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Abstract

Local modeling is a spatial analysis technique that explores spatial non-stationarity in data-
generating processes. Geographically weighted regression (GWR) is one method that has been
widely applied across domains, which has helped uncover local spatial relationships and gener-
ally increases model goodness-of-fit. Despite this, some have criticized GWR for being extra
susceptible to issues such as multicollinearity and spatial autocorrelation. Spatial-filtering-
based local regression (SFLR) has been suggested as a solution. While SFLR is claimed to
be approximately equivalent to GWR, it is also touted as superior. Therefore, it is of interest
to compare the output from these two techniques. We do this by examining how well both
techniques replicate the known coefficient values derived by simulating data that is represen-
tative of spatially varying processes. The results indicate that the original SFLR specification
is prone to overfitting, while an alternative specification that minimizes the mean square error
produces coefficients similar to GWR.

1. Introduction and Background

Non-stationarity in data-generating processes goes largely undetected in traditional global
models. Hence, local models, which explicitly allow regression coefficients to vary over space,
are necessary to capture such heterogenous processes. One local modeling technique that
has become particularly popular is geographically weighted regression (GWR) (Fotheringham
et al. 2002). Despite its usefulness, GWR has been critiqued as being highly susceptible to
multicollinearity (Wheeler & Tiefelsdorf 2005), whereby multicollinearity amongst explana-
tory variables causes intolerable levels of correlation amongst GWR coefficients. However,
results show that when the sample size is large, GWR is robust to even remarkably high levels
of multicollinearity (Paez et al. 2011; Fotheringham & Oshan Submitted). Still, the work of
Wheeler and Tiefelsdorf (Wheeler & Tiefelsdorf 2005) sparked much subsequent critiques of
GWR. Specifically, spatial-filter-based local regression (SFLR) has been suggested as a supe-
rior alternative to GWR (Griffith 2008). While Griffith (2008) posits that SFLR and GWR are
approximately equivalent, he also points out that local coefficients produced from GWR and
SFLR are minimally correlated, suggesting that the two models are producing much different
results, thereby implying a contradiction within the SFLR method. To the knowledge of the
authors, the SFLR method has not been applied outside its original conception (Griffith 2008),
while GWR has produced agreeable results in many studies. Therefore, the primarily goal
of this paper is to employ simulated data in order to test which of the techniques can more
reliably estimate the true coefficients of non-stationary processes. Some modifications of the
SFLR routine are investigated and several issues of the SFLR framework are highlighted.

A basic GWR model may be specified as

p
yi=Bo+ Y, Bixix + &, i=1,..n, (1)
k=1
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where y; is the dependent variable at location i, By is the intercept coefficient at location i,
X is the kth explanatory variable at location i, B; is the kth local regression coefficient for
the kth explanatory variable at location i, and &; is the random error term associated with
location i. A kernel function is applied at each location, which is chosen either using cross-
validation or maximizing a model fit criterion, in order to weight nearby observations based
on their proximity to the calibration location. Consequently, GWR can generate an ensemble
of models by creating local subsets of data.

In contrast, SFLR is based on the interpretation that the eigenvectors of a modified connec-
tivity matrix are the set of possible orthogonal and uncorrelated map patterns (i.e., degree of
spatial autocorrelation) (Griffith 1996). Griffith proposes that interaction terms between each
explanatory variable and each eigenvector can be utilized to create local coefficients that are
approximately equal to those from GWR. Therefore, the following specification is derived

P K P K
yi=Bol+ Y Xp-1Bp+ Y ExBe,+ Y, Y. Xy ExPor, + € 2)
p=1 k=1 p=1lk=1

where Byl is the intercept, Zf;:lXp -1, represents the explanatory variables and their coef-
ficients, Yx_, ExBE, denotes a subset of the possible eigenvectors and their coefficients and
Zi:l Zszl X, - ExBpE, are a subset of the possible interaction terms between explanatory vari-
ables and eigenvectors and their coefficients. An important step in the spatial-filter-based
framework is selecting a subset of the eigenvectors and interaction terms. The methodol-
ogy entails a forward stepwise regression variable selection algorithm amongst all interaction
terms and eigenvectors based on a statistical significance criterion. For each iteration of the
routine, each candidate variable is tested in the model and the one that produces the smallest
p-value is selected. At the end of each iteration, any variable that produces a p-value greater
than the threshold of 0.1 is removed. The algorithm continues until no variable can be added
that produces a p-value less than the threshold, at which point the routine terminates and the
local coefficients can be processed.

2. Methods and Results

A dataset with known properties was derived by simulating 2,500 observations for the cells of
a 50 by 50 grid. The observations within the cells were generated using the following equation

Y = Bo; + B1;X1; + B2iXo; + & 3)

where Y are the generated observation, By, B;, and B, are known locally varying coefficients,
X; and X, are variables drawn form random normal distributions, € is a random normal error
term, and i is the index for each of the 2,500 locations. The spatial distributions of By, Bj,
and B, llustrated in figure 1A display varying levels of non-stationarity, which were created
by drawing random values from normal distributions that vary over space and, therefore, are
not a result of either the GWR or SFLR specifications. Since these surfaces are based on local
processes, they result in MC values that signify very strong spatial autocorrelation (0.982, .947,
and .912 for By, Bj, and B, respectively).

Griffith (2008) previously insinuated that the SFLR framework was superior to GWR based
on the fact that the SFLR estimated coefficients “remain unbiased, yield a better global model
fit, are polluted with considerably lower levels of spatial autocorrelation, and, for the most
part, display little relationship to the GWR coefficients”. Therefore, SFLR and GWR were
both estimated using the simulated data to compare the resulting coefficient surfaces which
can be seen in figures 1B and 1C. It was noticed in figure 2 that the mean square error (MSE)
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Table 1: Comparison of MSE, MC, and model fit for models.

MSE by MSE b; MSE b, MC by MC by MC b, adj. R®>  AIC

GWR 3239 0.00129 0.00401 0.979 0.994 0.994 0.888 21164.561
SFLR 727725 0.0130 0.0123 0.651 0.809 0.905 0.946 20116.961
SFLR* 7.498 0.00170 0.00380 1.0132 1.0097 1.00210 0.906 21250.258

of the SFLR coefficients and the known coefficients decreased after about the first 30 terms
were selected. However, even as model fit increased, additional model terms increased the
MSE, indicating overfitting. Therefore, a new MSE-minimizing stepwise selection criterion
(SFLR*) was employed that sought to terminate the algorithm before overfitting occurred.
The resulting coefficients are displayed in figure 1D.

Overall, the model fit, coefficient accuracy, and spatial autocorrelation statistics provided
in table 1 indicate that SFLR is not approximately equivalent to GWR and that GWR produces
less error in estimated coefficients compared to SFLR. In contrast, the SFLR* model produces
extremely similar model fit, coefficient estimates, and spatial autocorrelation statistics com-
pared to GWR, though there is no indication of superiority. In fact, model fit statistics that
account for model complexity, such as the AIC values presented in table 1 tend to favor GWR
(i.e., lower values), since it utilizes far fewer covariates.

Figure 1: Coefficient surfaces for A) simulated data B) SFLR estimates; C) GWR
estimates; D)SFLR* estimates. Top row corresponds to By, middle row to By and
bottom row to B;. Low coefficient values are shaded lighter while high values are
shaded darker.

3. Discussion & Conclusion

In its original conception, SFLR does not seem to be a competitor of GWR. Using Griffith’s
(2008) stepwise selection routine produces overfitted models where a severe loss of coeffi-
cient accuracy occurs. Griffith was correct in that the SFLR framework and GWR do not
produce similar results, though this is only due to an inherent flaw in his methodology that
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Figure 2: Adjusted R-squared, AIC, and MSE for SFLR model with increasing
stepwise selection iterations.

causes overfitting, and can require lengthy compute times of up to several days on a standard
notebook computer. It turns out that the SFLR framework can be approximately equivalent
to GWR when a MSE-minimizing stepwise selection routine (SFLR*) is employed. By doing
so, the SFLR* framework produces coefficient estimates that are similar to those from GWR
in magnitude, overall accuracy, spatial autocorrelation, and that yield a similar model fit. The
computation time is also drastically reduced from days to only minutes, which is comparable
to GWR. It seems then that the SFLR* framework provides a sort of discrete spatial weight-
ing mechanism in the form of a subset of eigenvectors and interaction terms, somewhat akin
to GWR’s continuously defined kernel function weighting mechanism. Given the potential
of both GWR and SFLR* to produce such similar results, this provides strong evidence that
there is no a priori disadvantage to local coefficients displaying strong spatial autocorrelation.
Despite the promising results from the SFLR* specification, it is uncertain how to deploy the
method when there are no known coefficients because their MSE cannot be computed. Other
drawbacks to the SFLR framework include the lack of a means of testing for statistical signif-
icance of the estimated coefficients, potential issues of replicability of the methodology, and
uncertainty of its robustness to different types of spatial weight matrices.
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