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Abstract

Approaches to concept formation tend to rely solely on
similarities in the data, with the few that take into con-
sideration causalities in the background knowledge do-
ing so prior to or upon completion of a similarity-based
learning phase. In this paper, we examine a multistrate-
gic approach to misconception discovery that utilizes
data and theory in a more tightly coupled way.

Introduction

Most conceptual clustering systems for the unsupervised
formation of concepts in Artificial Intelligence (AI) tend
to rely solely on similarities in the data, a tendency
that likewise characterizes much of concept learning re-
search in cognitive psychology (Komatsu, 1992). Re-
cently, however, the increase in the number of such works
as those of Barsalou (1991), Rips and Collins (1993), and
Wisniewski and Medin (1994) reveal an increasing dis-
satisfaction in cognitive psychology over similarity-based
models’ almost exclusive reliance on data and an increas-
ing interest in the role of theories and goals in concept
formation.

There are, to be sure, combined similarity-based (SB)
and explanation-based (EB) Al learning systems that
use data and theory to learn concepts, whether with
or without supervision,! e.g., (Lebowitz, 1986; Pazzani,
1993; Flann & Dietterich, 1989; Mooney & Ourston,
1989; and Yoo & Fisher, 1991). Wisniewski and Medin
(1994), however. noting that these systems treat SB
and EB learning as phases that are performed one af-
ter the other, argue cogently that such loosely coupled
approaches to using data and theory, while undoubtedly
useful, remain inadequate as models of concept forma-
tion. This inadequacy becomes even more pronounced
when dealing with misconceptions.

In general terms, a misconception is an incorrect un-
derstanding of a concept or procedure that results in
systematic discrepancies in behavior (e.g., bugs in a pro-
gram). These discrepancies can be expressed as rela-

!Supervision means supplying the learner with informa-
tion (called labels) about the class or concept to which an
object or event belongs. Thus, the supervised learner’s task
is to formulate a correct characterization of a given concept
or set of concepts. In unsupervised learning, which is this
paper’s concern, objects are unlabeled and so the learner’s
task involves determining the concepts that exist among the
objects as well as characterizing these concepts.
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tional descriptions — logic formulas that describe spe-
cific relations (i.e., the discrepancies) between a given
behavior and an ideal one. Figure 1 illustrates.

rIDI-}'.AL BEHAVIOR

reverse([HIT]

reverse(T,T1),

|’?i’._UGGY BEHAVIOR

reverse([HIT] @ >
\revcrse{T.T 1).
DISCREPANCIES

(1) replace(head,R,[T1/H])
(2) remove(subgoal2)

1

(2)

Figure 1: Discrepancies in behavior

The figure shows an ideal behavior in the form of
the correct clause of a PROLOG program for reversing
the order of a list of elements. The clause has a head,
reverse([H|T],R), which states that the reverse of a list
that is made up of a first element, H, called the list’s head,
and a sublist, T, called the list’s tail, is R. R is computed
in the clause's body, which has two subgoals. The first
subgoal, reverse(T,T1), states that the reverse of the
list T (recall that T is the tail of the list being reversed) is
T1. The second subgoal, append(T1, [H] ,R), states that
R is just the concatenation of the list T1 (which, accord-
ing to the previous subgoal is the reverse of the tail of
the list to be reversed) and the element H. In short, the
clause as a whole states that the reverse of a list is the
concatenation of the reverse of its tail and its head.

Below the correct clause in the figure is a clause writ-
ten by a student. The student’s clause differs from the
ideal one in two ways. First, the student’s clause has
[T1|H] in the head instead of R. Second, it has only one
subgoal, that for reversing the tail T. These two discrep-


http://titech.ac.jp

ancies are listed in relational logic farm in the bottom
of the figure. Knowledge about the misconception that
caused such discrepancies can improve student remedi-
ation and lesson presentation. This paper examines an
approach toward the automatic discovery of such mis-
conceptions.

In the rest of the paper, we first present a similarity-
based algorithm for clustering relational descriptions.
Next we describe how causal relationships in the back-
ground knowledge can be exploited to construct or cor-
rect misconceptions while they are being formed. Fi-
nally we report some experimental results that show
that the multistrategic approach to concept formation
described in this paper enables the automatic construc-
tion of meaningful misconceptions from theory and data.

Using Similarities in the Data to Form
Concepts from Relational Descriptions
The Basic Similarity Measure

The basis of our similarity-based algorithm is Tversky's
(1977) contrast model:?

$im(C,0)) = 8f(CN0)) - af(C - 0) - B(0 - C)

which expresses the similarity between two sets of fea-
tures, C and O, as a function of the weighted measures
of their common (C N Q) and distinctive (C — 0,0 - C)
features.

The features that are dealt with in this paper —
behavioral discrepancies — are expressed as relational
(rather than attribute-value) descriptions.®* We compute
the commonalities between two sets of relational descrip-
tions C and O using:

(€n0)=Com(C,0)=J | 199(C:, 0;)

i=1j=1

where lgg(z,y) is the least general generalization
(Plotkin, 1970; Muggleton & Feng, 1990) of two such
descriptions.

The Basic Similarity-based Relational
Clustering Algorithm

Our similarity-based algorithm for clustering relational
descriptions is incremental, so it takes one set of dis-
crepancies at a time and classifies this object recursively
into the nodes in a growing hierarchy that match it to
a certain degree. Fach node in the hierarchy denotes a
concept (i.e., misconception}, which is either (a) a gener-
alization (intersection or variableization) of the subcon-
cepts below it, or (b) a record of an instance, or both.
Table 1 describes the basic algorithm. Further details
can be found in (Sison & Shimura, 1996a), where the
algorithm is called RC.

ZAll of the similarity-based views of concept learning
adopt or assume some variant of this model (Komatsu, 1992).

*Attribute-value descriptions such as height=tall or
color=blue can be used to express discrepancies only with
difficulty.
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Table 1: Basic procedure for clustering relational de-
scriptions

1. From the children of a given node N of a concept hierar-
chy, determine those that match the object O (set of input
discrepancies). The match function computes for every
child node the set of commonalities, Com, and the degree
of similarity, Sim, between this node and the new object,
and determines whether Sim exceeds a system threshold,
7.

2. If no match is found, place O under N. Otherwise, place O
in its appropriate position vis-a-vis the matching child(ren)
of N. (This will involve increasing weight counters, creat-
ing new nodes, or further recursive clustering against child
nodes.)

3. Nodes whose (weight - height) values fall below a system
parameter may be discarded on a regular or demand basis.

The algorithm in Table 1, which we here call SMD,
is similar to UNIMEM (Lebowitz, 1987) and COBWEB
(Fisher, 1987), which are also incremental conceptual
clusterers. UNIMEM’s similarity measure, however, con-
siders only the difference between two sets of features.
Furthermore, UNIMEM retrieves only a set of “poten-
tially relevant” nodes to compare against the new object,
rather than examining every child of a given node, and
maintains a total of 13 different parameters. COBWEB
uses a probabilistic (rather than set theoretic) concept
representation and a corresponding probabilistic simi-
larity measure (category utility (Gluck & Corter, 1985;
Corter & Gluck, 1992)), and can therefore only produce
disjoint clusters (but see the probabilistic clusterer in
(Martin & Billman, 1994)). In this paper’s context, dis-
joint clusters imply that the set of bugs in a particular
behavior can only be classified under one “misconcep-
tion,” though there may well be several. Both UNIMEM
and COBWEB deal only with attribute-value (rather
than relational) descriptions (but see the COBWEB de-
scendant in (Thompson & Langley, 1991)).

Using Causalities in the Background
Knowledge to Strengthen the Coherence
of Concept Descriptions and Explain
Discrepancies

Causalities in the Background Knowledge

Similarity-based clusterers form categories on the basis
of regularities (e.g., frequency, co-occurrence) among fea-
tures in the data, but largely ignore qualitative relation-
ships among these same features. We argue, however,
that the presence of qualitative, particularly causal re-
lationships between features of a concept are important
in that they strengthen the coherence of a conceptual
description (thus, e.g., their absence can warrant the
splitting of a concept or an object when some regulari-
ties are coincidental), and they explain the regularities
in the data. The latter, particularly the knowledge of
causative features, is especially important when remedi-
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Figure 2: Causal relationships in the ideal behavior

ating or otherwise dealing with learner misconceptions.

Causal relationships between features can be induced
or deduced in a variety of ways. Lebowitz (1986), for ex-
ample, suggests first using the frequency of occurrence
of a feature in other concepts as a heuristic indicator of
whether the feature is a cause or an effect. Once the
causative features have been determined, one can link
the causative features to the other features using heuris-
tic, low-level, causal domain rules. In (Pazzani, 1993),
there are only two “kinds” of features, namely, actions
and state changes, and actions are always the causative
features. Determining which state changes are caused by
which actions is achieved by instantiating general causal
patterns.

In our case, we use causal relationships among compo-
nents of the ideal behavior, together with the following
heuristics:

e Component-level causality: Causal (or enabling or de-
termination) relationships among the components of
the ideal behavior that are present in a set of dis-
crepancies suggest causal relationships among these
discrepancies.

o Concept-level causality: A causal relationship between
two discrepancies in a generalization node, where one
is an intersection generalization and the other a vari-
ableization, suggests that the former causes the latter.

e Subconcept-level causality: Causal relationships be-
tween a parent node and its child suggests that the
latter causes the former.

Example To illustrate, recall the ideal PROLOG
clause in Figure 1 for reversing a list. Said clause can be
viewed as describing relationships, as desribed in the in-
troduction, among four objects H, T, T1, and R used in
the head and the two subgoals. Figure 2 now illustrates
these relationships.

According to the component-level causality heuristic,
the discrepancies in the said example are causally related
since the R in the second discrepancy causes or enables
that in the first (Figure 3). In other words, the student’s
use of the PROLOG list operator [|] in the head of
his/her clause is related to the absence of the append
subgoal in the body of his/her clause. The component-
level causality heuristic, however, does not say anything
about the direction of causality.

/‘ discrepancy

wo*ve.,.+ Causal relationship between
discrepancies

Figure 3: Causal relationships between discrepancies in
behavior

Now if, in the misconception hierarchy, discrepancy
(1) in Figure 1 (and in Figure 3) happens to occur un-
der discrepancy (2),* then according to the subconcept-
level causality heuristic, the former causes the latter,
In other words, the student can be understood to have
omitted the append/3 subgoal as a result of his/her
putting [T1|H] in the head. This means that the stu-
dent thought, incorrectly, that the [|] construct could
be used to prepend a list to an object, and having dealt
with the necessary concatenation, had no further need
for a concatenation subgoal in the body of his/her clause.

A Similarity- and Causality-Based
Clustering Algorithm

Existing approaches (e.g., (Lebowitz, 1986; Pazzani,
1993) to using data and causality in concept formation
use separate SBL and EBL components. In MMD, SBL
and EBL are tightly coupled in the concept formation
process. This entails two revisions to the basic algorithm
(rather than an algorithm separate from that) in Table 1.
First, causal relationships are to be determined using the
component-level causality heuristic. Second, the direc-
tions of causalities are to be determined, whenever pos-
sible, using the concept and subconcept-level heuristics.
This may lead to the severing of ties between a parent
node and its child when the two are in fact unrelated.
These revisions are found in Table 2, which shows the
basic similarity- and causality-based algorithm, called
MMD for multistrategy misconception discovery. MMD
and the causality heuristics above are explained in more
detail in (Sison, Numao & Shimura, 1997).

*Which is indeed the case with the data we have gathered
for and used in our experiments.
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Table 2: Basic procedure for similarity- and causality-
based misconception discovery

. Same as in Table 1, with the addition that cansality reln-
tionships among discrepancies are to be determined using
the component-level henristic.

. Same as in Table 1.

. For every new node created in (2), determine and record
the existence of concept- and subconcept-level causalities.
If no concept-level causality exists among discrepancies in
this node, retain the node nevertheless. If no subconcept-
level causality exists between this node and its parent,
sever the link between this child and its parent, and pro-
mote it upwards.

. Same as step (3) in Table 1.

Experiment
Experimental Method

In this paper, we look at the effect of varying the pa-
rameters of SMD and compare the performance of these
SMD variants against that of MMD. The data we use are
64 buggy reverse/2 programs obtained from third-year
undergraduate students who have learned basic PRO-
LOG concepts. These programs were submitted for ex-
pert (teacher) analysis of their underlying misconcep-
tions. The discrepancies between the buggy programs
and their associated ideal programs were also computed
and then fed, in worst-case order,® into several variants
of SMD (each variant having different values for its pa-
rameters) and into MMD.® A misconception or classifica-
tion generated by MMD or SMD is considered accurate
if it matches that of the expert.

Varying the parameters of SMD, particularly the pa-
rameters of the Sim function it uses, reflects various
similarity models, For example, setting € to 1 and «
and f to 0 produces Restle’s (1961) model of similar-
ity. The reverse, i.e., setting # to 0 and a and g to 1
yields Restle’s (1961) model of psychological distance,
which is basically what UNIMEM uses. Setting o and
B to fractional values (when @ is 1) is sometimes useful,
as Weber (1996) shows in his particular domain. These
variants are summarized in Table 3, and the results of
the experiment are shown in Figure 4.

Discussion of Results

Figure 4 shows that MMD was able to correctly iden-
tify most (92%) of the misconceptions in the buggy
programs that the expert also could. The figure also
clearly indicates that exploiting causal relationships in
the background knowledge improves the classification
performance of a similarity-based learner. What the fig-
ure does not reveal is that the classifications generated

"Since the algorithms are incremental, the order in which
the e discrepancy scts are presented to the algorithms can
affect the accuracy of the resulting hierarchies. A worst-case
ordering is one which maximizes error in a hierarchy.

50 = =8=1y20.
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Table 3: Some variants of SMD

Model [8] a | ] v | Name in Figure §
RC 1[1]1]0 SMD4
Restle-1 | 1| 0 | 0 | 1 SMD1
Restle-2 [0 [ 1 | 1 ]-1 SMD3
Weber 1(.2(4|0 SMD2 |
100
80
T oo}
> iy
£ i
5 wf
< ’_ )..,I'_'_-..'
20}
it

SMD1 SMD2 SMD3 SMD4 MMD

Figure 4: Accuracy of hierarchies generated by MMD
and the SMD variants in Table 3

by all the SMD variants do not contain information re-
garding causation and can therefore hardly be considered
as misconceptions.

The relatively lower accuracy of the hierarchies gener-
ated by SMD were mainly due to incoherent groupings
and multiple bugs, which SMD is insensitive to. This
insensitivity seems to have become more pronounced in
the SMD variants (SMD1, SMD2) that assigned weights
lesser than 1 to feature dissimilarities. This is not sur-
prising since the presence of dissimilarities between two
similar buggy behaviors may indicate the existence of
more than one bug.

The bugs which MMD (and of course SMD) was not
able to classify correctly were primarily due to discrepan-
cies which could be transformed to other, “more mean-
ingful” discrepancies. For MMD to classify these bugs
correctly, two options are possible. One option would be
to give MMD the ability to recognize discrepancies be-
tween discrepancies (i.e., to transform one discrepancy
to another). Alternatively, this task could be given to
the preprocessor which computes discrepancies between
buggy programs and an ideal. The second option is
preferable since MMD’s primary task is clustering dis-
crepancies rather than transforming them.

Conclusion

A similarity-based approach to misconception discov-
ery is important because it detects regularities in
the data, which in turn may indicate the existence
of underlying causalities. On the other hand, an
explanation(causality)-based approach is necessary be-



cause coucepts based solely on regularities might not be
coherent. TFurthermore, a similarity-based learner can
only roughly classify an erroneous program hut not spec-
ify the cause(s) of its errors.

The integration of similarity- and causality-based
learning in the multistrategy unsupervised concept dis-
covery system MMD has been shown to be useful, if not
essential, for the the automatic construction of mean-
ingful misconceptions that can be used to account for
discrepant behavior in student programs. The presence
of qualitative, particularly causal relationships between
features of a concept enable the splitting of an object
with multiple bugs, thereby increasing the hierarchy’s
accuracy, and provides a causal explanation the regular-
ities in the data. The latter is especially important when
remediating or otherwise dealing with learner misconcep-
tions. MMD is a step toward the automatic discovery of
(PROLOG programming) misconceptions (Sison, 1997)
and their use in multistrategic student modeling (Sison
& Shimura, 1996b).
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