UC Riverside
UC Riverside Previously Published Works

Title
SEED: efficient clustering of next-generation sequences

Permalink
bttgs:ggescholarshiQ.orgéucgitem404xlw4wg
Journal

Bioinformatics, 27(18)

ISSN
1367-4803

Authors

Bao, Ergude
Jiang, Tao
Kaloshian, Isgouhi

Publication Date
2011-09-15

DOI
10.1093/bioinformatics/btr447

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-NonCommercial License,
available at bttgs://creativecommons.orq/licenses/bv-nc/4.0/{

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/04x1w4w0
https://escholarship.org/uc/item/04x1w4w0#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

ORIGINAL PAPER

Vol. 27 no. 18 2011, pages 2502-2509
doi:10.1093/bioinformatics/btr447

Sequence analysis

Advance Access publication August 2, 2011

SEED: efficient clustering of next-generation sequences

Ergude Bao', Tao Jiang', Isgouhi Kaloshian® and Thomas Girke3-*

"Department of Computer Science and Engineering, 2Department of Nematology and Department of Botany and
Plant Sciences, University of California, Riverside, CA 92521, USA

Associate Editor: Alex Bateman

ABSTRACT

Motivation: Similarity clustering of next-generation sequences
(NGS) is an important computational problem to study the population
sizes of DNA/RNA molecules and to reduce the redundancies in NGS
data. Currently, most sequence clustering algorithms are limited by
their speed and scalability, and thus cannot handle data with tens of
millions of reads.

Results: Here, we introduce SEED—an efficient algorithm for
clustering very large NGS sets. It joins sequences into clusters
that can differ by up to three mismatches and three overhanging
residues from their virtual center. It is based on a modified spaced
seed method, called block spaced seeds. Its clustering component
operates on the hash tables by first identifying virtual center
sequences and then finding all their neighboring sequences that
meet the similarity parameters. SEED can cluster 100 million short
read sequences in <4 h with a linear time and memory performance.
When using SEED as a preprocessing tool on genome/transcriptome
assembly data, it was able to reduce the time and memory
requirements of the Velvet/Oasis assembler for the datasets used
in this study by 60-85% and 21-41%, respectively. In addition, the
assemblies contained longer contigs than non-preprocessed data
as indicated by 12-27% larger N50 values. Compared with other
clustering tools, SEED showed the best performance in generating
clusters of NGS data similar to true cluster results with a 2- to
10-fold better time performance. While most of SEED’s utilities fall
into the preprocessing area of NGS data, our tests also demonstrate
its efficiency as stand-alone tool for discovering clusters of small
RNA sequences in NGS data from unsequenced organisms.
Availability: The SEED software can be downloaded for free from
this site: http://manuals.bioinformatics.ucr.edu/home/seed.
Contact: thomas.girke@ucr.edu

Supplementary information: Supplementary data are available at
Bioinformatics online

Received on April 11, 2011; revised on July 11, 2011; accepted on
July 23, 2011

1 INTRODUCTION

In recent years, the data volumes generated by next-generation
sequencing (NGS) technologies have been growing at a pace that
has now begun to greatly challenge the data processing and storage
capacities of modern compute systems (Medini et al., 2008). Only
4 years ago, NGS technologies like Illumina’s reversible terminator

*To whom correspondence should be addressed.

method or ABTI’s ligation approach created ~1 billion bases of DNA
sequence information per instrument run which has now increased
to over 300 billion bases per run with even shorter turnaround
times (Holt and Jones, 2008). This corresponds approximately to
a 4-fold increase of sequence data output per year. As a result of
this rapid improvement of the technology, many exciting sequence-
based research applications have evolved recently. These include
genome resequencing of entire organism populations, personalized
medicine, RNA-Seq, ChIP-Seq and many others (1000 Genomes
Project Consortium et al., 2010; Jothi et al., 2008). Processing and
storing the large amounts of data produced by these technologies is
a major challenge for modern genome research. Thus, it is important
to develop methods that can improve the efficiency of the analysis
workflows for NGS data. To mention just a few, these include
algorithms for processing the data more time and space efficiently
(Langmead et al., 2009; Li and Durbin, 2009a; Li et al., 2009b)
as well as data reduction approaches that aim to retain only the
scientifically relevant and non-redundant information from NGS
projects rather than everything (Leinonen et al., 2010). For example,
in genome resequencing projects one can greatly reduce the dataset
sizes by storing only genetic variations, while removing the bulk of
the sequence information that only confirms what is already known
(Fritz et al., 2011). Similarly, in quantitative NGS experiments for
profiling pools of mRNAs, small RNAs or protein-DNA interactions
one can convert the data to much less storage intensive tag counts
at an early stage of the analysis workflow. Solutions that prevent or
greatly minimize information loss are always preferred. However,
with the current growth rates of NGS data many of them may soon
become impractical, especially when the data sizes become the main
time and financial bottleneck for conducting scientific experiments
in the NGS field.

This study introduces a new algorithm capable of clustering
NGS sets in size ranges of several hundred million entries using
a modified spaced seed method (Lin er al., 2008; Ma et al.,
2002). This method, hereafter referred to as SEED, efficiently joins
sequences into clusters with user-definable similarity parameters
ranging from O to 3 mismatches and overhanging ends with up
to 3nt in length. These mismatch features are important to make
the method less sensitive to base call errors, imprecise molecular
cleavage events or inaccurate adaptor trimming. The main utilities of
SEED are the identification, enumeration and removal of redundant
sequences in NGS data. In its current implementation, SEED is
designed to function as a short read clustering tool with controllable
mismatch parameters, but not as an error corrector like FreClu
(Qu et al., 2009). There are several practical applications of this
clustering approach. First, the method can be used to reduce the
complexity in NGS data by collapsing redundant reads to a single

© The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

SEED

center sequence along with its frequency information. While this
data reduction step results only in a minor information loss, it can
greatly improve the run time, memory requirements, and quality
of genome and transcriptome assemblies. Second, it can be used
to determine the sequence diversity in quantitative NGS profiling
datasets, such as RNA-Seq and ChIP-Seq, by enumerating very
similar reads. The resulting numbers of unique versus redundant
reads can be an important parameter for identifying technical
problems in these datasets (e.g. low reproducibility due to bias
in PCR amplification steps). Third, the method can be applied to
discover clusters of microRNAs (miRNAs) directly from NGS data
without the requirement of mapping the reads to a reference genome
which is particularly important when working with unsequenced
organisms (Johnson et al., 2009; Montgomery et al., 2008).

While in the past decade there has been extensive research on
sequence family clustering for handling datasets in the range of
hundreds of thousand entries (e.g. Li and Godzik, 2006), there has
been very limited development of methods for clustering the much
larger sequence volumes from NGS experiments with hundreds of
millions of entries. The short list of tools capable of clustering data
sizes in the range of at least several million sequences includes
UCLUST and FreClu (Edgar, 2010; Qu et al., 2009). Most other
clustering tools in this area are designed to solve problems related
to EST analysis, such as pre-clustering of ESTs to facilitate their
downstream assemblies (Hazelhurst ez al., 2008; Huang and Madan,
1999; Picardi et al., 2009; Rao et al., 2010).

In the following, we first describe the theory behind the
SEED clustering algorithm as well as the design of its software
implementation. We then illustrate and discuss its time, memory
and accuracy performance by using both simulated and real
NGS datasets. The real datasets were specifically chosen to
evaluate the algorithm’s efficiency for several application areas,
including complexity reduction of RNA-Seq profiling experiments
in the absence of a reference, prediction of mature miRNAs, and
transcriptome and genome assemblies.

2 METHODS

2.1 Overview of the algorithm

To cluster NGS by similarity, SEED indexes the reads by using the open
hashing technique and a special class of spaced seeds (Lin et al., 2008),
called block spaced seed. Once the reads are stored in hash tables, SEED
clusters them by first creating a virtual center sequence for each cluster and
then finding all the reads that are within a certain similarity threshold to the
center sequence. The following is a short overview of the algorithm. More
details are provided in the next subsections.

A. Indexing

(1) Initialize the indexing if the longest and the shortest read sequences
do not differ by more than five bases in length.

(2) Use the first seed in a chosen set of block spaced seeds to hash the
sequences into a hash table.

(3) Repeat step A.2 with each block spaced seed of the set and store their
results in separate hash tables.

B. Clustering

(1) Select an arbitrary sequence, identify for it all sequences within twice
the mismatch threshold and compute their virtual center sequence.

(2) Find for the virtual center sequence all sequences with the allowed
number of overhanging bases and mismatches. Then remove these
sequences from the hash tables.

(3) Repeat steps B.1 to B.2 until the hash tables are empty.

2.2 Indexing and hash tables

Spaced seeds were introduced by Ma et al. (2002) as a time-efficient method
for sequence similarity searching. Several NGS alignment tools are based
on this method. These include Eland (Anthony J. Cox, unpublished data),
MAQ (Li et al., 2008), SeqMap (Jiang and Wong, 2008) and ZOOM (Lin
et al., 2008). The general framework of spaced seeds can be summarized as
follows. A spaced seed of length / is a binary string of / bits. When the seed
is used in matching a query string of length / with another string, the bit 1
demands a match while the bit O tolerates a mismatch. Such a seed can also
be conveniently used to index sequences of length / in hashing. For example,
the spaced seed ‘01110° will file the sequences ‘CAAAG’ and “TAAAA’ into
the same bucket, as well as all other Smers with an ‘AAA’ in the middle.
The weight w of a spaced seed is its number of 1’s. It directly affects the size
of the hash tables in the above indexing scheme, and thus memory usage.
The parameter k is usually a predefined value, and the size of a set of spaced
seeds is denoted as c. The details of designing a set of spaced seeds with full
search sensitivity for given values of /,w,k will be discussed in Section 2.4.

The hash table data structure used in SEED is shown in Supplementary
Figure S1. Each hash table corresponds to a spaced seed, and each bucket
in it corresponds to a word of w bases. A bucket consists of a header and
a dynamically allocated array of pointers. The header points to an array,
and each pointer in the array references a sequence. During the clustering
process, a tag will be assigned to the pointers where the sequences have
been assigned to clusters to indicate their removal from the hash tables. In
addition, there is an array of unsigned integers (not shown in Supplementary
Figure S1) for storing the number of pointers in each bucket. Suppose that n
is the total number of sequences. The memory usage s in bytes B on a 64-bit
machine can be estimated as follows:

I
s:3x4w+lc+4nc+(|'z'|+l>n 1)

In Supplementary Figure S1, from left to right, the headers take
4% x ¢ x 8B=2x 4"*+1¢B memory, where 8B is the memory required for a
pointer on a 64-bit machine in a straightforward implementation. However,
integer offsets can be used instead of real pointers to reduce the memory
footprint of a pointer to 4B. The ¢ hash tables take nxcx4B=4ncB
memory. The memory requirement for storing the sequences themselves is
nx [%]B:n(%]B and nB for the tags. In addition, the array for storing
the number of items in each bucket takes 4" x ¢ x 4B=4"*1cB memory.
Combined together, the total memory required is 3 x 4**!c+4nc+ [%]nB.
For example, if there are 1 million sequences of 36 bp, w=12 and ¢=10,
then the memory requirement totals: s =3 x42t1 x 104+ 4 x IM x 10+
(187 + 1) x IMB = 1970MB.

2.3 Design of block spaced seed set

While other spaced seeds methods are more common, especially in the NGS
alignment field, we have chosen block spaced seeds for NGS clustering,
because they are conceptually simple and easy to optimize.

DEFINITION 1. A block spaced seed is a binary string consisting of a sequence
of blocks of equal length, where each block contains either all 0’s or all 1’s.

The seed sets used by various short read alignment tools are usually
heuristic designs. With the exception of ZOOM, they provide suboptimal
solutions, but with good performance in practice. Typically, their seed sets
are often the outcome of manual optimization procedures for a given read
length and number of mismatches. In contrast to this, an optimal set of
block spaced seeds for a given read length and number of mismatches

2503

E.Bao et al.

can be automatically identified with Algorithm 1 (see below). Note that
such an optimal set of block spaced seeds typically represents a suboptimal
solution for general spaced seeds. We first state a theorem upper bounding
the size of an optimal block spaced seed set. The proof of the theorem
and the analysis of Algorithm 1 are both available in the Supplementary
Materials.

THEOREM 1. For any givenl,w,k, there exists a set of block spaced seeds with
length | and weight w that guarantees full search sensitivity with respect to k
mismatches if and only if k < m - m where gcd(l,w) denotes the
greatest common divisor of | and w. Moreover, for any k < m - %

Wk .
(ﬁ”’“vk“’)+) block spaced seeds of length | and weight w would suffice to
guarantee full search sensitivity with respect to k mismatches.

Algorithm 1 BestSeedSet(/, k)
m=0o0
for w=13to 11 do

. 1 w
if k< o709 — waiw then

J T
_ (gt

C_(gr (kw))

if m>2x4"*tlc then
m=2x4%*l¢

wo=w
co=c
end if
end if
end for

generate block spaced seed set
return wg and cg

Although it is desirable to maximize w in order to be time efficient, the
memory complexity given in Equation (1) suggests that we should minimize
w (and ¢) in order to be memory efficient. Therefore, we should seek a balance
between time and space. Supplementary Table S1 shows the memory usages
(headers only), seed weights and numbers of seeds required for several read
lengths ranging from 25 to 35, where the seed weights and numbers of seeds
for each read length are calculated using Algorithm 1 and the memory usages
calculated using Equation (1) with similarity threshold k =3. Clearly, if a set
of block spaced seeds guarantees full sensitivity for read sequences of length
1, then it also guarantees full sensitivity for sequences of length more than /.
Moreover, we can always pad spaced seeds with 0’s so they have the same
length as the reads. Thus, for a specific pair of weight w and number c, the
length [listed in the table should be regarded as the minimum read length
that w and ¢ support. Since a row with a small /, large w, small ¢, and small
memory usage s is desirable, we choose the row with /=30, w=12, c=10
and s=1.25GB in our experiments (where the reads are 36 bp long, up to
three overhanging bases are allowed on each side and up to three mismatches
are tolerated). Supplementary Table S2 lists the 10 block spaced seeds used
in our experiments.

2.4 Clustering

The actual sequence clustering component of SEED is an iterative process
consisting of three major steps. First, an arbitrary sequence x is selected and
hashed using each block spaced seed to locate ¢ buckets. The sequences in
the ¢ buckets with at most fk mismatches to the sequence x are identified by
a simple Hamming distance calculation, where k is the maximum number
of mismatches allowed in a cluster, and f is set to be 2 as a factor of k. The
consensus of the resulting sequence set is computed to obtain a virtual center
sequence. Second, the virtual center sequence is hashed using each block
spaced seed, and the sequences from all the resultant buckets are retrieved.
A cluster is formed to include all the sequences with <k mismatches to the
virtual center sequence. The clustered sequences are removed from the hash
tables. Third, to also include sequences that largely overlap with x but with
overhanging ends, the virtual center sequence is shifted (actually, rotated)

to the left and to the right within the maximum allowed shift distance
(predefined value from O to 3). For each shifted center sequence, all sequences
in the hash tables are added to the cluster that are within k mismatches to the
center and then they are also deleted from the hash tables. The above steps
are repeated until all sequences have been assigned to clusters and deleted
from the hash tables.

Our choice of f=2 in the initial clustering (step one) is based on the
following considerations. Given a cluster of sequences with <k mismatches
to its center, an arbitrarily selected sequence in the cluster has <2k
mismatches to any sequence in the set. With this setting, the method can
collect all sequences belonging to a cluster even if the randomly chosen seed
sequence is far away from the true center of a cluster. The final virtual center
sequence—generated from this candidate set—will then provide a reasonable
approximation of the true center.

After the clustering, each sequence will be part of a cluster with one or
more members. The final results are stored in two cluster result files. One
tabular file lists the complete set of reads with their corresponding cluster
identifiers. The second file is the clustered FASTQ file containing, for each
cluster, only its center sequence along with the corresponding quality scores
(see below).

2.5 Incorporating base calling quality values

NGS data contain base calling quality information usually in the form of
Phred scores (Cock et al., 2010). To incorporate this quality information into
the clustering process, the SEED algorithm allows the user to specify two
optional quality value (QV) constraints. The first constraint QV1 specifies
when a mismatch should be ignored. That is, a mismatch is ignored if and
only if the sum of the Phred scores of the two mismatching bases is lower
than the specified QV1 threshold value. The second constraint QV2 specifies
when mismatches should be regarded as critical difference in clustering.
That is, two sequences are joined in a cluster only if the sum of the Phred
scores of all their mismatching bases is below the QV2 threshold value.
Therefore, 0 <QV1<93x2 and 0<QV2<93x6 in this article since our
similarity threshold allows at most three mismatches (Cock et al., 2010).
Note that using SEED with the QV information results in a larger memory
footprint, because the Phred scores of all sequences need to be read into
memory. Since filtering the sequences by quality prior to the clustering may
be often an attractive alternative, QV is an optional parameter in the SEED
program.

2.6 SEED system design

2.6.1 General features SEED has been implemented in C++ as a stand-
alone cross-platform tool for Linux, OS X and Windows operating systems.
It expects sequences formatted in standard FASTQ format. It can be run in the
three modes ordinary, fast and short. The ordinary mode uses block spaced
seeds of weight 12 as listed in Supplementary Table S2 and supports read
sequences of length 36100 bp. The fast mode uses block spaced seeds of
weight 13 and supports sequences of length 58—100 bp. The short mode uses
block spaced seeds of weight 6 and supports sequences as short as 21 bp. The
fast mode provides the fastest processing time, but requires long sequences
and slightly more memory than the ordinary mode. The short mode is suitable
for small datasets of short sequences like miRNA sequences, but it is slower
than the ordinary mode. The default setting is the ordinary mode.

2.6.2 Performance optimization To optimize the time and memory
performance of SEED, we have implemented the following features.
Memory performance

¢ Each base stored in memory corresponds to two bits.

* Only one copy of each sequence is stored in memory, while the hash
tables store pointers to all duplicates.

¢ The pointers are integer offsets, requiring 4 bytes each instead of 8
bytes on a 64-bit machine.

2504

SEED

Time performance

* A garbage collection is performed in short intervals to prevent long
chaining events. Pointers to already processed sequences that have been
assigned to clusters are discarded.

A different set of block spaced seeds of weight 13 is used in the fast
mode for sequences of lengths >58 bp. The 1’s in the spaced seeds
are positioned as close to the 3’ ends as possible. The latter results
in more evenly distributed sequences in the hash table and reduces
the bucket sizes. This is important because the read quality near the
3’ end is usually lower, which could be the cause of mismatches among
sequences belonging to the same cluster.

3 EVALUATION

3.1 Test results with simulated data

To test the performance of SEED, we generated 1000 random center
sequences. For each of these, we randomly generated sequences with
mismatches and overhanging ends, so that the number of center
sequences was the number of true clusters. The main objectives
of these tests were to determine how well SEED clusters the
sequences with respect to the number of clusters, and the number
of falsely assigned members in them compared with the true
clusters. In the following, the latter aspect is referred to as the
false positive ratio (FPR), which is the number false positive
members divided by the size of a cluster averaged for all clusters
in a set. In addition, the same tests were used to empirically
determine the time and memory performance of the algorithm.
In each test, we changed only one parameter while keeping the
remaining parameters constant. The results of these tests are
presented in Supplementary Tables S3a-S3g. They include tests for
the number of sequences, sequence length, number of true clusters,
number of mismatches, number of overhanging ends and QV1/QV2
constraints, respectively. The QV mode of the program was only
used for the corresponding tests in Supplementary Tables S3f—S3g.

The time to cluster with SEED 10-100 million sequences of
40bp in length increases linearly from 24 to 233 min, respectively
(Supplementary Table S3a). For the same dataset, the memory
footprint increases only sublinearly from 2.6 to 8.0 GB. When
clustering sequence sets of increasing lengths, then the time also
increases linearly, while the memory usage shows no change
(Supplementary Table S3b). With increasing numbers of true
clusters, the time requirement also changes sublinearly and the
memory usage stays almost constant (Supplementary Table S3c).
The number of clusters with at least 5000-10000 members
assembled by SEED is consistently smaller than the number of
true clusters in the test datasets (Supplementary Tables S3a—S3g).
However, the FPR in the cluster sets is almost exclusively 0. This
means that SEED tends to split true clusters into smaller ones, but
without contaminating them with false positive members from other
clusters. This behavior is extremely important for many practical
applications, because false cluster assignments would result in
information loss, while splitting the clusters into smaller ones will
not remove any important sequences. For instance, in assembly
projects removing redundant sequences will help to reduce the
memory requirements, but when the clusters are contaminated with
false positives then the clustering will remove many sequences
that may be important for an optimal assembly. Due to the more
incremental similarity transitions among clusters in real datasets,

one would expect the higher FPRs than with simulated data. This
can be seen in the subsequent tests on real datasets. However, the
FPRs on real datasets are still impressively low (see Section 3.2).

More mismatches require extra memory for bucket allocation, but
the compute time decreases due to shorter chains (Supplementary
Table S3d). The number of clusters shows the same trend,
because the similarity threshold decreases with the number of
mismatches allowing more sequences to be assigned to clusters. For
similar reasons, the memory requirements shown in Supplementary
Table S3e grow with increasing numbers of overhanging residues.
However, the time requirements are increasing in this case, because
the relative differences among the sequences dominate the clustering
time. Also, the number of large clusters decreases, because more
shifts tend to reduce the cluster sizes.

When running SEED in the quality aware QV mode
(Supplementary Tables S3f and S3g), the quality scores need to be
imported into the clustering process, which increases its memory
footprint by ~15%. The time requirements decrease with increasing
threshold values of QV constraints, because greater threshold values
tend to assign more sequences to clusters in each pass. In case
of QVI1, the number of large clusters increases, because more
sequences can be assigned to clusters for greater QV1 values.

3.2 Test results with real data

3.2.1 Datasets and experimental design The performance and
utility spectrum of SEED for real data was tested on four different
types of NGS data that were downloaded form NCBI’s Sequence
Read Archive (SRA). In all cases, the sequence data were based
on Illumina’s NGS technology. They included experiments from
the following application areas: genome resequencing (sample
SRX016064 from Rhodobacter sphaeroides), ChIP-Seq (samples
SRR038848-SRR038851 from Arabidopsis thaliana; Kaufmann
et al., 2010), RNA-Seq (samples SRR064149-SRR064152 from
Arabidopsis thaliana; Jiao and Meyerowitz, 2010) and small
RNA-Seq (samples SRR032112-SRR032115 from Arabidopsis
thaliana; Hsieh et al., 2009). The ChIP-Seq dataset was used to
compare SEED with other clustering methods. Both the genome
resequencing and the RNA-Seq datasets were used to evaluate the
utility of SEED for de novo genome and transcriptome assembly
projects with respect to improvements of the memory footprints and
the contig sizes of the final results. Another test included a small
RNA dataset for evaluating SEED’s efficacy in identifying clusters
of mature miRNA sequences in the absence of a reference genome.
In most test experiments, the NGS datasets were clustered
with SEED. Subsequently, the resulting center sequences were
used as input datasets for the downstream analysis steps that are
commonly used in different application fields, such as assembly and
genome/transcriptome alignment steps. The final results were then
compared with results obtained without SEED preprocessing.

3.2.2 Cluster quality tests To evaluate how well SEED clusters
NGS data, we designed test experiments with real datasets where
we benchmarked its performance against the ‘true’ clusters obtained
from genome alignment results. For comparison purposes, we also
included the clustering software UCLUST and the assembly tool
SSAKE in these tests (Edgar, 2010; Warren et al., 2007). The
former was chosen as a software representative with utilities similar
to SEED’s. In contrast to this, the typical use case of assembly

2505

E.Bao et al.

tools is different, but when they are run on short reads with very
stringent overlap criteria, then they can fulfill in parts the utility
requirements of an NGS clustering tool. Among the many assembly
tools available, SSAKE was chosen here because its output format
provides the read positions in the contigs which simplified the
downstream post-processing of the results. As test data, we used the
four ChIP-Seq sets from Arabidopsis thaliana. These samples were
selected because ChIP-Seq data contain highly variable enrichments
of read pileups (peaks) along the chromosomes which is a relatively
realistic and also challenging situation when testing the performance
of a NGS clustering tool. The true clusters for these datasets were
obtained by aligning the reads with Bowtie against the Arabidopsis
reference genome while allowing up to three mismatches in the
alignments. Subsequently, all aligned sequences that completely
overlapped with other sequences in the pileup were assigned to
clusters with two or more members. Sequences with no or only
partial overlaps to other reads were assigned to singlet clusters.
The resulting dataset is referred to as the ‘true’ cluster set, because
it resembles an almost ideal benchmark result of high quality. To
obtain meaningful results for the other tools, we used for them
comparable parameters. SEED clustering was run with up to three
mismatches, but no overlapping ends to match the constraints of
the alignment-based reference cluster set. For UCLUST, we used
comparable parameters by setting the identity parameter to #
Similarly, SSAKE was run with settings that were optimized to
obtain only clusters of almost identical sequences. Most importantly,
its parameter for the number of matched positions was set to / —k.
Table 1 gives an overview of the clustering results obtained by
the different methods. Compared with the other methods, SEED has
at least a 3- to 10-fold better time performance than the other two
methods, but its memory requirements are not as low as UCLUST’s.
With respect to the cluster qualities, SEED performs consistently
better than the other methods by showing the highest Jaccard index
values relative to the true clusters. The Jaccard index is a commonly
used similarity measure for comparing clustering results, where
values close to O indicate low similarities and values closer to 1
higher similarities among the evaluated cluster sets. In addition,
we used the clustering results presented in Table 1 to compare the
prediction performance of SEED with the other methods. For this,
we plotted in Supplementary Figure S2 the FPRs against the true
positive rates (TPR). The FPR is defined as FP/(FP+TN) and the
TPR as TP/(TP+FN). The individual variables were determined by
finding in the results those clusters that show a minimum similarity
x to the true clusters. TP is the number of sequences in each cluster
contributing to the similarities; FP is the number of sequences in
the clusters that do not contribute to the similarities; TN is the
number of sequences not in the clusters that should not contribute
to the similarities; FN is the number of sequences not in the clusters
that should contribute to the similarities. In the resulting graph
(Supplementary Fig. S2), SEED shows the best performance by
having consistently the highest TPR values and in most cases lower
FPR values as well. The better sensitivity and specificity of SEED
is most likely linked to its virtual center sequence for guiding
the clustering process. This approach provides relative accurate
approximations of the true cluster centers. In this regard, UCLUST
is less conservative by centering its clusters around a single seed
sequence. In addition, SEED is optimized to cluster very similar
NGS reads with variable arrangements of mismatch positions. In
contrast to this, UCLUST is optimized for detecting a wider range

Table 1. Clustering with different methods

Method No. of clusters No. of clusters Jaccard Time Memory
identical with index (GB)
true ones

SRR038848 (4 962 666 reads aligned)

True 1106780

SEED 973627 632 209 0.96 00:06:12 2.3

UCLUST 977904 618 101 0.92 01:28:54 0.4

UCLUSTo 976871 622 028 0.92 01:44:25 04

SSAKE 1431122 650 596 0.86 00:20:09 3.0

SRR038849 (2 435 754 reads aligned)

True 973673

SEED 880920 512270 0.97 00:04:02 2.2

UCLUST 873784 500 982 0.94 00:36:23 0.4

UCLUSTo 873135 502 654 0.94 00:42:43 0.4

SSAKE 1070654 515574 0.91 00:13:56 2.3

SRR038850 (5 386 160 reads aligned)

True 3365685

SEED 3151149 664 359 0.95 00:09:47 2.8

UCLUST 3086836 669 243 0.88 04:13:09 14

UCLUSTo 3084657 674 211 0.88 07:12:52 14

SSAKE 3814607 599 858 0.86 00:51:38 6.9

SRR038851 (3 148 061 reads aligned)

True 2182354

SEED 2038577 287 903 0.94 00:06:28 2.5

UCLUST 2096534 297 756 0.84 01:37:47 0.9

UCLUSTo 2094080 300 539 0.85 01:45:00 0.9

SSAKE 2540359 214 013 0.77 00:34:10 4.6

The clustering results for four ChIP-Seq samples are shown for the true clusters
(alignment based method), SEED, SSAKE, and UCLUST with and without its optimal
mode. The ‘true’ cluster data were used as references to compute the Jaccard index in
the fourth column.

of sequence similarities based on common word matches in its
initial search step. This approach is more likely to miss certain
high similarity matches that fall below the word size limit of the
algorithm. However, the latter feature appears to be less critical,
because even when UCLUST is used in its optimal mode, where
it does not dependent on common word matches (see rows with
UCLUSTo in Table 1), the performance of SEED is still better.

One concern with the seed algorithm could be that its clustering
results may vary depending on which read is chosen first in the
random selection process to initialize the formation of the virtual
center sequence of a cluster. To address this, we also performed
tests on the four ChIP-Seq datasets from Arabidopsis thaliana where
we varied the factor f to compute the virtual center sequence as
well as the order of reads (data not shown). The quality of the
resulting cluster sets was evaluated again with the Jaccard index.
With increasing values of f from 1 to 4, the Jaccard index showed
only minor differences (< 0.01) for the four datasets. We set f =2
as the default value in all of our experiments, since it gave one of
the best results in our tests and it is also a reasonable choice based
on the discussion in Section 2.5. Similarly, changing the orders of
reads resulted in insignificant changes of the Jaccard index (< 0.01).
These tests indicate a relatively stable performance of SEED with
respect to these parameter changes.

2506

SEED

Table 2. Assembly tests

Preprocessing No. of sequences to No. of N50 Mean length Memory for Time for Memory for Time for
assemble (read contigs of contigs assembly assembly clustering clustering
length) (GB)

Genome assembly

None 51448 694 (36 bp) 2230 5143 2039 9.7 07:53:54 - -

SEED 10644813 (36 bp) 1918 6504 2382 5.7 01:11:59 4.1GB 03:41:29

Random sampling 10644 813 (36 bp) 2924 3855 1531 2.5 01:12:25 - -

Transcriptome assembly

None 72295211 (37 bp) 21014 452 338 28 15:08:36 - -

SEED 29841222 (37bp) 12988 507 391 22 05:59:33 8.7GB 04:09:51

Random sampling 29841222 (37bp) 12868 396 315 12 05:57:09 - -

The assembly results with Velvet/Oases are shown for the genome resequencing data set from Rhodobacter sphaeroides (upper panel) and the transcriptome RNA-Seq data set
from Arabidopsis thaliana (lower panel). The table compares row wise the results for the following preprocessing steps of the raw sequences: no preprocessing, preprocessing with
SEED, random sampling of the same number of reads obtained with SEED. The parameters used for SEED were <3 mismatches, <3 overhanging ends and QV mode disabled.

The corresponding cluster size distributions for the genome assembly are given in Figure 1.

3.2.3 Assemblies assisted with SEED Assemblies rank among
the most challenging computational problems in the NGS field
(Birney, 2011). Partially, this is because they tend to be an iterative
and time consuming improvement process with highly variable
outcomes for different datasets (Miller et al., 2010). Moreover, their
memory requirements and execution times are often so extensive that
larger datasets can only be assembled on high performance compute
systems with considerable CPU and memory resources. To improve
this, we tested SEED for upstream processing prior to assembly and
then analyzed the time and memory requirements of the assembly
step, as well as the qualities of the resulting contigs. The assembly
components of these tests were performed with Velvet, which is one
of the most widely used assembly tools for NGS data (Schmidt
et al., 2009; Zerbino and Birney, 2008). To run the assemblies
with optimized parameters, the Velvet Optimiser tool was used.
The genome assemblies were performed with Velvet only, and the
transcriptome assemblies included both Velvet and its transcriptome-
specific Oases component. All software tools were run on a single
CPU core (64-bit 2.4 GHz Xeon Quad Core Harpertown) to allow
fair comparisons of their time and memory usages.

(A) Genome assembly: Table 2 and Figure 1 summarize the assembly
results for the genome resequencing dataset from Rhodobacter
sphaeroides with Velvet. These tests were performed with and
without SEED preprocessing. A random set was included for
comparison, where we assembled the same number of sequences
as obtained in the preprocessing step with SEED, but by randomly
selecting the reads from the raw dataset. Compared with the non-
preprocessed dataset, the assembly time and memory requirements
in the SEED dataset are greatly reduced by 84.8 and 41.2%,
respectively (Table 2, upper panel). With respect to the quality
of the assembly results, several commonly used quality measures
improved in the SEED dataset compared with the non-preprocessed
dataset: the number of contigs decreased by 14.0%, mean length of
the contigs increased by 16.8% and N50 value increased by 26.5%.
The latter is the contig length where 50% of the entire assembly
is contained in contigs of at least this value. In contrast to this,
the corresponding measures in the dataset generated by random
sampling show the opposite trend. A more detailed overview of the
cluster size distributions in the three result sets is given in Figure 1.

Cumulative Length of Contigs

=

a o o> Samples

8 > MNOME: N50=5143
Cg’ \. * RANDOM: N5D=3855
AT, .

£ s * SEED: NS0=B504

[+]

a -

20 10 a0 80 ':. D
Percentage of Assembly Covered by Contigs of Size >=Y

Fig. 1. Cumulative contig sizes of genome assemblies. The plot compares
the cumulative contig size distribution of the Velvet assembly results
presented in the upper panel of Table 2 (for details see table legend). In
this plot, the N50 value is the contig size (Y-axis) at 50% of the assembly
coverage (X-axis).

In this plot, the SEED dataset shows in comparison to the other tests
the highest cumulative contig sizes.

(B) Transcriptome assembly: To also test whether SEED
preprocessing could provide improvements for assemblies of
transcriptomes, we performed similar tests with the chosen RNA-
Seq dataset from Arabidopsis thaliana. When using SEED, both
the time and memory requirements decreased by 60.4 and 21.4%,
respectively. In addition, the mean contig length and the N50 value
could be increased by 15.7 and 12.2%, respectively.

2507

E.Bao et al.

Table 3. miRNA profiling with SEED

No. of No. of miRNAs PCC
sequences clusters identified
(size >10) (all samples 96%)

Samples

SRR032112 (Root—Pi) 5142120 37315 76.1 0.91
SRR032113 (Root+Pi) 4919514 38193 83.3 0.89
SRR032114 (Shoot—Pi) 4862947 46776 89.4 0.82

SRR032115 (Shoot+Pi) 5003481 43176 86.6 0.87

The table gives for the four small RNA samples from Hsieh et al. (2009) the number
of sequences in each data set, the number of clusters obtained by SEED with >10
members, the relative number of miRNAs covered by these clusters, and the PCCs for
the published read counts and the ones obtained by SEED.

The above results on genome and transcriptome data clearly
indicate that SEED preprocessing can improve the performance
of downstream sequence assemblies using Velvet with respect
to compute time, memory usage and quality parameters of the
final contigs. Time and memory improvements are the main
advantages here, whereas quality enhancements of the final results
are likely to vary depending on the specific challenges presented
by different sequence types. Investigating which datasets are
particularly affected by this and how SEED exactly improves the
quality of assemblies (e.g. error correction), goes beyond the scope
of this study. When assembling transcriptome data, SEED clustering
will help to reduce the extreme redundancies of very abundant
mRNA species in these datasets, while maintaining the important
information relevant for many RNA-Seq applications. On the other
hand, when assembling genomes with highly repetitive sequences,
often it will be necessary to perform SEED preprocessing with very
stringent mismatch settings (e.g. kK <1), because higher numbers of
mismatches in SEED clustering may eliminate information critical
to achieve an optimal assembly of highly similar genomic regions.

3.2.4 Discovery and profiling of miRNAs with SEED To explore
the potential utility of SEED for identifying and profiling mature
miRNA clusters in unsequenced organisms, we performed the
following tests. First, we clustered with SEED, the raw sequences
from four different NGS samples from a recently published small
RNA profiling study in Arabidopsis thaliana (Hsieh et al., 2009). In
this study, the authors determined by NGS the expression profiles
of 180 miRNAs from root and shoot tissues both grown in the
presence and absence of phosphate (Pi). Subsequently, we identified
for all miRNAs profiled in the published study the corresponding
center sequences in the SEED clustering results. In this association
step, the center and mature miRNA sequences had to fully overlap
and show not more than one mismatch. Finally, we compared the
sequence counts (expression profiles) for each of the miRNAs in the
published dataset with the size of the corresponding SEED clusters
(Table 3). Considering only clusters with at least 10 sequences, 76.1—
89.4% of the miRNAs in the published dataset could be associated
with SEED clusters. The likelihood of finding this many overlaps
just by chance is very low (random sampling test P < 10_5). On
average, these clusters contain 20—48% more sequences than clusters
obtained by a simple counting approach of absolutely identical
reads (data not shown). The Pearson’s correlation coefficients
(PCC) for the sequence counts for each miRNA in the published
dataset and the corresponding SEED clusters are relatively high

for all four samples (PCC: 0.82-0.91). This high correlation, and
the high coverage of known miRNAs detected by these tests,
illustrate SEED’s utility for identifying in unsequenced genomes
candidate clusters of mature miRNA sequences and obtaining for
them relatively reliable expression data. A challenge in real datasets
without a reference genome will be the identification of the correct
miRNA clusters among the much larger pool of unrelated clusters
(third column in Table 3). This can be largely overcome by sequence
similarity searching. Here, one can identify clusters with similarities
to known miRNAs, which are often evolutionary conserved. In
addition, one can easily eliminate by similarity searching against
reference databases the typical contaminants in small RNA datasets,
such as ribosomal RNAs or transposons.

4 CONCLUSIONS AND FUTURE WORK

In this study, we introduced SEED as an efficient method for
clustering very large NGS datasets while allowing up to three
mismatches and three overhanging residues to their virtual center.
The method gains its performance from a block spaced seed method
that greatly accelerates the downstream clustering process. With
increasing numbers of sequences, the method shows a linear time
and memory performance. It is able to cluster on a single CPU
core 100 million sequences in less than four hours, while using not
>8 GB of memory. These are very reasonable resource requirements
for modern computers. The current implementation of SEED is
optimized to handle sequences of 21-100 bp in length. This matches
at the moment the length range of most of the widely used NGS
technologies, such as [llumina’s reversible terminator method.

SEED’s application spectrum is very broad. While most of its
use cases fall into the data preprocessing area, it also has utilities
as stand-alone discovery application for organisms where reference
genome or transcriptome sequences are not available. For instance,
it can be used in those cases to identify clusters of short DNA
or RNA molecules that are abundant in genome or transcriptome
samples, such as miRNAs or transposons. As preprocessing and
data reduction tool, SEED is very efficient in improving the time
and memory requirements of downstream NGS data processing
routines, such as genome and transcriptome assemblies, often by
a factor of 2- to 5-fold, based on the NGS test datasets used in this
study. Moreover, reducing the redundancies in NGS data with SEED
does not negatively impact the quality of the contigs in downstream
assembly steps. In case of the Velvet/Oasis assembler, the N50 values
of transcriptome and genome assemblies could be improved with
SEED preprocessing by 12-27%.

Similarity-based clustering can be an efficient approach to remove
undesirable redundancies in NGS data. However, the removal of
redundant reads will unavoidably be accompanied by an information
loss in the data. While this can be often a desirable and/or
tolerable consequence for many downstream analysis routines, the
information loss can also negatively influence the outcome of
certain applications, such as discovery of mutations (e.g. SNPs) or
assemblies of repetitive genomic regions. As a general rule, if high
resolution of very similar reads is important for a NGS project, then
similarity clustering should be restricted to identical reads or not
used at all.

In future, we will expand the performance and utility spectrum
of SEED on several levels. First, we will optimize the method by
further improving its memory footprint and time performance. A

2508

SEED

parallelized version of the algorithm can be easily implemented
by issuing many simultaneous queries to the hash tables while
using locks for managing interprocess dependencies. Second, we
will improve its minimum and maximum sequence length limits
to support clustering of sequences that are shorter or longer than
21 or 100bp, respectively. Finally, additional input and output
formats will be implemented in SEED to provide support for a
wide spectrum of upstream and downstream software tools and
programming environments.

ACKNOWLEDGEMENT

‘We acknowledge the support of the core facilities at the Institute for
Integrative Genome Biology (IIGB) at UC Riverside.

Funding: USDA National Institute for Food and Agriculture
(NIFA-2010-65106-20675 to 1.K.); National Science Foundation
(ABI-0957099 to T.G., I0B-0420152 to T.G., IGERT-0504249 to
T.G, II1S-0711129 to T.J.).

Conflict of Interest: none declared.

REFERENCES

Birney,E. (2011) Assemblies: the good, the bad, the ugly. Nat. Methods, 8, 59-60.
Cock,PJ. et al. (2010) The Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38, 1767-1771.
Durbin,R.M. et al.; 1000 Genomes Project Consortium. (2010) A map of human genome
variation from population-scale sequencing. Nature, 467, 1061-1073.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26, 2460-2461.

Fritz,M.H.Y. et al. (2011) Efficient storage of high throughput sequencing data using
reference-based compression. Genome Res., 21, 734-740.

Hazelhurst,S. et al. (2008) An overview of the wed EST clustering tool. Bioinformatics,
24, 1542.

Holt,R.A. and Jones,S.J. (2008) The new paradigm of flow cell sequencing. Genome
Res., 18, 839-846.

Hsieh,L.C. et al. (2009) Uncovering small RNA-mediated responses to phosphate
deficiency in Arabidopsis by deep sequencing. Plant Physiol., 151, 2120-2132.
Huang,X. and Madan,A. (1999) CAP3: A DNA sequence assembly program. Genome

Res., 9, 868.

Jiang,H. and Wong,W. (2008) Seqmap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics, 24, 2395.
Jiao,Y. and Meyerowitz,E.M. (2010) Cell-type specific analysis of translating RNAs in
developing flowers reveals new levels of control. Mol. Syst. Biol., 6, 419-419.
Johnson,C. et al. (2009) Clusters and superclusters of phased small RNAs in the
developing inflorescence of rice. Genome Res., 19, 1429-1440.

Jothi,R. et al. (2008) Genome-wide identification of in vivo protein-DNA binding sites
from ChIP-Seq data. Nucleic Acids Res., 36, 5221-5231.

Kaufmann,K. et al. (2010) Orchestration of floral initiation by APETALAL. Science,
328, 85-89.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol., 10, 25-34.

Leinonen,R. et al. (2010) The European Nucleotide Archive. Nucleic Acids Res., 39,
28-31.

Li,W. and Godzik,A. (2006). Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22, 1658—-1659.

Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res., 18, 1851.

Li,H. and Durbin,R. (2009a) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754-1760.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup (2009b) The sequence
alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.

Lin,H. et al. (2008) ZOOM! Zillions of oligos mapped. Bioinformatics, 24, 2431-2437.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18, 440-445.

Medini,D. ez al. (2008) Microbiology in the post-genomic era. Nat. Rev. Microbiol., 6,
419-430.

Miller,J.R. et al. (2010) Assembly algorithms for next-generation sequencing data.
Genomics, 95, 315-327.

Montgomery,T.A. et al. (2008) AGO1-miR173 complex initiates phased siRNA
formation in plants. Proc. Natl Acad. Sci. USA, 105, 20055-20062.

Picardi,E. et al. (2009) EasyCluster: a fast and efficient gene-oriented clustering tool
for large-scale transcriptome data. BMC Bioinformatics, 10 (Suppl. 6), S10.

Qu,W. et al. (2009). Efficient frequency-based de novo short-read clustering for error
trimming in next-generation sequencing. Genome Res, 19, 1309-1315.

Rao,D. et al. (2010) PEACE: Parallel Environment for Assembly and Clustering of
Gene Expression. Nucleic acids research, 38 (Suppl. 2), W737.

Schmidt,B. et al. (2009) A fast hybrid short read fragment assembly algorithm.
Bioinformatics, 25, 2279-2280.

Warren,R.L. et al. (2007) Assembling millions of short DNA sequences using SSAKE.
Bioinformatics, 23, 500-501.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res, 18, 821-829.

2509

