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Abstract

Exploring Competing Orders in the High-T. Cuprate Phase Diagram Using Angle Resolved
Photoemission Spectroscopy

by

Daniel Robert Garcia
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Alessandra Lanzara, Chair

With more than a quarter century of study, the high temperature superconducting
cuprates still represent one of the most active areas of research in condensed matter physics.
Its complex phase diagram continues to present challenges to our understanding, stemming
from its correlated electronic nature. Being able to tease out the effect of different lattice
orderings and their effects on electronic states may be crucial to understanding the physics
of the cuprates where such orderings may be crucial to the phase diagram. Thus, because of
its ability to directly probe electronic band structure, Angle Resolved Photoemission Spec-
troscopy (ARPES) is an ideal probe to study the effects of competing orders on electronic
states near Ep.

This thesis will be organized in the following way. Chapter 1 provides a broad intro-
duction to the physics central to our work including concepts of band structure and Fermi
liquid theory, as well as more exotic phenomena explored throughout the thesis. Chapter 2
introduces the ARPES technique, how it is physically understood via concepts like Green’s
functions, and traditional methods of data analysis. Chapter 3 explores magnetic ordering
and its effect on both core level and valance band states in the iron oxypnictides. From the
near-Ep electronic states, we find that the magnetic physics of the parent compound may
still be present even at superconducting dopings. Chapter 4 explores charge density wave
(CDW) ordering by looking at the rare earth ditellurides. This ARPES work establishes
LaTe, as the first quasi-2D CDW system to behave like a true Peierls transition, with both
Fermi surface nesting tied to a metal - to - insulating transition. Chapter 5 explores the ef-
fect of lattice strain on electronic states by studying the single layered Bi2201 cuprates with
lanthanide substitution. The effect of this substitution competes with superconductivity
and appears to enhance bosonic modes acting on the nodal point states which are otherwise
unaffected. Chapter 6 takes the specific case of Nd-Bi2201 and finds evidence of a distinct
crossover point in the electronic states near Er segregating the nodal point states. Finally,
Chapter 7 provides a summary of our work and its conclusions.
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Chapter 1

Introduction

1.1 Electronic Structure

It is no exaggeration to claim that at the heart of all modern understanding of electronic
behavior in solids is the concept of band structure. Within it lies our most successful attempt
at deciphering the mystery behind electrically insulating and metallic behaviors, though
puzzles still remain. It is fitting that given the nature of the Angle Resolved Photoemission
Spectroscopy (ARPES) technique, which is central to the work in this thesis, that we give
an appropriate introduction the physical ideas and terminology used in the study of band
structure. Indeed, ARPES represents an experimental probe whose ability to directly access
this electronic band structure, with all its complex physical phenomena hidden therein, is
truly unique in all of condensed matter physics.

Presented with the challenge of finding quantum mechanical wavefunctions appropriate
for describing 10?3 particles interacting with one another via simply coulombic forces within
a Hamiltonian would be enough to discourage most researchers. And yet, through sequen-
tial approximations, the problem begins descending from the utterly impossible to merely
challenging. Such approximations include treating the nuclei as closed shell ions, modeling
these ions as classical potentials, and invoking Born-Oppenheimer approximation to elimi-
nate the contribution of their motion to solutions. Most notably, when we turn our minds
to the actual electrons themselves, we are still confronted with such a hurdle that even the
complete absence of a lattice would render little consolation. The apparent way forward is
a massive divide and conquer, to treat each electron as being in a state where they know
about the lattice potential but do not interact directly with other electrons. In its place, the
interaction between electrons is either averaged or, potentially, removed all together, save
the most unavoidable phenomenon, Pauli exclusion. The fact that this single electron model



works so well is possibly one the most pleasant surprises of solid state physics. A fact borne
out by probes like ARPES, this model is essential for all electronic structure calculations,
though reasons for this will be mentioned later. Even still, we remain at a point where a
breakthrough is greatly needed. One could resort to a complete removal of all coulombic
potentials, resulting in a free electron model. But this is hardly an accurate model of reality.
In fact, even its unexpected success in describing electron-related properties in the alkali
metals raises more questions than it answers. With all the ionic potentials due to the nuclei,
how can electrons ever hope to move through the lattice? Can their states be described by
good quantum numbers, and if so how?

The Schrodinger equation was hardly two years old when Bloch first discovered his epony-
mous theorem which allows one to speak at all about band structure or electronic behavior
in general. Considering the aforementioned success of the free electron model, Bloch’s result
is not entirely surprising. In the absence of any potential, the electrons are free and thus,
plane waves, given by ¥(r) = e*". Pauli exclusion keeps them from occupying the same
state, and so we can easily index the states by their wave number, k, and their spin. But
could something similar be more generally true for a single electron model? Bloch’s theorem
demonstrates that in any periodic potential, U(r) = U(r + R), the single electron solutions
to the Schrodinger equation are of the form

() = u(r)e™ (1.1)

where u(r) = u(r+R). The function u(r) encapsulates the information related to the periodic
lattice. With this seminal result, we can begin talking about band structure made up of
electronic states indexed by the wave number and spin, as well as an additional band index,
n. The reason for this index is that Bloch’s theorem assures us that there are wavefunctions,
1, which are energy eigenstates of the periodic potential hamiltonian. But given a single k,
one can find many energy eigenstates satisfying

which are thus indexed by n, just as one finds in the solutions to simpler quantum problems
like the harmonic oscillator. It is this function, F,;, and its determination that is the band
structure of the material. Each electron in the system, at least those not tightly bound to
the nuclei, exists in one of these Bloch states, characterized by a specific momentum value
and energy. The relation between momentum (related to k) and energy is the dispersion,
which we will write as F/(k) since though k is actually a discrete quantity (hence the earlier
subscript), the density of k states is so high, it can easily be made a continuous variable.
It is this function that, at a basic level, the ARPES technique is uniquely suited to probe.
We can use k to define the momentum of the state, raising it to a multi-dimensional vector
and writing, p=hk. This type of momentum is somewhat unlike what we are used to
from classical mechanics, and is often defined as the crystal momentum associated with the
electronic state. Because of its correspondence to the actual linear momentum of electrons
photoemitted in ARPES experiments, we often drop the “crystal” preface when we describe
the momentum state of the electrons. Additionally, throughout this thesis, we will often the
term electronic dispersion and band structure interchangeably to refer to this function E(k).
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Given its importance, it is worth taking a moment to reflect on the dispersion relation, its
calculation, and terminology. Sometimes, especially to a new student of solid state physics
or of the ARPES technique, the complexity of electronic dispersions can hide the simplicity
of their meaning. Take an electron moving through free space, where the energy of the
particle can be described classically as p? /2m,. or quantum mechanically with the momentum
operator, —ihiV,. The states the electron can exist in have energy E = (hk)?/2m, This is the
dispersion relation, telling us that every possible state indexed by k has a certain necessary
energy associated with it, F(k). As we introduce interactions with the lattice ions, other
electrons, and other more exotic phenomena, all these do is alter this relationship. In this
way, F(k) can provide an abundance of information on the numerous physical phenomena at
work in the crystal. In fact, given the surprising success of the free electron model (as well
as nearly-free electron models) one will find many band structures that remain, basically,
parabolic. The electronic band structure of a crystal is a description of the electronic states
that single electrons can exist in given the Hamiltonian they have within the crystal. The
fact that there exist a finite number of electrons but an infinite number of possible states,
means not all of these states will be filled. Being fermions, the occupation of these electronic
states is given by the well-known Fermi-Dirac distribution

1
@(E/kBT—M) +1

F(E.T) = (13)
where g is the chemical potential and kg is the Boltzmann constant. In instances where
the electronic structure has states with energy all the way up to u, these materials are said
to have a Fermi surface and the energy associated with this highest most state is called
the Fermi energy, Ep. At T = 0, Er = pu, and though they differ somewhat at finite
temperatures, the difference is generally unimportant for the data presented here and so
throughout this work, Er will represent the energy of the Fermi surface. It is worth pointing
out that the existence of a Fermi surface is the most accurate definition of a metal that
one can currently provide. Insulating compounds have no Fermi surface as their electronic
dispersions are completely “filled” meaning the highest energy states the electrons can exist
in are separated in energy from other states the electrons could occupy at higher energy.
The probability of a thermally related transition from one filled Bloch state of certain E and
k to a higher E’ Bloch state allowed by the crystal’s electronic structure goes as e~ Fs/k5T
where F, is the energy separation or energy gap. Therefore, only materials with unoccupied
states immediately above Er can potentially be metals given the application of an E-field.
Otherwise, the gap is too large and the resulting behavior is insulating. If the energy
gap is sufficiently small, <2eV, the material allow some conduction and is referred to as
a semiconductor. We will return to this when we explore the band structure of the rare
earth ditellurides in Chapter 4. The additional lesson is that the states nearest Ep are the
ones responsible for determining the large scale electrical and thermodynamic properties of
the material. States far from Ep can do little to affect the large scale properties of the
system since they are effectively blocked from transitioning out of their states due to Pauli
exclusion and the substantial energies required to allow them to access unoccupied states
near Er. Thus, studying the near Er band structure remains a top priority for understanding
a material’s properties.



This discussion also leads us ultimately to another valuable observation, one that is ob-
vious to a student of solid-state physics and unavoidable to the ARPES practitioner. The
primary space we must become comfortable with in our analysis is momentum space or k-
space. This can present challenges since, ultimately, the electronic structure is a function of
k in three dimensions making E(k) a 3D function and thus, fundamentally hard to visualize.
While this is important to always keep in mind throughout our analysis, certain consider-
ations make this less daunting. For reasons which will be better explained in Chapter 2,
ARPES data is easiest to interpret as being done within a k-space of only 2 dimensions,
while the third dimension is held fixed. (Generally, this is the k, component where z is
normal to the surface of the sample.) Thus, one should think of the band structure explored
using ARPES as being 3-D manifolds, E(k,, k,), with the energy of the states on the z-axis,
and the data from the experiment as lines and slices through these manifolds. This third
dimension of the electronic band structure (i.e. how the energy of the Bloch states varies
with k) can still be explored, but it is more challenging due, fundamentally, to the breaking
of translational symmetry in the z-direction. This will be re-explored in Chapter 2.

Momentum space carries with it another crucial concept to understanding band structure
and ARPES data. The real advantage of studying a crystalline lattice is how a macroscopic
object can be reduced to a smaller, simpler subset from which all the information about
the macroscopic piece can be deduced from. For a crystal, this subset is referred to as the
primitive cell and its shifting throughout space by a set primitive translation vectors (a;, ag,
ag) entirely recreates the macroscopic object. But since band structure primarily exists in
k-space and not position space, it would be wonderful if a similar advantage could be found
in k-space as well. Since the components of k and r are just inverses of the other (times 27),
the obvious weapon of choice is a Fourier transform

F(k) = /drf(r)e"'k (1.4)

which in both its discrete (summation) and continuous (integral) forms is our ferryman
between real and momentum space. Although much more can be said what matters here
is that the symmetries of one space correspond to symmetries in the other, and one can
additionally create a unit cell in momentum space defined by k-space primitive vectors (b,
bs, bs). And just as all the information of the crystal in position space can be thought of as
an r-vector restricted to a primitive cell (any integer number of primitive vectors can take
you from any point in the crystal back to a point in the primitive cell), all the information
in k-space can be reduced down to a primitive cell in k-space. The Brillouin zone is such a
primitive cell which is uniquely defined for any crystal and contains the full symmetry of the
crystal. Consider the tremendous power of this idea; every Bloch state in the entire crystal is
indexed by a k value. But every k-value, no matter whether it sits within this zone (imagine
k=0 as the center of the Brillouin zone) or has a value larger that the boundaries of this zone,
must necessarily correspond to a value within this zone. Therefore, if you want to know a
physical quantity that is a function of k (e.g. band structure), just determine it for all the
k-states within this Brillouin zone, and you now know that physical quantity for all possible
k-states because of the k-space translation symmetry. Therefore, to determine the electronic
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band structure of just this initial Brillouin zone (referred to as the first Brillouin zone) is
enough to determine it for all values of k. There are many other fascinating properties
of Brillouin zones, such as their ability to open small energy gaps for bands which crosses
the zone boundary (a phenomena we will return to when we study charge density waves in
Section 1.4). But it is enough for now to understand the Brillouin zone as the primitive cell of
the band structure, F (k). It is worth noting that even within the Brillouin zone, additional
symmetries of the crystal may provide further simplifications. For example, determining the
band structure of only a quarter of the zone (4-fold symmetric system) is enough to describe
the whole band structure. Throughout this thesis, we will be describing momentum space
in terms of the k-space lattice (or reciprocal lattice) for this reason. These reciprocal lattice
units will be defined (as often used in ARPES) so that the shortest distance from the center
of the Brillouin zone (known as the I' point) to the edge equals unity. This is to say that
given an orthorhombic lattice of real space lattice constants a, b, and c, then k,, k,, and k.
have units such that m/a=1, m/b=1, and 7/c=1, respectively and the total volume of the
Brillouin zone is (2*1)(2*1)(2*1) = 8. This should be remembered when comparing to other
probes that define the Brillouin zone edges to be 0.5 such that the total volume in these
units would be unity: (2%0.5)(2%0.5)(2%0.5) =1

Having focused our attention on the idea of k-space, we can now return our attention
the band structure function E(k) itself to define and describe a few additional quantities of
importance to band structure. Previously, we defined a metal as a material with a Fermi
surface, meaning that there exist states of k (and n) which are occupied by electrons all the
way up to a Fermi energy. When the system experiences an electric field, these states can
easily rise to occupy states that are continuously connected, as opposed to having to quantum
mechanically tunnel to states separated by a significant energy gap (an in an non-metal.)
The Fermi surface is nothing more than the set of all electronic states at the Fermi energy and
the particular wavevector which points to these states is the Fermi wavevector, kp. Strictly
speaking, it is not a single wavevector but a collection of k which trace out this 3D surface,
which can in practice be quite complicated. Additionally important is understanding that if
E, (k) represents a dispersion relation for each band, n, then we should be able to determine
a velocity associated with electronic states in band n at a particular energy. Although a
proper derivation requires more motivation, one can appeal to the definition of the group
velocity of a wave, Ow/0k. Here, this can be rewritten as 0E,(k)/0hk and evaluating this at
k = kp gives us the Fermu velocity, vp for the band being differentiated. On a basic level, we
can understand this quantity as providing us with insight into how other interactions within
the crystal may affect or “dress” electrons propagating in the crystal within their Bloch
states (not only for states at Ep). For instance, in crystals where the electrons strongly
interact with the lattice (e.g. polarons), the resulting behavior slows the electrons down
resulting in “flatter” or less dispersive bands. In the extreme, a bound state where the
electrons are basically localized in space would be perfectly flat (i.e. OF, (k)/0hk=0). This
is, additionally, a manifestation of the uncertainty principle since a spatially localized electron
would have a completely ill defined momentum. One may also think about this as if the
electron were like a object moving through a viscous media. If it interacts more strongly
with its surrounding (higher viscosity) it acts as if it has a greater mass. This mass would be



related to the velocity of the electronic states along certain directions (keep in mind, E'(k)
is multi-dimensional manifold.) Since it is a multi-dimensional problem, the effective mass,
as it is traditionally called, will be a tensor relation M,z that looks at the curvature of the
electronic band structure | 9E (K
(M e = 755 g(k)

aVRpB

This tells us that the concavity of the band structure has a major affect on the effective mass,
leading to both positive and negative values. This initially unintuitive result dramatically
plays itself out in actual materials. Electrons in bands that are near Er, and thus involved in
transport, may have either positive or negative concavity. If the band has positive concavity
(“cup up”), the electron has positive mass and moves (or more precisely, increases its k
value) oppositely to the applied E-field, as one would expect. But if the electron near Ep
is part of a band with negative concavity (“cup down”), the mass is negative and it would
actually behave like a positively charged particle in response to a field, which are referred to
as holes. 1t is this difference of band concavity that leads people to speak of electron bands
and hole bands and their individual contributions as charge carriers. This understanding
of effective mass will be additionally justified in the next section and its significance for
ARPES measurements explored in Chapter 2 as well as the specific case of the cuprate
systems examined in Chapters 5 and 6.

(1.5)

An additional point worth mentioning regarding the slope of band structure manifolds
is its connection with the energy density of states, D(F). Although the Fermi function pro-
vides us with the distribution associated with fermions as a function of energy, there is no
information about how many Bloch states exist within a window, dE, which need not be
(and in practice is not) uniform. This has significance in the calculation of many quantities,
particularly D(EFr) (e.g. specific heat, BCS superconducting gap), and is often among the
functions theorists attempt to calculate when presented with a novel new material. Further-
more, Angle Integrated Photoemission is able to measure the density of states by determining
raw photocurrent vs. binding energy, although certain caveats must be considered. Chapter
3 explores this further in regards to the iron arsenides. The relationship between D(E) and
the band structure F, (k) comes down to regions of extrema or saddle points in the band
structure manifold. If one is taking constant energy slices of some width, dF, of a band
structure, the places where the surface is most parallel to the slice will contain the largest
amount of the surface (i.e. states) within the dE. Written more precisely

2 X
PO = 55 [ wep 1-6)

where d is the dimension and X is a constant energy surface £ = FE(k) of dimension d-
1. Here, extrema in E(k) lead to singularities known as Van Hove Singularities which can
enhance the band structure seen with ARPES.




1.2 Band Structure Calculation

A word should be said about band structure calculation since comparison with such cal-
culations is important for testing theoretical models and for revealing exotic phenomena. As
mentioned earlier, it comes as a surprising fact that assuming free electrons moving through
a lattice (subject to only Pauli exclusion) would provide any realistic picture of the physics
in metals like the alkali metals. But coming up with an adequate Hamiltonian which strikes
that elusive balance between an accurate description and mathematical tractability is really
challenging. With this Hamiltonian, the energy eigenvalues of the associated eigenstates
(Bloch states) would correspond to the band structure, being indexed by k and n. Great
success for metals can be made by treating the electrons as nearly-free, lightly perturbed by a
periodic potential, U, leading to parabolic bands and splitting of the bands near the Brillouin
zone edge (~2U). But in the complicated materials we will be studying, more sophisticated
approaches need to be taken. Two such approaches will be described: tight-binding models
and local density methods. From the name alone, one gets the sense that tight binding
models fall on the other extreme from the nearly-free electron models mentioned. And, con-
sistent with that theme, tight binding models are more advantageous when band gaps are
larger. Tight binding methods start from the view point of electrons localized in atomic
orbitals. To make the initially unexpected leap from Bloch states to localized wavefunctions,
one simply creates orthogonal, localized, wave functions that are constructed from a series
of Bloch functions. Such functions would naturally satisfy the requirement for Bloch states
(being a summation of Bloch functions) and would have a real-space functional dependence
that would localize them near atomic sites. These functions are the well known Wannier
functions and their ability to fall off as a function of increasing distance from an atomic
site is essential to their usefulness. It turns out that this localization is directly related to
the energy gap separating the bands associated with the Wannier function from any other
band. In insulating materials, this leads to a fast drop-off and thus significant localization.
However, Wannier function of metals may not have such localization. When their intensity
decays exponentially to a negligible amplitude beyond its nearest neighbor, one can create
Hamiltonians such as (in Dirac notation)

Hrs :Z|R>t<R+5| +S R)U (R (1.7)

where § represents a vector from the atomic site (indicated by R) to the nearest neighbor
site. The meaning of this Hamiltonian is that for an electron to travel from localized site
(as determined by the Wannier function) to its nearest neighbors there is an energy cost,
t, known as a hopping term, which acts like kinetic energy. For an electron localized to an
atomic site there is also the energy associated with being localized at that site, U. Given
plane wave states, one can determine the energy eigenvalues of the hamiltonian in Eq. 1.7
to be B

E(k)=U+t) (1.8)
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thus giving us our band structure. Given this basic model, a lot can be done to improve it
such as using linear combinations of atomic orbitals (LCAO) to create Wannier functions
from certain combinations of atomic orbitals and thus get more physically relevant values
for the t’s and U’s. More orbitals and more neighbors (¢, t”, etc) improves the model, but
at the risk of greater and greater calculational challenge. As we examine the cuprates, in
Chapters 5 and 6, the primary band structure model we compare with is that of a tight
binding model where the parameters are phenomenologically determined. Additionally, it is
a critical extension of this tight binding model, the Hubbard model that is at the heart of so
much theoretical work on the cuprates. The Hamiltonian in the Hubbard model effectively
adds a term which penalizes the addition of more than one electron to any atomic site, as a
method for exploring magnetic phenomena. Unlike the original tight binding Hamiltonian,
this one can only be solved exactly in one dimension. We will return to this when we begin
exploring the superconducting cuprates in Chapter 5.

The second method of approaching band structure calculation we will explore is local
density theory, though we will only address it briefly since it will be used in Chapters 3 and 4.
Up to now we have generally neglected the effect of electron-electron interactions, save Pauli
exclusion. But this is conceptually suspicious and erroneous in practice for many systems.
One can attempt to incorporate the effect of both Pauli exclusion (via a Slater determinant
antisymmetric wavefunction) and electron-electron interactions in the Hamiltonian. Then,
one uses variational techniques to find the appropriate ground state, looking for the extrema

of the functional Fy [V] = <\I/ ‘I/-j ‘ \If> The result of that adventure is the well-known

Hartree-Fock equation. But these are of limited use because they do not model electron
screening (and are quite time consuming to solve.) Density functional theory as developed by
Hohenberg and Kohn starts with the assumption that you could uniquely define the ground
state of a many-electron system by just its electron density function alone. The idea is simply
that the only things that define a many body problem is the number of bodies (electrons)
and the potentials they feel. Given these, there is a one-to-one correspondence between the
resulting density and these initial constraints. They also realized that if you could write
a functional of the energy of the system with respect to the electron density function, the
true ground state electron density function minimizes it. Drawing on information from
the Hartree-Fock model used on a uniform electron density (affectionately called jellium),
allowing the density to vary slowly, and minimizing with respect to wavefunction as opposed
to electron density (allowing for a more reasonable kinetic energy term) the result is the
Kohn-Sham Equation

B = o)+ [ar T2 1 2 (19

where n(r) is the electron density, U(r) the lattice potential, and E,. is the exchange cor-
relation energy which is independently chosen. These type of approximations are generally
referred to as local density approximation or LDA. In practice, the band structure calculated
from this model often needs to be renormalized (i.e. rescaled) in energy, though it is common
that the Fermi surface is modeled reasonably well. Chapter 4 will make use of LDA related



band structure calculations and the corrections that ARPES can provide to renormalize the
band structure in the energy dimension.

Now at this stage one might be wondering, “Why can we think of single electron states
at all if there are all of these electron-electron interactions?” Indeed, we have assumed a lot.
Why should the single electron model work at all, considering it forms the basic assumption
behind every model we have looked at. How can we use ideas like effective mass as if we are
fundamentally dealing with individual free electrons? This takes us to another discussion
which is so essential that without it, ARPES on correlated electronic systems would simply
make no sense.

1.3 Fermi Liquid Theory

Prior to the incorporation of electron-electron interactions in our discussion of local
density theory, we have been effectively working with electrons as a gas of fermions, obeying
Pauli exclusion, and existing in Bloch states. As we turn on interactions, we transition
from a Fermi gas into a Fermu liquid. So the question that faces us is if we wish to study
correlated electronic systems (like the superconducting cuprates) and in particular their
electronic band structure (assuming that makes sense to say), how do we proceed? The path
forward was cleared by Landau in 1956 as he was studying the physics *He. Landau realized
that trying to determine the precise nature of the ground state was not the right way forward.
Rather, it would be easier to focus on the excitations of the system. It turns out that these
excitations, particularly near Ep, are long lasting enough that they could be thought of as
if they were particles in their own right and not merely excitations of a complicated ground
state, but. Thus, these elementary excitations of the ground state are referred to as Landau
quasiparticles, and like “real” particles, they can move and have interactions with each other
(albeit much weaker) within the system.

At its core, Landau realized that you could start with an excited state in a non-interacting
Fermi gas. For example, imagine a single electron promoted to a k state with energy above
Er. If you were to add electron-electron interactions slowly, this excited state would eventu-
ally turn into an energy eigenstate of the new Fermi liquid, whatever that is. But if instead
one were to add the electron-electron interactions very fast compared to the scattering time,
T, of states near Ep, the system would still have a well defined momentum value, k, but it
would not be in an energy eigenstate of the new system. This uncertainty in energy naturally
leads to finite lifetime (AEAt ~ 1.) It is this decay time that puts the “quasi” in quasipar-
ticle. It is crucial to the success of this theory that the lifetime of these quasiparticles goes
to infinity as one approaches Ep. Essentially, this is related to the number of states that
can be accessed by excitations near-Er. For excitations of near-Ep states, the low energy
involved in these excitations limits the number of acceptable final states that the electron
can actual scatter into. The electrons are like people in a rush to buy car. If they start off
with a lot of money (higher energy) there are lots of cars they can buy, even if competition



is steep. So they only remain in the car-buying (quasiparticle) state for a short while. But if
they have little money (lower energy) they will have fewer options and have to hunt longer
for car to drive away in. And as their money (energy) decreases to zero, the time they have
to shop increases (lifetime of the quasiparticle state) towards infinity. A detailed calculation
better quantifies this, showing that quasiparticle lifetime, 7, goes as

1/7 = a(E — Ep)* + BT? (1.10)

It’s worth noting that the T? dependence is only valid for energies at or less than kgT,
|E — Er| <kgT. Observing that this lifetime will be related to the energy sharpness of
quasiparticle state is valuable to understanding the data from ARPES experiments.

There is far more that can be said about Fermi Liquid theory, but this is sufficient
to ally many of our concerns about the study of correlated electron systems with probes
like ARPES. What we discover for these systems is that we can think of them as being
described by electronic states which have a direct correspondence to low-lying excited states
of a non-interacting system. These states have well defined k values but limited lifetimes
due to being dressed by excited states, and are particular long lasting near Er. This is
essential since, as mentioned, most of the important physics is determined by the states
near Ex. Thus, the single electron model does continue to be valid since one can speak
of well defined momentum states for particles (although they are quasiparticles) which still
satisfy Bloch’s theorem, with their own effective mass due to the interactions involved and
are weakly interacting with one another. Now up to this point, we have spoken of electronic
dispersions, with their associated velocity and effective mass. However, it would now be
proper to instead speak of quasiparticle dispersions, particularly as it relates to the states
observed in correlated electronic systems near Er. But in practice, the terminology gets
muddled. In our experimental work, the appearance of quasiparticles and their effect on the
energy lineshape of electronic states is significant. This effect is connected to the dependences
illustrated in Eq. 1.10. Incorporating all these results as well as any additional affects into
our understanding of the electronic structure seen by probes like ARPES is best served by
developing the language of Green’s functions. For now, we will refrain from this discussion
until we better explore the physical understanding of the ARPES technique in Chapter 2.

1.4 Novel Lattice Phenomena

So far, it was necessary to describe the origins and ideas associated with electronic band
structure in the absence of more exotic phenomena. Fermi Liquid theory and the introduction
of electron-electron interactions provide a prelude to the more elaborate physics one can
expect in many crystalline systems. But now we turn our attention to more novel physical
phenomena beyond simply electrons moving in a fixed periodic potential. For the purposes of
this thesis, we will briefly focus on two areas which, on close examination, are interrelated: 1)
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Phonons and the effect of bosonic renormalization, and 2) Charge and Spin Density Waves.
We will start with phonons.

Right from the start, we ruled out any effect of the crystalline lattice, save that it provides
a periodic potential for the electrons to interact with. This was related to an argument from
the Born-Oppenheimer approximation that the relative time scale of the electrons was orders
of magnitude different than the nuclei. When a guy is sprinting through a crowded plaza, it
is easier to assume the surrounding people are effectively stationary obstacles to avoid then
to think about their actual motion. But interactions with lattice remain significant being
able to scatter the Bloch states. Sometimes this scattering happens in unintuitive ways like
the effective attraction which leads to conventional superconductivity explored later in this
chapter. But like the problem of electrons, the lattice with its ~102?3 ions presents us with a
daunting task to understand. Thankfully, and perhaps unsurprisingly on closer inspection, a
lot of the methods and ideas from our study of electronic band structure is exactly relevant
to our study of the lattice.

Instead of turning to the Schrodinger equation and its resulting Bloch’s theorem, a purely
classical oscillator mentality is sufficient for deriving the expected vibrational modes. Just as
with electronic states, the result of this are dispersion relations which relate the energy of the
oscillation, w, with the wavelength of the vibration in the crystal, encapsulated in k. This
leads to dispersion relations defining the possible states the crystal’s oscillations can exist in.
In any lattice with a basis (lattice with more than a single element), one gets the traditional
separation of so-called acoustic modes with band structure at lower energies (w ~ c|k| as
k — 0), from optical modes appearing at higher energies (and generally less dispersive.) Once
again, given the symmetry of the lattice, these dispersions have a periodicity in k-space and
the addition of any reciprocal lattice vector, K, should have no effect. Therefore, just like
electronic states, if one can describe the vibrational modes for k’s in the first Brillouin zone,
one has determined all the information regarding all lattice vibrations because any k can
be mapped back to the first Brillouin zone. Where things get exciting is how these modes
are different from what we see in the electronic states. Strictly speaking, although the same
k-states can be used to describe both these lattice modes and the electronic states (a fact
very important as we will soon see), Pauli exclusion requires that electronic states be only
doubly occupied (spin) for each point along the E(k) manifold. There is no such limitation
for these lattice dispersions. So unlike electronic states which can fill up their states beyond
the Brillouin zone producing higher and higher energy bands (though reducible back onto
the first Brillouin zone), the lattice vibration dispersions are fully described within the first
Brillouin zone and have a ceiling of energy. Furthermore, it is already tempting to see these
modes as objects in their own right, with well defined states of w(k), like the electrons in
their Bloch states. Formally, by employing a second quantization, treating the potentials as
quantum mechanical oscillators, puts this on a firmer foundation, and gives birth to phonons
which we can treat as bosonic particles in the lattice.

There are numerous direct probes of phonons and their dispersions taking advantage of
different forms of inelastic scattering (e.g. Inelastic Neutron Scattering, Inelastic X-ray Scat-
tering, Raman and Brillouin Scattering). Nevertheless, because of the effect phonons have
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on electronic states particularly near Ep, ARPES remains an important probe of phonon
physics in many systems, albeit more indirect. Two such phenomena where coupling between
electronic and phonon states is particularly important to our later work on the supercon-
ducting cuprates are: Kohn Anomalies and the bosonic renormalization of near-Er band
structure. A Kohn anomaly exists when a phonon mode has a wavevector q = 2kg. The
result is a singularity in the phonon dispersion, which appears as divergences in the plot of
Ow/0q. The reason for this has to do with the k-dependent dielectric constant, ¢(k), which,
as k —kp, takes on a form (the Lindhard dielectric constant for those who care) which has
a singularity at a wavevector equal to 2kp. This curious relationship between electronic
structure and only phonon wavevectors which can connect it can be important and will be
revisited in the work discussed near the end of Section 5.1 and extended in Chapter 6.

The idea of bosonic renormalization is even more significant to recent work on done with
ARPES on correlated electronic systems. Although the full physical presentation is not
necessary, we should provide some motivation. As will be revisited in our introduction to
superconductivity, electron-lattice interaction can result in effective electron-electron inter-
actions which are mediated by phonons. This effective interaction between two electrons of
wavevectors k and kK’ and energies Ey and Ey respectively is given by

4mre? w(q)?
Viw = 1 1.11
Sy = { T wlay (1)

where q = k — k’ and w = BB and kg is the Thomas-Fermi wavevector. The result of

this is a change in the electronic energy, E(k), but it has a rather complicated momentum
dependent effect. Essentially, the interaction leaves the value of Er and kr (the Fermi surface
topology) unchanged. However near Er on the energy scale of hwp (wp being the Debye
frequency) there is a significant modification of the band structure as seen in the classic
figure from Ashcroft and Mermin’s text reproduced as Fig. 1.1'. Beyond these energies,
the effect quickly disappears. This “kink” in the band structure is caused by the phonon-
electron interaction, though the result is general enough to apply to a general bosonic field
(e.g. magnons).

Evidence of this effect was first discovered a little over 12 years ago?. But, as we will see
in Chapter 5, the appearance of this effect in the high temperature superconducting cuprates
has set off a substantial interest in the identity of this bosonic mode and whether it is phonon
or magnon related. Additionally, from the magnitude of this kink, we can estimate the
intensity of the electron-bosonic coupling constant, A. Although more elaborate techniques
can be used, a simple approach is sufficient given the quality of the data as well as the needs
of our analysis. The band structure at high binding energy remains unaffected and thus
represents the unaffected band. But at lower energies, such as at Eg, the deviation is most
pronounced. The relative difference between these values is related to the intensity of the
coupling between the states. We can quantify the deviation by taking the band velocity, as
discussed in Section 1.1, and comparing the ratio of these group velocities above and below
the kink energy. The coupling constant is directly related to this ratio as (14+X) = vgigh/VLow-
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Figure 1.1. The effect of a bosonic renormalization due to electronic-phonon interac-
tions on the electronic structure within Awp of Ep. Figure reproduced from Ashcroft

and Mermin®.

From this, one can quantify the effective interaction due to this bosonic renormalization and,
in the case of our work, see how the effect can vary.

Although phonons can lead to novel effects on band structure such as the case of bosonic
renormalization, the effect of creating long-range ordering is arguably the most dramatic
consequence of the physics of electron-lattice interactions. This occurs with the phenomena
of charge density waves (CDW) which, like the briefly addressed Kohn anomaly, result from
an instability in the lattice made possible by electronic and lattice coupling and are an
essential part of the the study of correlated electronic materials.

The story of CDW phenomena reaches back nearly the beginnings of the quantum me-
chanical study of solids in the 1930’s and the work of Peierls®. In his studies, Peierls realized
that a 1D metal was fundamentally unstable. To understand this, he considered a linear
chain of atoms with a regular spacing a. Given a prototypical half-filled metal as described
earlier, the system should have a Fermi wave vector kr = m/2a. But what would happen
if one were to make pairs or dimerize the atoms by using a small distortion, 07 As we dis-
cussed in Section 1.1, the electronic band structure is greatly affected by the Brillouin zone
which is defined by lattice structure. The dimerization would shrink the Brillouin zone from
having boundaries at £7/a to +m/2a. Furthermore, recalling a nearly free electron model,
the periodic potential which normally leads to the splitting of bands at +7/a now has a
nonzero matrix element connecting states at k = 4+ /2a. Thus, we expect a splitting of the
bands at kr. But, if the splitting occurs at kg, then states that are occupied will be shifted
down in energy by the interaction while states that are empty (given T = 0) will be shifted
up. The net result would be a decrease in electronic energy since the states shifted up were
unoccupied. If the gap had tried to open below Ep, (meaning a different wavevector than
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Figure 1.2. The onset of a Peierls transition in a 1D metal taking the original band
structure in the first Brillouin zone (left hand side) and introducing a dimerization
(right hand side) which expands the real space unit cell, shrinks the Brillouin zone,
and causes a modulation associated with qepy. This nesting wavevector similarly
opens a gap at Er(kp) lowering the electronic energy of the system.

2kp) an equal amount of filled states would gain and lose energy, resulting in no net change.
This is illustrated in the panels of Fig. 1.2.

This is, however, contingent on whether the electronic energy cost of the lattice modu-
lation is made up for in the energy gained by opening the gap. For the 1D metal, Peierls
showed this was always the case since the electrical energy saved would always be greater
than the energy paid in elastic potential energy for small displacements and small potentials.
Thus, the system will transition to a new periodicity, known as a Peierls transition. This
means a temperature dependent transition could occur when, as the temperature decreases,
the number of electrons thermally excited above Er decreases so that the splitting of the
band would gain enough energy to balance a structural distortion. Curiously, this result
struck Peierls as such a surprise that although mentioning it in his Quantum Theory of
Solids?, it took him considerable time to convince himself that his argument was sound.
Still, he considered it of only academic interest since there are no strictly 1D systems in
nature®. Nevertheless, in 1973 the organic charge transfer salt TTF-TCNQ, which is a long
quasi-1D conductor, was found to undergo a Peierls transition®.

Since then numerous quasi-1D systems which contain Peierls transitions have been ex-
plored. Additionally, quasi-2D systems have been thought to exist which support CDW
formation also, and whose physics is intimately related to that of the Peierls transition. This
leads to an additional categorization, the difference between commensurate vs. incommensu-
rate CDWs. As suggested from the Peierls transition analysis, in order to create a CDW and
its associated periodic structural distortion two conditions must exist. First, the Fermi sur-
face band structure should have the ability to be “nested” by a constant qcpw . Another way
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this can be seen is as an instability in the electronic susceptibility at a wavevector equal to
the nesting vector, qopw. Second, the system must have sufficiently strong electron-phonon
interactions in order to trigger the structural distortion. Since the CDW wavevector would
be determined by the geometry of the Fermi surface the resulting lattice distortion from the
CDW is often incommensurate with the original translation symmetry of the crystal lat-
tice. Commensurate CDWs are observed as well, but even in these cases an incommensurate
modulation “locks-in” to a nearby periodicity which is commensurate with the lattice”.

A final aspect, where APRES has played a useful role, is the idea of “imperfect” nesting.
The Peierls instability is only expected in quasi-1D systems. Yet, as we will address in
Chapter 4, CDW physics has been observed in quasi-2D systems as well. Generally, this has
been explained by the idea of imperfect nesting where an unusually strong incommensurate
CDW can occur even though a single qopw is unable to consistently nest the Fermi surface
band structure®. Now throughout our work, we have made a distinction between CDW
and charge ordering phenomena, such as "stripes” which are observed in materials like the
1/8 hole doped LSCO superconductor. Charge ordering occurs whenever charge density
accumulates in areas of the lattice, of which a CDW is an example. But for the physics to
be truly CDW, we believe it must have that nesting vector associated with the structural
transition, even if the nesting is imperfect. The evidence of CDW physics as seen by ARPES
will be addressed better in Section 4.1. For completeness, it is worth noting that all of this
applies to static CDW systems. There is the possibility of dynamic CDW systems but any
connection between these systems and what ARPES can probe is complicated at the very
least and most likely impossible.

However, charge is not the only density wave which can manifest itself in these correlated
electronic systems. Up to now we have not discussed the effect of magnetism as an important
part of the physics of many correlated systems. In Section 1.6, we explore a little of how
magnetism is significant in the cuprates with the Hubbard Hamiltonian. But, given its
appearance in our later work on the iron oxypnictides, we should address the physics of spin
density waves (SDW) as an important aspect of many systems of interest, although not as

abundant as the CDW phenomenon®.

The origins of the SDW phenomenon are very similar to the CDW phenomenon and were
first proposed by Overhauser!'®. Rather than a charge-lattice modulation, one finds a periodic
spin-density modulation which can be commensurate or incommensurate with the lattice.
Just like the idea of a CDW forming under a singularity in the electronic susceptibility,
a SDW forms under a finite wavevector singularity in the magnetic susceptibility. This
wavevector corresponds to a nesting vector qspw which, just as for the CDW, connects
large segments of the Fermi surface. Thus, we have a phenomenon where band structure
effects are intimately involved in the stabilization of the ordering. Such an ordering would
correspond to an antiferromagnetic ground state and people believe that it explains what is
seen the physics of materials such as Chromium!!. This can result in modification of the
electronic density of states, as we will explore in Chapter 3.

Before concluding, since we have mentioned phonons as a bosonic mode that can couple
to electronic states and lead to a renormalization, magnetic phenomena can do similarly.
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For a charge density wave, the essential physics is electron-lattice coupling. The quanta of
this coupling are phonons and these can couple to electronic states in the manner previously
described. For a spin density wave, the essential physics is magnetic but one can, just like
with phonons, describe elementary excitations which carry momentum and energy. These
fluctuations can be thought of in terms of the Heisenberg model for spins, where spin flips
can propagate in a helical or spiral way through the lattice. These are referred to as magnons
and, like phonons, the excitation carries no net spin, making the effective particle bosonic.
Via spin sensitive probes like INS, one can even map out these dispersions and there is still
debate over whether the bosonic renormalization seen in the cuprates could still be due to
this phenomenon. This will be revisited in Section 5.1.

1.5 Superconductivty

It is not without reason that superconductivity has occupied such a significant place in the
efforts of solid state physicists for nearly a century. In some ways, it was a phenomenon too far
ahead of its time, being only understood within the many-body quantum mechanics of solids,
yet appearing at a time when Rutherford had just postulated the existence of the nucleus
and Bohr’s model of the atom was still two years away. Still, the effect that Kamerlingh
Onnes discovered when mercury is cooled below 4K, a metal with seemingly no electrical
resistance, captures the interest of both the professional and the layman. And yet, its
defining feature is really of secondary importance compared to the discovery by Meissner and
Ochsenfeld more than 20 years later that all magnetic flux is expelled from a superconductor.
(Indeed, a difficult observation to make given the existence of superconductors where this
is not precisely true.) For a material to decrease a current flowing through it, it must, by
Ampere’s Law, reduce its magnetic field. But this would lead to flux lines passing through
the material, a condition a superconductor cannot allow. Thus, it is the Meissner effect
which can be thought of as the critical physical feature of superconductors.

Lacking the necessary advancements in quantum mechanics and many-body wave func-
tions, significant strides were still made in the phenomenology of superconductivity. Most
notably, there was the work of the Londons, which started from a model of electrons moving
in the absence of any damping factors. This work was able to explain the result of Meissner
and Ochsenfeld, developing the London equation

B+AMVxVxB=0 (1.12)

This length scale, Ay, is of particular significance since it determines the length scale to which
the B-field dies off as it approaches the boundary of a superconductor. Further progress was
made as it became clear that the superconducting state could be weakened and eventually
destroyed by the application of a significant externally applied field, H.. This result coupled
with the reversibility of the transition led to the conclusion (from analysis of the free energy)
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that the change in entropy between the normal metal and the superconducting state was

 H,0H,

AS_E@T

(1.13)

Since H. — 0 as the temperature approaches the zero-field critical temperature, T, there is
no latent heat (AS = 0) so the superconducting transition is second order. This is fortunate
since one could then employ the substantial phenomenological firepower of the Ginzberg-
Landau theory for second order phase transitions to better understand superconductivity
(though it was developed much later and, just like with Fermi liquid theory, with helium
in mind.) Among its numerous insights, this approach elucidated the origin of both Type
I and Type II superconductors. Type I superconductors were defined by a single critical
field H. in the way previously described. Type II materials were more mysterious, having
two fields, H, (sometimes called H.;), and He.. At a given temperature below T., if the
applied field was less than H,, it is more energetically favorable to expel all fields. Above H,,
it is more favorable for some field lines to penetrate and form a lattice of superconducting
vortices known as an Abrikosov flux lattice. Above H.o, the system was entirely in its non-
superconducting phase. The theory produced equations which depended on two length scales:
the London penetration depth as earlier mentioned, and a coherence length, &, which relates
to the scale of special variation in the superconducting wavefunction (or strictly speaking,
the superconducting order parameter.) Defining x = Ap /¢, for materials where £ < 1//2,
H, was larger than H. and the material was Type I. When « > 1/ \/5, the material was
Type II. For all the superconductors we will be examining, £ > 1/4/2 making them Type
I1, though we will probing them in the absence of external magnetic fields (which are highly
undesirable for photoemission due to the Lorentz force on the photoelectrons.)

By the 1950’s, there were many encouraging signs regarding the problem of understanding
the microscopic nature of superconductivity. The idea that superconductivity could be
related to coherence in a quantum state was proposed by London. The recently discovered
isotope effect (T, ~ M~ where M=nuclear mass) focused new attention on the role the
lattice may play in superconductivity. The work of Frohlich developed a Hamiltonian which
describes the interactions between electrons and phonons as early as 1950, just prior to
the observation of the isotope effect. From his hamiltonian, it was clear that the electron-
phonon interaction could lead to an effective attractive potential between two electrons as we
discussed with Eq. 1.11. From a classical perspective, one can think of the electron as causing
a small distortion of the surrounding ions via electron-lattice coupling. Like the inverse of
nuclear screening by electrons, have the electron is screened by the effective positive charge,
which then attracts, ever so lightly, the second electron. Thus, the two electrons are coupled
together over a length scale which, as it turns out, is the coherence length, &, described in
Ginzburg-Landau theory. (Although in their seminal works, Bardeen, Cooper and Schrieffer
don’t cite Ginzburg-Landau theory.) As mentioned in the presentation of CDW phenomena,
Frohlich proposed that a collective state of electrons and atomic displacements could move
though a lattice without being disturbed provided that the velocity was small enough, and
thus producing a superconducting state in a 1D metal. However, the sliding collective
state he envisioned could only move in this way in the absence of impurities, finite phonon
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lifetimes, 3D ordering, and other effects. Still the critical role of lattice distortions caused
by electrons traveling though the crystal was correct. By 1956, Cooper had discovered that
any small attractive interaction would destabilize a conventional electronic ground state into
correlated pairs of electrons. With a Hamiltonian inspired by this result and a coherent
state wavefunction proposed by Schrieffer, the BCS (Bardeen-Cooper-Schrieffer) theory of
superconductivity emerged in 1957 .

Over the years, the theory held up against experimental scrutiny, explaining the existence
of the Meissner effect, the isotope effect exponent «, the temperature dependence of the
superconducting gap as well as its relationship to T, specific heat data, and nuclear spin
relaxation experiments. But how high could T, rise to and what materials would we expect
to have higher T,.’s? The work of McMillian building on Eliashberg (who refined the effective
interaction model beyond that of Frohlich, Bardeen and others) showed that T. could be
roughly approximated as

Op (1+ Aep)
T.= —2expd— 1.14
cT 145°F { {Aep — (1 + 0.62),,) (1.14)

where A, is an electron-phonon coupling constant (in this situation it is also multiplied the
density of states at Ep), p* is related to a product between the strength of the Coulomb
interaction and the Er density of states, and ©p is the well-known Debye temperature, which
corresponds to the temperature where all the phonon modes in a system become thermally
active. Inserting some generous estimates, one predicts that T, should max out around 30K.

It was in the effort to push this limit by searching out materials with greater electron-
lattice coupling that initially led Bednorz and Miiller to the layered cuprates, in particular
Lay_,Ba,CuO4. To the great surprise of everyone, in 1986 they discovered a T, of 35K,
an astounding result given the limitations previously mentioned. But, the situation quickly
became substantially more involved than an unexpected T.. The cuprates are doped antifer-
romagnetic insulators (specifically Mott insulators, an issue examined in the next section.)
This is surprising since superconductivity expels magnetic field, and leads one to surmise
that magnetic ordering and superconductivity are competing forms of order in a crystal.
And yet one finds the proximity of these phenomena, along the doping axis of the phase
diagram. This has been also seen in the heavy fermion metals such as UGes where coex-
istence of ferromagnetic and superconducting phenomena is believed to be seen. From a
conductivity perspective, these cuprate systems do enter a metallic phase at temperatures
above the superconducting dome in the phase diagram. But, the resistivity is linear up to
around 1000K (in the case of YBCO at least), without any evidence of the more complicated
temperature dependence (such as Bloch’s T? law due to phonons).

It is the superconducting gap function which, from an ARPES perspective, marks the
novelty of these materials. Within the BCS model, the superconducting gap is associated
with the energy of the pairing of electrons into Cooper pairs and is directly related to T..
The Cooper pairs would be spin singlet structures, where the orbital angular momentum,
[, was equal to zero. The result is that the gap would be isotropic, or that gap was the
same everywhere throughout k-space. This was demonstrated with techniques like tunneling
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given the effect of the gap on the shape of the near Er density of states. However, in the
cuprates, through the work of ARPES and even more dramatically by SQUID interferome-
try, it was discovered that Cooper pairs exhibit a gap which is anisotropic with four nodal
points (locations where the gap goes to zero). Furthermore, the associated wave function
undergoes a sign change of its phase after each nodal point (invisible to ARPES, but seen
by SQUID interference.) Given the observation from NMR that the Cooper pairs are still
in a spin singlet state, this situation corresponds to the Cooper pair wave function being in
a state with [=2. Thus, compared to the “s-wave” gap function, A(k) = A, these cuprate
superconductors present us with a “d,2_,2-wave” gap function,

A(k) = A(cos(kza) — cos(kya))/2 (1.15)

where a corresponds to the lattice constant of a square lattice. Since the cuprates can be
thought of as quasi-2D tetragonal compounds, the gap function has negligible dependence
on k.. More so than any other feature, it is the gap function that best differentiates conven-
tional superconductivity (A(k) = A) from unconventional (A(k) # A) superconductivity
(regardless of the magnitude of T..) Because this gap function effects the density of states
near Ep (appearing as linearly going to zero as E=Ep for d-wave), it also turns up in other
measurements like specific heat which functionally depend on that value.

1.6 Present Issues

In spite of the last twenty five years of intense experimental and theoretical work, uncon-
ventional superconductivity continues to elude our understanding. At its heart, the presence
of this superconductivity may have much to do with the quasi-2D nature of the materials
being studied. For the cuprates, it is generally believed that all of the magnetic ordering
and cooper pair formation is occurring in the copper oxide planes. But here we encounter
the critical problem. In our basic understanding of band structure, electrons which do not
completely fill bands (leaving higher energy states to transition into without the hindrance
of a gap) are metallic. But transition metal oxides like NiO and CuO have long been known
to violate this basic result. Many density functional calculations predict CuO to be metal-
lic when experiments show it to be semiconducting with a gap around 1.4eV. The mystery
surrounding these Mott insulators thus gets imported to the cuprate superconductor prob-
lem. We do not have a firm grasp on the physics of a doped Mott insulator which results
in the remarkable phase diagram seen in Fig. 1.3a. Strides have been made through the
simple extension of the tight binding hamiltonian proposed by Hubbard. But, as previously
mentioned, it remains frustrating to solve in two and three dimensions. An approximate to
the Hubbard model known as the ¢-J model predicts antiferromagnetic insulating behavior
at half filling as seen in the cuprates.

And yet, it is here that the problem is the most experimentally interesting. As we hole
dope the antiferromagnetic Mott insulator, we observe the demise of the antiferromagnetic
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insulating phase and the origin of at least three mysterious elements of the phase diagram.
(Electron doping is also interesting, but for the purposes of this thesis, we will focus in
the hole doped side.) First, the onset of unconventional d-wave superconductivity in a dome
generally peaked around a hole doping x=0.16, although even this can be abruptly destroyed
such as in LSCO by the onset of stripes at 1/8 doping. Second, we have a rather peculiar
normal state which does not follow the predictions of Fermi Liquid Theory. The result is a
non-Fermi liquid or so-called Marginal Fermi Liquid which is phenomenologically described
by Varma'? where the inverse lifetime goes linearly with energy and not quadratically. We’ll
return briefly to this in Section 2.3. Finally, and most critically, we have the emergence
of a phase, most apparent at dopings less than the optimal doping (where T, is at its
maximum), which neither supports superconductivity, nor appears to be a normal phase
metal due to the presence of an incomplete gapping of the Fermi surface. This pseudogap
phase is broadly defined by a temperature T* and has particularly bizarre effects on the
Fermi surface as seen by ARPES. Whereas the normal phase metal is an ungapped hole
band crossing Er (panel bl), and the superconducting phase is everywhere gapped except
for the four symmetric nodal points (panel b3) as required by the d,2_,» gap function,
Eq. 1.15), Fig. 1.3b shows a band structure in the pseudogap phase seemingly made up of
discrete arcs or Fermi arcs. These arcs provide states at Ex that make up a Fermi surface,
but in other locations a gap opens that qualitatively mirrors the superconducting gap. Other
phenomena appear to be associated with this phase such as the Nernst effect measurements
which find vortex-like excitations above T, despite the absence of the Meissner effect!®. For
the purposes of this thesis, we will understand the pseudogap as being defined by a T* such
that above it is a metallic phase, and below it we have a partially gapped Fermi surface yet
no superconductivity.

Since understanding the pseudogap forms the background to much of the work presented
in Chapters 5 and 6, it deserves a little more development. At first glance the idea of such a
Fermi surface should give us pause since it represents a undifferentiable rip in the electronic
structure of the hole band manifold. What is happening at the point where the Fermi arc
ends? If the density of state is inversely related to VE (k), something particularly unusual
must be happing at those points. There is even evidence to support that this point moves
along the Fermi surface band structure with temperature (i.e. Arc length = T/T*). Then,
there is a question of what could be the microscopic nature of this phase? The challenge of
this question mirrors the challenge of theory to explain this doping region. The community
remains divided into two camps based on how one sees the relationship of the pseudogap
phase to the superconducting dome.

The first camp sees the pseudogap as ultimately a precursor to superconductivity. The
observed gap is related to Cooper pairs forming in this doping region, and thus explaining
the existence of a gap which is appears d-wave like. But these Cooper pairs are unable to
condense down into a macroscopic wave function (like the one proposed by Schrieffer) where
there is long range phase coherence. So, the pseudogap phase is a dance hall where all the
available couples are partnering up, but the music isn’t loud enough to get them to dance
in-synch until we finally pass below the associated T.. In this perspective, the Fermi arc
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and its decrease with temperature, represent near Ep states which are gradually pairing up
as temperature drops. Thus, the superconducting gap is associated with the states nearest
the Brillouin zone edge (often referred to as the anti-nodal point) corresponding to electrons
moving along the Cu-O bond direction. One highly contested consequence is that the gap
function observed in the superconducting phase should be defined by a single energy scale,
Agc, within the gap function described by Eq. 1.15. As it turns out, this appears to be well
established at dopings on the right hand side of the maximum T, (the so-called overdoped
region). But in the area of the phase diagram where the pseudogap happens to also appear
(the underdoped region) this is being contested.

The second camp sees the pseudogap not as pre-superconductivity but as an additional
phenomenon which emerges from the doped Mott insulator. In this model, the pseudogap
represents an additional ordering of the crystal which occurs only at low hole doping but
which overlaps with dopings conducive towards superconductivity. This phenomena may
be competitive with the formation of superconductivity or not, but it brings with it an
additional energy scale Apg. One example of this could be a charge density wave with a
d-wave gap, where the CDW’s associated gapping of the Fermi surface provides the Apg.
The general result would be that within the superconducting phase, the gap function would
not be a continuous function of a single d-wave gap. Rather, it could be decomposed into two
different d-wave gaps of different energy scales. In the analogy of the dance, our Cooper pair
dancers share the hall with others wishing to do a line dance. The line dance is easier to start
and may prevent our Cooper pair couples from getting on the floor. But once the music is loud
enough the pairs still form up and begin their superconducting dance, awkwardly sharing the
floor with remaining line dancers. There are many questions this camp has beyond the nature
of the competing order. Does this order fundamentally compete, coexist, or even assist with
the development of superconductivity? Work studying the states nearest to the node and
antinodal points suggests that we are looking at fundamentally opposing phenomena. What
is the true superconducting gap if the states at the antinode are dominated by a gap function
unrelated to Agc? And how does this phenomenon, either by itself or in conjunction with
superconductivity, explain the presence and observed temperature and doping behavior of
the Fermi arcs? It will be from these questions that our study of the Fermi surface and the
near Ep states in Chapters 5 and 6 will find their origin.

Adding to this whole discussion of unconventional superconductors is the recent observa-
tion of superconductivity in iron based compounds (generally known as the iron pnictides.)
As if flaunt the previous point regarding the expected incompatibility of magnetic phenom-
ena and superconductivity, the idea of iron based superconductors, some of which have T,.’s
exceeding the McMillian BCS limit, runs entirely counter to our prevailing understanding of
superconducting phenomena. There are strange similarities between the cuprates and the
pnictides, most notably, the emergence of superconductivity from a doped magnetically or-
dered system and thus the proximity of magnetic physics with superconductivity. However,
as opposed to an antiferromagnetic Mott insulator, the undoped compound is an antifer-
romagnetic metal supporting SDW physics and a structural transition of magnetic origin.
From an industrial perspective, these iron pnictides would be significantly better candidates
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for applications should they produce T.’s which can exceed 77K (the boiling point of liquid
nitrogen.) The aforementioned coherence length, £, is rather small for the cuprates, making
r large, firmly making them Type II superconductors. The challenge is that the lower field,
H., is significantly low such that is it easy to form vortices. However, these vortices are not
pinned well, and consequently lead to losses in the supercurrent. The iron pnictides, though
also Type II, are significant in that this H. is more isotropic'* and these dissipative vortices
are more pinned, avoiding these losses. Understanding the phase diagram, the similarities
and differences between the superconducting physics seen in the cuprates and the iron pnic-
tides, and particularly how magnetism and magnetic ordering manifest themselves have been
critical questions for study in these materials. We will return to these questions in Chapter
3.

The field of correlated electronic materials represents the forefront of how to understand
and explain a whole host of fundamentally quantum mechanical phenomena in solids. We
have discussed the origins of very idea of electronic band structure, some methods of model-
ing, the manner in which we can understand the addition of further complicating electronic
effects, and the variety of ordering phenomena which emerge. Throughout this thesis we will
be focusing on materials in which novel orderings and effects as those described in Section
1.4 emerge, and we will be exploring how the electronic states are affected in such situations.
In each instance, we have made important advancements to how we understand the physics
of these orderings which both illuminate the individual systems as well as larger fields within
the solid state community. Our work looking at magnetic ordering in the iron oxypnictides
compounds (Chapter 3) has provided important early guidance towards understanding not
only the anomalously small magnetic moment, but even more crucially, direct experimen-
tal evidence that magnetic orderings may be more robust than normally expected by the
field for dopings which support superconductivity. This result and similar work from other
techniques, is fundamental to our understanding not only of the superconducting iron pnic-
tides, but the larger field of unconventional superconductivity. Our work looking at charge
density wave ordering, particularly in the rare earth tellurides (Chapter 4), addresses a sig-
nificant debate over the existence of quasi-2D systems which can actually support a Peierls
transition. Our work clearly demonstrates the existence of nesting-related charge density
wave formation in a layered system that leads to a metal-to-insulator transition. This is,
finally, a precise analogue to the ideal 1D CDW systems first proposed by Peierls and seen in
quasi-1D systems. All of this work has led to our exploration of the high temperature super-
conducting cuprates and complexities of their phase diagram. Our work has endeavored to
approach the question of the lattice and its effects from a novel direction, using lanthanide
substitution to cause lattice mismatch within the single layered cuprates (Chapter 5). The
effect of this substitution appears as a new strain axis in the cuprate phase diagram and
our work has been among the first to explore the effects of this phenomena which competes
with superconductivity and sheds light on the all-important pseudogap phase. This work
bore additional fruit in the study of one system in particular, revealing evidence of a sharp
crossover in the electronic states near Ex(Chapter 6). Given the issue of the pseudogap phase
and the resulting debates previously mentioned, our work both provides strong evidence for
two phenomena to be involved within this region of the phase diagram and brings together
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other work done on the single layered cuprates in the literature. This is critical for the field
as we continue to understand the diversity of results regarding the relationship between the
pseudogap and superconducting phases and what types of lattice order may play a role.

However, in order to do any of this, we first need a probe that provides direct access to
the electronic states. As previously alluded to, ARPES is such a probe whose power has
grown substantially over the last 15 years due in large part to advances in instrumentation.
With the power to map Fermi surfaces and band dispersions, reveal subtle changes in near-
Er electronic states, and to take Landau’s quasiparticles from an abstract construction to
a truly observable electronic state, ARPES’s role in solid state physics is well established.
Thus, we now turn our attention to the physics of the probe itself, which are simple in
concept but remarkably complicated in detail.
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Chapter 2

Angle Resolved Photoemission

Spectroscopy

2.1 A Brief History of Photoemission

The experimental origins of photoemission predate the identification of the electron by
Thompson in 1897 and represent a canonical part of the story of early quantum theory. Hertz
first discovered in 1887 that a current was produced when a metal was illuminated, though the
phenomena was remarkable for a number of reasons: 1) The metal didn’t emit electrons due
to heat as in the case of thermionic emission seen in vacuum tubes which was a contemporary
phenomenon. 2) Though the current was proportional to the intensity of the light, the
frequency had an all-or-nothing effect on the current with red light producing no effect
despite intensity while violet light always gave a current. 3) The electrons’ maximum kinetic
energy was only affected by the color of the light and not the intensity. With Maxwell’s
equations and their wavelike description of light firmly in place (despite trouble finding the
media of propagation), these results presented a puzzle that only a model with a discrete
view of light could unravel. For a wave, the energy carried is related to the intensity of
the wave. So, the strong correlation with frequency would be completely unexpected. In
1905, Einstein, inspired by Plank’s work regarding quantization in the blackbody radiation
problem, proposed that light itself is quantized and that each quanta, or photon, carried
an energy hr. The result was that one could write the maximum kinetic energy of the
photoelectron current as

Eaz = hv — ¢, (2.1)
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where ¢ is the work function of the material. The work function represents the minimum
energy needed to excite an electron from the crystal into the vacuum. It is, on closer
inspection, a complicated physical quantity which we will return to in following section. In
Einstein’s model, prefacing the later work of De Broglie, light cannot be seen as either solely
a particle (given the success of Maxwell’s theory) or solely a wave due to the limitations of
the photoelectric effect. Depending on the measurement, it can take on the properties of one
or the other. It was for this explanation of photoelectric effect, that Einstein was awarded
the Nobel Prize in 1921 (since relativity theory was still considered controversial.)

As the physics of materials began to develop with the advancements in quantum me-
chanics, being able to probe the electronic states of a solid, whether its tightly bound core
levels or its valence states nearer Er, began to be more important. It was primarily the
work of Kai Siegbahn that took the photoelectric effect and raised it to Photo Emission
Spectroscopy (PES), a powerful technique in its own right. Historically in the literature,
there is a differentiation based on whether the photons are X-rays (XPS) or ultraviolet light
(UPS). Through this technique, one could probe the electronic density states and could
determine the elemental composition of the surfaces of materials. Additionally, one could
observe subtle shifts in atomic orbital core level peaks, revealing information about the local
atomic environments. So significant an analytical tool, that his development of XPS earned
Seigbahn the 1981 Nobel prize in Physics.

Fundamentally, the technique worked because of conservation of energy between the
incident photons, the binding energy of the electronic states, and kinetic energy of the
emitted electrons. It seems natural to ask whether one could take advantage of conservation
of momentum as well to extract fuller information of the electronic states, specifically those
in dispersive electronic states closer to Er. By collecting photoemitted electrons emerging
from a crystal with a particular angle, one can deduce their associated momentum via this
angle and their kinetic energy. Varying this angle, one could probe the electronic structure
in particular regions of k-space. The result was data of the actual electronic dispersions and
the first angle resolved photoemission spectroscopy was demonstrated in 1974116,

Like many techniques, the power of the ARPES technique was continually enhanced by
advancements in light sources. As generations of synchrotrons produces higher and higher
fluxes, one could monochromate the light to better and better energy resolutions, and create
larger photoemission currents. This allows for smaller and smaller slices of the momentum
space to be studied while still integrating sufficient counts for statistically significant data.
Among the most well known triumphs of the ARPES technique was the its establishment of
the nodal character of the d-wave pairing gap in the cuprate superconductors'”. Since then,
detector advancement particularly in the late 1990’s led to tremendous enhancements in the
ARPES technique through the development of hemispherical analyzers. Through these ana-
lyzers, the unit information accumulated in an ARPES experiment went from a 1D spectra
taken at point in k-space, into a 2D intensity map which represents a slice in k-space. Thus,
band structure could be more rapidly “mapped” out particularly as the angular acceptance
of these analyzers became larger and larger. Today, with angular resolution approaching
0.1°, a steadily improving energy resolution exceeding 1meV, as well as numerous experi-
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Figure 2.1. (a) Schematic of the angle resolved photoemission process. (b) Sample
2D data set or “cut” taken on CeTeSb illustrating the two main analysis techniques:
Momentum Distribution Curves (MDC) and Energy Distribution Curves (EDC).

mental advances involving highly localized beam spots (Nano-ARPES), spin resolution, and
laser-based pump-probe experiments, ARPES is and will remain a truly unique experimental
probe in the field of correlated electronic systems.

2.2 The ARPES Experiment

Given the power of the technique, ARPES can seem to be a straightforward almost easy
technique, and in many respects there is some truth to this perspective. Fig. 2.1 provides a
schematic of the photoemission process with a typical data set included in panel b. Light,
primarily in the very ultraviolet (VUV) region of the spectrum (5-100eV), is incident on a
sample surface. There are obviously many sources for this light, each with their own advan-
tages. Synchrotron light sources are particularly important given their luminosity, though
their primary advantage is the ability to change photon energies quickly via adjustment of
insertion device parameters (e.g. undulator gap) and monochrometer settings. Increasingly,
gas discharge lamps, most notably Helium lamps, can also provide a source of VUV light
at 21.2eV (the He I line) and even, although weaker, light at 40.8eV (He II line) in a rel-
atively compact source even considering the additional superstructure for collimating and
monochromating. The downside is photon flux and the inability to change photon energies,
which is a major limitation. Most recently, the use of lasers in conjunction with frequency
doubling, non-linear optics have opened up the possibility of laser based ARPES, using light
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around 6-7eV using current technology (most work functions are between 4 and 5eV). These
systems can have high energy resolution and already have produced some of the sharpest
ARPES band structure data in the literature!®. Yet there are numerous issues to be over-
come: The low energy means that the photoemitted electrons have a lower kinetic energy,
thus leading to slower speeds and greater influence from stray fields within the experiment.
The intensity of the beam has led some to wonder if our interpretation of the photoemission
process (discussed in the next section) is no longer as appropriate, leading to questions of
data interpretation. Finally, electronic states that are beyond certain momentum values in
the Brillouin zone may be inaccessible since the kinetic energy provides a limit to the possible
momentum values, which we will explain shortly. This would be particularly problematic for
crystals with small unit cells (large Brillouin zones.) The current inaccessibility and fragility
of certain non-linear crystals also adds some complications to developing the technique.

As mentioned in Section 2.1, the essential governing equations of the ARPES technique
are rather simple: Conservation of energy taking into consideration the material’s work
function, and conservation of momentum

Eyin = hv — ¢ — |Ep|
pH = th =V 2mEkm - sin 6

where v is photon frequency, Ep is the electron binding energy as measured with respect
to Ep, and 0 corresponds to the polar angle from the normal. From these equations, we
see the limitation that low incident photon energy has on momentum states. For any hv,
there is a maximum FEy;,. From Eq. 2.4, there is a maximum value of k| that can be
photoemitted from k-space. Fig. 2.2 (reproduced from Hiifner!'?) graphically illustrates
the photoemission process in the energy dimension as a measurement of density of states,
N(E). Core level states are long lived states with sharply defined energies (large At— small
AE) broadened by the experimental technique. The electron band near Ep represents the
dispersive valence band states which, as explained in Chapter 1, are only filled up to roughly
Er (in a metal.) One might also ask how momentum could be conserved in plane unless
the photon is always striking the surface normal to the plane (which would make ARPES
impossible.) However, if one calculates the associated momentum of a photon with energy
<100eV, it is significantly smaller than that of the Bloch states and thus the photoemitted
electron as to be negligible in the calculation.

The origin of the work function, ¢, is complicated, and the potential is predominantly
due to three major components: 1) At the atomic scale, when the electron passes across the
sample surface, there is always a dipole layer, despite the material being electrically neutral.
But, given the metalicity, this is usually effectively screened and only exists over a range of
about a few lattice spacings. 2) At the micron scale, the electron leaving the surface of a
conductor experiences an attraction due to the formation of an image charge field. The effect
of this coulombic attraction fades after a few microns. 3) On a more macroscopic length
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Figure 2.2. Schematic of the photoemission process from the Bloch states in the
crystal into the electron analyzer and the resulting energy spectra as a function of
Ejin. Figure is reproduced from Hiifner!.
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scale, different crystal faces have different dipole layers as addressed in point 1. So there
must be different electronic potentials outside of the material to compensate this, otherwise
an electron could exit one surface, enter another, and return to the bulk with greater or less
energy for the journey. In addition to these three sources of fields, the effect of rough surfaces
or adsorbents on the surface also could affect the workfunction in difficult to determine ways.

Finally, as Fig. 2.1 illustrates, the photoemitted electrons with momentum and energy
representative of their former lives in the crystal’s Bloch states, pass through space to the
entrance slit of a hemispherical analyzer. While the electrons are moving from sample to
detector, electric fields need to be eliminated by ensuring that the sample is grounded to
the analyzer. Also, magnetic fields must be shielded by using p metal in order to prevent
contributions from the Lorentz force leading to distortions in the spectra. Additionally, the
mean free path must be sufficiently long to prevent scattering. So high vacuum is required for
this (< 107° Torr), though ultra high vacuum (< 107!° Torr)is used in practice for reasons
of sample surface contamination.

Once in the analyzer, entrance slits and electrostatic lenses focus the electrons around
the outside of the analyzer and towards a multichannel plate (MCP), acting as a signal
enhancement device. Finally, a CCD camera records the raw data as a 2D intensity image.
Electrons with different angles (momenta) are directed along one axis of the 2D image,
meaning that electrons with no relative angle with respect to the analyzer would strike
the screen in the center. Similarly, the electrons with different kinetic energies move along
the hemisphere experiencing a radially directed E-field, thus acting like a velocity selector.
So, on the other axis of the screen, electrons with higher kinetic energy land on one side
while those with less end up on the opposite side. In this way, the 2D intensity image
provides information regarding both momenta (after a conversion using spherical geometry
is employed) and energy of the electronic states simultaneously.

Before moving on to the physical meaning of the data ARPES provides, a final point
should be made. As hinted to in our discussion of light sources, one might wonder why pick
any particular photon energy so long as one can cover the entirety of the Brillouin zone for
the given binding energies desired. By responding this, we actually highlight many of the
fundamental limitations of the ARPES technique. The first issue relates to the fact that
although VUV light may penetrate far into a crystal, what fundamentally matters is the
mean free path of the photoemitted electrons as they leave the crystal. Here, we encounter
the perennial argument against ARPES. Fig. 2.3 shows the photoelectron mean free path
as a function of electron kinetic energy?’. It is immediately clear that given unit cells on
the order 10A, ARPES does not have good bulk sensitivity and is restricted to the first few
monolayers on the surface of the crystal. The result of this is that sample surfaces must be
pristine either by cleaning the surface (e.g. annealing) or by cleaving the sample in situ. It is
for this reason that the experimental vacuum must be in the ultra high range (<107'° Torr)
for many samples, to prevent sample surface degradation or “aging.” Being able to alter
the photon energy does potentially affect the bulk sensitivity by changing the mean kinetic
energy of the photoelectrons (thus, giving laser based ARPES better bulk sensitivity.) One
might then ask, given the trends of the curve and the reality of the work function at low
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Figure 2.3. The inelastic mean free path for an electron in a solid as a function of
energy. Figure is reproduced from Ref.?°.
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energies, why not push on to higher photon energies in the soft x-ray range. This is quickly
countered by the fact that as photon energy rises, the momentum and energy resolution
become significantly worse. In addition, one will eventually reach photon momenta values
that are non negligible and the size of the Brillouin zone in angle/momentum space (consider
Eq. 2.4 allowing Ey;, to increase and holding theta fixed) becomes increasingly smaller to
study, making a finer survey of the k-space band structure practically more difficult.

A second issue relates to measuring momentum dispersions in the k, or surface normal
direction. As previously mentioned, the translational symmetries that allow for conservation
of momentum only exist for the in-plane directions, and is lost in the normal direction. For
materials that are quasi-2D, the systems have little dispersion in the k, direction and so
little useful information would be gained. But in many systems this is not true (or at least
not guaranteed without experimental evidence.) By varying the incident photon energy, one
varies the value of Eg;,, which changes the size of the momentum space explored. Thus,
as we change our photon energy, we are accessing states which may have the same k| but
different k.. Thus, being able to range through different incident photon energies is essential
to mapping out the k., dependence. In practice, an inner potential must be determined from
the data, representing the Ap. that the electrons will lose as they exit the system. This is
usually assumed to be a fixed value and can be determined from the periodicity of the band
structure in the k, direction as one goes beyond the first Brillouin zone.

A third and final issue naturally takes us into the physical interpretation of the ARPES
data. As we will explore in the next section, one can think of the photoemission process as
a quantum mechanical process that takes us from electronic states in the crystal to states
in the vacuum. Thus, the probability of the process will be determined by Fermi’s Golden
Rule (see Eq. 2.5.) Within that formula, there is a matrix element that connects the initial
and final states and thus can be modified to promote or inhibit certain transitions. As we
will soon see, among the many variables within this matrix element is the energy of the
incident light. By varying the incident photon energy, band structure can be enhanced or
weakened by changing the value of this matrix element. Additionally, certain photon energies
can setup resonances with the core level states that may also enhance the observed band
structure. If photons with energies near the binding energies of core levels are used, then
electrons from these states can be promoted up to the near Ep valence bands associated
with those elements. This further populates them and an increasing the number of electrons
can be photoemitted. This technique of Resonant Photoemission Spectroscopy will be used
in the data presented in Chapter 4. This whole discussion illustrates one of the final critical
issues with the ARPES technique. To directly equate the photocurrent with the electronic
density of states is not entirely accurate. There are many phenomena which can affect the
photocurrent that have absolutely nothing to do with the actual density of states or electronic
band structure of the material being studied. So, a degree of care must be taken in equating
the results. Therefore, in order to make progress with the ARPES technique, particularly in
the complex correlated electronic systems we will be studying, we need to turn our attention
to the physical interpretation of ARPES data so that we can best understand and analyze
the data which comes from an ARPES experiment.
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2.3 The Physical Interpretation of ARPES Data

Since we are describing the transition of an electron from one quantum state to another
due to a time dependent perturbation (light), our natural starting point would be to use
time dependent perturbation theory and one of its most useful results, Fermi’s Golden Rule:

2
wyy = = (U [ Hind| ©F) [ 5(EY - BY — hv) (2.5)

The wy; represents the transition probability for an excitation due to the perturbation Hjy;
(incident photons of energy hv) causing a transition between the initial N-electron state,
UV to any final electronic states, \IJ;V . The final state energy should be the energy of the
N-1 electron wavefunction plus the kinetic energy of the now liberated photoelectron which
we measure (E}V = E}V Ty FEkin.) Consequently, the initial energy state would replace Ej;,
with the binding energy of the electron it its electronic state, E%, giving (EN = EN "' — E&),
where B and Ej;, are related by the conservation law expressed in Eq. 2.2.

The choice of H;,; involves considering the hamiltonian of a classical radition field as
described in many sources (e.g. Sakurai Eq. 5.7.12%)

2

p e
o + ep(x) — mecA P (2.6)

H—

where we have assumed that the field is small (A is small) so that the |A|? term is neglected
in the hamiltonian, as well as assuming that the change in A is small over the area over
atomic dimensions. This latter approximation is referred to as the dipole approrimation
where V - A = 0. It is worth noting that this approximation may not be appropriate near
the surface of the crystal where the field dependences can be more extreme. But in order to
make any progress, we will employ the approximation to get our H,;

mc

Now that we have an initial quantum mechanical model, we need to consider the physics
of the transition itself, which has led to two models. The first is to think of the transition in
a one-step model. In this picture, all the physical phenomena involved in the photoemission
process (photon absorption, electron liberation, journey as a free particle, and final detection)
are treated as a single coherent process. The result is (despite the name) a more rigorous
approach resulting in a very complicated hamiltonian of the crystal (the electronic states, not
to be confused with H;,,) incorporating bulk, surface and vacuum contributions. Because of
the inherent difficulties in such a hamiltonian, it is more common to think of photoemission
data in terms of a three-step model:

1. Incident light excites the electron in the bulk

2. The excited electron travels to the crystal surface
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3. The electron escapes into the vaccum as a free particle

The advantage of this model is that we can analyze each part assuming they are effectively
independent and the total photoemission intensity is simply a product of the probability as-
sociated with each. This allows us to focus the bulk of our attention on the initial excitation
which we have already modeled. Step 2 is generally thought of as a mean free path associ-
ated with electrons trying to reach the surface without scattering (the universal curve from
Fig. 2.3.) This also results in what is called the inelastic background which enters into the
line shapes of intensity vs. energy spectra. Step 3 is simply related to the work function, ¢,
and the energy of the excited electron. We can thus focus the bulk of our attention on step
1.

Again for the sake of computational convenience, we will assume that the N-particle sys-
tem when excited has no time to react. We do this so that we can write the wavefunction as
the product of a now excited particle (the photoelection) and the remaining states (V1)
without worrying about how these states now evolve to a new relaxed state. This idea,
known as the sudden approximation, should be familiar to students of quantum mechanics
whereby when a system is changed rapidly, the original wavefunction remains initially un-
changed, even if it is no longer an eigenstate of the system. Here we find the justification for
the concerns expressed at the outset of the previous section regarding laser based systems.
With the low photon energies of laser based systems (or any low photon energy experiment),
one must seriously consider whether we are reaching the point which this sudden approxi-
mation (or perhaps the entire three step model) is no longer appropriate. Although evidence
exists that these approximations work for photon energies at least as low as 20eV?2, single
digit eV photon energies are certainly disconcerting and beg the question as to whether our
interpretation of the ARPES experiment is appropriate. But, like so much in experimental
condensed matter physics, it is often a far better approach to shoot first, and ask questions
later.

Having incorporating the three step model along with the sudden approximation to the
first of those steps, the results are wavefunctions of the form

vo= Agiu
Nt = Y :
vy = Aghuy! (2.10)

where A is just an antisymmetric operator to satisfy the demands of the Pauli principle. The
operator ¢;, is an annihilation operator, which takes the ¥~ wave function and turns it into
a UV~ function. The ¢F and gb’} correspond the wavefunction of the single electron orbital
and of the photoelectron respectively. From this we can finally return to Fermi’s Golden
Rule (Eq. 2.5) and deal with the |(U} |Hiy| \Ilfv>|2 term so that
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Since the H,,; only affects the single electron, we can compact all of the information
of light’s interaction with the single electron as M ]’fz The overlap term is a little more
tricky. The set of final states for the N-1 wavefunction, \Ifﬁcv ~1 are not, strictly speaking,
final states but rather are excited states. So, for ease, we will change our index from f — m
(\I/;V_l — UN=1) Thus, with this we can write

N A |qf§V—1> (2.15)

so that we can place all the terms into Eq. 2.5 and include in implicit summation of states
within that equation along with writing final energy as expressed earlier to get

Z‘M}Cz‘|22|cmi‘25(Eﬁ_l + BEpin — B — hv) (2.16)
fi m

It is characteristic of strongly correlated systems that |cmi\2 # 1,. The issue is that
the removal of an electron will result in a large change in the potentials of the system re-
sulting in significant overlap between the state before and those after (beyond the unique
|c,m~|2 = 1 situation which occurs in the non-interacting picture.) Understanding and poten-
tially calculating these results are an important part of explaining the spectra that ARPES
provides when done on correlated electronic systems. But how would one able to make such
calculations? Understanding the relationship between a single photoemitted electron in its
respective orbitals and the interaction term, H;,;, which goes into the matrix element |M J’Z’Z|,

seems tractable. But now do we even begin to understand |c,m~|2 with its N-1 electrons
strongly interacting with each other? We much turn back to the ideas that were explored in
Chapter 1 with Fermi liquid theory and approach the problem with some new mathematical
tools, the aforementioned Green’s functions.

It is a fact generally acknowledged among ARPES experimentalists, that Green’s func-
tions are part of that elaborate black magic that theorists are (hopefully) the knowledgeable
practitioners. The central quantity that ARPES is believed to be revealing is the single
particle spectral function A(k,w). It is because this quantity is fundamentally related to
Green’s functions that these mathematical objects are even more significant to ARPES.
Indeed its this central ability to directly probe A(k,w) that makes ARPES’s experimental
insights highly sought after by condensed matter theorists. Therefore, it is worth taking a
journey into this world so that we may better understand how to incorporate ideas such as
Fermi liquid theory and other aspects of correlated electronic systems into ARPES.
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At their most basic, Green’s functions are a trick for solving a differential equation which
involves a linear operator, L (e.g. V2.) Given an equation

LU =9 (2.17)

where L acts on an unknown function U to create a new function ®, you can solve the
equation (i.e. determine W) if you know the Green’s function, G, of the operator L. This
function has the property that when the operator L acts on it, the resulting function is a
unit impulse in whatever variables are being used. Already one can see how this might be.
If you knew a solution to the most basic unit of a problem, you could determine the solution
to any problem that could be built from those units (assuming superposition, which comes
as a consequence of linearity.) For example, if one understands the field from a single unit
charge, they should be able to create any field from adding those units of charge together.
Thus, the Green’s function is our unit impulse, so that when the operator is applied to it, it
can be generalized to provide a solution to any complicated system. Mathematically, this is
written as

LG =56 (2.18)

where ¢ is the unit response, like the Dirac delta function. Adding variables, we realize that
G would actually be written as G(x,z’) so that

O(z) = /@(m’)é(w—x’)dw’ (2.19)
o(z) = /q)(x’)I:xG(x,x’)dx' (2.20)
L,U(z) = /@(x’)[:xG(m,x')dx’ (2.21)
U(x) = /@(:v')G(x,x')d:v’ (2.22)

Thus, if you know the Green’s function, G(x,z’), you can determine the unknown function

Now, in quantum mechanics, we know of functions that behave a lot like G(z,z'), and
they usually are associated with how a system evolves. Because of it’s relevance to our later
discussion, let’s remember how a quantum state evolves in time. It is a fundamental result
that a state « at time tg, |a, to), evolves such that at a time ¢, the state |« to;t) (o remains
as a parameter) is given by

la, to; ) = exp [@] la, to) (2.23)

Now, let’s move away from the Dirac notation and write these as wave functions. It is
also worth looking ahead to realize that since it is momentum that best defines our states
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(and not position), we should make these wavefunctions of k’ (take the inner product of both
sides with (k| and integrate appropriately with respect to k') we get something, after some
effort (see Sakurai chapter 2.5 for details?'), which looks like

Vo (k, t) = /d%G(k’, kit to)a(k, to) (2.24)

a,k> (2.25)

This function actually represents the Green’s function associated with the time-dependent
Schrodinger equation (in k-space). In other words, G(K', k;t,to) is associated with a unit
impulse response to the time-dependent Schrodinger equation (with the boundary condition
that G(K', k;t,tg) = 0 for t<tg)

where G is the inner product

G(k/, k, t, to) = <Oé, kl

exrp [—_iH(;_ tO)]

Now, let’s think about this function with the mentality of crystalline electronic states.
From Eq. 2.24, G(K', k; t,to) represents how, starting with an electron in some state k at time
to, the system will propagate into a state with momentum related to k' at time t. Immedi-
ately, we can see how this might relate to understanding correlated electronic systems since if
we understood the Green’s function of such a system (with all its interactions) we could then
describe the evolution of its electronic states (e.g. time dependence of quasiparticle states).
Now, ARPES is a spectroscopy and as such takes data with respect to energy (which we’ll
write as w) and not time. So to make things easier, we will set to = 0, and do the Fourier
transform of the time dimension of G/(k,t) to create G(k,w).

~ —iH(t—tg)
Gk,t) = e = (2.26)
A 1 ° —iHt
Gkw) = — dte et (2.27)
th J
A 1
Gkw) = - 2.28
(w) = —— (229)

In the final line, the traditional liberty of setting =1 was used (so w should be read fw)
and the initial k value has been dropped since, for ARPES, the initial and final k of the
photoexcited electron are identical. The Green’s function is written as an operator, G, since
the function was removed from the inner product (Eq. 2.25) and is now a function of H. Tt
is essential to note that the only way for the integral in Eq. 2.27 to converge is if w has a
positive imaginary part. Thus, we need to allow for w to take on imaginary values. We can
also see that any energy eigenstate of H will yield a pole at the associated eigenvalue. So,
we can write the Green’s function in Eq. 2.28 in more familiar way by evaluating its inner
product over Bloch states, |k), where H |k) = ¢ [k). Doing this, we find that

37



3 <k|@(k,w)|k> (2.29)
= > <k|w _1 g\k> (2.30)

k

= i) - ! - (2.31)
k

- (2.32)
W — €k

We can take Eq. 2.32 and explicitly allow w to take complex values, w — w &£ in with
w and n as real and positive. The negative sign in front of the imaginary part corresponds
to information about the past, or put differently, an integral like Eq. 2.27 but with limits
(—00,0]. The most surprising and fortunate result comes when we work at w in the vicinity
of the eigenvalue poles, €, where 7 is very small, we find that isolating real and imaginary
parts

(w—€x) in
Gk,w) ~ 2.33
~ Fimd(w — €) (2.34)
W — €k
since for very small n
lim ——— = 78(z) (2.35)

o (@4 )

Now, at last, we can address the original issue. How do we calculate |cmi|2 as defined
in Eq. 2.157 Previously, we had no way to determine this quantity because we could not
determine how the initial state evolved into the final state. But now, we have a Green’s
function which can take us from one state to the other in a manner that obeys the Schrodinger
equation. We wish to determine the sum of probability amplitudes for transitioning from an
initial state, WX ~!, to the excited states, UN~!. By using the Green’s function in Eq. 2.32
with complex frequency, we can expand and rewrite it terms of the excited states, m. Then,
we can take the inner product with initial state W2 ~! since it is the evolution from this state
to the excited state, UN~1 that we are interested in
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_ U t) (W
B Zwiin— (EN'—EF)

m

= Sl { v - @t -} s

(2.38)

Thus, we find

-

Gk W) = S o { L it - (- BV}

(2.40)

We take advantage of the fact that the electronic structure is basically the binding energies
(€, = —E%), which can then expressed in terms of the excited states by looking at the change
between the initial N particle state and the N-1 excited state (E% = EN — EN-1). But the
most important observation is that the imaginary part of the Green’s function Eq. 2.40
looks identical to what we were searching for to complete Eq. 2.16. Put differently, treating
Eq. 2.40 as the Green’s function associated with the transition from the initial to excited
states in step 1 of the photoemission process, we find

— i {Glw)y = 3 (U P o (B = EY) = S el 8w~ (B - BY)

(2.41)

Recognizing that the energy associated with the photoelectron w = hv — FEj;, (and
flipping the sign in the delta function argument) and we have recovered the missing piece
from Eq. 2.16. This is a significant result since it means that ARPES data provides a
direct measure of the Green’s function. Given a system modeled by a single particle Green’s
function, the imaginary part is directly probed by the resulting photoemission current. This
imaginary part is referred to as the single particle spectral function, A(k,w), such that
—1Im{G(k,w)} = A(k,w). Considering that the occupation of electronic states at T#0
will be additionally affected by the Fermi distribution function f(w) (described in Chapter
1), we can bring all these pieces together and re-write Eq. 2.16 to express the transition
probability as a photocurrent

I(k,w) = Ik, v,A)f(w)A(k,w) (2.42)
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where Iy(k, v, A) is proportional to |M}‘i|2, w is measured with respect to Er, and k is the
in-plane momentum k; (strictly speaking, the in-plane crystal momentum), meaning that

this should be thought of as modeling a 2D single band system.

Before we move on to incorporating interactions in this Green’s function model, it is
worth a moment to better understand A(k,w). At this point, it is a convenient fact that
given a Green’s function to describe the electronic states of a system, it’s imaginary part
relates so intimately to the APRES photocurrent deduced from Fermi’s Golden Rule and the
framework of the three step model. Still, when we look at the form of the imaginary part of
Eq. 2.34, it looks like a type of density of states (with the inclusion of an appropriate phase
space of states to integrate over.) Indeed, it is traditional to think of the spectral function as
related to a local density of states. Though in this case, the local density of states, p(x,E),
needs to be understood in momentum space, p(k,E). A(k,w) satisfies many useful sum rules
such as

/ T Ak w) — 1 (2.43)
/_ T dofW)Akw) = n(k) (2.44)

where n(k) is the momentum distribution function. So, since ARPES is directly probing
the occupancy of electrons in states of momentum 2k and energy E, the connection between
A(k,w) and ARPES is not surprising. At a deeper level, the connection between the imag-
inary part of the Green’s function and a density of states comes from understanding the
Green’s function as being like the scattering amplitude, f, in the optical theorem, which in
its general form due to Heisenberg is,

Im {f(K k)} = ﬁ / FK, K" f(K", k)dK" (2.45)

But by now, we have said enough about the origins of Green’s functions in ARPES for our
purposes.

In the language of Green’s functions, one can see the addition of interactions on the
electronic states as a small perturbation to the hamiltonian, which previously gave us only
ex (referred to as the bare band dispersion.) The perturbation corresponds to an electronic
principle self-energy term, 3, being added to Eq. 2.32.

Glkw) = ——— 1 S (2.46)

Skw) = ¥(kw)+ iy (k,w) (2.47)

Within the real and imaginary parts of 3(k,w), all the information of lifetime and energy
renormalization for an electron in the presence of additional interactions (e.g. electron-
electron, electron-phonon.) It is also worth noting that causality requires that ReX(k,w)
and Im>(k,w) are connected to each other by the Kramers-Kronig relation.
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In general, ¥(k,w) is very difficult to calculate making the resulting A(k,w)

Ak, w) = —%ImG(k, w) (2.48)

_ 1 (k) i (2.49)
Tw—e — X(k,w)] + [2(k,w)]

very challenging as well. Still, from the functional form of Eq. 2.49, we can see that the
energy line shapes ARPES will produce are related to a Lorentzian distribution (or Cauchy-
Lorentz distribution) where the imaginary part of the self-energy, ¥"(k,w), correspond to
the linewidth (and thus the lifetime of the state), where the real part, ¥'(k,w), is a shift in
the energy of the peak. We will return to this when we develop the formalism of analyzing
ARPES data in the next section.

Fermi-liquid theory provides us with one such model for self-energy due to electron-
electron interactions. The creation of quasiparticles as described in Section 1.3, leads to
states of finite lifetimes, 1, = 1/T'y, and electrons dressed by interactions leads to an effective
mass, m*. Using the framework described in Eqgs. 2.47 and 2.49, we can introduce a Fermi
liquid self-energy term

Sr(w) = aw +1if [w* + (7kpT)?] (2.50)

We can quickly see that the imaginary part looks functionally like what we had already
written for the inverse lifetime, 1/7, in Eq. 1.10. Making the comparison of the 3" to the
linewidth shows us that as we approach Ep (w — 0) the peaks should become sharper in
our ARPES data, corresponding to quasiparticle states of longer and longer lifetime. It
is in the real part, X', where the effective mass, m*, enters into our analysis shifting the
peak and making the total dispersion smaller. In fact, the Fermi liquid self-energy also
introduces another additional effect which is somewhat general to electronic states dressed
by self-energy interactions. One finds in the spectra, the existence of two kinds of peaks.
The first is a sharp peak whose dispersion, particularly near Er, we can follow and relate to
the peak expected in a non-interacting Fermi gas. This is known as the coherent peak and,
as explored in the following section, is the peak associated with EDC analysis near Ex But
there is a second peak feature which appears at higher binding energies for such spectra. This
is a broader feature and is related to the quasiparticle dressing. This feature is referred to as
the incoherent peak. The significance of these peaks is important for EDC analysis as will be
described in the following section. Still, where the issue becomes particularly interesting is
the appearance of the peak-dip-hump feature in the cuprates described in Section 5.1, where
Fig 5.2 provides an example. Though the identity of this feature is mysterious, one naturally
wonders if it is evidence of additional self-energy effects leading to a similar line shape as
expected in Fermi liquids where interactions are significant. So, as we begin analyzing our
data, even from systems that are not strictly Fermi liquids, these concepts relating lineshapes
to self-energy remain important. In fact, it is believed that the real self-energy for the cuprate
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superconductors is not given by a Fermi liquid self-energy but rather by a different self-energy
from a model referred to as marginal Fermi liquid theory.

Sarn(w) = A {w In 2 — ﬂx] (2.51)
We 2
where z corresponds to max(|w|,T), A is a coupling constant, and w. is an ultraviolet cut-
off energy. Thus, the real advantage of the self-energy model within the Green’s function
presents itself. By simply changing the self-energy, we can quickly derive a new A(k,w) to
compare with experiments. So, we now turn our attention to the details of ARPES data
analysis, keeping in mind what we have learned about self-energy and the spectral function.

2.4 Data Analysis Techniques

Let’s return to the equation for ARPES photocurrent intensity, I(k,w), as described in
Eq. 2.42 focusing on the three essential contributions

Ik,w)=Mk,w)f(w)Ak,w) (2.52)

As mentioned in Section 2.2, we cannot interpret the ARPES data as strictly equal to
information on density of states since the current is modified by the Fermi-function, f(w),
and the matrix element, M (k,w), associated with the transition from the initial to final
electronic state within the solid. This matrix element as described by the Hamiltonian from
Eq. 2.7 is affected by such things as incident photon energy and polarization as well as the
Brillouin zone of the photoemitted electrons. So, even though the first Brillouin zone, as
described in Chapter 1, contains all the information of the electronic band structure, one
finds, in practice, that moving to higher Brillouin zones can reveal band structure otherwise
suppressed due to these matrix elements. As one may have been inferred so far, because
of the temperature scales used for our data, we will not distinguish between the chemical
potential (x) and the Fermi energy, Ep, which (as mentioned in Chapter 1) should match at
T = 0 for conductors. Since ARPES measures the electron removal part of A(k,w), we use
high and low energy to refer to large and small negative w value, respectively. (Additionally,
“Binding energy” and “Energy” are often used for the same axis in figures, differing by a
minus sign.) As a final point, one might find the contribution of the matrix element M (k, w)
a serious issue to an accurate interpretation of A(k,w) from I(k,w). In practice, the w
dependence is small over an energy range of order 0.1 eV. As for k dependence of M (k,w),
it is very important to consider and in many cases (such as for the cuprates) it is reasonably
understood due to theoretical arguments or the substantial work in the literature to compare
with.

As described in Section 2.1, the development of hemispherical analyzers allows the unit
information of an ARPES experiment to be a two dimensional intensity map of binding
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energy and momentum along a “cut” though momentum space. These two dimensional
maps suggest two natural and complementary methods for analysis. First, one can fix
the momentum space position and observe the photoemission intensity as a function of
energy at that momentum value, resulting in an energy distribution curve (EDC). This was
a more traditional approach to ARPES prior to the advancements in detectors. But on the
other hand, one can hold the energy value of the electronic states being studied fixed and
observe the photoemission intensity as a function of momentum, resulting in a momentum
distribution curve (MDC). These two methods constitute the core techniques for the analysis
of the spectral function A(k,w) using ARPES.

Thus, “MDC analysis” refers to the method of fitting Lorentzian distributions (or similar
curves such as a Voigt distribution) to features in the MDCs as is commonly done in the
field. This method of analysis has been very productive for the field and can be understood
based on some essential conditions, in particular the condition of “local” linearity for both
(k) as well as the proper self-energy, ¥(k,w). Specifically, both ¥(k,w) and ¢(k) need to be
linear within the narrow energy and momentum range that corresponds to the width of the
peak being analyzed. By doing this, each MDC at a given energy w can be described by a
Lorentzian function. This condition is expected to hold in general because one can expand
Y (k,w) and e(k) using simple Taylor expansions in the following way:

Ykw) = X(k(w),w)+ Zp(ky(w),w)(k — ky(w)) (2.53)
e(k) = e(kp(w)) +v(kp(w))(k — ky(w)) (2.54)
where k,, is the peak position of the MDC at w and Xy (k,(w),w) = [03/0Kk]i—k, (). Taking

these expressions and plugging them into the spectral function as written in Eq. 2.49, we
obtain the following equations:

1 I'(w)

Ak,w) = __(k:—k:( VT T () (2.55)
ReX(ky(w),w) = w—e(ky(w)) (2.56)
Im¥E(kp(w),w) = T(w)[v(ky(w)) + i (kp(w), w)] (2.57)

One may note that we don’t need to assume the momentum independence of (k,w)
for these results to be valid. As it turns out for the cuprates, this is actually important
since momentum dependence does exist for states away from the nodal (A=0) cut (which
the diagonal direction to the Cu-O bonds.) It is the last two equations which provide us
with a precise meaning for k,(w) and I'(w) as determined in MDC analysis and, thus, our
determination of ¥(k,w) from ARPES. Eq. 2.56 demonstrates that a reasonable assumption
for e(k) is needed to determine ReX(k,(w),w) while Im¥(k,(w),w) presents the additional
challenge of requiring the derivative ¥ (k,(w),w). This is further complicated since though
Y (k,w) is a causal function for a fized k value, 3(k,(w),w) is not. Thus, one cannot invoke
the Kramers-Kronig relation to relate real and imaginary parts. Nevertheless, so long as
these considerations are kept in mind to prevent over-interpretation, qualitatively I'(w) and
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k,(w) do offer access to the causal ¥(k,w) since important structures such as the bosonic
renormalization (the ARPES “kink”) of the near Er band structure (Section 1.4) appear in
both self-energies.

As mentioned earlier, prior to the instrumental advances which pushed ARPES experi-
mental data from a one dimensional spectra towards a two dimensional map, EDC analysis
was the more natural method. There remain many advantages within this line of analysis:
1) The fixed momentum helps simplify the matrix element contribution to the photocurrent
(|MF|* within I(k,w) in Eq. 2.42.) 2) Even in a correlated electronic system, momentum is
a good quantum number within a single crystal approximation (Fermi liquid theory quasi-
particle states have well defined k but ill-defined energy.) This makes the EDC a more
physical quantity, opening up the potential use of spectral weight sum rules (e.g. Egs. 2.43
and 2.44) as well as providing a clear physical meaning to the dispersion of EDC peaks. 3)
In theory, an EDC analysis should be able to provide the causal ¥(k,w) throughout in the
entire two dimensional plane rather than only the particular path determined by MDC peak
positions, k,, as is the case with an MDC analysis. Unfortunately, EDC analysis is uniquely
complicated because of contributions from the Fermi function cutoff, f(w), as well as both
elastic and inelastic photoelectron contributions to the background. This makes for a very
challenging lineshape to analyze in practice (see Section 6.2 for our attempt at this.) Still,
employing a similar Taylor expansion analysis as we previously used, one can expand the
self-energy locally near an EDC peak giving

Yk, w) = X(k,wy(k)) + X (k, wp(k)) (w — wy(k)) (2.58)

where ¥, (k,w) represents the w-partial derivative of X (k,w). Just like before, we can insert
these expressions into Eq. 2.49 and get the following relations in the neighborhood of the
peak,

Z(k I'k,w
Ak,w) = ST ) = wp(k())g +)F(k, E (2.59)
ReX(k,w,(k)) = wy(k) —e(k) (2.60)
Im¥(k,w,(k)) = I'(k,w)/Z(k)—
Im¥, (k,w,(k))(w — wy(k)) (2.61)
Zk) = 1/(1 —ReX,(k,wy(k))) (2.62)

As we turn our attention to MDC analysis, our results begin to reveal the complementary
nature of these two approaches. Unlike the Lorentzian lineshape of the MDCs (or more
precisely Voigt lineshapes), the EDC lineshape is modified by the asymmetry of the Fermi
function and background contributions, which makes EDC analysis particularly challenging
(and generally less favorable) for extracting the self-energy near Ex. Thus, in this respect, the
MDC analysis provides us with the appropriate tool to study the near-Eg spectral function.
However, the spectra at large w is better analyzed with EDCs due a spectral sum-rule which
requires A(k,w) — 1/w at large w, leading us to consequently expect that Z(k) — 1 and
Yo(k,w) — 0. This means that the portion of the spectral function which we associate
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with the aforementioned incoherent excitations (see the end of Section 2.3) should begin
approaching a Lorentzian lineshape. This would make the higher binding energy states
better explored with EDC analysis, although one cannot neglect the inelastic background
contributions which remain important even at these higher energies. Contrasting this, one
finds the MDC’s at higher energies begin to be affected by the momentum dependence of the
matrix element contributions as well as potential deviations of €(k) from the aforementioned
locally linear behavior. Thus, with both approaches in our ARPES toolbox, we can undertake
a more complete understanding of self-energy effects as they appear in A(k,w).

In practice, MDC analysis is more often used for mapping out the electronic bands,
particularly highly dispersive bands. Additionally, the ability to determine the Fermi surface
(A(k,w) at w = Ep) is necessarily done through MDC analysis. Section 4.2, will rely on this
type of analysis in order to make comparisons to the band structure predicted previously by
theory. As discussed in Section 2.2, we are able to vary incident photon energy and as such
move though the momentum space in the k, direction. But to determine the evolution of
the Fermi surface with k, can be very challenging. This is due to the practical concerns of
collecting sufficient ARPES slices to get a single Fermi surface and then to repeat this entire
endeavor at multiple photon energies (not even considering the effect of the ARPES matrix
element with its photon energy dependence.) The practical solution is to sit at and along
high symmetry directions of the band structure, and then proceed to do a photon dependence
survey. After converting the resulting cuts into momentum space (since each photon energy
will have a different conversion), one can begin to make extrapolations about the band
structure dependence on k, and compare it with theory. The difficulty in working with k,
is one of the primary reasons there is a preference towards quasi-2D or layered materials in
ARPES studies (the other being the ability to perform in situ sample cleaving for surface
quality). When this is not the case, greater care must be taken, involving initially using
ARPES (in conjunction with band structure calculations) to determine the k, dependence
with respect to photon energy (specifically determining the inner potential as described in
Section 2.2) and then using this information to make sure that one’s experimental setup is
probing the specific region of k-space.

In addition, MDC analysis is also critical for determining quanities like vy and, conse-
quently, m* near Er where such an analysis can have direct connections to bulk properies like
electrical transport?. Furthermore, the Fermi surface provides us with information about
the doping of the system. Luttinger’s theorem tells us that the total volume enclosed by a
material’s Fermi surface is directly proportional to the particle density. This is intuitive for
a free electron gas because of the Pauli principle, but the result is generally true even in the
presence of electronic interactions. Thus, by examining the Fermi surface in the first Bril-
louin zone, and adding together the volumes of the hole and electron bands as representative
of the total number of the respective carriers, one can deduce the total carrier density. For
materials with significant k., dependence, this is challenging to determine since these electron
and hole pockets will vary in size as a function of k.. But in materials with little k. depen-
dence, the 2D volumes should have the same relative ratios for electron and hole bands for
all k,. In such a situation, determining the relative areas associated with hole and electron
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bands at the Fermi surface can be added together and should reflect the actual doping of
the system. For some systems, like the cuprates, this can be a highly accurate method for
determining the doping of a material being studied and can be used to compare with the
expected stochiometry from the sample growth process. Thus, through these methods of
analysis, the comparison between ARPES and other more bulk sensitive techniques can help
establish that despite the surface sensitivity of ARPES, the measurements still represent
physical properties of the bulk.

Returning to EDC analysis, a critical strength of ARPES is the ability to determine the
momentum dependence of band gaps whether intrinsic like a semiconductor or the result of
an additional order such as charge density waves or superconductivity. But despite being
a fundamental question, the quantification of the gap measured by ARPES can be a tricky
issue. First, determination of the Fermi energy must be calibrated independently. This is
done by using a reference metal (e.g. evaporated or freshly scraped gold) in electrical contact
with the sample so that the chemical potentials (~Ep) are equal. Fitting this spectrum to a
Fermi function (at least near the edge) allows us to extract the kinetic energy associated with
Er which we can determine within +0.5meV or better. This quantity, however, is dependent
on photon energy and the energy settings (pass energy) of the spectrometer.

With independent knowledge of Ep, there are three basic components to determining the
gap from EDCs:

1) What feature should one use to quantify the gap? Initially, one would be inclined
to propose the quasiparticle peak and its binding energy as the A associated with the gap.
There are two issues which emerge with this. First, with the Fermi function multiplying the
spectral function (as well as inelastic scattering background) the peak is effectively shifted
to higher binding energy (away from Ep) in cases where the gap is small. The result is
such that even where the gap should be zero, the peak will not be at Er. This issue can
be addressed and we’ll return to it. Second, even if that issue could be addressed, there are
some materials where no sharp peak in the EDC can be resolved near Ep (e.g. LaTe, in
Chapter 4.) This leaves us with using the binding energy of midpoint of the leading edge to
quantify the gap (midpoint corresponding to the point halfway between the above Ep zero
baseline and the maximum). This point does reach Er when the gap is zero and will be
employed in our analysis in Section 4.3. The challenge, however, is that comparing this gap
with theoretical gap values (e.g. the BCS gap equation) is difficult. Sometimes this leading
edge is considered to be ~ % of the peak value but this is strictly not true. The sharpness of
the peak or other lineshape consideration can also affect this comparison. But despite this,
it remains a common approach to quantifying the gap. Of course, one could fit the data to
a model EDC incorporates the spectral function from Eqs. 2.49 or 2.59 with the appropriate
self-energy. However, this can be difficult in practice, particularly with weaker spectra, and
getting a confident convergence can be, at times, elusive.

2) Determining which EDC to use. Initially, this might seem a strange question since the
natural choice would be to take the EDC at kp (though, of course, there is no kx for a band
with a gap.) Still, by employing an MDC analysis, one can determine the band structure
dispersion near Er and linearly extrapolate it to Er. Additionally, one can take a stack of
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Figure 2.4. Modeling of resolution effect on the leading edge gap. (a) A Fermi
function with T = 70K. (b) A spectral function of I' = 20meV and no gap done
using the model from Ref.?*. (¢) multiplying these functions together to produce the
ARPES photocurrent as described by Eq. 2.42. (d) Zoomed in region of the EDC

spectra near Ep.

EDCs and look for the spectra where the gap is minimized (this should consequently be the
EDC at kg). The problem, in practice, is that this underestimates the gap (in particular,
if one uses the leading edge) when the band gap is smaller than the peak width. This is
presented in Fig. 2.4 for the example of a zero-gapped spectral function multiplied by a
finite width Fermi function. If the Fermi function width is sufficiently wide, spectral weight
spills over Er, and the resulting lineshape can lead to unphysical gap measurements such as
finding a leading edge gap above Er in ungapped metallic bands (as seen in panel d.)

To remedy this, ARPES analysis will often be integrated over a larger window of mo-
mentum space (otherwise empty of electronic bands) to get a better estimate of the leading
edge gap as discussed elsewhere?. Effectively, there is no physical reason for this integration
other than to provide a systematic method for removing resolution/temperature/peak width
effects. As we integrate more and more EDCs, the leading edge gap becomes larger until
it reaches a maximum value before it very slowly begins to shrink as the window becomes
increasingly larger. This subsequent narrowing is due to the integration of more and more
EDCs without spectral weight, whose lineshapes have a leading edge at Er. Thus, in the
limit of large angular integration, the leading edge gap will approach zero. We associate
the maximum gap to be the best measure of the true leading edge gap (so long as the same
integration window is associated with a zero gap for appropriate momentum space cuts like
the nodal point.) Naturally, angle integrating will destroy information regarding the peak
gap and should not be used for such gap analysis. Additionally, the need for this analysis
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occurs with small gaps, where the energy width of the Fermi function is comparable to the
gap. So for larger gaps, this analysis is not necessary.

3) In light of the issues that the Fermi function and other resolution effects bring to the
spectra, it is worth asking if there is any analysis methods by which one could remove these
contributions to get at a purer spectral function. We will discuss three techniques that are
seen in the literature. The first technique is Ep symmetrization?®, which takes advantage of
electron-hole symmetry to remove the Fermi function. Mathematically

AW)f(w) + A(=w)f(-w) = A(w) [f(w) + f(-w)] = A(w) (2.63)

assuming the spectral function A(w) = A(—w), meaning that there is electron-hole symme-
try for the spectral function at that value of k. Thus, the resulting spectra should be free of
the Fermi function contribution. With this spectrum, one can employ any of the previously
mentioned techniques for quantifying the gap. There are some limitations with this tech-
nique. Most obvious, determining the precise value for E is essential otherwise a small gap
can disappear or a finite gap can appear where it is not physical. Additionally, the resulting
lineshape can still present challenges since resolution effects can make identifying the dip at
Er difficult. Finally, one cannot read too much into the spectral shape above Ep since it
is, strictly speaking, just a copy of the below Er spectral function (per our assumption). If
we want to have information about the above Er states, or if electron-hole symmetry is not
appropriate, we must turn our attention to other techniques.

The second technique of Fermi function division is similar and also commonly used. This
takes advantage of the functional form of the photocurrent described in Eq. 2.42. Given
an appropriate Fermi function incorporating the temperature as well the energy resolution,
AE, of the experiment, one divides the raw photocurrent by this function (strictly speaking,
a Gaussian of width AE convoluted with the Fermi function.) Despite its complexities
(getting the right Fermi function), it has advantages over the symmetrization in that data
seen above Er is real and not merely a product of our symmetric assumption. In practice,
however, very little can often been seen above Er unless the temperature of the experiment
is sufficiently high that a significant population of states are occupied (ARPES can never see
what isn’t occupied.) Even if they are occupied, the sharp increase in the spectra can make
analysis challenging (above Ep, f(w,T) — 0 so dividing by f(w,T’) goes to infinity.) Still,
this technique, particularly at higher temperatures, can reveal part of the spectral function
above Er allowing one to better quantify the gap and even learn about the dispersion of the
above Ep band (e.g. the Bolgoliubov quasiparticle line shape in the cuprates.)

The third technique is relatively new and addresses an issue that we have not given much
time. The goal of these techniques has been motivated by a desire to get the best possible
spectra which are otherwise marred by the Fermi function. But the situation is further
complicated by resolution effects whose effect on the spectra is not merely a multiplication
but rather a convolution with the spectra. Thus, if we seek the purest picture of the spec-
tral function, we need to do a deconvolution as well. A common technique from astronomy
to deconvolve error from an image to get a sharper (and hopefully more pristine) image is
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the Lucy-Richardson deconvolution procedure. This iterative procedure has been recently
applied to ARPES data on the cuprates?”?® in order to better observe the evolution of the
Fermi surface band structure topology and attempt to resolve an ongoing discrepancy be-
tween ARPES and quantum oscillation measurements?®. The technique is quite challenging,
although its effect on the data is significant. This has led to some informal debate over
whether its sharpening of the data is artificial or resulting in a truly more realistic spectrum
when completed. Since few groups currently use the technique, it is mathematically sophis-
ticated, and we have never used it in any of our analysis of the data in this thesis, we will
only acknowledge its existence and point the interested reader to appropriate discussions of
it elsewhere?.

We now have presented a general (albeit brief) introduction to the history, experimental
setup, physical interpretation, and analysis methods that are a part of the ARPES exper-
imental technique. For the initial simplicity of Einstein’s photoelectric effect, we find that
the practical implementation of the technique is far from simple particularly as we push the
limits of energy and angular resolution to extract more and more subtle effects. The ARPES
practitioner, indeed like any experimentalist, must be constantly asking about the origins
of the effects observed keeping in mind the approximations, surface sensitivity, lineshape
complications, experimental failings, and other issues which are ever near. Thus, one cannot
let the relative ease in which electronic band structure can suddenly appears on a ARPES
screen fool one into overzealous analysis, but nor can the complexities sap the resolve to push
on with the technique. And so, motivated by that faith, we proceed to our data focusing
on three systems where competing orders play important roles within their phase diagrams:
the iron pnictides, the rare earth tellurides, and the single layer cuprates.
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Chapter 3

Core Level and Valence Band Study

of LaFeAsO( ¢F 1

3.1 Introduction

As briefly introduced in Section 1.6, the superconducting iron pnictides represent a sur-
prising turn in the story of unconventional superconductivity. The story began with the ini-
tial discovery of superconductivity in the fluorine doped LaFePO;_,F, and LaFeAsO,_,F,%.
It is this second compound that truly shook the correlated electronic community with a max-
imum T, of around 27K. Fig. 3.1 shows the crystal structure and a theoretical density of
states for the parent LaFeAsO compound. Of particular importance, is the critical role the
iron states play in the near-Ep electronic structure®. It is these iron arsenic planes which
appear to be the key to the surprisingly high superconductutivity evidenced by the plethora
of compounds: 1) The Lanthanide oxypnictides (LnO;_,F,FeAs Ln = Sm, Nd, Gd, Pr) were
the first to be observed and studied. Known as the 1111 compounds, they currently exhibit
the highest superconducting transition temperatures exceeding 50K31323334 though grow-
ing large single crystals is very challenging. 2) The 122 iron pnictides (e.g. (Ba,K)FeyAss,
(Sr,K)FesAs,, (Ca,Na)FeyAsy, Ba(Co,Fe)aAsy) came more recently and due to the ability to
grow large crystals, have been the subject of much later ARPES work. Their T, values have
remained generally <40K to date®®. 3) The 111 iron pnictides (e.g. LiFeAs T,=18K) have
recently been gaining attention®® and are particularly intriguing since it is superconducting
without the introduction of any doping. 4) The 11 iron pnictides (e.g. Fe(Te,Se)) have
similarly lower T. values like Fe; g3Teg75¢ep.3 with a T.=13K.

To illustrate the phase diagram of these compounds, panel ¢ of Fig. 3.1 provides a phase
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Figure 3.1. (a) The crystal structure of the oxypnictide parent compound LaOFeAs
as reproduced from Ref. (b) Valence band density of states for LaOFeAs from Ref.%".
(c) Phase diagram of the Fluorine doped oxypnictide LaFeAsO;_,F, as determined
by magnetic susceptibility and spin-resolved muon experiments?®.
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diagram of LaFeAsO; ,F, determined by magnetic susceptibility and spin-resolved muon
experiments®®, which gives us a picture of the surprising magnetic physics at work in these
systems. When we compare it to the general hole doped cuprate phase diagram (Fig. 1.3,
the similarities and differences become quickly apparent. The parent compound for both
the iron pnictides as well as the cuprates is dominated by magnetic physics. Both host
magnetic ordering, but the cuprates antiferromagnetic Mott insulating phase is met by a
metallic antiferromagnetic density wave in the pnictides. But the presence of two orders,
an antiferromagnetic order in close proximity to superconductivity, is remarkable and once
again illustrates the importance of understanding competing orders to such novel systems.
As mentioned back in Section 1.6, they seem to have a more isotropic critical field, making
these materials less quasi 2D then the highly isotropic cuprates, and consequently more
attractive for devices. Also as mentioned earlier, one reason for the potential uniqueness of
these compounds is that bands related to iron appear to dominate the near Ex band structure
and are hence responsible for superconductivity. This situation, together with the proposed
strong hybridization between the Fe 3d and As 4p orbitals needed to explain the anomalously
small value of the Fe magnetic moment?®, begins to place the Fe-based superconductors in
a strong correlation regime as is already the case for the cuprate superconductors. It is
this magnetic ordering that places this work into the broader narrative of this thesis as we
attempt to study the way in which magnetic ordering could manifest itself in photoemission
data.

As we explore our contribution to the early work in this expansive field, we will begin with
a closer exploration of the issues that motivated our photoemission work on the optimally
doped LaFeAsO;_,F, compound. We will then proceed to photoemission work on the core
level states, focusing particularly on the As 3d orbitals to give us potential insight into the
magnetic physics of the Fe-As plane. We then move towards the Fermi energy and focus on
the less defined valence band states (0 - 20eV in binding energy) to provide experimental
determination of the electronic density of states by taking advantage of known photon energy
dependences of the different elements. Then we zoom in on the electronic states nearest
Er. Employing high resolution Angle Integrated Photoemission Spectroscopy (AIPES),
we can make a careful study of the near-Ep electronic density of states, looking for the
subtle indicators of superconducting and magnetic physics. We will then conclude with
some observations about current issues in the field.

3.2 Overview of LaFeAsO,_,F,

As mentioned, LaFeAsO;_,F, was among the very first of the novel iron superconductors
discovered, and as such was the subject of significant initial study. It was quickly determined
that the metallic LaFeAsO parent compound supported both an antiferromagnetic spin den-
sity wave (SDW) phenomenon at ~134K, along with a structural distortion at ~150K 041,
This latter phenomena is believed to be an important parameter for modulating both the
Fe 3d - As 4p hybridization (potentially related to the anomalously low magnetic moment)
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as well as the onset of antiferromagnetic fluctuations®’. The presence of these phenomena

in the LaFeAsO;_,F, phase diagram (Fig. 3.1c) and their apparent competition with the
superconducting phase further underscore the complex physics of the near Er properties of
these materials 04243,

There were numerous prior angle integrated and angle resolved photoemission results
that had appeared in the literature in the initial months after these 1111 materials made
their appearance 4346474849 aq well as the first of the ARPES work on the Barium based
122 compounds®°!. Yet at the time, basic knowledge of the electronic structure of these
materials, the importance of correlation effects, and how the spin physics modulates the
near Ep states was still not fully understood (and those questions still remain significant).
There was limited data on the orbital nature of the valence band spectra and no measure-
ments of the proposed strong p-d hybridization in the literature. Additionally, significant,
there was no understanding of the effect of the magnetic structural distortion“®*! on the
near Ep states. These concerns, along with the controversy over the role of spin fluctua-
tions40:42:43,30,52,53,54,55,56,57,58 iy the explanation of the low energy features of the near Ep
density of states, are fundamental issues. Addressing them would be of significant impor-
tance before one could come to a complete understanding of the physics of these materials.

So we focused our attention on the optimally doped, polycrystalline LaFeAsOg9F 1
(T.=25K), being central to the debate. Because the aforementioned issues are intimately
related to electronic states and the near Ep electronic density of states, we naturally used
photoemission spectroscopy. In Chapter 2, our primary focus was on the angle resolved
photoemission technique. Strictly speaking, Angle Integrated Photoemission Spectroscopy
(AIPES) is a simplification of these ideas and of the photocurrent described in Eq. 2.42.
The 2D spectra that are most common in ARPES are, within the data analysis, compacted
down to a 1D spectral of photocurrent intensity vs. energy. But this, strictly speaking is
not AIPES. If the sample is relatively single crystalline, then the 2D image being compacted
still corresponds to a specific cut in momentum space, and thus probes the spectral func-
tion (and matrix element effects) for momentum values in that particular region. To truly
integrate out all the angle (momentum) dependence, one must use a highly polycrystalline
sample. In doing so, one can be assured of getting information on the spectral function
from throughout momentum space due to the random orientation of the fine grain crystals.
(The condition on photon energy and the ability to access electronic states throughout the
momentum space described in Section 2.2 still remains, so sufficiently high photon energy
remains important.) Thus, given a fine grained, polycrystalline sample with a sufficiently
uncontaminated surface, one can take AIPES data. The effective integration over the mo-
mentum space, removes the k-dependence to the spectral function as well as the ARPES
matrix element (as well as the polarization dependence). However, it does not remove the
incident photon energy dependence of the photocurrent, a fact of vital importance to our
analysis.

Our samples of polycrystalline LaFeAsOggF( 1 were synthesized by solid state reactions.
La and As metals were mixed and reacted in an evacuated sealed quartz ampoule at 500C for
12 hours, followed by a reaction at 850C for 2 hours. The formation of LaAs was confirmed
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by X-ray diffraction techniques. Fe;O3, Fe and LaF3 were then mixed with LaAs and loaded
into a tantalum tube. The amount of LaFs was calculated to provide 10 percent F. The
tube was crimped and sealed in an evacuated quartz ampoule. The reaction was carried out
at 1150C for 50 hours. The final product: LaAsFeOF was once again confirmed by X-ray
diffraction. We determined the sample to have a critical temperature of 25K as determined
by the diamagnetic transition in our zero field magnetization measurements (Meissner effect),
shown in the inset of Fig. 3.25%.

For these experiments, we used synchrotron based photoemission spectroscopy and the
data were taken at Beamline 12.0.1 at the Advanced Light Source of the Lawrence Berkeley
National Laboratory using a Scienta SES100 hemispherical analyzer and also at Beamline 5.4
at the Stanford Synchrotron Radiation Laboratory, using a Scienta R4000 analyzer. For our
experiments, it was important to explore a range of electronic energy states. We can divide
our study into core level electronic states (binding energy >20eV), valence band electronic
states (binding energy <20eV), and finally the near Ep electronic states (binding energy
<0.2eV). The energy resolution was 0.1eV for both the core level and valence band data.
A resolution of 25meV was used for the near Er data presented in in Fig. 3.4, while 5meV
resolution was achieved for the data presented in Figs. 3.5 and 3.6. Having a surface devoid
of absorbed molecules is critical to our data. Thus, sample surfaces were prepared both by
cleaving the grown polycrystalline rod in situ, and both by cleaving immediately followed
by a gentle scraping in situ of the exposed surface using a diamond file. Both were done
at a temperature less than 25K and a base pressure better than 5 x 107'* Torr. From our
experiments and the data presented, we found no quantitative differences between these two
methods.

3.3 Core level Photoemission

Fig. 3.2 shows core level spectra taken on the sample within in the superconducting
phase. Panel a includes our determination of the atomic orbitals associated with these
peaks. Within the energy window of Fig. 3.2, we identify the expected La core levels: La 5s
at 35.0eV, La 5pi/o at 19.0eV and La 5psz/, at 17.5eV. Similarly, the only expected oxygen
core level in this energy window is the O 2s peak, which is generally expected near 20eV in
other oxides®. Thus, we identify it with the shoulder to the left of the aforementioned La
5p orbitals. We encounter a greater difficulty when we try to resolve the fluorine core level
peaks. We expect that the F 2p binding energy should be only a few eV larger than the
O 2p orbital®. Theory suggests and we will further argue in Section 3.4 that the spectral
weight between 5 and 10 eV is dominated by the O 2p orbital, putting the likely weaker F
2p orbital contribution underneath this spectra. Nevertheless, we interpret the weak, broad
feature at 27eV as the F 2s orbital expected at a roughly 20eV higher binding energy than
F 2p.

Turning our attention to the orbitals associated with the critical FeAs plane, we can
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successfully resolve the Fe 3p orbital, although we are unable to resolve any potential splitting
between the 3p; /2 and 3p3 /2, most likely due to the weak intensity. But, to our initial surprise,
when we look at the As 3d core level, we observe a splitting between the 3dsz/, (40.7¢V) and
3ds/2 (41.3eV) peaks of ~0.65eV. This is significant because it is a much larger splitting than
what is observed for As in its natural form®!, and it is ~.05eV %2 larger than what is observed
in the undoped parent compound, LaFeAsO. Within our previously mentioned resolution,
we find that the magnitude of this splitting is temperature independent, above and below
T..

This large splitting suggests that we are in a regime where the hybridization between the
Fe 3d and the As 4p orbitals is actually quite strong, as previously proposed by theoretical
work®6%. We can model this splitting as due to hybridization between Fe 3ps/» and the As
3ds/ orbitals by using a basic quantum mechanical two level model%. Doing so, we can
actually put experimental constraints on the magnitude of the Fe/As hybridization energy.
The result of this analysis bounds the energy to be between 1.1 and 1.4eV. These values are
significant because this range is consistent with the values that were required to explain the
anomalously small Fe magnetic moment reported for these materials®®.

Our core level study did resolve two additional features which do not directly correspond
to any known orbital core level: 1) a subtle shoulder at ~16eV near the La 5p peaks and
2) a well-defined shoulder at ~44eV, to the left of the As 3d peak. One possibility is that
these correspond to multi-transition phenomena like an Auger transition. However, these
transitions result in spectral peaks at fixed kinetic energies over a range of photon energies
leading to binding energies which are photon energy dependent. (This is unlike actual core
level peaks or band structure which is fixed in binding energy.) Thus, because their binding
energies are photon energy independent, neither of these features can be associated with an
Auger peak or any other related fixed kinetic energy phenomena.

When we reflect on this former feature, two possibilities come to mind. The first possi-
bility is to associate it with the currently unresolved As 4s peak, although shifted by ~4eV
from its expected value. The second possibility is to consider it a satellite feature associated
with the La 5p orbitals. By employing photon energy dependent studies, as we will explain
later on, we are lead to the first conclusion, associating the feature with the weaker As 4s
state. Yet, the reason for the apparent energy shift in this peak continues to be unclear.

Turning our attention to the latter feature (the ~44eV shoulder to the left of the As
3d peak), the absence of any expected additional peak within the energy range leads us to
suspect it to be a satellite feature of the As 3d peaks related to the critically important FeAs
layer. In particular, it may be related to the Fe 3p-As 3d strong hybridization previously
proposed to explain the observed As 3d splitting. This feature appears to be unchanged above
and below T.. Modeling the spectra near the As 3d peaks by fitting with multiple Lorentzian
peaks, we estimate the peak in this satellite feature to be around ~43eV, a separation of more
than 1.5eV from the As 3ds/, peak. The presence of satellite structures are important in the
study of photoemission, providing information about the local environment of the element
associated with the core level. The reason is that these satellites arise is from coulombic
attraction between a core hole (localized on the elemental site) created by photoemission
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and the more complicated valence band states near Er. This work has been instrumental
in the study of other materials of importance to correlated electronic systems: the Cu 2p
orbital in high T, cuprates® and the Ru 3d orbital in the ruthenates®. One possiblity that
has occured is that the considerable As 4p character that theory expects around 1.5eV above
E 30636737 could cause a satellite peak to form around 2-3 eV from the As 3d peaks as the
As 3d core electrons are being photoemitted, potentially explaining the observed shoulder.
But a solid explanation still remains unclear.

As has been alluded to earlier, we have performed a detailed photon energy dependent
study of the entire core level region to further confirm our analysis. We discussed in the pre-
ceding section that though we are integrating over momentum space (a fact that is irrelevant
for core levels which are dispersionless), the photon energy dependence of the photocurrent
remains important. In the case of the core levels, photon energy dependent photoemission
takes advantage of the fact that the photoemission cross section changes uniquely for dif-
ferent elements at different energies. This is also related to resonances associated with core
levels enhancing photocurrent, as described in Section 2.2. Core level spectra at a few char-
acteristic photon energies are shown in panel b of Fig.3.2. We have normalized the data
to total photon flux and we can see a clear enhancement of the peaks near 35, 19, and 18
eV. Now, we have already identified these peaks with the La 5s and the 5p orbitals and this
is supported as the enhancement occurs when our energy approaches the La 4d core level
resonance (at ~105eV). Not only does this support the La nature of these peaks, it gives
weight to the prior hypothesis that the additional energy shoulder near 16eV, which is not
similarly enhanced (appearing relatively stronger in the 90eV curve), is indeed unrelated to
La and is likely of As 4s origin.

3.4 Valence Band Photoemission

With our analysis of the core level peaks taken care of, we can begin to move towards Ep
and explore the electronic structure of the valence band states. In particular, we can begin
the valuable step of identifying orbital character of the valence band region below 20 eV.
Although much theoretical work has proposed that this region is mostly dominated by oxygen
and iron contributions®?:67:3763 there had not been a complete experimental characterization
of this region for comparison with theory. As with our core level study, photon energy
dependent photoemission can provide direct information on the electronic density of states
since, as mentioned, the photoemission cross section changes uniquely for different elements.

In order to better discern the relative oxygen and iron concentrations expected by theory,
panel a of Fig. 3.3 focuses on the valence band region between Ep and 25e¢V in binding
energy. For this analysis, the spectra are renormalized to the peak near 5eV as opposed to
total photon flux as in Fig 3.2. Doing this allows us to distinguish the 3-15eV valence band
region from the sharp feature seen near-Ep at ~0.3eV. We know independently that the
photoemission cross-section decreases faster for oxygen than iron over this photon energy
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range®. Thus, seeing the increase in the 0.3eV feature relative to the remaining valence

band region helps confirm its orbital character as iron and, specifically, the Fe 3d orbital.
This leaves the remaining valence band to have a majority O 2p character, which is also
hinted at by prior density of states calculations®”373%, It is also worth noting that although
we clearly observe this Fe 3d peak at nearly 0.3eV when using higher photon energies (50-
110eV), the peak does appear to be shifted closer to 0.2eV when we employ a lower photon
energy (23eV) as will be evidenced in data presented in Section 3.5. But this is certainly not
surprising since the peak we are seeing is quite likely composed of multiple bands which each
may be relatively enhanced with different photon energies due to the photoemission matrix
element.

Further exploring the orbital character within the valence band, panel b of Fig. 3.3
provides spectra taken with both 100eV and 50eV light. Although the proposed La 5p and
Fe 3d peaks only change in relative peak intensity, it is quickly apparent that the remaining
valence band is greatly affected, particularly when we focus near 10eV, where new peak
features are enhanced. The proximity of the 50eV data to the expected Fe 3p resonance
at 53eV (the core level observed in Fig. 3.2) leads us to focus on two points: First, the
sudden appearance of a feature near 13eV in the 50eV data suggests that there is iron
orbital character within this region of the valence band. When we examine this energy
region (10 - 14eV) more closely within panel a, one finds that the spectral intensity actually
does increase in a similar way to the increase we see in the 0.3eV feature. We've already
attributed this feature to Fe 3d, and so one can speculate that this higher binding energy
region of the valence band has a larger Fe 3d contribution to its electronic density of states
than the remaining density of states at slightly lower binding energy (4-10eV). At the same
time, this would explain the origin of the additional peak structure at ~10eV appearing in
the 50eV data when compared to the higher photon energy data.

Secondly, we can also attempt to make sense of the strong ~5eV feature in the density
of states. A close examination of the spectra in panel b and of this feature at higher pho-
ton energy strongly suggests that at least two peaks are likely responsible for the slightly
asymmetric lineshape. The evolution in lineshape between the 100eV and 50eV spectra
leads us to suspect that an additional, non-oxygen orbital may be contributing to the overall
observed spectral weight. From our analysis of the spectra in Fig. 3.2b, lanthanum seems un-
likely given its strong enhancement near 110eV. Furthermore, the bandwidth change between
100eV and 50eV of this feature appears to become narrower, suggesting that the additional
spectral weight is weakened (or certainly not enhanced) at 50eV, making a significant Fe 3d
contribution (unlike the 10-14eV range from before) unlikely. In light of these observations,
we are inclined to propose that although the primary character of this peak certainly appears
to be O 2p, this additional spectral weight at lower binding energy must be related to arsenic,
and most likely, it is the reviously unaccounted for As 4p orbital whose hybridization with
Fe 3d was so significant in our earlier discussion in Sections 3.2 and 3.3. And thus, before
we transition to focusing solely on the near-Ep Fe 3d states, panel ¢ of Fig. 3.3 provides a
cartoon to qualitatively summarize all of our observations and conclusions from our photon
energy studies regarding the orbital character of the valence band density of states.
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Figure 3.3. (a) The valence band region from Fig. 1b now normalized to the peak
near 5eV binding energy. This helps distinguish Fe from O orbitals in the valence
band. (b) VB spectra taken with 50eV and 100eV photon energy. The dashed lines
mark the locations of the La 5p and Fe 3d peaks. (c) A cartoon summarizing our
proposed assignments of orbital character to different regions of the VB DOS based
on the data from Fig. 3.2 and 3.3a-b.
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3.5 Angle Integrated Photoemission Near Ep

Despite the value of our work in the preceding sections, our greatest interest for these
materials is to study the electronic states nearest Ep. It is here that high resolution AIPES
may be able to observe unique and subtle effects in the electronic density of states related to
the completing orders within the phase diagram. Some AIPES measurements have already
been carried out in these materials*44546:48 "and by the time of our work, the first ARPES
studies focusing on the near Ep region of the related 122 systems (and the sole 1111 work)
were becoming available?*?%°!  But those studies lack a detailed temperature dependence
analysis which lead to a controversy on the origins of the different energy scales identified
in these systems*>464748  So with high resolution AIPES being able to directly measure
the density of states, we can focus on the near Ep states to discern gap energy scales and
perhaps even “pseudogap” features within the spectra®.

Fig. 3.4 begins this exploration by showing us the photon energy dependence of the
near Ep spectra within the superconducting phase. As was previously reported*>#6  the
spectra show a sharp discontinuity near the Fermi level which we find is, in fact, robust
over a wide range of photon energies. The challenge of resolving this feature clearly in
the photocurrent in spite of the Fermi function, forces us to consider other EDC analysis
techniques as described at the end of Section 2.4. Given the lower temperatures of many
of our spectra as well as a general ambiguity over the appropriate width, Fermi function
division was not a practical technique. Eventually, we decided to use an Ep symmetrization
technique in an effort to better visualize the discontinuity and remove the contribution from
the Fermi function (Fig. 3.4 inset). Looking at these spectra, it’s worth noting that the
symmetrization technique could lead one to think there is zero spectral intensity at Ep.
But, we know this is not the case since the main Fig. 3.4 clearly shows otherwise. With the
symmetrized data, the discontinuity manifests itself as a plateau region, where we estimate
the width to be 30meV (as indicated by the blue dotted lines in the inset.) We believe
this feature likely represents the previously reported 15meV gap seen by other groups?6:48.
From our photon energy dependent study, we find that this feature is enhanced when 50eV
photons are used in our experiments. Of course, this is consistent with the Fe 3d nature of
the near Er bands since, as previously discussed, one expects a resonance at those energies
due to the Fe 3p core level at 53eV. Since we are looking at energy gaps, it is also important
to note that given the energy resolution of these data described in Section 3.2, we do not
expect to cleanly resolve the small superconducting gap (A ~ 4meV at 5K“®) in our data.

Understanding this 15meV gap and the nearby density of states is certainly crucial to
understanding any potential competing orders acting within the system at this doping. And
so to provide further light for the debate on the origin of this feature*3464748 Fig. 3.5 shows
the temperature dependence by performing a high resolution study on the near Ep spectra.
The critical 15meV feature is indicated by the dotted blue arrow in panel a. Even from
this figure, one can see some indications of a gradual temperature dependence in the raw
data. We can attempt to enhance this feature by taking the first derivative of the spectra
which we plot in panel b. The challenge with taking the first derivative is that data needs
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Figure 3.4. Near Er data taken over a range of photon energies from 50 - 110eV at
T=20K. The blue dotted line indicates the energy scale of the spectral feature 15meV
below Er. The inset symmetrizes the data to remove contributions from the Fermi
function. The blue dotted lines indicate the 2A ~30meV gap feature which we see at
all energies.
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to be sufficiently smooth otherwise the noise will completely dominate the spectra. Even
still, within the first derivative data we can observe a dip in the spectra localized near the
blue dashed line at 15meV. Following that dip from bottom to top, we see its disappearance
with temperature. But, it is apparent that this is not a preferred method of analysis since
the broadening of the Fermi function may be damaging our spectra. At 100K, the width
of the Fermi function would be just over 30meV. So to gain more detailed information on
the temperature evolution, we symmetrized spectra from Fig. 3.5a to once again remove the
thermal broadening contribution arising from the Fermi function. The results of this are
seen in panels a and b of Fig. 3.6. We divide the temperature data into the two panels to
illustrate that we are led to identify two characteristics temperatures: 1) T~90K Looking
at Fig. 3.6a, the spectra and particularly the gap-like feature in the density of states seems
to “close up” as a function of temperature. This is consistent with the evolution in the
line shape suggested by the first derivative data (Fig. 3.5b). Upon reaching T=90K this
evolution abruptly stops and the density of states becomes temperature independent as seen
in the symmetrized data of panel a. 2) T~120K Between 110 and 135K, there is another
abrupt change in the shape of the density of states (shown in Fig. 3.6b). The difference is
that there is no gradual evolution leading up to this. Rather, it is simply abrupt and remains
unchanged for all increasing temperatures, up to at least 180K.

These results are initially mysterious, but one can make progress in their origin if we
examine the known phase diagram for the LaFeAsO;_,F, system from Fig. 3.1. Fig. 3.6¢c
includes data from this phase diagram3®. As discussed in Section 3.2, the undoped parent
compound contains both a magnetic ordering and a structural transition above 100K. The key
question is whether such ordering is entirely suppressed by the Fluorine doping. Numerous
experimental results on these compounds make this still a controversial question, suggesting
the persistence of magnetic phenomena all the way to x=0.1 doping?3545556:57:58 = If we
compare the extrapolated temperatures for both the structural (Tsrg related to the Tg
- gold dots) and SDW transitions (Tspw related to the Ty or Neel temperature - blue
dots), there is a good agreement between these two temperatures and the two temperatures
identified in our data where the density of states undergoes changes. This has lead us to
speculate that even though the electron doping of the parent compound clearly competes with
the magnetic ordering and structural transition, there still exists some level of coexistence
between these phases at higher doping, even where superconductivity exists. This would
explain the observed features in our density of states and lead us to interpret the 15meV
feature as related to the SDW magnetic ordering, which closes around Tgpy=90K. Similarly,
we interpret the subtler effect in the density of states around Tgrr=120K as the structural
transition seen in the parent compound.

The obvious question that remains is how is this happening within the crystal? Com-
petition between magnetic and superconducting phases is expected, although materials like
the heavy fermion metals (e.g. UBe;3, UGey) have unconventional superconductivity in
close proximity to magnetic phenomena. Even still, T. for these materials is significantly
lower (<1K) compared to what has been observed in these 1111 compounds. For our part,
explanations revolve around two primary options. First, what we and others are seeing is
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Figure 3.5. (a) Higher resolution temperature dependent data taken with 23eV photon
energy. The blue dotted line with arrow indicates the near Ep features noted in
Fig. 3.5 at 15meV. (b) First derivative taken of the data from (a). The temperature
dependent dip near Er corresponds to the 15meV feature and this energy scale is
marked by the blue dotted line.
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mesoscopic phase separation. There exist regions where magnetic order continues to exist
as domanins or islands in a superconducting sea. Increased doping raises the sea level as
it were and these islands begin to disappear as superconductivity becomes the dominant
order in the system. Thus, AIPES sees both the predominant superconducting electronic
state (or normal state above T.) but also gets photocurrent from the magnetically ordered
islands which is observed as a gap-like phenomena. Second, and perhaps more theoretically
sophisticated, is the existence of dynamic magnetic domains as proposed initially by Mazin
and Johannes™. In this model, the magnetic fluctuations from the parent compound’s SDW
continue but as a large moment, dynamic SDW, which could explain the presence of the
“pseudogap” (so as not to correspond it with the cuprates) seen by experiments like ours.

3.6 Final Issues

Before concluding with our brief exploration of the pnictides, there are some final issues
that deserve mentioning. First, if we see evidence of this at x=0.1 doping, what about
at other dopings? Could one see a trend in the associated Tgrr and Tgpw? How would
it merge with other data in the phase diagram? This calls for a doping dependent study,
particularly at lower dopings, to look for these temperature dependent changes in the near
Er density of states. This remains an interesting experiment to do but challenges have
come up. First, there is the sensitivity of these samples to moisture in the air. Many of our
samples became useless, and their cleaves produced grayish colors. Should anyone undertake
this work, samples need to be well stored and/or used quickly. The second challenge has
been the dominance of the 122 compounds among photoemission groups. As interesting as
our results have been, ARPES is the technique everyone wants data from and as such the
community has almost entirely neglected the 1111 compounds since.

Indeed, over the course of our study into the magnetic physics of the pnictides, we
focused some attention on the hole doped (Ba,K)FeyAs, system though our work is merely
consistent with what has been found in the literature, finding basically isotropic gapping
of 7+2meV for hole bands near the I' point which disappear in the non-superconducting
parent compound. This is consistent with earlier work™ where two different gaps are found
(a band of ~12meV and a /5 band of ~6meV) and our work was simply unable to find the
larger gapped band. The larger community seems to be coming to the position that these
materials have an isotropic gap magnitude, though the phase appears to change leading to
a so-called s, _-wave gap.

Still, the role of magnetism remains unclear and potentially different pnictide families
may have more diversity on this point than expected. ARPES work has suggested that
magnetic fluctuations are important to the emergence of superconductivity, in particular the
manner in which electronic states near-Er can be connected by a wavevector associated with
the magnetic ordering™. Electronic states near the Brillouin zone center can be overlapped
with states near the zone edge. As doping changes, this overlap is damaged and the resulting
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Figure 3.6. (a-b) Symmetrized data from Fig. 3.5(a) near Ep. In (a), we see the
gradual temperature evolution of the 15meV pseudogap feature until the evolution
stops around 90K. In (b), the temperature increase continues with a second, abrupt
change in the near Ep DOS lineshape between 110 and 135K. (c) Using phase diagram
data from?3®*, we take the Ty temperatures (blue dots) which define the SDW phase
and extrapolate them (blue line) to determine the potential transition temperature
for the SDW phase at doping x=0.1 (red line), finding a Tspy ~90K, associating this
with (a). This is similarly done for the orthorhombic-tetragonal structure transition
temperatures, T (yellow dots), to find the potential transition temperature at x=0.1,
Tsrr ~120K, associating this with (b).
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magnetic ordering is diminished . However, there is additional work suggesting that this
nesting is less relevant to the emergence of superconductivity®® ", or that the relationship
is more complicated™. Still, band structure measurements indicate that there is at least
significant reconstruction of bands across the Tgpy transition. This coupled with the sur-
prisingly low magnetic moment in many of these compounds®’ means that though enormous
progress has been made in less than 3 years, there still are issues to be resolved.
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Chapter 4

Charge Density Wave Physics in
LaTes

4.1 Introduction

As introduced in Section 1.4, a charge density wave (CDW) transition relates to the
balance between electronic energy and lattice structural stability and has been the subject
of research for over half a century. Below a critical temperature, the system finds it ener-
getically favorable to introduce a new periodic ordering, allowing the Fermi surface to be
gapped, and lowering the overall electronic energy. Because this ordering is mediated by
strong electron-phonon interactions, CDW systems can provide excellent opportunities for
theoretical investigation of how strongly-correlated electron-phonon systems behave and the
effects on band structure. Furthermore, when one relates CDW and other charge ordering
physics to systems exhibiting superconductivity, the interest becomes more pressing and ex-
citing such as its competition of even coexistence with superconductivity 767778 79:80.81 " and
its potential role in the superconducting cuprate phase diagram52%3,

Recently the rare earth di- and tritelluride systems have attracted great interest due to
their low dimensionality and the recent discovery of a pressure-induced superconducting state
competing with a CDW phase and with antiferromagnetic order®. This interplay makes the
tellurides the ideal system to investigate the consequences that the competition between
charge density wave, antiferromagnetism and superconductivity has on fermionic excitations
at the Fermi energy, Er and to provide a deeper understanding of how superconductivity
can emerge from such interplay, an issue of great interest in the solid state community.
Additionally, the rare-earth tellurides appear to be “high temperature” CDW materials,
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Figure 4.1. Crystal structures of (a) LaTe; and (b) SmTes. Panel b taken from Ref.®

with transition temperature potentially as high as the crystal melting temperature given
the gap measurements®®*85  Fig. 4.1 provides us with crystal structures for both di- and
tritelluride compounds. Of importance is the quasi-2D nature of the crystal, made up of
RTe slabs (R = rare earth) separated by single tellurium planes in the case of the ditelluride
(panel a) and double planes in the case of the tritelluride (panel b). It is these square tiled
tellurium planes which are critical to CDW formation since we will find that they dominate
the near Er band structure.

Traditional scattering techniques can reveal the structural modulations due to CDW
phenomena, but in order to have a complete insight into the CDW phase and its formation,
we require a direct probe of the electronic structure. This is an investigation that ARPES
is well suited to do, in particular given its quasi-2D structure. As a result, the literature
has many examples of ARPES work done on telluride systems prior to ours such as in the
study of SmTes® and CeTes®*. Yet, it was only recently that ARPES been used to study
rare earth ditellurides such as LaTe,®.

The existence of a CDW phase in the ditellurides was first established by transmission
electron microscopy (TEM)®85 and single crystal X-ray diffraction®” experiments. TEM
measurements had reported a long range distortion q = .5a*%0 similar to the diselenides®®,
while single crystal X-ray diffraction expanded on this suggesting a larger 2 x 2 x 1 super-
structure®”. (Note: a* = 27 /a where a is the lattice constant) Most recently, the TEM work
of Shin et al. demonstrated a four-fold symmetric superstructure with a modified q=.484a*
and proposed an additional CDW wave vector q=.6a*+.2b*%.

Recapping the CDW physics described in Section 1.4, we expect the CDW’s effect on
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the electronic structure to manifest itself through ARPES data in at least three ways: 1)
Observing large regions of Fermi surface band structure which can be connected or “nested”
by a single qopw 2) Gapping of near Ep band structure, which represents the energy gained
by the instability 3) The appearance of “shadow bands” where the action of the CDW
creates new states by shifting (or, more appropriately, scattering) the main band structure
by qcpw. Thus, in this chapter we will do the following: We will first provide a large scale
exploration of the LeTey electronic structure near Ep. From this work we hope to provide
insights into the successes and weaknesses of past theoretical studies as well as helping to
clear up prior ambiguities by providing a firm experimental basis for future work in the
tellurides. We will then focus on the near-Ep states and the three CDW characteristics we
have described. The result of this study will be an interesting observation about the CDW
physics in these materials compared to other materials in the literature of the time. We find
that LaTe, is the first 2D CDW material (albeit probably not the only one) which displays
all the qualities of their 1D cousins, namely a metal-insulator transition tied to a Fermi
surface nesting instability driving the CDW formation.

For the work we are presenting, ARPES and Low Energy Electron Diffraction (LEED)
data were taken on single crystals of LaTe, using beam lines 7.0.1 and 10.0.1 at the Advanced
Light Source of the Lawrence Berkeley National Laboratory. These beam lines were equipped
with Scienta SES100 and R4000 electron analyzers respectively. A total energy resolution
of 40 meV or better was used, and the total angular resolution was set to 0.35 degrees.
Our samples were cleaved in situ with a base pressure better than 7 x 10~!' Torr at low
temperatures. As with all the studies in this thesis, the chemical potential, yu, is determined
from gold foil in contact with the sample, which gave us an uncertainty of +0.5meV in pu.
Samples for these studies have been prepared in a few ways and the question has arisen
about whether these differences in sample preparation may be responsible for differences
observed in the superstructure by XRD and TEM®. The samples we used for our study
were grown using two different techniques: 1) Mineralization of a stoichiometric binary
mixture of elements®® and 2) A high-temperature Bridgeman method explained by Kwon
et al.%. Over the course of our ARPES work, we were unable to discern any difference
originating from the two preparations.

4.2 Electronic Band Structure Seen by ARPES

To begin our study, Fig. 4.2 shows the unsymmetrized Fermi surface maps of LaTe, for
two different polarization vectors and photon energies, in order to vary the ARPES matrix
element in the photocurrent (Eq. 2.42) and better explore the band structure. In panel
a, we show data taken at 55eV using a polarization vector along the I'-X direction (see
inset). The map was collected beyond the first Brillouin zone (also valuable for matrix
element reasons) and is integrated from Ep to 80meV in binding energy. The non-CDW
LDA (Section 1.2) band structure calculation®® (white dashed line) is overplotted on the
same figure for comparison and shows an overall good agreement with the experimental data
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Figure 4.2. (a) ARPES constant energy intensity map averaged in energy from Ep
to 80meV binding energy and symmetrized over I'X. Beam energy was 55eV with a
polarization reflected in the inset. Orange dashed lines indicate the Brillouin zone
boundaries. Comparison with the non-CDW LDA FS calculation®!, indicated as
white dashed lines, shows moderate agreement. However, as we approach a pho-
ton energy of 110eV, more features are revealed. (b) ARPES constant energy map,
unsymmetrized, averaged from Er to 100meV binding energy using 110eV photons.

both in the first and higher Brillouin zones. This supports the prediction that the near
Er band structure can be thought of 1D bands arising from the Te 5p, and 5p, orbitals
in the Te square planes, as well as confirming the tetragonal picture expected for LaTes.
However, a closer analysis does reveal deviations. In particular, we see the absence of the
two features centered around the I' point, a small electron pocket (solid white line) and an
“inner diamond” band.

Compare these results to panel b, where data was taken with a different polarization
vector, along the I'-M direction (see inset), at 110eV photon energy. We find that when
the photon energy is tuned close to the La and Te adsorption edges (La 4dz, ~105eV,
Te 4ps/, ~103.3eV) we can resolve, although still weak, the inner diamond at the I' point,
predicted by LDA but not observed before® within this energy range. We note, however,
that despite our extensive search over a wide range of photon energies (between 80 and
200eV) and different polarization conditions, we were unable to resolve the electron pocket
centered at the I' point, suggesting that it was not merely that we were probing the wrong k,
value. In addition, we note that while the bands of panel b show a better overall agreement to
theory, we suspect that the slight shift in band position between panels a and b is probably
due to differences in the sample surface stoichiometry over time. This is related to the
predictions of Luttinger’s theorem, indicating that sample doping is reflected in the Fermi
surface volume (see Section 2.4).
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Figure 4.3. (a) Momentum distribution curves (MDCs) taken (1) along the M-I'-M
direction and (2) parallel to M-I'-M but slightly shifted. From these we can discern
the twin peaks of the inner diamond while the spectral of the bands near the M point
is strangely suppressed but only along the high symmetry direction. (b) MDCs along
[-M at increasing binding energies showing the dispersion of the inner diamond band
up into the energy range of Fig. 4.2. Red MDCs indicate where the curve becomes
dispersionless
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We can further confirm the existence of this inner diamond band structure through
using momentum distribution curves (MDCs). This is provided in Fig. 4.3 for cuts both
along the M-I"-M direction and slightly shifted off this high symmetry direction, cuts 1 and
2 respectively. In these cuts, we can clearly resolve the two peaks of the inner diamond
band (marked by violet circles). For cut 2, we can resolve two additional peaks near m/a
in momentum space, corresponding to the bands near the M point (marked by light blue
circles). These additional bands are not resolved in cut 1 probably due to a matrix element
effect. In panel b, we show the MDCs curves for a cut along the I'-M direction at increasing
binding energy. The peak in the MDCs spectra, corresponding to the inner diamond band
and still marked by violet dots, can be clearly distinguished in the entire energy range, from
Er all the way to 200 meV binding energy. Significant for CDW physics, this peak disperses
from 200 meV up to 50 meV where it suddenly stops (see peak position in the red curves).
This suggests that the inner diamond is gapped by 50 meV due to the CDW formation.
This is contrary to prior published work, taken at photon energy far from the resonance
energy, where it had been suggested that the inner diamond band is gapped by as much as
600meV in binding energy®®. By taking advantage of photon energies near the absorption
edge (core level peaks), we were able to tease out this otherwise weak band structure. The
consequences of this band structure and gap will be made more apparent in Section 4.3, and
we will revisit it there.

Further complexities seem to appear as we increase the binding energy. Fig. 4.4a presents
a constant energy plot of the electronic bands around 130meV in binding energy (as opposed
to at Ep in Fig. 4.2). A closer examination of the four X points of the Brillioun zone reveals
the onset of unpredicted features, indicated by the orange arrows. Particularly fascinating
about these features is that they appear to break the mirror symmetry of the system (a
symmetry we expect from the crystal structure - Fig. 4.1) and are completely unexpected
from band structure calculation. These features appear to be more pronounced at lower
temperatures, and they are dispersive, splitting as the binding energy increases (panel b). To
shed more light on the possible origin of these bands, we have performed low energy electron
diffraction (LEED) measurements on the sample surface, the results of which are shown in
Fig. 4.4c. LEED is a natural partner for ARPES because, like ARPES, it is primarily a
surface sensitive probe given the short mean free path of low energy electrons. The main
Bragg spots we see are due to the orthorhombic unit cell and are indicated by arrows and
Miller indices, as well as obeying an h + k = even condition®®. But in addition to these
main peaks, one can measure satellite peaks that appear to form a second superstructure
which breaks mirror symmetry. This is indicated by the slightly rotated orange square
relative to the main peaks which indicate the crystal’s orientation. This allows us to at
least confirm the sample surface does, in fact, break mirror symmetry. As we will see in
Section 4.3, this order does not appear to correspond to a CDW phenomenon. Thus, a
possible explanation for this superstructure comes from comparison with the structurally
similar LaSe,. When the material is slightly off in stoichiometry, the system is known
to exhibit an ordered-defect superstructure which breaks mirror symmetry in the crystal’s
square chalcogenide planes®3. It is possible that the stoichiometry of our samples also is
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Figure 4.4. (a) ARPES constant energy image plot centered at 130meV and integrated
over 60meV. Orange arrows indicate bands near the X points which break mirror
symmetry. (b) A similar plot centered at 270meV and integrated over 80meV showing
how the non-mirror symmetric bands disperse by splitting in two. (¢) LEED done on
LaTe, indicating both main peaks (MP) but also a superstructure (SS) which breaks
mirror symmetry.

slightly less than perfect, either from synthesis or through change over time, and the observed
band structure is due to a surface state forming on a non-mirror symmetric LaTe, surface.

Continuing to move away from Ep, Fig. 4.5 shows the evolution of the band structure
as the binding energy is increased up to approximately 1eV. We found that subtle patterns
appeared in the near I" point (zone center) band structure, but observing them in a traditional
ARPES intensity map was challenging. To address this, we show the first derivative of the
ARPES constant energy maps, where the derivative was taken in the y-axis direction. For
determining quantitative results, this is a challenging method to interpret. But for observing
otherwise weak band structure, it can be very useful. As the binding energy increases, we can
clearly distinguish the onset of complex patterns centered at the I' point, which evolve into
a checkerboard-like structure in momentum space as the binding energy increases toward
700meV (panel ¢). These structures continue to maintain the four-fold symmetry seen near
Er. To explain whether the onset of this complex structure is simply due to band structure or
reflects some hidden order such as a CDW order, it is important to carefully examine the band
structure along high symmetry directions and compare it with known LDA calculation®!.
We note that these complex patterns seem to be strongly sensitive to photon energy, as was
the case for the inner diamond in Fig. 4.2b. In particular they can be enhanced for photon
energies close to the La 4ds/, adsorption edge (=105.3eV), suggesting that they are related
to the LaTe layers.

In order to better investigate the origin of these complex patterns in the momentum
space, we need to change our ARPES view. Instead of sitting at a fixed binding energy and
looking at the band structure crossing this plane, we will take slices along high symmetry
direction, and look at the electronic dispersions as a function of energy. This is particularly
useful since it is for these high symmetry cuts that band structure is calculated by LDA.
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Figure 4.5. (a)-(d) Constant energy cuts integrated over 60meV, with first derivative
used to enhance band edges, centered at binding energies 450, 560, 700, and 820meV

respectively.
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So Figs. 4.6-4.8 show a detailed analysis of the experimentally measured band structure
along the high symmetry directions. In panels 4.6a-b, we present the raw ARPES image
plots along the X-I'-X direction, with the associated energy distribution curves (EDCs)
shown in panel d. The direct comparison with the LDA calculation (panel ¢) show that far
more bands are observed experimentally than the one predicted by the non-renormalized
LDA within the 400-850meV energy range. However, bands arising from the square Te
planes (81, B2, and §) are, for the most part, well modeled by the theory and require no
renormalization. However, bands arising from the interlayer LaTe blocks (all other bands
in the figure) require renormalization. This is summarized in Fig. 4.6¢c which illustrates our
hypothesized renormalizations of the LDA band structure.

For the following reasons, we propose that the LaTe bands are being compressed into a
smaller energy range, with at least three bands peaking at I' between 0.5 and 1 eV in binding
energy. First, a; was expected to rise to lower binding energy and nearly touch the circular
electron pocket of earlier discussion. However, since this pocket cannot be resolved and we
see no spectral weight at the I' point until nearly 400meV, we infer that the hybridization
between the two bands was simply underestimated by theory. A greater energy gap between
the bands both forces the electron pocket above Ep (where ARPES cannot observe it) and
pushes the a; band to higher binding energies, around 500meV. Secondly, it is important
to be able to identify the ¢ band in our data because it is the highest binding energy
band of the LaTe block in our energy window of interest. We find a band in the data with
the appropriate curvature but it has been renormalized to a far smaller binding energy as
indicated in panel c. We take this as suggesting that the other LaTe block bands above
it may require a similar renormalization pushing them all to lower binding energies and
compressing them closer the energy range between 0.5 and 1.0eV. Thus, a; and v, provide
the ‘bookends’” which define the new, tighter energy range which the LaTe block bands exist
in.

With these things in mind, we can examine the other high symmetry directions, M-I"-M
in Fig. 4.7, and M-X-M in Fig. 4.8, and we obtain a similar picture. The M-I'-M band
structure does reasonably well at explaining the 83 and (4 bands, responsible for the inner
diamond and near M point band structure respectively. However, we can again identify the
a1 and 7y bands which suggest the aforementioned LaTe block band renormalization. It
is also worth observing the strong increase in the spectral weight of the 3 band (possibly
due to the presence of «ay) at around 500meV as partly responsible for the large gap as-
sociated with this inner diamond band®. Also, we suspect the ¢ band may also require a
renormalization to help explain the data particularly near the M point in Fig. 4.7. However,
we do not feel that our data provide enough insight to intelligently propose one, and thus
we leave the band unchanged in Fig. 4.7. The M-X-M experimental band structure also
demonstrates a reasonable level of agreement with theory in the case of the Te plane bands
but renormalization is needed for the LaTe block bands. However, theory calculated for
this symmetry direction appears far more discordant with actual experimental results than
other symmetry directions. Whether the absence of bands is due to matrix elements or a
particularly non-trivial renormalization, is unclear and requires more theoretical insight. It
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Figure 4.6. (a) ARPES image plot showing dispersions along X-I'-X down to nearly
4eV in binding energy. (b) ARPES image plot showing dispersions along X-I'-X down
to nearly 1.5eV in binding energy. Overlaid on both plots is the predicted LDA band
structure which, in some cases, is renormalized based on the data. (c) LDA band
structure calculation along X-I'-X. Bands that have been renormalized are indicated
by arrows showing the proposed shift in energy from their original locations (gray
dashed lines). (d) Energy distribution curves (EDC’s) down to 3eV in binding energy
taken along I'-X direction.

Figure 4.7. (a) ARPES image plot showing dispersions along M-I'-M down to nearly
4eV in binding energy. (b) ARPES image plot showing dispersions along M-I'-M
down to nearly 1.5eV in binding energy. Overlaid on both plots is the predicted LDA
band structure which, in some cases, is renormalized based on the data. (¢) LDA band
structure calculation along M-I"-M. Bands that have been renormalized are indicated
by arrows showing their proposed shift in energy from their original locations (gray
dashed lines). (d) Energy distribution curves (EDC’s) down to 3eV in binding energy
taken along I'-M direction.
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Figure 4.8. (a) ARPES image plot showing dispersions along M-X-M down to nearly
4eV in binding energy. (b) ARPES image plot showing dispersions along M-X-M
down to nearly 1.5eV in binding energy. Overlaid on both plots is the predicted LDA
band structure which, in some cases, is renormalized based on the data. (¢) LDA band
structure calculation along M-X-M. Bands that have been renormalized are indicated
by arrows showing their proposed shift in energy from their original locations (gray
dashed lines). (d) Energy distribution curves (EDC’s) down to 3eV in binding energy
taken along X-M direction.

is our opinion that this renormalization is responsible and can provide an explanation for the
complex checkerboard-like structure observed in the first derivative constant energy maps
discussed in Fig. 4.5.

So we have attempted to present a clear and comprehensive picture of the experimental
band structure for LaTe, using the ARPES technique. Already by this point, we have seen
evidence of CDW physics such as in panel b of Fig. 4.3. But of additional importance is that
the band structure near Er can be well modeled by non-CDW LDA band structure calcu-
lations and is dominated by contributions from the Te(1) layers. Other bands, particularly
those associated with the LaTe block bands, require more energy renormalization. The inner
diamond band structure with its smaller gap will be critical to the work to follow. Also,
we have observed and attempted to explain the broken mirror symmetry seen in the band
structure. This too turns out to be critically related to the debate over CDW physics in this
material.

4.3 The Effect of CDW Physics on Near Ep states

Given our comprehensive study of the band structure, we begin to ask some more probing
questions about CDW physics in this material. As mentioned, the origin of a CDW is most
commonly traced to a Fermi surface nesting instability, i.e. the matching of sections of the
Fermi surface to others by a single wave vector, qy. (Note: qy = qepw if the nesting
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actually leads to a CDW.) But unlike the ideal 1D metal studied by Peierls, the Fermi
surfaces in higher dimensional materials tend to remain metallic in the CDW phase, either
due to imperfect nesting which leaves regions of the Fermi surface ungapped®®*, or due to
residual electron pockets formed by the CDW formation®%. This is in contrast to the
quasi-1D CDW systems, where a perfect nesting can be realized and the Fermi surface is
fully gapped, which explains why all known quasi-1D CDW materials are semiconductors in
the CDW phase %9777, While we can find a few examples of non-metallic 2D CDW systems,
the origin of the CDW phase is not due to true Fermi surface nesting but rather due to Mott
physics?9 or other non-nesting phenomena %

Therefore, a natural question is whether there exists any proven instance of a 2D CDW
system where the CDW phase is driven by Fermi surface nesting, yet non-metallic. LaTes
is ideal to address this question, having been previously shown to be non-metallic®1%! and
supporting a CDW as has been established by TEM and x-ray diffraction. Yet, these results,
presented in Section 4.1, demonstrated some ambiguity about the nature of this CDW,
in particular its wavevector. In addition, there is some ambiguity about the size of the
gap, particularly for bands near the I" point. We have already begun to address this in
the preceding section with the discovery of the inner diamond and its gap around 50meV

(Fig. 4.6Db).

Our intention is to demonstrate that LaTe, is indeed a CDW material where the nesting
wavevector does correspond to the new periodicity of the lattice and that this nesting does
indeed open up a non-zero gap throughout the band structure at Ex. This would be novel
since it would represent the first 2D CDW system to actually behave like the ideal 1D system.
Through this, we could also shed light on the ambiguity over the CDW wavevector seen by
other probes, in particular the identity of the two orders observed by TEM: q=.5a* which
we will refer to as q; and gq=.6a*+.2b* which we will refer to as qa.

Fig. 4.9a is a re-presentation of the data from Fig. 4.2b, showing the constant binding
energy band structure of LaTe; near . As indicated before, there is particular interest in the
small inner diamond square contour centered around the I'" point. Panel b is data similar to
that shown in Fig. 4.3a except, as is crucial for our arguments about nesting, the MDC peaks
are taken along both M-I'-M directions to fully establish the inner diamond. The importance
of both the inner diamond and the stronger outer contour (the yellow dashed line in this
figure) lies in the essential role they play in determining the CDW formation. The reason
for this is that the Fermi surface in panel a (as well as in Fig. 4.2) can be approximately
represented by two perpendicular pairs of nearly 1D bands parallel to the I'-M direction
(see inset of Fig. 4.9¢). This gives rise to an almost perfectly nested Fermi surface, favoring
a CDW with nesting vector parallel to the I'-X direction (red arrows in Fig. 4.9¢ inset).
We can determine this nesting vector as qy=.53a* which is determined from the separation
between the MDCs peaks shown in Fig. 4.9¢ (yellow circles), taken for different cuts (1 to
9) along the I'-X direction. This is consistent with prior scattering work regarding q;. This
nesting is nearly perfect, with a variation in the peak to peak distance of ~2% as compared
to ~20% in the imperfectly nested tritelluride compounds®. Finally, since the Fermi surface
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Figure 4.9. (a) Unsymmetrized F'S map (integrated between +50 meV above to -
100meV below the chemical potential, p) at T=180K as seen in Fig. 4.2. White
represents maximum intensity and black zero intensity with beam polarization dis-
played in the inset. The non-CDW LDA band structure at Ex%' is shown as yellow
lines. (b) MDCs through the inner diamond, along M-I'-M directions. (c) Raw MDCs
spectra near p for cuts parallel to the I-X direction (1 - 9) as shown in the inset of
the same figure, where the first derivative of the Fermi surface is shown. Each curve
is shifted in k-space by a constant.

79



X M
' T TTT 1 |'||"'|A‘1_0
(a)l a B)A \JW\W/ ‘[ (c) 450 meV
C 1™~ 1
| A s\lf\k)lf:’j c
I J
=1\ ~—]
s | g
2 Wy + .
a - I k (n/a) 1.0
O -~ —_
E E g: (d) mB
I '
N 1 c MB == SB =
] K\/ 5
] N 1 .Itrl(P.).l:......:l...l E
-0.4 0.0 -04 0.0 0.4 06 -04 02 00
Energy (eV) k, (n/a)

Figure 4.10. (a) EDCs stack taken along the green line (I'-M) in the inset. (b) Sym-
metrized EDC stack at kr along one quarter of the outer band contour as indicated
in the inset of 2a, with T=50K. (c¢) Unsymmetrized constant energy cut at 450meV
showing evidence of shadow bands indicated by black arrows, where black represents
maximum intensity and white zero intensity. (d) MDC cut taken along the dashed line
in panel ¢ showing two peaks associated with the main band (MB) and the shadow
band (SB). The inset illustrates how the shadow bands (gray line) arise by shifting
the inner diamond by the nesting vector qy (red arrow).

pattern is four-fold symmetric, the MDCs shown suggest that qy also nests the entire Fermi
surface, again explaining the q; observed by TEM.

This is critical but still only half of the argument. We have shown that the entire Fermi
surface can be nested by q;. But does it open up a gap everywhere it nests as expected in a
1D CDW system? The momentum dependent energy gap can be measured from the leading
edge position of the energy distribution curves (EDC’s) along kg, as described in Section 2.4.
Looking to panel a of Fig. 4.10 shows a series of EDCs for a cut parallel to the I'-M direction
(green line in the inset) over the inner diamond contour. This data is a subset of the data
presented in Fig. 4.7d, but here we zoom in close to Ep to resolve subtle features in the (3
band. This more careful EDC analysis resolved the small peak in the EDC, which disperses
toward g, yet never crosses it, and eventually recedes to higher binding energy. This allows
us to estimate a leading edge midpoint gap of 50 + 10meV (green circle), suggesting A =~ 100
meV. This is consistent with the gap determined by the discontinuity in the band dispersion
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Figure 4.11. (a) Cartoon illustrating the experimental Fermi surface structure of
Fig. 4.9 (black curves) shifted by qy (red arrow and blue dashed lines) indicating a
lack of any significant overlap by this wavevector for the data. (b) Here, the band
structure is shifted by q; and illustrates the nestable (closer overlap) regions examined
in Fig. 4.9¢

seen in the MDCs of Fig. 4.3b. Thus, is the first good characterization of the inner diamond
gap since, as mentioned in the previous section, prior studies had not resolved this diamond
and assigned A ~ 600 meV®°.

With the inner diamond gap quantified and finite, we can turn our attention to the outer
Fermi surface. In order to do this, Fig. 4.10b shows a stack of EDC spectra at kz along
the outer contour, from A to A’ (inset of panel a). As is often the case, being able to
determine the gap without the complexity of the Fermi function would help our analysis of
the Fermi surface gapping. As described in Section 2.4, we will symmetrize these kp EDCs
to remove contributions by the Fermi function. As with the inner diamond, the midpoint of
the leading edge show that the majority of the spectra are also gapped by ~ 50 £+ 14meV
(blue circles at high symmetry points), although deviations from this are observed. This
gap behavior is four-fold symmetric throughout the entire Brillouin zone. Surprisingly, the
gap seems to anomalously increase near the B points, closest to I' point, along the contour.
Although a more complicated CDW origin for this anomalous gapping is possible, we propose
a simpler explanation. Two bands are predicted to exist near the B point, one due to the
inner diamond and other from the outer Fermi surface. The anomalous increase of the gap
can then be explained as a shift of the relative spectral weight between these two bands.
Admittedly, this still remains a mysterious aspect of the gap to us. But the larger message
remains clear: the Fermi surface nested by our qu is indeed gapped.

The observation of shadow bands corresponding to our qy further supports it as the
CDW vector of the system. Returning to the data from Fig. 4.5a taken at a constant 450meV
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binding energy, we present it again in Fig. 4.10c but without taking the first derivative and
instead oversaturating the image. A careful examination reveals unexplained band structure
indicated by the black arrows. We can quantify this by taking an MDC along the dashed line
and we find two peaks associated with the main and shadow bands in the MDC spectra (panel
d). The inset illustrates how these twin peaks are produced by shifting the inner diamond
main band by the qy of Fig. 4.9c. It is somewhat surprising that these shadow bands
only seems to appear around 450meV and are hard to resolve elsewhere. One possibility is
that this region in binding energy is near a van Hove singularity and is causing an overall
increase in the electronic density of states, the result of which makes the otherwise difficult
to observe shadow band structure visible. But the larger conclusion is still confirmed: CDW
formation via q; is induced by a Fermi surface nesting instability, which leads to the opening
of a CDW gap along the kr where the majority of the contour is gapped on the order of
50meV measured from the leading edge. The fact that this gap persists over the entire Fermi
surface is consistent with bulk measurements suggesting its semiconducting properties!%t:8,
Additionally, the strong increase in band intensity we see near the I' point for this constant
energy cut (Fig. 4.10c) and even more so in the I'-M and T'-X slices of Figs. 4.6 and 4.7
overpowers the weaker low energy bands which the CDW actually gaps. This might be
responsible for the fact that earlier tunneling reports of a much a much larger CDW gap
(e.g. A = 0.45eV10%).

In contrast, it is hard to find any strong ARPES signature of the second CDW order q2%.
Specifically, we could not identify any Fermi surface band structure which could be nested by
this wavevector. A basic model is provided by Fig. 4.11 showing the relative ability of the F'S
to be nested by q; but not qz. Also, the complex band structure of Fig. 4.5 doesn’t appear
to be explained by qs creating an ordered state of some kind either. In fact, throughout our
analysis, no wavevector could explain these patterns. Thus, as proposed in Section 4.2, this
q> likely corresponds to a ordered-defect in the crystal’s square chalcogenide planes related
to imperfect stoichiometry. The superposition of mirror symmetric superstructure domains
explains the symmetry of TEM results. Yet at the surface, only the superstructure of a
single Te plane is observed which breaks mirror symmetry, dominates the LEED pattern,
and causes surface states reflecting this broken symmetry as seen in our ARPES data. We
also speculate that defects mainly affect high energy states by trapping charges, and not the
states near p. One might ask in the LEED image of Fig. 4.4, why we see no evidence of a
2x2x1 superstructure which would be consistent with our qcpw. The comparative weakness
of the shadow bands in Fig. 4.10c-d suggests that the modulation in electron density is very
small and would explain its absence in our LEED which only discerns total electron density.

4.4 Discussion

With these results in hand, we can ask the question, what could this work tell us about
CDW phenomena in the tellurides. Our attention initially turns to the idea of layer de-
pendence which plays an important role in the high temperature superconducting cuprates.
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Figure 4.12. (a) Phase diagram of the tellurides from Ref.'®® showing the potential
density wave phases which could occur with respect to temperature and coupling: (b)
Checkerboard phase and (c¢) Stripe phase.

Comparing between the CDW phase observed in single layer LaTe, and double layer RTes,
we come to a few important observations: First, this study suggests that the Fermi surface
driven nature of the qcpw does not change between double and single layer compounds,
although the Fermi surface nesting in LaTe, appears more perfect than in tritellurides®8.
Second, the CDW gap is several times smaller that of tritellurides®®*. Finally, recent the-
ory on the rare earth tellurides suggests two possible ordered phases: a stripe phase and
a checkerboard phase!®® as illustrated in Fig. 4.12. Here we see that as electron-phonon
coupling, A, decreases, one could enter into a regime where basically 1D stripes associated
with the CDW physics could give way into a 2D coexistence of CDW orders forming the
checkerboard pattern. Comparing this with our experimental findings, the single layered
compounds might fall closer to the CDW checkerboard phase than RTes systems. It also
seems possible that if CDW interaction is reduced, e.g. by applying pressure’’, the checker-
board pattern may emerge. Now, ARPES would be unable to distinguish between these
two phases given the reality of crystalline domains which, considering the ARPES spot size,
would always appear to have ordering in both orthogonal directions. Still, with the advent
of nano-ARPES, perhaps this hurdle could be overcome and significantly small beam spots
could reveal CDW physics (e.g. shadow bands) which are only two-fold and not four-fold
symmetric.

As we conclude our work on the tellurides, our study of the CDW ordering should remain
in our minds as we transition into the high temperature superconducting cuprates. Our study
of the tellurides has pointed out the importance of layer dependence on the physics of this
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density wave. With the existence of the well known bosonic kink** in cuprates which many

associate with electron-lattice interaction, the physics of CDW ordering remains on the minds
of those trying to understand the cuprate phase diagram, particularly the pseudopgap phase
at low doping. It is well known that the number of layers plays a crucial, yet unexplained, role
in determining T.'% and potentially a role in the pseudogap formation temperature based on
similaries between samples of similar layer number'%®. Could such a density wave ordering be
at work in these systems? Could nesting of the cuprate Fermi surface be important to these
materials? Could this relate to the lower T, and T* of single layered cuprates? (e.g. LSCO,
Bi2201) Or perhaps, we have this reversed since stripe physics is known to exist in single
layer compounds like LSCO at 1/8 hole doping while double layer compounds like Bi2212
are believed to have checkerboard patterns from STM studies®®. So, with the knowledge
of CDW ordering as well as background in the novel magnetic orderings we have found in
the iron arsenides of Chapter 3, our attention turns to the big game in condensed matter
physics, the superconducting cuprates.
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Chapter 5

Band Structure of Lanthanide

Substituted Bi12201

5.1 Introduction

As described in Section 1.6, the high temperature superconducting cuprates represent
a significant challenge for theory and remain, arguably, the most active single area of con-
densed matter research over the last two decades. Part of the challenge is explaining the
cuprate phase diagram as seen in Fig. 1.3 and reproduced in Fig.5.1. Of particular interest
is the mysterious pseudogap phase seen at low hole dopings. Although there are numerous
superconducting cuprate systems that are the subject of active study by techniques such
as ARPES and each has its unique quirks (e.g. stripe formation killing superconductivity
in LSCO at 1/8 doping), essentially they are all sandwiches made up of Cu-O octahedral
forming square planes (bread) separated by different kinds of meat. The number of Cu-O
planes is curiously related to T, with a monotonic increase with layer number!%, though
peaking with the trilayer compounds (i.e. BisSroCasCuzOigss - Bi2223) and then consis-
tently decreasing for materials with further increasing layer number. This curious parameter
formed part of the motivation for our work on the rare earth tellurides in Chapter 4. But
the primary motivation for our work in this chapter comes from two sources: Understanding
the nature of the pseudogap phase in the midst of the current debates about its connection
to superconductivity (see Section 1.6), and the potential role the lattice plays in the origin
of self-energy contributions to the low energy electronic structure. In order to understand
the work done both here and in Chapter 6, we need to use what we have already begun
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Figure 5.1. (a) The hole doped cuprate phase diagram illustrating the critical T* and
T. of the pseudogap and superconducting phases, respectively. (b) General cuprate
structure of the single layered Bi2201 cuprate. (c) The Fermi surface we will be ex-
ploring. Ovals indicate the “nodal” regions while the rectangles indicate the antinodal
regions near the Brillouin zone edge.

explaining in Sections 2.3 and 2.4, and look at the specific case of the cuprates and bosonic
phenomena as contributions to the self-energy, 3, seen by ARPES.

We have already introduced the idea of how the electronic states can be coupled to
by bosonic phenomena (as opposed to simply electron-electron interactions) in Section 1.4.
Of particular interest in the study of superconductors, if only for historical reasons, is the
role of electron-phonon coupling and whether it is significant since, as explained in Section
1.5, it plays such a critical role in conventional BCS superconductivity. However, the BCS
model seems insufficient for the superconducting cuprates as well as the superconducting
iron pnictides. Still, with our attention now turned to the cuprates, we will explore the
question of electron-phonon (or electron-lattice) coupling once again. In doing so, we will
discover that, although mysterious, the lattice continues to matter in these novel materials.

Stepping back for a moment, one can see the use of ARPES to study electron-phonon
coupling as the union of two different approaches within the study of phonons. First, and
the most direct, is the mapping of phonon dispersions using inelastic scattering techniques
such as inelastic neutron and X-ray scattering (INS and IXS). Understanding phonons with
a momentum space perspective is, as explored in Chapter 1, the most intuitive manner for
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understanding phonon modes within a lattice. But, if we are seeking information about how
electronic states interact with phonons, then the approach is, at best, an indirect technique.
Historically important to the confirmation of the BCS theory, tunneling measurements done
on conventional superconductors (e.g. Pb!%7) have provided insight into how electron-phonon
coupling directly affects electronic states near the Fermi energy Er. Besides the confirmation
of an isotropic gap, there were unexpected features observed in the spectra which were later
explained within a strong coupling form of the broader Migdal-Eliashberg theory!%®. As
important as these tunneling measurements are, to be able to have both direct information
of how phonon modes affect electronic states yet to also see this from within a momentum
space perspective (tunneling is fundamentally a real-space spectroscopy), requires a different
approach, an approach that ARPES is well-suited to offer.

Thus, remembering back to our discussion of self-energy analysis in Section 2.4, we can
focus directly on the physics which results in the ARPES kink in the cuprates. Turning
back to Egs. 2.56 and 2.60, we can see they demonstrate that a sudden increase in the
real part of X(k,w) at a particular energy, w, would lead to a deviation of the measured
peak from the single electron bare band structure, e(k), at that energy scale. The result is
seen in Fig. 5.2 which shows superconducting phase data taken on the well-studied cuprate
Bi2212 at its optimal doping (T.=92K). The two ARPES cuts are taken for states both
at (panels a-c) and off (panels d-f) the nodal (A = 0) point. The different visualization
methods that are used for each cut are designed to bring out some key characteristics of
the ARPES kink phenomenon would be followed by a more detailed, quantitative approach
involving curve fittings. As labeled in the figure caption, the “MDC map” allows us to track
the MDC dispersion and width. This is similarly true for EDCs in the “EDC map.” The
color scaling is chosen to give the peak maximum and half maximum distinct colors, red and
blue respectively.

From these maps, one can observe the following features: 1) The anisotropic d-wave
nature of the superconducting gap is immediately apparent in the MDC “backbending”
observed in panel (e) near Ep within the gap energy scale. This effect is related to the near
vertical band structure we observed within the CDW gap (Fig. 4.3b), where the absence
of a band is replaced with a waterfall of remaining spectral weight within the gap. This is
confirmed when we find that evidence of this gap and the associated backbending disappears
for the nodal cut (panels a-c). 2) An abrupt deviation in the electron dispersion can be
seen around 70meV below Ep (large black arrow) for both nodal and off-nodal cuts. In both
cases, this corresponds to slower electron dispersion (larger quasiparticle effective mass,
m*) at lower energy while there is faster dispersion (smaller quasiparticle effective mass) at
higher energies above the 70meV energy scale. 3) If we focus particularly on the off-nodal
cut, we can see evidence, even in the raw map, of an intensity decrease forming a local
minimum at the 70meV energy scale. This unusual lineshape, further enhanced by the EDC
map (panel f), is known as a peak-dip-hump. This lineshape could be associated with the
presence of self-energy effects due to the coupling of electrons with a bosonic mode leading
to a redistribution of the spectral weight in the EDC spectra. (See the end of Section 2.3
and the start of Section 2.4 for details about how self-energy is connected to the presence of
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a coherent and incoherent peak.) 4) From our understanding of Fermi liquid theory, both
Eq. 1.10 and similarly (written as self-energy) Eq. 2.50 lead us to expect quasiparticles within
this paradigm to become sharper (i.e. longer living) as one approaches Ep. Therefore, it
is significant that the kink energy scale also defines a sudden change in the sharpness of
the peaks. From the panels and, in particular, the EDC maps, we can see abrupt changes
in the linewidths as one approaches states above and below the kink energy scale. So, to
bring everything together, we can think about the ARPES kink as indicating an energy
crossover which separates sharp, slowly dispersing, coherent states near Ep from broader,
quickly dispersing incoherent states at higher energy.

Within our ARPES analysis, we will divide our work between states near the A = 0
nodal region of the cuprate electronic structure and those far from it. This is more than
just an organizational convenience as outside work suggests a significant difference between
states near the node and those at the antinode at the Brillouin zone edge!!011112113114115
From an ARPES point of view, the essential foundation for discussions regarding the self-
energy of the nodal quasiparticle states is the kink, already obvious in the spectra of Fig. 5.2
and initially discovered the double layered cuprate Bi2212%6. On the heels of this discovery
and the resulting debate, a systematic study regarding the origin of this kink discovered
the feature’s remarkable ubiquity at the nodal point at essentially the same energy, ~ 70
meV 1%, From this work, one finds evidence for a trend between doping and the strength
(coupling constant, \) of the mode with an enhancement of (k,w) as one tends towards
underdoping. Given the complex pseudogap physics in the underdoped region of the phase
diagram, this may have particular significance.

Additionally important is the continued existence of this kink below and above the super-
conducting T, (panel d-e), which already casts some doubt on scenarios which associate this
effect with the superconducting gap opening and particularly scenarios involving magnetic
modes 17 H819.120.121 “(Of course, if this bosonic coupling is related to phonons, understand-
ing the identity of the phonon mode is key. When photoemission data is compared with the
phonon energy at q = (7, 0) (thick red arrow in panel a) and its dispersion (shaded area) as
determined by inelastic neutron scattering!?? it was proposed!%* that the nodal kink results
from coupling between quasiparticles and the zone boundary in-plane oxygen-stretching lon-
gitudinal optical (LO) phonon. It’s been noted, however, that although this is the highest
phonon mode contributing to the kink, quasiparticles are also coupled to other low energy
phonon modes!?*. Furthermore, one finds a drop in the quasiparticle width (Fig. 5.3b-c)
below the kink energy and the existence of a well-defined peak-dip-hump in the EDCs as
mentioned in the discussion of Fig. 5.2. This latter phenomenon persists up to temperatures
much higher than T.'?*. All of this provides support that, at least for these nodal states,
the lattice and phonon interactions are indeed important to the physics of the cuprates.

In light of this, it is natural to ask about states beyond the nodal point, such as those
near the antinodal point (Cu-O bond direction). Here, many-body effects had been suspected
for some time from earlier ARPES studies of the cuprates where evidence of the peak-dip-
hump lineshape was reported 26127, Controversy has existed though because of the role
of bilayer band splitting may have on the observed spectra in the double layered Bi2212
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Figure 5.2. (a-c) ARPES data taken at 25 K on optimally doped Bi2212 supercon-
ductor (T, = 92K), for a cut along the I'Y direction through the nodal point in
momentum space (indicated in panel a inset). (d-f) The same sample and orienta-
tion, but taken nearer the Brillouin zone (BZ) edge (or antinodal point) in momentum
space (indicated in panel d inset). (a,d) Raw ARPES data taken with a color scale
where intensity increases from pale yellow to green to blue to white to red. Here, blue
(white) corresponds to 1/2 (3/4) of the maximum intensity. (b,e) Same data but as
an “MDC map,” where each MDC has been normalized so that its maximum and
minimum intensities are 1 and 0, respectively. (c,f) Same data but now each EDC has
been appropriately normalized to create an “EDC map.” Thick black arrows indicate
the energy of the bosonic mode while the A is the superconducting gap. Energy
resolution used here is ~ 15 meV. Figure from Ref.!%
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Figure 5.3. ARPES MDC dispersion data taken optimally doped

BiySroCaCuyOgys (T, = 92 K) as discussed in Ref.'?*. Nodal point data (see
inset) comparing (a) dispersion and (b-c) MDC full width half max showing little
change in the energy of the ARPES kink with T.. As discussed in Section 2.4The
MDC FWHM is related to the Im¥(k,w). (d-f) Same analysis for band structure
closer to the antinodal point.

compounds. This splitting of the band is due to interactions between the different Cu-O
layers in the multi-layer compounds and is particularly pronounced as one moves towards
the antinodal point in the Brillouin zone. In fact, this is one reason for our focus on the single
layered compounds within this thesis which lack this. Still, this peak-dip-hump lineshape,
indicative of a bosonic mode, was initially interpreted in terms of a magnetic phenomenon
which had been observed in YBCO and Bi2212 by inelastic neutron scattering 2129130 Ag
the community got a better handle on the bilayer splitting 31132133 4 low energy kink of
approximately 40meV near the antinodal region was reported for Bi2212!34:135,136

Yet here the controversy continues to fester. Some have argued that this kink disappears
above T, and, along with the decrease of its strength as one moves along kr away from the
antinodal region, the interpretation has been that of coupling to collective magnetic excita-
tions 134136:135  However other more recent work!3"12% has reported that the near antinode
kink does indeed persists above T, as seen in panels d-f of Fig. 5.3, but with a shift towards
higher energy, from 40meV to 70meV, upon going below T.. This shift could simply be
caused by the opening of the superconducting gap (~30meV at the antinodal point.) This
has led people to wonder if the antinodal kink is also better understood in terms of electron-
phonon coupling (e.g. the By, phonon mode 137 which has the right energy and momentum.)
The Marginal Fermi Liquid theory alluded to in our discussion of self-energy (Eq. 2.51) gives
a partial solution, invoking spin fluctuations in the normal phase and is consistent with
the measured dispersions. But it doesn’t currently explain any of the drops in the MDC
linewidths.

A final significant way in which one can see that the lattice must play an important role
in the cuprates is the via the isotope effect. Previously, this physical observation around
1950 was significant in how it focused attention towards phonons in conventional BCS su-
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perconductors. ARPES has been used to probe the isotope effect in other samples such as
the surface state on tungsten induced by H chemisorption!®®. This work was consistent with
the predictions of the strong coupling form of the aforementioned Migdal-Eliashberg theory.
But the isotope effect seen in the double layered cuprate Bi2212 (using 'O and '®0) presents
more complexities. Figures 5.4 and 5.5 summarize the critical results of this work.

First, one notices the effect isotope substitution has on the bosonic kink binding energy.
Panels a-b are MDC maps, normalized in a manner like those in Fig. 5.2. They represent
data taken at the nodal point in the I'-Y direction. Doing an MDC fitting analysis, panel ¢
shows the electronic dispersion for both isotopes plus a re-exchanged sample, 160 ge_cqen (a
studied 80 sample with 'O re-exchanged back into the lattice.) There is a subtle shift in the
kink energy of approximately 5meV. One can additionally quantify the kink by estimating
the bare single electron dispersion (using a linear approximation) as described in Section
2.4 and extracting the real part of the electron self-energy, ReX(k,w), (see Eq. 2.56.) The
location of the peak in the ReX(k,w) corresponds to the kink energy, and there is similarly
a shift in this peak with isotope change.

Just as before, we have started with the nodal point but what about moving beyond
towards the antinodal point? This is illustrated in Fig. 5.5 which provides the same type
of MDC dispersions for slices aligned parallel to I'-Y moving outward from the nodal point
towards the antinode, both above and below T.. Just as in Fig. 5.4, the kink energy shows
a subtle shift of approximately 5meV for all momentum cuts. But from comparing panel a
with b, it appears that the magnitude of the isotope effect may be, for all curves, diminished
above T.. Additionally, the intensity of the effect remains relatively weak near the node while
comparatively more pronounced near the antinode. Plotting this isotope effect shift with
respect to the isotope averaged superconducting gap, results in a linear relationship plotted
in the inset of panel a. Finally, there appears to be a sign change between the two dispersions
as we transition from the node towards the antinode, which also appears both above and
below T.. Although all of these effects underscore the larger ways in which electron-phonon
physics must be important to the cuprates, this final point is additionally significant and we
will return to it later since this sign change will motivate particular aspects of our research.

There is one other area of ARPES research that argues for the importance of electron-
lattice interactions which we will mention since it plays an important role in the data pre-
sented particularly in Chapter 6. Already motivated by evidence of significant electron-
phonon coupling in the cuprates, a natural direction to explore would be to more carefully
map the phonon dispersion in addition to the electronic dispersion. This can reveal in-
teresting physics such as when a phonon wavevector matches 2kp, where kp is the Fermi
momentum, leading to the well-known Kohn anomaly discussed in Section 1.4. Also, nesting
of the Fermi surface in systems with particularly strong electron-lattice coupling can drive
the formation of charge density waves as we have observed in the tellurides (Chapter 4).
Thus, comparing data that directly probes the phonon mode dispersions within the Cu-O
plane with the observations of the ARPES kink would potentially be significant.

The result of this work is discussed in better detail by J. Graf et al.'*® and we will
only briefly illustrate some the significant points. IXS work was done on the single lay-
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Figure 5.4. (a-b) MDC maps of the nodal point electronic states for cuts along the I'-Y
direction. (a) The '®0O sample and (b) the O substituted sample with the horizontal
arrows indicating the shift in ARPES kink energy with oxygen isotope. (¢) The MDC
dispersions determined from the 60, O as well as a re-substituted O samples for
the cuts in (a-b). (d) Cartoon illustration of the kink shift in (c¢). (e) Real part
of the electron self-energy, ReX(k,w), determined from the MDC dispersion using a
linear approximation for the single electron bare band. As before, the ARPES kink
position, defined by the peak in ReX(k,w), is shifted to higher energy as indicated
by the arrows. Figure from Ref.®
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ered BiySry gLa0.4Cuy06.5 (La-Bi2201) which has never shown any evidence of magnetic
resonance modes. This simplifies the comparison between ARPES kink and scattering by
removing another potentially additional bosonic mode. The focus was on resolving the dis-
persion of Cu-O bond stretching (BS) mode. Focusing on these higher energy longitudinal
optical modes (as described in Section 1.4), one can map out their dispersion across the
Brillouin zone from the center towards the zone face.

When you compare these results with ARPES studies focusing on the kink in La-Bi2201,
there is a suggestive correlation as Fig. 5.6 attempts to display. Panel a shows MDC analysis
of the electronic dispersions taken at the nodal point (curve 1) and away from the node
(curves 2 and 3) as indicated by the slices along the Fermi surface in panel b. We see the
well established higher energy kink appearing here at 63+5meV for the nodal cut. As one
moves away from the node, this kink abruptly disappears between curves 2 and 3, replaced
with only a lower energy kink of 35meV. As we will explore in more depth in Chapter 6, we
believe it is significant that this shift occurs near the tips of the “Fermi Arc,” region of the
Fermi surface (see Section 1.6) where the electronic structure becomes partially ungapped
at temperatures above the superconducting T, but below the pseudogap temperature, T*26.
It is this transition point in momentum space between the arc and where the gap opens
that curves 2 and 3 straddle. However, it is worth noting that the data was taken in the
superconducting phase, so this is a more subtle point.

Comparing this with the IXS data as seen in the inset of panel b, one finds that the
63meV kink has an energy that corresponds well to the energy associated with the softened
BS mode. Even more interesting, as the grey shaded region in panel b illustrates, the region
where the 63meV kink is observed corresponds to a section of the Fermi surface nestable
by wavevectors within the softened part of the phonon mode dispersion from IXS. Related
to this, the sudden disappearance of this kink between curves 2 and 3 corresponds to the
stiffening (higher energy) of the BS mode as seen in the inset when £ < 0.22. Just like in the
case of CDW physics, this ability to nest the Fermi surface topology with a phonon mode,
once again underscores the importance of electron-phonon interactions to the physics of the
superconducting cuprates.

From this survey, we hope to have both demonstrated that there is good reason to believe
electron-lattice interactions play a significant, though unclear, role in the cuprates, as well as
plant some seeds for work we will now present. Indeed, further analysis on the isotope effect
alone suggests that not only is electron-phonon physics important, the prevailing models
which could incorporate it (Migdal-Eliashberg theory) are insufficient, needing to incorporate
electron-phonon coupling with a strength beyond the traditional paradigm of the theory42.
But how do we marry this idea to our quest for a better understanding of the cuprate
phase diagram? To accomplish this, we should look to an additional trend in the field of
superconducting cuprates.
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Figure 5.6. (a) MDC dispersions measured for three different momentum cuts along
the I'-Y orientation with cut 1 at the nodal point while cuts 2 and 3 are further
toward the Brillouin zone boundary, near to the edge of the pseudogap phase Fermi
arcs'!. (b) Experimentally determined Fermi surface with the cuts from (a) indi-
cated. The solid line indicates a constant energy contour at the kink energy, 63meV,
while the shadow area indicates the region where the nodal kink appears bounded
by the indicated nesting wavevectors. The inset shows the IXS dispersion and peak
FWHM (seen as error bars) of the BS mode. Note: The apparent Fermi arcs seen are
due to the experimental resolution. Figures can be found in Ref. 140
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5.2 Lanthanide Substituted Bi2201

It is well known that the application of external pressure can affect the superconducting
T., sometimes in unexpected ways'4®. There has been growing independent work from a
variety of experimental probes!4414%:146 areuing that the role of the lattice is not simply a
source of self-energy effects on the near-Ep low energy electronic states but potentially an
additional axis within the hole-doped phase diagram. In particular, it is the effect of lattice
strain, both external and internal (via chemical pressure - e.g. Ref."), which offers us access
to this new axis of the cuprate phase diagram and seeing its effect on the superconducting
dome. Work using external pressure has indicated critical pressures where the T, appears
to saturate for a range of cuprate hole dopings'* as well as being coupled to other physical
quantities suggesting a significant new critical point along this axis!¥®. Very recent work on
the trilayer cuprate Bi2223 has even suggested multiple peaks in the T. vs pressure diagram,
arguing that pressure may reveal a crossover from a competing order to superconductivity
in the CuO, planes!*®. This result is additionally significant in light of the still mysterious
nature of the pseudogap phase. Using chemical pressure, work has suggested that combining
doping with strain on the Cu-O layer also reveals that the true quantum critical point is,
indeed, shifted along the strain axis¥®. Furthermore, effects related to lattice disorder,
particularly in the Sr-O blocks nearest the Cu-O planes, may also have a dramatic effect on
the formation of the superconducting phase within the cuprates#®. So, this represents the
marriage we are looking for, to both explore the effect of electron-lattice physics as well as
the physics of the larger cuprate phase diagram. But to complete the courtship, we need the
right system to study.

When we consider the experimental considerations involved in an ARPES study, the
best method for introducing strain into the lattice is via chemical pressure. Additionally,
when we look in the literature, there is an ideal candidate. Lanthanide substituted single-
layered BiySry gLing4CuOg (Ln = substituted lanthanide) has been synthesized for a variety
of different lanthanides with differing atomic radii and allow us to access the strain axis of
the cuprate phase diagram in a tunable way!°®. First, the use of single-layered cuprates has
many advantages for an ARPES study: 1) Like other bismuth superconducting cuprates, the
sample surfaces are known to be of good quality for use in ARPES experiments (unlike more
challenging single layered cuprates like LSCO or LBCO.) 2) As pointed out previously, these
samples have shown no evidence of magnetic resonance modes. This will hopefully simplify
our analysis so we can focus our attention on the electron-phonon aspect of the physics
affected by strain and not other bosonic modes (i.e. magnons.) 3) Also as mentioned in the
context of the antinodal peak-dip-hump, the single layer cuprates lack bilayer splitting of
their bands, which has presented challenges to the analysis of other cuprates (e.g. Bi2212). 4)
Since our interest is in part driven by the pseudogap phase, the phase diagram of the single-
layered cuprates differs from their double-layered brethren when it comes to this. Given an
optimally doped sample, the pseudogap temperature, T* is basically the same as T, in the
double-layered Bi2212. But in the single-layered compound, T* is still significantly above
T.. This allows one to, in principle, access all three regions (superconducting, pseudogap,
and ‘normal phase’) with an optimally doped Bi2201 sample. Additionally, there is already
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Figure 5.7. (a) Superconducting T, for optimally doped BisSr;Ln0.4CuyOg for
a series of substituted Lanthanides (Ln) with increasing atomic radius mismatch,
AR=|Rs, — Rpn|. See Ref.'%. (b) Cartoon illustrating the location of the substi-
tuted Lanthanide right above the Cu-O plane. (c¢) Proposed strain phase diagrams
d) Nodal point EDCs illustrating the quasiparticle peak for samples with increasing
strain, colored in (a), from La to Eu. Inset quantifies the half-width half-max of the
peaks for these samples.

reason to believe that the strain could be leading to stronger pseudogap phases in these
materials 149150,

All the of these single crystal samples were grown using the traveling solvent floating-zone
technique which is described in more detail by Eisaki et al.'. The results are optimal doping
samples, which simplify the analysis by making the focus solely on the tuning parameter of
strain. As Fig. 5.7 illustrates, as we substitute the lanthanide elements for the strontium in
the site just above the critical Cu-O plane (panel b), there is a monotonic decrease in the
measured T, of the samples (panel a). The critical variable to quantify this T.-competing
strain is the atomic radius mismatch, AR, as seen on the abscissa of panel a. This value is
determined by the difference between the strontium and the substituted lanthanide atomic
radii, |Rs, — Rp,|. It will be this value which we associate with “strain” within the lattice
in a quantitative way.

Our synchrotron ARPES data were taken at Beamline 10.0.1 at the Advanced Light
Source of the Lawrence Berkeley National Laboratory as well as Beamline 5.4 at the Stanford
Synchrotron Radiation Laboratory, using a Scienta R4000 analyzer. We found that Beamline
5.4 did produce consistently better ARPES results and nearly all the data presented in this
chapter came from this beamline. Reasons for this could be higher energy resolution, matrix
elements due to the polarization of the light, or the beamline’s optimization at lower photon
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Figure 5.8. (a) Transport measurements by Ref.'! on the Ln-Bi2201 systems. (b)
X-ray diffraction measurements of the lattice constants of these systems. Figure from
Ref. 152

energies. A total energy resolution of <15meV was achieved for data taken on the strained
samples, with an angular resolution better than 0.35° and fresh sample surfaces were prepared
by cleaving the sample in situ at a base pressure <5x10~!' Torr at low temperatures.

With the remarkably high quality of ARPES data that one can get from the double-
layered Bi2212 compound, in many respects, the single layered compound has received com-
paratively less attention. Combined with the relatively recent appearance of the lanthanide
substituted version of these compounds, there is limited work, particularly in the ARPES
field, on these strained compounds. Thermodynamic and structural work has been done
including transport 3! (Fig. 5.8a), thermopower '™, and lattice constants!5? (see Fig. 5.8b).
Initial ARPES work has been done on some compounds by a few groups!®1°0149  These
results have generally suggested a decoupling of the superconducting T, and the antinodal
gap and have been interpreted as consistent with the “two gap” models described in Section
1.6. They find evidence of an increased antinodal gap and a depressed superconducting gap
near the nodal point. This is also supported by scanning tunneling microscopy (STM)!5
on these samples. Addionally, estimates have been made of the T* for a few compounds!®
leading to the previously suggested correlation.

Throughout our work, we have been able to take ARPES data throughout the Brillouin
zone on samples across the spectrum strain. This is briefly displayed in Fig. 5.9 where near
Er images are provided for samples we have studied. This raw data leads to some immediate
questions that we can begin to address right away. First, when one looks at the samples
synthesized in Fig. 5.7a, there are samples missing from our spread in Fig. 5.9. For many
reasons, some which remain confusing, certain samples presented significant challenges, in
particular, Ln = Pr, Sm, and Gd. For Pr, we were eventually successful though the relative
quality of its spectra is poorer than other compounds. The spectra we were able to take on
Sm were simply too noisy to allow for any trustworthy ARPES analysis to be undertaken
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Figure 5.9. Near Er band structure showing the ARPES Fermi surface for La, Nd,
Eu, and Bi substituted Bi2201. Images have been taken with the analyzer slit in the
MY geometry and symmetrized about I'Y.

(as well as being complicated by very small crystals.) Our work on Gd was also particularly
frustrating given work done by other ARPES groups'#®. Despite these interesting results on
that highly strained sample, we never achieved any ARPES spectra despite numerous efforts
and cleaves. The reasons could range from a poor batch of samples to bad luck with ARPES
worthy sample surfaces.

Nevertheless, with the samples we have been able to achieve satisfactory ARPES results
on, the spectrum of radius mismatch has been covered. Although these samples do provide
us with a lattice-based, tunable parameter which competes with superconductivity, one can,
and should, pose the question if what we are seeing should be thought of within a lattice
strain or lattice disorder paradigm. Indeed, it is quite obvious from the panels of Fig. 5.9
that the introduction of strain certainly affects the quality of the ARPES. This could be
due to more irregular surfaces in samples with larger AR. Could disorder be widening the
quasiparticle peaks as the mean free path (lifetime) of these states becomes shorter? The
aforementioned work from STM suggests broadening of the coherent quasiparticle peaks with
lattice mismatch. However, this represents more of an integration over the momentum space
and as such, one finds general agreement between this and the data presented in Fig. 5.9.

Panel d of Fig. 5.7 provides evidence that, at least for the nodal states, the strain
paradigm appears to remain valid. With increasing lattice mismatch, the width of the
quasiparticle peak does not increase but, on close examination, may even be decreasing with
increased strain. As an aside, this decrease in the width should be taken with a grain of salt
as illustrated by the cartoon in Fig. 5.10. All other things being equal, if the result of the
strain is to change the v, then it is possible that our EDC analysis might result in a slightly
sharper peak due to resolution effects. Still, one can forgo complicated explanations and set-
tle on the fact that within our error bars, the peakwidth remains unchanged. At this point,
we should acknowledge the absence of the highly strained, non-superconducting Bi-Bi2201
(Ln=Bi so the formula would be Bis 4Sr; §CuQOg). It will be a reoccurring hypothesis of ours
that this compound represents something fundamentally different. Despite the relatively
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Figure 5.10. Cartoon illustrating the potential origin of the decrease in EDC width
as related to a vy change.

small difference in strain between Eu-Bi2201 and Bi-Bi2201, we have never been able to
resolve a quasiparicle peak in the latter compound. So, this argument for a strain paradigm
certainly fails for the Bi-Bi2201 compound from our experimental perspective. Nevertheless,
for the remaining compounds, this result is significant since it has been broadly suggested
within the ARPES cuprate community that observing a sharp quasiparticle peak at the
nodal point is necessary for confirming that the cleaved surface can provide trustworthy
ARPES results. Still, this adds reason for the division in our data between nodal states and
those beyond this point. It is possible that scattering may have a greater effect on certain
electron momentum states than others (i.e. nodal states). Furthermore, we will continue
to return to the hypothesis that it is disorder, and not strain, that represents the primary
effect that lattice mismatch has on the physics of these materials. Indeed, efforts to decouple
these two effects have been undertaken in other cuprates for some time'®®, and even work
on these materials have led some to propose a disorder paradigm!®!. Still, bolstered by our
observation at the nodal point, we will continue in our analysis focusing initially on these
nodal states.

5.3 Analysis of Near Nodal States

In our introduction, the kink near the node illustrated the importance of electron-phonon
coupling in the physics of the cuprate. So, we will focus again on the MDC analysis of these
electronic states, but this time with tuning parameter of lanthanide substitution on the
lattice. Fig. 5.11 presents our findings for substituted Ln=La, Pr, Nd, Eu. The nodal
point band structure from Ln=Bi was significantly weaker (no quasiparticle peak was ever
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observed) and didn’t follow any obvious trend as compared to the other strained compounds.
This could be a sign that Bi-Bi2201 is a fundamentally different system or that the quality
of the data damages the analysis too much.

Looking at the data presented, there are two aspects of these dispersions we wish to focus
on that may be significant. First, we see agreement with the earlier work on the La-Bi2201
system probed via the IXS-ARPES work discussed in Section 5.1. We can observe a kink
around 55-60meV and it appears, to remain at that energy, for the most part, throughout
the strain spectrum. This would suggest that the origin of this bosonic mode is generally
unaffected by the substituted lanthanide. For instance, it is not greatly softened or stiffened,
which would result in a shift in its binding energy. Of course, given the very real error bars
associated with quantifying the binding energy of the kink given ARPES data of this quality,
there is still room for a shift (~ £10meV potentially). However, what does appears to change
with strain is the electron-coupling constant, A which is associated with the renormalization
of these states. In the same manner as was done for the cuprate systems described in Section
1.4, we can estimate A for this mode, which is plotted in panel b. We find the strength of
this mode appears enhanced by the increasing strain of the lattice mismatch with a generally
linear behavior. Equivalently, one can plot A as a function of sample T, (panel b inset) and,
as one would expect, there is a negative, linear relationship between the superconducting
T. and strength of this phonon mode. A natural conclusion one may draw is that this
mode is somehow connected to a phenomenon which competes with the formation of the
superfluid. This is consistent with the observation that the nodal kink is unaffected by the
superconducting transition.

The second thing that we observe is perhaps more peculiar and potentially revealing of
the nature of the lanthanide substitution’s effect on the Bi2201 compound. Although the
dispersion appears linear for the La-Bi2201 at energies less than the 60meV kink all the way
to Ep, the more strained compounds appear to have an additional rounding of the band
structure closer to Ep, the most obvious being in the highly strained Eu-Bi2201. Initially,
this just made our analysis more complicated until we decided to discriminate between the
change in slope at different binding energies. This potentially strain-emergent mode appears
to be around 25-30meV which could be important since this is closer to the mode energy
observed near the antinodal point (as discussed in Section 5.1) from the peak-dip-hump EDC
lineshape. It is also worth noting that we have observed this kink in the MDC analysis in
a region of the Fermi surface that is beyond the nestable region of the IXS softened phonon
mode illustrated in Fig. 5.6. This could mean that the mode seen closer to the antinodal
point actually does exist near nodal point, but is significantly weaker without the effect of
strain.

Naturally, to aid our analysis, we can attempt to extract the A from this more elusive
mode in a manner independent of the 60meV kink, the result of which is seen in panel c.
Unlike the higher energy mode which is apparent in all strain, this lower energy feature
appears to “turn on” at the node only as strain is introduced, leading to a broadly linear
relationship similar to the higher energy mode. Having observed this effect, we obviously
wish to identify its origin. However, it remains as mysterious as the antinodal point kink.
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Figure 5.11. (a) Nodal point MDC dispersions taken from I'-Y cuts on four different
samples of increasing strain (La, Pr, Nd, and Eu). Lines serve as guides to determine
deviation from the expected dispersion. Horizontal shaded regions correspond to the
two potential ARPES kink energy scales. (b-c) Estimating the electron coupling A
on the electronic states from each of the two regions indicated in (a). (b1-2) Higher
energy kink A for each strain as a function of (1) Lattice mismatch A and (2) T..
(c1-2) Lower energy kink A analyzed like (b).
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The introduction of lanthanides does introduce new magnetic moments into the lattice. But
the general linear behavior makes this somewhat difficult to understand. Despite the absence
of a magnetic moment in La**, the remaining lanthanides have basically the same ez ; of 3.3 -
3.6115 due to the occupied f-orbitals!®®, generally inconsistent with the monotonic behavior.
The other option we have explored for this kink is that it is related to an apical oxygen
mode, or a mode associated with the oxygen above the Cu-O plane within the octahedra
seen in the general structure illustrated by Fig. 5.7b. When we think about the way in
which the substituted lanthanides sit in the crystal, as seen in that panel, this possibility
carries more weight. But this remains challenging to understand particularly in light of the
inconsistencies we still see in the data. This is due to later work at different photon energies
on highly strained Eu-Bi2201 that was unable to reveal this effect, and indicated that the
dispersion was basically linear for energies below 60meV all the way to Ep (like La-Bi2201.)
Could the effect be photon energy dependent? This would be strange as the nodal kink,
in general, is so ubiquitous. Could our initial work be flawed? This remains a possibility
where the appearance of a “lower energy mode” is just a broadened kink perhaps due to
sample surface quality (though poorer sample surface quality should not enhance a kink.)
Also, since the newer data was taken at lower photon energies, perhaps what was previously
seen was more surface sensitive. But there really is no reason for this to enhance the kink
either. Could our samples be changing with time? It is possible given the elapsed time of
our work that the effect has become less pronounced but this makes further efforts to explore
these issues problematic without more samples. The final possibility is that a misalignment
of the a-b plane in the azimuthal direction is causing the observed affects. Thus, the cut is
not strictly along the I'-Y direction and perhaps introducing some curvature. Modeling the
effect of azimuthal misalignment so far doesn’t seem consistent with this. And so, in spite
of the ambiguity, we will continue to propose this effect is real, though we have not felt the
confidence to publish the work given these unresolved issues.

Assuming these results are trustworthy, we can see their significance for at least three
reasons. First, the prevailing thought within the field has been that the electronic states at
the nodal point are uniquely unaware of the entry into the superconducting phase. With the
d-wave symmetry of the gap function, the nodal point states are certainly the only electronic
states that have no gap opening despite crossing through T.. Additionally, one could argue
that the continued appearance of a sharp quasiparticle at the node is merely because these
states are protected from the superconducting physics. However, one sees the affect of lattice
strain on these states and this same strain is related to the weakening of the superconducting
state, thus linking the superconducting phenomena to the electronic dispersion of the nodal
quasiparticles. Secondly, as somewhat addressed, these results add additional evidence that
the ~60meV kink has its origin in the physics of the lattice. The appearance and potential
enhancement of the lower energy kink with lattice strain would tentatively suggest its origin
is also somehow connected to the lattice (such as the aforementioned apical oxygen mode)
and not merely a magnetic mode at the nodal point. However, even in our best data, we were
unable to resolve a convincing peak-dip-hump seen in the double layered Bi2212 compounds.
Still this is not entirely surprising as outside ARPES work has already suggested that this
feature is stronger with increased layer number!®”. Finally, at least for the 60meV mode,

103



one finds evidence that this phonon mode is somehow connected to the formation of the
superconducting phase. From its behavior, it appears to be related to a competing order,
associated with the lattice, which may be affecting the formation of the superfluid. This
makes understanding the nature of this lattice excitation all the more important particularly
if it is related to the pseudogap phase.

Before we conclude on these nodal states, one might be asking whether anything can be
gleaned about the effective mass and transport measurement. From the trends described
in Fig. 5.11, we can use ideas such as Eq. 1.5 and Fermi Liquid theory to determine m*
and estimate the conductivity in a basic Drude model, p = m * /ne*r = hkrpAk/ne* for
the single hole band which crosses Ex2?3. This estimate assumes, obviously erroneously, that
vp is the same all along this hole band manifold (or that Ak is the same for the entire
manifold at Ep.) Also, because it is the hole band that is contributing to the transport, kg
is determined from the Brillouin zone edge, or the (7,7) point. Although this curve is not
strictly circular, we will assume it is with a radius of kr for the nodal point. With these
assumptions, we can determine these Drude model values from the ARPES data taken on
La-Bi2201, Nd-Bi2201, and Eu-Bi2201 and compare them to the resistivity data presented
in Fig. 5.8a. Unsurprisingly, we find evidence that m* increases with lanthanide strain,
corresponding to a larger p which we see in the resistivity data at a fixed temperature for
those lanthanides. Determining a trend in the resistivity data is a little problematic because
if we use Ak as suggested by the second equation, other effects (e.g. surface quality) can
interfere with our measure of Ak for the MDC at Ep. Nevertheless, we can determine a
numeric value (using a carrier concentration of n=1-x) of ~ 2 x 107 m. This is consistent
with the transport measurements in Fig. 5.8 for ~ 50K (between 1.0 - 1.5x1075Q m). This
gives us some confidence that what we are observing is bulk and provides a consistency check
with the trends we see in our vy measurements. One could argue that the introduction of
lanthanide strain is causing the samples to become polaronic (strong phonon interactions)
but without the corresponding weakening of the quasiparticle peak, but this position needs
more investigation. Indeed, our efforts to measure the quasiparticle weight, z4, via total
area under the peak or other metrics were generally inconclusive since there appeared to be
too much variation from the cleaves to establish a proper trend. This issue of inconsistent
sample surfaces leading to doubts about lineshape related quantities was a re-occurring issue
throughout our data analysis.

5.4 Analysis Beyond Nodal States

As we move beyond the nodal point, additional topics of interest emerge as well as
additional challenges. First, we have the Fermi arc phenomenon and our attempts understand
if the strain axis we are accessing has an effect on these features. It is known that these
Fermi arc increase with increasing doping!'**'*%, though this seems more a consequence of
the T/T* Fermi arc scaling relation combined with the decrease of T* with increased doping.
Prior work has suggested that T* does increase with lanthanide strain but our efforts to
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determine the effect on Fermi arc have been challenged by the relatively small gaps observed
in these systems. Our initial work has suggested an increase in the Fermi arc length with
strain, but later analysis cast doubt on it, instead arguing that the Fermi arc length doesn’t
show significant dependence with strain. Chapter 6 will revisit this in the case of Nd-Bi2201,
but we find that within our error, the Fermi arc stretches from the node to ~15 - 17° off the
node for these optimally doped samples (where a fully closed gap would be a Fermi arc of
45°.) These measurements were generally taken near 35K, but the temperature seemed to
have little effect. An exception was Bi-Bi2201 whose Fermi arc appeared to be very large in
some measurements, but one could wonder if it would even support a Fermi arc at all since
it never shows superconductivity.

This work with Fermi arcs underscores some of the difficulties we've encountered getting
consistent gap measurements. Given the quality of the data off the nodal point, determin-
ing the gap by the leading edge is our only way. Our attention naturally turns to the gap
near the antinodal point (M point), but though the single layered compounds lack bilayer
splitting, the existence of superstructure bands frustrates analysis. Believed to be related
to oxygen ordering in the BiO layers!®®, the superstructure bands are effectively similar to
the shadow bands discussed in the context of CDW physics in Section 4.3. The ordering
results in scattering the electronic states along a wavevector oriented in the I'-Y direction,
~ (0.2,0.2)7/a. This breaks the four-fold symmetry, making analysis of only two of the four
nodal point in the first Brillouin zone possible (although Pb doping can diminish this effect ).
But near the antinodal point, the superstructure bands re-cross the main band structure, po-
tentially obscuring our gap measurements. This is particularly the case for Nd-Bi2201 where
the superstructure is quite strong. In fact, in some cases the higher order superstructure
(multiples of the ordering wavevector) can lead to crossing of the main band structure that,
if too quickly analyzed, can make the main band structure look like hole pockets straddling
the I'-Y line. Given the interest in finding evidence of a nodal pocket for consistency with
quantum oscillation measurements, the presence of this superstructure needs to be carefully
dealt with. For all our samples, however, this superstructure presented particular analysis
difficulties for the antinodal point. Some of these challenges were addressed by using lower
photon energies which, due to the ARPES matrix elements, weaken the spectral weight of
the superstructure bands. Despite these problems as well as the findings by other work 4%,
Fig. 5.12b plots our final findings of the gap at the antinodal point. Because of the challenges
associated with the superstructure, we do not show the Nd-Bi2201 data which anomalously
has a M point gap at apparently less than half the value of these points. From the leading
edge gap we find dramatically little change in the gap with a slight overall increase with
lanthanide substitution. Additionally, the magnitude of the gap we find is larger than ex-
pected for these systems, possibly due to the Ak integration window or perhaps other issues.
Still, the trend we see is small but positive, with the A g increasing by around 3-4meV. We
can look at data taken at different temperatures as in panel ¢, but the only trend one could
deduce is in the La-Bi2201. If we linearly extrapolate the data, it would suggest the M point
closes around 130K, providing an estimate of T* that is slightly larger than other work!.

The final area of study for our data was the band structure topology itself. This relates to
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Figure 5.12. Plot of our work attempting to quantify the band gap at the antinodal
point (the M point of the Brillouin zone) (a) Strain location of samples studied. (b)
Leading edge gap determined for the strain samples identified in (a) with error bar
comparable to the circle size. (c) Plot of the antinodal gap for numerous experiments
on the samples from (a) at different temperatures. Red dashed line indicates the
trend associated with La-Bi2201. T* estimated from its crossing is ~130K.

the idea explored in Section 5.1 regarding the isotope effect, in particular the sign change seen
in Fig. 5.5. This sign change is significant since one can identify its location in momentum
space. When we plot the crossover points for the dispersions, we find that they fall along a
line defined in momentum space as qco = 0.21 7/a, where a is the lattice constant of the
CuOs plane. This line is illustrated in Fig. 5.13. Now, this particular wavevector (panel a)
is important since it is in excellent agreement with the charge ordering wavevector seen in
the far underdoped Bi2212 cuprate at low temperatures when explored by STM®3 (panel b).
This implies that the high energy part of the electronic structure is strongly coupled to the
order parameter, and this, in turn, is strongly coupled to the lattice.

If we try to understand why it is that at the qco line the isotope effect changes sign, we
can use a simple charge density wave formation model to show how an ordering mechanism
can affect the quasiparticle dispersion at all energies. In panels c-d, we present the opening
of a gap in the dispersion at the qco vector, due to a charge density wave formation, just as
we explored in Chapter 4. Based on evidence that the T* is strongly isotope dependent and
increases for the O sample!60161:162 e assume that the magnitude of the gap is different
between the two isotope samples, (e.g. larger for the 80 sample - panel d). This would
automatically lead to the appearance of the sign change at qco that migrates to lower energy
as we move away from the node, just like seen in the data. Thus, the question is naturally
asked, could the pseudogap opening be, in fact, due to an ordering phenomena that has never
been observed in any ARPES experiment so far, perhaps due to the short range nature of
such ordering'®3'6*. As one approaches the states nearer to the antinodal point, one could
potentially see evidence of a crossover into this ordering.

Although we will be exploring the idea of an actual crossover point along k- in more detail
in Chapter 6, one naturally wonders, given the near-Er electronic structure seen in Fig. 5.9,
if the introduction of strain might be able to enhance or otherwise affect some potential
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Figure 5.13. (a) Fermi surface of the upper half of the first Brillouin zone. Diagonal
lines indicate cuts used in Fig. 5.5 while circles indicate the location in momentum
space of the sign change crossover point for each of those cuts. These lie on a line
indicated by the wavevector, qco and illustrated by the colored regions. (b) STM
data independently determining this wavevector taken from Ref.%. (c) Cartoon il-
lustrating how the charge ordering wavevector, qco, can open a gap at a binding
energy where the electronic states are nestable. (d) Additional cartoon illustrating
how the splitting, if slightly different in magnitude between the isotopes, can explain
the observed sign change in the bands and its evolution as the dispersions intersect
with qco-
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ordering near the Brillouin zone edge. Perhaps, as the cartoon proposes in Fig. 5.13a, the
band structure could even be better nested near the antinodal point as we move along
this strain axis, leading to distortion in the Fermi surface. We can better quantify this
by integrating a narrow energy window near Ep to get a band structure without worrying
about the gap. Then, we fit the Fermi surface with Lorentzians as far as we can before the
overlapping superstructure or lack of spectral weight makes fitting impossible. Unfortunately,
our analysis as seen in Fig. 5.14 suggests that for as far as we can fit our Fermi surfaces
from the nodal to the antinodal point, the overlap is very good. This shows us that if there
is distortion in the band structure near the antinodal point, it is beyond the region we can
accurately fit and explore.

This is additionally confirmed by our attempts to fit the band structure manifold to
a tight binding model like that described in Section 1.2. Of interest would be to see if
the introduction of the lanthanide (either in a strain or disorder paradigm) could affect
the different hopping parameters. Thus, instead of using a model with only one hopping
parameter, ¢, as described by Eq. 1.8, we will include a second nearest neighbor parameter,
t’, for our model of the Cu-O square plane. This is illustrated in the inset of Fig. 5.15 for the
CuOs structure responsible for the hole band observed at Er. We fit our data from Er down
to higher binding energies (~150meV) following the band manifold for numerous samples
we studied in both the superconducting and pseudogap phases. There was no consistent
difference in the parameters between the two phases, which fits with our expectations based
on our earlier work. The results of these fits are shown in panel b which plots the valuable '/t
ratio compared to other work on superconducting cuprates!'®®. There are two things worth
noting about these results. First, as indicated by the bunching of the points which straddle
t'/t ~ 0.42, the introduction of strain appears to have little effect on the observed and fitable
Fermi surface topology. This is consistent with the previous work shown in Fig. 5.14 at Ep
where little variation in topology was seen. Here, however, the statement is stronger since
we are including far more data and fits at multiple binding energies. The second curious
observation is that our work though generally consistent with the prior Bi2201 data point,
appear the buck the trend of lower T. corresponding to lower ¢/t ratio. Rather, it suggests
that this ratio generally falls in a well defined region between ~0.36-0.46 for nearly all the
cuprates except for the single layered LSCO, which now appears to be anomalous. It lends
credence to the position that it is not the hopping parameters that hold the key to the
increased superconducting T\,

5.5 Discussion

By this point, one could say that we have more questions than answers when it comes
to these lanthanide substituted single-layered cuprates. Superstructure and inconsistent
sample surfaces, particularly at higher strain, have made the kind of confident analysis we
seek regarding the gap, quasiparticle shape, and near antinodal band structure challenging.
Additionally, one could argue that the features we are looking for within the dispersion are
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simply too subtle to be observed within our experimental setup given both sample quality as
well as experimental issues (e.g. non-linear pixel/angle calibration issues). But there are a
few things we feel some confidence in. First, whatever the effect the substitution has on the
lattice, the nodal point states appear to be less effected when it comes to the coherence of
the states. The general affect of the lattice mismatch, for the majority of the Fermi surface,
is less coherence, and broader peaks. The second issue is that, for the most part, the effect
of the substitution has very little effect on many of the features of the band structure such as
the Fermi surface topology, dispersions, the kink energies, Fermi arc, and even the antinodal
gap. Curiously, with the exception of the gap measurements, this is generally consistent with
the only other major ARPES work on the strained Bi2201 compounds!#®. It also found very
little of any effect of lanthanide substitution on either Fermi surface shape or band structure
save the effect on gap. Even a close examination of their data regarding the gap suggests
an increase of only about 6meV in the M point gap from La-Bi2201 to Gd-Bi2201. This is
a little larger than we observe, though not much. Furthermore, the depression in the nodal
point states they observe is very subtle and arguably within their stated error bars. Still,
this proposed contradiction regarding the gap leads us to speculate if sample degradation
or other processes could be to blame for the lack of variation among the samples. This
makes the idea of comparing the strain axis to the doping axis (e.g. equating greater lattice
mismatch with underdoping) inappropriate as none of the trends seem to coincide. Rather,
one could argue that this work is consistent with a model that increased disorder is the
primary consequence of the lanthanide substitution and it affects the coherence of states
along the Cu-O bond direction.

Throughout this work, we were often surprised by the quality of data we were able to get
from the strained Nd-Bi2201 sample, in spite of the challenges with the superstructure. We
initially observed very unusual gap values and were able to observe a coherent peak quite far
towards the antinodal point. Why this strained compound provided such good data remains
mysterious but we discovered that if we turned our focus from a strain dependent comparison,
which was yielding very little, and focused on only on this Nd-Bi2201 compound as well as a
slightly overdoped version of the compound, our analysis could reveal some significant results
about the states near Ep. It is this work that we will now turn our attention towards.
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Chapter 6

Band Structure Crossover Point in

Nd-Bi2201

6.1 Introduction

In our work on the strained BiySroCuOg,s (Bi2201) compounds as described in Chapter
5, we were continually surprised by the uniqueness of the Neodymium substituted compound,
Nd-Bi2201. As previously mentioned, this compound gave surprisingly good ARPES data
but was somewhat challenging to study otherwise. The presence of strong superstructure
bands makes quantification of the near antinodal gap problematic, appearing smaller than
it should be. But it was quickly apparent that if we focused our attention on this compound
alone, we might be able to address certain issues related to the nature of the Fermi surface
in these single layered cuprates.

Consistent with our motivation for much of the strain work, our understanding of the
near-Ep electronic band structure is truly essential to our ability to make sense of the su-
perconducting cuprate phase diagram. Currently there have been an increasing number
of studies which are suggesting that the Fermi surface may be better thought of as being
divided into regions along ky 06167168 We have already discussed some examples of this.
The partial gapping of the Fermi surface in the pseudogap phase leading to the aforemen-
tioned Fermi arcs (see Section 1.6) is an obvious example. Although the Fermi arcs appear
to scale with T*?° and so their tips may represent a fluid boundary, the initial region in
which they form near the nodal point when one moves just above T. remains mysterious
and may be significant. In addition to this, there is the work relating to the controversy
over the “one-gap” vs. “two gap” pictures of cuprate superconductivity as also described
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in Section 1.6. As alluded to in that section, there have been recent experiments which have
indicated that the superconducting gap departs from a simple d-wave form. Furthermore,
there appear to be opposing gap trends within different areas of the Fermi surface. All of
this would point to the existence of an additional energy scale within the superconducting
gap function 169170171 1049141 Yot this is certainly a very contentious issue and remains the
subject of debate?®17217  Still, if it were true, the consequence could like be a division of
the Fermi surface where electronic states near the node are uniquely related to supercon-
ductivity while the antinode would be associated with an additional, potentially competing,
phenomenon corresponding to the pseudogap phase!10 111 121345 " Thig ig certainly what
was motivating our work examining the Fermi surface and the potential for charge ordering
near the antinode as suggested by the isotope effect (Section 5.4).

There are additional boundaries for the band structure along Er observed by probes like
STM. Here, work has suggested a potential crossover region on the Fermi surface associated
with the antiferromagnetic zone boundary, characterized by the disappearance of the coher-
ent quasiparticle peak!™. This antiferromagnetic zone boundary comes from the ordering
of spins in the Cu-O plane that is most obvious in the undoped antiferromagnetic Mott
insulating phase. Thus, the new Brillouin zone defined by this cell is smaller and rotated
by 90 degrees. The interaction between the electronic band structure and this new Brillouin
zone is a critical question for ARPES.

We have also seen evidence of a potential crossover in the combined IXS and ARPES
work described in Section 5.1 where the bosonic mode responsible for the band structure
kink in the near-Ep band structure suddenly shifts in energy. This shift may also define a
key region of the Fermi surface which may be related with the softening of the Cu-O bond
stretching phonon 40,

As a final point, there has been recent quantum oscillation data '™ 76 which has suggested

quite a different picture of the Fermi surface than the one generally seen by ARPES. Work on
materials like YBCO has suggested that the Fermi surface is indeed separated into hole and
electron pockets and that they may be oriented at the nodal and antinodal points, providing
another crossover region for the low energy quasiparticle states. This presents some issues
though since ARPES on the materials studied by quantum oscillation is very difficult in
practice, and materials that produce excellent ARPES (the bismuth based cuprates) are far
to disordered to do quantum oscillation measurements on. In spite of this challenge and
controversy, evidence for a hole pocket on the Fermi surface has been recently provided
by photoemission experiments!””. Even though its true nature remains obscure, it and
all of these examples underscore the importance of exploring the physics of these different
regions. Particularly in the case of discerning between a single or dual energy scale to the
superconducting phase, relying on d-wave gap measurements alone cannot entirely avail us
given the strong disagreement between different experimental groups and the potential to
explain deviations via arguments based on higher harmonics ™17,

So, like other groups, if there is really evidence of more complicated physics in the
superconducting phase, we need to start looking for how different electronic states are affected
in the Brillouin zone. And if such regions exist, the boundary between them may be the best
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place to explore. With the attention given to the nodal and antinodal states, focusing on
the middle region can help us complete the picture. The single layered Nd-Bi2201 turns out
to provide us with an excellent opportunity. Additionally, though these samples were grown
as described in Section 5.2, we determined (initially from the Luttinger area of the hole
bands then by magnetometry) that at least some of our sample was overdoped. From the
diamagnetic transition, seen in Fig. 6.1a, we can see that though the T, has shifted from its
expected value of T,=27.5K, we clearly see evidence of a discontinuity in the magnetization at
this temperature. This leads us to believe that this sample started off as optimally doped but
became more hole doped (oxygen doped) with time, possibly due to excessive heating in the
ARPES sample preparation process. We also found distortion in the band structure leading
to increased Fermi surface area consistent with overdoping as illustrated in Fig. 6.1b. From
this, we are inclined to accept that we are seeing electronic structure from a predominantly
overdoped sample whose T, we will estimate around 10K. Additionally important for our
data is the work referenced earlier that places the pseudogap transition temperature T* well
above the peak T, for the optimally doped sample® and suggests the pseudogap phase is
stronger in Nd-Bi2201 than nonstrained Bi2201 systems!4®. Being able to put an estimate
on the T* will be important later when we address the issue of Fermi arcs because of the
potential scaling relation.

Consistent with the strain samples in Chapter 5, this synchrotron ARPES data were
taken solely at Beamline 5.4 at the Stanford Synchrotron Radiation Laboratory, using a
Scienta R4000 analyzer. As mentioned previously, Beamline 5.4 produced consistently better
ARPES results and the Nd-Bi2201 data were a significant example of this. A total energy
resolution of <13meV was achieved for data taken on the optimally doped sample while a
resolution of <8meV was achieved for data taken on the overdoped sample of Nd-Bi2201.
In both cases, the angular resolution was better than 0.35° and fresh sample surfaces were
prepared by cleaving the sample in situ at a base pressure <5x10~ ! Torr at low temperatures.
An additional reason for the higher energy resolution is the use of lower photon energies
(hv =8eV) for the data taken on this overdoped sample whereas we were only able to take
data at larger photon energies (hv >21eV) for the optimally doped sample. Finally, the
data we will focus on here were taken with the analyzer slits oriented in the MY geometry
(45 degrees rotated from the I'Y geometry.) This geometry has advantages to studying the
gap particularly as we approach the antinodal region, but the cuprate matrix element Kkills
off spectral weight on one side of the I'Y line. The result is a much weaker spectral weight
at the nodal point than would otherwise be expected. For this reason, the relative spectral
weight was not considered a trustworthy measurement to make much of in our analysis.

6.2 EDC Analysis

We’ll start with analysis related to the EDCs determined along ky in the first Brillouin
zone. A stack of these EDCs are provided in Fig. 6.2a for the optimally doped sample.
We determined the kp value by using MDC analysis, fitting the individual MY slices to
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Figure 6.1. (a) Magnetization vs. temperature for the overdoped sample indicating
the new lower T, ~ 10K. (b) Near-Er band structure illustrating the deviation of
the band structure (red dashed line) from the expected curvature (orange curve)
consistent with overdoping.

lorentzians. Then, we linearly fit the data from 10 to 30meV and extrapolate where it
intersects Er to determine kp from this. We choose the energy range so as to avoid any
potential lower energy kink but not include the effect of the opening of the gap at Ep.
Though the peaks are scaled to peak height, one can actually see in the bottom curves (at
the node) a weaker peak due to the matrix element described at the end of the preceding

section.

Because of the sharp peak features, we will use the binding energies of the quasiparticle
peak to quantify the gap function as long as the peak can be clearly observed over the rising
background at higher binding energy. To plot the peak gap, we will take advantage of the
expected functional form of a d,2_,2 wave gap A, = A(cos(k,a)—cos(kya))/2. (Aside: Often
people use Ay = A cos(26) to quantify the d-wave gap where theta is angle with respect to
the Brillouin zone edge. This is an approximate based on a perfectly circular hole band which
is not quite the case in the cuprates. Because of this, we use the more general equation, Ay,
though the difference is very small.) Using this functional form, we can plot the peak gaps
we extract with respect to this function on the abscissa axis as commonly done!7' 149115,
The result will reveal potential deviations from a single d-wave gap, which should appear as
a straight line in this scaling. This is displayed in panel b where a clear deviation from a
pure d-wave is observed. This is certainly similar to other cuprate studies!6?171110149141115
although, as previously mentioned, it is still controversial. I've highlighted this proposed
location for the crossover in violet since it will be a reoccurring theme.

With this gap feature in hand, we could explore issues related to the Fermi arc and its
formation. As discussed earlier, even though the Fermi arc is believed to scale with T/T*,
the initial Fermi arc length may indicate a significant point in the Brillouin zone. In order to
explore the connection between this crossover and Fermi arc formation, Fig. 6.3a shows the
gap along kr above T, as determined from the leading edge. Panel b provides a cartoon to
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Figure 6.2. (a) EDC spectra taken at T=8K on the optimally doped Nd-Bi2201 at
kr along the band structure. (b) The quasiparticle peak binding energy positions
indicated by the blue triangles in (a) and shifted relative to the nodal point peak.
Inset shows locations of these EDC spectra at Ep. The lines are guides to the eye,
indicating a deviation from a pure d-wave gap function when plotted on this abscissa.
The violet shaded area in all these panels indicates a point 18°+1° away from the
nodal point.
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Figure 6.3. (a) Leading edge gap data for both SC and PG phases. Here the violet
region is shifted to include the expected FA scaling for T=40K (indicated by the
brown line).(b) Cartoon explaining it all.
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Figure 6.4. (a) Sampling of EDC spectra taken at T=8K on the overdoped Nd-
Bi2201 along kr. (b) Quasiparticle peak binding energy positions indicated by the
blue triangles in (a), shifted relative to the nodal point peak, for all EDCs measured
along Er. The lines are guides to the eye indicating a deviation from a pure d-wave

gap function. The violet shaded area in these panels indicates a point shifted by ~3°
from Fig. 6.2 (dashed line).

illustrate the nature of the expected T/T* temperature dependence®® and our compensation
for it (violet to brown line in the figure). To do this, we are using T*=140K 9180 and thus
we can compare the location of the crossover identified in Fig. 6.2 to the size of the Fermi
arc when it first forms above T.. After doing this correction, we find that the location of the
crossover lies approximately where this initially formed Fermi arc terminates (the gap finally
opens). If we look in the literature, this correlation seems consistent with other published
Bi2212 ARPES studies!!® although it isn’t clearly pointed out. This suggests a potential
connection between Fermi arc formation in the psuedogap phase and the separation we are
seeing as the two d-wave gaps in the superconducting phase.

Our attention now turns to the overdoped Nd-Bi2201 sample as displayed in Fig. 6.4 Just
as before, panel a shows the evolution of the quasiparticle peak at ky for a sampling of EDCs
along the hole band. And, once again, we can plot the peak binding energies for all EDCs in
the manner of Fig. 6.2. Because of the lower photon energy and a desire to better quantify
the crossover, there are significantly more data points, corresponding to a greater number
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Figure 6.5. Quasiparticle peak width data taken in the superconducting phase for
(a)-(c) Optimally doped and (d-f) overdoped samples. (a,d) Selected EDCs from
Fig. 1a and 2a, respectively, with their peaks aligned, normalized to quasiparticle
peak height, taken on both sides of the crossover region. Blue (red) curves indicate
the nodal (antinodal) side of the crossover. The violet curve sits right on the crossover
region. (b,e) Fitted quasiparticle widths quantifying the energy broadening through
the crossover region with error determined from fit. (c¢,f) Quasiparticle widths plotted
versus their associated peak gap from Figures 6.2 and 6.4.

of slices to move through the consequently larger Brillouin zone. Curiously, there remains
some evidence of a deviation from a pure d-wave gap function when we plot it. However,
clearly this deviation is less pronounced that the optimally doped sample with the ratio of
the two slopes being ~3 for the overdoped. This is compared to ~11 for the optimally doped
sample. This is not surprising though since it has been suggested that deviations from a pure
d-wave gap do tend to disappear with overdoping in the cuprates and consistent with the
suspicion that they are due to the physics of the pseudogap phase (which also dies away at
higher dopings.) In that respect, its continued presence in our data may be a bit surprising
and could be related to the increased strain within the lattice caused by the substituted
Neodymium. Secondly, as illustrated in panel b, there might be evidence of a shift in this
region at this new doping. We estimated the shift to be about 3 degrees more from the
nodal point towards the antinodal point. Still, this must be taken with a grain of salt given
uncertainties in sample alignment as well as the resolution of the experiment. All of this is
generally consistent with our data above T., where we were unable to find clear evidence of
Fermi arcs. This is further confirmation that our data is predominantly representative of an
overdoped region of the phase diagram, where T* becomes closer to T, or below it.
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We can go further with this, turning our attention from the gap to the quasiparticle peaks
themselves. As we’ve discussed in the context of Fermi Liquid theory and the self-energy
described in Section 2.3, the lineshape of the EDC provides us with critical information
about (among other things) the lifetime of the quasiparticle states. So, we naturally look
for further signatures of the crossover in the lineshape. Extracting this information is very
challenging since the lineshape is affected by so many contributions. But let’s start simple
and return to the individual EDCs in the region near the purple crossover point. We find
evidence of sudden changes in the quasiparticle lifetime (associated with the peak width)
occurring near the crossover region. This is in comparison to the gradual increase in lifetime
previously observed in the normal phase between the nodal and antinodal points!'®!. This
is summarized in Fig. 6.5 for both dopings. In panel a, peak-aligned EDCs from near the
crossover region of the optimally doped sample (Fig. 6.2a) are stacked and shaded as blue
and red curves. This corresponds to the angular region they are in with blue = nodal and
red = beyond nodal. The violet curve is associated with a data point effectively at the
crossover point identified previously. This suggests that the electronic states closer to the
node (blue) are suddenly altered upon passing through the violet crossover region towards
antinodal states (red) along the near Er band structure.

Certainly, one concern that can arise would be discerning between a widening peak and
simply a weakening peak over the background (which we believe to be predominantly inelastic
scattering.) First, even if this were the case, the sudden drop in quasiparticle spectral weight
could then be interpreted as the indicator of passing through the crossover region, still
affirming the crossover’s effect on the spectral lineshape. There is no known reason why this
would be associated with a matrix element effect either. Secondly, we can better quantify
this change by extracting the quasiparticle lifetime-related energy width, I', through fitting
the spectra. In order to accomplish this, we use a resolution broadened spectral function
incorporating a well-known self-energy model for the cuprates® L(kp,w) = —il' + A?/w
within the Green’s function. Using the associated spectral function, A(k,w), we modify it
with the expected Fermi function, and place it on top of a variable inelastic background.
This background is modeled simply as a much broader Fermi function whose edge (inflection
point) sits near the binding energy of peak. This fitting was attempted on other samples
but the results were often erratic and inconclusive. The quality of the data we find for the
Nd-Bi2201 however allows us to make some intelligent progress with this analysis and the
results are displayed in panel b. Again, we see the change in quasiparticle width occurring
near the violet crossover region, identified in Fig. 6.2b, for the optimally doped sample.

Similarly, we can examine this effect in our overdoped samples In panel d, the we present
the EDCs from Fig. 6.4b. One can initially see that the peak width appears sharper, a feature
once again consistent with increased doping in the bismuth cuprates!'® 182, And once again,
we can make out a change in the spectra associated with passing through the violet crossover
EDC into the red EDCs. It is worth noting, that the violet region chosen is specifically the
one from Fig. 6.4, which incorporates the 3 degree shift previously mentioned. The fact this
appears more appropriate is still consistent with the idea that a general misalignment could
still be responsible for this difference. As before, we can use the previously described fitting
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techniques to better explore the quasiparticle lifetime. However, this was more challenging
given the strong rise in the inelastic background as one goes further from Eg. The con-
sequence is simply that the energy window of the EDC we could fit became smaller, and
consequently closer to the peak and Ep. All of this is plotted in panel e with the violet
crossover region flanked by the blue and red nodal and beyond nodal regions. Despite the
fitting challenges, this finer survey of I' again suggests that the quasiparticle width begins to
rise as we pass through the crossover, although it is certainly more gradual than we observed
in the case of optimal doping. We also include panels ¢ and f to examine and consequently
underscore the relation between the gap and this peak width. Here we plot the gap data
from Figs. 6.2b and 6.4b versus the quasiparticle width data to underscore the correlation
between the identified blue and red regions. The decrease in the lifetime of the quasiparticle
electronic states as they approach the antinodal point seems to be in agreement with studies
in the literature that suggest, as we’ve discussed previously, that the gap near the antinodal
point is actually due to some competing phase!!t H2H3HOLALS A gtrong example of this
is how both the location of our crossover region for the optimally doped sample, as well as
even the potential trend with doping, corresponds well with the maximum in the coherent
peak weight, Wep, seen by Kondo et al. on the unstrained Bi220111°, where a competitive
relationship between the superconducting and pseudogap phases is suggested.

Before continuing to our MDC analysis, we should take stock of where we are as summa-
rized by the cartoon in Fig. 6.6. The states near the node (indicated in blue) are separated
by a crossover region (violet circles) from states closer to the antinodal point (indicated in
red.) As mentioned, our data suggests this crossover region might be shifting away from
the nodal point with overdoping. We can estimate the crossover location at 18°£1° from
the nodal point or near (+m/4.3a9, £7/1.6a¢) £ 5% in momentum space for the optimally
doped sample. For the overdoped compound, the crossover seems to occur at 21°+1° or near
(£7/bag, £m/1.6a9) £ 5%, shifted (~3°) away from the node. Still, at this point, two issues
must be clarified to avoid the risk of confusion. First, it is not at all clear from the data (nor
from the remaining analysis to come) that this crossover necessarily represents a finite region
of states along kp that are separate from the nodal and antinodal states. The resolution
of the ARPES experiment is consistent with both a finite, but small (~5 degree), crossover
region along kp as well as something even sharper. Second, although the cartoon includes
all the states beyond the violet crossover as red, strictly speaking this is not correct since
we are unable to fully explore all of the states nearest the antinodal point, for the reasons
explored in Section 5.4. This means there could conceivably be an additional crossover which
happens much nearer to the antinodal point. In that case, this red region may in fact be an
actual larger finite middle region and not extend all the way to the Brillouin zone edge!®®.

6.3 MDC Analysis

Now we will turn our attention to the MDC analysis of the data. In a sense, we have
already taken advantage of this analysis when we determined the ky for the EDCs using the
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Figure 6.6. Cartoon illustrating the regions (blue and red) identified in Figures 1 and
2 and small shift in location of the crossover (violet circles) between the dopings.

Lorentzian fits to our MDC data. But, as discussed in the context of the strain comparison
data, the near Ep slope can be used to determine things like vy and, correspondingly,
m*. We summarize our findings for the overdoped sample in Fig. 6.7, superimposing the
crossover region we have already been establishing from our EDC analysis. Comparing vg
to the location of the crossover point is suggestive but presents some challenges. We see that
the experimentally determined vy does appear to vary in the region of the crossover point
between the values indicated by the dotted lines, but the correspondence is not as good. We
present only data from the overdoped samples because the sampling is sufficiently high to
potentially reveal a change in what is a very noisy plot. It does suggest that effective mass
increases upon passing through the crossover point. Still, this data is challenged by two
issues. First, determining vy requires determining the slope of the band structure dispersion
very well. The challenge is the very real pixel to angle inhomogeneity in our 2D images. This
means that as the band structure simply moves across the screen, the measured slope will
change slightly. To combat this, we took the same cut of the band structure in momentum
space but shifted so it appears at different places on the screen. From determining the
variation in the slope, we can provide a linear correction. This has already been incorporated
into the data seen in Fig. 6.7 but the correction likely still not perfect. The second issues
is the effect of the opening of the gap which, despite our choice of fitting window, may still
affect our data and could inadvertently result in a correlation with the crossover point. In
fact, the choice of fitting window does, as expected, have a somewhat unsettling effect on the
v so that, although the trend we see is generally replicated, it is not as robust as desired.

If the Fermi velocity analysis may be problematic, then we should turn our attention to
the higher binding energy dispersion instead. Specifically, we could consider how the bosonic
renormalizations (kink) may be affected along kp. As described in Section 5.1 and 6.1, the
potential for a shift in the kink is particularly significant because it may be connected to
the softening of a particular phonon mode with a characteristic wavevector like that seen by
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Figure 6.7. Fermi velocities for the band structure as a function of angle from the
nodal point for the finely sampled overdoped sample. Both the data in the (a) su-
perconducting and (b) normal phase shows some decrease in the neighborhood of the
crossover (violet line) corresponding to an increase in the effective mass.

IXS in La-Bi2201'4°. As described in the preceding chapter, the general shifting of the kink
energy from the node to the antinodal point has long been observed in the double layered
bismuth cuprates37134183  In Fig. 6.8a, we show the peak position from lorentzian fits of
the MDCs from our optimally doped data, again taken from slices in the MY direction. We
can see a continuity with the prior work on La-Bi2201, finding evidence of a shift in the
kink as indicated by the blue and red shaded regions, although the energy of both modes
is slightly less then observed in that prior work. Based on prior work, we associate the
blue higher energy kink with a similar feature that seen throughout the cuprates!®*. This
shift is generally consistent with the location where we expect the IXS wavevector from La-
Bi2201 to nest the Fermi surface of the optimally doped Nd-Bi2201. Additionally important
is comparing the location of the kink shift to the crossover region. Here we find that the
transition between the kink energies occurs roughly between 14° and 18° off the nodal point,
close enough to the crossover region to suggest a connection given the sampling and k-space
uncertainties.

Of course we can turn to the overdoped samples as in panel b where we show the peak
from the fitted dispersions. When we examine these curves, we find the same shift in the
bosonic kink between the two energy scales. Its location, curiously, appears to be roughly
between 18° and 20° off the nodal point, which again places it close to the crossover as it
is observed in the overdoped sample, keeping the consistency of the ~ 3° shift. One issue
that does arise, however, is that nesting the Fermi surface of this overdoped compound with
the IXS wavevector from the optimally doped La-Bi2201 work does not correspond well to
the location of this shift. But this is not surprising and with no sufficient quality IXS data
on any overdoped Bi2201 nor the strained Nd-Bi2201, there is no reason to suppose the
associated wavevector of the phonon softening would remain the same magnitude in this
system. What matters is simply the observation that this crossover point also affects the
bosonic kink, which, given its probable phonon origin, once again brings the lattice into the
forefront in trying to understand these regions of the Fermi surface.
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Figure 6.8. (a-b) Fitted band dispersions near Ep, horizontally shifted, from ARPES
data on (a) OP and (b) OD samples in the SC phase. Data is taken near the crossover
region, indicated in the respective insets, with dashed lines as guides to the eye, and

high and low energy kinks indicated by blue and red, respectively.
6.4 Discussion

With these observations, it’s worth spending some time to consider their potential sig-
nificance. Some of this is summarized in Fig. 6.9 which provides a cartoon meant to bring
together the several threads associated with this crossover region and its potential origin.
The first and most important aspect of this crossover region (again indicated in violet) is
that all of the effects discussed are sufficiently far from the antiferromagnetic zone boundary
(dashed line) to preclude it as an explanation for what we observe. The role of this zone
boundary may indeed be significant, perhaps providing another bookend to the effect that
we are observing. The general proximity of the bosonic shift to the crossover region still
seems to suggest a connection between the crossover and the softened Cu-O bond stretching
phonon (region shaded gray). As mentioned, the associated softening wavevector, qgs, could
connect the Fermi surface near the location of our crossover region.

But this points to a larger theme when we look at the literature on single layered com-
pounds. For instance, one finds that this region also falls close to other Bi2201 work on
Fermi arc formation using ARPES to determine the initial length . Additionally, we have
the aforementioned evolution in coherent peak spectral weight in the single layered bismuth
compound, where the critical point of this spectral weight along kg falls close to our re-
gion!'® and the doping trend is consistent. For their work, they associated this critical
point with a crossover between nodal and antinodal states with anticorrelated behaviors.
The most recent work on the La-Bi2201 compound by J. Meng et al.!” is also strangely
significant here as well. As particularly illustrated in Fig. 6.9, their ARPES work finds evi-
dence of what appears to be a hole band pocket, symmetric over the I'Y line, which appears
to reconnect with the main band structure in the k-space vicinity of our crossover point!"".
It is worth noting that this is observed in the underdoped compound, while being difficult to
observe at optimal doping. Still, it is possible we are still seeing some effect related to this
band crossing in our optimally doped data. The separation of the cuprate Fermi surface into
hole and electron pockets has been strongly proposed by quantum oscillation!176.  Still,
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Figure 6.9. (a) Fermi surface cartoon summarizing the different issues associated
with the crossover region. Colored angular regions correspond to the optimally doped
sample’s division of the Fermi surface. Grayed area corresponding to the region of
the softened Cu-O BS phonon mode from Ref.!4°. Circular data points come from
Ref. 17" indicating the Fermi surface pocket in La-Bi2201.
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the correlation between the ARPES work and the pockets observed by quantum oscillation
remains controversial.

Certainly, further work should be done on other strain compounds to look for evidence of
this crossover. One might be tempted to look for trends in the bond stretching phonon for
the different Bi2201 compounds like Nd-Bi2201. But this could be practically challenging
since precisely identifying the softening of the wavevector may be difficult given how small
a change could result in a substantial shift in the nesting location. However on the ARPES
end, the challenge has been getting data of consistently significant quality beyond the nodal
point in these compounds to allow for a convincing analysis. Indeed, the sharpness of the Nd-
Bi2201 data is surprising given that the quasiparticle peak can be followed well beyond the
antiferromagentic zone boundary. However, despite the disappearance of the quasiparticle
peak coherence seen in STM for states beyond this zone boundary, this persistence in the peak
we observe in ARPES is not necessarily surprising 184, Although the angular range which one
could observe the quasiparticle peak does shrink with increased strain (potentially a sign of
increased disorder which scatters states near the zone edge and then states closer and closer to
the nodal point) the Nd-Bi2201, however was a dramatic exception to this trend. This would
lead one to wonder if there really is something special about the Nd-Bi2201 or if one should
be able to get similarly good data on the other strain compounds as well. Finally, looking
for evidence of these crossover effects in the double layered Bi2212 compounds is certainly
important. From our study of the literature, one might be led to believe that this effect,
whatever its origin, is more pronounced in the single layered compounds. Certainly single
layered compounds host some interesting phenomena like stripe phenomena in 1/8 doped
LSCO. It is possible that the low dimensionality of these systems allows for certain competing
orders to be more pronounced and, thus, evidence of the crossover is more dramatic. But,
it remains a subject in need of further study.
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Chapter 7

Summary

Throughout this thesis, we have examined a variety of materials with different competing
orders which affect the electronic band structure near Ex. By using Angle Resolved Photoe-
mission Spectroscopy, we have the ability to directly see how those orders and effects modify
these states giving us insight into the fundamental physics that is hosted by those systems.
Our journey has taken us from evidence of magnetic orderings, to charge density wave order-
ings, to lattice strain/disorder effects, culminating in the specific case of Nd-Bi2201 where
evidence of additional order beyond superconductivity could be responsible for the crossover
between the nodal states and those further from the nodal point.

On the subject of magnetic ordering, we have used angle-integrated photoemission spec-
troscopy to explore core level peaks, the valence band density of states, and near Er features
in polycrystalline LaFeAsOg9Fy1. Among our study of the core level peaks and features, we
have found an anomalously large splitting of the As 3d peak and have explained it as a con-
sequence of the anomalously low Fe magnetic moment. More significantly, we have identified
two characteristic temperatures: 90K where a gap-like feature closes up and 120K where a
more sudden change in the density of states occurs. Considering the antiferromagnetic order-
ing of the parent compound, we associate these with the spin density wave magnetic ordering
and structural transition temperatures, respectively, which are seen at low doping. This re-
sult suggests that the electron doped superconducting phase does not entirely suppress the
magnetic phenomena in the FeAs plane as recent theory has suggested™. This leads one
naturally to wonder about magnetic phenomena in other materials like the superconducting
cuprates.

When we switched gears and explored charge density wave phenomena in LaTe;, we
once again underscore the power of the ARPES technique in the study of these materials.
Beyond the band structure comparisons, we have presented evidence that charge density wave
formation in the single layer LaTes system is a Fermi surface driven phenomena characterized
by a CDW gap which opens over the entire Fermi surface despite its 2D nature. These results
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establish LaTe, as the first proven instance of a quasi-2D CDW material whose CDW phase
is both driven by Fermi surface nesting and semiconducting. The significant changes that
we find associated with the number of Te layers as they reduce from two (in RTes) to
one (in RTey) are intriguing: a large decrease of CDW gap size, and a large increase of
gap isotropy besides the emergence of superconductivity (CeTe; g,®'). Understanding these
changes may shed light on other correlated electron problems such as high temperature
superconductivity, where the number of layers is already known to play a crucial role in
determining the pseudogap formation temperature.

The controlled substitution of the single layered Bi2201 compounds with a spectrum of
lanthanides has presented us with many exciting prospects but still nagging questions. Our
work has shown that, regardless of the nature its effect on the lattice (strain or disorder
inducing), the substituted lanthanides do not significantly affect the lifetime of electronic
states along the I'Y direction while probably affecting those along the Cu-O bond direction
significantly. We have shown evidence that although the lifetime is generally unaffected, the
nodal states provide evidence of an additional bosonic kink which appears at lower binding
energy than the well known ~ 70meV kink. The proximity of the energy of this kink to
that seen closer to the antinodal point (or which appears beyond the crossover in the Nd-
Bi2201) may suggest a connection. This is particularly true if it is related to coupling to an
additional mode such as the apical oxygen mode, which may be increasing the effective mass
of the quasiparticles. For the most part, further study is needed to better understand the
effect of the lanthanide substitution on the cuprates, whether it indeed couples to potentially
competing orders that affect the antinodal states. Our current hypothesis is that it basi-
cally increasing disorder in the systems which affects antinodal states more. However, the
sharpness of the quasiparticle along kg for the strained Nd-Bi2201 as well as other unusual
results, still casts doubt on this idea.

Still, bringing all these issues together, Nd-Bi2201 does present us with some remarkable
conclusions which add weight to the importance of additional orderings (whether charge
ordering, magnetic, or other lattice phenomena) to our understanding of these single layered
cuprates. By studying both the optimally and overdoped regions of the phase diagram, we
have found evidence of a narrow crossover region associated with: 1) A transition between
two d-wave like gaps with different energy scales, 2) The initial formation of the Fermi arc in
the pseudogap phase as seen in our optimally doped data, 3) An anomalous increase in the
quasiparticle lifetime, and 4) The shift in the binding energy of the kink in the near Ex band
structure. Although more work is needed to unravel the nature of this crossover considering
its appearance in other single layered cuprate work, the transition between these two kink
energy scales suggests a potential connection between the softening Cu-O bond stretching
mode and the crossover.

With the growing power of time resolved and pump-probe ARPES experiments, the
future study of many of these issues remains bright. Further study on the pnictides using
laser based systems is greatly improved by the significant amount of important band structure
near the I' point. We have only begun to explore how strain may be affecting the nodal
quasiparticle peak in pump-probe experiments. The interpretation of the data remains
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challenging but the observation of effects such as the recovery of quasiparticle spectral weight
and potential variation with strain is a curious result. Additionally, studying the effect of
pump probe techniques on charge density wave materials may be crucial to understanding
how states affected by this order behave differently in such experiments than states affected
by superconductivity. This knowledge could be crucial when pump-probe measurements
begin accessing the antinodal states, resulting in either provocative similaries, or clarifying
differences between the antinodal gap and charge ordering phenomena. In any event, from
our initial quantum mechanical explanation of band structure, to these profound intricacies of
collective orderings, we hope that one can see how the field of correlated electronic physics,
as studied by probes like ARPES, offers much for the student interested in the profound
puzzles of nature.

128



Bibliography

10.

11.

Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing,
Fort Worth, 1976).

. Valla, T. et al. Evidence for Quantum Critical Behavior in the Optimally Doped

Cuprate Bi2Sr2CaCu208+. Science 285, 2110-2113 (1999). URL http://www.
sciencemag.org/cgi/content/abstract/285/5436/2110.

. Peierls, R. Zur Theorie der elektrischen und thermischen Leitfahigkeit von Metallen.

Annals of Physics (Leipzig) 4, 121 (1930).
Peierls, R. E. Quantum Theory of Solids (Oxford: Clarendon Press, 1955).

. Peierls, R. E. More Surprises in Theoretical Physics (Princeton University Press,

Princeton, 1991).
Coleman, L. B., Cohen, M. J., Sandman, D. J., Yamagishi, F. G.,

Garito, A. F. & Heeger, A. J. Superconducting fluctuations and the
peierls instability in an organic solid. Solid  State Communications 12,
1125-1132  (1973). URL http://www.sciencedirect.com/science/article/

B6TVW-46X9H57-9W/2/£602965642cc2abb5f370d024e40f£6€.

Boswell, F. & Bennett, J. (eds.). Advances in the Crystallographic and Microstructural
Analysis of Charge Density Wave Modulated Crystals, (Kluwer Academic Publishers,
London, 1999).

Gweon, G.-H. et al. Direct Observation of Complete Fermi Surface, Imperfect Nesting,
and Gap Anisotropy in the High-Temperature Incommensurate Charge-Density-Wave
Compound SmTez. Physical Review Letters 81, 836— (1998). URL http://link.aps.
org/doi/10.1103/PhysRevLett.81.886.

. A. M. Gabovich, A. I. Voitenko, J. F. A. & Ausloos, M. Charge- and Spin-Density-Wave

Superconductors. Superconding Science and Technology 14, R1-27 (2001).

Overhauser, A. W. Giant Spin Density Waves. Phys. Rev. Lett. 4, 462— (1960). URL
http://link.aps.org/doi/10.1103/PhysRevLett.4.462.

Rice, T. Band-Structure Effects in Itinerant Antiferromagnetism. Physical Review B
2, 36193630 (1970).

129



12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E.
Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys.
Rev. Lett. 63,1996 (1989). URL http://link.aps.org/doi/10.1103/PhysRevLlett.
63.1996.

Xu, Z., Ong, N., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-Like Excitations and the
Onset of Superconducting Phase Fluctuation in Underdoped Lag_,Sr,CuO,4. Nature
406, 486488 (2000).

Yuan, H. Q., Singleton, J., Balakirev, F. F., Baily, S. A., Chen, G. F., Luo, J. L. &
Wang, N. L. Nearly isotropic superconductivity in (Ba,K)Fe2As2. Nature 457, 565-568
(2009). URL http://dx.doi.org/10.1038/nature07676.

Traum, M. M., Smith, N. V. & Di Salvo, F. J. Angular Dependence of Photoemission
and Atomic Orbitals in the Layer Compound 1 T-TaSe 5. Phys. Rev. Lett. 32, 1241—
(1974). URL http://link.aps.org/doi/10.1103/PhysRevlett.32.1241.

Rowe, J. E., Traum, M. M. & Smith, N. V. Measurement of the Angle of Dangling-
Bond Photoemission from Cleaved Silicon. Phys. Rev. Lett. 33, 1333— (1974). URL
http://link.aps.org/doi/10.1103/PhysRevLett.33.1333.

Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi 5Sr ;CaCu
20 s15. Phys. Rev. Lett. 70, 1553— (1993). URL http://link.aps.org/doi/10.1103/
PhysRevLett.70.1553.

Koralek, J. D. et al. Laser Based Angle-Resolved Photoemission, the Sudden Ap-
proximation, and Quasiparticle-Like Spectral Peaks in BiySroCaCuyOg.s. Phys. Rev.
Lett. 96, 017005~ (2006). URL http://link.aps.org/doi/10.1103/PhysRevLlett.
96.017005.

Hiifner, S. Photoelectron Spectroscopy (Springer, Berlin, 1995).

Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard
data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2-11
(1979). URL http://dx.doi.org/10.1002/sia.740010103.

Sakurai, J. Modern Quantum Mechanics Revised Edition (Addison-Wesley, Reading,
Massachusetts, 1994).

Randeria, M. et al. Momentum Distribution Sum Rule for Angle-Resolved Photoemis-
sion. Phys. Rev. Lett. T4, 4951— (1995). URL http://link.aps.org/doi/10.1103/
PhysRevLett.74.4951.

Yoshida, T. et al Thermodynamic and transport properties of underdoped
cuprates from ARPES data. Physica B: Condensed Matter 351, 250-255 (2004).
URL http://www.sciencedirect.com/science/article/B6TVH-4CYGWT3-3/2/
463664£1£992589482e2a355e€974d894.

130



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the
low-energy spectral function in high-T . superconductors. Phys. Rev. B 57, R11093—
(1998). URL http://link.aps.org/doi/10.1103/PhysRevB.57.R11093.

Valla, T., Fedorov, A. V., Lee, J., Davis, J. C. & Gu, G. D. The Ground State of
the Pseudogap in Cuprate Superconductors. Science 314, 1914-1916 (2006). URL
http://www.sciencemag.org/cgi/content/abstract/314/5807/1914.

Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nat
Phys 2, 447-451 (2006). URL http://dx.doi.org/10.1038/nphys334.

Rameau, J., Yang, H.-B. & Johnson, P. Application of the Lucy-Richardson
deconvolution procedure to high resolution photoemission spectra. Jour-
nal of FElectron Spectroscopy and Related Phenomena 181, 35-43 (2010).
URL http://www.sciencedirect.com/science/article/B6TGC-507BHKF-2/2/
£d797942d3a09108c6c4f87d1febb6cd.

Yang, H.-B., Rameau, J. D., Johnson, P. D.; Valla, T., Tsvelik, A. & Gu, G. D.
Emergence of preformed Cooper pairs from the doped Mott insulating state in
Bi2Sr2CaCu208+d. Nature 456, 77-80 (2008). URL http://dx.doi.org/10.1038/
nature07400.

Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-Based Layered Supercon-
ductor La|O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. Journal of the American Chem-
ical Society 130, 3296-3297 (2008). URL http://dx.doi.org/10.1021/ja800073m.

Ma, F. & Lu, Z.-Y. Iron-based layered compound LaFeAsO is an antiferromagnetic
semimetal. Phys. Rev. B 78, 033111- (2008). URL http://link.aps.org/doi/10.
1103/PhysRevB.78.033111.

Ren, Z.-A. et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary
Compound Sm[O1-xFx] FeAs. Chinese Physics Letters 25, 2215 (2008).

Ren, Z.-A. et al. Superconductivity in the iron-based F-doped layered quaternary
compound Nd[O,_,F,|FeAs. Europhysical Letters 82, 57002 (2008).

Yang, J. et al. Superconductivity at 53.5 K in GdFeAsO;_s. Superconductor Science
and Technology 21, 082001 (2008).

Ren, Z. A. et al. Superconductivity at 52 K in iron based F doped layered quaternary
compound Pr[O;_,F,|FeAs. Materials Research Innovations 12, 105-106 (2008).

Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the Iron Arsenide
(Ba;_.K,)FesAsy. Phys. Rev. Lett. 101, 107006— (2008). URL http://1link.aps.org/
doi/10.1103/PhysRevLett.101.107006.

131



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Borisenko, S. V. et al. Superconductivity without Nesting in LiFeAs. Phys. Rev. Lett.
105, 067002— (2010). URL http://link.aps.org/doi/10.1103/PhysRevLlett.105.
067002.

Singh, D. J. & Du, M.-H. Density Functional Study of LaFeAsO ;_,F ,: A Low Carrier
Density Superconductor Near Itinerant Magnetism. Phys. Rev. Lett. 100, 237003—
(2008). URL http://link.aps.org/doi/10.1103/PhysRevLett.100.237003.

Luetkens, H. et al. The electronic phase diagram of the LaO1-xFxFeAs superconductor.
Nat Mater 8, 305-309 (2009). URL http://dx.doi.org/10.1038/nmat2397.

Wu, J., Phillips, P. & Castro Neto, A. H. Theory of the Magnetic Moment in Iron
Pnictides. Phys. Rev. Lett. 101, 126401— (2008). URL http://link.aps.org/doi/
10.1103/PhysRevLett.101.126401.

de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered
LaO;_,F,FeAs systems. Nature 453, 899-902 (2008). URL http://dx.doi.org/10.
1038/nature07057.

Klauss, H.-H. et al. Commensurate Spin Density Wave in LaFeAsO: A Local Probe
Study. Phys. Rev. Lett. 101, 077005— (2008). URL http://link.aps.org/doi/10.
1103/PhysRevLett.101.077005.

Dong, J. et al. Competing orders and spin-density-wave instability in La(O1-xFx)FeAs.
Europhysics Letters 83, 27006 (2008).

Kitao, S. et al. Spin Ordering in LaFeAsO and Its Suppression in Superconductor
LaFeAsOqg9Fg.11 Probed by Mossbauer Spectroscopy. J. Phys. Soc. Jpn. 77, 103706—
(2008).

Ou, H. W.and Zhao, J. F. et al. Angle Integrated Photoemission Study of
SmO0.85F0.15FeAs. Chinese Physics Letters 25, 2225 (2008).

Ishida, Y. et al. Temperature-dependent pseudogap in the oxypnictides LaFeAsO ;_,F .
and LaFePO ;_,F , seen via angle-integrated photoemission. Phys. Rev. B 79, 060503~
(2009). URL http://link.aps.org/doi/10.1103/PhysRevB.79.060503.

Sato, T. et al. Superconducting Gap and Pseudogap in Iron-Based Layered Supercon-
ductor La(O;_,F,)FeAs. J. Phys. Soc. Jpn. 77, 063708— (2008).

Liu, H. et al. Pseudogap and Superconducting Gap in Sm FeAs(O1-xFx) Superconduc-
tor from Photoemission Spectroscopy. Chinese Physics Letters 25, 3761 (2008).

Jia, X. et al. Common Features in Electronic Structure of the Oxypnictide Supercon-
ductors from Photoemission Spectroscopy. Chinese Physics Letters 25, 3765 (2008).

Liu, C. et al. Fermi surface and strong coupling superconductivity in single crystal

NdFeAsO;_,F,. arXiv:cond-mat/0806. 2147 (2008).

132



90.

ol.

52.

53.

o4.

99.

96.

57.

28.

29.

60.

61.

Liu, C. et al. K-Doping Dependence of the Fermi Surface of the Iron-Arsenic
Ba _,K,Fe;As 5 Superconductor Using Angle-Resolved Photoemission Spectroscopy.
Phys. Rev. Lett. 101, 177005— (2008). URL http://link.aps.org/doi/10.1103/
PhysRevLett.101.177005.

Zhao, L. et al. Multiple Nodeless Superconducting Gaps in (Ba0.6K0.4)Fe2As2 Super-
conductor from Angle-Resolved Photoemission Spectroscopy. Chinese Physics Letters
25, 44024405 (2008).

Mazin, I. 1., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional Supercon-
ductivity with a Sign Reversal in the Order Parameter of LaFeAsO ;_,F .. Phys. Rev.
Lett. 101, 057003— (2008). URL http://link.aps.org/doi/10.1103/PhysRevLett.
101.057003.

Nowik, I., Felner, I., Awana, V. P. S., Vajpayee, A. & Kishana, H. 57Fe Mossbauer
spectroscopy and magnetic measurement studies of oxygen deficient LaFeAsO. Journal
of Physics: Condensed Matter 20, 292201 (2008).

Felner, I., Nowik, I., Tsindlekht, M. I., Ren, Z.-A., Shen, X.-L., Che, G.-C. & Zhao,
Z.-X. Magnetic measurements and 57Fe Mossbauer spectroscopy in oxygen deficient
SmFeAsO0.85. arXiw:0805.2794v2 (2008).

Ahilan, K. et al. *F NMR investigation of the iron pnictide superconductor LaFeAsO
0.80F 011 Phys. Rev. B 78, 100501- (2008). URL http://link.aps.org/doi/10.
1103/PhysRevB.78.100501.

Zhu, 7Z. W. et al. Nernst effect of a new iron-based superconductor LaO1l-xFxFeAs.
New Journal Physics 10, 063021 (2008).

Gonnelli, R. S., Daghero, D., Tortello, M., Ummarino, G. A., Stepanov, V. A., Kim,
J. S. & Kremer, R. K. Coexistence of two order parameters and a pseudogaplike feature
in the iron-based superconductor LaFeAsO ;_,F .. Phys. Rev. B 79, 184526— (2009).
URL http://link.aps.org/doi/10.1103/PhysRevB.79.184526.

Drew, A. J. et al. Coexistence of static magnetism and superconductivity in
SmFeAsO;_,F, as revealed by muon spin rotation. Nat Mater 8, 310-314 (2009).
URL http://dx.doi.org/10.1038/nmat2396.

In spite of these mentioned post-synthesis analyses, it should be noted that the final
Flourine concentration was not additionally verified by any chemical analysis of the
final product. (2008).

Sawatzky, G. Private Communication (2008).

Cardona, M. & Ley, L. (eds.). Photoemission in Solids I: General Principles (Springer-
Verlag, Berlin, 1978).

133



62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Koitzsch, A. et al. Valence-band and core-level photoemission spectroscopy of LaFeAsO
1-2F 2. Phys. Rev. B 78, 180506 (2008). URL http://link.aps.org/doi/10.1103/
PhysRevB.78.180506.

Cao, C., Hirschfeld, P. J. & Cheng, H.-P. Proximity of antiferromagnetism and super-
conductivity in LaFeAsO ;_,F , : Effective Hamiltonian from ab initio studies. Phys.
Rev. B 77, 220506 (2008). URL http://link.aps.org/doi/10.1103/PhysRevB.77.
220506.

Phillips, P. (2008). Private Communication.

Shen, Z.-x. et al. Anderson Hamiltonian description of the experimental electronic
structure and magnetic interactions of copper oxide superconductors. Phys. Rev. B 36,
8414~ (1987). URL http://link.aps.org/doi/10.1103/PhysRevB.36.8414.

Kim, H.-D., Noh, H.-J., Kim, K. H. & Oh, S.-J. Core-Level X-Ray Photoemission
Satellites in Ruthenates: A New Mechanism Revealing The Mott Transition. Phys. Reuv.
Lett. 93, 126404— (2004). URL http://link.aps.org/doi/10.1103/PhysRevLlett.
93.126404.

Haule, K., Shim, J. H. & Kotliar, G. Correlated Electronic Structure of LaO ;_,F
<FeAs. Phys. Rev. Lett. 100, 226402— (2008). URL http://link.aps.org/doi/10.
1103/PhysRevLett.100.226402.

Yeh, J.-J. & Lindau, I. Atomic Subshell Photoionization Cross Sections and Asymmetry
Parameters: 1<Z<103,. At. Data Nucl. Data Tables 32, 1 (1985).

Hashimoto, M. et al. Distinct doping dependences of the pseudogap and superconduct-
ing gap of La 5_,Sr ,CuO 4 cuprate superconductors. Phys. Rev. B 75, 140503 (2007).
URL http://1link.aps.org/doi/10.1103/PhysRevB.75.140503.

Mazin, I. I. & Johannes, M. D. A key role for unusual spin dynamics in ferropnictides.
Nat Phys 5, 141-145 (2009). URL http://dx.doi.org/10.1038/nphys1160.

Ding, H. et al. Observation of Fermi-surface dependent nodeless superconducting gaps
in Bag Ko 4FeaAsy. Europhysics Letters 83, 47001 (2008).

Sato, T. et al. Band Structure and Fermi Surface of an Extremely Overdoped Iron-
Based Superconductor KFeyAsy. Phys. Rev. Lett. 103, 047002- (2009). URL http:
//link.aps.org/doi/10.1103/PhysRevLett.103.047002.

Chen, F. et al. Electronic structure of Fej gsTeggeS5€0.34. Phys. Rev. B 81, 014526—
(2010). URL http://link.aps.org/doi/10.1103/PhysRevB.81.014526.

Xia, Y. et al. Fermi Surface Topology and Low-Lying Quasiparticle Dynamics of Parent
Fey,Te/Se Superconductor. Phys. Rev. Lett. 103, 037002 (2009). URL http://link.
aps.org/doi/10.1103/PhysRevLett.103.037002.

134



75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

36.

Yi, M. et al. Unconventional electronic reconstruction in undoped (Ba,Sr)FesAs, across
the spin density wave transition. Phys. Rev. B 80, 174510— (2009). URL http://link.
aps.org/doi/10.1103/PhysRevB.80.174510.

Morris, R. C. Connection between Charge-Density Waves and Superconductivity in
NbSe 5. Phys. Rev. Lett. 34, 1164— (1975). URL http://link.aps.org/doi/10.
1103/PhysRevLett.34.1164.

Nunez-Regueiro, M., Mignot, J.-M., Jaime, M., Castello, D. & Monceau,
P.  Superconductivity under pressure in linear chalcogenides. Synthetic Metals
56, 2653-2659 (1993). URL http://www.sciencedirect.com/science/article/
B6TY7-48CX1GY-MX/2/fbd8ea98be8b1401f433a9f7c1201710.

Singh, Y., Nirmala, R., Ramakrishnan, S. & Malik, S. K. Competition between su-
perconductivity and charge-density-wave ordering in the Lu 5Ir 4(Si ;_,Ge ) 19 alloy
system. Phys. Rev. B 72, 045106— (2005). URL http://link.aps.org/doi/10.1103/
PhysRevB.72.045106.

Fang, L. et al. Fabrication and superconductivity of Na ,TaS 5 crystals. Phys. Rev. B
72, 014534 (2005). URL http://link.aps.org/doi/10.1103/PhysRevB.72.014534.

Morosan, E. et al. Superconductivity in CuxTiSe2. Nat Phys 2, 544-550 (2006). URL
http://dx.doi.org/10.1038/nphys360.

Jung, M. H. et al. Superconductivity in magnetically ordered CeTe | g5. Phys. Rev. B
67, 212504 (2003). URL http://link.aps.org/doi/10.1103/PhysRevB.67.212504.

Li, J.-X., Wu, C.-Q. & Lee, D.-H. Checkerboard charge density wave and pseudogap
of high- T . cuprate. Phys. Rev. B T4, 184515— (2006). URL http://link.aps.org/
doi/10.1103/PhysRevB.74.184515.

McElroy, K. et al. Coincidence of Checkerboard Charge Order and Antinodal State
Decoherence in Strongly Underdoped Superconducting Bi oSt sCaCu 50 g15. Phys. Rev.
Lett. 94, 197005— (2005). URL http://link.aps.org/doi/10.1103/PhysRevLett.
94.197005.

Brouet, V. et al. Fermi Surface Reconstruction in the CDW State of CeTe 3 Observed
by Photoemission. Phys. Rev. Lett. 93, 126405— (2004). URL http://link.aps.org/
doi/10.1103/PhysRevLett.93.126405.

Shin, K. Y., Brouet, V., Ru, N., Shen, Z. X. & Fisher, I. R. Electronic structure and
charge-density wave formation in LaTe |95 and CeTe 599. Phys. Rev. B 72, 085132—
(2005). URL http://1link.aps.org/doi/10.1103/PhysRevB.72.085132.

DiMasi, E., Foran, B., Aronson, M. C. & Lee, S. Stability of charge-density waves
under continuous variation of band filling in LaTe 5_,Sb .. Phys. Rev. B 54, 13587—
(1996). URL http://link.aps.org/doi/10.1103/PhysRevB.54.13587.

135



87.

88.
89.

90.

91.

92.

93.

94.

95.

96.
97.

98.

99.

Stowe, K. Crystal Structure and Electronic Band Structure of LaTe2. Journal of Solid
State Chemistry 149, 155 (2000).

Marcon, J. P. & Pascard, R. Comptes Rendus Academy Science Paris 266, 270 (1968).

Jung, M.-H. et al. Anisotropic Transport and Magnetic Properties and. J. Phys. Soc.
Jpn. 69, 937— (2000).

Kwon, Y. S. & Min, B. H. Anisotropic transport properties in RTe2
(R: La, Ce, Pr, Sm and Gd). Physica B: Condensed Matter 281-
282, 120-121 (2000). URL http://www.sciencedirect.com/science/article/
B6TVH-400WKV6-1R/2/£9058e404ab0f9cf084f£89d96324bde.

Shim, J. H., Kang, J.-S. & Min, B. I. Electronic Structures of RTe 5 (R=La,Ce): A Clue
to the Pressure-Induced Superconductivity in CeTe go. Phys. Rev. Lett. 93, 156406—
(2004). URL http://link.aps.org/doi/10.1103/PhysRevLett.93.156406.

Grupe, M. & Urland, W. Darstellung und Kristallstruktur von LaSel,9. Journal of the
Less Common Metals 170, 271-275 (1991). URL http://www.sciencedirect.com/
science/article/B759D-48GNKK1-244/2/6c54afe67d52ba63fe2ab82b8ea847el.

Lee, S. & Foran, B. Rationalization and prediction of rare earth selenide super-
structures. Journal of the American Chemical Society 116, 154-161 (1994). URL
http://dx.doi.org/10.1021/ja00080a018.

Gweon, G. H. et al. Direct Fermi-surface image of hidden nesting for NaMo ¢O 17 and
KMo ¢O 17. Physical Review B 55, R13353— (1997). URL http://link.aps.org/doi/
10.1103/PhysRevB.55.R13353.

Yokoya, T., Kiss, T., Chainani, A., Shin, S., Nohara, M. & Takagi, H. Fermi Surface
Sheet-Dependent Superconductivity in 2H-NbSe2. Science 294, 2518-2520 (2001).
URL http://www.sciencemag.org/cgi/content/abstract/294/5551/2518.

Griiner, G. Density Waves in Solids (Addison-Wesley, Reading, Massachusetts, 1994).

Gweon, G.-H. et al. Fermi surfaces and single-particle spectral functions of low-
dimensional inorganic non-cuprate compounds: the molybdenum bronzes. Journal of
Physics: Condensed Matter 8, 9923 (1996).

Colonna, S., Ronci, F., Cricenti, A., Perfetti, L., Berger, H. & Grioni, M. Mott Phase
at the Surface of 1T-TaSe 5 Observed by Scanning Tunneling Microscopy. Phys. Rev.
Lett. 94, 036405 (2005). URL http://link.aps.org/doi/10.1103/PhysRevLlett.
94.036405.

Kim, J.-J., Yamaguchi, W., Hasegawa, T. & Kitazawa, K. Observation of Mott Local-
ization Gap Using Low Temperature Scanning Tunneling Spectroscopy in Commensu-
rate 1T-TaSa 5. Phys. Rev. Lett. 73, 2103— (1994). URL http://link.aps.org/doi/
10.1103/PhysRevlett.73.2103.

136



100.

101.

102.

103.

104.

105.

106.

107.

108.

1009.

110.

111.

Kidd, T. E., Miller, T., Chou, M. Y. & Chiang, T.-C. Electron-Hole Coupling and the
Charge Density Wave Transition in TiSe 5. Phys. Rev. Lett. 88, 226402 (2002). URL
http://link.aps.org/doi/10.1103/PhysRevLett.88.226402.

Kwon, Y. S. & Min, B. H. Anisotropic transport properties in RTe2 (R: La, Ce, Pr,
Sm and Gd). Physica B 281-282, 120-121 (2000).

Jung, M. H., Ekino, T., Kwon, Y. S. & Takabatake, T. Tunneling spectroscopy of RTe
» (R=La, Ce) and possible coexistence between charge-density waves and magnetic
order. Phys. Rev. B 63, 035101- (2000). URL http://link.aps.org/doi/10.1103/
PhysRevB.63.035101.

Yao, H., Robertson, J. A., Kim, E.-A. & Kivelson, S. A. Theory of stripes in quasi-
two-dimensional rare-earth tellurides. Phys. Rev. B 74, 245126 (2006). URL http:
//1link.aps.org/doi/10.1103/PhysRevB.74.245126.

Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-
temperature superconductors. Nature 412, 510-514 (2001). URL http://dx.doi.
org/10.1038/35087518.

Chakravarty, S., Kee, H.-Y. & Volker, K. An explanation for a universality of transition
temperatures in families of copper oxide superconductors. Nature 428, 53-55 (2004).
URL http://dx.doi.org/10.1038/nature02348.

Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide su-
perconductors. Phys. Rev. B 69, 064512— (2004). URL http://link.aps.org/doi/
10.1103/PhysRevB.69.064512.

Rowell, J. M., Anderson, P. W. & Thomas, D. E. Image of the Phonon Spectrum in the
Tunneling Characteristic Between Superconductors. Phys. Rev. Lett. 10, 334— (1963).
URL http://1link.aps.org/doi/10.1103/PhysRevLett.10.334.

Schrieffer, J. R., Scalapino, D. J. & Wilkins, J. W. Effective Tunneling Density of
States in Superconductors. Phys. Rev. Lett. 10, 336— (1963). URL http://link.aps.
org/doi/10.1103/PhysRevLett.10.336.

Garcia, D. & Lanzara, A. Through a Lattice Darkly Shedding Light on the Electron-
Phonon Coupling in the High Tc Cuprates. Advances in Condensed Matter Physics

- Phonons and FElectron Correlations in High-Temperature and Other Novel Supercon-
ductors (HTS) 2010, Article ID 807412 (2010).

Kondo, T., Khasanov, R., Takeuchi, T., Schmalian, J. & Kaminski, A. Competition
between the pseudogap and superconductivity in the high-Tc copper oxides. Nature
457, 296-300 (2009). URL http://dx.doi.org/10.1038/nature07644.

Emery, V. & Kivelson, S.  Frustrated electronic phase separation and high-
temperature superconductors. Physica C: Superconductivity 209, 597-621 (1993).

137



112.

113.

114.

115.

116.

117.
118.

119.

120.

121.

122.

URL http://www.sciencedirect.com/science/article/B6TVJ-46JH1GP-P3/2/
230ec511b0a037f647c4cafe7bl8cdac.

Castellani, C., Di Castro, C. & Grilli, M. Singular Quasiparticle Scattering in the
Proximity of Charge Instabilities. Phys. Rev. Lett. 75, 4650— (1995). URL http:
//link.aps.org/doi/10.1103/PhysRevLett.75.4650.

Saini, N. L. et al. Topology of the Pseudogap and Shadow Bands in BiySroCaCuyOgys
at Optimum Doping. Phys. Rev. Lett. 79, 3467— (1997). URL http://link.aps.org/
doi/10.1103/PhysRevLett.79.3467.

Tanaka, K. et al. Distinct Fermi-Momentum-Dependent Energy Gaps in Deeply Under-
doped Bi2212. Science 314, 1910-1913 (2006). URL http://www.sciencemag.org/
cgi/content/abstract/314/5807/1910.

Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition

of underdoped Bi2212. Nature 450, 81-84 (2007). URL http://dx.doi.org/10.1038/
nature06219.

Bogdanov, P. V. et al. Evidence for an Energy Scale for Quasiparticle Dispersion in Bi
951 5CaCu 20 g. Phys. Rev. Lett. 85, 2581 (2000). URL http://link.aps.org/doi/
10.1103/PhysRevLett.85.2581.

Rossat-Mignod, J. & et al. Physica (Amsterdam) 59, 235C (1994).

Fong, H. F., Keimer, B., Milius, D. L. & Aksay, I. A. Superconductivity-Induced
Anomalies in the Spin Excitation Spectra of Underdoped YBa sCu 3 O ¢,,. Phys. Rev.
Lett. 78, 713— (1997). URL http://link.aps.org/doi/10.1103/PhysRevlett.78.
713.

Arai, M. et al. Incommensurate Spin Dynamics of Underdoped Superconductor YBa
oCu 30 ¢7. Phys. Rev. Lett. 83, 608 (1999). URL http://link.aps.org/doi/10.
1103/PhysRevLett.83.608.

Dai, P., Mook, H. A., Hayden, S. M., Aeppli, G., Perring, T. G., Hunt, R. D. & Dogan,
F. The Magnetic Excitation Spectrum and Thermodynamics of High-Tc Supercon-
ductors. Science 284, 1344-1347 (1999). URL http://www.sciencemag.org/cgi/
content/abstract/284/5418/1344.

Dai, P., Yethiraj, M., Mook, H. A., Lindemer, T. B. & Dogbrevean, F. Magnetic
Dynamics in Underdoped YBa ,Cu 30 ;_,: Direct Observation of a Superconducting
Gap. Phys. Rev. Lett. 77, 5425 (1996). URL http://link.aps.org/doi/10.1103/
PhysRevLett.77.5425.

McQueeney, R. J., Petrov, Y., Egami, T., Yethiraj, M., Shirane, G. & Endoh, Y.
Anomalous Dispersion of LO Phonons in La; g55rg.15CuQOy4 at Low Temperatures. Phys.
Rev. Lett. 82, 628 (1999). URL http://link.aps.org/doi/10.1103/PhysRevLlett.
82.628.

138



123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

et al., X. J. Z. "Treatise of High Temperature Superconductivity”, Handbook of High-
Temperature Superconductivity: Theory and Experiment (Springer, 2007).

Lanzara, A. et al. Normal state spectral lineshapes of nodal quasiparticles in
single layer Bi2201 superconductor. Journal of Physics and Chemistry of Solids
67, 239-243 (2006). URL http://www.sciencedirect.com/science/article/
B6TXR-4HM87GN-1/2/f12649afff898a3bcble605a766538e7.

Gweon, G. H., Zhou, S. Y. & Lanzara, A. Strong influence of phonons on the elec-
tron dynamics of Bi2Sr2CaCu208+-[delta]. Journal of Physics and Chemistry of Solids
65, 1397-1401 (2004). URL http://www.sciencedirect.com/science/article/
B6TXR-4BWMNJ5-1/2/d6dadb495d466190826c14fbaf16a59d.

Dessau, D. S. et al. Anomalous spectral weight transfer at the superconducting
transition of BisSroCaCusOgis. Phys. Rev. Lett. 66, 2160— (1991). URL http:
//link.aps.org/doi/10.1103/PhysRevLett.66.2160.

Hwu, Y. et al. Electronic spectrum of the high-temperature superconducting state.
Phys. Rev. Lett. 67, 2573— (1991). URL http://link.aps.org/doi/10.1103/
PhysRevLett.67.2573.

Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu306+x system. Phys-
ica C: Superconductivity 185-189, 86-92 (1991). URL http://www.sciencedirect.
com/science/article/B6TVI-46WX8TF-V/2/badbbe6369fa5949b748c06a3b85c286.

Mook, H. A., Yethiraj, M., Aeppli, G., Mason, T. E. & Armstrong, T. Polarized
neutron determination of the magnetic excitations in YBa 5Cu 30 ;7. Phys. Rev. Lett.
70, 3490 (1993). URL http://link.aps.org/doi/10.1103/PhysRevlett.70.3490.

Fong, H. F. et al Neutron scattering from magnetic excitations in
Bi2Sr2CaCu208+[deltal. Nature 398, 588-591 (1999). URL http://dx.doi.org/
10.1038/19255.

Feng, D. L. et al. Bilayer Splitting in the Electronic Structure of Heavily Overdoped
Bi 5Sr ,CaCu 20 gigeira- Phys. Rev. Lett. 86, 5550— (2001). URL http://link.aps.
org/doi/10.1103/PhysRevlett.86.5550.

Chuang, Y.-D. et al. Doubling of the Bands in Overdoped Bi 5Sr 2CaCu 50 g4 gesta:
Evidence for c-Axis Bilayer Coupling. Phys. Rev. Lett. 87, 117002— (2001). URL
http://link.aps.org/doi/10.1103/PhysRevLett.87.117002.

Bogdanov, P. V. et al. Photoemission study of Pb doped Bi ,Sr ;CaCu 20 g: A Fermi
surface picture. Phys. Rev. B 64, 180505 (2001). URL http://link.aps.org/doi/
10.1103/PhysRevB.64.180505.

Gromko, A. D. et al. Mass-renormalized electronic excitations at ( pi ,0) in the super-
conducting state of Bi 5Sr 9CaCu 50 g gerra- Phys. Rev. B 68, 174520— (2003). URL
http://link.aps.org/doi/10.1103/PhysRevB.68.174520.

139



135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

Kaminski, A. et al. Renormalization of Spectral Line Shape and Dispersion below T,
in BiySroCaCuyOgys. Phys. Rev. Lett. 86, 1070— (2001). URL http://link.aps.org/
doi/10.1103/PhysRevLlett.86.1070.

Kim, T. K., Kordyuk, A. A., Borisenko, S. V., Koitzsch, A., Knupfer, M., Berger, H. &
Fink, J. Doping Dependence of the Mass Enhancement in (Pb,Bi) 5Sr ;CaCu 5,0 g at
the Antinodal Point in the Superconducting and Normal States. Phys. Rev. Lett. 91,
167002- (2003). URL http://link.aps.org/doi/10.1103/PhysRevLett.91.167002.

Cuk, T. et al. Coupling of the B ;;, Phonon to the Antinodal Electronic States of
Bi 9Sr 9Ca gg92Y .0sCu 50 8+delta - Phys Rev. Lett. 93, 117003— (2004) URL http:
//link.aps.org/doi/10.1103/PhysRevLett.93.117003.

Rotenberg, E., Schaefer, J. & Kevan, S. D. Coupling Between Adsorbate Vibrations
and an Electronic Surface State. Phys. Rev. Lett. 84, 2925— (2000). URL http:
//link.aps.org/doi/10.1103/PhysRevLett.84.2925.

Gweon, G.-H., Sasagawa, T., Zhou, S., Graf, J., Takagi, H., Lee, D.-H. & Lanzara,
A. An unusual isotope effect in a high-transition-temperature superconductor. Nature
430, 187-190 (2004). URL http://dx.doi.org/10.1038/nature02731.

Graf, J. et al. Bond Stretching Phonon Softening and Kinks in the Angle-Resolved
Photoemission Spectra of Optimally Doped Bi 5Sr 1 gLa ¢4Cu 50 445 Superconductors.
Phys. Rev. Lett. 100, 227002— (2008). URL http://link.aps.org/doi/10.1103/
PhysRevLett.100.227002.

Kondo, T., Takeuchi, T., Kaminski, A., Tsuda, S. & Shin, S. Evidence for Two En-
ergy Scales in the Superconducting State of Optimally Doped (Bi,Pb) 5(Sr,La) CuO
6+5- Phys. Rev. Lett. 98, 267004— (2007). URL http://link.aps.org/doi/10.1103/
PhysRevLett.98.267004.

Gweon, G.-H., Zhou, S. Y., Watson, M. C., Sasagawa, T., Takagi, H. & Lanzara, A.
Strong and Complex Electron-Lattice Correlation in Optimally Doped Bi 5Sr ;CaCu
90 8y detta- Phys. Rev. Lett. 97, 227001- (2006). URL http://link.aps.org/doi/10.
1103/PhysRevLett.97.227001.

Chen, X.-J., Struzhkin, V. V., Yu, Y., Goncharov, A. F., Lin, C.-T., Mao, H.-k. &
Hemley, R. J. Enhancement of superconductivity by pressure-driven competition in
electronic order. Nature 466, 950-953 (2010). URL http://dx.doi.org/10.1038/
nature09293.

Chen, X.-J., Struzhkin, V. V., Hemley, R. J., Mao, H.-k. & Kendziora, C. High-pressure
phase diagram of Bi 9Sr 5CaCu 20 g, 4eirq single crystals. Phys. Rev. B 70, 214502—
(2004). URL http://link.aps.org/doi/10.1103/PhysRevB.70.214502.

Cuk, T. et al. Uncovering a Pressure-Tuned Electronic Transition in Bi ;9gSr 206Y
068Cu 20 g5 using Raman Scattering and X-Ray Diffraction. Phys. Rev. Lett.

140



146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

100, 217003- (2008). URL http://link.aps.org/doi/10.1103/PhysRevLett.100.
217003.

Bianconi, A., Agrestini, S., Bianconi, G., Di Castro, D. & Saini, N. A quan-
tum phase transition driven by the electron lattice interaction gives high TC
superconductivity.  Journal of Alloys and Compounds 317-318, 537-541 (2001).
URL http://www.sciencedirect.com/science/article/B6TWY-42SH1F1-5K/2/
d2e4c001b1£9a6d6b48066d57e47bb60.

Sanna, S., Agrestini, S., Zheng, K., De Renzi, R. & Saini, N. L. Experimental evidence
of chemical-pressurecontrolled superconductivity in cuprates. Furophysics Letters 86,
67007 (2009).

Hobou, H., Ishida, S., Fujita, K., Ishikado, M., Kojima, K. M., Eisaki, H. & Uchida,
S. Enhancement of the superconducting critical temperature in Bi 5Sr CaCu 20 g5
by controlling disorder outside CuO , planes. Phys. Rev. B 79, 064507— (2009). URL
http://link.aps.org/doi/10.1103/PhysRevB.79.064507.

Hashimoto, M. et al. Effects of out-of-plane disorder on the nodal quasiparticle and
superconducting gap in single-layer Bi 5Sr ; 6L 04CuO ¢, (L=La,Nd,Gd). Phys. Rev. B
79, 144517— (2009). URL http://link.aps.org/doi/10.1103/PhysRevB.79.144517.

Okada, Y., Takeuchi, T., Baba, T., Shin, S. & Ikuta, H. Origin of the Anomalously
Strong Influence of Out-of-Plane Disorder on High-Tc Superconductivity. Journal of
the Physical Society of Japan 77, 074714 (2008).

Fujita, K., Noda, T., Kojima, K. M., Eisaki, H. & Uchida, S. Effect of Disorder Outside
the CuO2 Planes on Tc of Copper Oxide Superconductors. Physical Review Letters 95,
097006 (2005).

Nameki, H., Kikuchi, M. & Syono, Y. Effects of lanthanoid substitution on super-
conductivity and modulated structure of Bi2Sr2CuQOy. Physica C: Superconductiv-
ity 234, 255-262 (1994). URL http://www.sciencedirect.com/science/article/
B6TVJ-46SNMRS-1D/2/584028ede8d42029e5076fac0ab42dfc.

Okada, Y. et al. Momentum dependence of the energy gap in the superconducting state
of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu). Journal of Physics: Conference
Series 150, 052197 (2009).

Sugimoto, A. et al. Enhancement of electronic inhomogeneities due to out-of-plane dis-
order in Bi2Sr2CuO6+d superconductors observed by scanning tunneling spectroscopy.
Phys. Rev. B 74, 094503 (2006).

Attfield, J. P., Kharlanov, A. L. & McAllister, J. A. Cation effects in doped La2Cu0O4
superconductors. Nature 394 (1998).

Carlin, R. L. Magnetochemistry (1986).

141



157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

Sato, T., Matsui, H., Nishina, S., Takahashi, T., Fujii, T., Watanabe, T. & Matsuda,
A. Low Energy Excitation and Scaling in Bi 5Sr 3Ca ,,_1Cu ,O 9,.4: Angle-Resolved
Photoemission Spectroscopy. Phys. Rev. Lett. 89, 067005— (2002). URL http://link.
aps.org/doi/10.1103/PhysRevLett.89.067005.

Koitzsch, A. et al. Origin of the shadow Fermi surface in Bi -based cuprates. Phys.
Rev. B 69, 220505~ (2004). URL http://link.aps.org/doi/10.1103/PhysRevB.69.
2205065.

Nakayama, K. et al. Evolution of a Pairing-Induced Pseudogap from the Super-
conducting Gap of (Bi,Pb)sSroCuOg. Phys. Rev. Lett. 102, 227006— (2009). URL
http://link.aps.org/doi/10.1103/PhysRevLett.102.227006.

Andergassen, S., Caprara, S., Di Castro, C. & Grilli, M. Anomalous Isotopic Effect
Near the Charge-Ordering Quantum Criticality. Phys. Rev. Lett. 87, 056401— (2001).
URL http://1link.aps.org/doi/10.1103/PhysRevLett.87.056401.

Lanzara, A. ., Zhao, G.-M., Saini, N. L., Bianconi, A., Conder, K., Keller, H. & Mller,
K. A. Oxygen-isotope shift of the charge-stripe ordering temperature in La2-xSrxCuO4
from x-ray absorption spectroscopy. Journal of Physics: Condensed Matter 11, 1L.541

(1999).

Rubio Temprano, D., Mesot, J., Janssen, S., Conder, K., Furrer, A., Mutka, H. &
M&uumlller, K. A. Large Isotope Effect on the Pseudogap in the High-Temperature
Superconductor HoBa ,Cu 4O g. Phys. Rev. Lett. 84, 1990— (2000). URL http:
//link.aps.org/doi/10.1103/PhysRevLett.84.1990.

Bianconi, A. et al. Determination of the Local Lattice Distortions in the CuO 5 Plane
of La 1 g551 ¢.15Cu0 4. Phys. Rev. Lett. 76, 3412— (1996). URL http://link.aps.org/
doi/10.1103/PhysRevLett.76.3412.

Seibold, G. & Grilli, M. Influence of incommensurate dynamic charge-density-wave
scattering on the photoemission line shape of superconducting high-T . cuprates. Phys.
Rev. B 63, 224505~ (2001). URL http://link.aps.org/doi/10.1103/PhysRevB.63.
224505.

Lee, W. et al. Study of HgBayCuOy4.5 by Angle-Resolved Photoemission Spectroscopy.
arXiv:cond-mat/0606347v1 (2006).

Norman, M. R. Chasing Arcs in Cuprate Superconductors. Science 325, 1080-1081
(2009). URL http://www.sciencemag.org.

Perali, A., Castellani, C., Di Castro, C., Grilli, M., Piegari, E. & Varlamov, A. A.
Two-gap model for underdoped cuprate superconductors. Phys. Rev. B 62, R9295—
(2000). URL http://link.aps.org/doi/10.1103/PhysRevB.62.R9295.

142



168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

Bianconi, A. et al. Stripe structure in the CuO 5 plane of perovskite superconduc-
tors. Phys. Rev. B 54, 12018- (1996). URL http://link.aps.org/doi/10.1103/
PhysRevB.54.12018.

Harris, J. M. et al. Measurement of an Anisotropic Energy Gap in Single Plane Bi oSr
9 zLa ,CuO gys. Phys. Rev. Lett. 79, 143— (1997). URL http://link.aps.org/doi/
10.1103/PhysRevLlett.79.143.

Deutscher, G. Coherence and single-particle excitations in the high-temperature super-
conductors. Nature 397, 410-412 (1999). URL http://dx.doi.org/10.1038/17075.

He, R.-H. et al. Energy gaps in the failed high-Tc superconductor Lal.875Ba0.125Cu0O4.
Nat Phys 5, 119-123 (2009). URL http://dx.doi.org/10.1038/nphys1159.

Kanigel, A., Chatterjee, U., Randeria, M., Norman, M. R., Koren, G., Kadowaki, K. &
Campuzano, J. C. Evidence for Pairing above the Transition Temperature of Cuprate
Superconductors from the Electronic Dispersion in the Pseudogap Phase. Phys. Rev.
Lett. 101, 137002— (2008). URL http://link.aps.org/doi/10.1103/PhysRevlett.
101.137002.

Meng, J. et al. Monotonic d -wave superconducting gap of the optimally doped
BisSry gLag 4CuQOg superconductor by laser-based angle-resolved photoemission spec-
troscopy. Phys. Rev. B 79, 024514— (2009). URL http://link.aps.org/doi/10.
1103/PhysRevB.79.024514.

Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in
Bi2Sr2CaCu208+-[d]. Nature 454, 1072-1078 (2008). URL http://dx.doi.org/10.
1038/nature07243.

Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped
high-Tc superconductor. Nature 447, 565-568 (2007). URL http://dx.doi.org/10.
1038/nature05872.

Sebastian, S. E. et al. A multi-component Fermi surface in the vortex state of an
underdoped high-Tc superconductor. Nature 454, 200-203 (2008). URL http://dx.
doi.org/10.1038/nature07095.

Meng, J. et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide
superconductor. Nature 462, 335-338 (2009). URL http://dx.doi.org/10.1038/
nature08521.

Borisenko, S. V. et al. Superconducting gap in the presence of bilayer splitting in
underdoped (Pb,Bi)sSroCaCusOgys5. Phys. Rev. B 66, 140509- (2002). URL http:
//1link.aps.org/doi/10.1103/PhysRevB.66.140509.

Mesot, J. et al. Superconducting Gap Anisotropy and Quasiparticle Interactions: A
Doping Dependent Photoemission Study. Phys. Rev. Lett. 83, 840— (1999). URL
http://link.aps.org/doi/10.1103/PhysRevLett.83.840.

143



180.

181.

182.

183.

184.

Lavrov, A. N., Ando, Y. & Ono, S. Two mechanisms of pseudogap formation in Bi-2201:
Evidence from the c-axis magnetoresistance. Furophysical Letters 57, 267 (2002).

Kaminski, A. et al. Momentum anisotropy of the scattering rate in cuprate super-
conductors. Phys. Rev. B 71, 014517— (2005). URL http://link.aps.org/doi/10.
1103/PhysRevB.71.014517.

Yoshida, T. et al. Electronlike Fermi surface and remnant ( pi ,0) feature in overdoped
La 17851 922CuO 4. Phys. Rev. B 63, 220501- (2001). URL http://link.aps.org/
doi/10.1103/PhysRevB.63.220501.

Terashima, K., Matsui, H., Sato, T., Takahashi, T., Kofu, M. & Hirota, K. Anomalous
Momentum Dependence of the Superconducting Coherence Peak and Its Relation to
the Pseudogap of La 18551 ¢15CuO 4. Phys. Rev. Lett. 99, 017003— (2007). URL
http://link.aps.org/doi/10.1103/PhysRevLett.99.017003.

Lee, D.-H. Private Communication (2008).

144





