to live in a third state (neither spouse’s

SOB).
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Each arrangement a is associated with a sharing rule φa ≡ φ(Sa, Ya|Za, Qa, ηa).
S denotes share of earnings potential within the household, and Y couple non-labor
income. Z represents observable preference shifters such as education, age, and SOB
of both spouses, as well as rent and amenities of each arrangement. Q represents
distribution factors - variables that affect the division of resources inside the household,
but not shift individual preferences - such as sex ratio and divorce laws. Last but not
least, η represents individual preferences which are observed by both spouses, but not
by the researchers.

The sharing rules are determined in the equilibrium of the marriage market. Given
their definition, it is then possible to observe transfers between spouses in equilibrium.
For instance, we might see individuals living in locations really appreciated by their
spouses but with a large advantage in terms of earnings potential. Indeed, it is very
likely that spousal transfers arise from the trade-off between taste for "hometown"
kinships and earnings. Assuming that individuals have good information of relevant
variables in all arrangements, those negotiations might be based on the best share of
earnings potential, and then there might be only one sharing rule for all arrangements:
φa = φ for all a. Now, if agents abide by those agreements, i.e., commit to those
decisions, then arrangement-specific deviations from φ do not affect arrangement choices
in equilibrium. If we do observe such effect, then it might be an evidence of lack of
commitment in the household behavior.

2.3.1 Collective marriage market model

To start setting things up formally, I consider a society where all agents get married
and work, and have perfect foresight. Each person is supposed to decide whom to marry
and where to live, and within a spouse/location arrangement, how much to consume
and work. Although this is a simultaneous model of intra-household allocations and
marriage matching, it is convenient to discuss it as if decisions are made in two stages.
In the first stage, individuals make partner/place of residence tied decisions, know-
ing wages and non-labor incomes for each alternative. In the second stage, within a
spouse/location choice, they choose household labor supplies and consumption alloca-
tions to realize the indirect utilities which were anticipated by their first stage choices.
I now begin by discussing the second-stage intra-household decisions. Notice that I will
be using the terms man/woman or husband/wife to refer to spouses in the discussion
below. I do that because I focus on heterosexual couples in the empirical part of this
study.

2.3.1.1 Collective model of intra-household allocations

Assume the (second-stage) intra-household allocation process is described by the famil-
iar Chiappori’s (1988, 1992) collective model. That is, suppose agents are characterized
by their own preferences, and household decisions are Pareto efficient. Even though it
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seems natural to employ such assumption in the context of spouse/location arrange-
ment choices, it has been rarely used in the family migration literature, as I mentioned
in the introduction. In my framework, it is crucial. Indeed, in order to examine trans-
fers between spouses and test full commitment in household behavior, it is imperative
that each spouse have his/her own utility function. In addition, it is somewhat realistic
that the household decision-making process is cooperative, at least conditional on an
arrangement choice.

Now, under the the collective model, the problem facing a couple is to choose a
level of consumption and labor supply for each spouse. As the household is assumed to
make conditionally Pareto-efficient decisions, for any (Wm

a ,W
f
a , Ya), there exists some

U
m such that (Cf

a , H
f
a , C

m
a , H

m
a ) is the solution to the programme
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whereU represents utility, W wage, Y household non-labor income, C consumption,
and H hours of work. In addition, the superscripts m and f distinguish between male
and female variables, respectively. Also, U f and Um are assumed to have diminishing
marginal utilities in consumption and leisure. Finally, the function U

m defines the
level of utility that a husband can command conditional on all the exogenous variables.
Indeed, besides wages and non-labor income, Um might also depend on observed and
unobserved attributes of both spouses, and on distributions factors (sex ratios and
divorce laws, for example, as in Chiappori, Fortin and Lacroix (2002)).

Underlying the determination of Um there is some mechanism (such as a bargaining
model) that leads to Pareto-efficient allocations. I will not be explicit about it: the
collective model does not rely on specific assumptions on the precise way couples share
household resources. However, the ideas behind the bargaining context can help to
understand which wages and non-labor incomes might be included in Um. Since couples
make consumption-leisure decisions within one arrangement, but have knowledge of
relevant exogenous variables of all other arrangements, the threat point might depend on
wages and non-labor income in other arrangements as well. The exact wages contained
in Um, though, depend ultimately on the degree of commitment of the household in the
allocation of resources, as will be discussed later on.

A seminal insight of Chiappori (1988, 1992) is that, if household decisions are Pareto
efficient, the above program can be decentralized into each spouse solving an individual
maximization problem with their own shadow budget constraint. A wife acts as if she
was facing a shadow budget constraint characterized by her earnings and a lump sum
transfer or sharing rule, denoted by φfa, which depends on the same variables as Um.
Likewise, a husband acts as if he was facing a shadow budget constraint characterized by
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his earnings and household nonlabor income net of the transfer, φma ≡ Ya − φfa. Notice
that the sharing rule is the fundamental element driving intra-household allocations
in this model. Even more, it is the element that generates spousal transfers in this
framework. Observe also that such sharing rule is treated as pre-determined at the
point consumption and labor supply allocations are chosen. The large literature on
collective models is, with few exceptions, agnostic regarding its origins. In this basic
model, it will emerge from the market clearing in the marriage market.

Having said that, the decentralized problem for husbands in this second stage is

Ma ≡ max{Cma ,Hm
a }U

m(Cm
a , 1−Hm

a )

subject to Cm
a ≤ Wm

a H
m
a + φma ,

which gives us

Hm∗
a ≡ hm(Wm

a , φ
m
a ), (2.2)

Cm∗
a ≡ cm(Wm

a , φ
m
a ),

where h and c denote Marshallian labor supply and Marshallian consumption func-
tions, respectively.

Similarly for wives,

Fa ≡ max{Cfa ,Hf
a}U

f (Cf
a , 1−Hf

a )

subject to Cf
a ≤ W f
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f
a + φfa,

which gives us

Hf∗
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f
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As a result, the indirect utility of each spouse in the second stage, Ma and Fa, must
be a function of the variables (Wm

a ,W
f
a , Ya, φ

f
a).

As a last remark, observe that the utility functions considered in the household
programme (2.1) are defined over consumption and leisure only. They simplify the
exposition of the model and are standard in collective models since Chiappori (1988,
1992), but they imply that consumption and labor supply are the only variables that
matter in intra-household allocations. Consequently, other potential dimensions that
couples could consider in household allocations, such as commuting time3 and time

3Indeed, Black, Kolesnikova and Taylor (2010) provide empirical evidence that labor force partici-
pation rates of married women are negatively correlated with the MSA commuting time. In particular,
they show that a 10-minute increase in an MSA’s commute time is associated with an approximately
3% decline in the labor force participation of women with a high school education.
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devoted to home production4, are ruled out. They could be easily included in the
analysis, yet for the sake of simplicity and/or data unavailability I do not incorporate
them here.

2.3.1.2 Marriage market

Having discussed the household decision-making process conditional on spouse/location
arrangement choices, I now turn to the marriage matching process. I consider a simpli-
fied version of the Choo, Seitz and Siow’s (2008a, 2008b) nontransferable utility (NTU)
model of the marriage market, which is a generalization of the influential transferable
utility (TU) model of Choo and Siow (2006). I use an NTU model because the TU
assumption is not suitable for studying the impact of spousal transfers on household
outcomes. As shown by Chiappori (2009), TU implies that households behave as single
agents, and that redistribution among spouses cannot alter household aggregate behav-
ior5. Besides NTU, which here means U f and Um having diminishing marginal utilities
in consumption, I assume that there is only one type of man and one type of woman in
the society, and that each individual chooses one out of the five possible arrangements
mentioned previously. I also assume that the number of men is identical to the number
of women in the society, and each man must be matched with one and only one woman.
As in Choo and Siow (2006), matching here is frictionless, and there is no asymmetric
information.

In this framework, when a man i marries a woman of arrangement a, he agrees
to divide household resources according to a sharing rule φa, formally defined as the
amount of household non-labor income gotten by the woman, as discussed above. This
is the kind of spousal transfer I am interested in. The marriage market clears when,
given equilibrium sharing rules φa, the demand for men of arrangement a is equal to the
supply of women of that same arrangement, for all a ∈ {1, ..., A = 5}. Following Choo
and Siow (2006), I adopt the extreme-value (logit) random utility model of McFadden
(1974) to generate market demands for marriage partners.

Starting with the specification of preferences, the utility of a man i marrying any
woman of arrangement a is assumed to

Via = Ma + Γa + εia. (2.4)

Ma ≡ M(φa) represents the return to arrangement a that emerges from intra-
household consumption and leisure allocations. As formally defined last section, it is
the indirect utility originating from the second-stage collective setting. Γa represents in-
variant gains to arrangement a associated with sources separable from intra-household
allocations, such as social status and companionship. Choo, Seitz and Siow (2008a,

4In fact, gender disparity in family and household responsabilities have reduced over time but are
still in play. Lundberg and Pollak (2007) document that in the 2005 American Time Use Survey,
married women have an average of 16 hours per week of "household activities" compared to less than
11 hours for men.

5In Appendix A, I discuss why redistribution affects household behavior under the NTU assumption.
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2008b) point out that such term allows the model to fit the observed marriage matching
patterns in the data. Lastly, εia is an independently and identically distributed random
variable with a type I extreme-value distribution. Importantly, εia is individual-specific
but it does not depend on the particular identity of the spouse. That is, it is assumed
that an individual treats all potential spouses of the same arrangement as perfect sub-
stitutes, as in Choo and Siow (2006). Although clearly restrictive, such indifference
assumption makes it possible to use price taking behavior (equilibrium sharing rules)
to clear the marriage market. Chiappori, Salanie and Weiss (2010) call this crucial
assumption "separability", for the reasons discussed at the end of this section.

Now, man i chooses arrangement according to

Vi = max{Vi1, ..., Vi5}. (2.5)

Assuming that the number of men and women in the society is large, and letting µda
be the number of arrangement-amarriages demanded by men, then following McFadden
(1974) the demand equation for arrangement-a marriages can be written as

lnµda = lnµd1 + (Ma −M1) + (Γa − Γ1) (2.6)

= lnµd1 + M̃(φa) + Γ̃a.

Similarly, the utility of a woman j who marries a man of arrangement a can be
written as

Vja = Fa + τa + εja, (2.7)

where Fa ≡ F (φa). From it, we can write the supply of women for arrangement-a
marriages as

lnµsa = lnµs1 + (Fa − F1) + (τa − τ1) (2.8)
= lnµs1 + F̃ (φa) + τ̃a.

The marriage market clears when, given equilibrium sharing rules φa, demand and
supply of spouses are equal for all arrangements. That is, for all a, µda = µsa = µa.
Substituting this into equations (2.6) and (2.8) and adding the two equations yields

ln
(
µa
µ1

)
=

[
M̃(φa) + F̃ (φa)

]
+
[
Γ̃a + τ̃a

]
2

≡ πa. (2.9)

This equation is called the marriage matching function and is the equilibrium con-
dition in the marriage market. Indeed, Choo, Seitz and Siow (2008a, 2008b) prove that
such equilibrium exists. Now, equation (2.25) makes it clear two key implications. The
first is Choo and Siow’s (2006) main result: the observed marriage patterns µ directly
identify the total gains to marriage π in such a model. The second is Choo, Seitz and
Siow’s (2008a, 2008b) main insight: the sharing rule φa can be derived from the mar-
riage market clearing, upon assuming functional forms forM and F . Therefore, to sum
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up, in equilibrium individuals choose spouse/location optimally, the sharing rules clear
the marriage market, and conditional on the sharing rules, agents choose consumption
and labor supply optimally.

As promised, I now discuss some implications of a crucial assumption in Choo and
Siow’s (2006) model: that the utility of man i who marries a woman of arrangement
a does not depend on who this woman really is, with a similar assumption for women.
As already mentioned, Chiappori, Salanie and Weiss (2010) call this assumption "sep-
arability". Given its relevance, I state it here, adapting it from Galichon and Salanie
(2011).

Assumption S (Separability). Let Θija denote the joint surplus created by a
match between a man i and a woman j in arrangement a. If two men i and i′ are both
in arrangement a, and two women j and j′ are also both in arrangement a, then

Θija + Θi′j′a = Θij′a + Θi′ja.

Under this assumption, Θija must decompose into

Θija = 2πa + εia + εja,

which does not include the term εija, a matching-specific component of unobserved
heterogeneity. Therefore, as pointed out by Galichon and Salanie (2011), "[t]his as-
sumption rules out interactions between unobserved characteristics in the marital out-
put from a match, given the observed characteristics of both partners. On the other
hand, it does not restrict group preferences in any way; and it also allows for variation
in marital output within groups, as long as they do not interact across partners. For
instance, men of a given group may differ in the marital outputs they can form, but
only as relates to the group of their partner." (p.5). Finally, it simplifies the analysis
enormously. Chiappori, Salanie and Weiss (2010) have shown that given such assump-
tion, the matching problem boils down to a set of single-agent choice problems for each
type of man and of woman.

2.3.1.3 Testing full commitment in household decisions

To test full commitment in the household behavior, I rely on the sensitivity of the
sharing rule φfa to variation in arrangement-specific exogenous variables. Under the
assumption of perfect-foresight agents, if there is full commitment, i.e., if there is ex-ante
efficiency in household decisions, then the outside-option utility Um in the household
problem (2.1) is the same for all arrangements and is a function of wages of both spouses
and couple non-labor income of all arrangements. Since the sharing rule depends on
the same variables as Um, it is also constant across arrangements and also reflects the
realization of the exogenous variables of all possible arrangements. Hence, φf = φ

f ≡
φ(Wm

a ,W
m
(−a),W

f
a ,W

f
(−a), Ya, Y(−a)), with (−a) representing all other arrangements. On

the other hand, if there is no full commitment, then Um varies with arrangement and is
a function of wages of both spouses and couple non-labor income of only arrangement
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a. As a result,φf = φfa ≡ φ(Wm
a ,W

f
a , Ya). In order to generate a direct test of

full versus limited commitment, I nest the former into the latter by decomposing the
arrangement-specific sharing rule φaf in the following way:

φaf = (φaf − φf ) + φ
f

= φ̃af + φ
f
.

As a consequence, my test of full commitment is the test of the importance of φ̃af in
the determination of intra-household allocations. In principle, this test is very similar
to Mazzocco’s (2007). Indeed, he tests full commitment in the intertemporal behavior
of households by assessing how the realization of distribution factors in a given year
affects intra-household allocations in that same period. Recall that distribution factor
is a variable that affects exclusively the decision power of an individual: it does not
affect preferences. Under ex ante efficiency, only the individual decision power at the
time of household formation can influence household decisions. Hence, the only set
of distribution factors relevant to explain household behavior is the set containing the
variables known or predicted at the time the household was formed. If the assumption
of full commitment is relaxed, the individual decision power in each period can also
influence the behavior of the household. That is, the realization of the distribution
factors in each period can also affect household decisions. Now, going back to my
context, such realizations can be seen as deviations of the distribution factors in a
given year from the ones at the year of marriage.

2.3.1.4 Allowing covariates in the analysis

So far, the indirect utilities in arrangement a, Ma and Fa, and the invariant gains
to arrangement a, Γa and τa, have been constrained to be identical among all men
and among all women in that arrangement. I now relax this assumption to allow the
marital output from a match to vary with observed characteristics of both spouses.
It is easy to see that the separability assumption is not violated when marital output
varies with individual attributes. Therefore, the matching problem still boils down to
a set of single-agent choice problems for each individual. However, in order to also
include spousal characteristics in the set of those individual attributes, I must make
an additional assumption. I have to suppose that the optimal partner’s characteristics
are part of the set of variables that define an individual’s preference. (In the empirical
analysis, the actual spouse will be considered the optimal partner.) As a consequence,
the set of covariates that I use in the analysis from now on contains attributes of both
spouses.

Letting Z ≡ (Zm, Zf ) denote observed preference factors, and η ≡ (ηm, ηf ) a bidi-
mensional unobserved preference component, we can now express the utility functions
in the household programme (2.1) as

Um(Cm
ia , 1−Hm

ia |Zia, ηia) and U f (Cf
ja, 1−H

f
ja|Zja, ηja).

52



As a result, the indirect utilities resulting from the intra-household allocations must
be written with the individual subscript: Mia and Fja. Furthermore, the sharing rule φfa
must also be expressed with the individual subscript, because it is also conditional on
Z and η. That is, the sharing rule also depends on the characteristics of the individual
and on the attributes that such individual values in an optimal partner. (Recalling
that the sharing rule is also a function of distribution factors Q, we can now express
it as φfa ≡ φ(Wm,W f , Y |Z,Q, η).) In addition, the invariant gains to arrangement a
can also be written with the individual subscript: Γia and τja. Lastly, the demand and
supply functions of spouses, equations (2.6) and (2.8), respectively, and the marriage
matching function (2.25), must be seen as averages across all the covariation within
arrangements.

Notice that the assumption of type-I extreme value distribution for ε in equations
(2.4) and (2.7) is extremely useful here. As well-known, it underlies the standard
multinomial logit model of discrete choice, and implies the independence of irrelevant
alternatives (IIA). In turn, the IIA greatly simplifies the analysis. In the words of
Galichon and Salanie (2010), "without it, the odds ratio of the probability that a man
with observable type x ends up in a match with a woman of observable type y rather
than with z would also depend on the types of other women, and the model would be
unmanageable." (p.14).

Finally, for the sake of clarity, I explain which kinds of variables Z, Q and η rep-
resent. The observed preference factors Z are generally considered in the literature of
household behavior, and include attributes of both spouses, households, and locations
(education, age, rent in a, and amenities in a, for example). The distribution factors are
also oftenly taken into account in the literature, and consist of sex ratios and divorce
laws, for example, as in Chiappori, Fortin and Lacroix (2002). The unobserved prefer-
ence component η, however, is rarely considered in collective models. Indeed, Browning,
Chiappori and Lechene (2006) argue that "(...) the issues arising from observable het-
erogeneity are conceptually clear. This is not the case for unobserved heterogeneity.
This important but tricky question has received little attention so far, and unobserved
heterogeneity is most often introduced in an ad hoc fashion. Errors are usually intro-
duced additively to parametric demand equations without attempt or possibility to trace
their origin to the structural elements of the model. [...] [T]o date very little has been
done to assess the implications of allowing for unobserved heterogeneity in preferences
(...)" (p.12). Here, I assume that η represents atributes unobserved by the researcher,
but observed by the spouse. It represents, for example, attachment to family, friends
and places, distribution of relatives across locations, preference for arrangement a, pref-
erence towards parenthood, and aesthetic beauty. Here, I focus on what I have called
the taste for hometown kinships. Such element is arguably observable by the other
household member; since spouses interact very often, they end up learning a lot of
personal information about each other. Importantly, observe that I do not make any
distributional assumption for η: it can have any arbitrary distribution, even conditional
on the observables.

53



2.3.2 Understanding the driving forces of arrangement choices

With the collective marriage market model set up, let us analyze the driving forces of
arrangement choices using a simple framework with a specific functional form for the
indirect utilities and small sets of possible arrangements (two or three arrangements).
The functional form for the indirect utilities used here arises from the assumption of
linear labor supply. The reason for such choice is simplicity and will be clearer in the
empirical section later on. That said, let us start by supposing that a husband i’s
indirect utility of choosing arrangement a is

V m
ia = em1Wm

ia (m2W
m
ia +m3φ

m
ia + ηmia) + Γia + εia,

where again W represents wage, φ sharing rule, η distribution-free preference for
arrangement a ∈ {1, .., A} observed only by the partner, Γ invariant gain to an arrange-
ment choice, and ε preference component independently and identically distributed with
a type I extreme-value distribution. Recall that by definition, φmia = Yija − φfja, where
Y is the couple’s nonlabor income.

Similarly, suppose that a wife j’s indirect utility of choosing arrangement a is

V f
ja = ef1W

f
ja(f2W

f
ja + f3φ

f
ja + ηfja) + τja + εja.

2.3.2.1 Two arrangements

Let the husband i’s indirect utility of choosing arrangements 1 and 2 be

V m
i1 = em1Wm

i1 (m2W
m
i1 +m3φ

m
i1 + ηmi1) + Γi1 + εi1,

V m
i2 = em1Wm

i2 (m2W
m
i2 +m3φ

m
i2 + ηmi2) + Γi2 + εi2.

Such man chooses arrangement 2 iff

A(V m
i2 − V m

i1 ) ≥ 0

A(εmi2 − εmi1) +m2(W
m
i2 −BWm

i1 ) +m3(φ
m
i2 −Bφmi1) + (ηmi2 −Bηmi1) + A(Γi2 − Γi1) ≥ 0,

where A = e−m1Wm
i2 and B = e−m1(Wm

i2−Wm
i1 ).

Similarly, let the wife j’s indirect utility of choosing arrangements 1 and 2 be

V f
j1 = ef1W

f
j1(f2W

f
j1 + f3φ

f
j1 + ηfj1) + τj1 + εj1,

V f
j2 = ef1W

f
j2(f2W

f
j2 + f3φ

f
j2 + ηfj2) + τj2 + εj2.

Such woman chooses arrangement 2 iff

C(V f
j2 − V

f
j1) ≥ 0

C(εfj2 − ε
f
j1) + f2(W

f
j2 −DW

f
j1) + f3(φ

f
j2 −Dφ

f
j1) + (ηfj2 −Dη

f
j1) + C(τj2 − τj1) ≥ 0,
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where C = e−f1W
f
j2 and D = e−f1(W

f
j2−W

f
j1).

Assume both husband and wife live in the same location. Then, both must choose
the same arrangement. Let us say that both choose arrangement 2, so the following
inequalities must be satisfied simultaneously:

A(εmi2 − εmi1) +m2(W
m
i2 −BWm

i1 ) +m3(φ
m
i2 −Bφmi1) + (ηmi2 −Bηmi1) + A(Γi2 − Γi1) ≥ 0

C(εfj2 − ε
f
j1) + f2(W

f
j2 −DW

f
j1) + f3(φ

f
j2 −Dφ

f
j1) + (ηfj2 −Dη

f
j1) + C(τj2 − τj1) ≥ 0.

Given that φmia = Yija − φfja, these inequalities imply that both husband and wife
choose arrangement 2 iff

A(εmi2 − εmi1) + C(εfj2 − ε
f
j1) ≥ −m2(W

m
i2 −BWm

i1 )− f2(W f
j2 −DW

f
j1)

−m3(Yij2 −BYij1)
−(ηmi2 −Bηmi1)− (ηfj2 −Dη

f
j1)

+m3(φ
f
j2 −Bφ

f
j1)− f3(φ

f
j2 −Dφ

f
j1)

−A(Γi2 − Γi1)− C(τj2 − τj1). (2.10)

Notice that expression (2.10) contains elements emphasized in the literature of fam-
ily migration (e.g., wages of both spouses), but also adds elements not underscored in
that literature (e.g., non-labor income, preferences, and spousal transfers). In fact, ex-
pression (2.10) combines wage advantages of the two spouses using the relative weights
m2 and f2, includes the household non-labor income advantage with relative weight
m3, combines preference terms, combines the sharing rule in intra-household alloca-
tions with relative weights m3 and f3, and, lastly, combines the invariant gains to an
arrangement choice with relative weights A and C. Therefore, the arrangement decision
is driven by a myriad of forces.

To stress the importance of the new driving forces on the spouse/location arrange-
ment choices, and to better understand the implications of full versus limited commit-
ment in such choices, I shut down the wage differentials in expression (2.10) yielding

A(εmi2 − εmi1) + C(εfj2 − ε
f
j1) ≥ −m3(Yij2 − Yij1)

−(ηmi2 − ηmi1)− (ηfj2 − η
f
j1)

+(m3 − f3)(φfj2 − φ
f
j1)

−A(Γi2 − Γi1)− C(τj2 − τj1). (2.11)

This expression makes it clear that spousal transfers in intra-household allocations
can reduce the attractiveness of arrangement 2. Indeed, if men values their share
of the non-labor income more than women do, i.e. m3 > f3, then less individuals
would choose arrangement 2. Having said that, let us now turn to the consequences
of commitment in household decisions in the arrangement choice. As discussed before,
under full commitment, φfja = φ

f

j for all a. Hence, the third line of the right-hand side
(R.H.S.) of expression (2.11) vanishes away. Thus, the sharing rules lose importance
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in determining arrangement choices. On the other hand, under limited commitment,
φfja = φ̃afj + φ

f

j , and then the third line of the R.H.S. of expression (2.11) becomes
(m3 − f3)(φ̃

2f
j − φ̃1f

j ). As a result, differences in the sharing rule determining intra-
household allocations also affect arrangement choices. Consequently, my test of full
commitment in the household decisions examines the economic relevance of this last
driving force in the spouse/location arrangement choices.

2.3.2.2 Three arrangements

Let the husband i’s indirect utility of choosing arrangements 1, 2, and 3 be

V m
i1 = em1Wm

i1 (m2W
m
i1 +m3φ

m
i1 + ηmi1) + Γi1 + εi1,

V m
i2 = em1Wm

i2 (m2W
m
i2 +m3φ

m
i2 + ηmi2) + Γi2 + εi2,

V m
i3 = em1Wm

i3 (m2W
m
i3 +m3φ

m
i3 + ηmi3) + Γi3 + εi3.

Such man chooses arrangement 2 iff

V m
i2 ≥ Max(V m

i1 , V
m
i3 ).

Similarly, let the wife j’s indirect utility of choosing arrangements 1, 2 and 3 be

V f
j1 = ef1W

f
j1(f2W

f
j1 + f3φ

f
j1 + ηfj1) + τj1 + εj1,

V f
j2 = ef1W

f
j2(f2W

f
j2 + f3φ

f
j2 + ηfj2) + τj2 + εj2,

V f
j3 = ef1W

f
j3(f2W

f
j3 + f3φ

f
j3 + ηfj3) + τj3 + εj3.

Such woman chooses arrangement 2 iff

V f
j2 ≥ Max(V f

j1, V
f
j3).

Assume both husband and wife live in the same location. Then, both must choose
the same arrangement. Let us say that both choose arrangement 2. If the second-best
arrangement is the same for both husband and wife, e.g. Max(V m

i1 , V
m
i3 ) = V m

i1 and
Max(V f

j1, V
f
j3) = V f

j1, then the decision-making process is identical to the one described
in the previous section. If the second-best arrangement differs, e.g. Max(V m

i1 , V
m
i3 ) = V m

i1

and Max(V f
j1, V

f
j3) = V f

j3, then the decision process is still similar to the previous one,
but the expression representing it changes a little bit. To find out such new expression,
notice again that if both husband and wife choose arrangement 2, then the following
inequalities must be satisfied simultaneously:

A(εmi2 − εmi1) +m2(W
m
i2 −BWm

i1 ) +m3(φ
m
i2 −Bφmi1) + (ηmi2 −Bηmi1) + A(Γi2 − Γi1) ≥ 0

C(εfj2 − ε
f
j3) + f2(W

f
j2 −DW

f
j3) + f3(φ

f
j2 −Dφ

f
j3) + (ηfj2 −Dη

f
j3) + C(τj2 − τj3) ≥ 0,

where A = e−m1Wm
i2 , B = e−m1(Wm

i2−Wm
i1 ), C = e−f1W

f
j2 and D = e−f1(W

f
j2−W

f
j3).
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Given that φmia = Yija − φfja, these inequalities imply that both husband and wife
choose arrangement 2 iff

A(εmi2 − εmi1) + C(εfj2 − ε
f
j3) ≥ −m2(W

m
i2 −BWm

i1 )− f2(W f
j2 −DW

f
j3)

−m3(Yij2 −BYij1)
−(ηmi2 −Bηmi1)− (ηfj2 −Dη

f
j3)

+m3(φ
f
j2 −Bφ

f
j1)− f3(φ

f
j2 −Dφ

f
j3)

−A(Γi2 − Γi1)− C(τj2 − τj3). (2.12)

Notice that this expression is very similar to the corresponding one in the two-
arrangement context, except that variables of three arrangements are now relevant to
the arrangement choice. Consequently, all the results discussed before are valid here,
and are extended to the five-arrangement case that is the focus of my study.

2.4 Empirical Strategy
As mentioned previously, my ultimate goals in this study are (i) to test full commitment
in household decisions in the context of spouse/location arrangement choice, (ii) to
provide evidence of transfers between spouses arising from that choice, and (iii) to
examine some implications of commitment issues on the observed migration behavior
of married individuals. To reach these goals, it is crucial to recover the preferences of
men and women making those decisions. Here, I do so by assuming a functional form for
the utility function and by estimating its key parameters. As will be clear soon, there
are several empirical challenges to be surmounted in order to get reliable estimates of
such parameters. The major one is the presence of important unobservable preference
factors affecting the decision process. Here, I get over this unobservability problem
by using a control-function approach à la Olley and Pakes (1996). Overcoming such
problem turns out to be a new contribution to the literature of household behavior, and
a fundamental step towards reaching my three final goals.

Before proceeding to the implementation, let me summarize the empirical strategy
I use here. Basically, it is a novel, three-step econometric procedure that combines
(i) the Olley and Pakes’s (1996) approach of using a bijection between unobservables
and observables to control for unobserved heterogeneity, (ii) the Willis and Rosen’s
(1979) idea of predicting some outcome variables through selected-corrected estimation
to ultimately recover structural parameters, and (iii) the Hausman and Taylor’s (1981)
insight of constructing instrumental variables. The first step involves nonparametric
estimation/prediction of conditional choice probabilities (CCP’s), and semiparametric
estimation/prediction of some outcome variables for all arrangements, à la Willis and
Rosen (1979). I employ a sieves logit method to estimate/predict the CCP’s, and de-
velop a new approach to correct for sample selection bias in the estimation/prediction
of outcome equations. The second step addresses estimation of some key parameters of
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the indirect utilities through likelihoods arising directly from my parametric assumption
that individuals’ behavior follows a multinomial logit model, conditional on all hetero-
geneity they observe. The control-function approach à la Olley and Pakes (1996) is
crucial here. The third and last step deals with estimation of the remaining parameters
of interest. I adapt the Hausman and Taylor’s (1981) instrumental variable approach
to cross-sectional data in order to get such parameters. Again, the bijection à la Olley
and Pakes (1996) is fundamental in this final step. As we can see here, and in the
sections to come, the one-to-one mapping between unobservables and observables à la
Olley and Pakes (1996) plays an essential role in my empirical framework.

2.4.1 Specification of indirect utility

To start, suppose the indirect utility of a woman j living in a spouse/location arrange-
ment a with spouse i is

V f
ja = F (W f

ja, S
f
ja, Xja, η

f
ja, η

m
ja) + τja + εfja (2.13)

= ef1W
f
ja

(
fa2 + f3W

f
ja + f4S

f
ja + γafXja + (f5η

f
ja + f6η

m
ja)
)

+ τja + εfja

= ef1W
f
jafja + τja + εfja

= vfja + εfja,

where Sf ≡
(

W f

Wm+W f

)
is the share of earnings potential, X ≡ (Y, Z,Q), and the

other variables are defined as before. I use the share of earnings potential rather than
the wage of the other spouse to express fja because, throughout the empirical imple-
mentation, I assume that the sharing rule is a function of that share instead of wages
of both spouses directly, as in Browning et al. (1994) and Lise and Seitz (2011).

I choose this functional form because it is very convenient to illustrate the way I
deal with the unobservability of η’s. As shown in Appendix B, it arises from assuming
linear labor supply (see Stern, 1986, Table 9.3) and linear sharing rule (à la Blundell et
al., 2007) in the expression (2.3). Later on, the linear labor supply assumption is proved
to be very useful to clarify the main issues of my methodology. Besides suitable for
methodological purposes, this indirect utility captures factors driving worker mobility
in Moretti’s (2011) model of spatial equilibrium (wage, cost of living, amenities, and
individual preferences), factors driving intra-household allocation in Chiappori’s (1988,
1992) collective model (wage, spouse’s wage, household nonlabor income, marriage
market conditions, and individual preferences), as well as factors driving the equilibrium
in Choo and Siow’s (2006) marriage market model (intra-household utility transfers).
Last, for the sake of completeness, let me make a notational clarification. When I put
a subscript j in male’s variables, it means that such variables convey information of
the optimal spouse for the woman j. Since I assume below that the spouse/location
arrangement market is in equilibrium, I use the actual spouse’s variables for estimation
purposes.
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Now, similarly, suppose that a man i, who lives in a spouse/location arrangement
a with spouse j, has indirect utility

V m
ia = M(Wm

ia , S
m
ia , Xia, η

m
ia , η

f
ia) + Γia + εmia (2.14)

= em1Wm
ia
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m
ia +m4S

m
ia + γamXia + (m5η

m
ia +m6η

f
ia)
)

+ Γia + εmia

= em1Wm
iamia + Γia + εmia

= vmia + εmia,

where Sm = 1− Sf .

2.4.2 Estimable equations

To estimate the parameters of the indirect utilities, I use the probability functions of
my non-linear conditional logit model:
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(2.16)

Since only differences in f2, m2, τ and Γ are identified in the model, then f 1
2 , m1

2,
τj1 and Γi1 are normalized to zero. Recall that such normalizations are standard in
multinomial choice settings, because only differences of parameters across alternatives
are generally identified. For the same reason, the coefficients γ1f and γ1m associated with
X-variables that are invariant across arrangements, such as education and age, are also
normalized to zero.

As we can see, equations (2.15) and (2.16) include two distribution-free unobserved-
heterogeneity components that greatly enrich the analysis, yet they have a very simple
structure. Thus, the payoff for making the parametric assumption that individual be-
havior follows a multinomial logit model, conditional on all heterogeneity, is substantial.
Notwithstanding, such equations have two issues that must be addressed before pro-
ceeding to the empirical implementation. First, the unobservability of some explanatory
variables in all but one arrangements, such as wages. I circumvent this problem by es-
timating such variables semiparametrically, and by inputing them in the main analysis,
à la Willis and Rosen (1979). The details are presented in subsections to come. Sec-
ond, the presence of fully unobserved components (ηf , ηm) in their R.H.S. Since these
components are very relevant for the agents’ decision process, if we fail to incorporate
them in the analysis, all the estimated coefficients are inconsistent. To get over such
endogeneity problem, I make use of a bijection between unobservable η’s and observable
variables, à la Olley and Pakes (1996), as described right below.
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2.4.3 One-to-one mapping between (ηf , ηm) and (Hf∗, Hm∗)

As already briefly mentioned, if we try to estimate the parameters of equations (2.15)
and (2.16), we face a major endogeneity problem arising from the unobservability of
(ηf , ηm). One way to overcome such problem is to show that the optimal (Hf , Hm) maps
to a unique value of (ηf , ηm) under plausible assumptions. Indeed, with such mapping
in hand, I can associate a pair of observable equilibrium outcomes with a unique pair
of unobserved components. As a result, I can use an approach à la Olley and Pakes
(1996) to generate a control function that handles the unobserved heterogeneity.

Now, leading functional forms of labor supply generate such one-to-one mapping
under the collective model. Examples include the linear supply function (Hausman,
1980), the log-linear function (Burtless and Hausman, 1978), and the semi-log function
(Heckman, 1974). I discuss now why this is the case for the linear labor supply function.
Recall that this functional form is the primitive for the indirect utilities that I have
specified before. The mapping for the other functions and for the general case are
presented in Appendix C. Throughout the discussion, keep in mind the structure of the
labor supply functions derived from the collective model (equations (2.3) and (2.2)).

Following Stern (1986, Table 9.3), let the linear supply function be expressed as

hk = αW k + βY + γ, (2.17)

where h is Marshallian labor supply, W is individual wage, Y is individual nonlabor
income, and k = {f,m}. By the collective model, Y ≡ φk(W k, Sk, X, ηf , ηm), with
φf (.) ≡ φ(.) and φm(.) ≡ Y − φ(.), and γ ≡ γ(Z, ηk). To simplify the exposition, let
both spouses have linear supply function with identical parameters α and β, and with
Y and γ linear in their arguments. Thus,

Hf∗ = αW f + β(δSf + ϕfX + ηf + ηm) + (ζZ + ηf )

= αW f + θSf + ρfX + (1 + β)ηf + βηm,

and

Hm∗ = αWm + β(πSm + ϕmX + ηf + ηm) + (ξZ + ηm)

= αWm + λSm + ρmX + βηf + (1 + β)ηm.

It can be shown that the system of these two equations can be rewritten as

ηf =

(
1 + β

1 + 2β

)
Hf∗ −

(
β

1 + 2β

)
Hm∗ +Kf (W f ,Wm, Sf , X)

ηm = −
(

β

1 + 2β

)
Hf∗ +

(
1 + β

1 + 2β

)
Hm∗ +Km(W f ,Wm, Sf , X)

iff β 6= −1
2
, where Kk(.)’s are linear functions of their arguments. Therefore,

(Hf∗, Hm∗) has an one-to-one mapping with (ηf , ηm) as long as Prob
(
β 6= −1

2

)
= 1,
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which is generally the case. Indeed, a labor supply model with β = −1
2
is a very par-

ticular case where half of any extra unearned dollar is spent reducing hours of men,
and half is spent reducing hours of women, with no income effect on goods. At last,
in order to get results consistent with utility maximization, we must add the Slutsky
restrictions for the linear supply function: α−hkβ ≥ 0 or (α−βγ)−αβW k−β2Y ≥ 0
(see discussion in Stern (1986, Table 9.3)).

Notice that we can get the same result using the Inverse Function Theorem6. By
this theorem, it suffices to show that the matrix

∂H∗

∂η

∣∣∣∣
(W f ,Wm,Sf ,X)

≡

[
∂Hf∗

∂ηf
∂Hf∗

∂ηm
∂Hm∗

∂ηf
∂Hm∗

∂ηm

]∣∣∣∣∣
(W f ,Wm,Sf ,X)

=

[
(1 + β) β
β (1 + β)

]∣∣∣∣
(W f ,Wm,Sf ,X)

is invertible to check for the one-to-one mapping between (Hf∗, Hm∗) and (ηf , ηm).
But this matrix is invertible iff

det

(
∂H∗

∂η

∣∣∣∣
(W f ,Wm,Sf ,X)

)
= 1 + 2β 6= 0,

which also gives us β 6= −1
2
.

2.4.4 Intermediate estimation

As discussed previously, before proceeding to the estimation of the parameters of inter-
est, I must estimate/predict two sets of intermediate variables: (i) conditional choice
probabilities (CCP’s) for each spouse/location arrangement, and (ii) some outcomes
for all arrangements, basically wage, non-labor income, and hours of work. This con-
stitutes the first step of my three-step procedure outlined in the introduction of this
section. It follows, in principle, the Willis and Rosen’s (1979) idea of predicting some
outcome variables through selected-corrected estimation to ultimately recover struc-
tural parameters. For CCP estimation, I use the nonparametric sieve logit method [see
Newey and Powell (2003) and Ai and Chen(2003)]. This method models CCP’s in such
a flexible way that exhausts the information in the data through k-th order polynomials
of the continuous explanatory variables [see Bajari, Hong and Nekipelov (2010)]. Now,
for the outcome estimation, I develop a novel semiparametric approach to correct for
sample selection bias. Basically, the selection correction term in the outcome equation
is a nonparametric functional of a parametric function arising from the multinomial
logit structure, whose main arguments are nonparametrically-estimated CCP’s. Here,
I use a power series approximation for the nonparametric functional à la Newey (2009).

6I include this second manner to get the same result here because it is the way I show the mapping
for the other leading functional forms and for the general case in Appendix C.
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Although it seems complicated, this estimation method follows the familiar two-step
strategy proposed by Gronau (1973, 1974) and Heckman (1974, 1979) in a parametric
setting, and by Ahn and Powell (1993) in a semiparametric one.

To make things clear, let us discuss the methodology for the outcome wage. Hence,
assume the wage equation is

log(Wia) = Xiaβ +Diaδ + ξia,

whereW is wage, X represents explanatory variables such as education, experience,
and place of birth, Dia is a dummy variable equal to one when individual i chooses
arrangement a, and ξ represents a distribution-free disturbance term with E[ξia] = 0.
(I simplify the exposition by assuming X non-stochastic.) Since individuals self-select
themselves in the arrangement that maximizes their utility, say a, and we observe
only the information associated with their choice, then the conditional expectation of
observed wages is

E[log(Wia)|Dia = 1] = Xiaβ +Diaδ + E[ξ|Dia = 1].

One way to make the estimation of this conditional expectation feasible is to get a
control function corresponding to E[ξ|Dia = 1]. Given the empirical model specified
previously,

E[ξ|Dia = 1] = E[ξ|Via > Vis]

= E[ξ|(εis − εia) < (via − vis)]
≡ g(via − vis),

where Vis ≡ Maxr 6=aVir is the indirect utility of the second best arrangement7 s,
and g(.) is assumed to be a nonparametric functional representing the relationship
between ξ and (εis − εia). Interestingly, under the standard random-utility setup with
any distribution for ε’s, there is a mapping between differences in conditional valuation
functions v’s and CCP’s (Hotz and Miller, 1993). As a result, the argument of g(.)
can be expressed as a function of CCP’s. In particular, under the multinomial logit
structure of my empirical model, it is precisely

(via − vis) = log(Pia)− log(Pis)

= log
(
Pia
Pis

)
≡ l(Pia, Pis)

(Arcidiacono and Miller, forthcoming). Finally, as discussed above, the CCP’s are
estimated nonparametrically. Therefore, the selection correction function

E[ξ|Dia = 1] = g(l(P̂ia, P̂is))

7Notice that I am using Lee’s (1983) maximum order statistic approach to reduce the dimensionality
of the relevant set of error terms.
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is a nonparametric functional of the parametric function l(.), arising from the multi-
nomial logit structure, whose arguments are the nonparametrically-estimated CCP’s of
the first and the second best arrangements. Again, the parametric assumption that
individual behavior follows a multinomial logit model, conditional on all heterogeneity,
generates a considerable payoff.

Although derived in a different way, this method happens to be very similar to
Dahl’s (2002) approach to correct for sample selection bias in a multi-alternative setup.
Even better, it connects directly with the random-utility setup to analyze discrete
choices, which became standard since McFadden (1974), and overcomes a major Dahl’s
limitation when combined with the one-to-one mapping between unobservables and
observables à la Olley and Pakes (1996). Dahl makes the assumption that the utility-
maximizing choice is sufficient to describe the joint distribution of the relevant error
terms. This index sufficiency assumption is, unfortunately, too restrictive. While a
simple individual fixed effect (ηi) model satisfies it, slight modifications of it, such as
the mere multiplication of the individual unobserved heterogeneity by an arrangement
loading factor (κaηi), do not so8. My (combined) approach, on the other hand, can deal
even with individual-arrangement unobserved heterogeneity (ηia).

Now, to estimate the coefficients of the wage equation consistently, we must have
at least one exclusion restriction for the control function. I use spouse’s place of birth,
and individual’s and spouse’s ("unobserved") preferences for arrangements. In fact,
my first identification assumption in that the state of birth of the spouse does not
affect an individual’s outcomes directly, but influences the location decision. In my
sample, 13.41 percent of the husbands live in their wives’ state of birth, and 13.87
percent of the wives live in their husbands’ state of birth. Furthermore, I assume
that preferences for spouse/location arrangements (ηf , ηm) affect the determination of
wages only through the decision to get into a particular arrangement a. Given that such
preferences are not supposed to be productive attributes of individuals, that seems a
reasonable assumption. Since η’s are not observed, I utilize labor supplies from the
bijection between (ηf , ηm) and (Hf∗, Hm∗) in my empirical implementation.

To be precise about the specification of the outcome equations in this intermediate
step, I now write them down explicitly. I estimate these equations separately for men
and women, but I present only the specifications for men here. It is worthy mentioning
that to get the "average" of these predicted outcomes across arrangements, I estimate
such equations without arrangements and their interactions.

Wage equation. To predict the wage of each individual in each arrangement, I
take an extended human capital approach. I allow (hourly) wages to vary with years
of education, years of labor market experience, dummies for state of birth, dummies
for (1-digit) occupation, dummies for (1-digit) industry, dummies for the arrangements
individuals can choose from, and interactions between years of education and arrange-

8Dahl (2002) develops an approach to estimate returns to education when state of residence is
treated as a choice variable. Although innovative, his methodology rules out interesting cases where
unobserved ability is rewarded differently across states. Therefore, models based on comparative
advantage, such as in Gibbons et al. (2005), cannot be studied under his setup.
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ments. The dummies for state of birth basically controls for school quality (Card
and Krueger, 1992) and for other productive attributes associated with different home
states. The dummies for occupation and industry provides additional sources of varia-
tion under the assumption that individuals work in the same broad category of those
variables regardless of the place of residence. The interactions between education and
arrangements allow the return to education to vary across arrangements. Hence,

log(Wm
ia ) = αm0 + αm1 Educi + αm2 Experi + αm3 Exper

2
i + αm4 D_SOBi

+αm5 D_Occi + αm6 D_Indi + αm7 D_Arria + αm8 (D_Arria ∗ Educi) + ξmia .

Hours of work equation. To forecast the hours worked by each individual in each
arrangement, I use a specification close to the right-hand side of the wage equation.
I just allow (annual) hours of work to also vary with interactions between number
of children and dummies for the five possible arrangements. Clearly, I am assuming
that offspring affects labor supply directly and indirectly through the interaction with
arrangement. I believe this make sense because raising children requires a lot of time
that could be allocated to work. However, if a couple lives close to its extended family,
for example, then it might have the availability of "unconstrained" child care and,
consequently, more freedom to set hours of work. That said, the equation used for
forecasting is,

log(Hm
ia ) = δm0 + δm3 Educi + δm5 Experi + δm6 Exper2i + δm7 D_SOBi + δm8 D_Occi

+δm9 D_Indi + δm10Offsi + δm11D_Arria + δm12(D_Arria ∗Offsi) + ιmia.

Nonlabor income equation. To predict the nonlabor income of each couple
in each arrangement, I use a specification associated with an age profile of wealth
accumulation. I allow the couple nonlabor income to vary with education, age, and state
of birth of both spouses, but importantly I let the quadratic terms of age to interact with
the five possible arrangements. Therefore, I am assuming that the unearned income
arises from a nonlinear wealth accumulation process that varies across arrangements.
For the sake of clarity, I am measuring nonlabor income as the sum of interest, dividends,
net rental income, royalty income, income from estates and trusts, and any public
assistance or welfare payments from the state or local welfare office. The equation used
for prediction is

NLIcija = γc0 + γc1Educi + γc2PEduci + γc3Agei + γc4Age
2
i + γc5PAgei + γc6PAge2i

+γc7D_SOBi + γc8D_PSOBi + γc9D_Arria + γc10(D_Arria ∗ Agei)
+γc11(D_Arria ∗ Age2i ) + γc12(D_Arria ∗ PAgei) + γc13(D_Arria ∗ PAge2i ) + υcia.
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2.4.5 Estimation of indirect utility parameters

To carry on the estimation of my ultimate parameters of interest, f4 and m4, let us
consider an "estimable" version of equations (2.15) and (2.16):
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f
jafja + τja

)
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r exp
(
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To proceed with the second step of my three-step methodology, and consequently to
get consistent estimates for my key parameters, let us deal with the unobservability of
η. As stressed several times, I use here the Olley and Pakes’s (1996) approach, which
consists in generating a control function from a bijection between unobserved hetero-
geneity and observable equilibrium outcomes. Given the one-to-one mapping between
η ≡ (ηf , ηm) and H∗ ≡ (Hf∗, Hm∗) conditional on observed covariates, conditioning on
η is equivalent to conditioning on H∗. As a result,

Pja|
[
W f , Sf , X, (ηf , ηm), τ

]
= Pja|

[
W f , Sf , X, (Hf∗, Hm∗), τ

]
,

Pia|
[
Wm, Sm, X, (ηm, ηf ),Γ

]
= Pia|

[
Wm, Sm, X, (Hm∗, Hf∗),Γ

]
.

Notice, however, that the parameters inside fja and mia are not identified through
the estimation of these conditional expectations. This non-identification result arises
from the fact that the functions η are also linear in each variable of (W f ,Wm, Sf , X,Hf∗, Hm∗),
as showed before. Therefore, when we estimate
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jr )
)

+ τjr

) ,
(2.20)
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all the coefficients but f1, fja, τja, m1, mia, and Γia are biased9. Such coefficients
reflect not only their own effect on the arrangement choice, but also part of the impact
of unobserved preferences on that choice. In fact, those equations do not allow us
to separate the effect of each variable in (W f ,Wm, Sf , X, ) on the household’s labor
supplies (Hf∗, Hm∗) from their effect on the arrangement choice.

Since we still need to identify and to estimate the parameters inside fja and mia ,
let us proceed to the last step of my three-step procedure. To begin, let us rearrange
the non-linear conditional logit probabilities (2.20) and (2.21) in order to obtain new
estimable equations. Using the estimated coefficients f̂1, f̂ja, τ̂ja, m̂1, m̂ia and Γ̂ia, such
rearranging yields[

ln(P̂ja) + D̂f
ja

]
− τ̂ja

ef̂1Ŵ
f
ja

= fa2 + f3Ŵ
f
ja + f4Ŝ

f
ja + γafXja + (f5η
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ja + ξfja),(2.22)
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ja = ln
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and ξ’s are measurement errors, probably arising from the estimated coefficients. Again,
we face the problem of unobservability of η. Nevertheless, the only endogeneity left in
those equations comes from the correlation between wage, share of earnings potential,
and non-labor income with labor supplies. Indeed, labor supply is the only element
of the control function representing unobserved preferences that is excluded from the
R.H.S. of such equations. To surmount this endogeneity problem, I use an instrumental
variable (IV) framework. I construct instruments à la Hausman and Taylor (1981) for
each of those three variables using the bijection between H∗ and η. Basically, I regress
each of those three variables on individual’s hours of work and spouse’s hours of work,
and take the residuals as instruments. That is, for each regressor Rl = {Ŵl, Ŝl, Ŷl},
l = {i, j}, I run

Rl = r1Ĥ
m∗
l + r2Ĥ

f∗
l + %Rl,

as a proxy for
Rl = r1η

m
l + r2η

f
l + %Rl,

and take %̂Rl as instruments. Since such residuals are unrelated to η by construction,
the order condition is satisfied. Furthermore, since they are clearly correlated to the
original variables, the rank condition is also satisfied. In the end, I use a standard IV
estimator with those constructed instruments to get the remaining key parameters. As
we can see, this approach is an adaptation of Hausman and Taylor (1981) to cross-
sectional data. In fact, such authors use demeaned values of time-varying endogenous

9For the sake of clarity, in Appendix D I compare the log-likelihood function of the standard
conditional logit model with the one estimated here.
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variables as instruments for them in a panel data setting. The demeaned variables
are, essentially, residuals from regressions of time-varying endogenous variables on indi-
vidual effects, their unobserved heterogeneity components. To see the similarity more
formally, suppose that some regressors Rlt’s are endogenous due to correlations with
the individual fixed effects, represented here by the dummies Ll. Now, consider the
linear projection of L onto R,

Rlt = rLl + %Rlt, (2.24)

where %Rlt is orthogonal to Ll by construction. Taking the average over time for
each individual (Rl. = rLl + %Rl.), and subtracting it from equation (2.24) gives

(Rlt −Rl.) = (%Rlt − %Rl.).

Hausman and Taylor (1981) use (Rlt − Rl.) as instrument for each endogenous re-
gressor Rlt. Indeed, since %Rlt is unrelated to Ll by construction, the demeaned values
of Rlt are also orthogonal to Ll, and, consequently, the order condition is satisfied.
Moreover, since (Rlt − Rl.) is clearly correlated with Rlt, the rank condition is also
satisfied. To see the connection with my approach, just notice that (Rlt− rLl) provides
the same variation as (Rlt − Rl.) in the estimation of the coefficients of Rlt’s through
fixed-effect methods, and that (Rlt − rLl) is the residual of equation (2.24). Hence,
Hausman and Taylor’s (1981) instruments can be easily found by regressing equation
(2.24) and taking the residuals %̂Rlt, the same way my instruments are found.

Now, for the sake of completeness, I present the variables contained in X, τ and Γ.
In X, I include:

• household non-labor income (average across arrangements, and arrangement-
specific deviations from the average);

• preference shifters: indicator of college for both spouses, indicator of age range
(20-25, 26-30, 31-35 years old) for both spouses, indicator for the presence of
children (aged at most 5 years old) within the household, indicator of SOB for
both spouses, housing costs (Albouy, 2010: more details in the data section),
quality-of-life amenities (Albouy, 2010), and firm-productivity amenities (Albouy,
2010);

• distribution factors: difference of age between spouses, sex ratio, indicator of
unilateral divorce (Voena, 2011: more details in the data section), indicator of
community property regime (assets divided equally, under the presumption that
they are jointly owned by the spouses) (Voena, 2011).

In τ and Γ, I include arrangement-specific intercepts, indicators for the educational
composition of couples (husband: non-college/ wife: non-college, non-college/college,
college/non-college, college/college), and difference of age between spouses.
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2.4.6 Consistency of the model

One way to verify the internal consistency of my framework is to check the equilib-
rium condition in the marriage market, equation (2.25), which I reproduce here for
convenience:

ln
(
µa
µ1

)
=

[(Ma −M1) + (Fa − F1)] + [(Γa − Γ1) + (τa − τ1)]
2

. (2.25)

The L.H.S. of this marriage matching function is readily observed: it is the ratio of
number of marriages in arrangement a and arrangement 1. The R.H.S., in turn, can be
easily calculated as the average of the systematic part of the utilities of both spouses
for each arrangement, across the entire sample. This will be the main check of internal
consistency of my modelling strategy.

Another way to inspect if the model generates meaningful estimates is to compare
some of its coefficients, or functions of them, with estimates well-established in the
literature. One parameter that could be used here is the response of labor supply to
non-labor income. In my model, it is the coefficient of wage in the exponential term of
the utility functions. In order to make such comparison, I derive some useful expressions
from the budget constraint and the labor supply under the collective model. For men,
such budget constraint is Cm = WmHm + (Y − φ), where φ ≡ φ(W f , Sf , Y ) is the
sharing rule of intra-household allocations. Taking derivatives with respect to Y in
both sides, and rearranging, gives

Wm∂H
m

∂Y
= −

(
1− ∂Cm

∂Y

)
+
∂φ

∂Y

= −(1−mpe) +
∂φ

∂Y
, (2.26)

where mpe is the marginal increase in total spending on goods and services if non-labor
income goes up by one dollar.

Also, the male labor supply under the collective model is Hm = αWm+β(Y −φ)+γ
(see equations (2.2) and (2.17)). Hence,

∂Hm

∂Y
= β

(
1− ∂φ

∂Y

)
. (2.27)

Finally, equations (2.26) and (2.27) yields

∂φ

∂Y
=

(1−mpe) + βWm

1 + βWm
. (2.28)

Now, I have wages, the classic benchmark of (1 − mpe) ∈ [0.1, 0.2] for American
male workers, and an estimate of β = m̂1. Therefore, I can compute the implied ∂φ

∂Y

using expression (2.28), and compare it with the Chiappori, Fortin and Lacroix’s (2002)
estimate of 0.7 (95 percent confidence interval equal to [0.36, 1.03]).
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Similarly, for women, the budget constraint in the collective model is Cf = W fHf +
φ. Thus,

W f ∂H
f

∂Y
=

∂Cf

∂Y
− ∂φ

∂Y

= mpe− ∂φ

∂Y
. (2.29)

Also, the female labor supply under the collective model is Hf = αW f + βφ + γ
(see equations (2.3) and (2.17)). Hence,

∂Hf

∂Y
= β

∂φ

∂Y
. (2.30)

Likewise, equations (2.29) and (2.30) yields

∂φ

∂Y
=

mpe

1 + βW f
. (2.31)

Again, I can use wages, the classic benchmark of mpe ∈ [0.8, 0.9] for American male
workers, and an estimate of β = f̂1, to compute the implied ∂φ

∂Y
and compare it with

the Chiappori, Fortin and Lacroix’s (2002) findings.

2.5 Data Description
The data I use come from the U.S. Census of 2000. These data are ideal for the
study of choices of spouse/location arrangements for three reasons. First, the Census
has information on state of birth for each household member, crucial to understand
how individuals weight wages and preferences for location in their arrangement choice.
Second, the Census has a more complete picture of the household structure. Indeed,
after declaring marital status, married individuals are asked to inform if their spouses
are actually living in the household. Third, the Census has a large sample size, providing
enough variation to disentangle the effect of the variables of interest.

My sample includes only U.S.-born, white, non-hispanic, heterosexual couples, whose
both spouses are present in a household of only one family, are not attending school
anymore, are working, and are aged 20-35 years old. I exclude single individuals to
abstract from the marriage decision by itself and to focus on broad locational choices
(partner’s birthplace and place of residence). Therefore, my analysis is conditional on
marrying. I also leave out older couples to concentrate my analysis in agents with few
years of marriage, whose arrangement choices have been recently made. Ideally, I would
restrict my attention to newlywed individuals, with fresh arrangement choices, but un-
fortunately the Census does not report the date of marriage. I also exclude couples with
at least one spouse not working because the methodology, as developed here, requires
the observability of the labor supply of both spouses. This does not mean that labor
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force participation is infeasible within my framework or irrelevant in the analysis. In
fact, future research can potentially extend my framework to encompass the participa-
tion decision through the discrete characterization of labor supply as used, for example,
by Lise and Seitz (2011). Finally, I keep out couples containing immigrants, nonwhites,
homosexuals, and students, to narrow down my analysis to a sample as homogenous as
possible. Indeed, I believe the data generating process of arrangement choices for these
groups might differ in ways not modeled in my framework.

My analysis also incorporates some variables (distribution factors, housing cost, and
amenities) derived from other data sources. To construct two of distribution factors -
unilateral divorce and community property regime (assets are divided equally, under
the presumption that they are jointly owned by the spouses) -, I depend on information
provided in the table 15 (divorce law reforms in the U.S.) of Voena (2011). To create
the variables housing cost, quality of life and firm productivity for all arrangements, I
use information provided in the table A2 (list of states ranked by total amenity value)
of Albouy (2010).

At last, it is worth to point out again that I consider the choices of partner and
location as if they were made joint and simultaneously. Since I do not observe the timing
of those two decisions in the census data, I do not model it. I am aware though of the
discussion about such timing in the literature. As mentioned before, Costa and Kahn
(2000) find that couples whose both husband and wife have at least college education
are increasingly, and disproportionately, located in large metropolitan areas. In 1970,
39% of these couples, called "power couples" by them, lived in metropolitan areas with
a population of at least 2 million. In 1990, this number had jumped to 50%. They
then argue that this comes basically from the growth of dual career households and
the resulting severity of the "colocation problem". By contrast, Compton and Pollack
(2007) argue that the empirical fact that power couples are increasingly likely to be
located in large metropolitan areas is well explained by higher rates of power couple
formation in such areas. To my analysis, it does not matter in which sequence the
choices of partner and location happened. My interest resides in the final arrangement
choice. The timing might reflect only stronger preferences toward either decision. Since
I incorporate such preferences in my framework, I might be taking the timing into
account implicitly.

2.6 Results

As mentioned throughout the paper, my ultimate goals in the present study are (i) to
test full commitment in household decisions in the context of spouse/location arrange-
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ment choice, (ii) to provide evidence of transfers between spouses arising from that
choice, and (iii) to examine some implications of commitment issues on the observed
migration behavior of married individuals. In order to reach those objectives, I have
developed an empirical strategy based on a collective marriage market model. I present
the results in the following sequence. Firstly, I discuss some evidence supporting the
framework adopted here. Secondly, I talk about the main results. Thirdly, and lastly,
I present some interesting estimates from the intermediate step.

2.6.1 Consistency of the model

To verify the internal consistency of my empirical framework, I mainly use the restriction
imposed by the equilibrium condition of the collective marriage market model, the
marriage matching equation (2.25). As we can see in table 2.2, estimates of both sides
of that equation are statistically identical. This finding seems to support my modelling
choices, even though they are somewhat restrictive. Therefore, from now on, I interpret
my results in light of that model.

To also check the suitableness of my methodology, I compare my estimates with some
established results in the literature. Using expressions (2.28) and (2.31), I compute the
implied response of my sharing rules to an one-dollar increase in non-labor income.
For men, such response is in the range [0.42, 0.48], depending on the value used to
(1 − mpe). Such range is completely inside the 95-percent confidence interval for ∂φ

∂Y

found by Chiappori, Fortin and Lacroix (2002): [0.36, 1.03]. For women, the implied
response is in the range [0.68, 0.77], exactly around the point estimate of 0.70 found by
those researchers. Given that my results are in accord to the ones in the literature, I
once more infer that my estimates look reliable to answer my main research questions.

2.6.2 Main results

To test full commitment in household behavior related to locational choices, I use the
variable share of earnings potential within the household. As explained in the theoret-
ical framework, I decompose it in two parts: the average across arrangements (share
base), which represents the full-commitment share, and the deviation of the average
(share deviation), which represents the limited commitment share. The marginal effect
of these two components are presented in table 2.3, for men, and table 2.4, for women.

The first column of table 2.3 shows that, in the equilibrium of the collective marriage
market model, increases in men’s base share of earnings potential are associated with
increases in SOB-endogamous marriages. This result is consistent with a marriage
market favorable to men in their home location. Nevertheless, this does not seem
the case in other places. The first column of table 2.4 provides evidence that such
market looks more propitious to women in states which are neither their SOB nor
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their husbands’ SOB. Indeed, increases in women’s base share of earnings potential are
related to increases in out-of-SOB residency. Given that the average base share is 43.91
percent for women, these findings lead to a simple conclusion: more equitable couples
are formed by individuals from different SOB and live out of their SOB.

If there is full commitment in household behavior, the effects of the base shares of
earnings potential in equilibrium are all we need to understand how such shares influence
spouse/location arrangement choices. However, the significant impact of arrangement-
specific deviations from the base share seems to demonstrate that full commitment is not
the case here. Looking at the diagonal elements of the matrices generated by columns
2-6 of tables 2.3 and 2.4, I infer that indeed couples do not commit to the sharing
rule negotiated at the ouset of marriage. In fact, table 2.3 shows that, in equilibrium,
positive deviations of the men’s share of earnings potential of arrangement a from the
base share imply that husbands get a higher portion of the household resources when
in such an arrangement. This is particularly true for arrangements 1, 3 and 4, which
involve living in the SOB of at least one spouse. Complementarily, table 2.4 says
that if women’s share of earnings potential deviates positively from the base share in
arrangement a, then wives get a lower percentage of the household resources in that
arrangement. Therefore, the two pieces of evidence lead to the same direction: there
appears to be no full commitment in household behavior related to broad locational
choices, and such lacking of commitment is detrimental to women. The first result
corroborates Mazzoco’s (2007) main finding, that household members cannot commit
to future plans, in the context of spouse/location choices. The second result confirms
the "dampening" impact of migration decisions on wives’ outcomes, as predicted by
Mincer (1978).

Taken together, the results of both the base share of earnings potential within the
household and the deviations of it tell us the same story in different acts. At first, the
formation of households tends to be beneficial to women in out-of-SOB locations. At
last, more equitable couples preserve their status quo by residing in states which are
neither the husband’s SOB nor the wife’s SOB. Told from another angle, at first, both
SOB-endogamous and SOB-exogamous couples favor the husbands in the division of
resources within the household in their home states. At last, such couples become even
more inequitable because of the limited commitment in household decisions associated
with locations.

Given that there seems to be no full commitment in household behavior related to
spouse/location choices, I now examine by how much this lack of commitment affects
the observed migration rates of married people. To start, column 7 of tables 2.3 and 2.4
shows the percentage of spouses in each arrangement. Adding up the numbers associ-
ated with individual out-of-SOB residency yields migration rates of roughly 34 percent
for men, and 34.4 percent for women. Shutting down the effect of the deviations of the
base share of earnings potential - the variable representing limited commitment -, those
rates grow to 47.5 and 42 percent, respectively. Thus, if there were no commitment
issues within the household associated with broad locational decisions, the migration
rate would be 39.7 percent larger for men, and 22.1 percent larger for women, approx-
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imately. Interestingly, these results are qualitatively very similar to the ones obtained
by Gemici (2011) when she shuts down family ties in her empirical model. She finds out
that without such ties, men would move 38.9 percent more, and women, 27.8 percent
more10.

In order to have a benchmark to compare those predicted full-commitment rates
with, I report here the migration rates of singles with characteristics similar to the
married individuals considered: 1138.8 percent for single men, and 40.2 percent for
single women, approximately. Although such predicted rates for married individuals
are larger than the ones for singles, they are not unrealistic. Many married people
are just moving from their SOB to their spouses’s SOB. From a strict/puritan point
of view, this would not be considered migration: individuals are still geographically
close to part of their extended family. In any case, those two rates are really similar for
women. I take such congruence of the results as a sign of the reliability of my estimates,
and therefore I assert that limited commitment inhibits migration considerably. I go
even further by infering that lack of commitment can explain the entire gap between
migration rates of single and married individuals. Such empirical finding supports a
theoretical result pointed out by Lundberg and Pollak (2003): when households bargain
over locations without a commitment mechanism, potentially Pareto-improving moves
not necessarily take place.

Perhaps, as I just mentioned, a more fair comparison of migration rates of married
and single individuals occurs when we consider as migrants only spouses who live in
neither their SOB nor their partners’ SOB. I actually prefer this exercise, because here
both singles and spouses have no ties with parents or other members of the relevant
extended family. That said, in such situation, migration rates are 20.6 percent for
men, and 21 for women, approximately, against 38.8 and 40.2 percent, respectively, for
singles. Removing the lack-of-commitment effect now generates migration rates of 25.6
for husbands, and 26.8 for wives, roughly, still far away from the single rates. Anyway,
migration rates would again increase in the absence of commitment issues. In fact, the
husbands’ rate would grow 24.3 percent, and the wives’s, 27.6 percent, approximately,
in that context. As we can see, both this and the previous comparison provide evidence
that the economic effect of limited commitment in household behavior associated with
broad locational choices is fairly large.

It is interesting to notice that the main impact of the shutdown of commitment
issues is the increase in the proportion of individuals in arrangement 4 (SOB-exogamous
couples living in the wife’s SOB), as depicted by column 8 of tables 2.3 and 2.4. This

10As mentioned before, in the related literature section, the actual Gemici’s (2011) results are the
following: without family ties, 25 percent of men and 23 percent of women move, whereas when married
only 18 percent move. Recall that she uses data from the PSID.

11My sample of singles then includes only U.S.-born, white, non-hispanic individuals, who are not
attending school anymore, are working, and are 20-35 years old. I improve the comparability of this
group relative to the married one by keeping in the sample only singles who are heads of household,
housemates or roomers/boarders. Hence, singles living with their parents or other relatives are excluded
from my computations.
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finding might help us to understand the intriguing stylized fact that the percentage of
SOB-exogamous couples living in the wife’s SOB is almost identical to the percentage
of such couples living in the husband’s SOB. Ordinary people assume that women value
the proximity to parents and other relatives more than men, and consequently SOB-
exogamous couples are thought to reside more oftenly in the wife’s SOB. My analysis
offers some insights to explain why that is not the case: commitment issues within the
household associated with spouse/location choices. Anticipating that their potential
wives will have more bargaining power in their home locations, men move away from
arrangements which include living in their wives’ SOB.

Now, I discuss how some other variables contained only in the sharing rule behave in
the equilibrium of the collective marriage market model. The estimated coefficients are
depicted in table 2.5. Starting with sex ratio, the sign of its coefficient is negative in the
utility function of both spouses. Since this congruence of signs is not consistent with
transfers between spouses based on the scarcity of mates in the marriage market, then
it seems that, in equilibrium, people just enjoy arrangements with gender-balanced
population. Regarding the indicator for the presence of unilateral divorce law, the
sign of its coefficient is also negative in both utility functions. This means that, in
equilibrium, both spouses are willing to get smaller portions of the unearned household
resources in arrangements with such law, indicating a more cooperative behavior within
the household. On the other hand, the coefficient of the indicator for the presence of
community property regime in case of divorce is positive in both utility functions, which
suggests a behavior more egoistic inside the household. Nevertheless, the higher the
shares of household resources the spouses demand under such regime, the fewer are
the assets to be split in case of family dissolution. Therefore, at the end of day, both
divorce laws seem to create incentive to maintain the household in equilibrium.

Finally, it is worth to discuss the sign of the estimated coefficients associated with
the unobserved-preference terms in the utility function. Such coefficients are also dis-
played in table 2.5. Remember that the spouse’s term enters the utility function only
through the sharing rule. Also, recall that I replace such terms with labor supplies
in my framework, using the one-to-one mapping à la Olley and Pakes (1996). That
said, the coefficients of both labor supplies are positive in the utility function of both
spouses, though they are very imprecisely estimated for wives. This finding suggests
that unobserved preferences are indeed relevant for broad locational choices, confirming
the need to incorporate them into the analysis. Even more important, the positiveness
of both coefficients provides an empirical support for my control function approach to
deal with the endogeneity arising from such unobservables. To see why, notice that
if labor supply does represent preferences, then the sign of both coefficients must be
nonnegative. The coefficient of the individual’s own labor supply must be nonegative
because stronger preferences for an arrangement increases the individual’s utility. In
addition, since there is a potential trade-off between taste for "hometown" kinships
and share of household resources, the coefficient of the labor supply of the individual’s
spouse must be also positive: if the spouse enjoys an arrangement very much, the in-
dividual can demand more household resources to choose it. An alternative reason to
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include labor supply in the sharing rule is the one advanced by Basu (2006): labor
supply as inducer of bargaining power within the household instead of proxy for unob-
served preferences. In Basu’s world, spouse’s higher labor supply means smaller shares
of household resources for the individual. Consequently, the sign of the coefficient of
the spouse’s labor supply in his setting is negative. This is not the case here.

2.6.3 Findings from the intermediate estimation

Having presented the main results of this study, I now turn to the findings of my inter-
mediate step. Besides generating the variation needed to estimate the indirect utility
parameters, such step produces interesting insights by itself. In fact, many of the
sources of variation that I use to predict distinct wages, hours of work, and non-labor
income across arrangements also shed light on some ideas informally discussed in the
literature. Here I make an extra effort to correct for self-selection into arrangements in
order to provide credible estimates. Recall that to estimate my coefficients of interest
consistently, I estimate/predict conditional choice probabilities using a nonparametric
sieve logit method with two exclusion restrictions: spouse’s place of birth, and indi-
vidual’s and spouse’s ("unobserved") preferences for arrangements. Table 2.6 shows
the criteria I use to choose a third order polynomial approximation for my sieve logit.
Furthermore, to guarantee that my findings hold under a fully flexible selection correc-
tion, I utilize up to the tenth order of the polynomials of the term ln

(
P̂ia/P̂is

)
in the

estimation of the outcome equations. Remember that such term is just the argument
of the nonparametric selectivity regressor. All the results that follow are conditional
on the tenth-order polynomial.

Starting with wages, I use differences in the return to education to get variation
across arrangements. Tables 2.7 and 2.8 shows the primary results for males and fe-
males, respectively. For men, one additional year of schooling is associated with an
increase of 7.8 percent in wages in arrangement 1 (SOB-endogamous couples living
in their SOB). Surprisingly, such gain is 19.2 percent larger in arrangement 2 (SOB-
endogamous couples living out-of-SOB), 25.6 percent larger in arrangement 4 (SOB-
exogamous couples living in the wife’s SOB), and 33.7 percent larger in arrangement
5 (SOB-exogamous couples living out of their SOBs). We all know that migrants have
higher return to education, but here the evidence says that such return still varies with
the origin and the migration status of the spouse. For women, however, there is much
less variation in return to education. Although it is much higher than the men’s coun-
terpart - it is 10.4 percent, approximately -, the only dissonance occurs in arrangement
5, where it is 9.2 percent larger. At last, notice that my selection-correction approach
looks effective to expurge the bias from the estimates. For men, selection bias is negative
and sizable. In fact, the return to education across arrangements are much bigger after
the correction, for example. Furthermore, given that the coefficient of the selectivity
regressor is negative, it seems that men trade wage for their favorite arrangement. For
women, the results are much weaker, but suggest that they have higher payoff when
living in the arrangement they prefer. Indeed, the coefficient of the selectivity regressor
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is very imprecise, though positive.
Regarding hours of work, I utilize number of children to generate variation over

arrangements. Tables 2.9 and 2.10 depicts the main results for men and women, re-
spectively. As expected, I do not succeed in producing noticeable fluctuations of labor
supply for husbands: there is virtually no variation arising from number of offspring.
The only exception is an 1.7-percent increase in arrangement-2 hours of work associated
with the presence of an additional child in the household. Still, such estimate is statisti-
cally significant only at 10 percent. On the other hand, number of children does create
considerable variation in female labor supply across arrangements. It is long-familiar
that motherhood has deleterious effects on women’s outcomes in the labor market.
Here, I provide the extra piece of evidence long supposed in the literature: those effects
can be even worse when women live far away from their extended family. Indeed, in
arrangement 1, an additional child is associated with a decrease of 25.7 percent in hours
of work. In arrangements 3 and 4, with women enjoying proximity to only one side of
the family - either their parents or their parents-in-law -, such decrease is 12.4 per-
cent larger, on average. Yet, in arrangements 2 and 5, with couples living completely
out of their SOB, that reduction is even larger: 31.3 percent, approximately. These
impressive findings corroborate Compton and Pollak’s (2011) preliminary results that
close geographical proximity to mothers or mothers-in-law has a substantial positive
effect on the labor supply of married women with young children. Curiously, I do not
find any significant difference in that impact for arrangements 3 and 4. Perhaps, this
just confirms Compton and Pollak’s argument that the mechanism behind our results
is the availability of childcare to meet irregular or unanticipated needs. Lastly, again
I discuss how my selection-correction strategy improves the reliability of my estimates.
Comparing the first column of tables 2.9 and 2.10 with the other columns, we can see,
for example, that for both men and women the coefficients of the interactions between
number of children and arrangements are larger in real terms, though very imprecise
for males. Yet, the selection bias as a whole seems to be positive, as indicated by the
coefficient of the selectivity regressor. This last finding suggests that individuals trade
leisure for their preferred arrangement.

Finally, concerning the household non-labor income, I use the age profile of both
spouses to produce variation across arrangements. Although my sample has only indi-
viduals aged 20-35 years old, I advance the idea that even in this narrow age interval,
the dynamics of wealth accumulation may generate different unearned income levels in
distinct arrangements. Since here I estimate only one equation for the couple, all the
results are displayed in table 2.11. As we can see, it seems that the husband’s age profile
is the only one that matters in the determination of household non-labor income across
arrangements. There is virtually no statistically significant estimates on the wife’s
side. Intriguingly, the shape of the age profile changes from convex, in arrangement 1
(SOB-endogamous couples living in their SOB), to concave, in arrangements 3 and 4
(SOB-exogamous couples living in the SOB of one of the spouses). The remaining age
profiles are not distinguishable from the arrangement-1’s. Taken together, these results
appear to indicate a detrimental effect of the proximity to only one side of the family
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on the accumulation of wealth. Perhaps the help from both sides of the family is crucial
to cross important thresholds in the direction of making more non-labor income, such
as the acquisition of a real estate. Such help might happen much more often in the
presence of frequent social interactions that the geographical proximity allows. If the
help does not happen, maybe the best that a couple can do to generate higher levels of
unearned income is to explore better oportunities far away. In any case, it is interesting
to see so different dynamics across arrangements. At last, once more I want to point out
the effect of my selection-corretion methodology on the estimates. As we can notice,
the coefficients of the interactions between husband’s age and arrangements are much
larger after the correction. This seems to indicate the same impact discussed for male
wages: again, the selection bias is negative. Consequently, couples appears to trade
non-labor income for their favorite arrangement.

2.7 Concluding Remarks
In this paper, I have studied the joint choice of spouse and location ordinarily made by
individuals at the ouset of their adult lives. I have assumed that agents are forward-
looking and consider potential conflicts that might arise in future negotiations within the
household regarding place of residence when they are searching for mates. I motivated
this concern with the stylized fact that the vast majority of Americans lives in their
SOB, and I have concluded that those worries are quite reasonable. Indeed, I have found
that household members cannot commit to the intra-household allocations associated
with broad locational choices that they agreed to in the beginning of their marriage. I
have also showed that, in general, such lack of commitment is detrimental to women,
in terms of the share of the household resources they end up getting. In light of these
results, I have also provided evidence that limited commitment in household behavior
can explain the entire gap between observed migration rates of single and married
individuals in the U.S.

I have used a collective marriage market model as background for my empirical
analysis. To build such theoretical framework, I brought together insights from the
Chiappori’s (1988, 1992) way of modelling household decisions, and the Choo and
Siow’s (2006) approach of matching people in the marriage market. I have allowed
the individual choices to reflect all the information that spouses observe from each
other in their frequent interactions. Although rich, the resulting framework imposed
many challenges to the empirical implementation. Indeed, part of the information that
spouses consider in their decisions are unobservable to the researchers. I have overcome
such obstacles by using an one-to-one mapping between unobservable preferences and
household labor supply, à la Olley and Pakes (1996). I have utilized such mapping to
generate a control function that handles the unobserved heterogeneity. Finally, using
data of young dual-career couples in the 2000 U.S. Census, I have estimated all the
parameters of interest, from which I have derived all my findings.

Now, the results found in this paper might help to understand some mechanisms
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behind (at least) two recent empirical findings. The first is the decline in internal
migration in the U.S. from the 1980s to the 2000s, richly documented by Molloy, Smith,
and Wozniak (2011). Their results show that interstate migration rates differ a lot
among married couples, depending on whether two, one or none of the spouses work.
The decrease in migration rates is strongest for dual-career couples: while it has fallen
approximately 38 percent for couples with just one working spouse, it has dropped by
46 percent for couples in which both spouses work. This piece of evidence might be
consequence of the lack of commitment in household decisions related to locations, as
indicated by my analysis.

The second finding that can be interpreted in light of my results is the high degree of
marital sorting on the basis of parental wealth in the U.S. Charles, Hurst and Killewald
(2011) show that men and women in the U.S. marry spouses whose parents have wealth
similar to that of their own parents, and are very unlikely to marry persons from
very different parental wealth backgrounds. Their preferred estimates indicate that the
correlation in log wealth between own and spouse’s parents wealth is around 0.4. Such
finding might be rationalized, at least in part, by the prominent issues of household
commitment that are likely to appear in this context as well. Indeed, like place of
birth, parental traits are also exogenously given to individuals. Consequently, they can
make little accomodations if their spouses cannot commit to future plans. As a result,
individuals might induce a natural balance in the decision power within the household
by sorting in the marriage market on the basis of parental wealth.

In the near future, I intend to use the framework I have developed in this paper to
study the relationship between spouse/location choices and gender wage gap. Given
that I have found deleterious effects of limited commitment on women’s outcomes, I
suppose it can also explain part of that observed gap. Also, since I have not considered
the timing of marriage/migration here, it would be interesting to use longitudinal data
to investigate potential actions agents take to avoid commitment issues regarding broad
locational choices. Postponing marriage is one of those possible actions, for example.
Indeed, many individuals might first settle down in their favorite location, and only
then search for mates.
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2.8 Appendix

2.8.1 Appendix A: Redistribution under NTU and TU

Before understanding why redistribution alters household behavior, first acknowledge
the following general result in NTU models: total gains of marriage depend on Pareto
weights. In fact, as discussed in Legros and Newman (2007), under NTU the division
of the surplus bewteen partners cannot be separated from the level they generate. To
illustrate the point, I present how this happens in my setting. It is a special case of
Proposition 1 in Choo, Seitz and Siow (2008a). Suppose the household programme is

max{Cf ,Hf ,Cm,Hm}U
f (Cf , 1−Hf ) + θ [Um(Cm, 1−Hm)] (2.32)

subject to Cm + Cf ≤ WmHm +W fHf + Y,

where θ ∈ R+ is the husband’s Pareto weight relative to his wife’s, which is normalized
to one. The first order conditions (F.O.C.) are:

U f
Cf

= λ,

U f
Hf = λW f ,

Um
Cm =

λ

θ
,

Um
Hm =

λ

θ
Wm.

Using the F.O.C., as θ changes,

∂V f

∂θ
= λ(Cf∗

θ −W
fHf∗

θ ),

∂V m

∂θ
=

λ

θ
(Cm∗

θ −WmHm∗
θ ),

which imply

1

θ

∂V f

∂θ
+
∂V m

∂θ
=
λ

θ
(Cm∗

θ + Cf∗
θ −W

mHm∗
θ −W fHf∗

θ ).

Since the budget constraint also holds at the optimum, then Cm∗
θ +Cf∗

θ −WmHm∗
θ −

W fHf∗
θ = 0. Therefore,

∂V f

∂θ
= −θ∂V

m

∂θ
< 0.

In words, as θ increases, the wife’s indirect utility V f falls and the husband’s indirect
utility V m increases. Thus, the total surplus of the household is indeed affected by
redistribution. As a result, household decisions might change as well.
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Now, consider the case where U(.) is quasi-linear in consumption, say U(C, 1−H) =
C + G(1 − H), with G(.) denoting a function, as it would be under TU. Hence, the
F.O.C. are:

λ = 1,

Gf
Hf = λW f ,

θ = λ,

Gm
Hm =

λ

θ
Wm.

Using the F.O.C., as θ changes,

∂V f

∂θ
= 0,

∂V m

∂θ
= 0.

Therefore, under TU changes in Pareto weights cannot affect the total surplus of the
household. Consequently, household behavior remains the same after redistributions.
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2.8.2 Appendix B: Specification of the indirect utility

In this appendix, I show that the indirect utility function specified throughout the
empirical strategy arises from assuming linear labor supply (see Stern, 1986, Table 9.3)
and linear sharing rule (à la Blundell et al., 2007) in the expressions (2.3) and (2.2).
Indeed, following Stern (1986, Table 9.3), the indirect utility associated with the linear
labor supply function hk = αW k + βY + γ is

Uk(W
k, Y ) = eβW

k

(
Y +

α

β
W k − α

β2
+
γ

β

)
,

where W is individual wage, Y is individual nonlabor income, and k = {f,m}. By
the collective model,Y ≡ φk(W k, Sk, X, ηf , ηm), with φf (.) ≡ φ(.), φm(.) ≡ Y − φ(.)
and X ≡ (Y, Z, S), and γ ≡ γ(Z, ηk). For simplicity, suppose that both spouses have
linear supply function with identical parameters α and β, and with Y and γ linear in
their arguments. Thus,

F (.) = eβW
f

(
Y +

α

β
W f − α

β2
+
γ

β

)
= eβW

f

(
(δ1S

f + δ2Y + δ3Z + δ4Q+ ηf + ηm) +
α

β
W f − α

β2
+

(ζZ + ηf )

β

)
= eβW

f

(
− α

β2
+
α

β
W f + δ1S

f + δ2Y +

(
δ3 +

ζ

β

)
Z + δ4Q+

(
1 +

1

β

)
ηf + ηm

)
= ef1W

f (
f2 + f3W

f + f4S
f + γfX + (f5η

f + f6η
m)
)

= ef1W
f

f,

M(.) = eβW
m

(
Y +

α

β
Wm − α

β2
+
γ

β

)
= eβW

m

(
(π1S

m + π2Y + π3Z + π4Q+ ηf + ηm) +
α

β
Wm − α

β2
+

(ξZ + ηm)

β

)
= eβW

m

(
− α

β2
+
α

β
Wm + π1S

m + π2Y +

(
π3 +

ξ

β

)
Z + π4Q+

(
1 +

1

β

)
ηm + ηf

)
= em1Wm (

m2 +m3W
m +m4S

m + γmX + (m5η
m +m6η

f )
)

= em1Wm

m.

At last, recall that to get results consistent with utility maximization, the Slutsky
conditions must be satisfied: α−Hkβ ≥ 0 or (α−βγ)−αβW k−β2Y ≥ 0 (see discussion
in Stern (1986, Table 9.3)).
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2.8.3 Appendix C: One-to-one mapping between (ηf , ηm) and
(Hf∗, Hm∗)

Here, I first discuss the one-to-one mapping between (ηf , ηm) and (Hf∗, Hm∗) that
leading functional forms of labor supply generate under the collective model. I focus
on the log-linear function (Burtless and Hausman, 1978) and the semi-log function
(Heckman, 1974). In the end, I consider the general case. Throughout the discussion,
keep in mind the structure of the labor supply functions derived from the collective
model (equations (2.3) and (2.2)).

C.1) The log-linear supply function

Following Stern (1986, Table 9.5), let the log-linear supply function be expressed as

log(hk) = αlog(W k) + βlog(Y ) + log(γ),

where h is Marshallian labor supply, W is individual wage, Y is individual nonlabor
income, and k = {f,m}. By the collective model, Y ≡ φk(W k, Sk, X, ηf , ηm), with
φf (.) ≡ φ(.) and φm(.) ≡ Y −φ(.), and γ ≡ γ(Z, ηk). As in the linear labor supply case,
let us simplify the exposition by letting both spouses have log-linear supply function
with identical parameters α and β, but making Y and γ multiplicative functions of
their arguments. Thus,

log(Hf∗) = αlogW f + βlog((Sf )δ.Xϕf .ηf .ηm) + log(Zζ .ηf )

= αlogW f + θlogSf + ρf logX + (1 + β)logηf + βlogηm,

and

log(Hm∗) = αWm + βlog((Sm)π.Xϕm .ηf .ηm) + log(Zξ.ηm)

= αlogWm + λlogSm + ρmlogX + βlogηf + (1 + β)logηm.

We can see clearly that there exists an one-to-one mapping between (ηf , ηm) and
(Hf∗, Hm∗) as long as the restriction of the linear case (β 6= −1

2
) holds here. Indeed,

det

(
∂H∗

∂η

∣∣∣∣
(W f ,Wm,Sf ,X)

)
= det

[ (1+β)
ηf

β
ηm

β
ηf

(1+β)
ηm

]∣∣∣∣∣
(W f ,Wm,Sf ,X)


=

1 + 2β

ηfηm
,

and ηfηm 6= 0 by assumption. To guarantee consistency with utility maximization,
the Slutsky conditions also must be satisfied: βWkHk∗

Y
≤ α or βγ(W k)α+1Y β−1 ≤ α (see

discussion in Stern (1986, Table 9.5)).
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C.2) The semi-log supply function

Following Stern (1986, Table 9.6), let the semi-log supply function be expressed as

hk = αlog(W k) + βY + γ.

Let us examine the same simple example as in the linear function. Thus,

Hf∗ = αlog(W f ) + β(δSf + ϕfX + ηf + ηm) + (ζZ + ηf )

= αlog(W f ) + θSf + ρfX + (1 + β)ηf + βηm,

and

Hm∗ = αlog(Wm) + β(πSm + ϕmX + ηf + ηm) + (ξZ + ηm)

= αlog(Wm) + λSm + ρmX + βηf + (1 + β)ηm.

Again, we can see clearly that there exists an one-to-one mapping between (ηf , ηm)
and (Hf∗, Hm∗) as long as the restriction for the linear case (β 6= −1

2
) holds here.

The only change is the condition to make this supply function consistent with utility
maximization: now it is α ≤ βW kHk∗ (see discussion in Stern (1986, Table 9.6)).

C.3) General case

To prove that there exists an one-to-one mapping between (ηf , ηm) and (Hf∗, Hm∗) in
the general case, I apply the Inverse Function Theorem to the function

H∗(ηf , ηm,W f ,Wm, X) ≡
(
Hf∗(ηf , ηm,W f , Sf , X), Hm∗(ηf , ηm,Wm, Sm, X)

)
(2.33)

=
(
hf (W f , φf (W f , Sf , X, ηf , ηm), Z, ηf ),

hm(Wm, φm(Wm, Sm, X, ηf , ηm), Z, ηm)
)
,

where φf (.) = φ(.) and φm(.) = Y − φ(.). Then, it suffices to show that the matrix

∂H∗

∂η

∣∣∣∣
(W f ,Wm,Sf ,X)

≡

[
∂Hf∗

∂ηf
∂Hf∗

∂ηm
∂Hm∗

∂ηf
∂Hm∗

∂ηm

]∣∣∣∣∣
(W f ,Wm,Sf ,X)

=

 (∂hf∂φf
∂φf

∂φ
∂φ
∂ηf

+ ∂hf

∂ηf

)
∂hf

∂φf
∂φf

∂φ
∂φ
∂ηm

∂hm

∂φm
∂φm

∂φ
∂φ
∂ηf

(
∂hm

∂φm
∂φm

∂φ
∂φ
∂ηm

+ ∂hm

∂ηm

) ∣∣∣∣∣∣
(W f ,Wm,Sf ,X)

=

 (∂hf∂φ ∂φ
∂ηf

+ ∂hf

∂ηf

)
∂hf

∂φ
∂φ
∂ηm

−∂hm

∂φ
∂φ
∂ηf

(
−∂hm

∂φ
∂φ
∂ηm

+ ∂hm

∂ηm

) ∣∣∣∣∣∣
(W f ,Wm,Sf ,X)

is invertible. We know that this is equivalent to show that

det

(
∂H∗

∂η

∣∣∣∣
(W f ,Wm,Sf ,X)

)
=

(
∂hf

∂φ

∂φ

∂ηf
∂hm

∂ηm

)
−
(
∂hm

∂φ

∂φ

∂ηm
∂hf

∂ηf

)
+

(
∂hf

∂ηf
∂hm

∂ηm

)
6= 0.
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Now, the equation det
(

∂H∗

∂η

∣∣∣
(W f ,Wm,Sf ,X)

)
= 0 describes a measure-zero subspace

of the parameter space. In practice, such equation can be assumed to fail unless it
is known to hold identically. Therefore, there exists a one-to-one mapping between
(Hf∗, Hm∗) and (ηf , ηm) except on a set of measure zero.

Finally, since ∂H∗

∂η

∣∣∣
(W f ,Wm,Sf ,X)

has full rank, then H∗(.) has an inverse (H∗)−1(.)

defined as

(H∗)−1(Hf∗, Hm∗,W f ,Wm, Sf , X) ≡
(
ηf (Hf∗, Hm∗,W f ,Wm, Sf , X), ηm(Hf∗, Hm∗,W f ,Wm, Sf , X)

)
.
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2.8.4 Appendix D: Log-likelihood function

The log-likelihood function of the conditional logit model associated with the indirect
utility V m

ia = m2a +m3W
m
ia +m4S

m
ia + γmXia + (m5H

m∗
ia +m6H

f∗
ia ) + εmia is

LL(θ) =
N∑
i=1

A∑
a=1

yialnPia,

where

Pia =
exp(m2a +m3W

m
ia +m4S

m
ia + γmXia + (m5H

m∗
ia +m6H

f∗
ia ))

A∑
r=1

exp(m2r +m3Wm
ir +m4Smir + γmXir + (m5Hm∗

ir +m6H
f∗
ir ))

.

In this study, however, V m
ia = em1Wm

ia

(
m2a +m3W

m
ia +m4S

m
ia + γmXia + (m5H

m∗
ia +m6H

f∗
ia )
)

+

Γia + εmia. Then,

Pia =
exp(em1Wm

ia

(
m2a +m3W

m
ia +m4S

m
ia + γmXia + (m5H

m∗
ia +m6H

f∗
ia )
)

+ Γia)

A∑
r=1

exp(em1Wm
ir

(
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)
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.

85



Chapter 3

A Note on the Trade-off between
Ecosystem Preservation and Air
Quality: Evidence from Hydroelectric
Licensing Rules

3.1 Introduction
Land regulations have been long enacted in the U.S. to preserve the wilderness and
the wildlife. As a result, the natural habitat of many threatened/endangered species
has been protected. Despite of this invaluable benefit, such regulations might have
an unintended/unexpected consequence: more air pollution and more global warming.
Indeed, land regulations restrict the development of new hydroelectric dams, which are
renewable, non-emitting sources of energy, and might induce electricity generation by
highly polluting firms: the conventional fossil-fuel power plants1. As a matter of fact,
conventional electricity generation is responsible for 40 percent of the U.S. greenhouse
gas emissions, and is loosely regulated2. In this paper, I study the trade-off between
land conservation and air quality, both theoretically and empirically.

I motivate my empirical analysis on the trade-off between land conservation and
air quality using a simple general equilibrium model for the electricity industry. I
assume that consumers value eletricity, land conservation and air quality, but electricity
generation damages the environment either through construction of hydroeletric dams
or greenhouse gas emissions. The trade-off is clear in the theoretical model. More
importantly, empirical evidence suggests its existence in the U.S. Each megawatt of
potential hydropower that is not developed because of land conservation regulations
produces roughly the carbon dioxide emissions per megawatt of an average coal-fired

1The fossil fuels most used by power plants in the U.S. are coal (49 percent of total electricity
generation) and natural gas (22 percent of total electricity generation).

2Even a draft of new rules limiting carbon dioxide emissions by new power plants, recently proposed
by the U.S. Environmental Protection Agency (EPA), has faced sharp resistance.
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plant (1768 pounds) in the U.S. The substitution between hydropower plants and fossil-
fuel power plants appears to be clearer for counties more affected by the regulations.

The data I use in this paper comes from two sources. The first is a unique report
prepared in the 1990s for the U.S. Department of Energy (DOE), to determine the
undeveloped potential hydropower resources in the U.S. It contains site characteristics
such as exact location and potential generation capacity, and, crucially, the list of all
land regulations that reduce the viability of each site, as well as the probability of
development of each site discounted by each regulation. I focus only on the regula-
tions meant to preserve the wilderness and the wildlife. The second source of data is
"The Emissions & Generation Resource Integrated Database" (eGRID), produced by
the U.S. Environmental Protection Agency (EPA). It is a comprehensive database on
the environmental characteristics of almost all electric power generated in the U.S., in-
cluding air emissions for carbon dioxide, nitrogen oxides, sulfur dioxide, methane, and
nitrous oxide.

This study might have at least two relevant contributions to the design of environ-
mental policies in the U.S. and abroad. First, it highlights the pernicious incentives
that incomplete environmental regulation generates3, and points to an integrated regu-
latory framework which includes both land conservation and air quality. If the govern-
ment wants to preseve nature, it should restrict land use and emissions simultaneously.
Hence, the recent push by the U.S. Environmental Protection Agency (EPA) to limit
greenhouse gas emissions goes in the expected direction. (The cost, however, might be
higher relative prices for electricity, as predicted by my simple theoretical model.) Also,
such regulatory framework may be useful to guide the debate on the development of
other renewable energy sources, such as wind and solar energy. Studies have identified
enough sites in the U.S. that, if developed, could make these technologies the dominant
electricity sources in the country4. Nevertheless, large-scale wind and solar projects
might create major alterations to the landscape and would not be seen as environmen-
tally friendly, as in the hydroelectricity case. Indeed, wind turbines may harm many
species of birds, and large-scale solar projects in the desert may endanger the habitat
for native animals. Therefore, the trade-off between land conservation and air quality
might be as fundamental here as in the hydroelectricity setting.

Second, it indicates that the heated debate sparked by hydropower projects in de-
veloping and underdeveloped countries might be misguided. The Three Gorges Dam
in China, the world’s largest hydroelectric project, for example, has raised interna-
tional concerns on environmental damages, but few organizations recognize the sizeable
amount of pollution-free electric power generated, which would be mainly produced by
the most-polluting power plants: coal-fired power plants5. Also, the historical involve-

3Fowlie (2009) also provides evidence of emissions leakage when industrial pollution is incompletely
regulated. She argues that if unregulated production can be easily substituted for production at
regulated firms, emissions can even exceed the level of emissions that would have occurred in the
absence of regulation.

4See a recent discussion about it on Borenstein (2012)
5In China, 80% of the electricity is produced by coal-fired power plants, the highest rate in the
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ment of the World Bank with the construction of large hydro dams in Asia, Africa and
Latin America has been severely criticized by environmentalists. It is likely that the
opportunity cost that such criticisms implied has been more air pollution and, poten-
tially, more global warming. Again, bidimensional negotiations, integrating both land
conservation and air quality concerns, would have been more effective in preserving our
environment.

The remainder of the paper is organized as follows. Section 3.2 presents a sim-
ple theoretical framework to illustrate the trade-off between land conservation and air
quality. Section 3.3 describes the databases used in this study. Section 3.4 outlines
the methodology for the empirical analysis. Section 3.5 reports and discusses results.
Section 3.6 provides some concluding remarks.

3.2 Theoretical Framework
To examine the trade-off between land conservation and air quality, let us work with
a simple general equilibrium model for eletricity generation. Let us assume that con-
sumers value eletricity, land conservation and air quality, but electricity generation
damages the environment either through construction of hydroeletric dams or green-
house gas emissions.

3.2.1 Set-up

In the simplest-possible setting, suppose that there are two price-taking economic
agents, a single consumer and a single firm, and three goods, land, clean air, and
eletricity produced by the firm.

The consumer has a strictly concave utility function U(T,C,A), defined over his
consumption of eletricity T , land for conservation C, and clean air A. He has an
endowment of L units of land, an endowment of E units of emission permits, but no
endowment of eletricity.

The firm uses inputs land L (to construct hydroelectric dams) and carbon dioxide
emissions E to produce eletricity according to the increasing and strictly concave pro-
duction function F (L,E). Thus, to produce the output, the firm must buy land and
emission permits from the consumer. Assume that the firm seeks to maximize its profits
taking market prices as given. Letting pT be the price of its output, pL be the price of
land, and pE the price of emission permits, the firm solves

MaxL,E∈R2
+
pTF (L,E)− pLL− pEE. (3.1)

Given prices (pT , pL, pE), the firm’s optimal demands are L(pT , pL, pE) and E(pT , pL, pE),
its output is Q(pT , pL, pE), and its profits are π(pT , pL, pE).

world.
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Firms are owned by consumers. Thus, assume that the consumer is the sole owner
of the firm and receives the profits earned by the firm π(pT , pL, pE). Therefore, the
consumer’s problem given prices (pT , pL, pE) is

MaxT,L,E∈R3
+
U(T,C,A) (3.2)

s.t. pTT ≤ pL(L− C) + pE(E − A) + π(pT , pL, pE).

The budget constraint in (3.2) reflects the three sources of the consumer’s purchasing
power. If the consumer supplies (L − C) units of land for the construction of hydro-
electric dams, and (E −A) units of emission permits when prices are (pT , pL, pE), then
the total amount he can spend on eletricity is pL(L − C) + pE(E − A) plus the profit
distribution from the firm π(pT , pL, pE). The consumer’s optimal demands in problem
(3.2) for prices (pT , pL, pE) are denoted by (T (pT , pL, pE), C(pT , pL, pE), A(pT , pL, pE)).

A Walrasian equilibrium in this economy involves a price vector (p∗T , p
∗
L, p

∗
E) at which

the eletricity, the land and the permit markets clear; that is, at which

Q(p∗T , p
∗
L, p

∗
E) = T (p∗T , p

∗
L, p

∗
E),

L(p∗T , p
∗
L, p

∗
E) = L− C(p∗T , p

∗
L, p

∗
E),

E(p∗T , p
∗
L, p

∗
E) = E − A(p∗T , p

∗
L, p

∗
E).

As well-known6, a particular eletricity-land-permit combination can arise in a com-
petitive equilibrium if and only if it maximizes the consumer’s utility subject to the
economy’s technological and endowment constraints. Indeed, the Walrasian equilibrium
allocation is the same allocation that would be obtained if a planner ran the economy
in a manner that maximized the consumer’s well-being. Therefore, the competitive
equilibrium is also Pareto optimal. The equilibrium problem is

MaxT,L,E∈R3
+
U(T,C,A)

s.t. T = F (L,E),

C = L− L,
A = E − E,

which is equivalent to

MaxL,E∈R2
+
U(F (L,E), (L− L), (E − E)). (3.3)

The first-order conditions for this problem are

UTFL − UC = 0,

UTFE − UA = 0,

6See, for example, Mas-Collel, Whinston and Green (1995), chapter 15.
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from which we can define L∗(L,E) and E∗(L,E). To check for a trade-off between
optimal emissions (E∗) and land regulation (change in L), we use the implicit function
theorem and find

∂E∗

∂L
=

(UTUTCFLFLE − UTUTCFEFLL + UTUCCFLE + UTUCAFLL)

(−UTUTAFLFLE − UTAUCAFL − UTUTCFEFLE + U2
TF

2
LE

...+ UTUCAFLE − UTCUCAFE + UTUCAFLE + U2
CA

...+ UTUTCFLFEE − UTCUAAFL + UTUTAFEFLL − U2
TFEEFLL

...+ UTUAAFLL − UTAUCCFE + UTUCCFEE − UCCUAA).

As we can see, the sign of ∂E∗

∂L
is ambiguous under mild assumptions on both the

utility and the production functions, so we now turn to some special cases.

3.2.2 Case 1: Cobb-Douglas Production and Cobb-Douglas Util-
ity

To illustrate the trade-off between land conservation and air quality, let us find the
competitive equilibrium for eletricity generation using a Cobb-Douglas functional form
for both the production function and the utility function. Let us get the equilibrium
allocations (T ∗, L∗, E∗) first, and then compute the equilibrium prices (p∗T , p

∗
L, p

∗
E). The

competitive equilibrium problem is

MaxT,L,E∈R3
+
TαCβAγ, {α, β, γ} ∈ (0, 1),

s.t. T = LlEe, {l, e} ∈ (0, 1),

C = L− L,
A = E − E,

which is equivalent to

MaxL,E∈R2
+

(LlEe)α(L− L)β(E − E)γ. (3.4)

Solving problem (3.4) yields optimal allocations

L∗ =

(
1

1 + β
αl

)
L ∈ (0, L), (3.5)

E∗ =

(
1

1 + γ
αe

)
E ∈ (0, E), (3.6)

T ∗ = (L∗)l (E∗)e . (3.7)

Now, let (p∗T , p
∗
L, p

∗
E) be a supporting price vector of the Pareto optimal allocations

just identified. As a normalization, put p∗T = 1. The zero-profit condition and the cost

90



minimization condition of the eletricity production imply that

p∗L =
(E∗)e(

1 + e
l

)
(L∗)1−l

, (3.8)

p∗E =
e

l

(L∗)l(
1 + e

l

)
(E∗)1−e

, (3.9)

p∗E
p∗L

=
e

l

L∗

E∗
. (3.10)

To make the trade-off between land conservation and gas emissions clear, let us
write E∗ as a function of L∗ (and, consequently, L). Hence,

E∗ =

 1

1 + γ

eβ
l

(
L∗

(L−L∗)

)

E. (3.11)

Now, it is evident that optimal emissions E∗ increase when governmental regulations
restrict the number of developable sites for hydroelectric dams, that is, when govern-
ment reduces L. Therefore, nature is being damaged one way or the other: conservation
of land is being offset with emission of greenhouse gases. (Notice that the relative price
of emissions with respect to land, p

∗
E

p∗L
, goes down with the land regulations. This is the

way the market accommodates the presence of such regulations.)
If the government really wants to implement an eco-friendly policy, it should im-

pose both land and emission regulations, that is, it should bring both L and E down.
Indeed, equation (3.11) says that the increase in optimal emissions arising from a lower
L might be offset with a reduction in E. The consequence of such policy, however, is
less eletricity generation (see equations (3.5), (3.6), and (3.7)). As a result, the relative
price of eletricity might go up (see equations (3.8) and (3.17) and recall the normal-
ization p∗T = 1). Land regulations have existed for a long time in the U.S. On the
other hand, emissions of greenhouse gases have yet to be regulated. Interestingly, the
U.S. Environmental Protection Agency (EPA) has recently proposed a rule to control
greenhouse gas emissions from new power plants.

3.2.3 Case 2: Perfect Substitutes Production and Cobb-Douglas
Utility

The competitive equilibrium problem in this case is

MaxT,L,E∈R3
+
TαCβAγ, {α, β, γ} ∈ (0, 1),

s.t. T = lL+ eE, {l, e} ∈ R+,

C = L− L,
A = E − E,
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which is equivalent to

MaxL,E∈R2
+

(lL+ eE)α(L− L)β(E − E)γ. (3.12)

Solving problem (3.12) yields optimal allocations

L∗ =
(α + γ)lL− βeE

(α + β + γ)l
∈ (0, L), (3.13)

E∗ =
(α + β)eE − γlL

(α + β + γ)e
∈ (0, E), (3.14)

T ∗ = lL∗ + eE∗. (3.15)

Now, let (p∗T , p
∗
L, p

∗
E) be a supporting price vector of the Pareto optimal allocations

just identified. As a normalization, put p∗T = 1. Also, due to the perfect substitutibility
of inputs in the production function, and the non-zero optimal allocations for both of
them, p∗E = e

l
p∗L. The zero-profit condition of the eletricity generation then implies that

p∗L = l, (3.16)
p∗E = e. (3.17)

Notice that the trade-off between land conservation and gas emissions is again evi-
dent in equation (3.14).

3.3 Data Description
To proceed with the empirical analysis, I use two sources of data. The first is a unique
report prepared in the 1990s for the U.S. Department of Energy (DOE), to deter-
mine the undeveloped potential hydropower resources in the U.S. It is the 1998 U.S.
Hydropower Resource Assessment, prepared by the Idaho National Engineering and
Environmental Laboratory (INL) (Conner, Francfort, and Rinehart, 1998; INL, 1998).
It contains site characteristics such as exact location and potential generation capacity,
and, crucially, the list of all land regulations that reduce the viability of each site, as
well as the probability of development of each site based on each regulation. Such infor-
mation allows me to compute the hydropower potential that cannot be developed due
to regulations meant to preserve the wilderness and the wildlife. The second source of
data is "The Emissions & Generation Resource Integrated Database" (eGRID) for 2007
(eGRID, 2010), produced by the U.S. Environmental Protection Agency (EPA). It is
a comprehensive database on the characteristics of almost all electric power generated
in the U.S., including capacity installed in power plants, and air emissions for carbon
dioxide, nitrogen oxides, sulfur dioxide, methane, and nitrous oxide.
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3.3.1 Hydropower Assessment

The INL report presents DOE’s efforts to produce a more definitive assessment of un-
developed hydropower resources within the U.S. No agency had previously estimated
the undeveloped hydropower capacity based on site characteristics, stream flow data,
and available hydraulic heads. Initial efforts began in 1989 and information from the
last state was received in 1998. State agencies such as departments of dam safety, water
resources, environmental quality, fish and game, history, and commerce, contributed in-
formation about hydropower resources within their states. The report summarizes and
discusses the undeveloped conventional hydropower capacity for the 5,677 sites within
the country. It does not include the capacity produced by pumped storage sites. How-
ever, for conventional hydropower, the resource assessment contains site identification
information, geographic coordinates, and crucially the estimated nameplate capacity7.

3.3.1.1 Suitability Factor Determination and Undevelopable Hydropower
Potential

A key element of my analysis here is the suitability factor of a potential hydropower
site. Such a factor reflects the probability that environmental considerations might
make a project site unacceptable, prohibiting its development. Suitability factors were
developed by the INL, in conjunction with Oak Ridge National Laboratory staff who
are experienced in hydropower licensing cases. Five potential values were selected, as
shown in table 3.1. (The discussion that follows is heavily based on Conner, Francfort,
and Rinehart [1998].)

The crucial step in evaluating the environmental suitability of each project site is
to combine the suitability factors for the individual environmental attributes into a
single factor for each project site. This overall suitability factor is an estimate of the
probability of a project’s successful development, considering all the attributes described
in Appendix B. The presence of more than one environmental attribute means that
more than one environmental concern affects a project. The overall suitability factor
should obviously be no greater than the lowest factor for individual attributes, and it
should be less than the lowest factor if multiple significant environmental constraints
are present. For example, if an undeveloped project has both fish values (suitability
factor = 0.25) and wildlife values (suitability factor = 0.25), the cumulative effects of
these two concerns will make its overall suitability even less than 0.25, so an overall
suitability factor of 0.1 is assigned.

If the environmental suitability factors for individual attributes were truly the proba-
bility of the project’s being developed, then the overall probability of development could
be mathematically calculated. And, if the individual suitability factors were true and
independent probabilities, then the probability of developing the project site because
of environmental concerns would be equal to the product of all the individual factors.
However, the Federal Energy Regulatory Commission’s (FERC’s) licensing process is

7Nameplate capacity refers to the intended technical full-load sustained output of a facility.
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not a statistical probability function, and it cannot be assumed that suitability factors
can be handled as independent probabilities (for example, there is a strong correlation
between the scenic, recreational, and fishing values of a stream). The procedure outlined
in table 3.2 is used for assigning overall suitability factors. It was developed by the lab-
oratories mentioned above and assumes that the lowest suitability factor dominates the
likelihood of a project’s development. However, it also considers the reduced likelihood
of development resulting from the occurrence of multiple low suitability factors.

After finding the overall suitability factor for each potential hydropower site, I obtain
the probability of development at the county level. First, I weight the potential capacity
of each site with its own probability, and sum the weighted capacities over all sites in
the county. Then, I divide this weighted sum by the total potential capacity. This
quotient is my county suitability factor.

To obtain a crucial variable in my analysis - the hydropower potential that cannot
be developed because of environmental regulations in each county -, I use the proba-
bility that some hydroelectric projects will not be carried out, which is one minus the
county suitability factor. This probability of non-development is then multiplied by the
hydropower potential at the county level.

3.3.1.2 Environmental, Legal, and Institutional Attributes

The INL defined the following environmental, legal, and institutional attributes. I use
only the ones marked with (*) in my empirical analysis. The corresponding suitability
factors are fully explained in the Suitability Factor Determination section above.

Wild/Scenic Protection (*). This attribute identifies project sites that are in-
cluded in the federal wild and scenic rivers system, under consideration for inclusion
in the federal system, included in a state river protection program, in a designated
wilderness area, or protected from development under another program. Relatively few
sites have this status, but those that do are highly unlikely to be developed. Projects at
undeveloped sites on state or federally protected wild and scenic rivers, or in wilderness
areas, must be assumed to be legally protected from hydropower development. Also,
projects at sites under consideration for protection are highly likely to be opposed by
state and federal resource agencies, and protection will be approved at many such sites
before hydropower development could occur. Since it is possible, but highly unlikely,
that development could occur at a site with wild and scenic river protection, the suit-
ability factor assigned to all such projects at undeveloped sites is 0.1. It is highly
unlikely that a project at an existing dam would be on a wild and scenic river since
rivers are usually designated as wild and scenic only if they are free of developments
such as dams. A suitability factor of 0.5 is assigned for such unusual cases.

Wild and Scenic Tributary or Upstream or Downstream of a Wild and
Scenic Location (*). This attribute is assigned to a project if it is at the upstream
or downstream end of a wild and scenic river reach or is on a tributary of a wild and
scenic river. A project at a developed site would affect a downstream wild and scenic
river if additional alterations to the flow regime resulted. A suitability factor of 0.75 is
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assigned for such projects. Projects at undeveloped sites are highly likely to alter the
flow regime and may cause changes in downstream water quality, so a suitability factor
of 0.5 is assigned to undeveloped sites.

Cultural and Historic Values. Project impacts on cultural and historic resources
can often be mitigated (for example, by excavating archeological sites or relocating
historic structures). Projects at existing dams are unlikely to affect such resources
unless an increase in reservoir pool elevation occurs or major new structures are built.
A suitability factor of 0.75 is assigned to such projects. Development of undeveloped
sites is more likely to affect cultural and historic resources, so a suitability factor of 0.5
is assigned.

Fish Presence Value (*). A stream reach may or may not have legally protected
fisheries. In either case, however, strong state opposition to new development must
be expected if a valuable fishery resource exists. Relatively high instream flow release
requirements can mitigate the impact on fisheries, but a high instream flow release
would reduce the economic viability of the project. Projects at developed sites could
have some impact, such as increased turbine mortality. A suitability factor of 0.75 is
assigned to projects at developed sites. Development at undeveloped sites could have
a major impact on aquatic habitat through inundation, migration blockage, turbine
mortality, water quality, and altered flows. Some of these can be mitigated, but such
mitigation could be expensive. A suitability factor of 0.25 is assigned to undeveloped
sites.

Geologic Value. Geologic values such as rock formations are rarely protected
legally and are not generally affected by small projects. Development at existing sites is
not affected by geologic resources, so a suitability factor of 0.9 is assigned. Development
at undeveloped sites may inundate geologic features, so a suitability factor of 0.5 is
assigned.

Recreation Value. River recreation users tend to be effective opponents of hy-
dropower development. Development at any storage dam would affect recreation by
altering flow releases; mitigation typically includes higher flow releases during periods
of high recreation use. Such releases can be made through turbines, but higher flow
releases tend to occur when power demands are low. Projects at existing dams would
have little effect on recreation besides flow alterations, so they are assigned a suitability
factor of 0.75. Projects at undeveloped sites would inundate reaches, block the passage
of boats, and reduce aesthetics. Because projects at undeveloped sites are likely to be
strongly opposed, a suitability factor of 0.25 is assigned.

Scenic Value. Scenic values are not legally protected but must be considered in
assessing the impact of a project. Scenic values are also important to recreational river
users. The addition of power to existing dams would alter scenic values only through
the addition of new structures and perhaps by reducing visually attractive spillage, so
a suitability factor of 0.9 is assigned. New projects at undeveloped sites would have
important effects on scenic resources because views would be altered by the project.
Undeveloped projects are assigned a suitability factor of 0.5.

Wildlife Value (*). Terrestrial wildlife and wildlife habit are protected by fish
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and game agencies that are influential in determining mitigation requirements for hy-
dropower projects. Development at existing sites would have little effect on wildlife
unless reservoir pool elevations are altered or construction of major facilities is required.
A suitability factor of 0.75 is assigned for projects at existing sites. Development at
undeveloped sites could inundate wildlife habitat, and construction would cause a great
deal of disturbance. It is difficult to mitigate for such impacts, so opposition to such a
project could be strong. Undeveloped projects are assigned a suitability factor of 0.25.

Other Value. The effects of other values, such as the presence of rare wetland
communities or consideration for wilderness designation, are assigned by using the most
commonly assigned suitability factor for the other values. For projects at developed
sites, the suitability factor is 0.75. For projects at undeveloped sites, the suitability
factor is 0.5.

Threatened and Endangered Fish or Wildlife (*). The presence of threatened
and endangered species near a project site requires additional consultations with wildlife
agencies and can result in additional studies and mitigation requirements. The presence
of threatened and endangered fish species may preclude development of new storage
projects because new projects can involve the greatest alteration of aquatic habitat.
Terrestrial threatened and endangered species are unlikely to be highly affected by
run-rivers projects, but storage reservoirs could affect terrestrial habitat. For existing
sites, a suitability factor of 0.75 is assigned when threatened and endangered species
are present. For projects at undeveloped sites, a suitability factor of 0.5 is assigned
when threatened and endangered species are present.

Federal Land Code 103: National Park, Monument, Lakeshore, Parkway, Bat-
tlefield, Or Recreation Area. These lands are legally protected from development. A
suitability factor of 0.1 is assigned for such projects.

Federal Land Code 104 (*): National Forest or Grassland. These lands are
not legally protected from development, but the managing agency has the right to
impose additional mitigation requirements on projects. A suitability factor of 0.75 is
assigned to projects at existing sites, since these projects typically have fewer impacts.
A suitability factor of 0.5 is assigned for undeveloped sites.

Federal Land Code 105 (*): National Wildlife Refuge, Game Preserve, or Fish
Hatchery. These lands are managed for fish and wildlife habitats, and hydropower
development would almost always be incompatible. A suitability factor of 0.1 is assigned
for such projects.

Federal Land Code 106 (*): National Scenic Waterway or Wilderness Area.
These lands are legally protected from development. A suitability factor of 0.1 is as-
signed for such projects.

Federal Land Code 107: Indian Reservation. These lands are not legally pro-
tected from development, but Indian tribes have the right to impose additional miti-
gation requirements on projects. A suitability factor of 0.75 is assigned for projects at
developed sites, and a suitability factor of 0.5 is assigned for projects at undeveloped
sites.

Federal Land Code 108: Military Reservation. These lands are not legally pro-
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tected from development, but the managing agency has the right to impose additional
mitigation requirements on projects. A suitability factor of 0.75 is assigned for projects
at developed sites, and a suitability factor of 0.5 is assigned for projects at undeveloped
sites.

Federal Land Code 198: Not on Federal Land. This variable indicates that the
project is not on federal land, so there are not any development constraints based on
Federal Land Codes. The value for this variable is 0.9.

3.3.2 Emissions-eGRID Database

Emissions and power plant information comes from the U.S. Environmental Protection
Agency’s Emissions and Generation Resource Integrated Database (eGRID) for 2007.
This database is a comprehensive inventory of the generation and environmental at-
tributes of all power plants in the United States. Much of the information in eGRID,
including plant opening years, comes from the U.S. Department of Energy’s Annual
Electric Generator Report compiled from responses to the EIA-860, a form completed
annually by all electric-generating plants. In addition, eGRID includes plant identifi-
cation information, geographic coordinates, number of generators, primary fuel, plant
nameplate capacity, plant annual net generation, whether the plant is a cogeneration
facility, and air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane,
and nitrous oxide.

3.4 Empirical Strategy
In order to test for the existence and economic relevance of the trade-off between
land conservation and air quality empirically, I use ideas advanced in the conceptual
framework. Basically, I regress variation in carbon dioxide emissions for the period
1998-2007 (4E) on the thermal (fossil-fuel) power capacity built during the same time
(4ThermDev), controlling for variation in population (∆Pop) and per capita income
(∆PCInc),

4Ec = β0 + β14ThermDevc + β24Popc + β3∆PCIncc + εc, (3.18)

and use an instrumental variable (IV) strategy to identify the response of emissions
to thermal power capacity induced by potential hydropower capacity that cannot be
developed due to land conservation regulations (HydroNotDev). The first stage is then

4ThermDevc = γ0 + γ1HydroNotDev + γ24Popc + γ3∆PCIncc + νc. (3.19)

Notice that the coefficient β1 in equation (3.18) reflects just the average mechanical
effect of new thermal power capacity on carbon dioxide emissions. The behavioral
response, my object of interest, comes from the IV approach. Since HydroNotDev
represents how much land availability for the development of new hydro dams (L in the
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theoretical model) has dropped because of land conservation regulations, coefficient βIV1
captures the increase in emissions arising from the potential substitution of hydropower
plants with fossil-fuel power plants in the generation of electricity. Therefore, it tells
us the relevance of the aforementioned trade-off between land conservation and air
quality. Recall either equation (3.11) or equation (3.14) to understand the link between
the conceptual framework and the empirical strategy here.

My unit of observation is county (c), and I focus on the period 1998-2007 because
the final DOE’s hydropower assessment report was released in 1998, and the latest
emissions eGRID data is for 2007. I restrict my sample for counties that have high
hydropower potential (above 100 megawatts8), and that have developed any power
plants in the period of analysis. My sample turns out to be really small: 32 counties,
in 17 states.

Major threats to identification are changes in preferences towards environmental
amenities and in access to coal versus natural gas at a local level. Because my analysis
focus on a short period of time, the domestic production of natural gas started to climb
only in 2006, and I take away county fixed effects with the differencing strategy, those
concerns might be of second order.

3.5 Results
The trade-off between land conservation and air quality is estimated through an instru-
mental variable approach. Results are presented in table 3.3. Initially, equation (3.18)
is estimated by OLS. Then, IV estimates are found using potential hydropower not
developed due to environmental regulations as exogenous shifter in the thermal power
capacity built in the period 1998-2007.

The OLS estimate indicates that each new megawatt installed in fossil-fuel power
plants generates 832 pounds of carbon dioxide emissions on average. This suggests that
large power plants built recently might be driven by natural gas, since natural gas plants
emit 800 to 850 pounds of carbon dioxide per megawatt. However, the preferred IV
estimate reveals that counties with larger hydropower potential not exploited because of
strict hydroelectric licensing rules emit 77 percent more of carbon dioxide per megawatt
(approximately 1476 pounds per megawatt). Since coal plants emit an average of 1,768
pounds of carbon dioxide per megawatt, those environmental regulations seem to induce
dirtier choices in electricity generation.

The first stage regression also brings insights on the impact of environmental reg-
ulations on the energy mix. It sheds some light on how restricting construction of
hydro dams affects the development of new thermal power plants. When I use the

8Plants smaller than 100 megawatts are not considered here because they tend to be built simulta-
neously with existing or expanding facilities such as industrial plants. Since the objective of the study
is to provide evidence of substitution among difference types of power plants, and hydroelectric dams
tend to be large, independend projects, it makes sense to concentrate on large plants. Davis (2011)
uses the same cut-off in his study of the effect of power plants on local housing values and rents.
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number of megawatts of hydropower that cannot be developed because of environmen-
tal regulations (HydroNotDev ) as instrument, the coefficient is approximately 0.25,
although not statistically significant. Taken at face value, that number means that for
each megawatt of hydropower potential not allowed to be developed due to regulations
induces an increase of 0.25 megawatt of thermal power developed in that county. As
we can see, the substitution does not seem to be one-to-one. This may be rational-
ized by the fact that electric utilities might build power plants in other counties within
their service area, or buy electricity from other regions. Also, such environmental re-
strictions might stifle local developement generally, or trigger efforts towards energy
efficiency policies.

Because the F-statistic of the first stage withHydroNotDev suggests only very weak
identification, I exploit some nonlinearities to improve it. I use a quartic function of
HydroNotDev instead. The IV estimate bounces around as I increase the order of the
polynomial, but stabilizes at the fourth order. Interestingly, it stabilizes on a value very
close to the one found using only the linear function of HydroNotDev. Knowing that
just-identified IV estimate is median-unbiased, such finding provides support for my
identification strategy. Furthermore, the Hansen’s J-test for overidentifying restrictions
reveals that the model is “valid”, that is, the data come close to meeting the restrictions.

The non-linear first stage reveals an interesting pattern in the relationship between
hydropower not developed due to environmental regulations and development of ther-
mal power capacity. Figure 3.1 shows that for low levels of HydroNotDev, increases
in constraints are associated with decreases in the number of megawatts developed in
fossil-fuel power plants. However, for higher levels of HydroNotDev, a positive rela-
tionship seems to emerge. Figure 3.2, zoomed in around the sample average (between
10th and 90th percentiles), displays the pattern even more clearly. This suggests that
after a certain threshold, restrictions imposed by hydroelectric licensing rules may be
used as leverage by electric utilities to get permits to build new thermal power plants.
Indeed, one of the biggest challenges in siting new plants is resistance from local commu-
nities. Citizen groups argue that power plants are a source of numerous negative local
externalities, including visual disamenities and noise. Davis (2011) provides empirical
evidence suggesting that such claims might be well-founded. Examining housing values
and rents for neighborhoods in the U.S. where power plants were opened during the
1990s, he find that neighborhoods within 2 miles of plants experienced 3%-7% decreases
in housing values and rents, with some evidence of larger decreases within 1 mile and
for large-capacity plants.

Weak identification. There may be some weak identification issues here. The F-
statistic for the first stage with instrument HydroNotDev is below the "safe threshold"
of 10 suggested by Stock, Wright and Yogo (2002). The F-statistic for the non-linear
first stage is larger than 10, but individual coefficients are not statistically significant.
When instruments are only weakly correlated with the endogenous explanatory variable,
two problems might emerge: (i) biased parameter estimates and (ii) biased standard
errors. Stock and Yogo (2005) provide a formal test for when an IV is "too weak" to be
trustworthy. The null hypothesis in this test is that bias of IV is some fraction of the bias
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of OLS. In my overidentified model, the one with a quartic function on HydroNotDev,
the Kleibergen-Paap rk Wald F-statistic is above the Stock-Yogo 10-percent maximal
IV relative bias critical value, suggesting that the bias of IV is less than 10 percent
the bias of OLS. Stock and Yogo (2005) also propose a test of the null hypothesis that
the true significance of hypothesis tests about the endogenous regressor coefficient is
smaller than 10, 15, 20, or 25 percent when the usually stated significance level is 5
percent. In my model, the test statistic is slightly lower than the Stock-Yogo 15-percent
maximal IV size critical value, then standard errors are not strongly downward biased.

I also estimate the model with a quartic function on HydroNotDev by continuously-
updated GMM, known to perform better than two-step feasible GMM in small samples,
and by limited-information maximum likelihood (LIML), known to be less precise but
also less biased than IV. As shown in table 3.3, in both cases the coefficient of interest
increases, suggesting that the IV estimate might be just a lower bound of the effect of the
environmental regulations on carbon dioxide emissions. An average of the coefficients
estimated by the three procedures is approximately 1768 pounds of carbon dioxide per
megawatt, exactly the average emissions of coal-fired power plants in the U.S.

3.6 Concluding Remarks
Do environmental regulations aimed to preserve natural ecosystems really protect na-
ture? The answer seems to be not really. I present evidence that while hydroelectric
licensing rules conserve the wilderness and the wildlife by restricting the development
of hydro projects, they lead to more greenhouse gas emissions. Basically, the land con-
servation regulations give rise to a replacement of hydropower, which is a renewable,
non-emitting source of energy, with conventional fossil-fuel power, which is highly pol-
lutant. Restrictions imposed by hydroelectric licensing rules might be used as leverage
by electric utilities to get permits to expand thermal power generation. Each megawatt
of hydropower potential that is not developed because of those regulations induces
the generation of the average emissions of carbon dioxide per megawatt of U.S. coal-
fired power plants. Environmental regulations focusing only on the preservation of
ecosystems appears to stimulate dirty substitutions within electric utilities regarding
electricity generation.

Such finding highlights the pernicious incentives of incomplete environmental reg-
ulations, and points to an integrated regulatory framework that includes both land
conservation and air quality. If the government wants to preseve nature, it should
restrict land use and emissions simultaneously. Hence, the recent push by the U.S.
Environmental Protection Agency (EPA) to limit greenhouse gas emissions goes in the
expected direction. Similar regulatory framework may be useful to guide the debate
on the development of other renewable energy sources, such as wind and solar energy.
Also, my empirical evidence of such unintended consequence of land conservation reg-
ulations provides guidelines for a more balanced cost-benefit analysis of hydroelectric
dams. The Three Gorges Dam in China, the world’s largest hydroelectric project, for
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example, has raised international concerns on environmental damages, but few organi-
zations recognize the sizeable amount of pollution-free electric power generated, which
would be mainly produced by the most-polluting power plants: coal-fired power plants.
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Figure 1.1: Impact of Hydro Dams on Population Density: Pre-1950 Dams vs. Post-
1950 Dams
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Calderwood Dam (1930s) - Blount County (TN)
Panel A. Log Population Density
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Notes: This figure plots the log population density from 1900 to 2000 for two counties: one with a hydroelectric dam built before 1950

(panel A), and the other with a dam built after 1950 (panel B). The solid vertical line shows the decade in which the dam was completed.

The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point

for the attenuation of the advantage of cheap local hydroelectricity. The solid line with solid circles displays the observed time series of log

population density for each county, and the dashed line with hollow squares depicts the predicted time series of a corresponding synthetic

control county. The synthetic control is a weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. The dotted line with

hollow triangles in panel A displays the simulated times series of the treated county if growth in population density had stopped in 1950.
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Figure 1.2: Average efficiency of coal plants and the cost of the fuel component, 1882-
2006

Source: McNerneya, Farmer and Trancik (2011, p. 3045).

Figure 1.3: Installed Capacity and Electricity Generation in the U.S.
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Notes: This figure displays the evolution of installed capacity and electricity generation by source in the U.S. throughout the twentieth
century. Panel A depicts installed capacity in thousands of megawatts. Panel B shows corresponding percentages. Panel C displays
electricity generation in thousands of megawatt hours. Panel D shows corresponding percentages. The dashed vertical line simply separates
the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point for the attenuation of the advantage of
cheap local hydroelectricity. "Hydro" includes conventional hydroelectricity and pumped storage. "Fossil Fuel" includes coal, natural gas,
petroleum, geothermal, other gases, and wood and wood derived fuels. "Others" includes solar and wind.

Source: Historical Statistics of the Electric Utility Industry through 1992, edited by Lizette Cintrón, 1995.
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Figure 1.4: Hydro Dams and Electricity Markets

Notes: This schematic diagram represents the impact of hydro dams, and of the attenuation of the appeal of cheap local hydroelectricity

in the second half of the twentieth century, on electricity markets. E denotes electricity quantity, and s electricity price. The dashed curve

ES0 represents electricity supply in a county with no hydro dams, and the solid curve ES1 the supply in a county with dams. The solid

line ED represents electricity demand of a particular firm. EM denotes the maximum amount of electricity that each county can generate

with its installed capacity. E∗ denotes the optimal electricity quantity. The shaded trapezoid represents rents that firms can exploit by

moving to counties with large hydropower facilities, with cheap and abundant electricity. The cutoff 1950 is my assumed turning point

for the attenuation of the advantage of cheap local hydroelectricity. After 1950, ES0 and ES1 become just one curve within a grid area,

which is much larger than counties. This reduces local rents considerably.
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Figure 1.5: Sample Counties: Treatment vs. Control

Notes: This figure displays the counties included in my sample. "Treated Before 1950" are indicated in blue and have hydroelectric dams

built in the first half of the twentieth century. "Treated After 1950" are indicated in green and have hydroelectric dams built in the second

half of the century. "Control" are indicated in yellow and have hydropower potential comparable to the capacity installed in treated

counties, but have no hydroelectric facilities. Counties left blank are not in my sample. Thin gray lines denote 1900 county borders, which

are held constant throughout my analysis.
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Figure 1.6: Impact of Hydro Dams on Population Density: Pre-1950 Dams
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Notes: This figure plots the log population density from 1900 to 2000 for two counties: one with virtually no agglomeration effects after

1950 (panel A), and the other with negative growth after 1950 (panel B). The solid vertical line shows the decade in which the dam

was completed. The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my

assumed turning point for the attenuation of the advantage of cheap local hydroelectricity. The solid line with solid circles displays the

observed time series of log population density for each county, and the dashed line with hollow squares depicts the predicted time series

of a corresponding synthetic control county. The synthetic control is a weighted average of the originally defined control counties that

reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro

dams.
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Figure 1.7: Impact of Hydro Dams on Population Density: Pre-1950 Dams
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Notes: This figure plots the log population density from 1900 to 2000 for two counties: one with constant growth after dam completion

(panel A), and the other with virtually no difference relative to the counterfactual of no dams (panel B). The solid vertical line shows the

decade in which the dam was completed. The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950.

The cutoff 1950 is my assumed turning point for the attenuation of the advantage of cheap local hydroelectricity. The solid line with solid

circles displays the observed time series of log population density for each county, and the dashed line with hollow squares depicts the

predicted time series of a corresponding synthetic control county. The synthetic control is a weighted average of the originally defined

control counties that reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in

the absence of hydro dams.

115



Figure 1.8: Impact of Hydro Dams on Population Density: Pre-1950 Dams
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Notes: This figure plots the log population density from 1900 to 2000 for two counties: one with growth flattening before 1950 (panel A),

and the other with growth flattening after 1950 (panel B). The solid vertical line shows the decade in which the dam was completed. The

dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point for

the attenuation of the advantage of cheap local hydroelectricity. The dotted vertical line shows a cutoff that might be a more accurate

turning point for the county in question. The solid line with solid circles displays the observed time series of log population density for

each county, and the dashed line with hollow squares depicts the predicted time series of a corresponding synthetic control county. The

synthetic control is a weighted average of the originally defined control counties that reproduces more closely the counterfactual outcome

trajectory that the affected county would have experienced in the absence of hydro dams.
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Figure 1.9: Impact of Hydro Dams on Population Density: Post-1950 Dams
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Notes: This figure plots the log population density from 1900 to 2000 for two counties: one with moderately positive effects of dams (panel

A), and the other with small but positive dam effects (panel B). The solid vertical line shows the decade in which the dam was completed.

The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point

for the attenuation of the advantage of cheap local hydroelectricity. The solid line with solid circles displays the observed time series of log

population density for each county, and the dashed line with hollow squares depicts the predicted time series of a corresponding synthetic

control county. The synthetic control is a weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams.

117



Figure 1.10: Impact of Hydro Dams on Population Density: Post-1950 Dams
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Notes: This figure plots the log population density from 1900 to 2000 for two counties: one with virtually no dam effects (panel A), and

the other with somewhat negative effects of dams (panel B). The solid vertical line shows the decade in which the dam was completed.

The dashed vertical line simply separates the twentieth century into pre-1950 and post-1950. The cutoff 1950 is my assumed turning point

for the attenuation of the advantage of cheap local hydroelectricity. The solid line with solid circles displays the observed time series of log

population density for each county, and the dashed line with hollow squares depicts the predicted time series of a corresponding synthetic

control county. The synthetic control is a weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams.
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Figure 1.11: Impact of Hydro Dams on Population Density: Distribution of County
Estimates by Years Since Dam Completion (Pre-1950 Dams)
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Notes: This figure plots the distribution of county-specific estimates of the impact of pre-1950 hydro dams on the log of population density.

The estimates are found by using the synthetic control estimator for each treated county. The solid vertical line at zero just emphasizes

the point of no effects of dams. Each vertical bar in each histogram shows the percentage of counties with effects of dams in a particular

bin. The thick solid curved line just smoothes the distribution of effects using a kernel density estimator.
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Figure 1.12: Impact of Hydro Dams on Population Density: Distribution of County
Estimates by Years Since Dam Completion (Post-1950 Dams)
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Notes: This figure plots the distribution of county-specific estimates of the impact of post-1950 hydro dams on the log of population

density. The estimates are found by using the synthetic control estimator for each treated county. The solid vertical line at zero just

emphasizes the point of no effects of dams. Each vertical bar in each histogram shows the percentage of counties with effects of dams in a

particular bin. The thick solid curved line just smoothes the distribution of effects using a kernel density estimator.
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Figure 1.13: Impact of Hydro Dams on Population Density: Short- and Long-Run
Estimates
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Notes: This figure presents the short- and long-run effects of large hydroelectric dams on population density. Each panel graphs the

estimated coefficients β’s of event-time dummies from equation (1.5) in the text. The vertical solid line at zero facilitates the comparison

of the dynamics before and after the treatment. It also points out that the dummy for event time zero is omitted in the estimation.

The solid lines with solid circles report differences in the log of population density relative to year of dam completion, for counties that

had hydroelectric dams installed before 1950. The light (bluish gray) shade around the solid line depicts the 95% confidence interval for

the coefficients represented by solid circles. The dashed lines with hollow squares report similar differences for counties that had dams

installed after 1950. The dark (cranberry) shade around the dashed line depicts the 95% confidence interval for the coefficients represented

by hollow squares. In panel A, the control group used in the estimation consists of synthetic control counties. Each synthetic control

county is a weighted average of the originally defined control counties that reproduces more closely the counterfactual outcome trajectory

that the affected county would have experienced in the absence of hydro dams. In panel B, the control set contains the originally defined

control counties.
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Figure 1.14: Impact of Hydro Dams on Population Density: Specification Checks -
Pre-1950 Dams
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Notes: This figure presents some robustness checks regarding the specification used in the estimation of equation (1.5) in the text. Each

panel graphs the estimated coefficients β’s of event-time dummies from equations like that one. The vertical solid line at zero facilitates

the comparison of the dynamics before and after the treatment. It also points out that the dummy for event time zero is omitted in

the estimation. Each line reports differences in the log of population density relative to year of dam completion, for counties that had

hydroelectric dams installed before 1950. The dashed lines with hollow squares display estimates related to the basic specification. Such

specification includes event-time dummies, county effects, region-by-year fixed effects, and time-invariant county characteristics (cubic

function in latitute and longitude, and 50-year average rainfall and 50-year average temperature for each season of the year) interacted

with year effects. The long-dashed lines with hollow triangles show estimates associated with the basic specification plus a cubic function

in dam capacity. The solid lines with solid circles report the estimates related to the main specification, which is basic specification plus

controls for dam size plus a cubic function in thermal power plant capacity. The short-dashed lines with hollow diamonds display estimates

related to the main specification plus controls for the interaction of year effects with three county-specific measures of market access:

mileage of railroad tracks, distance to closest waterway, and log of market access as estimated by Donaldson and Hornbeck (2012). The

light (bluish gray) shade around the solid line depicts the 95% confidence interval for the coefficients of the main specification, represented

by solid circles. In panel B, the dotted line with little crosses displays estimates associated with the main specification, but replacing

region-by-year fixed effects with state-by-year fixed effects. This line does not appear in panel A because the sample size was insufficient

to estimate all the parameters. In panel A, the control group used in the estimation consists of synthetic control counties. Each synthetic

control county is a weighted average of the originally defined control counties that reproduces more closely the counterfactual outcome

trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the control set contains the originally

defined control counties.
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Figure 1.15: Impact of Hydro Dams on Population Density: Placebo - Pre-1950 Dams
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Notes: This figure plots estimates of placebo tests with pre-1950 dams. Each panel graphs estimated coefficients β’s of event-time dummies

from equation (1.5) in the text for actual and artificially assigned treatments. The vertical solid line at zero facilitates the comparison of

the dynamics before and after the treatment. It also points out that the dummy for event time zero is omitted in the estimation. The

thick solid black line displays the effects of actual dams. The thin solid gray lines show the effects of artificially treated counties. Artificial

treatment is assigned through a two-step procedure. First, counties are drawn randomly from the pool of originally treated and control

counties. The number of selected counties is identical to the number of originally treated counties. Second, for each artificially treated

county, the date of dam completion is set at random as well. In panel A, the control group used in the estimation consists of synthetic

control counties. Each synthetic control county is a weighted average of the originally defined control counties that reproduces more closely

the counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the

control set contains the originally defined control counties.
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Figure 1.16: Impact of Hydro Dams on Population Density: Placebo - Post-1950 Dams
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Notes: This figure plots estimates of placebo tests with post-1950 dams. Each panel graphs estimated coefficients β’s of event-time

dummies from equation (1.5) in the text for actual and artificially assigned treatments. The vertical solid line at zero facilitates the

comparison of the dynamics before and after the treatment. It also points out that the dummy for event time zero is omitted in the

estimation. The thick solid black line displays the effects of actual dams. The thin solid gray lines show the effects of artificially treated

counties. Artificial treatment is assigned through a two-step procedure. First, counties are drawn randomly from the pool of originally

treated and control counties. The number of selected counties is identical to the number of originally treated counties. Second, for each

artificially treated county, the date of dam completion is set at random as well. In panel A, the control group used in the estimation

consists of synthetic control counties. Each synthetic control county is a weighted average of the originally defined control counties that

reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro

dams. In panel B, the control set contains the originally defined control counties.
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Figure 1.17: Impact of Hydro Dams on Population Density: Agglomeration Spillovers
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Notes: This figure presents my estimates of agglomeration spillovers. The top panels plot the estimated coefficients β’s of event-time

dummies from equation (1.5) in the text. The bottom panels plot the differences between coefficients associated with pre-1950 dams and

post-1950 dams. Each panel shows estimates from 40 years before dam installation until 50 years after the dam: the differences in the

bottom charts can be computed only for this range. The vertical solid line at zero facilitates the comparison of the dynamics before and

after the treatment. It also points out that the dummy for event time zero is omitted in the estimation of the coefficients. The solid lines

with solid circles in the top panels report differences in the log of population density relative to year of dam completion, for counties that

had hydroelectric dams installed before 1950. The dashed lines with hollow squares in the top panels report similar differences for counties

that had dams installed after 1950. The solid lines with solid triangles in the bottom panels report the difference between the solid line

with solid circles and the dashed line with hollow squares of the corresponding top panel. The dotted lines in the bottom panels report

the effect of dams attributable to the advantage of cheap local hydroelectricity until 1950. My (lower bound) estimates of agglomeration

spillovers consist of the differences between the solid line with solid triangles and the dotted line, in the bottom panels. In panels A and

C, the control group used in the estimation consists of synthetic control counties. Each synthetic control county is a weighted average of

the originally defined control counties that reproduces more closely the counterfactual outcome trajectory that the affected county would

have experienced in the absence of hydro dams. In panels B and D, the control set contains the originally defined control counties.
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Figure 1.18: Impact of Hydro Dams on Population/Employment Density: Employment
by Sector - Pre-1950 Dams
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Notes: This figure presents the impact of pre-1950 dams on population and employment by sector. Each panel graphs the estimated

coefficients β’s of event-time dummies from equation (1.5) in the text, for the log density of each outcome mentioned in the legend. The

vertical solid line at zero facilitates the comparison of the dynamics before and after the treatment. It also points out that the dummy

for event time zero is omitted in the estimation. The thick solid lines with solid circles report differences in the log of population density

relative to year of dam completion, for counties that had hydroelectric dams installed before 1950. The thin solid lines with hollow squares

report similar estimates, but for log of employment density. More specifically, the long-dashed lines display similar estimates for log of

employment in manufacturing, the dashed lines for log of employment in agriculture, the dash-3dotted lines for log of employment in trade

(wholesale plus retail), the long-dash-3dotted lines for log of employment in construction, and the dotted lines for log of employment in

other sectors. "Other sectors" includes employment in industries that provide local goods and services such as real estate, cleaning services,

legal services, medical services, and personal services. In panel A, the control group used in the estimation consists of synthetic control

counties. Each synthetic control county is a weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the control

set contains the originally defined control counties.
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Figure 1.19: Impact of Hydro Dams on Population Density: Analysis with Contiguous
Counties - Pre-1950 Dams
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Notes: This figure presents potential externalities of pre-1950 dams on population density of neighboring counties. Each panel graphs the

estimated coefficients β’s of event-time dummies from equation (1.5) in the text. The vertical solid line at zero facilitates the comparison

of the dynamics before and after the treatment. It also points out that the dummy for event time zero is omitted in the estimation. The

solid lines with solid circles report differences in the log of population density relative to year of dam completion, for counties that had

hydroelectric dams installed before 1950. The dashed lines with hollow squares report similar estimates, but with counties contiguous

to the treated ones as the treatment. In panel A, the control group used in the estimation consists of synthetic control counties. Each

synthetic control county is a weighted average of the originally defined control counties that reproduces more closely the counterfactual

outcome trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the control set contains

the originally defined control counties.
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Figure 1.20: Impact of Hydro Dams on Population Density: Analysis with Counties
with Capacity of 30-100 Megawatts - Pre-1950 Dams
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Notes: This figure presents effects of smaller pre-1950 dams on population density. Each panel graphs the estimated coefficients β’s of

event-time dummies from equation (1.5) in the text. The vertical solid line at zero facilitates the comparison of the dynamics before and

after the treatment. It also points out that the dummy for event time zero is omitted in the estimation. The solid lines with solid circles

report differences in the log of population density relative to year of dam completion, for counties that had hydroelectric dams installed

before 1950. The dashed lines with hollow squares report similar estimates, but with treated counties with hydropower capacity in the

range of 30-100 megawatts. The long-dashed lines with hollow triangles report comparable estimates, but with treated and control counties

with hydropower capacity in the range 30-100 megawatts. In panel A, the control group used in the estimation consists of synthetic control

counties. Each synthetic control county is a weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the control

set contains the originally defined control counties.
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Figure 1.21: Impact of Hydro Dams on Population Density: All vs. Non-TVA Counties
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Notes: This figure presents the effects of dams estimated with all counties in my sample versus with only counties outside the Tennessee

Valley Authority (TVA) region. The TVA was one of the most ambitious place based economic development policies in the history of the

U.S. Besides hydroelectric dams, it included construction of an extensive network of new roads, canals, and flood control systems. Each

panel graphs the estimated coefficients β’s of event-time dummies from equation (1.5) in the text. The vertical solid line at zero facilitates

the comparison of the dynamics before and after the treatment. It also points out that the dummy for event time zero is omitted in the

estimation. The solid lines with solid circles report differences in the log of population density relative to year of dam completion, for

all sample counties that had hydroelectric dams installed before 1950. The solid lines with hollow circles report similar differences for

all sample counties that had dams installed after 1950. The dashed lines with solid squares report differences in the log of population

density relative to year of dam completion, for non-TVA counties that had hydroelectric dams installed before 1950. The dashed lines

with hollow squares report similar differences for non-TVA counties that had dams installed after 1950. In panel A, the control group

used in the estimation consists of synthetic control counties. Each synthetic control county is a weighted average of the originally defined

control counties that reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in

the absence of hydro dams. In panel B, the control set contains the originally defined control counties.
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Figure 1.22: Impact of Hydro Dams on Population Density: All vs. No Control Counties
With Environmental Regulations (ER) - Pre-1950 Dams
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Notes: This figure presents the short- and long-run effects of hydroelectric dams on population density, with and without control counties

subject to land regulations aimed at preserving wilderness and wildlife. Such environmental regulations could restrict population growth in

those locations. Each panel graphs the estimated coefficients β’s of event-time dummies from equation (1.5) in the text. The vertical solid

line at zero facilitates the comparison of the dynamics before and after the treatment. It also points out that the dummy for event time

zero is omitted in the estimation. The solid lines with solid circles report differences in the log of population density relative to year of

dam completion, for all sample counties that had hydroelectric dams installed before 1950. These are the estimates from the main analysis.

The dashed lines with hollow squares report similar differences, but excluding any control counties with environmental regulations from

the analysis. The long-dashed lines with hollow triangles also report similar differences as in the main analysis, but redefining the original

control group to include all counties without environmental regulations but with hydropower potential starting at 10 megawatts (instead of

100 megawatts, as in the main analysis). In panel A, the control group used in the estimation consists of synthetic control counties. Each

synthetic control county is a weighted average of the originally defined control counties that reproduces more closely the counterfactual

outcome trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the control set contains

the originally defined control counties.
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Figure 1.23: Impact of Pre-1950 Hydro Dams on Population Density: Non-Structural
Shape of Agglomeration Function

0

.05

.1

.15

.2

S
m

oo
th

ed
 D

ec
ad

al
 In

cr
em

en
ts

 in
 ln

(d
en

si
ty

)

10 20 30 40 50 60 70 80

Years Since Dam Completion

Panel A. Treatment vs. Synthetic Control

0

.05

.1

.15

.2

S
m

oo
th

ed
 D

ec
ad

al
 In

cr
em

en
ts

 in
 ln

(d
en

si
ty

)

10 20 30 40 50 60 70 80

Years Since Dam Completion

Panel B. Treatment vs. Control

Notes: This figure presents the shape of the agglomeration function based on the estimates from equation (1.5). Each panel displays the

decadal increments of log of population density after dam installation for counties treated before 1950, smoothed out by locally weighted

regressions (lowess). Each decadal increment is the difference between the estimated coefficient of an event-time dummy and the estimated

coefficient of the event-time dummy a decade before. In panel A, the control group used in the estimation consists of synthetic control

counties. Each synthetic control county is a weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. In panel B, the control

set contains the originally defined control counties.
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Figure 2.1: Broad Locational Choice
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Figure 3.1: Predicted Fossil-Fuel Capacity: 1998-2007
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Notes: This figure presents effects of hydropower potential restricted from development because of environmental regulations on the

thermal (fossil-fuel) power capacity developed in the period 1998-2007. Both variables are measure in megawatts. The dashed vertical

line represents the average of hydro not developed in my sample, and the dotted vertical lines the 10th and the 90th percentiles of such

variable.

134



Figure 3.2: Predicted Fossil-Fuel Capacity: 1998-2007 (Between 10th and 90th Per-
centiles of Hydro NOT Developed)
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Notes: This figure presents effects of hydropower potential restricted from development because of environmental regulations on the

thermal (fossil-fuel) power capacity developed in the period 1998-2007, zoomed in around the sample average of hydro not developed,

represented by the dashed vertical line. Both variables are measure in megawatts.
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Table 1.1: Chronology of Electrification of Industry and History of the U.S. Electric
Power Industry

_________________________________________________________________________________________ 

1870: D.C. Electric Generator 

__73: Motors Driven by a Generator 

__81: Hydroelectric Dam Built Near Niagara Falls 

__82: Modern Electric Utility Industry Launched 

__83: Motors Used in Manufacturing  

__88: A.C. Motor Developed 

__91: A.C. Power Transmission for Industrial Use 

__92: A.C. Polyphase Induction Motor Marketed 

__95: A.C. Generation at Niagara Falls 

1900: A.C. Generator 

__01: Right-of-Way Act: Federal Govt. Entitled the Authority to Grant Permits for Hydro Projects 

__02: Reclamation Act: Federal Water Development Projects Initiated 

__06: General Dam Act: Private Owners Must Build and Operate Navigation Facilities W/O Compensation 

__07: State Regulation of Electric Utilities Started (Georgia, New York, and Wisconsin) 

__14-18: World War I 

__17: Capacity and Generation of Utilities Exceeded That of Industrial Establishments 

__20: Federal Water Power Act: Hydroelectric Licenses Revocable After Fifty Years 

__27: Supreme Court Ruling: Only Federal Govt. Can Regulate Interstate Wholesale Power Transactions 

__29: Wall Street Crash 

__33: Tennessee Valley Authority (TVA) Act: Local Development Fostered by Hydroelectricity 

__35: Federal Power Act: Interstate Wholesale Power Transactions Regulated 

__39-45: World War II 

__49: TVA authorized to construct thermal-electric power plants for commercial electricity sale 

__50s: Construction of High-Voltage (230kV or more) Transmission Lines Began 

__54: Atomic Energy Act: Private Development of Commercial Nuclear Power Allowed 

__60: Current Level of Thermal Efficiency of Fossil-Steam Plants Reached 

__63: Clean Air Act (Amendments in 1970, 1977, and 1990): Pollution Regulation Initiated 

__64: Wilderness Act: Land Preservation Efforts Became Official  

__________________________________________________________________________________________ 

Sources: Devine (1983), Brown and Sedano (2004), Billington, Jackson and Melosi (2005), McNerneya, Farmer and Trancik (2011), and EIA (n.d.). 
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Table 1.2: Domestic Economy: Percentage distribution of total installed electric gener-
ating capacity by producer, 1889-1961

Source: DuBoff (1979, p.39).
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Table 1.3: Summary Statistics

(1) (2) (3) (4) (5) (6) (7) (8)

Mean SD Mean SD Mean SD Mean SD

Log of Population Density 1900 2.66 1.52 3.28 1.34 2.57 1.29 2.43 1.80

1950 3.26 1.32 3.94 1.31 3.13 1.10 3.04 1.48

2000 3.80 1.40 4.74 1.06 3.70 1.27 3.41 1.49

Log of Employment Density 1900 1.60 1.49 2.17 1.37 1.51 1.31 1.41 1.71

1950 2.19 1.32 2.85 1.34 2.07 1.10 1.99 1.47

2000 2.96 1.45 3.94 1.13 2.84 1.34 2.58 1.52

Hydroelectric Capacity 1910s 1.25 .

at Dam Completion 1920s 1.85 0.75

(in 100's of megawatts) 1930s 1.48 0.69

1940s 2.05 2.18

1950s 3.21 3.34

1960s 4.45 5.25

1970s 3.43 3.23

1980s 1.70 0.72

1990s 1.47 0.63

All Years 2.97 3.53 1.81 1.51 3.48 4.01 2.28 1.97

Average Hydroelectric 1910 0.78 0.47 0.99 0.23 0.14 .

Installed Capacity 1920 1.49 0.87 1.77 0.73 0.39 0.09

Over time 1930 1.48 0.86 1.71 0.81 0.58 0.23

(in 100's of megawatts) 1940 1.98 1.83 2.29 1.90 0.65 0.25

1950 2.95 3.05 2.96 2.89 2.94 3.26

1960 3.99 4.49 3.41 3.66 4.30 4.89

1970 4.49 5.64 3.47 3.63 4.99 6.37

1980 4.48 5.54 3.84 3.93 4.76 6.13

1990 4.43 5.50 3.89 3.92 4.67 6.07

2000 4.43 5.50 3.89 3.92 4.67 6.07

All Years 3.90 4.93 3.18 3.31 4.38 5.71

Sample Counties

Obs. Percent Obs. Percent Obs. Percent Obs. Percent

Dam Completion Date 1910s 1 1.01 1 3.33

1920s 7 7.07 7 23.33

1930s 9 9.09 9 30.00

1940s 13 13.13 13 43.33

1950s 26 26.26 26 37.68

1960s 26 26.26 26 37.68

1970s 7 7.07 7 10.14

1980s 8 8.08 8 11.59

1990s 2 2.02 2 2.90

All Years 99 100.00 30 100.00 69 100.00

Notes : Panel A reports mean and standard deviation (SD) for my main outcomes - population density and employment density - for selected years (see

Figures A1 and A2 for more details), and for hydroelectricity-related variables throughout the twentieth century. Standard deviations are shown in

italic. That panel also provides the sample size for each group of counties: all counties in the sample ("All Counties"), counties that have dams built

before 1950 ("Treated - Before 1950"), counties that have dams built after 1950 ("Treated - After 1950"), and counties that have hydropower potential

but no hydroelectric facilities ("Control"). Panel B presents the distribution of dam completion by decade. For each group of counties, the first column

reports the number of counties ("Obs."), and the second column the corresponding percentage ("Percent" ).

Potential Capacity

154 30 69 55

Panel B. Dam Completion by Decade

All Counties Treated - Before 1950 Treated - After 1950 Control

Panel A. Outcomes and Hydroelectricity
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Table 1.4: Short- and Long-Run Effects of Hydro Dams on Population Density

ln(Pop Density) TS_b1950 TC_b1950 TS_a1950 TC_a1950 Diff. (TS) Diff. (TC)

(1) (2) (3) (4) (5) = (1) - (3) (6) = (2) - (4)

80 years before dam -0.4335 -0.1652

(0.3306) (0.3564)

70 years before dam -0.1137 0.0802

(0.2182) (0.2500)

60 years before dam -0.1468 0.0411

(0.1605) (0.1914)

50 years before dam -0.2245 -0.1100

(0.1353) (0.1620)

40 years before dam -0.2428 -0.1441 -0.2243* -0.1298 -0.0185 -0.0143

(0.2365) (0.2740) (0.1193) (0.1428) (0.2061) (0.2523)

30 years before dam -0.2564 -0.1493 -0.1895* -0.1252 -0.0670 -0.0240

(0.1893) (0.1941) (0.1124) (0.1315) (0.1743) (0.1936)

20 years before dam -0.1536 -0.1253 -0.1663 -0.1180 0.0126 -0.0073

(0.1528) (0.1740) (0.1070) (0.1218) (0.1510) (0.1778)

10 years before dam -0.0398 -0.0337 -0.1468 -0.1049 0.1070 0.0712

(0.1445) (0.1544) (0.1036) (0.1126) (0.1459) (0.1617)

10 years after dam 0.1103** 0.0652 -0.0014 0.0070 0.1117*** (0.0582)

(0.0451) (0.0461) (0.0241) (0.0273) (0.0390) (0.0443)

20 years after dam 0.3063*** 0.1574* 0.0355 0.0491 0.2708*** 0.1083

(0.0979) (0.0811) (0.0439) (0.0475) (0.0831) (0.0783)

30 years after dam 0.4129*** 0.2207** 0.0460 0.0721 0.3670*** 0.1485

(0.1131) (0.0942) (0.0646) (0.0688) (0.1021) (0.0968)

40 years after dam 0.6551*** 0.4118*** 0.1053 0.1320 0.5497*** 0.2798**

(0.1408) (0.1138) (0.0893) (0.0900) (0.1382) (0.1193)

50 years after dam 0.7897*** 0.5176*** 0.1600 0.2242 0.6298*** 0.2934*

(0.1681) (0.1293) (0.1340) (0.1358) (0.1845) (0.1554)

60 years after dam 0.8699*** 0.6036***

(0.2047) (0.1514)

70 years after dam 0.9584*** 0.6026***

(0.2454) (0.1663)

80 years after dam 1.0494*** 0.6448***

(0.3052) (0.2094)

Cheap Local Hydroelectricity Effect 0.2579 0.1407

Observations 660 935 1518 1364

R-squared 0.9837 0.9781 0.9634 0.9634

Notes : This table presents the short- and long-run effects of hydroelectric dams on population density. The estimated coefficients are

the b's in equation (5) in the text. They are coefficients of event-time dummies. "TS" in the labels of the columns represents treatment

vs. synthetic control, "TC" treatment vs. control, "b1950" before 1950, and "a1950" after 1950. The synthetic control group consists

of synthetic control counties. Each synthetic control county is a weighted average of the originally defined control counties that

reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in the absence of

hydro dams. The control group contains the originally defined control counties. The cheap local hydroelectricity effects displayed at

the bottom of columns 5 and 6 represent average growth of population density from the time of dam installation until 1950, as

expressed in equation (7) in the text. Therefore, to obtain the estimates of agglomeration spillovers, simply subtract the cheap local

hydroelectricity effect from the post-dam effects in columns 5 and 6, as expressed in equation (6) in the text. Standard errors are

shown in parentheses. In "TS" columns, they are clustered at a case level. A case is a pair of a treated county and its corresponding

synthetic control. In "TC" columns, they are clustered at the county level. "Observations" reports the number of county-year

observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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Table 1.5: The Impact of Hydro Dams on Population Density - Specification Checks

ln(Pop Density)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

40 years before dam -0.3703 -0.1265 -0.2428 -0.1369 -0.2610 -0.1744 -0.1441 -0.1235 -0.2542

(0.2624) (0.2346) (0.2365) (0.1784) (0.2091) (0.2911) (0.2740) (0.2556) (0.4039)

30 years before dam -0.3802** -0.1692 -0.2564 -0.2974* -0.2387** -0.1763 -0.1493 -0.1758 -0.2761

(0.1521) (0.2003) (0.1893) (0.1459) (0.1136) (0.2129) (0.1941) (0.1921) (0.2927)

20 years before dam -0.2764*** -0.0565 -0.1536 -0.2122 -0.2001*** -0.1457 -0.1253 -0.1516 -0.1652

(0.0934) (0.1785) (0.1528) (0.1275) (0.0684) (0.2005) (0.1740) (0.1772) (0.2679)

10 years before dam -0.1542*** 0.0471 -0.0398 -0.1048 -0.0964** -0.0482 -0.0337 -0.0758 -0.1240

(0.0472) (0.1778) (0.1445) (0.1208) (0.0409) (0.1799) (0.1544) (0.1634) (0.2220)

10 years after dam 0.1193** 0.1062** 0.1103** 0.1041** 0.0675* 0.0744 0.0652 0.0702 0.0448

(0.0482) (0.0471) (0.0451) (0.0451) (0.0363) (0.0502) (0.0461) (0.0456) (0.0655)

20 years after dam 0.3206*** 0.2770*** 0.3063*** 0.3070*** 0.1854*** 0.1757* 0.1574* 0.1772** 0.2106*

(0.0905) (0.0918) (0.0979) (0.1016) (0.0664) (0.0887) (0.0811) (0.0831) (0.1194)

30 years after dam 0.4380*** 0.4022*** 0.4129*** 0.3978*** 0.2644*** 0.2682** 0.2207** 0.2467*** 0.3093*

(0.1264) (0.1206) (0.1131) (0.1044) (0.0905) (0.1129) (0.0942) (0.0934) (0.1592)

40 years after dam 0.6079*** 0.5985*** 0.6551*** 0.6209*** 0.4000*** 0.4197*** 0.4118*** 0.4409*** 0.4628**

(0.1595) (0.1557) (0.1408) (0.1292) (0.1104) (0.1364) (0.1138) (0.1131) (0.1770)

50 years after dam 0.7150*** 0.7512*** 0.7897*** 0.7335*** 0.4815*** 0.5210*** 0.5176*** 0.5514*** 0.5331***

(0.1899) (0.1862) (0.1681) (0.1509) (0.1309) (0.1518) (0.1293) (0.1272) (0.2016)

60 years after dam 0.7850*** 0.8535*** 0.8699*** 0.7999*** 0.5142*** 0.5726*** 0.6036*** 0.6374*** 0.5882**

(0.2245) (0.2272) (0.2047) (0.1858) (0.1467) (0.1718) (0.1514) (0.1477) (0.2312)

70 years after dam 0.8614*** 0.9804*** 0.9584*** 0.8767*** 0.4990*** 0.5936*** 0.6026*** 0.6427*** 0.5839**

(0.2737) (0.2823) (0.2454) (0.2145) (0.1783) (0.1997) (0.1663) (0.1681) (0.2674)

80 years after dam 0.9652*** 1.0877*** 1.0494*** 0.9330*** 0.4886** 0.6030** 0.6448*** 0.6937*** 0.6253**

(0.3293) (0.3398) (0.3052) (0.3371) (0.2227) (0.2562) (0.2094) (0.2089) (0.2983)

Hydro Dam Size 0.2180 0.1263 0.0442 0.0754 0.0807 0.0420 0.0002

(0.1572) (0.1217) (0.1138) (0.1416) (0.1193) (0.1314) (0.1942)

Hydro Dam Size^2 -0.0443* -0.0260 -0.0097 -0.0221 -0.0210 -0.0160 -0.0071

(0.0217) (0.0167) (0.0158) (0.0185) (0.0153) (0.0174) (0.0273)

Hydro Dam Size^3 0.0019** 0.0011* 0.0004 0.0011 0.0010* 0.0008 0.0005

(0.0008) (0.0006) (0.0006) (0.0007) (0.0006) (0.0006) (0.0010)

Thermal Plant Size 0.1936*** 0.1826*** 0.1297*** 0.1154*** 0.1185***

(0.0401) (0.0386) (0.0273) (0.0284) (0.0417)

Thermal Plant Size^2 -0.0154*** -0.0146*** -0.0088*** -0.0078*** -0.0078**

(0.0029) (0.0031) (0.0021) (0.0023) (0.0032)

Thermal Plant Size^3 0.0003*** 0.0003*** 0.0001*** 0.0001*** 0.0001**

(0.0001) (0.0001) (0.0000) (0.0000) (0.0001)

Market Access-by-Year No No No Yes No No No Yes No

Region-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes No

State-by-Year FE No No No No No No No No Yes

Observations 660 660 660 660 935 935 935 913 935

R-squared 0.9787 0.9801 0.9837 0.9875 0.9745 0.9751 0.9781 0.9796 0.9872

*** Significant at the 1 percent level.

Treatment vs. Synthetic Control Treatment vs. Control

** Significant at the 5 percent level.

* Significant at the 10 percent level.

Notes : This table presents some robustness checks regarding the specification used in the estimation of the effects of pre-1950 hydroelectric dams on population

density. The synthetic control group consists of synthetic control counties. Each synthetic control county is a weighted average of the originally defined control

counties that reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. The

control group contains the originally defined control counties. Columns 1 and 5 display estimates related to the basic specification. Such specification includes

event-time dummies, county effects, region-by-year fixed effects, and time-invariant county characteristics (cubic function in latitute and longitude, and 50-year

average rainfall and 50-year average temperature for each season of the year) interacted with year effects. Columns 2 and 6 show estimates associated with the basic

specification plus a cubic function in dam capacity. Columns 3 and 7 report the estimates related to the main specification, which is basic specification plus controls

for dam size plus a cubic function in thermal power plant capacity. Columns 4 and 8 report the estimates related to the main specification plus controls for the

interaction of year effects with three county-specific measures of market access: mileage of railroad tracks, distance to closest waterway, and log of market access as

estimated by Donaldson and Hornbeck (2012). Column 9 displays estimates associated with the main specification, but replacing region-by-year fixed effects with

state-by-year fixed effects. A similar column does not appear under the label "Treatment vs. Synthetic Control" because the sample size was insufficient to estimate

all the parameters. Standard errors are shown in parentheses. In columns 1 through 4, they are clustered at a case level. A case is a pair of a treated county and its

corresponding synthetic control. In columns 5 through 9, they are clustered at the county level. "Observations" reports the number of county-year observations. 
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Table 1.6: Short- and Long-Run Effects of Hydro Dams on Employment Density

ln(Pop Density) TS_b1950 TC_b1950 TS_a1950 TC_a1950

(1) (2) (3) (4)

80 years before dam -0.3185 -0.1612

(0.3929) (0.3784)

70 years before dam -0.2408 -0.1090

(0.2599) (0.2778)

60 years before dam -0.1482 0.0001

(0.1934) (0.2223)

50 years before dam -0.2665 -0.1751

(0.1626) (0.1941)

40 years before dam -0.0411 -0.0150 -0.2800* -0.1905

(0.2235) (0.3112) (0.1443) (0.1706)

30 years before dam -0.1079 -0.0682 -0.2628* -0.1758

(0.1788) (0.2291) (0.1338) (0.1579)

20 years before dam -0.0402 -0.0538 -0.2515* -0.1605

(0.1593) (0.2221) (0.1302) (0.1494)

10 years before dam 0.0478 0.0502 -0.2377* -0.1343

(0.1459) (0.1903) (0.1199) (0.1355)

10 years after dam 0.0650 0.0754 0.0145 0.0184

(0.0466) (0.0568) (0.0291) (0.0306)

20 years after dam 0.2430** 0.1881* 0.0395 0.0552

(0.0992) (0.0995) (0.0526) (0.0571)

30 years after dam 0.3491*** 0.2824** 0.0606 0.0897

(0.1116) (0.1212) (0.0764) (0.0823)

40 years after dam 0.5681*** 0.4770*** 0.1188 0.1593

(0.1230) (0.1480) (0.1022) (0.1075)

50 years after dam 0.6854*** 0.6059*** 0.1840 0.2710

(0.1375) (0.1664) (0.1729) (0.1645)

60 years after dam 0.7624*** 0.7200***

(0.1592) (0.1931)

70 years after dam 0.8425*** 0.7152***

(0.1885) (0.2127)

80 years after dam 0.8619*** 0.7401***

(0.2580) (0.2613)

Observations 660 935 1496 1353

R-squared 0.9865 0.9677 0.9554 0.9509

Notes : This table presents the short- and long-run effects of hydroelectric dams on employment

density. The estimated coefficients are the b's in equation (5) in the text. They are coefficients of

event-time dummies. "TS" in the labels of the columns represents treatment vs. synthetic

control, "TC" treatment vs. control, "b1950" before 1950, and "a1950" after 1950. The

synthetic control group consists of synthetic control counties. Each synthetic control county is a

weighted average of the originally defined control counties that reproduces more closely the

counterfactual outcome trajectory that the affected county would have experienced in the

absence of hydro dams. The control group contains the originally defined control counties.

Standard errors are shown in parentheses. In "TS" columns, they are clustered at a case level. A

case is a pair of a treated county and its corresponding synthetic control. In "TC" columns, they

are clustered at the county level. "Observations" reports the number of county-year

observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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Table 1.7: The Impact of Hydro Dams on Employment Density - Sectoral Decomposi-
tion

ln(density)

TS_b1950 TC_b1950 TS_b1950 TC_b1950 TS_b1950 TC_b1950 TS_b1950 TC_b1950 TS_b1950 TC_b1950 TS_b1950 TC_b1950

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

40 years before dam -0.0411 -0.0150 0.2843 -0.3996 0.2905 0.4334* 0.8197 0.0939 -1.2201** -1.0967** -0.3724 -0.1949

(0.2235) (0.3112) (0.5156) (0.4122) (0.2412) (0.2285) (0.8111) (0.5670) (0.4166) (0.4404) (0.3732) (0.4240)

30 years before dam -0.1079 -0.0682 0.3037 -0.2043 0.0111 0.1761 0.0924 -0.2169 -1.0684** -0.7967 -0.1229 0.1461

(0.1788) (0.2291) (0.4676) (0.3264) (0.1888) (0.1552) (0.4330) (0.4236) (0.4097) (0.4836) (0.3364) (0.3350)

20 years before dam -0.0402 -0.0538 0.0744 -0.2853 0.0096 0.1189 -0.0308 -0.0443 -0.6780* -0.6156* 0.0320 0.2003

(0.1593) (0.2221) (0.4837) (0.4319) (0.2291) (0.1645) (0.5193) (0.4480) (0.3693) (0.3556) (0.3015) (0.3257)

10 years before dam 0.0478 0.0502 0.0858 -0.3795 0.0655 0.1977 -0.0817 -0.1150 -0.5398* -0.2376 0.1602 0.2753

(0.1459) (0.1903) (0.4006) (0.3589) (0.1941) (0.1564) (0.3564) (0.3820) (0.2545) (0.3344) (0.3035) (0.2792)

10 years after dam 0.0650 0.0754 -0.1271 -0.0049 0.1588*** 0.1242** -0.0275 -0.0031 -0.3605 -0.3758 0.1697** 0.0352

(0.0466) (0.0568) (0.1474) (0.1562) (0.0525) (0.0495) (0.2096) (0.1341) (0.5112) (0.3130) (0.0736) (0.0834)

20 years after dam 0.2430** 0.1881* 0.0180 0.1685 0.2210*** 0.0687 0.0034 0.0243 -0.1851 -0.4518 0.3346** 0.1611

(0.0992) (0.0995) (0.1706) (0.1501) (0.0799) (0.0865) (0.2335) (0.1695) (0.5102) (0.3347) (0.1247) (0.1256)

30 years after dam 0.3491*** 0.2824** 0.1280 0.1595 0.3322** 0.1780 0.1099 0.1435 -0.1930 -0.3900 0.4488** 0.2096

(0.1116) (0.1212) (0.1902) (0.1655) (0.1248) (0.1149) (0.2518) (0.2101) (0.5476) (0.3751) (0.1860) (0.1654)

40 years after dam 0.5681*** 0.4770*** 0.3574 0.2970 0.3883** 0.2144 0.1982 0.3247 -0.1815 -0.3033 0.6422** 0.4088*

(0.1230) (0.1480) (0.2083) (0.1989) (0.1727) (0.1344) (0.2423) (0.2362) (0.5997) (0.3790) (0.2387) (0.2056)

50 years after dam 0.6854*** 0.6059*** 0.3629 0.2743 0.8084*** 0.5501*** 0.1887 0.3993 -0.0926 -0.1901 0.7627** 0.5287**

(0.1375) (0.1664) (0.2185) (0.2161) (0.1822) (0.1736) (0.2772) (0.2618) (0.5904) (0.3994) (0.3152) (0.2329)

60 years after dam 0.7624*** 0.7200*** 0.5148** 0.3589 0.8164*** 0.5106*** 0.2661 0.5141* -0.1168 -0.1226 0.8168** 0.6122**

(0.1592) (0.1931) (0.2384) (0.2269) (0.2003) (0.1482) (0.3186) (0.2911) (0.6536) (0.4566) (0.3698) (0.2583)

70 years after dam 0.8425*** 0.7152*** 0.5927** 0.3369 1.0279*** 0.5492*** 0.2516 0.5389* 0.0223 -0.0603 0.8134* 0.5726*

(0.1885) (0.2127) (0.2660) (0.2350) (0.2035) (0.2002) (0.3357) (0.2967) (0.6954) (0.4838) (0.4597) (0.3047)

80 years after dam 0.8619*** 0.7401*** 0.6723** 0.3523 0.9216*** 0.4202** 0.2674 0.5552 0.4266 0.0024 0.7560 0.5604

(0.2580) (0.2613) (0.2973) (0.2714) (0.2086) (0.2103) (0.3856) (0.4014) (0.6146) (0.4821) (0.4635) (0.3488)

Observations 660 935 506 638 638 924 440 682 352 528 660 902

R-squared 0.9865 0.9677 0.9715 0.9471 0.9664 0.9525 0.9803 0.9536 0.9817 0.9526 0.9693 0.9387

Notes : This table presents the effects of pre-1950 hydroelectric dams on employment density by sector. The estimated coefficients are the b's in equation (5) in the text. They are coefficients of event-time dummies.

"Other sectors" includes employment in industries that provide local goods and services like real estate, cleaning services, legal services, medical services, and personal services. "TS" in the labels of the columns

represents treatment vs. synthetic control, "TC" treatment vs. control, and "b1950" before 1950. The synthetic control group consists of synthetic control counties. Each synthetic control county is a weighted average

of the originally defined control counties that reproduces more closely the counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams. The control group contains

the originally defined control counties. Standard errors are shown in parentheses. In "TS" columns, they are clustered at a case level. A case is a pair of a treated county and its corresponding synthetic control. In

"TC" columns, they are clustered at the county level. "Observations" reports the number of county-year observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.

Total Manufacturing Agriculture Trade Construction Other Sectors
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Table 1.8: The Impact of Hydro Dams on Population Density of Contiguous Counties

ln(Pop Density)

TS_b1950 TC_b1950 TS_b1950 TC_b1950

(1) (2) (3) (4)

40 years before dam -0.2428 -0.1441 -0.9443*** -0.7819***

(0.2365) (0.2740) (0.1826) (0.1803)

30 years before dam -0.2564 -0.1493 -0.7571*** -0.6644***

(0.1893) (0.1941) (0.1597) (0.1537)

20 years before dam -0.1536 -0.1253 -0.6404*** -0.5639***

(0.1528) (0.1740) (0.1294) (0.1282)

10 years before dam -0.0398 -0.0337 -0.4642*** -0.4180***

(0.1445) (0.1544) (0.1011) (0.1015)

10 years after dam 0.1103** 0.0652 0.0633* 0.0307

(0.0451) (0.0461) (0.0322) (0.0288)

20 years after dam 0.3063*** 0.1574* 0.1234*** 0.0702

(0.0979) (0.0811) (0.0463) (0.0426)

30 years after dam 0.4129*** 0.2207** 0.1759*** 0.0996*

(0.1131) (0.0942) (0.0591) (0.0548)

40 years after dam 0.6551*** 0.4118*** 0.2080*** 0.1096*

(0.1408) (0.1138) (0.0669) (0.0619)

50 years after dam 0.7897*** 0.5176*** 0.2444*** 0.1222*

(0.1681) (0.1293) (0.0734) (0.0671)

60 years after dam 0.8699*** 0.6036*** 0.2552*** 0.1123

(0.2047) (0.1514) (0.0765) (0.0735)

70 years after dam 0.9584*** 0.6026*** 0.2439*** 0.0919

(0.2454) (0.1663) (0.0795) (0.0798)

80 years after dam 1.0494*** 0.6448*** 0.2127** 0.0249

(0.3052) (0.2094) (0.0973) (0.1118)

Observations 660 935 2222 1430

R-squared 0.9837 0.9781 0.9697 0.9656

* Significant at the 10 percent level.

Main Analysis
Treatment:        

Contiguous Counties 

Notes : This table presents the effects of pre-1950 hydroelectric dams on population density

of neighboring counties. The estimated coefficients are the b's in equation (5) in the text.

They are coefficients of event-time dummies. "TS" in the labels of the columns represents

treatment vs. synthetic control, "TC" treatment vs. control, and "b1950" before 1950. The

synthetic control group consists of synthetic control counties. Each synthetic control county

is a weighted average of the originally defined control counties that reproduces more closely

the counterfactual outcome trajectory that the affected county would have experienced in the

absence of hydro dams. The control group contains the originally defined control counties.

Standard errors are shown in parentheses. In "TS" columns, they are clustered at a case level.

A case is a pair of a treated county and its corresponding synthetic control. In "TC" columns,

they are clustered at the county level. "Observations" reports the number of county-year

observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.
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Table 1.9: The Impact of Smaller (30-100MW) Hydro Dams on Population Density

ln(Pop Density)

TS_b1950 TC_b1950 TS_b1950 TC_b1950 TS_b1950 TC_b1950

(1) (2) (3) (4) (5) (6)

40 years before dam -0.2428 -0.1441 -0.1861 -0.3683* -0.2811 -0.3470

(0.2365) (0.2740) (0.2068) (0.2185) (0.2680) (0.2700)

30 years before dam -0.2564 -0.1493 -0.3860* -0.2614 -0.3597* -0.3021

(0.1893) (0.1941) (0.1935) (0.2057) (0.2056) (0.2317)

20 years before dam -0.1536 -0.1253 -0.3576** -0.2421 -0.3729** -0.3324

(0.1528) (0.1740) (0.1624) (0.1849) (0.1836) (0.2016)

10 years before dam -0.0398 -0.0337 -0.3651** -0.1681 -0.3035* -0.2142

(0.1445) (0.1544) (0.1489) (0.1687) (0.1654) (0.1794)

10 years after dam 0.1103** 0.0652 0.0689** 0.0753** 0.0290 0.0488

(0.0451) (0.0461) (0.0328) (0.0289) (0.0302) (0.0315)

20 years after dam 0.3063*** 0.1574* 0.0959 0.1232** 0.0593 0.0816*

(0.0979) (0.0811) (0.0577) (0.0475) (0.0440) (0.0476)

30 years after dam 0.4129*** 0.2207** 0.0847 0.1453** 0.1319** 0.1345**

(0.1131) (0.0942) (0.0691) (0.0614) (0.0590) (0.0635)

40 years after dam 0.6551*** 0.4118*** 0.1584* 0.1925** 0.2565*** 0.2105***

(0.1408) (0.1138) (0.0809) (0.0744) (0.0728) (0.0794)

50 years after dam 0.7897*** 0.5176*** 0.2189** 0.2487*** 0.3514*** 0.2709***

(0.1681) (0.1293) (0.0882) (0.0838) (0.0819) (0.0921)

60 years after dam 0.8699*** 0.6036*** 0.2136** 0.2231** 0.4093*** 0.2848**

(0.2047) (0.1514) (0.0971) (0.0941) (0.0956) (0.1082)

70 years after dam 0.9584*** 0.6026*** 0.2552** 0.2226** 0.4958*** 0.3042**

(0.2454) (0.1663) (0.1050) (0.1106) (0.1106) (0.1233)

80 years after dam 1.0494*** 0.6448*** 0.2748** 0.1535 0.5497*** 0.2714*

(0.3052) (0.2094) (0.1337) (0.1341) (0.1317) (0.1445)

Observations 660 935 968 1584 968 946

R-squared 0.9837 0.9781 0.9880 0.9651 0.9869 0.9833

** Significant at the 5 percent level.

* Significant at the 10 percent level.

Main Analysis Treatment:                    Treatment:                    

Notes : This table presents the effects of smaller pre-1950 hydroelectric dams on population density. Small dams refers to

dams with hydropower capacity between 30 and 100 megawatts (MW). The estimated coefficients are the b's in equation (5)

in the text. They are coefficients of event-time dummies. "TS" in the labels of the columns represents treatment vs. synthetic

control, "TC" treatment vs. control, and "b1950" before 1950. The synthetic control group consists of synthetic control

counties. Each synthetic control county is a weighted average of the originally defined control counties that reproduces more

closely the counterfactual outcome trajectory that the affected county would have experienced in the absence of hydro dams.

The control group contains the originally defined control counties. Standard errors are shown in parentheses. In "TS" columns,

they are clustered at a case level. A case is a pair of a treated county and its corresponding synthetic control. In "TC" columns,

they are clustered at the county level. "Observations" reports the number of county-year observations.

*** Significant at the 1 percent level.
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Table 1.10: The Impact of Hydro Dams on Population Density - All vs. Non-TVA
Counties

ln(Pop Density)

TS_b1950 TC_b1950 TS_a1950 TC_a1950 TS_b1950 TC_b1950 TS_a1950 TC_a1950

(1) (2) (3) (4) (5) (6) (7) (8)

80 years before dam -0.4335 -0.1652 -0.3578 -0.1590

(0.3306) (0.3564) (0.3508) (0.3778)

70 years before dam -0.1137 0.0802 -0.0214 0.1115

(0.2182) (0.2500) (0.2374) (0.2708)

60 years before dam -0.1468 0.0411 -0.0880 0.0520

(0.1605) (0.1914) (0.1753) (0.2093)

50 years before dam -0.2245 -0.1100 -0.1780 -0.1062

(0.1353) (0.1620) (0.1490) (0.1786)

40 years before dam -0.2428 -0.1441 -0.2243* -0.1298 -0.6014 -0.1867 -0.1838 -0.1197

(0.2365) (0.2740) (0.1193) (0.1428) (0.3714) (0.4076) (0.1330) (0.1588)

30 years before dam -0.2564 -0.1493 -0.1895* -0.1252 -0.5027* -0.1490 -0.1616 -0.1176

(0.1893) (0.1941) (0.1124) (0.1315) (0.2690) (0.2313) (0.1273) (0.1475)

20 years before dam -0.1536 -0.1253 -0.1663 -0.1180 -0.2473 -0.0883 -0.1457 -0.1119

(0.1528) (0.1740) (0.1070) (0.1218) (0.1884) (0.2034) (0.1250) (0.1383)

10 years before dam -0.0398 -0.0337 -0.1468 -0.1049 -0.0446 0.0242 -0.1343 -0.0986

(0.1445) (0.1544) (0.1036) (0.1126) (0.1632) (0.1784) (0.1214) (0.1296)

10 years after dam 0.1103** 0.0652 -0.0014 0.0070 0.1540** 0.0673 -0.0164 -0.0073

(0.0451) (0.0461) (0.0241) (0.0273) (0.0716) (0.0594) (0.0268) (0.0297)

20 years after dam 0.3063*** 0.1574* 0.0355 0.0491 0.2341** 0.0393 0.0017 0.0166

(0.0979) (0.0811) (0.0439) (0.0475) (0.1040) (0.0868) (0.0502) (0.0509)

30 years after dam 0.4129*** 0.2207** 0.0460 0.0721 0.3411** 0.0896 -0.0099 0.0239

(0.1131) (0.0942) (0.0646) (0.0688) (0.1386) (0.1153) (0.0730) (0.0734)

40 years after dam 0.6551*** 0.4118*** 0.1053 0.1320 0.5950*** 0.2966** 0.0450 0.0782

(0.1408) (0.1138) (0.0893) (0.0900) (0.1788) (0.1411) (0.0965) (0.0943)

50 years after dam 0.7897*** 0.5176*** 0.1600 0.2242 0.7340*** 0.4361*** 0.0194 0.1065

(0.1681) (0.1293) (0.1340) (0.1358) (0.2331) (0.1571) (0.1350) (0.1391)

60 years after dam 0.8699*** 0.6036*** 0.8031** 0.5518***

(0.2047) (0.1514) (0.2824) (0.1831)

70 years after dam 0.9584*** 0.6026*** 0.7464** 0.4712**

(0.2454) (0.1663) (0.3142) (0.1880)

80 years after dam 1.0494*** 0.6448*** 0.7673* 0.5060**

(0.3052) (0.2094) (0.4040) (0.2337)

Observations 660 935 1518 1364 440 792 1364 1254

R-squared 0.9837 0.9781 0.9634 0.9634 0.9914 0.9798 0.9637 0.9638

* Significant at the 10 percent level.

With  TVA Counties Without  TVA Counties

Notes : This table presents the short- and long-run effects of hydroelectric dams on population density, with and without counties of the

Tennessee Valley Authority (TVA) region. The TVA was one of the most ambitious place based economic development policies in the

history of the U.S. Besides hydroelectric dams, it included construction of an extensive network of new roads, canals, and flood control

systems. The estimated coefficients are the b's in equation (5) in the text. They are coefficients of event-time dummies. "TS" in the labels

of the columns represents treatment vs. synthetic control, "TC" treatment vs. control, "b1950" before 1950, and "a1950" after 1950. The

synthetic control group consists of synthetic control counties. Each synthetic control county is a weighted average of the originally

defined control counties that reproduces more closely the counterfactual outcome trajectory that the affected county would have

experienced in the absence of hydro dams. The control group contains the originally defined control counties. Standard errors are shown

in parentheses. In "TS" columns, they are clustered at a case level. A case is a pair of a treated county and its corresponding synthetic

control. In "TC" columns, they are clustered at the county level. "Observations" reports the number of county-year observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.
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Table 1.11: The Impact of Hydro Dams on Population Density - All vs. No Control
Counties With Environmental Regulations

ln(Pop Density)

(1) (2) (3) (4) (5) (6)

40 years before dam -0.2428 -0.2557 -0.1249 -0.1441 -0.1739 0.0777

(0.2365) (0.4924) (0.4001) (0.2740) (0.4194) (0.2881)

30 years before dam -0.2564 -0.3550 -0.2534 -0.1493 -0.2331 -0.0257

(0.1893) (0.3492) (0.3044) (0.1941) (0.3100) (0.2075)

20 years before dam -0.1536 -0.2459 -0.2398 -0.1253 -0.1729 -0.0685

(0.1528) (0.2585) (0.2512) (0.1740) (0.2502) (0.1929)

10 years before dam -0.0398 -0.1315 -0.1552 -0.0337 -0.0794 -0.0370

(0.1445) (0.1887) (0.2004) (0.1544) (0.2004) (0.1669)

10 years after dam 0.1103** 0.1112 0.0877 0.0652 0.1013 0.0406

(0.0451) (0.0852) (0.0605) (0.0461) (0.0838) (0.0526)

20 years after dam 0.3063*** 0.3030 0.2345* 0.1574* 0.2202 0.0960

(0.0979) (0.1792) (0.1219) (0.0811) (0.1551) (0.0882)

30 years after dam 0.4129*** 0.3987* 0.2708* 0.2207** 0.3076 0.1214

(0.1131) (0.2282) (0.1445) (0.0942) (0.2139) (0.1026)

40 years after dam 0.6551*** 0.6321** 0.4334** 0.4118*** 0.5196* 0.2309*

(0.1408) (0.2705) (0.1728) (0.1138) (0.2690) (0.1172)

50 years after dam 0.7897*** 0.7780** 0.5411** 0.5176*** 0.6443** 0.3132**

(0.1681) (0.3182) (0.1964) (0.1293) (0.3183) (0.1258)

60 years after dam 0.8699*** 0.9274** 0.6321*** 0.6036*** 0.7415* 0.3773***

(0.2047) (0.3709) (0.2262) (0.1514) (0.3698) (0.1430)

70 years after dam 0.9584*** 1.0502** 0.7215*** 0.6026*** 0.8035* 0.3799**

(0.2454) (0.4392) (0.2424) (0.1663) (0.4110) (0.1673)

80 years after dam 1.0494*** 1.2300** 0.8273*** 0.6448*** 0.9041* 0.3691

(0.3052) (0.5057) (0.2766) (0.2094) (0.4583) (0.2468)

Observations 660 660 660 935 462 1892

R-squared 0.9837 0.9858 0.9818 0.9781 0.9861 0.9559

* Significant at the 10 percent level.

Treatment vs. Synthetic Control Treatment vs. Control

Notes : This table presents the short- and long-run effects of hydroelectric dams on population

density, with and without control counties subject to land regulations aimed at preserving

wilderness and wildlife. Such environmental regulations could restrict population growth in those

locations. The estimated coefficients are the b's in equation (5) in the text. The synthetic control

group consists of synthetic control counties. Each synthetic control county is a weighted average

of the originally defined control counties that reproduces more closely the counterfactual outcome

trajectory that the affected county would have experienced in the absence of hydro dams. The

control group contains the originally defined control counties. Columns 1 and 4 display the

estimates of the main analysis, which includes control counties subject to environmental

regulations. Columns 2 and 5 show estimates associated with synthetic control and control

counties, respectively, without environmental regulations. Columns 3 and 6 report estimates

related to synthetic control and control counties, respectively, without environmental regulations

but with hydropower potential starting at 10 megawatts (instead of 100 megawatts, as in the main

analysis). Standard errors are shown in parentheses. In columns 1 through 3, they are clustered at

a case level. A case is a pair of a treated county and its corresponding synthetic control. In

columns 4 through 6, they are clustered at the county level. "Observations" reports the number of

county-year observations. 

*** Significant at the 1 percent level.

** Significant at the 5 percent level.
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Table 1.12: Short- and Long-Run Effects of Hydro Dams on Average Value of Farmland

ln(Average Value of Farmland) TS_b1950 TC_b1950 TS_a1950 TC_a1950

(1) (2) (3) (4)

80 years before dam 0.1887 0.1267

(0.1341) (0.1528)

70 years before dam 0.1425 0.0892

(0.1140) (0.1377)

60 years before dam 0.0800 -0.0153

(0.1030) (0.1244)

50 years before dam 0.0607 -0.0536

(0.0858) (0.1040)

40 years before dam -0.1932 -0.2882 -0.0113 -0.0972

(0.3165) (0.3087) (0.0771) (0.0889)

30 years before dam -0.1767 -0.1984 -0.0031 -0.0610

(0.2652) (0.2618) (0.0717) (0.0839)

20 years before dam -0.2911 -0.2825 -0.0015 -0.0390

(0.2850) (0.2924) (0.0705) (0.0795)

10 years before dam -0.3019 -0.2482 0.0046 -0.0177

(0.2262) (0.2341) (0.0666) (0.0733)

10 years after dam 0.0881 0.0689 0.0213 0.0141

(0.0523) (0.0551) (0.0304) (0.0352)

20 years after dam 0.1678** 0.1554** 0.0824* 0.0432

(0.0719) (0.0686) (0.0417) (0.0536)

30 years after dam 0.1721* 0.1461* 0.1109** 0.0464

(0.0976) (0.0859) (0.0540) (0.0709)

40 years after dam 0.1449 0.1786 0.0890 0.0213

(0.1437) (0.1224) (0.0721) (0.0923)

50 years after dam 0.1916 0.2652** 0.0658 0.0153

(0.1405) (0.1328) (0.1008) (0.1313)

60 years after dam 0.1789 0.2937*

(0.1626) (0.1508)

70 years after dam 0.0932 0.3108*

(0.1750) (0.1797)

80 years after dam -0.0088 0.1949

(0.1398) (0.1640)

Observations 660 902 1518 1331

R-squared 0.9685 0.9451 0.9653 0.9452

Notes : This table presents the short- and long-run effects of hydroelectric dams on the average

value of farmland ($/acre). The estimated coefficients are the b's in equation (5) in the text.

They are coefficients of event-time dummies. "TS" in the labels of the columns represents

treatment vs. synthetic control, "TC" treatment vs. control, "b1950" before 1950, and "a1950"

after 1950. The synthetic control group consists of synthetic control counties. Each synthetic

control county is a weighted average of the originally defined control counties that reproduces

more closely the counterfactual outcome trajectory that the affected county would have

experienced in the absence of hydro dams. The control group contains the originally defined

control counties. Standard errors are shown in parentheses. In "TS" columns, they are clustered

at a case level. A case is a pair of a treated county and its corresponding synthetic control. In

"TC" columns, they are clustered at the county level. "Observations" reports the number of

county-year observations.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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Table 1.13: Valuation of Environmental Attributes

Source: Conner, Francfort, and Rinehart (1998, p.11).

Table 1.14: Overall Project Suitability Factor Computation

Source: Conner, Francfort, and Rinehart (1998, p.13).
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Table 2.1: Distribution of Couples across Spouse/Location Arrangements

Spouses from/Live in None Wife Husband Both Both All
has has has have have Couples

college college college college PhD
degree degree degree degree degree

Same SOB/SOB 58.20 58.53 50.13 41.60 12.03 52.16
Same SOB/Other State 6.35 6.11 7.68 9.92 12.86 7.59
Different SOB/Husband’s SOB 13.23 13.52 13.93 14.84 13.69 13.87
Different SOB/Wife’s SOB 13.14 12.14 14.86 14.05 7.88 13.41
Different SOB/Neither SOB 9.08 9.70 13.40 19.58 53.33 12.98
Live in SOB of any spouse 84.57 84.19 78.92 70.50 33.60 79.43
Percentage of couples 41.31 17.50 8.63 32.55 0.23 100.00

Source: U.S. Census Data - 2000. Sample includes only U.S.-born, white, non-hispanic, heterosexual couples, whose

both spouses are present in a household of only one family, are not attending school anymore, are working, and are 20-35

years old. This is the sample I use in my empirical analysis. In the column for PhD couples, sample includes individuals

20-65 years old.

Table 2.2: Marriage Matching Equation

L.H.S. R.H.S. SE(R.H.S.) 95% CI(R.H.S.) 95% CI(R.H.S.)
Lower Bound Upper Bound

Arrangement 1 0 0 0 0 0
Arrangement 2 -1.9280 -1.9996 0.4232 -2.8291 -1.1701
Arrangement 3 -1.3248 -1.3766 0.3986 -2.1578 -0.5953
Arrangement 4 -1.3585 -1.4323 0.3940 -2.2045 -0.6601
Arrangement 5 -1.3911 -1.5376 0.4421 -2.4041 -0.6711

Notes: Standard errors computed through the Delta Method.
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Table 2.3: Main Results - Males

Share 

Base

Share 

Dev 

Arr1

Share 

Dev 

Arr2

Share 

Dev 

Arr3

Share 

Dev 

Arr4

Share 

Dev 

Arr5

Share      

Base

Share 

Dev

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

3.69 7.14 -1.18 -2.17 -2.08 -1.71 1.48

(0.95) (1.69) (0.78) (1.02) (1.05) (0.92) (3.98)

0.41 -1.14 2.04 -0.31 -0.30 -0.30 -0.66

(0.37) (0.75) (1.30) (0.29) (0.29) (0.38) (3.93)

-1.92 -2.09 -0.31 3.50 -0.54 -0.56 56.09 0.25

(0.84) (0.99) (0.29) (1.61) (0.46) (0.67) (5.29) (3.92)

-1.50 -1.97 -0.29 -0.53 3.34 -0.54 -0.97

(0.73) (1.00) (0.28) (0.45) (1.65) (0.69) (3.93)

-0.52 -1.65 -0.30 -0.56 -0.55 3.06 0.02

(0.41) (0.92) (0.39) (0.68) (0.71) (1.95) (3.92)
Arr5 12.98 14.30

Notes: Standard deviations  of the marginal effects over my sample in parentheses. "Dev" stands for deviation, and "Arr" for arrangement.

Arr3 13.87 15.28

Arr4 13.41 21.94

Arr1 52.16 37.21

Arr2 7.59 11.28

Marginal effects

Prob(Arr)

Prob(Arr) 

w/o Share 

Dev

Variables
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Table 2.4: Main Results - Females

Share 

Base

Share 

Dev 

Arr1

Share 

Dev 

Arr2

Share 

Dev 

Arr3

Share 

Dev 

Arr4

Share 

Dev 

Arr5

Share      

Base

Share 

Dev

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.26 -10.48 1.72 3.20 3.06 2.50 -1.48

(0.29) (2.08) (1.08) (1.51) (1.50) (1.29) (3.98)

0.18 1.72 -3.08 0.46 0.45 0.45 0.66

(0.11) (1.08) (1.82) (0.41) (0.40) (0.53) (3.93)

-0.66 3.19 0.46 -5.29 0.81 0.83 43.91 -0.25

(0.32) (1.50) (0.41) (2.28) (0.65) (0.93) (5.29) (3.92)

-0.49 3.05 0.45 0.81 -5.12 0.81 0.97

(0.27) (1.50) (0.40) (0.65) (2.35) (0.97) (3.93)

0.71 2.49 0.44 0.83 0.81 -4.58 -0.02

(0.46) (1.29) (0.53) (0.93) (0.97) (2.69) (3.92)
Arr5 12.98 14.54

Notes: Standard deviations  of the marginal effects over my sample in parentheses. "Dev" stands for deviation, and "Arr" for arrangement.

Arr3 13.87 15.20

Arr4 13.41 24.91

Arr1 52.16 33.09

Arr2 7.59 12.26

Marginal effects

Prob(Arr)

Prob(Arr) 

w/o Share 

Dev

Variables
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Table 2.5: Indirect Utility Parameters

Coef. Std. Err. Z P-Value Coef. Std. Err. Z P-Value

Wage - Exponential Term 0.031 0.012

Wage 0.2593 0.0764 3.39 0.0010 -0.2195 0.2074 -1.06 0.2900

Sharing rule

Share of Earnings Potential - Base - Arr 2 0.0006 0.0070 0.09 0.9300 0.0373 0.0135 2.77 0.0060

Share of Earnings Potential - Base - Arr 3 -0.0153 0.0051 -3.00 0.0030 0.0389 0.0087 4.47 0.0000

Share of Earnings Potential - Base - Arr 4 -0.0122 0.0071 -1.73 0.0840 0.0426 0.0114 3.75 0.0000

Share of Earnings Potential - Base - Arr 5 -0.0267 0.0090 -2.96 0.0030 0.0927 0.0185 5.00 0.0000

Share of Earnings Potential - Deviations 0.2227 0.0446 4.99 0.0000 -0.4023 0.0715 -5.62 0.0000

Couple Non-Labor Income - Base - Arr 2 0.2081 0.0498 4.18 0.0000 0.2580 0.0686 3.76 0.0000

Couple Non-Labor Income - Base - Arr 3 0.1153 0.0461 2.50 0.0120 0.0571 0.0596 0.96 0.3380

Couple Non-Labor Income - Base - Arr 4 0.0916 0.0566 1.62 0.1060 -0.0494 0.0769 -0.64 0.5210

Couple Non-Labor Income - Base - Arr 5 0.3816 0.0647 5.90 0.0000 0.4312 0.0944 4.57 0.0000

Couple Non-Labor Income - Deviations 0.0270 0.0304 0.89 0.3740 0.0510 0.0465 1.10 0.2730

Difference of Age Between Spouses - Arr 2 0.0372 0.0483 0.77 0.4410 -0.3707 0.1673 -2.22 0.0270

Difference of Age Between Spouses - Arr 3 0.0966 0.0416 2.32 0.0200 -0.0686 0.1502 -0.46 0.6480

Difference of Age Between Spouses - Arr 4 0.0473 0.0450 1.05 0.2930 0.1549 0.1578 0.98 0.3260

Difference of Age Between Spouses - Arr 5 0.1272 0.0383 3.32 0.0010 0.0206 0.1581 0.13 0.8970

Sex Ratio -23.1422 3.9589 -5.85 0.0000 -33.4639 5.6576 -5.91 0.0000

Unilateral Divorce -0.3469 0.2101 -1.65 0.0990 -0.5201 0.3149 -1.65 0.0990

Community Property 1.2855 0.2206 5.83 0.0000 1.8519 0.3129 5.92 0.0000

Hours of Work 0.1077 0.0692 1.56 0.1200 0.0442 0.0498 0.89 0.3740

Hours of Work - Spouse 0.0831 0.0418 1.99 0.0470 0.0825 0.1063 0.78 0.4380

Preference Shifters

Housing Cost -0.1109 0.0970 -1.14 0.2530 -0.1759 0.1398 -1.26 0.2080

Amenity - Quality of Life 0.2765 0.2428 1.14 0.2550 0.4394 0.3500 1.26 0.2090

Amenity - Firm Productivity 0.1864 0.1598 1.17 0.2430 0.2946 0.2303 1.28 0.2010

College Dummy - Arr 2 -0.1052 0.8006 -0.13 0.8950 4.1345 2.8824 1.43 0.1510

College Dummy - Arr 3 0.3607 0.3430 1.05 0.2930 2.8073 2.1137 1.33 0.1840

College Dummy - Arr 4 0.1582 0.6422 0.25 0.8050 0.7303 1.4069 0.52 0.6040

College Dummy - Arr 5 -0.6487 0.7788 -0.83 0.4050 3.3691 2.9836 1.13 0.2590

College Dummy - Spouse - Arr 2 -0.0644 0.3197 -0.20 0.8400 -0.8619 1.1890 -0.72 0.4690

College Dummy - Spouse - Arr 3 0.5084 0.2522 2.02 0.0440 1.0516 1.0675 0.99 0.3250

College Dummy - Spouse - Arr 4 0.3703 0.2597 1.43 0.1540 2.6848 1.0963 2.45 0.0140

College Dummy - Spouse - Arr 5 -0.0384 0.2605 -0.15 0.8830 -0.4676 1.0113 -0.46 0.6440

Children Dummy - Arr 2 -0.1562 0.0601 -2.60 0.0090 -0.2715 0.0857 -3.17 0.0020

Children Dummy - Arr 3 0.0455 0.0424 1.07 0.2840 0.0026 0.0596 0.04 0.9650

Children Dummy - Arr 4 0.0346 0.0372 0.93 0.3520 0.0260 0.0539 0.48 0.6300

Children Dummy - Arr 5 -0.0617 0.0538 -1.15 0.2520 -0.1594 0.0699 -2.28 0.0230

Age Range Dummies

Age Range Dummies - Spouse

SOB Dummies

SOB Dummies - Spouse

Intercepts

G (males) or t (females)

Col x NoColSpouse Dummy - Arr 2 -0.0980 1.2290 -0.08 0.9360 -4.9319 3.2709 -1.51 0.1320

Col x NoColSpouse Dummy - Arr 3 -0.5787 0.5498 -1.05 0.2930 -3.3217 2.4020 -1.38 0.1670

Col x NoColSpouse Dummy - Arr 4 -0.2862 0.9937 -0.29 0.7730 -0.9772 1.6155 -0.60 0.5450

Col x NoColSpouse Dummy - Arr 5 0.8472 1.1991 0.71 0.4800 -4.4034 3.3859 -1.30 0.1930

NoCol x ColSpouse Dummy - Arr 2 -0.0584 0.4876 -0.12 0.9050 0.7149 1.3417 0.53 0.5940

NoCol x ColSpouse Dummy - Arr 3 -0.9479 0.3849 -2.46 0.0140 -1.2705 1.2018 -1.06 0.2900

NoCol x ColSpouse Dummy - Arr 4 -0.7876 0.3974 -1.98 0.0470 -3.1599 1.2349 -2.56 0.0110

NoCol x ColSpouse Dummy - Arr 5 -0.3969 0.3965 -1.00 0.3170 0.2349 1.1377 0.21 0.8360

Col x ColSpouse Dummy - Arr 2 0.2448 1.2423 0.20 0.8440 -3.8157 3.4421 -1.11 0.2680

Col x ColSpouse Dummy - Arr 3 -1.5559 0.6086 -2.56 0.0110 -4.5740 2.4478 -1.87 0.0620

Col x ColSpouse Dummy - Arr 4 -1.0303 1.0139 -1.02 0.3100 -4.1780 1.5507 -2.69 0.0070

Col x ColSpouse Dummy - Arr 5 0.6897 1.2522 0.55 0.5820 -3.9013 3.5380 -1.10 0.2700

Difference of Age Between Spouses - Arr 2 -0.0993 0.0780 -1.27 0.2030 0.4380 0.1954 2.24 0.0250

Difference of Age Between Spouses - Arr 3 -0.1441 0.0652 -2.21 0.0270 0.0547 0.1735 0.32 0.7530

Difference of Age Between Spouses - Arr 4 -0.0631 0.0685 -0.92 0.3570 -0.2191 0.1783 -1.23 0.2190

Difference of Age Between Spouses - Arr 5 -0.1875 0.0628 -2.99 0.0030 -0.1015 0.1829 -0.55 0.5790

Intercepts

Log-likelihood

N 154685 154685

Notes: Std. Err. defined by division of birth, state of residence, education category (college degree, no-college degree), and age range (20-25, 25-30, 31-35 years old).

Yes Yes

Yes Yes

-36779.65 -36841.90

Yes Yes

Yes Yes

Yes Yes

Non-Linear Conditional Logit: Arr Choice
Males Females

Yes Yes
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Table 2.6: Choice of the Polynomial Order for the Nonparametric Sieve Logit

p
th 

polynomial

# of parameters 

(q)
N ln(L) LR

DoF 

(LR)

P-Value 

Chi2 

(LR)

AIC
Consistent 

AIC
BIC

1 468 30937 -38203.60 77343.20 81714.18 81246.18

2 524 30937 -37512.46 1382.28 56 0.000 76072.92 80966.93 80442.93

3 580 30937 -37276.49 471.94 56 0.000 75712.98 81130.01 80550.01

Notes: LR (Likelihood Ratio)                        = -2[ln(Lrestricted) - ln(Lunrestricted)]

  AIC (Akaike Information Criterion)   = -2ln(L) + 2q

  Consistent AIC                                   = -2ln(L) + [1+ln(N)]q

  BIC (Bayesian information criterion) = -2ln(L) + [ln(N)]q
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Table 2.7: Intermediate Estimation - Male Wages

Dep Var: ln(wage) No SC SC-PO1 SC-PO2 SC-PO3 SC-PO4 SC-PO5 SC-PO6 SC-PO7 SC-PO8 SC-PO9 SC-PO10

Years of Schooling 0.0861** 0.0835** 0.0786** 0.0780** 0.0781** 0.0781** 0.0779** 0.0779** 0.0779** 0.0780** 0.0780**

(0.0034) (0.0035) (0.0034) (0.0035) (0.0035) (0.0035) (0.0036) (0.0036) (0.0036) (0.0036) (0.0036)

Arrangement 2 -0.1050 -0.2127* -0.2722** -0.2810** -0.2792** -0.2814** -0.2867** -0.2864** -0.2888** -0.2877** -0.2882**

(0.0852) (0.0943) (0.0949) (0.0959) (0.0963) (0.0960) (0.0968) (0.0966) (0.0969) (0.0968) (0.0970)

Arrangement 3 -0.0692 -0.1617* -0.2611** -0.2657** -0.2663** -0.2676** -0.2700** -0.2698** -0.2703** -0.2692** -0.2692**

(0.0733) (0.0771) (0.0843) (0.0853) (0.0855) (0.0858) (0.0861) (0.0860) (0.0861) (0.0861) (0.0861)

Arrangement 4 -0.1887** -0.2842** -0.3816** -0.3865** -0.3867** -0.3878** -0.3908** -0.3906** -0.3914** -0.3904** -0.3906**

(0.0680) (0.0709) (0.0758) (0.0765) (0.0765) (0.0767) (0.0771) (0.0771) (0.0771) (0.0771) (0.0772)

Arrangement 5 -0.2133** -0.3378** -0.4321** -0.4372** -0.4377** -0.4403** -0.4454** -0.4461** -0.4488** -0.4493** -0.4502**

(0.0708) (0.0772) (0.0795) (0.0805) (0.0804) (0.0808) (0.0816) (0.0816) (0.0822) (0.0821) (0.0823)

Yrs of Sch * Arr 2 0.0083 0.0121+ 0.0144* 0.0150* 0.0148* 0.0148* 0.0151* 0.0150* 0.0151* 0.0150* 0.0150*

(0.0062) (0.0066) (0.0066) (0.0066) (0.0067) (0.0067) (0.0068) (0.0068) (0.0068) (0.0067) (0.0067)

Yrs of Sch * Arr 3 0.0055 0.0091+ 0.0134* 0.0138* 0.0137* 0.0136* 0.0138* 0.0137* 0.0137* 0.0136* 0.0135*

(0.0053) (0.0054) (0.0056) (0.0057) (0.0058) (0.0058) (0.0058) (0.0058) (0.0058) (0.0058) (0.0058)

Yrs of Sch * Arr 4 0.0119* 0.0156** 0.0198** 0.0202** 0.0201** 0.0200** 0.0202** 0.0202** 0.0201** 0.0200** 0.0200**

(0.0050) (0.0050) (0.0051) (0.0051) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)

Yrs of Sch * Arr 5 0.0149** 0.0210** 0.0255** 0.0259** 0.0258** 0.0259** 0.0261** 0.0261** 0.0262** 0.0263** 0.0263**

(0.0050) (0.0052) (0.0052) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053) (0.0053)

ln(ccp1/ccp2) -0.0176** -0.0325** -0.0304** -0.0328** -0.0343** -0.0315** -0.0329** -0.0344** -0.0389** -0.0406**

(0.0052) (0.0068) (0.0069) (0.0091) (0.0102) (0.0107) (0.0125) (0.0130) (0.0139) (0.0156)

[ln(ccp1/ccp2)]
2

-0.0084** -0.0098** -0.0100** -0.0113* -0.0155** -0.0157* -0.0195+ -0.0166 -0.0184

(0.0019) (0.0027) (0.0028) (0.0049) (0.0059) (0.0067) (0.0106) (0.0122) (0.0154)

[ln(ccp1/ccp2)]
3

-0.0005 0.0000 0.0002 -0.0016 -0.0009 -0.0004 0.0036 0.0049

(0.0005) (0.0012) (0.0014) (0.0025) (0.0042) (0.0045) (0.0072) (0.0098)

[ln(ccp1/ccp2)]
4

0.0001 0.0003 0.0009 0.0010 0.0023 0.0015 0.0025

(0.0002) (0.0006) (0.0007) (0.0015) (0.0032) (0.0040) (0.0067)

[ln(ccp1/ccp2)]
5

0.0000 0.0003 0.0002 0.0003 -0.0007 -0.0009

(0.0001) (0.0003) (0.0004) (0.0007) (0.0017) (0.0024)

[ln(ccp1/ccp2)]
6

0.0000 -0.0000 -0.0001 -0.0002 -0.0003

(0.0000) (0.0002) (0.0003) (0.0004) (0.0012)

[ln(ccp1/ccp2)]
7

-0.0000 -0.0000 0.0000 0.0000

(0.0000) (0.0001) (0.0002) (0.0002)

[ln(ccp1/ccp2)]
8

-0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0001)

[ln(ccp1/ccp2)]
9

0.0000 0.0000

(0.0000) (0.0000)

[ln(ccp1/ccp2)]
10

0.0000

(0.0000)

R
2

0.2185 0.2191 0.2199 0.2199 0.2199 0.2199 0.2200 0.2200 0.2200 0.2200 0.2200

N 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937

Notes: Clustered standard errors in parentheses. They are all based on 400 bootstrap replications. Bootstrap replications are based on 1886 clusters defined

by division of birth, state of residence, education category (college degree, no-college degree), and age range (20-25, 25-30, 31-35 years old). "SC" stands

for selection correction, "PO" for polynomial order, and "ccp" for conditional choice probability.

** significant at 1%;  * significant at 5%; + significant at 10%.
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Table 2.8: Intermediate Estimation - Female Wages

Dep Var: ln(wage) No SC SC-PO1 SC-PO2 SC-PO3 SC-PO4 SC-PO5 SC-PO6 SC-PO7 SC-PO8 SC-PO9 SC-PO10

Years of Schooling 0.1022** 0.1027** 0.1027** 0.1034** 0.1040** 0.1041** 0.1038** 0.1038** 0.1038** 0.1038** 0.1037**

(0.0028) (0.0030) (0.0030) (0.0030) (0.0030) (0.0030) (0.0030) (0.0030) (0.0030) (0.0030) (0.0030)

Arrangement 2 -0.1088 -0.0851 -0.0850 -0.0754 -0.0652 -0.0730 -0.0822 -0.0819 -0.0791 -0.0799 -0.0795

(0.0988) (0.1027) (0.1023) (0.1018) (0.1018) (0.1019) (0.1019) (0.1017) (0.1017) (0.1018) (0.1015)

Arrangement 3 -0.0676 -0.0465 -0.0462 -0.0432 -0.0513 -0.0558 -0.0576 -0.0574 -0.0564 -0.0571 -0.0569

(0.0726) (0.0721) (0.0731) (0.0729) (0.0727) (0.0730) (0.0732) (0.0733) (0.0732) (0.0732) (0.0732)

Arrangement 4 -0.0635 -0.0432 -0.0429 -0.0386 -0.0446 -0.0497 -0.0529 -0.0526 -0.0512 -0.0518 -0.0515

(0.0683) (0.0708) (0.0729) (0.0727) (0.0728) (0.0730) (0.0730) (0.0729) (0.0730) (0.0731) (0.0732)

Arrangement 5 -0.1799* -0.1502* -0.1500* -0.1475+ -0.1546* -0.1638* -0.1695* -0.1663* -0.1627* -0.1623* -0.1615*

(0.0700) (0.0740) (0.0756) (0.0755) (0.0754) (0.0755) (0.0755) (0.0754) (0.0753) (0.0754) (0.0755)

Yrs of Sch * Arr 2 0.0084 0.0077 0.0077 0.0070 0.0055 0.0054 0.0059 0.0061 0.0060 0.0061 0.0061

(0.0068) (0.0069) (0.0068) (0.0068) (0.0068) (0.0067) (0.0067) (0.0068) (0.0068) (0.0068) (0.0067)

Yrs of Sch * Arr 3 0.0033 0.0027 0.0027 0.0023 0.0017 0.0014 0.0016 0.0017 0.0018 0.0018 0.0018

(0.0050) (0.0049) (0.0049) (0.0048) (0.0048) (0.0048) (0.0048) (0.0049) (0.0049) (0.0049) (0.0049)

Yrs of Sch * Arr 4 0.0044 0.0038 0.0038 0.0033 0.0026 0.0023 0.0025 0.0027 0.0027 0.0028 0.0028

(0.0048) (0.0048) (0.0048) (0.0048) (0.0048) (0.0049) (0.0049) (0.0049) (0.0049) (0.0049) (0.0049)

Yrs of Sch * Arr 5 0.0112* 0.0099* 0.0099* 0.0097* 0.0095+ 0.0096* 0.0098* 0.0097* 0.0096* 0.0096* 0.0095*

(0.0048) (0.0048) (0.0049) (0.0049) (0.0048) (0.0048) (0.0048) (0.0048) (0.0048) (0.0048) (0.0048)

ln(ccp1/ccp2) 0.0046 0.0047 0.0009 -0.0155* -0.0221* -0.0167+ -0.0114 -0.0093 -0.0060 -0.0046

(0.0045) (0.0058) (0.0065) (0.0079) (0.0086) (0.0096) (0.0117) (0.0121) (0.0136) (0.0149)

[ln(ccp1/ccp2)]
2

0.0000 0.0021 0.0002 -0.0058 -0.0134* -0.0127+ -0.0072 -0.0095 -0.0079

(0.0019) (0.0027) (0.0028) (0.0052) (0.0061) (0.0069) (0.0105) (0.0116) (0.0154)

[ln(ccp1/ccp2)]
3

0.0008 0.0041** 0.0051** 0.0017 -0.0010 -0.0016 -0.0046 -0.0057

(0.0007) (0.0013) (0.0015) (0.0026) (0.0042) (0.0046) (0.0071) (0.0091)

[ln(ccp1/ccp2)]
4

0.0006** 0.0015* 0.0025** 0.0020 0.0001 0.0007 -0.0001

(0.0002) (0.0007) (0.0008) (0.0015) (0.0030) (0.0035) (0.0064)

[ln(ccp1/ccp2)]
5

0.0001 0.0006+ 0.0008+ 0.0007 0.0014 0.0016

(0.0001) (0.0003) (0.0004) (0.0007) (0.0016) (0.0021)

[ln(ccp1/ccp2)]
6

0.0000 0.0001 0.0003 0.0003 0.0005

(0.0000) (0.0001) (0.0003) (0.0003) (0.0011)

[ln(ccp1/ccp2)]
7

0.0000 0.0000 -0.0000 -0.0000

(0.0000) (0.0001) (0.0001) (0.0002)

[ln(ccp1/ccp2)]
8

0.0000 -0.0000 -0.0000

(0.0000) (0.0000) (0.0001)

[ln(ccp1/ccp2)]
9

-0.0000 -0.0000

(0.0000) (0.0000)

[ln(ccp1/ccp2)]
10

-0.0000

(0.0000)

R
2

0.2711 0.2711 0.2711 0.2712 0.2715 0.2715 0.2716 0.2717 0.2717 0.2717 0.2717

N 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937

Notes: Clustered standard errors in parentheses. They are all based on 400 bootstrap replications. Bootstrap replications are based on 1928

clusters defined by division of birth, state of residence, education category (college degree, no-college degree), and age range (20-25, 25-30, 31-

35 years old). "SC" stands for selection correction, "PO" for polynomial order, and "ccp" for conditional choice probability.

** significant at 1%;  * significant at 5%; + significant at 10%.

155



Table 2.9: Intermediate Estimation - Male Hours of Work

Dep Var: ln(hours) No SC SC-PO1 SC-PO2 SC-PO3 SC-PO4 SC-PO5 SC-PO6 SC-PO7 SC-PO8 SC-PO9 SC-PO10

Number of Children -0.0003 -0.0005 -0.0004 -0.0003 -0.0004 -0.0005 -0.0005 -0.0004 -0.0003 -0.0003 -0.0004

(0.0040) (0.0042) (0.0043) (0.0043) (0.0043) (0.0043) (0.0043) (0.0043) (0.0043) (0.0043) (0.0043)

Arrangement 2 -0.0045 0.0052 0.0029 0.0031 0.0009 -0.0009 -0.0012 -0.0031 -0.0059 -0.0059 -0.0079

(0.0115) (0.0148) (0.0155) (0.0155) (0.0160) (0.0168) (0.0168) (0.0171) (0.0173) (0.0173) (0.0173)

Arrangement 3 0.0041 0.0123 0.0091 0.0095 0.0062 0.0047 0.0047 0.0030 0.0011 0.0010 -0.0004

(0.0078) (0.0105) (0.0121) (0.0120) (0.0127) (0.0133) (0.0133) (0.0135) (0.0137) (0.0137) (0.0137)

Arrangement 4 -0.0027 0.0056 0.0025 0.0029 -0.0002 -0.0018 -0.0018 -0.0034 -0.0056 -0.0057 -0.0073

(0.0086) (0.0106) (0.0120) (0.0119) (0.0124) (0.0129) (0.0129) (0.0131) (0.0132) (0.0132) (0.0132)

Arrangement 5 0.0030 0.0096 0.0073 0.0074 0.0056 0.0043 0.0037 0.0029 0.0005 0.0006 -0.0008

(0.0093) (0.0109) (0.0116) (0.0116) (0.0119) (0.0122) (0.0123) (0.0125) (0.0127) (0.0127) (0.0128)

No of Child * Arr 2 0.0164+ 0.0170+ 0.0170+ 0.0170+ 0.0172+ 0.0173+ 0.0173+ 0.0174+ 0.0173+ 0.0173+ 0.0175+

(0.0093) (0.0098) (0.0097) (0.0097) (0.0098) (0.0098) (0.0098) (0.0098) (0.0098) (0.0098) (0.0098)

No of Child * Arr 3 -0.0047 -0.0045 -0.0047 -0.0048 -0.0046 -0.0045 -0.0045 -0.0045 -0.0047 -0.0047 -0.0046

(0.0076) (0.0074) (0.0074) (0.0074) (0.0074) (0.0074) (0.0074) (0.0074) (0.0074) (0.0074) (0.0074)

No of Child * Arr 4 0.0067 0.0069 0.0067 0.0067 0.0069 0.0069 0.0069 0.0070 0.0068 0.0068 0.0069

(0.0077) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0082) (0.0082)

No of Child * Arr 5 0.0020 0.0028 0.0027 0.0027 0.0028 0.0028 0.0028 0.0026 0.0025 0.0025 0.0026

(0.0091) (0.0091) (0.0092) (0.0092) (0.0092) (0.0092) (0.0091) (0.0091) (0.0091) (0.0091) (0.0091)

ln(ccp1/ccp2) 0.0033 0.0021 0.0026 -0.0004 -0.0017 -0.0007 -0.0049 -0.0076 -0.0080 -0.0130

(0.0024) (0.0032) (0.0034) (0.0051) (0.0058) (0.0061) (0.0078) (0.0078) (0.0093) (0.0102)

[ln(ccp1/ccp2)]
2

-0.0008 -0.0011 -0.0014 -0.0025 -0.0038 -0.0044 -0.0113+ -0.0110+ -0.0165*

(0.0011) (0.0016) (0.0016) (0.0030) (0.0040) (0.0044) (0.0060) (0.0066) (0.0080)

[ln(ccp1/ccp2)]
3

-0.0001 0.0005 0.0007 0.0001 0.0022 0.0030 0.0034 0.0073

(0.0004) (0.0008) (0.0009) (0.0016) (0.0031) (0.0029) (0.0054) (0.0066)

[ln(ccp1/ccp2)]
4

0.0001 0.0003 0.0005 0.0009 0.0033+ 0.0032 0.0062+

(0.0001) (0.0004) (0.0006) (0.0011) (0.0019) (0.0021) (0.0036)

[ln(ccp1/ccp2)]
5

0.0000 0.0001 -0.0001 0.0001 -0.0000 -0.0007

(0.0000) (0.0002) (0.0003) (0.0004) (0.0012) (0.0015)

[ln(ccp1/ccp2)]
6

0.0000 -0.0001 -0.0003 -0.0003 -0.0008

(0.0000) (0.0001) (0.0002) (0.0002) (0.0007)

[ln(ccp1/ccp2)]
7

-0.0000 -0.0001 -0.0000 -0.0001

(0.0000) (0.0000) (0.0001) (0.0001)

[ln(ccp1/ccp2)]
8

-0.0000 -0.0000 0.0000

(0.0000) (0.0000) (0.0000)

[ln(ccp1/ccp2)]
9

0.0000 0.0000

(0.0000) (0.0000)

[ln(ccp1/ccp2)]
10

0.0000

(0.0000)

R
2

0.0355 0.0355 0.0355 0.0355 0.0356 0.0356 0.0356 0.0356 0.0357 0.0357 0.0358

N 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937

Notes: Clustered standard errors in parentheses. They are all based on 400 bootstrap replications. Bootstrap replications are based on 1886 clusters

defined by division of birth, state of residence, education category (college degree, no-college degree), and age range (20-25, 25-30, 31-35 years

old). "SC" stands for selection correction, "PO" for polynomial order, and "ccp" for conditional choice probability.

** significant at 1%;  * significant at 5%; + significant at 10%.
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Table 2.10: Intermediate Estimation - Female Hours of Work

Dep Var: ln(hours) No SC SC-PO1 SC-PO2 SC-PO3 SC-PO4 SC-PO5 SC-PO6 SC-PO7 SC-PO8 SC-PO9 SC-PO10

Number of Children -0.2447** -0.2455** -0.2514** -0.2547** -0.2566** -0.2566** -0.2565** -0.2565** -0.2565** -0.2569** -0.2570**

(0.0083) (0.0083) (0.0084) (0.0085) (0.0086) (0.0086) (0.0086) (0.0086) (0.0086) (0.0086) (0.0086)

Arrangement 2 -0.0589** -0.0122 0.1017** 0.0844** 0.0511 0.0514 0.0514 0.0493 0.0500 0.0485 0.0461

(0.0193) (0.0299) (0.0328) (0.0322) (0.0325) (0.0345) (0.0344) (0.0342) (0.0342) (0.0340) (0.0342)

Arrangement 3 -0.0053 0.0348 0.1938** 0.1487** 0.1006** 0.1009** 0.1009** 0.0989** 0.0995** 0.0983** 0.0965**

(0.0137) (0.0226) (0.0282) (0.0275) (0.0268) (0.0281) (0.0279) (0.0280) (0.0282) (0.0280) (0.0280)

Arrangement 4 -0.0084 0.0313 0.1845** 0.1391** 0.0917** 0.0920** 0.0920** 0.0901** 0.0907** 0.0896** 0.0877**

(0.0149) (0.0245) (0.0302) (0.0302) (0.0290) (0.0306) (0.0305) (0.0301) (0.0302) (0.0301) (0.0301)

Arrangement 5 -0.0460** -0.0144 0.1077** 0.0960** 0.0695** 0.0698* 0.0698* 0.0688* 0.0694* 0.0701* 0.0685*

(0.0152) (0.0212) (0.0258) (0.0257) (0.0258) (0.0272) (0.0275) (0.0272) (0.0274) (0.0272) (0.0270)

No of Child * Arr 2 -0.0945** -0.0917** -0.0958** -0.0918** -0.0880** -0.0880** -0.0880** -0.0880** -0.0879** -0.0877** -0.0874**

(0.0247) (0.0237) (0.0244) (0.0241) (0.0241) (0.0242) (0.0242) (0.0242) (0.0242) (0.0241) (0.0242)

No of Child * Arr 3 -0.0531** -0.0524** -0.0438* -0.0375* -0.0344* -0.0344* -0.0344* -0.0344* -0.0343* -0.0338+ -0.0337+

(0.0174) (0.0173) (0.0173) (0.0174) (0.0174) (0.0174) (0.0174) (0.0174) (0.0174) (0.0175) (0.0175)

No of Child * Arr 4 -0.0517** -0.0504** -0.0403* -0.0341* -0.0308+ -0.0309+ -0.0309+ -0.0308+ -0.0308+ -0.0302+ -0.0300+

(0.0162) (0.0159) (0.0159) (0.0161) (0.0163) (0.0163) (0.0163) (0.0163) (0.0163) (0.0163) (0.0163)

No of Child * Arr 5 -0.0804** -0.0767** -0.0731** -0.0742** -0.0733** -0.0733** -0.0733** -0.0736** -0.0736** -0.0735** -0.0734**

(0.0186) (0.0183) (0.0183) (0.0184) (0.0185) (0.0185) (0.0186) (0.0186) (0.0186) (0.0186) (0.0186)

ln(ccp1/ccp2) 0.0159* 0.0757** 0.0234+ -0.0216+ -0.0214 -0.0215 -0.0266 -0.0259 -0.0389+ -0.0452

(0.0066) (0.0085) (0.0120) (0.0117) (0.0136) (0.0140) (0.0196) (0.0208) (0.0225) (0.0291)

[ln(ccp1/ccp2)]
2

0.0392** 0.0662** 0.0607** 0.0609** 0.0611** 0.0604** 0.0623** 0.0711** 0.0642*

(0.0033) (0.0049) (0.0045) (0.0083) (0.0119) (0.0124) (0.0181) (0.0205) (0.0294)

[ln(ccp1/ccp2)]
3

0.0107** 0.0196** 0.0196** 0.0196** 0.0223* 0.0220* 0.0336* 0.0386+

(0.0019) (0.0020) (0.0022) (0.0047) (0.0092) (0.0100) (0.0141) (0.0233)

[ln(ccp1/ccp2)]
4

0.0015** 0.0015 0.0015 0.0020 0.0013 -0.0011 0.0027

(0.0003) (0.0010) (0.0015) (0.0026) (0.0056) (0.0069) (0.0151)

[ln(ccp1/ccp2)]
5

-0.0000 -0.0000 -0.0003 -0.0003 -0.0032 -0.0041

(0.0001) (0.0006) (0.0010) (0.0014) (0.0033) (0.0056)

[ln(ccp1/ccp2)]
6

-0.0000 -0.0001 -0.0000 -0.0001 -0.0008

(0.0001) (0.0003) (0.0005) (0.0008) (0.0032)

[ln(ccp1/ccp2)]
7

-0.0000 0.0000 0.0002 0.0002

(0.0000) (0.0001) (0.0003) (0.0005)

[ln(ccp1/ccp2)]
8

0.0000 0.0000 0.0001

(0.0000) (0.0001) (0.0002)

[ln(ccp1/ccp2)]
9

0.0000 0.0000

(0.0000) (0.0000)

[ln(ccp1/ccp2)]
10

0.0000

(0.0000)

R
2

0.1330 0.1333 0.1435 0.1496 0.1511 0.1511 0.1511 0.1511 0.1511 0.1512 0.1512

N 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937

Notes: Clustered standard errors in parentheses. They are all based on 400 bootstrap replications. Bootstrap replications are based on 1928 clusters defined

by division of birth, state of residence, education category (college degree, no-college degree), and age range (20-25, 25-30, 31-35 years old). "SC" stands

for selection correction, "PO" for polynomial order, and "ccp" for conditional choice probability.

** significant at 1%;  * significant at 5%; + significant at 10%.
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Table 2.11: Intermediate Estimation - Couple Non-Labor Income

Dep Var: CNLInc No SC SC-PO1 SC-PO2 SC-PO3 SC-PO4 SC-PO5 SC-PO6 SC-PO7 SC-PO8 SC-PO9 SC-PO10

Husband's Age -610.27** -610.88* -607.34* -604.48* -604.41* -601.67* -600.66* -600.66* -600.67* -601.60* -601.84*

(220.38) (242.30) (241.92) (245.33) (244.97) (242.89) (243.86) (243.17) (241.42) (241.11) (240.01)

Husband's Age
2

11.32** 11.33* 11.26* 11.20* 11.20* 11.14* 11.12* 11.12* 11.10* 11.11* 11.12*

(4.05) (4.45) (4.44) (4.51) (4.50) (4.46) (4.47) (4.46) (4.42) (4.41) (4.40)

Wife's Age -317.30 -310.66 -245.73 -182.45 -177.51 -207.27 -219.99 -220.00 -216.42 -219.57 -210.90

(211.68) (215.42) (215.44) (217.42) (217.36) (216.27) (214.68) (214.92) (215.53) (216.21) (216.02)

Wife's Age
2

5.83 5.70 4.47 3.27 3.18 3.73 3.94 3.94 3.89 3.95 3.79

(3.93) (3.99) (4.00) (4.04) (4.04) (4.02) (3.99) (4.00) (4.01) (4.02) (4.01)

Arrangement 2 -10014.52 -10107.35 -9856.49 -9514.79 -9482.83 -9957.11 -10502.67 -10502.77 -10405.12 -10640.81 -10269.43

(8424.96) (8586.74) (8578.51) (8642.24) (8633.46) (8598.39) (8692.83) (8675.73) (8679.06) (8658.80) (8646.67)

Arrangement 3 -17871.49* -17895.02* -17950.23* -17576.93* -17477.08* -18422.87* -18756.88* -18756.89* -18810.44* -18838.21* -18789.73*

(8267.64) (8622.94) (8600.75) (8648.18) (8669.59) (8634.56) (8609.25) (8618.02) (8623.39) (8615.54) (8620.44)

Arrangement 4 1357.36 1347.30 1279.33 1459.36 1525.32 634.19 159.89 159.88 -39.78 -52.70 -133.37

(8527.97) (8692.72) (8770.05) (8846.61) (8864.62) (8815.72) (8774.72) (8780.64) (8751.75) (8757.72) (8750.34)

Arrangement 5 -2536.42 -2644.49 -2555.73 -1599.61 -1485.94 -1888.07 -1902.01 -1902.06 -1943.03 -1952.47 -2032.90

(10380.90) (11444.65) (11457.08) (11436.27) (11425.57) (11450.60) (11456.75) (11474.33) (11475.17) (11467.27) (11482.58)

HAge * Arr 2 789.42 778.79 856.80+ 849.50+ 849.09+ 817.04 846.70+ 846.69+ 837.89+ 842.48+ 817.86

(496.74) (489.21) (496.80) (502.74) (501.63) (506.12) (506.66) (507.09) (506.79) (505.01) (504.46)

HAge * Arr 3 1450.33** 1450.09* 1454.50* 1466.64* 1466.79* 1478.14* 1487.59* 1487.59* 1493.47* 1488.13* 1494.61*

(527.99) (579.40) (577.86) (582.05) (582.40) (584.14) (584.19) (584.49) (585.46) (584.43) (584.61)

HAge * Arr 4 1417.05+ 1422.24+ 1421.26+ 1421.15+ 1423.01+ 1412.30+ 1420.78+ 1420.78+ 1430.85+ 1428.55+ 1438.94+

(751.89) (783.80) (786.82) (790.95) (791.48) (790.01) (788.91) (788.58) (786.53) (786.03) (785.59)

HAge * Arr 5 412.00 415.27 417.79 385.09 384.33 353.23 350.83 350.83 356.30 354.03 353.97

(709.64) (723.85) (724.45) (725.64) (725.82) (727.33) (728.80) (729.64) (728.29) (727.31) (728.14)

HAge
2
 * Arr 2 -15.13 -14.96 -16.32+ -16.15+ -16.14+ -15.59 -16.07+ -16.07+ -15.84+ -15.90+ -15.45

(9.38) (9.23) (9.36) (9.47) (9.45) (9.51) (9.52) (9.53) (9.52) (9.49) (9.48)

HAge
2
 * Arr 3 -24.12* -24.11* -24.16* -24.36* -24.37* -24.57* -24.72* -24.72* -24.81* -24.69* -24.82*

(9.59) (10.52) (10.49) (10.57) (10.57) (10.60) (10.60) (10.60) (10.62) (10.60) (10.61)

HAge
2
 * Arr 4 -25.65+ -25.72+ -25.71+ -25.75+ -25.78+ -25.63+ -25.78+ -25.78+ -25.94+ -25.88+ -26.06+

(13.39) (13.99) (14.04) (14.11) (14.13) (14.10) (14.08) (14.08) (14.04) (14.03) (14.02)

HAge
2
 * Arr 5 -7.71 -7.75 -7.73 -7.16 -7.15 -6.59 -6.54 -6.54 -6.63 -6.57 -6.58

(12.72) (12.95) (12.96) (12.98) (12.99) (13.01) (13.03) (13.04) (13.02) (13.00) (13.01)

WAge * Arr 2 -123.08 -117.91 -232.76 -259.42 -260.40 -222.42 -221.36 -221.34 -228.19 -215.13 -221.63

(496.20) (488.26) (493.40) (494.50) (493.50) (493.16) (492.70) (493.59) (490.60) (490.41) (490.21)

WAge * Arr 3 -175.09 -183.88 -218.13 -256.44 -260.99 -224.65 -211.44 -211.43 -217.97 -211.81 -224.95

(528.86) (547.04) (552.77) (555.48) (555.18) (551.60) (550.18) (549.65) (549.91) (550.08) (549.81)

WAge * Arr 4 -1559.13 -1574.74 -1600.67+ -1612.52+ -1616.58+ -1561.73 -1538.81 -1538.81 -1540.81 -1538.06 -1547.65

(963.36) (970.47) (969.80) (969.86) (971.06) (970.21) (968.47) (968.31) (967.19) (966.78) (966.83)

WAge * Arr 5 -351.23 -359.33 -396.81 -434.17 -439.43 -402.15 -403.88 -403.87 -413.57 -410.86 -410.37

(726.44) (777.93) (773.40) (774.56) (775.54) (780.64) (781.00) (781.64) (782.08) (782.37) (783.52)

WAge
2
 * Arr 2 4.42 4.37 6.39 6.99 7.03 6.40 6.43 6.43 6.48 6.25 6.32

(9.03) (8.81) (8.90) (8.93) (8.91) (8.89) (8.88) (8.90) (8.85) (8.84) (8.83)

WAge
2
 * Arr 3 2.21 2.39 3.11 3.87 3.95 3.26 3.02 3.02 3.11 3.01 3.23

(9.91) (10.19) (10.31) (10.37) (10.36) (10.29) (10.27) (10.26) (10.27) (10.27) (10.27)

WAge
2
 * Arr 4 29.24+ 29.53+ 30.12+ 30.46+ 30.54+ 29.55+ 29.18+ 29.18+ 29.20+ 29.15+ 29.31+

(17.48) (17.57) (17.56) (17.56) (17.58) (17.56) (17.53) (17.53) (17.51) (17.50) (17.50)

WAge
2
 * Arr 5 9.38 9.59 10.35 11.06 11.16 10.53 10.56 10.56 10.74 10.66 10.69

(13.54) (14.51) (14.41) (14.43) (14.45) (14.55) (14.55) (14.56) (14.57) (14.58) (14.60)

ln(ccp1/ccp2) -48.13 -184.67 -48.51 -4.53 -262.63 -152.82 -152.72 -247.15 -54.35 -277.61

(96.73) (146.63) (154.65) (217.13) (250.15) (265.89) (306.84) (322.54) (354.14) (379.21)

[ln(ccp1/ccp2)]
2

-82.89+ -172.17** -167.67* -390.93** -561.84** -561.82** -797.14** -927.79** -1166.84**

(46.62) (60.41) (75.29) (148.03) (171.59) (193.81) (288.48) (309.62) (344.36)

[ln(ccp1/ccp2)]
3

-31.90* -40.80 -3.11 -74.35 -74.40 -47.35 -219.14 -44.11

(14.84) (27.29) (28.44) (61.13) (86.64) (108.71) (187.13) (198.42)

[ln(ccp1/ccp2)]
4

-1.51 31.78+ 55.29** 55.28 136.52+ 171.68* 301.72*

(6.24) (17.36) (19.13) (35.94) (75.99) (82.44) (122.97)

[ln(ccp1/ccp2)]
5

3.28 13.30+ 13.31 19.68 62.28 31.11

(2.29) (6.97) (8.70) (21.51) (45.23) (43.77)

[ln(ccp1/ccp2)]
6

0.77 0.77 -6.32 -4.94 -29.49

(0.67) (3.11) (5.74) (8.40) (19.67)

[ln(ccp1/ccp2)]
7

0.00 -1.57 -4.66 -5.07

(0.31) (2.01) (3.52) (4.01)

[ln(ccp1/ccp2)]
8

-0.09 -0.67 0.75

(0.17) (0.78) (1.21)

[ln(ccp1/ccp2)]
9

-0.03 0.21

(0.05) (0.27)

[ln(ccp1/ccp2)]
10

0.01

(0.02)

R
2

0.0181 0.0182 0.0185 0.0189 0.0189 0.0194 0.0196 0.0196 0.0198 0.0199 0.0201

N 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937 30937

Notes: Clustered standard errors in parentheses. They are all based on 400 bootstrap replications. Bootstrap replications are based on 1886 clusters defined by division of birth, state of

residence, education category (college degree, no-college degree), and age range (20-25, 25-30, 31-35 years old). "SC" stands for selection correction, "PO" for polynomial order, and

"ccp" for conditional choice probability.

** significant at 1%;  * significant at 5%; + significant at 10%.
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Table 3.1: Valuation of Environmental Attributes

Source: Conner, Francfort, and Rinehart (1998, p.11).

Table 3.2: Overall Project Suitability Factor Computation

Source: Conner, Francfort, and Rinehart (1998, p.13).
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Table 3.3: Effects of Environmental Regulations on Carbon Dioxide Emissions

DepVar: DEmissions OLS
First Stage - 

Linear

First Stage -  

Non-Linear
IV: 2SLS IV: GMM IV: LIML

(1) (2) (3) (4) (5) (6)

DThermDev 832.10*** 1,475.82*** 1,539.64*** 2,290.27*

(274.15) (303.63) (236.81) (1,226.15)

Excluded Instruments

HydroNotDev 0.25384 -2.25912

(0.34863) (3.07407)

HydroNotDev^2 0.01132

(0.01147)

HydroNotDev^3 -0.00002

(0.00001)

HydroNotDev^4 0.00000

(0.00000)

F-statistic 0.53 32.82

(Excluded Instruments)

Controls

DPop 1.60 -0.00213 -0.00235 2.86 2.23 4.45

(1.60) (0.00128) (0.00144) (1.75) (1.67) (3.53)

DPCIn -19.10 -0.10745*** -0.09688** 47.58 65.84 131.95

(32.01) (0.03505) (0.03722) (56.32) (51.13) (154.12)

Sample Counties 32 32 32 32 32 32

R^2 0.41 0.30 0.38

Kleibergen-Paap rk Wald F-statistic 13.08 13.08 13.08

Stock-Yogo Critical Values

10% maximal IV relative bias 10.27

20% maximal IV relative bias 6.71

30% maximal IV relative bias 5.34

10% maximal IV size 24.58 5.44 5.44

15% maximal IV size 13.96 3.87 3.87

20% maximal IV size 10.26 3.30 3.30

25% maximal IV size 8.31 2.98 2.98

Hansen J-statistic 2.143 2.884 1.330

P-value 0.5433  0.4098 0.7219

Notes : This table presents results of regressions of variation in emissions in the period 1998-2007, measured in pounds, on

variation in thermal (fossil-fuel) power capacity, measured in megawatts, controlling for variation in population and per

capita income.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
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