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ABSTRACT OF THE DISSERTATION

The Derivative Operator on Weighted Bergman Spaces and Quantized Number Theory

by

Timothy Logan Cobler

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2016

Dr. Michel L. Lapidus, Chairperson

Emil Artin defined a zeta function for algebraic curves over finite fields and made a conjec-

ture about them analogous to the famous Riemann hypothesis. This and other conjectures

about these zeta functions would come to be called the Weil conjectures. Much work was

done in the search for a proof of these conjectures, including the development in algebraic

geometry of a Weil cohomology theory for these varieties, relying on the Frobenius opera-

tor on the finite field. The zeta function is then expressed as a determinant allowing the

properties of the function to relate to the properties of the operator. The search for a

suitable cohomology theory and associated operator to prove the Riemann hypothesis has

continued to this day. In this dissertation we study the properties of the derivative operator

D = d
dz on a particular family of weighted Bergman spaces. This operator is meant to be

the replacement for the Frobenius in the general case and is first used to give a method of

quantizing elliptic curves and modular forms; then to construct an operator associated to

any given meromorphic function. With this construction, we show that for a wide class of

functions, the function can be recovered using a regularized Berezinian determinant involv-

vi



ing the operator constructed from the meromorphic function. This is shown in some special

cases: rational functions, zeta functions of algebraic curves over finite fields, geometric zeta

functions of lattice self-similar strings, the gamma function, the Riemann zeta function and

culminating in a quantized version of the Hadamard factorization theorem that applies to

any entire function of finite order. This shows that all of the information about the given

meromorphic function is encoded into the special operator we constructed.
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Chapter 1

Motivation

1.1 The Distribution of the Prime Numbers

The prime numbers have fascinated mathematicians for millenia. It has been

known that there were infinitely many primes since the time of Euclid. However, the problem

of precisely determining the distribution of the prime numbers among the positive integers

is a much more difficult problem that has vast applications, yet remains unsolved. Finding

formulas that give the nth prime number for every n has continues with very little success.

The primes appear to be almost randomly located among all whole numbers. For example

there are arbitrarily long sequences that contain no prime numbers: n! + 2, n! + 3, ..., n! +n

are all composite for any n > 2. On the other hand, larger and larger examples of primes

as close as possible, the so-called twin primes, continue to be found. Gauss and Legendre

decided to approach this problem from another direction. Instead of trying to find a formula

for the nth prime, they looked for a formula giving the number of primes that are less than

or equal to x ∈ R. Despite the irregularity of the prime numbers, this counting function,
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π(x), behaves very regularly. In fact, early estimates placed π(x) as approximately x
log x

or more precisely, as li(x) =
∫ x
0

1
log tdt, the logarithmic integral, for large x. In fact, these

functions give precisely the asymptotic behavior of π(x) as stated in the Prime Number

theorem, then only a conjecture.

Theorem 1.1 (Prime Number Theorem) π(x) ∼ li(x) as x → ∞. (Note that f(x) ∼ g(x)

as x→ ∞ means lim
x→∞

f(x)

g(x)
= 1.)

Despite much work, including an estimate by Chebyshev, the prime number the-

orem proved elusive for quite some time until Riemann entered the scene.

1.2 The Riemann Zeta Function

The so-called p-series,

∞
∑

n=1

1

np
had been studied for a long time and is known to

converge for p > 1 and diverge for p ≤ 1. Euler found a product representation and even

found some special values of this series. For example, when p = 2 we have
∞
∑

n=1

1

n2
=
π2

6
.

However, it wasn’t until Bernhard Riemann that this series was studied in situations where

p is to be a non-real number. Following Riemann’s notation, we write ζ(s) =
∞
∑

n=1

1

ns
. This

series converges absolutely in the right half plane {s ∈ C : ℜ(s) > 1}. Riemann showed

that there is a meromorphic continuation of this function to the entire complex plane whose

only pole at s = 1 is simple. It is standard to use a slight abuse of notation and denote

this meromorphic continuation as ζ(s) also. In establishing this meromorphic continuation,

Riemann also discovered a functional equation satisfied by ζ(s). We present his result in a

different form than he gave.
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Theorem 1.2 Let ξ(s) = 1
2π

− s
2 s(s− 1)Γ( s2)ζ(s) be the completed zeta function. Then ξ(s)

is entire and satisfies the functional equation ξ(s) = ξ(1− s) for all s ∈ C.

To relate ζ(s) back to the prime number theorem, we first make the following definition.

Definition 1 Mangoldt’s function, Λ, is defined by:

Λ(n) =























log p if n = pm for some prime p and some m ≥ 1

0 otherwise

,

and Chebyshev’s function,ψ , is given by

ψ(x) =
∑

n≤x

Λ(n).

We will also have use for ψ1(x) =
∫ x
1 ψ(t)dt.

It can be shown the Prime Number Theorem is equivalent to the statement ψ1(x) ∼ 1
2x

2 as

x→ ∞.

Theorem 1.3 If c ≥ 1 and x ≥ 1 we have that

ψ1(x)

x2
=

1

2πi

∫ c+i∞

c−i∞

xs−1

s(s+ 1)

(

−ζ
′(s)

ζ(s)

)

ds

The integral expression in the previous theorem gives an example of an inverse

Mellin transform and it relates ζ(s) to one of the prime counting functions ψ1(x), which

results can then be translated to apply to π(x). The reader may notice that this integral

being defined hinges on the fact that ζ(s) has no zeros on the half plane given byℜ(s) > 1.

This fact can be shown using the convergence of the Euler product for ζ(s). Then in

order to prove the Prime Number Theorem, the contour of this integral was shifted from
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[c − i∞, c + i∞] to [1 − i∞, 1 + i∞]. This method required the fact that ζ(s) also has

no zeros on the line ℜ(s) = 1, which was independently shown by Jacques Hadamard and

Charles-Jean de la Vallée Poussin, thus completing the Prime Number Theorem.

If we could move the contour even further left of the line ℜ(s) = 1, it would be

possible to prove a more accurate version of the Prime Number Theorem. Thus knowledge

of the zeros of ζ(s) is critical to knowing more about the distribution of the prime numbers.

Above we mentioned that ζ(s) has no zeros on ℜ(s) ≥ 1 and the functional equation implies

that there are no zeros in the left half plane {s ∈ C : ℜ(s) ≤ 0} other than the so-called

trivial zeros at s = −2,−4,−6, .... These zeros of ζ(s) cancel with poles of the Γ( s2) term

in the functional equation. It follows that all other zeros of ζ(s) are in the critical strip

{s ∈ C : 0 < ℜ(s) < 1}. In this paper, Riemann made his famous conjecture.

Conjecture 2 (Riemann Hypothesis) The only nontrivial zeros of ζ(s) occur when s sat-

isfies ℜ(s) = 1
2 .

If the Riemann Hypothesis is true, that would imply that

π(x) = li(x) +O(x
1
2
+ǫ) for any ǫ > 0,

which in a sense says that the primes are as randomly distributed as they can be.

1.3 Fractal Strings and Zeta Functions

Since Riemann introduced the complex meromorphic function ζ(s), many other

’zeta’ functions have been studied in number theory, most of which share properties with

ζ(s). In this section we will look at one such zeta function that serves as a motivating
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example for the rest of this dissertation. We will follow the treatment in [LvF13] and begin

with a definition.

Definition 3 An ordinary fractal string L is a bounded open subset Ω of R. Any such set

can be written as a countable union of disjoint open intervals. We will write these intervals

in nonincreasing length order and call these lengths l1 ≥ l2 ≥ · · · . When we refer to L we

will mean this sequence of lengths.

A classical example of a fractal string comes from the so-called middle third Cantor

set. First, remove the middle third (13 ,
2
3) of [0, 1], then remove the middle third of the two

remaining intervals (19 ,
2
9) and (79 ,

8
9), then continuing this pattern indefinitely. It turns

out that C is: a compact, perfect, totally disconnected, uncountable set whose Lebesgue

measure is 0. The complement of the Cantor set in [0, 1] is an ordinary fractal string, which

is called the Cantor String C, with lengths 1
3 ,

1
9 ,

1
9 , .... To properly study this example and

others we need to talk about the ’dimension(s)’ of an ordinary fractal string. However,

there are many different types of dimensions that one may wish to consider, such as the

Minkowski dimension of a set as follows.

Definition 4 Let d(x,A) denote the distance of x ∈ R to a subset A ⊂ R and let vol1

denote the one-dimensional Lebesgue measure on R. For an ordinary fractal string L with

associated open set Ω: given ǫ > 0, let V (ǫ) = vol1{x ∈ Ω : d(x, ∂Ω) < ǫ}. Then the

dimension of L is defined as the inner Minkowski dimension of ∂L, given by DL = inf{α ≥

0 : V (ǫ) = O(ǫ1−α) as ǫ → 0+}. The fractal string L is said to be Minkowski measureable,

with Minkowski content M = lim
ǫ→0+

V (ǫ)ǫ−(1−D) if this limit exists in (0,∞).
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Unlike the topological dimension of a set, the Minkowski dimension isn’t necessarily

an integer. In fact, for the Cantor String, we have DC = log3 2. This dimension plays a key

role in the theory of zeta functions of fractals.

Definition 5 Given a fractal string L, with lengths l1, l2, ..., the geometric zeta function of

L is defined by ζL(s) =
∞
∑

j=1

lsj .

Note that this Dirichlet series converges for ℜ(s) ≥ 1, since ζL(1) =
∞
∑

j=1

lj < ∞, which

equals the Lebesgue measure of the open set Ω, by our assumption that an ordinary fractal

string is a bounded open subset of R. In fact, it is possible for ζL(s) to converge on a larger

half-plane. The following theorem precisely characterizes the region of convergence for the

Dirichlet series.

Theorem 1.4 [LvF13] For an ordinary fractal string L with infinitely many lengths, the

series ζL(s) =
∞
∑

j=1

lsj converges in the half-plane {s ∈ C : ℜ(s) > DL}, and DL is the

smallest such real number with this property.

This theorem shows that unlike the Riemann zeta functions, the geometric zeta

function of an ordinary fractal string will not have a pole at s = 1. However, in [LvF13],

meromorphic extensions of this zeta function are studied, and the poles of these extensions

are of critical importance to our work. We will turn to another type of zeta function for an

ordinary fractal string - the spectral zeta function ζν . To motivate this, consider a single

interval of length l. If we had a physical string of this length, the (normalized) frequencies

possible are l−1, 2l−1, 3l−1, .... Thus the sound spectrum of the string would be the set of

these possible frequencies. If you now consider vibrating an ordinary fractal string where
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you allow each interval lj to vibrate independently, the sound spectrum would be consist of

all k · l−1
j for k, j ∈ N. This leads to the definition of a spectral zeta function.

Definition 6 The spectral zeta function of an ordinary fractal string L is defined by the

equation ζν(s) =
∞
∑

k,j=1

(k · l−1
j )−s

As pointed out in [LvF13], there is a very interesting relationship between the

spectral zeta function and the geometric zeta function.

Theorem 1.5 [LvF13] For an ordinary fractal string L, ζν(s) is holomorphic in ℜ(s) > 1

and we have ζν(s) = ζL(s)ζ(s), where ζ(s) is the Riemann zeta function.

In the previous section, we saw that properties of the Riemann zeta function,

ζ(s), led to information about the associated counting function, π(x). In order to further

this analogy with fractal zeta functions we define the associated counting functions for the

geometric and spectral zeta functions of an ordinary fractal string.

Definition 7 Given an ordinary fractal string L, define the geometric counting function

of L as NL(x) = #{j ≥ 1 : l−1
j ≤ x}. Similarly we define the spectral counting function of

L as Nν(x) = #{f ≤ x : f is a frequency of L, counted with multiplicity}.

Then just as there was a relationship between ζL(s) and ζν(s) before, we also have the

following relationship between NL(x) and Nν(x).

Theorem 1.6 [LvF13] Nν(x) = NL(x) +NL

(x

2

)

+ · · · =
∞
∑

n=1

NL

(x

n

)

for all x > 0.

We can then think of a so-called spectral operator that takes the information

about the geometry of the fractal and sends it to information about its spectrum. In

7



[LvF13], an heuristic idea of the spectral operator was a : f(x) 7→
∞
∑

n=1

f
(x

n

)

. Thus by the

previous theorem, we would have Nν = aNL. It was more convenient to make the change

of variable x = et, and consider the spectral operator as a : f(t) 7→
∞
∑

n=1

f(t − log n). In

[LvF13] and [HL16] this operator is initially defined heuristally and then formally and used

to study various formulations of inverse spectral problems - that is, given information about

the spectrum of a fractal string, can you determine geometric information about it? This

question (viewed as an inverse spectral problem for fractal strings) was initially connected to

the Riemann hypothesis and led to a geometric and spectral reformulation of it in [LM95].

1.4 Inverse Spectral Problems - A Formal Setting

We will now focus on the formal setting used in [HL16] for the spectral operator a

(See also [HL12], [HL13], and [HL14]). Let c ∈ (0, 1) and let Hc = L2(R, e−2ctdt). Initially

this c has no particular significance, but we will see later that by considering c in this range,

we will focus our attention on the values of ζ(s) in the critical strip: 0 < ℜ(s) < 1 and

ℜ(s) > 1, which is crucial to the Riemann hypothesis. Then Hc, as a weighted L2 space,

is a Hilbert space. Let ∂c = d
dt be the differential operator on this space with domain

D(∂c) = {f ∈ AC(R) ∩ Hc : f ′ ∈ Hc}. Here AC(R) denotes the set of functions which

are absolutely continuous on R and thus have a derivative a.e. This operator ∂c is also

called the infinitesimal shift (on the real line) because e−h∂cf(t) = f(t− h). The following

theorem shows another important property of ∂c.

This operator also satisfies:

Theorem 1.7 [HL16] Let c ∈ (0, 1) and Hc and ∂c be defined as above. Then ∂c is a

8



densely defined, unbounded linear operator on Hc and has spectrum the vertical line σ(∂c) =

{c+ it : t ∈ R}.

Using a version of functional calculus for measurable functions applied to normal

operators, the truncated infinitesimal shifts ∂
(T )
c were also studied in [HL16], where T > 0.

By ”truncated”, we mean the operator Ψ(T )(∂c) where Ψ(T ) is a measurable, continuous,

complex-valued function on the line ℜ(s) = c with range dense in [c− iT, c+ iT ]. Thus we

have the following result on the truncated spectrum by applying a version of the spectral

mapping theorem.

Theorem 1.8 ∂
(T )
c is a bounded linear operator on Hc with spectrum σ(∂

(T )
c ) = [c− iT, c+

iT ].

We now precisely define the spectral and truncated spectral operators, ac and a
(T )
c ,

respectively. In the previous section, we saw that under an appropriate change of variable,

the heuristic for the spectral operator acted as f(t) 7→
∞
∑

n=1

f(t− log n). Recalling the reason

that ∂c was called the infinitesimal shift we note that n−∂cf(t) = e− logn∂cf(t) = f(t−log n).

Thus the spectral operator should be something like a =
∞
∑

n=1

n−∂c . This series is precisely

the standard definition of the Riemann zeta function with ∂c replacing the complex variable

s. This motivates the definitions: ac = ζ(∂c) and a
(T )
c = ζ(∂

(T )
c ). One of the first results

about ac in [HL16] is

Theorem 1.9 For c > 1, ac =
∞
∑

n=1

n−∂c, where the infinite sum converges in B(Hc).

This ”quantized”, or operator-valued, analog, ac, of the Riemann zeta function

nicely formalizes the idea of the spectral operator studied in [LM95] and [LvF13]. Actually,

9



to see this, recall that for an ordinary fractal string L, with Minkowski dimension DL, we

have that NL(x) ∼ xDL as x → ∞, with NL(x) = 0 for x < x0 for some x0. Thus under

the change of variable, x = et, NL(t) ∼ eDLt as t → ∞. Hence NL ∈ Hc if DL ≤ c.

Therefore, the expression ac(NL(t)) is defined whenever the parameter c is an upper bound

for the Minkowski dimension of the fractal strings under consideration. Then the question

of whether or not certain inverse spectral problems have solutions can be related to the

invertibility of ac. For c > 1 it is shown that ac is invertible with inverse given by a
−1
c =

∞
∑

n=1

µ(n)n−∂c , where µ(n) is the Möbius function defined to be −1 raised to the number of

distinct prime factors of any square-free n and µ(n) = 0 if n is not square-free. However,

for values of c < 1, ac will also be important. Due to the Bohr-Courant Density Theorem

ac is non-invertible for 1
2 < c < 1 because σ(ac) = {ζ(c+ it) : t ∈ R} = C in this range of c

values. Thus, the notion of quasi-invertibility of ac was defined to be whenever the truncated

spectral operator a
(T )
c is invertible for all T > 0. This modification of invertibility helps us

here, because when we limit ourselves to [c − iT, c + iT ], the set of values of ζ(s) on this

interval is already compact and so the closure will not add any additional points. Thus

σ(a
(T )
c ) = ζ([c− iT, c+ iT ]) will only contain 0 if ζ(s) has a zero in [c− iT, c+ iT ]. We then

obtain the following formulation of the Riemann Hypothesis.

Theorem 1.10 The spectral operator ac is quasi-invertible for all c ∈ (0, 1) \ {1
2} if and

only if the Riemann hypothesis is true.

Lapidus extended this result in [Lap15] and formulated the following asymmetric

criterion for the Riemann hypothesis. Here, bc denotes the nonnegative self-adjoint operator

bc = aca
∗

10



Theorem 1.11 The following are all equivalent to the Riemann Hypothesis:

1) For every c ∈ (0, 12), ac is invertible.

2) For every c ∈ (0, 12), bc is invertible.

3) For every c ∈ (0, 12), bc is bounded away from zero.

This section summarizing the work of Herichi and Lapidus, which was motivated

by earlier work with several other authors, shows a very interesting connection between

fractals, functional analysis, and the Riemann zeta function. The fact that the spectra of ∂c

and ∂
(T )
c lie on the vertical line ℜ(s) = c allows us to focus on the values of ζ(c+ it) when

considering the spectrum of ac. Thus in some sense ∂c helps to localize the information from

ζ(s) to one vertical line at a time. This fact is the starting point of the research contained

in this thesis, in which we find a different space and shift operator that would allow us to

localize the values of ζ(s) even further - down to the value at a single point.

1.5 The Weil Conjectures

Although Riemann’s Hypothesis is still an open problem today, there is an anal-

ogous result that has been shown for curves over finite fields. More precisely, let Y be a

smooth, projective, geometrically connected curve over Fq, the field with q elements. Then

we can define the zeta function ζ(Y, s) of Y as: ζ(Y, s) = exp

(

∞
∑

n=1

Yn
n
q−ns

)

, where Yn =

the number of points of Y defined over Fqn , the degree n extension of Fq.

Weil made several conjectures about these zeta functions which were eventually

proven, but I will focus on the one that is analogous to the Riemann Hypothesis:

Theorem 1.12 The only poles of ζ(Y, s) lie on the lines ℜ(s) = 0, 1 and the only zeros lie

11



on the lines ℜ(s) = 1
2 .

The full proof of this result is too long to include here, but we will point out a few

key parts that will lead us through the work in this thesis.

A sequence of Weil cohomology groups for the curve Y are formed, in particular

H0, H1, H2 are the only nontrivial groups, with dimH0 = dimH2 = 1 and dimH1 = 2g

where g denotes the genus of Y . Then the Frobenius map F which sends x→ xq acts on the

space Fqn for any n and in fact also induces a map on the cohomology groups F ∗ : Hj → Hj .

Next, we examine the Lefschetz fixed point formula.

Theorem 1.13 (Lefshetz Fixed Point Formula) Let X be a closed smooth manifold and let

f : X → X be a smooth map with all fixed points nondegenerate. Then

∞
∑

j=0

(−1)jTr(f∗|Hj)

is equal to the number of fixed points of f .

We apply this result to the nth power of the Frobenius map, Fn, whose fixed points

are exactly the points on the curve Y with all coordinates in Fqn . Specifically we obtain
2
∑

j=0

(−1)jTr(F ∗n |Hj) = Yn. To proceed further, we need the next result from linear algebra.

Theorem 1.14 If f is an endomorphism of a finite dimensional vector space V that for |t|

sufficiently small, exp

(

∞
∑

n=1

1

n
tnTr(fn|V )

)

= det(I − f · t|V )−1

Then, if we apply this result to the Frobenius operator F , we can proceed with

12



the following calculation.

ζ(Y, s) = exp

(

∞
∑

n=1

Yn
n
q−ns

)

= exp





∞
∑

n=1

1

n

2
∑

j=0

(−1)jTr(F ∗n |Hj)q−ns





=
2
∏

j=0

(

exp

(

∞
∑

n=1

1

n
(−1)jTr(F ∗n |Hj)q−ns

))(−1)j

=
2
∏

j=0

(

det(I − F ∗q−s|Hj)
)(−1)j+1

=
det(I − F ∗q−s|H1)

det(I − F ∗q−s|H0) det(I − F ∗q−s|H2)

Thus the zeta function of a curve Y is an alternating product of determinants

of I − q−sF ∗ over the cohomology spaces. Since these spaces are finite dimensional, this

equation further shows that ζ(Y, s) is a rational function of q−s, which was another one of

Weil’s conjectures. We also see that the zeros of ζ(Y, s) are given from the eigenvalues of

the operator F ∗ on H1, and the poles are given from the eigenvalues on H0 and H2. Then

it was shown that the eigenvalues of F on Hj have absolute value q
j
2 and thus the zeros of

ζ(Y, s) satisfy ℜ(s) = 1
2 .

1.6 A Cohomology Theory in Characteristic Zero?

Christopher Deninger has postulated that the ideas used to prove the Weil conjec-

tures could be extended to eventually prove the Riemann hypothesis in [Den94], [Den98] and

others. In particular, he envisions a cohomology theory of algebraic schemes over Spec(Z)

that would conjecturally help prove the Riemann hypothesis and other problems in analytic

number theory. In his papers, he lays out some of the difficulties in doing so as well as some

13



of the properties that such a theory would need to satisfy.

For example, the proof of the Weil conjectures outlined in the previous section

relies on the Frobenius operator, but this proof has no known analogue for characteristic

0 situations such as the Riemann zeta function itself. How can we find a function in

characteristic 0 that will behave in some manner similarly to the Frobenius map?

This then leads to the further question: is there some other operator one can use,

where the eigenvalues on certain cohomology spaces correspond to the zeros or poles of a

given zeta function (or other meromorphic function) that would work in characteristic 0?

Further, can we recover the zeta function as a determinant of I − As? Note that the fact

there are infinitely many zeros or poles for some functions under consideration will neces-

sitate considering determinants of operators over an infinite dimensional space, unlike the

situation in the Weil conjecture where all of the cohomology spaces were finite dimensional.

Deninger has suggested using zeta-regularized determinants to overcome the difficulty of

determinants on infinite dimensional spaces. Instead, in this thesis, the concepts of the

Fredholm determinant and trace class operators as well as a different type of regularized

determinants involving operators that are not trace class, but are instead in certain trace

ideals.

This dissertation presents an attempt at a formalism to give a cohomology theory

in characteristic 0 for certain classes of meromorphic functions, and we show that we can

recover the function as an alternating product of determinants of I − sA for a particular

choice of operator A and cohomology spaces Hj . To show the success of this process, here

are a few examples of determinant formulas to be proven later:

14



The determinant formula representation for a rational function.

Theorem 8 If f(z) = zkg(z) is a rational function then f(z) = zkg(0) det1,1(I − zDg(z))

for any z with f(z) defined.

The determinant formula representation for zeta functions of curves over finite

fields.

Theorem 9 Let Y be a smooth, projective, geometrically connected curve over Fq. Then,

ζ(Y, s) = det1,1
(

I − q−sDζ(Y,q−s)

)

The determinant formula representation for the Gamma function.

Theorem 10 Γ(z) = e−γz

z det1,2(I − zDzΓ(z)) for any z with Γ(z) defined.

A quantized Euler product for ζ(s):

Theorem 11 If s ∈ C with ℜ(s) > 1, then ζ(s) =
∏

p det(I − p−sDφ) where φ(z) =
1

1−z .

Finally we have an expression for ζ(s) as a fraction of determinants very similar

to the motivating example of curves over finite fields:

Theorem 12 If ψ(s) = s− 1, then we have:

ζ(s) = −e
(log(2π)−1)s

2

det2,1(I − sDξ(s))

det1,1
(

I − sDψ(s)

)

det1,2
(

I − sDsΓ(s/2)

)

This work will also be included in a paper, currently being prepared, coauthored

by my advisor, Michel L. Lapidus, to be included in a volume entitled ”Exploring The

Riemann Zeta Function” celebrating the 190th anniversary of Riemann’s birth, [CL].
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Chapter 2

Some Needed Background

In our work, we will need the standard concepts of norm and inner product on a

complex vector space. See [RS80] for the details. Note that we are following the convention

that an inner product on a complex vector space is linear in the second argument and

conjugate linear in the first. It is also standard that given an inner product, (·, ·), there is

an associated norm, ‖·‖, defined by ‖x‖ =
√

(x, x). We will also need the notions of Banach

and Hilbert spaces, and will only ever deal with separable Hilbert spaces.

2.1 The Space of Bounded Operators on a Separable Hilbert

Space

In this work, we will often consider linear operators on Hilbert spaces. We present a

short study of possible properties for such an operator to have, beginning with the difference

between bounded and unbounded operators.

Definition 13 Given a Hilbert space H, a linear operator A : H → H is called bounded if
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sup
x 6=0

‖Ax‖
‖x‖ < ∞. In this case, we define the norm of the operator A by: ‖A‖ := sup

x 6=0

‖Ax‖
‖x‖ .

We denote the set of all bounded linear operators on a Hilbert space H by B(H). If a linear

map defined on a subset of H is not bounded, then it is called unbounded.

The space B(H) is not just a vector space under pointwise operations, but in fact

is a Banach space with norm ‖A‖ for each A ∈ B(H). It can be shown that any operator

that is unbounded, cannot be defined on all of H. Hence in that case, the domain of A will

be clearly specified. There are many additional properties an operator on H might have.

Definition 14 An operator A ∈ B(H) is called finite rank if the range of A is finite

dimensional. A is called compact if it is the norm limit of a sequence of finite rank operators.

We denote by J∞ the set of all compact operators.

We will be combining compact operators and will therefore need the following

result:

Theorem 2.1 [RS80] If An is a sequence of compact operators and An → A in the norm

topology, then A is compact.

We will also need the definition of the adjoint of a linear operator on a Hilbert

space.

Definition 15 Given either A ∈ B(H) or a densely defined, unbounded operator A, the

adjoint of the operator A is the operator A∗ satisfying (x,Ay) = (A∗x, y) for all y in the

domain of A and x in the domain of A∗.

Definition 16 An operator, A, satisfying A = A∗, is called self-adjoint. An operator

satisfying A∗A = AA∗ is called normal.

17



We now recall basic theory surrounding the generalization of the notion of eigen-

values from finite dimensional vector spaces to Hilbert spaces.

Definition 17 Given an operator A on H, bounded or unbounded, the resolvent set ρ(A)

is defined as those λ ∈ C such that λI −A : D(A) → H is a bijection with bounded inverse.

This operator, (λI−A)−1 is called the resolvent operator of A at the point λ. The spectrum

σ(A) is defined as the complement of ρ(A) in C. The spectral radius r(A) is defined by

r(A) := sup
z∈σ(A)

|z|.

The first result gives a formula for the spectral radius of a bounded operator.

Theorem 2.2 [RS80] If A ∈ B(H), then r(A) = lim
n→∞

‖An‖ 1
n . If A is normal then we have

r(A) = ‖A‖.

We can use the above formula for a normal operator to give an upper bound on

the norm of the resolvent operator as follows.

Theorem 2.3 If T is bounded and normal and λ ∈ ρ(T ), then ‖(λI−T )−1‖ ≤ (d(λ, σ(T )))−1,

where d(λ, σ(T )) is the distance from the point λ to the set σ(T ).

Proof. First, we will show that r((λI − T )−1) < (d(λ, σ(T )))−1. To do this, suppose

that µ ∈ C with |µ| > (d(λ, σ(T )))−1. Then
∣

∣

∣

1
µ

∣

∣

∣ < d(λ, σ(T )). Thus − 1
µ + λ /∈ σ(T ).

Thus ((− 1
µ + λ)I − T )−1 exists and is a bounded operator. Now define the operator S by:

S = − 1
µ((− 1

µ + λ)I − T )−1(λI − T ). Then S is a composition of bounded operators and

18



therefore is bounded. Furthermore, we obtain:

S
(

(λI − T )−1 − µI
)

= − 1

µ

((

− 1

µ
+ λ

)

I − T

)−1

(λI − T )
(

(λI − T )−1 − µI
)

= − 1

µ

((

− 1

µ
+ λ

)

I − T

)−1

(I − λµI + µT )

=

((

− 1

µ
+ λ

)

I − T

)−1((

− 1

µ
+ λ

)

I − T

)

= I.

This shows that
(

(λI − T )−1 − µI
)

has a bounded inverse, and thus µ /∈ σ
(

(λI − T )−1
)

.

Since this fact holds for any |µ| > (d(λ, σ(T )))−1, the spectral radius must satisfy the

inequality: r
(

(λI − T )−1
)

≤ (d(λ, σ(T )))−1. By the previous theorem and the assumption

that T is normal, (λI − T )−1 is also normal and thus:

‖(λI − T )−1‖ = r
(

(λI − T )−1
)

< (d(λ, σ(T )))−1.

The spectrum of a compact operator on a Hilbert space has a very specific form.

Theorem 2.4 [RS80] Let A be a compact operator on a Hilbert space H. Then:

1) σ(A) is a set with no non-zero limit points and

2) Every non-zero λ ∈ σ(A) is an eigenvalue of finite (geometric) multiplicity.

Now in this work we will also need the notion of direct sums of Hilbert spaces and

operators on these sums.

Definition 18 Given a countable collection of Hilbert spaces {Hk : k ∈ N}, we let H be

the set of sequences {xn} satisfying xn ∈ Hn for each n and
∑

n

‖xn‖2Hn
< ∞. Then H
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is a Hilbert space under the inner product ({xn}, {yn})H =
∑

n

(xn, yn)Hn that is denoted

by H =
⊕

n

Hn. Similarly given a sequence of bounded operators An on Hn, we define

A =
⊕

n

An, with domain D(A) = {(xn)n ∈ H : (Anxn)n ∈ H} by (A(xn))n = (Anxn)n.

The following result regarding A =
⊕

n

An will be used in our work.

Theorem 2.5 Given a sequence of Hilbert spaces Hn and operators An ∈ B(Hn) for each

n, let A =
⊕

n

An on the space H =
⊕

n

Hn. Then the following statements hold:

1) A ∈ B(H) iff supn‖An‖Hn <∞

2) If each An is normal, then σ(A) =
⋃

n

σ(An)

Proof. For 1), if we let e = (en) ∈ H be such that en 6= 0 in Hn, but all other components

are 0, then ‖Ae‖ = ‖Anen‖ so that ‖A‖ ≥ supn‖An‖. Thus if supn‖An‖ = ∞ then A is

unbounded. On the other hand if supn‖An‖ = M < ∞, then for any x = (xn) ∈ H, we

have
∑

n

‖xn‖2 < ∞. Thus ‖Ax‖2 =
∑

n

‖Anxn‖2 ≤ M‖xn‖2 < ∞. Thus Ax is defined for

every x ∈ H, thus implying that A is bounded.

If λ ∈
⋃

n

σ(An), then for at least one n, we have that An − λI does not have a bounded

inverse. Thus A − λI =
⊕

n

(An − λI) cannot have a bounded inverse and λ ∈ σ(A).

Also, since σ(A) is a closed set we get
⋃

n

σ(An) ⊂ σ(A). Now suppose that µ /∈
⋃

n

σ(An).

Then ǫ = d

(

µ,
⋃

n

σ(An)

)

> 0. Furthermore d(µ, σ(An)) > ǫ for all n. Thus ‖(An −

µI)−1‖ ≤ 1
ǫ by theorem 2.8 and so

⊕

(An − µI)−1 is an inverse for A − µI, with norm

∥

∥

∥

⊕

(An − µI)−1
∥

∥

∥ = supn‖(An − µI)−1‖ ≤ 1
ǫ . Hence, A − µI has a bounded inverse.

Therefore µ /∈ σ(A), and we conclude that σ(A) =
⋃

n

σ(An).
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2.2 Riesz Functional Calculus

When A ∈ B(H) and p(t) is a polynomial, it is straight forward to understand

what we mean by p(A) by using repeated compositions and additions of bounded operators.

In particular, if p(t) =

n
∑

k=0

akt
k, then p(A) =

n
∑

k=0

akA
k, where Ak is just A composed with

itself k times. However, if p is not a polynomial and is instead some more general type of

function, we need a more involved process to make sense of p(A). The process of associating

an operator to an expression p(A) is called a functional calculus and for this work, we will

be using the so-called Riesz functional calculus. In this situation we will have a bounded

operator A and a complex valued function p(z) that is holomorphic on a neighborhood of

σ(A), the spectrum of A.

To begin, we first need to recall a basic fact from complex analysis that is the basis

behind the Riesz functional calculus: a version of the Cauchy integral formula.

Theorem 2.6 (Cauchy Integral Formula) Suppose that U is an open subset of C, f : U → C

is holomorphic, and γ is a closed, rectifiable curve in U . Let a ∈ C be such that the winding

number of γ around w is n(γ, w) = 1. Then

f(a) =
1

2πi

∫

γ

f(z)

z − a
dz.

We then use the equation above, but instead of a being a complex number, we

replace it with a bounded operator A. This shifts from the problem from that of making

sense of f(A), to instead, that of defining 1
z−A = (z − A)−1 and an integral which is

operator valued. However, whenever z ∈ ρ(A), (z −A)−1 exists and is bounded, and so we

are integrating a bounded operator f(z)(z − A)−1, over a closed, rectifiable curve γ. We
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can make sense of such an integral in a normed space, of which B(H) is one, using the usual

ideas of Riemann summation. This leads to the following definition.

Definition 19 Given a bounded operator A on a Hilbert space H, and a function f that

is holomorphic on a neighborhood G of σ(A), let γ1, γ2, ..., γn be closed rectifiable curves in

G, oriented positively, such that every point a ∈ σ(A) has winding number
n
∑

k=1

n(γk, a) = 1.

Then we define f(A) to be the bounded operator given by 1
2πi

∫

γ f(z)(z −A)−1dz

The reader can see [Con90] for the details that this is well-defined, but here we will

just mention some of the nice properties that this functional calculus has. Fix A ∈ B(H)

and let Hol(A) be the algebra of all functions that are analytic in a neighborhood of σ(A).

Theorem 2.7 [Con90] Fix A ∈ B(H)

1) The map A 7→ f(A) of Hol(A) → B(H) is an algebra homomorphism

2) If f(z) =
∞
∑

n=0

cnz
n has radius of convergence greater than r(A) then f ∈ Hol(A) and

f(A) =

∞
∑

n=0

cnA
n.

3) If f(z) ≡ 1, then f(A) = I.

4) If f(z) = z, then f(A) = A.

5) If f1, f2, ... are all analytic on G, σ(A) ⊂ G, and fn → f uniformly on compact subsets

of G, then ‖fn(A)− f(A)‖ → 0.

This shows that the Riesz functional calculus extends the polynomial functional

calculus. In fact, it can be shown to be the unique way of defining such a functional calculus

on the space Hol(A). Furthermore, we have the following version of the spectral mapping

theorem in this case.
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Theorem 2.8 (Spectral Mapping Theorem) [Con90] Given a Hilbert space H, an operator

A ∈ B(H), and a function f that is holomorphic on a neighborhood of σ(A), we have that

the operator f(A) defined by the Riesz functional calculus satisfies σ(f(A)) = f(σ(A)).

2.3 Trace Ideals and Regularized Determinants

For some of our work, we will need a stronger condition than simply being bounded.

We will first look at compact operators and then further restrict to a specific family of ideals

of compact operators.

Theorem 2.9 [RS80] Let A be a compact operator on H. Then there are orthonormal

sets {ψn} and {φn} and positive real numbers µn(A), with µ1(A) ≥ µ2(A) ≥ · · · such that

A =
∑

n

µn(A)(ψn, ·)φn. Moreover the µn(A) are uniquely determined.

The µn(A) from the previous theorem are called the singular values of A. We

can actually describe {µn(A)} in another way. Given an operator A, the operator A∗A is

a positive operator so |A| :=
√
A∗A makes sense. The µn(A)

′s are exactly the eigenvalues

of |A|. Now we can turn to Calkin’s theory of operator ideals. We begin by setting up a

relationship between ideals in B(H) and certain sequence spaces.

Definition 20 Fix an orthonormal set {φn} in H. Given an ideal J 6= B(H); we define

the sequence space associated to J by S(J ) = {a = (a1, a2, ...)|
∑

an(φn, ·)φn ∈ J }. On

the other hand, given a sequence space s, let I(s) be the family of compact operators A with

(µ1(A), µ2(A), ...) ∈ s.
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In order for this correspondence between sequence spaces and ideals to be one-to-

one, we need to restrict our sequence spaces to Calkin spaces. We then need the following

operator on sequences.

Definition 21 Given an infinite sequence, (an), of numbers with an → 0 as n→ ∞. a∗n is

the sequence defined by a∗1 = max |ai|, a∗1+a∗2 = maxi 6=j(|ai|+ |aj |), etc. Thus a∗1 ≥ a∗2 ≥ · · ·

and the sets of a∗i and |ai| are identical, counting multiplicities.

This operator allows us to make the following definition.

Definition 22 A Calkin space is a vector space, s, of sequences an with lim
n→∞

an = 0, and

the so-called Calkin property: a ∈ s and b∗n ≤ a∗n implies b ∈ s.

With these definitions in mind we can use the following theorem to see a relation

between two-sided ideals and Calkin spaces.

Theorem 2.10 [Sim05] If s is a Calkin space, then I(s) is a two-sided ideal of operators

and S(I(s)) = s. if J is a two-sided ideal, then S(J ) is a Calkin space and I(S(J )) = J .

We will now use this relation to define the ideals in the space of compact operators

that we will be using.

Definition 23 A compact operator A is said to be in the trace ideal Jp, for some p ≥ 1,

if
∑

n

µn(A)
p < ∞. That is, Jp is the ideal that is associated to the Calkin space lp. An

element A of J1 is called a trace class operator. For A ∈ J1 we define Tr(A) =
∑

n

(φn, Aφn)

for any choice of orthonormal basis {φn}. If A ∈ J2 then we say that A is Hilbert-Schmidt.
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Trace class operators, A, are precisely those operators for which Tr(A) =
∑

n(φn, Aφn)

is absolutely convergent and independent of the choice of orthonormal basis. Similarly,

Hilbert Schmidt operators are those for which
∑

n

(Aφn, Aφn) = ‖Aφn‖2 is convergent and

independent of the choice of orthonormal basis. If A is a trace class operator, then there is

a method to define a so-called Fredholm determinant, det(I + zA), which defines an entire

function on C. Operators of the form I + zA for a trace class A are called Fredholm. This

determinant can be defined in several equivalent ways. We list them here for trace class A

and z ∈ C:

det(I + zA) := eTr(log(I+zA)) (2.11)

for small |z| and analytically continued to the whole plane,

det(I + zA) =
∞
∑

n=0

znTr(∧n(A)) (2.12)

with ∧n(A) defined in terms of alternating algebras, and

det(I + zA) =

N(A)
∏

n

(1 + zλn(A)) (2.13)

where λn(A) are the nonzero eigenvalues of A and N(A) is the number of such eigenvalues,

which can be infinite.

A discussion concerning which of the above equations should be taken as a defini-

tion and which are to be proven appears in [Sim05]. For the work here, (2.13) will be the

most convenient choice. One thing to note at this time though is that det(I + zA) does

define an entire function by any of the above definitions, when A is trace class. This then
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shows why one can’t hope to recover a meromorphic function without taking the quotient

of determinants as was seen in the proof of the Weil conjectures.

Although some of the operators we will consider will not be trace class, they will

at least be in one of the other trace ideals Jn. In this case we can define a regularized

determinant that will allow us to get a determinant formula for the operator. We start by

considering an expression of the form det(I + zA)e−zTr(A). For trace class operators A,

both det(I + zA) and e−zTr(A) are convergent, but for Hilbert Schmidt operators neither

is necessarily. And yet, when you consider the two factors together as a possibly infinite

product over the eigenvalues of A,

N(A)
∏

k=1

((1 + zλk(A)) exp−λk(A)z), the combined term

does converge for Hilbert Schmidt operators. This idea can in fact be extended to get a

convergent infinite product expression for operators in any Jn, which will be called the

regularized determinant. First we need a lemma.

Lemma 24 [Sim05] For A ∈ B(H), let Rn(A) =
[

(I +A) exp(
∑n−1

j=1 (−1)jj−1Aj)
]

− I.

Then if A ∈ Jn we have Rn(A) ∈ J1.

Proof. ([Sim05]) Let g(z) = (1 + z) exp(
∑n−1

j=1 (−1)jj−1zj) − 1. Since
n−1
∑

j=1

(−1)jj−1zj is

the beginning of the Taylor series for log(1 + z), we see that g(z)
zn is an entire function h(z).

Thus g(A) = Anh(A). If A ∈ B(H), then h(A) ∈ B(A) by the Riesz functional calculus

explained in the previous section. On the other hand, A ∈ Jn implies that An ∈ J1 and

since J1 is a two-sided ideal we have that g(A) = Rn(A) ∈ J1.

This associates a trace class operator to any given A ∈ Jn and allows us to define

the regularized determinant as follows:
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Definition 25 [Sim05] For A ∈ Jn, define detn(I +A) = det(I +Rn(A))

With this definition, we can now conclude this section with a very similar product

formula for the regularized determinant of a Hilbert Schmidt operator with each term having

an exponential factor to help convergence along with some other interesting properties.

Theorem 2.14 [Sim05] For A ∈ Jn, we have:

1) detn(I + µA) =

N(A)
∏

k=1



(1 + µλk(A)) exp





n−1
∑

j=1

(−1)jj−1λk(A)
jµj









2) | detn(I +A)| ≤ exp (Γn‖A‖nn) for a suitable constant Γn

3) | detn(I +A)− detn(I +B)| ≤ ‖A−B‖n exp (Γn(‖A‖n + ‖B‖n + 1)n)

4) If A ∈ Jn−1, then detn(I + A) = detn−1(I + A) exp
[

(−1)n−1 1
n−1Tr(A

n−1)
]

and in

particular, for A ∈ J1, detn(I +A) = det(I +A) exp





n−1
∑

j=1

(−1)jj−1Tr(Aj)





5) (I +A) is invertible if and only if detn(I +A) 6= 0.

Proof. For 1), this comes immediately when using the definition of determinant for Fred-

holm operators as a product over the eigenvalues, since detn(I+µA) = det(I+Rn(µA)) and

the eigenvalues λk(Rn(µA)) are (1 + µλk) exp(
∑n−1

j=1 (−1)jj−1λk(A)
jµj − 1 by the Spectral

Mapping Theorem given earlier. For a suitable Γn, |1 + g(z)| ≤ exp(Γn|z|n), so that 2)

follows from 1) and the fact that
∑ |λj(A)|n ≤ ‖A‖nn. 3) follows from theorem 5.1 on page

45 of [Sim05]. For 4), use 1):

detn(I +A) =

N(A)
∏

k=1



(1 + λk(A)) exp





n−1
∑

j=1

(−1)jj−1λk(A)
j









=

N(A)
∏

k=1



(1 + λk(A)) exp





n−2
∑

j=1

(−1)jj−1λk(A)
j









N(A)
∏

k=1

exp

(

(−1)n−1 1

n− 1
λk(A)

n−1

)

= detn−1(I +A) exp
(

(−1)n−1 1
n−1Tr

(

An−1
)

)

,
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where each step is valid because A ∈ Jn−1. If A ∈ J1 then we can repeat to get: detn(I +

A) = det(I+A) exp





n−1
∑

j=1

(−1)jj−1Tr(Aj)



. Finally 5) is true by 1), and, noting that since

the infinite product converges, the determinant is 0 if and only one of the terms in the

infinite product is 0 if and only if 0 ∈ σ(I +A) if and only if I +A is non-invertible.

These ”regularized determinants” will be key to our results.

2.4 Super Linear Algebra and the Berezinian Determinant

As described in [Lap08], one of the motivating ideas that initiated this direction

was known relations between ζ(s) and concepts from physics, in particular, supersymmetry.

In this area of physics, objects are classified as either even or odd and there is a new type

of commutative law, the so-called supercommutative relation, given by the sign rule: if two

elements are switched in a product, then the product has the opposite sign if both switched

elements are odd. We will now look at some of the formalism used to handle situations like

this in order to get a very useful notation for a supersymmetric determinant.

Definition 26 A super vector space V is a vector space over the field k that is graded by

Z/2Z as V = V0
⊕

V1.

Any element of V0 is called even and will be said to have parity 0, while an element

of V1 is called odd and have parity 1. An endomorphism on a super vector space V is a

linear transformation A : V → V that preserves the parity. We can write an endomorphism

A, as A =









A00 A01

A10 A11









. In this case, the supertrace of A is defined as:

str(A) = Tr(A00)− Tr(A11)
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This definition is chosen so that the space of endormorphisms becomes a super

algebra that satisfies the supercommutative relation: str(AB) = (−1)p(A)p(B)str(BA). Once

we have the supertrace, we can define a superdeterminant. We wish to keep the standard

relationship to be true that det(eA) = eTr(A), but in terms of supertrace, we then make the

following definition:

Definition 27 Given a diagonal endormorphism A =









A00 0

0 A11









, with A11 invertible,

the superdeterminant, or Berezinian determinant, is: Ber(A) = det(A00) · det(A11)
−1.

One can define the Berezinian of an arbitrary invertible endormorphism A, but it

will not be needed here. The operators that we consider will be given in diagonal block

form.
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Chapter 3

The Derivative Operator on

Weighted Bergman Spaces

In this chapter we will study some properties of the derivative operator in a special

family of weighted Bergman spaces. We begin by defining a weighted Bergman space of

entire functions.

Definition 28 Define a weight function to be a positive continuous function w on C. Then

we define the weighted Lp spaces for 1 ≤ p ≤ ∞ to be Lpw(C) to be the space of functions

on C such that fw ∈ Lp(C, dλ), where λ is the Lebesgue measure on R
2, given the norm

‖f‖Lp
w
= ‖fw‖Lp(R2). Next denote by Bp

w to be the subspace of entire functions in Lpw. B
p
w

is called a weighted Bergman space of entire functions.

Then we have a quick fact about these spaces.

Theorem 3.1 For p ≥ 1, Bp
w is a closed subspace of Lpw and hence is a Banach space.

Also, for p = 2, B2
w is a Hilbert space.
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For the rest of this chapter we will be exploring the properties of the differential

operator D = d
dz on the space Bp

w, including its properties for particular choices of w and

p.

3.1 The Operator D

In this section we focus on the results that we will be using from [AB06]. Consider

the following types of weight functions: w(z) = e−φ(|z|), where φ is a non-negative concave

function on R+ = [0,∞) such that w(0) = 0 and lim
t→+∞

φ(t)

log t
= +∞. Now we define:

a = lim
t→+∞

φ(t)

t
. (3.2)

Then we have the following results in this situation:

Theorem 3.3 [AB06] Let 1 ≤ p ≤ ∞ and w be a weight function with constant a as above:

1) The differentiation operator D = d
dz is a bounded linear operator on Bp

w

2) ‖Dn‖ ≤ n!r−neφ(r), for all r > 0, and n = 1, 2, ....

Proof. We will prove 2) noting that 1) follows from it. Suppose that f ∈ Bw
p and r > 0.

Cauchy’s formula for the nth derivative of f reads as:

Dnf(z0) =
n!

2πi

∫

|z|=r

f(z0 + z)

zn+1
dz (3.4)

Now we consider the case p = ∞. Let z0, z ∈ C with |z| = r. Then since φ is subadditive and

monotonic, we have a version of the Triangle Inequality: φ(|z0+z|) ≤ φ(|z0|+|z|) ≤ φ(|z0|)+

φ(|z|). Also, by definition of the ∞−norm we have ‖f‖∞,w = sup
z∈C

|f(z)|e−φ(|z|) ≥ |f(z0 +
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z)|e−φ(|z0+z|). Solving for |f(z0+z)| gives the upper bound, |f(z0+z)| ≤ ‖f‖∞,we
φ(|z0+z|) ≤

‖f‖∞,we
φ(|z0|)eφ(|z|). Then by (3.4), we have for any z ∈ C that

|Dnf(z)| ≤ n!r−n sup
|z|=r

|f(z0 + z)| ≤ n!r−n‖f‖∞,we
φ(|z|)eφ(r).

Thus ‖Dnf‖∞,w = sup
z∈C

|Dnf(z)|e−φ(|z|) ≤ n!r−neφ(r)‖f‖∞,w. Therefore ‖Dn‖ ≤ n!r−neφ(r).

Next, we turn to the case 1 ≤ p < ∞. Let z ∈ C. Applying Hölder’s inequality in (3.4)

gives:

|Dnf(z)| ≤ n!

(2π)
1
p rn

(∫ 2π

0
|f(z + reiθ)|pdθ

)

1
p

.

This leads to

∫

C

|Dnf(z)|pe−pφ(|z|)dλ(z) ≤ n!p

2πrpn

∫ 2π

0

(∫

C

|f(z + reiθ)|pe−pφ(|z|)dλ(z)
)

dθ.

By a change of variable, we can rewrite this as

∫

C

|Dnf(z)|pe−pφ(|z|)dλ(z) ≤ n!p

2πrpn

∫ 2π

0

(∫

C

|f(z)|pe−pφ(|z−reiθ|)dλ(z)
)

dθ. (3.5)

Using the Triangle Inequality for φ we have |φ(|z|)−φ(|z− reiθ|)| ≤ φ(|reiθ|) = φ(r). Using

this in the inner integral gives:

∫

C

|f(z)|pe−pφ(|z−reiθ|)dλ(z) =
∫

C

|f(z)|pe−pφ(|z|)ep(φ(|z|)−φ(|z−reiθ |))dλ(z)

≤ epφ(r)
∫

C

|f(z)|pe−pφ(|z|)dλ(z) ≤ epφ(r)‖f‖pp,w.

Applying this estimate to (3.5) then gives

∫

C

|Dnf(z)|pe−pφ(|z|)dλ(z) ≤ n!p

2πrpn

∫ 2π

0
epφ(r)‖f‖pp,wdθ =

n!pepφ(r)

rpn
‖f‖pp,w

Thus ‖Dnf‖p,w ≤ n!r−neφ(r)‖f‖p,w, and it follows that ‖Dn‖ ≤ n!r−neφ(r).

We also have the following result about the spectrum, σ(D), of D.
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Theorem 3.6 [AB06] Under the conditions of theorem 3.3 we have the spectrum of D is

σ(D) = ∆a := {z ∈ C : |z| ≤ a}.

Proof. Let eλ(z) = eλz for λ ∈ C. Clearly we have Deλ = λeλ and so eλ is an eigenvector

of the operator D with eigenvalue λ, as long as eλ ∈ Bp
w. However, if |λ| < a and we write

z = reiθ and λ = |λ|eiβ , we have |eλ(z)e−φ(|z|)| = |e|λ|rei(β+θ)−φ(r)| = e|λ|r cos(β+θ)−φ(r) ≤

er(|λ|−
φ(r)
r

). But by (3.2), then this function is integrable, so eλ ∈ Bp
w for |λ| < a. Then we

have ∆a ⊂ σ(D). To complete the proof we will show that the spectral radius r(D) ≤ a.

It suffices to show that r(D) ≤ a + ǫ for any ǫ > 0, so let ǫ > 0. Then again using (3.2)

we see that there is a t0 > 0 such that φ(t) ≤ (a + ǫ)t for t ≥ t0. Thus by part 2 of

Theorem 3.3 we have that ‖Dn‖ ≤ Cn!r−ne(a+ǫ)r for any r > 0, n = 1, 2, ... where the C

is a constant depending only on ǫ. Minimizing this expression with respect to r gives the

critical value r = n
a+ǫ . Substituting this choice of r gives ‖Dn‖ ≤ C n!en(a+ǫ)n

nn . Applying

Stirling’s formula gives that ‖Dn‖ ≤ f(n), where f(n) is asymptotic to a constant times

√
n(a+ ǫ)n. Thus we have r(D) = lim

n→∞
‖Dn‖ 1

n ≤ a+ ǫ. Thus r(D) = a and σ(D) = ∆a.

To further study this operator, we restrict to the special case where p = 2 where we

actually have a Hilbert space with (f, g) =
∫

R2 fge
−2φ(|z|)dλ. It is convenient to have a par-

ticular simple orthonormal basis to deal with, and, since we are dealing with entire functions

that are guaranteed to have convergent power series, it makes sense to look at polynomials

to try to find this orthonormal basis. It turns out that all we need are monomials.

Theorem 3.7 [AB06] There exist constants cn such that {un(z)}, where un(z) = cnz
n,

forms an orthonormal basis for B2
w.

33



Proof. First note that (zn, zm) = 0 if n 6= m. This is by a simple calculation us-

ing the fact that the weight function is radial, so that using polar coordinates, we have

(zn, zm) =
∫ 2π
0

∫∞
0 rne−inθrmeimθe−2φ(r)rdrdθ =

∫ 2π
0 ei(m−n)θdθ

∫∞
0 rn+m+1e−2φ(r)dr = 0 if

n 6= m. Note that the integral on r converges for any n,m ∈ N0 by the properties of our

weight function. Thus the monomials form an orthogonal set. This orthogonal set is com-

plete because every entire function has a convergent power series on C. Thus if we choose

cn = 1
‖zn‖ we normalize our set and {un} is an orthonormal basis for B2

w.

Now we specialize further by choosing the weight function given by w(z) = e−|z|α

for some α ∈ R with 0 < α ≤ 1. We will call the resulting Hilbert space Hα := B2
w. In this

case we can actually find the constants cn explicitly.

Theorem 3.8 [AB06] If 0 < α ≤ 1, then for n ∈ N0, we have that:

‖zn‖Hα =
2π

α
2−

2
α
(n+1)Γ

[

2

α
(n+ 1)

]

Proof. Computing the norm in Hα gives:

‖zn‖2Hα
=

∫

C

|z|ne−2rαdz =

∫ 2π

0
1dθ

∫ ∞

0
r2n+1e−2rαdr

For the integral over r, we make the change of variable x = 2rα, which changes the integral

into:

‖zn‖2Hα
= 2π

∫ ∞

0

(

(x

2

) 1
α

)2n+1

e−x
1

2α(x2 )
α−1
α

dx =
2π

α
2−

2
α
(n+1)

∫ ∞

0
x

2(n+1)
α

−1e−xdx

However, the final integral is simply Γ( 2α(n+ 1)).

Thus we can simply take the normalizing constants cn to be the square root of

the reciprocal of the formula for ‖zn‖2 given above. Now examining the action of D on a
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typical basis element un(z), we see that: Dun = D(cnz
n) = ncnz

n−1 = ncn
cn−1

un−1. We thus

obtain the following representation of D:

Theorem 3.9 The operator D is a weighted backward shift on Hα taking a sequence of

coefficients (an), where f(z) =
∞
∑

n=0

anun(z), to (γnan+1), where γ
2
n = 2

2
α
(n+1)2Γ( 2

α
(n+1))

Γ( 2
α
(n+2))

.

Proof. Using the last calculation and writing f(z) =
∞
∑

n=0

anun, we obtain:

Df(z) =
∞
∑

n=0

an
ncn
cn−1

un−1 =
∞
∑

n=0

(n+ 1)cn+1

cn
an+1un =

∞
∑

n=0

γnan+1un,

where γn = (n+1)cn+1

cn
. It follows, using the previously calculated formula for cn, that

γ2n =
(n+ 1)2c2n+1

c2n
=

(n+ 1)2‖zn‖2
‖zn+1‖2 = 2

2
α
(n+ 1)2Γ( 2α(n+ 1))

Γ( 2α(n+ 2))
.

The last fact we will need from [AB06] is to apply the standard asymptotic for the

Gamma function to obtain γn ∼ c · n1− 1
α as n→ ∞, where c is a positive constant. Thus if

0 < α < 1, then γn → 0 as n→ ∞.

3.2 Further Properties of D

Since this operator D will be the basis for the rest of the work in this thesis, we

will continue to explore its properties beyond what is given in [AB06]. As a first step we

will calculate the adjoint D∗.

Theorem 3.10 Given f ∈ Hα, let f =
∞
∑

n=0

anun be its expansion in terms of the orthonor-

mal basis. The adjoint of D∗ is a weighted forward shift giving D∗(an) = (γn−1an−1).
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Proof. To calculate D∗, write D∗f =
∞
∑

n=0

bnun. Since {un} is an orthonormal basis we find

the nth coefficient of D∗f is equal to (D∗f, un) = (f,Dun) = (f, γn−1un−1) = γn−1an−1.

Thus we have bn = γn−1an−1 for each n ∈ N and so D∗ acts on the sequence of coefficients

(an) as a weighted forward shift (an) 7→ (γn−1an−1).

Now that we have the adjoint, we can immediately see that D is not self-adjoint

as D is a backward shift and D∗ is a forward shift. However, the following calculation with

f(z) ≡ 1 shows that it is not even normal: D∗Df = D∗0 = 0, but DD∗f = D(γ0z) = γ0.

This shows that we cannot apply the functional calculus for normal operators that was used

in [HL16], which is why, in Ch. 2, we setup the Riesz functional calculus, which is valid for

bounded operators like D.

Next, we will use the asymptotic γn ∼ c · n1− 1
α to determine which trace ideals D

will belong to, depending on α.

Theorem 3.11 The operator D is compact on Hα for any 0 < α < 1, trace class for any

0 < α < 1
2 , Hilbert Schmidt for any 0 < α < 2

3 , and, in general, D ∈ Jp if α < p
p+1 for any

p ∈ N.

Proof. Let 0 < α < 1, and let EN : Hα → Hα that takes a power series
∞
∑

n=1

anun 7→

N
∑

n=1

anλn−1un−1, which is the composition DPN of the derivative operator D with the pro-

jection onto the subspace of polynomials at most degree N , PN . Each EN is of finite rank,

in fact, the range of EN has dimension N . We claim that the norm limit of EN is D = d
dz .

Note that ‖D − EN‖ = supn>N{λn−1}. But λn ∼ c · n1− 1
α → 0, as n → ∞, for any

0 < α < 1. Thus EN converges to D in norm and therefore D is compact. Furthermore, we
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can write D =
∞
∑

n=1

λn−1(un, ·)un−1 so λ
∗
n−1 are the singular values of D. To determine when

λ∗n−1 are in lp, we use the Limit Comparison Test to compare
∞
∑

n=1

(λ∗n−1)
p with

∞
∑

n=1

(n1−
1
α )p,

which converges if and only if p
(

1− 1
α

)

< −1. Solving this gives α < p
p+1 . Therefore

D ∈ Jp if α < p
p+1 and, in particular, is trace class if p < 1

2 and Hilbert Schmidt if p < 2
3 .

From now on, we will fix an α with 0 < α < 1
2 and simply refer to Hα as H. In

this case, we have the following spectrum for D.

Theorem 3.12 We have σ(D) = σp(D) = {0}.

Proof. From the previous section we know that σ(D) = ∆a, where a = lim
t→∞

φ(t)

t
. Here we

have φ(t) = tα for 0 < α < 1
2 . Thus we have that lim

t→∞

tα

t
= lim

t→∞
tα−1 = 0. Thus a = 0 and

σ(D) = ∆0 = {0}. However, we also know that f(z) ≡ 1 ∈ Hα, so that D has the eigenvec-

tor f corresponding to the eigenvalue 0 and the point spectrum of D is also σp(D) = {0}.

Finally we turn to considering the set of operators {e−sD}s∈C. We compare this

to the result for ∂c obtained in [HL16] and mentioned in chapter 1. This theorem will show

that D is the infinitesimal shift (on the complex plane).

Theorem 3.13 The set {e−sD}s≥0 gives the group of translation operators on H.
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Proof. First note that since any f ∈ H is an entire function, we have the convergent power

series representation: f(z − s) =
∞
∑

n=0

f (n)(z)

n!
(−s)n for any z, s ∈ C. Thus

e−sDf(z) =
∞
∑

n=0

1

n!
(−sD)nf(z) =

∞
∑

n=0

1

n!
(−s)n d

n

dzn
f(z) = f(z − s)

This shows that e−sD just acts as translation by s on the space H. From this expression

we also see that lim
sց

‖e−sDf − f‖ → 0.
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Chapter 4

Quantized Number Theory

Now that we have a nice differential operator D to work with on a suitable Hilbert

space H we can build the basis for our ”quantized number theory” by defining a new class

of operators.

4.1 Local Operators

First, we give the standard definition of a quasinilpotent operator on a Hilbert

space.

Definition 29 If T is an operator on a Hilbert space H, then we say T is quasinilpotent

if σ(T ) = {0}, where σ(T ) denotes the spectrum of T .

From the previous chapter, we see that D on the weighted Bergman space Hα

is quasinilpotent when 0 < α < 1. For our work, we’d like to generalize the notion of

quasinilpotentcy to be able to get local information at any point in the complex plane. This
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can be accomplished by having an operator whose spectrum is a single specified complex

number.

Definition 30 Let z0 ∈ C. A bounded linear operator S on a separable Hilbert space H

is called a z0-local operator if σ(S) = {z0}. Thus a quasinilpotent operator is a 0-local

operator. We denote by Loc(H) the set of all z0-local operators on H for any z0 ∈ C.

Now Loc(H) is not necessarily a subspace of B(H), but we do have closure under

some particular operations to be specified. We begin with the following result.

Lemma 31 For a bounded linear operator S on a separable Hilbert space, the following are

equivalent:

1) S is a z0-local operator

2) S = T + z0I for some 0-local operator T

and if z0 6= 0

3) S = z0U + z0I for some 0-local operator U .

Proof. (1 ⇒ 2) Suppose that S is a z0-local operator. Let T = S − z0I. Then by

the spectral mapping theorem applied to the function f(z) = z− z0, σ(T ) = {0}. Thus T is

0-local, which implies that S = T + z0I. (2 ⇒ 3) Suppose that z0 6= 0 and S = T + z0I for

a 0-local T . Let U = 1
z0
T . Then σ(U) = {0}, so that U is also 0-local. Thus S = z0U +z0I.

(2 or 3 ⇒ 1) If S = T + z0I or S = z0U + z0I, then applying Spectral Mapping Theorem

to either f(z) = z + z0 or f(z) = z0z + z0 we obtain σ(S) = {z0} and so S is a z0-local

operator.
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These local operators allow us to use the spectral mapping theorem to prove the

following lemma which focuses on particular meromorphic functions. More precisely, we

have the following lemma.

Lemma 32 Suppose that f is a meromorphic function and that z0 is not a pole of f . Let S

be any z0-local operator on a separable Hilbert space H. Then f(S) is a f(z0)-local operator.

Consequently f(z0) 6= 0 if and only if f(S) is invertible.

Proof. If z0 is not a pole of f , then f is holomorphic on a neighborhood

of σ(S) = {z0}. Therefore, we can apply the Spectral Mapping Theorem to conclude

σ [f(S)] = {f(z0)}. Therefore f(S) is a f(z0)-local operator. Further, by definition, f(S)

is invertible if and only if 0 /∈ σ(f(S)), and we conclude that f(z0) 6= 0 if and only if f(S)

is invertible.

One nice property of Loc(H) is that we can define a spectrum function whose

range is the complex numbers rather than subsets of the complex plane.

Definition 33 Define a map σ̂ : Loc(H) → C, where if S is a z0-local operator we have

σ̂(S) = z0. Call σ̂ the local spectral map.

4.2 Quantized Complex Numbers

For the remainder of this chapter, we will use z0D + z0I as our standard z0-local

operator where D = d
dz is the derivative operator on the weighted Bergman space Hα with

0 < α < 1
2 from earlier. This gives us the following result:
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Theorem 4.1 The map φ : C → B(H) given by z 7→ zD + zI gives an injective linear

map between the complex numbers and the space of bounded linear operators on H. The left

inverse of φ is the local spectral map σ̂.

Proof. First note that φ(z) ∈ B(H) for every z ∈ C. Then given z1, z2, α ∈ C we

have φ(z1 + z2) = (z1 + z2)D+ (z1 + z2)I = (z1D+ z1I) + (z2D+ z2I) = φ(z1) + φ(z2) and

φ(αz1) = (αz1)D+(αz1)I = α(z1D+z1I) = αφ(z1) so that φ is linear. Now if σ̂ is the local

spectral map then σ̂(φ(z1)) = σ̂(z1D + z1I) = z1, since z1D + z1I is z1-local. Therefore, φ

is injective.

We can now make the following definition.

Definition 34 We define the quantized complex numbers by Ĉ := φ(C) = {zD + zI : z ∈

C}.

This gives us a subspace of B(H) that is isomorphic to C as vector spaces and

gives a standard setting to replace the complex variable z in meromorphic functions f(z)

to get f(zD + zI).

4.3 Quantized Lattices and Elliptic Curves

Recall that a lattice in C is any set of the form Λ = {mω1+nω2 : m,n ∈ Z} where

ω1, ω2 are R-linearly independent. We then define:

Definition 35 A quantized lattice in Ĉ is any set of the form Λ̂ = φ(Λ) where Λ is a

lattice in C.
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Since φ is injective, this gives a 1−1 correspondence between lattices and quantized

lattices. Now that we have quantized lattices we can create quantized complex tori as

follows, recalling that a complex torus can be thought of as C/Λ for some lattice Λ.

Definition 36 A quantized complex torus is Ĉ/Λ̂ for some quantized lattice Λ̂.

Next we turn to concept of an elliptic curve. The standard definition is as follows.

Definition 37 An elliptic curve is a smooth, projective algebraic curve of genus one.

However, there is another characterization of elliptic curves over C that is more

amenable to being quantized due to the following theorem.

Theorem 4.2 Given a lattice Λ in C, there is an elliptic curve E and a bijective map

C/Λ → E given by z + Λ 7→ [P(z),P ′(z), 1]. Conversely, given an elliptic curve, E, there

is a lattice Λ that is mapped bijectively onto it in the same way. That is, there is a 1 − 1

correspondence between elliptic curves over C and complex tori C/Λ.

Now that we have this we can define a quantized elliptic curve to be a quantized

complex torus Ĉ/Λ̂. This leads to the following relationship between elliptic curves and

quantized elliptic curves.

Theorem 4.3 The map φ : C → Ĉ induces a bijection between elliptic curves and quantized

elliptic curves.

Proof. Define the map ψ : {elliptic curves} → {quantized elliptic curves} as

follows. Given an elliptic curve C/Λ, find the associated quantized lattice Λ̂ = φ(Λ) and
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then consider the quantized elliptic curve Ĉ/Λ̂. Define ψ(C/Λ) = Ĉ/Λ̂ To show that ψ is

surjective, consider any quantized elliptic curve Ĉ/Λ̂. Then Λ̂ is a quantized lattice and so

is of the form φ(Λ) for some lattice Λ. However every lattice Λ gives an elliptic curve C/Λ,

as in the previous theorem. Hence, there is an elliptic curve that ψ will take to the given

quantized elliptic curve, and ψ is surjective. For injectivity, if Ĉ/Λ̂1 = Ĉ/Λ̂2 then Λ̂1 = Λ̂2.

But then since every quantized lattice is the image of a lattice in C under the injective map

φ this means ψ is injective as well.

The above method of quantizing elliptic curves does not give us a larger class of

objects to study, but still lets us work inside B(H). One interesting direction to consider in

the future could then be to start with two noncommuting quasinilpotent operators in B(H)

and then create a quantized noncommutative analogue of C2 and study objects there, but

this direction will not be pursued in this work.

4.4 Quantized Modular Forms

Once we have the idea of a quantized elliptic curve, we can turn our attention to

the problem of constructing a rigorous definition for a suitable quantized version of modular

forms. To do so, we recall the normal definition of a modular form.

Definition 38 Let H = {z ∈ C : ℑ(z) > 0} be the upper half plane. Let k ∈ Z. A function

f : H → C is called a modular form of weight k if

1) f is holomorphic on H,

2) f is holomorphic at ∞, and
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3) f(γ(z)) = (cz + d)kf(z) for every γ =









a b

c d









∈ SL2(Z) and for every z ∈ C.

To quantize this definition, the only modification that we will make is in the third

requirement. We will treat it as an equality of operators rather than complex numbers,

where we will write ẑ to mean φ(z), where φ : C → B(H) is the map used in the previous

section. This gives the definition:

Definition 39 Let H = {z ∈ C : ℑ(z) > 0} be the upper half plane. Let k ∈ Z. A function

f : H → C is a quantized modular form of weight k if

1) f is holomorphic on H,

2) f is holomorphic at ∞, and

3) f(γ(ẑ)) = (cẑ + d)kf(ẑ) for every γ =









a b

c d









∈ SL2(Z) and for every z ∈ C.

Note that in the above definition, since k can be negative, we need verify that

cẑ + d is an invertible operator for a quantized elliptic curve to be well-defined. However,

σ̂(cẑ + d) = {cz + d}, which never includes 0 for any z ∈ H and c, d ∈ Z. Thus cẑ + d is

always an invertible operator in the above definition. Unfortunately, our quantization once

again does not yield a larger class of objects than regular modular forms as we see next.

Theorem 4.4 A function f : H → C is a modular form of weight k if and only if it is a

quantized modular form of weight k.

Proof. Conditions 1) and 2) of the respective definitions are the same, so we

need only focus on 3). By the functional calculus, if f(γ(z)) = (cz + d)kf(z) are equal as
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functions then applying each to the same bounded operator ẑ must give the same oper-

ator. This is because the operator obtained by the functional calculus is unique. That

is, we have f(γ(ẑ)) = (cẑ + d)kf(ẑ), and, thus if f is a modular form of weight k,

then it must also be a quantized modular form of weight k. On the other hand, if f is

a quantized modular form and satisfies f(γ(ẑ)) = (cẑ + d)kf(ẑ), then the spectrum of

both operators must be equal. However, by the Spectral Mapping Theorem that means:

{f(γ(z))} = σ(f(γ(ẑ))) = σ((cẑ + d)kf(ẑ)) = {(cz + d)kf(z)}. Thus we have equality as

complex numbers f(γ(z)) = (cz+d)kf(z). Thus if f is a quantized modular form of weight

k it must also be a modular form of weight k.

The method of quantizing shown here implies that quantized elliptic curves and

quantized modular forms are essentially the same as their usual counterparts, but perhaps

there is a more interesting way to quantize these objects that will give new information.

This will not be pursued in this work, but instead a different use of the operator D will be

studied.
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Chapter 5

Cohomology Theory of a

Meromorphic Function

5.1 The operator of a meromorphic function: A first attempt

We now consider a particular choice of the family of analytic functions φτ (z) =

z+ τ . This gives us operators Dτ := φτ (D) = D+ τI for which the following lemma holds.

Lemma 40 For any τ ∈ C, Dτ ∈ B(H) with spectrum σ(Dτ ) = {τ}. If τ 6= 0, then Dτ is

invertible and D−1
τ ∈ B(H).

Proof. Applying the functional calculus on bounded operators along with the Spectral

Mapping Theorem to the operator D and the function φτ (z) gives a bounded operator Dτ

with spectrum σ(Dτ ) = φτ ({0}) = {τ}. Furthermore, if τ 6= 0, then 0 /∈ σ(Dτ ) and it

follows that Dτ has a bounded inverse.

47



This gives us a family of operators, each of whose spectra are each a single point,

which can be any complex number. Recall that in the situation of the cohomology theory

that helped prove the Weil conjectures, that we would like an operator whose eigenvalues on

different cohomology spaces are the zeros and poles of the zeta function we are interested

in. In order to obtain operators whose spectrum can represent the zero or pole set of a

meromorphic function we use the following construction. If Z = {z1, z2, ...} is a discrete

multiset of complex numbers, let Hn be a copy of the weighted Bergman space H and

associate an operator Dn to be Dzn on Hn. Finally, define the Hilbert space HZ =
⊕

nHn

with operator DZ =
⊕

nDn. This gives:

Theorem 5.1 The operator DZ has spectrum σ(DZ) = {z1, z2, ...} and for each z = zi, the

number of linearly independent eigenvectors of zi for DZ in HZ is equal to the multiplicity

of z in {z1, z2, ...}.

Proof. For each n ∈ N, let en ∈ HZ be the element which is the constant function,

with value 1 in the nth component, and 0 in every other component. Then DZen = znen

and so zn is an eigenvalue with eigenvector en. Suppose zn1 = zn2 = · · · = znk
= z. Then z

is an eigenvalue with eigenvectors en1 , en2 , ...enk
and so there are at least as many linearly

independent eigenvectors of z for DZ as the multiplicity of z in the multiset. Next, recall

that the only eigenvalue of d
dz on H is 0. Thus, the only eigenvalue of Dzn is zn. Suppose

now that DZx = zx for some x, we must either have the nth component of x being 0 or

z = zn and so there cannot be any more linearly independent eigenvectors of z for DZ . Now

that we know zi is an eigenvalue of DZ for each i, we know that {z1, z2, ...} ⊂ σ(DZ). Now

let λ ∈ C−{z1, z2, ...}. Then d = inf
n≥0

|λ−zn| > 0. Since D = d
dz is quasinilpotent, r(D) = 0
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and so there is a N such that for every positive integer k ≥ N , we have ‖Dk‖ <
(

d
2

)k
. Then

on the nth component of HZ we have
∞
∑

k=0

Dk

|λ− zn|
is absolutely convergent because

∞
∑

k=N

‖Dk‖
|λ− zn|

≤
∞
∑

k=N

(

d
2

)k

dk
=

1

2N−1
.

Then we can calculate the inverse on the nth component via the absolutely convergent series:

(λI −Dzn)
−1 = ((λ− zn)I −D)−1 =

1

λ− zn

∞
∑

k=0

Dk

λ− zn

Further, by the same estimate ‖(λI −Dzn)
−1‖ ≤ C uniformly in n, where C =

N
∑

k=0

‖Dk‖
dk

+

21−N . Therefore
⊕

n(λI − Dzn)
−1 ∈ B(HZ) and so (λI − DZ)

−1 exists and is bounded.

That is, λ ∈ ρ(DZ). Therefore σ(DZ) = {z1, z2, ...}.

Thus, DZ contains all of the information from the multiset {z1, z2, ...} contained

in its spectrum. If we then consider the multiset to be the zeros and poles of a meromorphic

function f(z) then the operator DZ contains these pieces of information of this function.

However, we cannot use the determinant formulas for operators given earlier for the operator

DZ to recover f(z) as a whole, because with this formulation DZ is not trace class. Even

looking at just a single one of the terms Dτ = D + τI is not compact, let alone trace

class, because our Hilbert space is infinite dimensional. So while this formulation gives us

some tools to study functions, we need to modify the method. If we restrict each Dτ to

its eigenspace, E, the space of constant functions, thus giving us a compact operator. We

also need to make a second adjustment from the original idea. Any zero or pole set of a

meromorphic function will be a discrete set, and hence if there are infinitely many zeros or

poles they must tend to ∞. This would then imply that the operator DZ described here
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is unbounded. What allows us to repair this problem and simultaneously recover the given

function f(z) using determinants, is to have our set Z be the reciprocals of the zeros rather

than the zeros themselves, and similarly for the poles. Thus the operator DZ becomes

bounded, compact, and in some cases, in a trace ideal for a wide range of functions of

interest as described in the rest of this thesis.

5.2 Refining the operator of a meromorphic function

First, let Z = (zn) be a sequence of complex numbers. Let Dn = D + znI be the

operator in the previous section restricted to the subspace of constant functions E. Let

DZ =
⊕

nDn on the space EZ =
⊕

nE which is a subspace of HZ from the last section.

So in actuality, this new definition of DZ is just the restriction of the operator given in the

previous section to EZ . First we note that this restriction still retains the main property

from the last section.

Theorem 5.2 For each n ∈ N, each zn is an eigenvalue of DZ and the number of linearly

independent eigenvectors associated to zn is equal to the number of times zn occurs in the

sequence Z. Further, σ(DZ) = {zn : n = 1, 2, 3, ...}

Proof. Let en be the eigenfunctions from the previous proof. Then since en is constant in

each coordinate, en ∈ EZ . Thus when restricted to the space of functions constant on each

coordinate, DZ retains all of its eigenvalues and eigenvectors from before. Finally, we note

that σ(Dzn) = {zn} from which it follows that σ(DZ) = {zn : n = 1, 2, 3, ...} by Theorem

2.5 2) since each Dn is normal.
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The next theorem shows that this restriction of the operator will truly give us

what we need for our quantized number theory framework.

Theorem 5.3 We have the following relationships between an infinite sequence Z = (zn)

and the associated operator DZ .

1) DZ is bounded iff (zn) is a bounded sequence.

2) DZ is self-adjoint iff zn ∈ R for all n. 3) DZ is compact iff lim
n→∞

zn = 0.

4) DZ is Hilbert Schmidt iff
∞
∑

n=1

|zn|2 <∞.

5) DZ is trace class iff
∞
∑

n=1

|zn| <∞.

6) For p ≥ 1, DZ ∈ Jp iff
∞
∑

n=1

|zn|p <∞.

If (zn) is a finite sequence then DZ is bounded, compact, and in Jp for each p ≥ 1.

Proof. Since ‖Dn‖ = |zn|, for each n ∈ N, we have ‖DZ‖ = supn |zn|. Then DZ is bounded

iff (zn) is a bounded sequence. For 2), consider the sequence of operators DN =
⊕N

n=1Dn,

forN ∈ N, as an operator on EZ by letting it act as multiplication by 0 on the remaining com-

ponents. Thus DN is a finite rank operator on EZ for each N . Then ‖DZ −DN‖ = sup
k>N

|zk|

and so if lim
n→∞

zn = 0, we then have that DZ is the norm limit of finite rank operators and

thus is compact. On the other hand, if lim
n→∞

zn 6= 0 then {en} is a bounded sequence of

vectors such that {DZen} has no convergent subsequence. Thus, DZ is not compact. For 3)

and 4) assume that DZ is compact. Then since DZen = znen and the fact that {en} forms

an orthonormal basis for EZ we know the singular values of EZ are z∗1 , z
∗
2 , .... Thus EZ is

Hilbert Schmidt iff
∞
∑

n=1

|zn|2 < ∞, and, trace class iff
∞
∑

n=1

|zn| < ∞ and more generally in

Jp iff
∞
∑

n=1

|zn|p < ∞. If (zn) is a finite sequence then DZ is actually a finite rank operator

51



and is trivially bounded, compact, and in Jp for each p ≥ 1.

Now that we have a formulation that can indeed give us a trace class operator we

can now state the result we will use to fully recover certain functions of interest.

Corollary 41 If {zn} is a sequence of complex numbers satisfying
∞
∑

n=1

|zn| < ∞, then we

have det(I − zDZ) =
∏

n

(1− znz).

Proof. This is a direct consequence of the Equation (2.13) for trace class opera-

tors of which DZ is one when the series is absolutely summable.

By the previous corollary, we can now see that we will be getting an entire function

out of our construction. Thus if we want to handle meromorphic functions, we will need to

handle zeros and poles separately. Also we will want to choose our sequence (zn) to be the

reciprocals of the poles. With this in mind we make the following final construction for our

operator of a meromorphic function.

Let f(z) be a meromorphic function on C with z = 0 neither a zero nor a pole of

f . Let {an} be a sequence of the zeros of f(z) and {bn} be a sequence of the poles of f(z),

both counting multiplicity. Define the sequences Z = (zn) and P = (pn) where zn = 1
an

and

pn = 1
bn
. Define H0 = EZ and H1 = EP and let Hf(z) = H0

⊕

H1 where we consider this as

a supersymmetric direct sum. That is, treat Hf(z) as a super vector space with even part

H0 and odd part H1. Define DZ and DP as before and call Df = DZ
⊕DP on Hf . Then

the block matrix representation of Df(z) is









DZ 0

0 DP









. Thus we can follow the example of
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the Berezinian determinant to define the regularized Berezinian determinant of I − zDf(z)

as follows:

Definition 42 With the construction as above, if DZ ∈ Jm \ Jm−1 for some m ≥ 1, and

if DP ∈ Jn \ Jn−1 for some n ≥ 1, define the m,n-regularized Berezinian determinant as:

detm,n(I − zDf(z)) = detm(I − zDZ)(detn(I − zDP))
−1

In the next chapter, we will examine what this construction accomplishes for sev-

eral classically important functions in number theory.
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Chapter 6

Applications of the Construction

to Specific Functions

6.1 Rational Functions

To begin, we look at the simplest type of meromorphic functions: the rational

functions. Let f(z) be a rational function. Then we can write f(z) = zkg(z) for some

k ∈ Z and further g(z) = g(0)

∏s
n=1(1− z

an
)

∏t
n=1(1− z

bn
)
for some finite set {a1, a2, ..., as, b1, b2, ..., bt}.

Construct the operator Dg as given in the previous chapter. The following theorem tells us

that our Berezinian determinant exactly recovers the given function f .

Theorem 6.1 If f(z) = zkg(z) is a rational function as above then f(z) = zkg(0) det1,1(I−

sDg(z)).

Proof. Write out f(z) as given in the preceding paragraph. Then consider the finite

sequences Z = { 1
a1
, 1
a2
, ..., 1

as
} and P = { 1

b1
, 1
b2
, ..., 1

bt
}. The operators DZ and DP are both
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trivially trace class since both are created from finite sequences. Hence we may apply the

1, 1-regularized Berezian determinant (really just the normal Berezinian determinant since

both the components are trace class) we defined to get det1,1(I − sDg) = g(0)zk det(I −

DZ) det(I −DP)
−1 =

∏s
n=1(1−

z
an

)
∏t

n=1(1−
z
bn

)
= g(z)

g(0) and thus f(z) = zkg(0) det1,1(I − sDg(z)).

6.2 Zeta Functions of Curves Over Finite Fields

Recall that the zeta function of a curve Y over the finite field Fq is defined as

ζ(Y, s) = exp

(

∞
∑

n=1

Yn
n
q−ns

)

. The proof of the Weil conjectures expressed this function as

an alternating product of determinants as follows:

ζ(Y, s) =
det(I − F ∗q−s|H1)

det(I − F ∗q−s|H0) det(I − F ∗q−s|H2)
.

One of the Weil conjectures, that ζ(Y, s) is a rational function of q−s, then followed from

this formula. Thus we may apply the result in the previous section about rational functions

to obtain:

Theorem 6.2 Let Y be a smooth, projective, geometrically connected curve over Fq, the

field with q elements. Then: ζ(Y, s) = det1,1
(

I − q−sDζ(Y,q−s)

)

.

Proof. Define ζ(Y, q−s) = ζ(Y, s). Then ζ(Y, z) is a rational function of z. Thus by

the rational function result: ζ(Y, z) = det1,1(I − zDζ(Y,z)) and so replacing back gives:

ζ(Y, s) = det1,1
(

I − q−sDζ(Y,q−s)

)
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6.3 Geometric Zeta Function of a Self-Similar Fractal String

In this section we will consider another type of zeta function which will also become

a rational function under a suitable change of variable. Following the treatment in [LvF13],

we construct a self-similar fractal string as follows:

Consider a closed interval I of length L, called the initial interval. For some

N ≥ 2, let Φ1,Φ2, ...,ΦN be N contraction similitudes mapping I to I, with respective

scaling factors r1, r2, ..., rN which we assume to be ordered nonincreasingly, 1 > r1 ≥ r2 ≥

· · · ≥ rN > 0. Assume that
N
∑

j=1

rj < 1 and that the images Φj(I) of I, for j = 1, 2, ..., N,

do not overlap, except possibly at the endpoints. Translate the functions Φj so that there

is only one nonzero gap, of length g, in I \
N
⋃

j=1

Φj(I). Further, for simplification purposes,

suppose that the length of the initial interval is chosen so that gL = 1. Define the self-

similar fractal string as the ordinary fractal string with lengths





N
∏

j=1

r
ej
j



 gL =
N
∏

j=1

r
ej
j ,

where ej are whole numbers, which are the lengths of the gaps created by the compositions
N
∏

j=1

Φ
ej
j (I). Now recall that the geometric zeta function of an ordinary fractal string is

defined as ζL(s) =
∞
∑

n=1

lsn where l1, l2, ... are the lengths associated to the fractal string. We

have the following theorem:

Theorem 6.3 [LvF13] Let L be a self-similar string with scaling ratios r1, r2, ..., rN and a

single gap, which is normalized so that gL = 1 as above. Then the geometric zeta function

of the string has a meromorphic continuation to the whole complex plane given by:

ζL(s) =
1

1−
N
∑

j=1

rsj
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Self-similar strings can be separated into two types: lattice and nonlattice. A

lattice self-similar fractal string is when there exists an r > 0, such that for each j, rj = rnj

for some positive integer nj . If no such r > 0 exists, then L is said to be nonlattice. Note

that by the above theorem that for lattice self-similar strings L, we have that ζL is a rational

function of rs for any r > 0 satisfying the lattice property. This leads to the following:

Theorem 6.4 Let L be a lattice self-similar fractal string with scaling ratios r1, r2, ..., rN

and single gap g = 1 as defined above. Let r > 0 be such that rj = rnj for some positive

integer nj. Then ζL(s) = det1,1(I − rsDζL(rs)).

Proof. Letting ζL(r
s) = ζL(s). Then the formula for the meromorphic extension in the

previous theorem gives

ζL(z) =
1

1−
N
∑

j=1

znj

which is a rational function of z with ζL(0) = 1. Thus by the determinant formula for

rational functions: ζL(z) = det1,1(I − zDζL(z)
). Making the change of variable back gives:

ζL(s) = det1,1(I − rsDζL(rs)).

6.4 The Gamma Function

The next meromorphic function that we will turn our attention to is the Gamma

function, Γ(z) =

∫ ∞

0
xz−1e−xdx. This function has numerous applications in many branches

57



of mathematics, including our focus - number theory. One point of interest is that this func-

tion gives a meromorphic continuation of the factorial function on integers. It also appears

in the functional equation for the Riemann zeta function. We have the following well known

properties of the Gamma function:

Theorem 6.5 1) Γ(z + 1) = zΓ(z).

2) Γ(n) = (n− 1)! for n ∈ N.

3) Γ(z) =
e−γz

z

∞
∏

n=1

(

(

1 +
z

n

)−1
e

z
n

)

This infinite product representation for Γ(z) allows us to now show that we can

recover the function from the determinant of the operator construction we have laid out.

Theorem 6.6 We have Γ(z) = e−γz

z det1,2(I − zDzΓ(z)).

Proof. We will apply our construction to the function g(z) = zΓ(z). This function has

simple poles at z = −1,−2, .... Note that the residue of Γ(z) at z = 0 is 1 so that g(0) = 1.

Further g(z) has no zeros so the sequence of zeros Z is empty, which means DZ = 0. So

det(I − zDZ) = 1 will be the numerator of our Berezinian determinant. Now if we consider

the sequence, P = (− 1
n) of reciprocals of poles of g(z) we see that it is not a summable

series, but it is square summable. This means the associated operator DP is not trace class,

but only Hilbert Schmidt. This forces us to use det2 in our definition of the regularized

Berezinian determinant. In fact:

det2(I − zDP) =
∞
∏

n=1

[

(1 +
z

n
)e−

z
n

]

. (6.7)

58



Thus the full Berezinian determinant involving DzΓ(z) is:

det1,2(I − zDzΓ(z)) = det1(I − zDZ) det2(I − zDP)
−1

= 1 ·
(

∞
∏

n=1

[(

1 +
z

n

)

e−
z
n

]

)−1

=
∞
∏

n=1

[

(

1 +
z

n

)−1
e

z
n

]

= zeγzΓ(z).

Therefore, we have that Γ(z) = e−γz

z det1,2(I − zDΓ(z)).

Before we turn to the Riemann zeta function, we will need to slightly modify

the determinant formula above to obtain a formula for Γ
(

s
2

)

as that will appear in the

completed Riemann zeta function ξ(s).

Corollary 43 Γ
(

s
2

)

= 2e−γs

s det1,2(I − sDsΓ( s
2)
).

Proof. As before:

det1,2(I − sDsΓ( s
2)
) = det(I − zDZ) det2(I − zDP)

−1

=

(

∞
∏

n=1

[(

1 +
s

2n

)

e−
s
2n

]

)−1

=
s

2
e

γs
2 Γ
(s

2

)

This then gives Γ
(

s
2

)

= 2e−γs

s det1,2(I − sDsΓ( s
2)
).

6.5 The Riemann Zeta Function

Now we turn our attention to another important example, the Riemann zeta func-

tion. First, we will consider the well known Euler product expression for ζ(s).
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Theorem 6.8 For s ∈ C, with ℜ(s) > 1, ζ(s) =
∏

p(1− p−s)−1 where the product is taken

over all prime numbers p.

To use our formulation, let φ(z) = 1
1−z . Then by the result for rational functions

the first section φ(z) = det(I − zDφ) which is true for every value of z 6= 1. Let z = p−s

then gives (1 − p−s)−1 = det(I − p−sDφ) for s 6= 2πik
log p , k ∈ Z. This leads to the following

operator based Euler product:

Theorem 6.9 For s ∈ C, with ℜ(s) > 1, ζ(s) =
∏

p det(I − p−sDφ), where the product is

taken over the primes p.

Proof. We simply apply the determinant equality to each term in the infinite product and

then use the standard Euler product convergence. Note that for ℜ(s) > 1, we never have

s = 2πik
log p for any integer k so the determinant equality does apply at each prime p.

Recall that ξ(s) = 1
2π

− s
2 s(s− 1)Γ

(

s
2

)

ζ(s) is an entire function whose zeros all lie

in the critical strip {s ∈ C : 0 < ℜ(s) < 1}. We have the following well known product

representation for ξ(s).

Theorem 6.10 ξ(s) =
1

2
π−

s
2 e(log(2π)−1− γ

2 )s
∏

ρ

[(

1− s

ρ

)

e
s
ρ

]

, where the product over ρ is

the product over the zeros of ξ(s) which are the nontrivial zeros of ζ(s).

Now if we wish to express ξ(s) using the determinant construction in this thesis,

we need to consider Z = {1
ρ} and the convergence of

∑

ρ

1

ρp
. It is proven in [Edw01] that

this series converges for p = 1, but only conditionally and so we will need p = 2 to get

the absolute convergence needed for DZ ∈ J2. Since ξ(s) is entire, then the set P = {}
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is empty and DP is trivially trace class. Thus we will need to consider the determinant

det2,1(I − sDξ(s)). This suggests the following theorem.

Theorem 6.11 ξ(s) = 1
2π

− s
2 e(log(2π)−1− γ

2 )s det2,1(I − sDξ)

Proof. From the preceding discussion, we begin by defining Z = {1
ρ}, P = {}, and

constructing Dξ(s) = DZ
⊕

DP . Then we calculate:

det2,1(I − sDξ(s)) = det2(I − sDZ) det1(I − sDP)
−1

=
∏

ρ

[(

1− s

ρ

)

e
s
ρ

]

· (1)−1

=
2ξ(s)

π−
s
2 e(log(2π)−1− γ

2 )s
.

Thus, ξ(s) = 1
2π

− s
2 e(log(2π)−1− γ

2 )s det2,1(I − sDξ)

We can then combine the results for ξ(s) and Γ(s) to give an expression for ζ(s) in

a similar spirit to the representation of zeta functions of curves over finite fields as follows:

Theorem 6.12 If psi is given by ψ(s) = s− 1, then we have:

ζ(s) = −e
(log(2π)−1)s

2

det2,1(I − sDξ(s))

det1,1
(

I − sDψ(s)

)

det1,2
(

I − sDsΓ(s/2)

)

Proof. First note that since ψ(s) is a rational function, then

det
1,1

(I − sDψ(s)) = ψ(0) det
1,1

(I − sDψ(s)) = −(s− 1).

Then recalling the following three equations:

Γ
(s

2

)

=
2e−γs

s
det
1,2

(I − sDsΓ( s
2)
)

61



ξ(s) =
1

2
π−

s
2 s(s− 1)Γ

(s

2

)

ζ(s)

ξ(s) =
1

2
π−

s
2 e(log(2π)−1− γ

2 )s det2,1(I − sDξ)

We solve for ζ(s) in the middle equation and substitute the other two to obtain:

ζ(s) =
2π

s
2 ξ(s)

s(s− 1)Γ( s2)

= 2π
s
2 ·

1
2π

− s
2 elog(2π)−1− γ

2
s det2,1(I − sDξ)

s(s− 1)2e
−γs

s det1,2(I − sDsΓ( s
2)
)

=
e(log(2π)−1)s

2

det2,1(I − sDξ)

(s− 1) det1,2(I − sDsΓ( s
2)
)

= −e
(log(2π)−1)s

2

det2,1(I − sDξ)

det1,1(I − sDψ(s)) det1,2(I − sDsΓ( s
2)
)
.

We will conclude this section with a different approach that gives an equivalent

criterion for the Riemann Hypothesis. Let Z be the set of zeros of the function ξ(s) =

ξ
(

1
2 + is

)

. Construct the operator DZ = Dξ. This leads to the following result.

Theorem 6.13 The operator Dξ is self-adjoint if and only if Riemann hypothesis is true.

Proof. This follows directly from 5.3 part 2) and the fact that Riemann Hypothesis says

that the zeros of ξ
(

1
2 + is

)

must all be real.

6.6 Entire Functions of Finite Order

In this section, we observe that the theory presented in this thesis is quite general.

It will apply to all entire functions of finite order. We will begin with an overview of the

concepts of rank, genus and order of an entire function.

62



Definition 44 Let f be an entire function with zeros {a1, a2, ...}, repeated according to

multiplicity and arranged such that |a1| ≤ |a2| ≤ · · · . Then f is said to be of finite rank if

there is an integer p such that
∑∞

n=1 |an|−(p+1) < ∞. If p is the smallest integer such that

this occurs, then f is said to be of rank p; a function with only a finite number of zeros has

rank 0. A function is said to be of infinite rank if it is not of finite rank.

In order to define the genus of an entire function, we need to define what it means

for an entire function to be written in standard form, which will require the following

definition.

Definition 45 For n ∈ N, define the elementary factor

En(z) =























(1− z), if n = 0

(1− z) exp( z1 + z2

2 + · · · znn ), if n = 1, 2, 3, ...

To justify the definition of elementary factor, simply note that if
∑∞

n=1 |an|−(p+1) <

∞, then
∞
∏

n=1

Ep(
z

an
) converges uniformly on compact subsets of C and defines an entire func-

tion with zeros at a1, a2, .... The exponential factor is what is needed to ensure convergence

of the infinite product. With this definition in hand, we can, in turn, define the genus of

an entire function:

Definition 46 An entire function f has finite genus if the following statements hold: 1) f

has finite rank p and 2) f(z) = zmeg(z)
∞
∏

n=1

Ep

(

z

an

)

, where g(z) is a polynomial of degree

q. In this case, the genus of f is defined by µ = max(p, q).

We now define the order of an entire function:
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Definition 47 An entire function f is said to be of finite order if there is a positive constant

a and and r0 > 0 such that |f(z)| < exp(|z|a) for |z| > r0. If f is not of finite order, then f

is said to be of infinite order. If f is of finite order, then the number λ = inf{a : |f(z)| <

exp(|z|a) for |z| sufficiently large} is called the order of f .

Thus the order of an entire function f is a measure of the growth of |f(z)| as

|z| → ∞ whereas the rank of f is based on the growth of the nth smallest zero as n → ∞.

From the definitions, there is no inherent relationship between the two concepts, but with

the following version of the Hadamard factorization theorem, we see that they are in fact

closely related:

Theorem 6.14 (Hadamard Factorization Theorem) [Con95] If f(z) is an entire function

of finite order λ, then f has finite genus µ ≤ λ and f admits a factorization f(z) =

zmeg(z)
∞
∏

n=1

Ep(
z

an
) where g(z) is a polynomial of degree q ≤ λ and p = [λ]. In particular, f

is of rank not exceeding p.

Now when we apply our operator construction to a given entire function of finite

order we obtain a Quantized Hadamard Factorization Theorem

Theorem 6.15 (Quantized Hadamard Factorization Theorem) If f(z) is an entire function

of finite order λ, then f admits a factorization f(z) = zmeg(z) detp+1,1(I − zDf(z)), where

g(z) is a polynomial of degree q ≤ λ and p = [λ].

Proof. By the standard Hadamard factorization theorem we can write f(z) = zmeg(z)
∞
∏

n=1

Ep(
z

an
),

where g(z) is a polynomial of degree q ≤ λ and p = [λ], with the rank of f not exceed-

ing p. That is, if {a1, a2, ...} is the multiset of zeros of f(z) including multiplicity then
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∞
∑

n=1

1

|an|p+1
< ∞. Thus if Z = { 1

a1
, 1
a2
, ...}, the associated operator DZ ∈ Jp+1. There are

no poles of f , since it is entire and thus P = {}, and it follows that DP is trivially trace

class. Then we can calculate:

detp+1,1(I − zDf(z)) = detp+1(I − zDZ) det1(I − zDP)
−1

=
∞
∏

n=1





(

1− z

an

)

exp





p
∑

j=1

zj

jajn







 · (1)−1

=
∞
∏

n=1

Ep

(

z

an

)

=
f(z)

zmeg(z)

Thus we have that: f(z) = zmeg(z) detp+1,1(I − zDf(z)).

In the above proof, we see that the extra convergence factor in the regularized

determinants is exactly the same as the one for the elementary factor in the infinite product

representation of entire functions, which validates, in some sense, the choice in this thesis

for the type of regularized determinants as those on trace ideals. Further, since this works

for all entire functions of finite order, this theorem will apply to every L-function in the

Selberg class as that is one of the axioms.
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Chapter 7

Further Directions

7.1 Examining the Cohomology Spaces

In the definition of the ’cohomology spaces’ H0 and H1 given in chapter 5, we

grouped all of the zeros into H0 and all of the poles into H1. However, if we wish to more

closely resemble what was done in the case for zeta functions of curves over finite fields,

it is natural to separate the spaces further so that each space only contained the zeros or

poles on on a given real line in C. Such a grading might look like the following:

H0 =
⊕

α

H0
α∈R and H1 =

⊕

α∈R

H1
α

where, instead of creating Z and P, as in this thesis, we create Zα(respectively Pα) to be

the multisets containing all of the zeros with real part α(respectively poles). This would

necessitate a change of the regularized Berezinian determinant:

det
m,n

(I − zDf(z)) =
detm(I − zDZ

detn(I − zDP)
,
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to:

det
mα,nα

(I − zDf(z)) =

∏

α∈R

detmα(I − zDZα)

∏

α∈R

detnα(I − zDPα)

where, in many situations, detmα(I−zDZα) and detnα(I−zDPα) will be 1 except for a finite

number of α and thus, the above a priori uncountable product, is really a finite product of

the determinants. We did not pursue this idea any further, but it could possibly become a

more natural representation for the cohomology spaces.

7.2 Geometry of a Zeta Function

In the previous section, we discussed a way to rewrite the ’cohomology’ spaces H0,

H1. However, these spaces are not truly cohomology spaces as we do not have a topology

on a space of points to define cohomology in the first place. How might we create such a

framework? What would a point on the curve for ζ(s) look like?

In the case of curves over finite fields, the points on the curves arose as fixed points

of the associated operator, the Frobenius. More specifically, every point of the curve that

was defined over Fqn was a fixed point of the iterate Fn. These were crucial in relating the

expression for the zeta function of the curve to the trace of the operator using the Lefshetz

fixed point theorem.

However, in the case of the Riemann zeta function there is no obvious geometry

of points associated to the Riemann zeta function. If we could discover a natural way of

defining such a geometry, we might gain further insights into ζ(s).

One possible approach is to consider fixed points of iterates of the associated

operator Dk
ζ . To simplify, first consider (D + αI)k for a fixed α ∈ C. The fixed points of
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this map are e(−α+ωk)z where ωk runs through the kth roots of unity. We could then define

these functions to be the points of the curve defined on level k. Then if we consider the

collection of all fixed points of all levels k, we can create an map from this space to the

circle with center −α and radius 1 as e(−α+ωk)z 7→ −α+ ωk. This shares one nice property

with the case of curves over finite fields. The set of points of level d are a subset of the

set of points of level k if and only if d|k. Exactly the same condition needed for the set of

points defined over Fqd to be a subset of Fqk .

Then, as in the case of curves over finite fields, the whole curve is some sort of

closure of points defined over Fqk , so we could define the curve associated to D + αI to be

the ’closure’ of all the points on the curve of level k, which would make sense to give you

the full circle of radius 1 and centered at −α. In other words, the curve would be the set of

functions e(−α+ω)z with |ω| = 1. Then, in order to get the curve for a zeta function, such as

ξ(s), we would need to repeat this for every zero ρ of ξ(s). Thus the curve of ξ(s) could be

considered as the union of all circles of radius 1 and centers at −ρ where ρ is a nontrivial

zero of ζ(s).

This may be promising, but there is still a lot to be done to fully realize this

theory. One of the complications that arises here is that these fixed point functions do not

in general live in the weighted Bergman space we have been dealing with thus far. They do

live in the space of entire functions, but what is an appropriate way to turn that space into

a Hilbert space? In addition, all of the results about D = d
dz including bounded, compact,

spectrum will not necessarily hold when expanding to a larger domain of functions.

68



Bibliography

[AB06] A. Atzmon and B. Brive. Surjectivity and invariant subspaces of differential oper-
ators on weighted Bergman spaces of entire functions. In A. Borichev, H. Heden-
malm, and K. Zhu, editors, Contemporary Mathematics, volume 404, pages 27–39.
American Mathematical Society, Providence, Rhode Island, 2006.

[CL] T. Cobler and M. L. Lapidus. Towards fractal cohomology: Spectra of Polya-
Hilbert operators, regularized determinants and Riemann zeros. in preparation,
2016.

[Con90] J. B. Conway. A Course in Functional Analysis, volume 96 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2nd edition, 1990.

[Con95] J. B. Conway. Functions of One Complex Variable, volume 11 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2nd edition, 1995.

[Den94] C. Deninger. Evidence for a cohomological approach to analytic number theory.
In A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, editors, First
European Congress of Mathematics, volume 3 of Progress in Mathematics, pages
491–510. Birkhuser Basel, 1994.

[Den98] C. Deninger. Some analogies between number theory and dynamical systems on
foliated spaces. In Documenta Mathematica, volume Extra Volume ICM I, pages
163–186. 1998.

[Edw01] H. M. Edwards. Riemann’s Zeta Function. Dover Publications, Mineola, NY,
Dover edition, 2001.

[HL12] H. Herichi and M. L. Lapidus. Riemann zeros and phase transitions via the spectral
operator on fractal strings. J. Phys. A: Math. Theor., 45, 374005, 23pp, 2012.

[HL13] H. Herichi and M. L. Lapidus. Fractal complex dimensions, Riemann hypothesis
and invertibility of the spectral operator, volume 600 of Contemporary Mathemat-
ics, pages 51–89. Amer. Math. Soc., Providence, R. I., 2013.

[HL14] H. Herichi and M. L. Lapidus. Truncated infinitesimal shifts, spectral operators
and quantized universality of the Riemann zeta function. Annales de la Faculté
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