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We propose the use of silicon carbide (SiC) for direct detection of sub-GeV dark matter. SiC
has properties similar to both silicon and diamond, but has two key advantages: (i) it is a polar
semiconductor which allows sensitivity to a broader range of dark matter candidates; and (ii) it exists
in many stable polymorphs with varying physical properties, and hence has tunable sensitivity to
various dark matter models. We show that SiC is an excellent target to search for electron, nuclear
and phonon excitations from scattering of dark matter down to 10 keV in mass, as well as for
absorption processes of dark matter down to 10 meV in mass. Combined with its widespread use
as an alternative to silicon in other detector technologies and its availability compared to diamond,
our results demonstrate that SiC holds much promise as a novel dark matter detector.

I. INTRODUCTION

The identification of the particle nature of dark mat-
ter (DM) is one of the most pressing problems facing
modern physics, and will be a key focus for high energy
physics and cosmology in the coming decade [1, 2]. In the
absence of evidence for dark matter at the weak scale, in-
terest has grown in direct searches for DM with sub-GeV
mass [3–20].

The technical challenge inherent in searching for non-
relativistic, sub-GeV, weakly-interacting particles can be
seen by considering the case of a classical nuclear recoil.
For DM with a mass mχ much smaller than the target
nucleus, moving at the escape velocity of the galaxy, the
maximum energy transfer for a classical elastic scattering
nuclear recoil event is

∆E ≈ 2 meV

AT

( mχ

1 MeV

)2

, (1)

with AT the atomic number of the target. This motivates
using lighter nuclei to increase the energy transfer, as
well as new detector technologies sensitive to meV-scale
energy deposits.

In Ref. [7], a subset of the authors explored the ability
of diamond (crystalline carbon C with AT = 12) as a
detector medium to meet these criteria. The long-lived
phonon states with meV energies, coupled with the light
carbon nuclei, make diamond an excellent medium with
which to search for dark matter. Diamond suffers from
two significant drawbacks, however: it is currently diffi-
cult to produce single crystals in bulk at masses sufficient
to achieve the kg-year exposures required to probe sig-
nificant DM parameter space, and the non-polar nature
of diamond limits the DM candidates to which it can be
sensitive.

Here we propose for the first time the use of silicon

carbide (SiC) as a DM detector, as it overcomes these
drawbacks. Large wafers, and therefore also large boules,
of SiC can be readily obtained at prices comparable to
silicon (Si). Importantly, as a polar semiconductor, SiC
has optical phonon modes which can be excited by sub-
GeV DM with dark photon interactions [16]. Further-
more, as we demonstrate in this paper, SiC behaves in
most ways as a near substitute to diamond, with many
relevant properties intermediate between crystalline dia-
mond and silicon. SiC has already seen widespread adop-
tion as a target for radiation detectors [21], microstrip
detectors [22] and UV photodiodes [23] as a drop-in re-
placement for Si in environments where greater radiation
hardness, improved UV sensitivity or higher temperature
operation are required. The latter two considerations are
possible due to the higher band gap of SiC, 3.2 eV, com-
pared to 1.12 eV for Si. It is thus natural to observe
the parallels between the development of Si, diamond,
and SiC detector technologies, and explore the ability of
future SiC detectors to search for sub-GeV DM.

Moreover, SiC is an attractive material to explore be-
cause of its polymorphism—the large number of stable
crystal structures which can be readily synthesized—and
the resulting range of properties they possess. In fact
SiC exhibits polytypism—a special type of polymorphism
where the crystal structures are built up from a com-
mon unit with varying connectivity between the units
(see Fig. 1). The variety of available polytypes results
in a corresponding variety of physical properties relevant
to DM detection, such as band gap and phonon mode
frequencies. In this paper, we explore six of the most
common polytypes (3C, 2H, 4H, 6H, 8H and 15R, de-
scribed in detail in Section II) which span the range of
variation in physical properties, and evaluate their suit-
ability as target materials for a detector, as well as their
differences in DM reach for given detector performance
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goals. In particular, we show that the hexagonal (H)
polytypes are expected to exhibit stronger daily modula-
tion, due to a higher degree of anisotropy in their crystal
structure.

In this work we explore the potential of SiC-based sin-
gle charge detectors and meV-scale microcalorimeters for
DM detection. The paper is organized as follows. In Sec-
tion II, we discuss the electronic and vibrational proper-
ties of the SiC polytypes explored in this work. In Sec-
tion III, we explore the measured and modeled response
of SiC crystals to nuclear and electronic energy deposits
over a wide energy range, and the expected performance
of SiC detectors given realistic readout schemes for charge
and phonon operating modes. Sections IV and V sum-
marize the DM models considered in this paper, and
compare the reach of different SiC polymorphs into DM
parameter space for nuclear recoils, direct phonon pro-
duction, electron recoils and absorption processes, and
also compare directional detection prospects. The high-
energy theorist interested primarily in the DM reach of
SiC polytypes can thus proceed directly to Section IV.
We find excellent DM sensitivity, comparable and com-
plementary to other proposals, which place SiC detectors
in the limelight for rapid experimental development.

II. ELECTRONIC AND PHONONIC
PROPERTIES OF SIC POLYTYPES

Silicon carbide is an indirect-gap semiconductor with
a band gap (2.3 - 3.3 eV) intermediate between those of
crystalline silicon (1.1 eV) and diamond (5.5 eV). While
there exists a zincblende form of SiC, which has the same
structural form of diamond and Si, there are over 200 ad-
ditional stable crystal polymorphs with a range of band
gap energies and physical properties. These polymorphs
broadly fall into three groups based on lattice symme-
try: cubic (C), hexagonal (H), and rhombohedral (R).
To compare the expected performance of these polytypes
as particle detectors, we first explore how the differences
in band structure between polytypes manifests in charge
and phonon dynamics.

In all SiC polytypes, the common unit is a sheet of
corner-sharing tetrahedra and the polytypes are distin-
guished by variations in stacking sequences. The poly-
type 3C adopts the cubic zincblende structure with no
hexagonal close-packing of the layers, whereas 2H has a
wurtzite structure with hexagonal close-packing between
all the layers. The different polytypes can thus be char-
acterized by their hexagonality fraction fH , with 2H (3C)
having fH = 1 (fH = 0). This single number correlates
strongly with the material’s band gap, with 3C having
the smallest gap, and 2H the largest gap [24]. The other
polytypes, including those considered in this paper, con-
sist of lattices with different sequences of hexagonal and
cubic stacking layers, and can be listed in order of in-
creasing hexagonal close-packing: 3C, 8H, 6H, 4H, 2H.
The number refers the number of layers in the stack-

FIG. 1. Crystal structures of the polytypes of SiC considered
in this work. Si atoms are blue and C atoms are brown.

ing sequence. Rhombohedral structures also occur, and
these are characterized by long-range stacking order, as
shown in Fig. 1(f). Crystal structures for the polytypes
considered here are shown in Fig. 1.

The difference in stability between cubic and hexago-
nal stacking is very small, which can be understood as a
balance between the attractive and repulsive interactions
between third nearest neighbors stemming from the spe-
cific degree of charge asymmetry in the SiC bond [25].
This results in a difference in total energy between the
polytypes of only a few meV per atom, therefore many
crystal structures of SiC are experimentally accessible.
To limit this paper to a reasonable scope, we restrict
our analysis to 6 of the most common forms, as shown in
Fig. 1 and with properties summarized in Table I. Despite
the relative stability of polytypes with respect to one an-
other, only three of these polytypes (3C, 4H and 6H) are
available commercially [24] as of this writing; of these, 6H
is the most widely available in the large wafer and crystal
sizes typically employed in semiconductor processing. To
capture a representative range of SiC polytype behavior
in our analysis, and to observe trends in properties rele-
vant for sub-GeV DM detection, we also include 2H, 8H,
and 15R in our analysis.

Calculations of the interaction of various DM models
with SiC requires materials-specific information for each
polymorph, namely the electron and phonon spectra, to
estimate sensitivity to electron and phonon interactions
respectively. We calculate these quantities using state-of-
the-art Density Functional Theory (DFT) calculations as
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FIG. 2. (a) to (f): Calculated electronic band structures of SiC polytypes, with high-symmetry paths selected using SeeK-
path [26], alongside the density of states. Valence band maxima and conduction band minima are highlighted with blue and
pink circles respectively. To show the conduction band valleys in momentum space, (g) to (l) are isosurfaces of the electronic
energy bands at 0.2 eV above the conduction band minima, plotted within the first Brillouin zone boundaries of the polytypes.
For the positions of the high-symmetry points, see Fig. 11, and for details of calculations, see Appendix. A.

described in detail in Appendix A. The electronic band
structures for the six representative polytypes are shown
in Fig. 2, and the phonon band structures are plotted in
Fig. 3. For reference, the Brillouin zones (BZ) for the
same polytypes are shown in Fig. 11.

The band structure of a material is important for un-
derstanding its charge or phonon dynamics, in particular
charge mobility and lifetime, and phonon losses during
charge propagation. As with Si, Ge, and diamond, the
indirect band gap of all SiC polytypes ensures long charge
lifetimes, allowing charge to be drifted and collected with
a modest electric field. At low temperature, this also
produces anisotropic propagation of electrons due to lo-
calized mimina in the first BZ away from the Γ point (as
shown in Si and Ge at low temperature [27, 28]), which
has a significant impact on charge mobility as a function
of crystal orientation relative to an applied field. In Si
and diamond, for example these electron valleys lie at the
three X symmetry points, along the cardinal directions in
momentum space. Depending on the crystal orientation
relative to the electric field, spatially separated charge
clusters are observed as charges settle into one of these
conduction valleys.

Due to the range of stable crystal forms of SiC, in con-
trast to Si, diamond, and Ge, we cannot make a general
statement about the location in momentum or position
space of the indirect band gap in SiC (see e.g. Refs. [27–
29]), but we can locate the BZ minima from the band
structures shown in Fig. 2. The 3C polytype, like Si
and diamond, has X-valley minima, and therefore three
charge valleys in the first BZ [30], so we can expect that
the charge mobility will behave similarly to Si and dia-
mond. The hexagonal forms, as shown in Fig. 2 (b)-(e),
generally have minima along the L-M symmetry line,
while the 2H polytype has minima along the K-points.
All of these polytypes have 6 charge minima in the first
BZ, however charge propagation in 2H will be maximally
restricted to propagation along the horizontal plane of
the BZ (the plane aligned with [100], [010] Miller in-
dices). As we go to larger unit cells, charge propagation
perpendicular to that plane becomes more kinematically
accessible, allowing for more isotropic charge propaga-
tion. The valence bands are more consistent between
polytypes, with a concentration of the valence band near
the Γ point, which is also the location of the valence band
maximum for all polytypes considered.
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FIG. 3. First-principles calculations of phonon band structures, with high-symmetry paths selected using SeeK-path [26]. For
details of calculations, see Appendix A.

The dominant influence of the carbon-silicon bond
(rather than the electronic orbital overlaps) on the
phonon properties leads to the phonon dynamics being
similar between the polytypes. Since Si and C have
near identical bonding environments, the Born effective
charges are almost identical in all of the compounds con-
sidered, and so will have similar dipolar magnitudes and
hence responses to dark-photon-mediated interactions.
The phonon band structures for these polytypes are plot-
ted in Fig. 3. While we show the entire band structure,
the DM-phonon interactions are most sensitive to the
phonon properties near the Γ point. In particular, the
similarities of the properties described above implies that
the sensitivity of SiC for DM scattering will be similar for
all polytypes. Anisotropies in the phonon band structure
will give rise to differences in the directional dependence
of the DM signal, as will be discussed later in this paper.

Table I summarizes the physical properties of the poly-
types shown in Figs. 2 and 3 compared to Si and C. In
addition, some derivative properties of the phonon band
structures are summarized in the table; it can be seen
that all SiC polytypes have sound speed, highest optical
phonon energy and permittivity which are roughly the
geometric mean of the Si and C values. These character-
istics will inform our detector design and results for dark
matter reach, as we now detail.

III. DETECTING ENERGY DEPOSITS IN SIC

In this section, we apply the detector performance
model of Ref. [7] to the six representative SiC poly-
types described above, and contrast expected device per-
formance between the SiC polytypes as well as with
Si, Ge and diamond targets. We begin by reviewing
existing measurements and expectations for partition-
ing event energy into the ionization (charge) and heat
(phonon) systems, relevant to reconstructing total event
energy for different types of particle interactions. We
then discuss expected detector performance in charge and
phonon readout modes given available measurements for
polytypes considered in this paper, and comment on ex-
pected performance for those polytypes without direct
measurements based on band structure properties dis-
cussed above. A theorist primarily interested in the DM
reach of a given SiC crystal for an assumed threshold can
proceed directly to Section IV.

A. Particle Interactions

We first turn to the expected yield for an electron recoil
or nuclear recoil in SiC. As discussed in e.g. Ref. [7], in-
teractions which probe electrons or nucleons are expected
to deposit differing amounts of energy in ionization and
phonon systems in semiconductor detectors. This prop-
erty was used by the previous generation of DM experi-
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Parameter Diamond (C) Si SiC
Polymorph - - 3C (β) 8H 6H (α) 4H 2H 15R

Crystal Structure cubic hexagonal rhombohedral
ρ (g cm−3) 3.51 2.33 ∼3.2 [31, 32]

N (1023cm−3) 1.76 0.5 0.96
ne (1023cm−3) 3.54 1 1.95

~ωp (eV) 22 16.6 22.1[33]

a (c) (Å) 3.567 5.431 4.36 3.07 (20.15) 3.08 (15.12) 3.07 (10.05) 3.07 (5.04) 3.07 (37.80)
fH 0.0 0.0 0.0 0.25 0.33 0.5 1.0 0.4

Egap (eV) 5.47 1.12 2.39 2.7 3.02 3.26 3.33 3.0

Egap (eV)[calc] 2.24 2.66 2.92 3.15 3.17 2.86
Eeh (eV) ∼13 3.6-3.8 5.7 – 7.7† 6.4 – 8.7† 6.7 [34] 7.7 – 7.8 [32, 35] 7.8 – 10.5 † 7.1 – 9.6 †

Edefect (eV) 38–48 11–22 19 (C), 38 (Si) 22 (C) 22–35 [21] 17–30 (C)
ε0⊥ 5.7 11.7 9.7

9.67 9.76
ε0‖ 10.03 10.32

ε0⊥
[calc]

10.40
10.40 10.39 10.36 10.24 10.38

ε0‖
[calc] 10.80 10.90 11.06 11.41 10.96
ε∞⊥ 6.5

6.6 6.6 6.5 6.5
ε∞‖ 6.7 6.8 6.8 6.7

ε∞,⊥
[calc]

7.07
7.10 7.11 7.10 7.03 7.11

ε∞,‖
[calc] 7.31 7.36 7.41 7.40 7.38

ΘDebye (K) 2220 645 1430 1200 1200
~ωDebye (meV) 190 56 122 103 103
~ωTO (meV) 148 59 98.7 97.7, 98.8 97.0, 98.8 95.3, 99.0 98.9
~ωLO (meV) 163 63 120.5 119.7, 120.3 119.5, 120.0 120.0, 120.7 119.6
cs (m/s) 13360 5880 12600 13300 13730

cs (m/s)[calc] 13200 16300 14300 14300 15500 11900
vd,sat, e− (105 m/s) 2.7 [32] 1.35 2 2 2
EBd (MV/cm) >20 0.3 1.2 2.4 2.0

TABLE I. Bulk material properties of diamond, Si, and the SiC polymorphs considered in this work (measurements taken
from Refs. [21, 31, 32, 36–38] unless otherwise stated). All gaps are indirect, as discussed in the text and shown in Fig. 2.
ε0,∞⊥ (ε0,∞‖) refer to relative permittivity perpendicular (parallel) to the crystal c-axis at low and high frequency, with values
from Ref. [24]. Optical phonon energies and high-frequency permittivity are taken from Ref. [39]. Eeh values denoted by †
have been estimated as described in the text. Defect creation energies are from Refs. [40–42]. Due to the differing commercial
availability/utility of different polytypes, more commonly used crystal polytypes are better characterized than less common
ones, and thus for the least well-studied polytypes (2H, 8H, 15R) many experimentally determined values are unavailable.
Quantities denoted as [calc] were calculated in this work to fill in some of the holes in the literature.

ments to reject electron-recoil backgrounds in the search
for primary nucleon-coupled WIMP DM. The resolutions
in these channels required for sub-GeV DM are just now
being achieved for either heat or charge in current experi-
ments [43–52], but none of these experiments can achieve
the required resolutions in both channels to employ event
discrimination for recoils below 1 keV in energy. For heat
readout experiments, this partition is relatively unimpor-
tant, as all energy remains in the crystal and is eventually
recovered as heat. For charge readout experiments, this
partition is necessary to reconstruct the initial event en-
ergy, and contributes significant systematic uncertainty
to background reconstruction at energies where the en-
ergy partitioning is not well-constrained.

A convenient shorthand is to refer to the energy in
the electron system as Ee, which is related to the to-
tal recoil energy Er according to a yield model y(Er)
as Ee = y(Er)Er. As discussed in e.g. Refs. [7, 53],
for electron recoils one has y(Er) = 1, while for nuclear
recoils the yield is reduced due to charge shielding ef-
fects and losses to phonons and crystal defects, referred

to as non-ionizing energy losses (NIEL) [54]. Addition-
ally, this yield function is actually derived with respect
to the charge yield for a high-energy, minimum ionizing
particle [55]. These events produce a number of charge
carriers neh in linear proportion to event energy with the
relation neh = Er/Eeh, where Eeh is taken to be a fixed
property of a given material, and is the effective cost to
produce a single electron-hole pair. If we define mea-
sured Ee as Ee = nehEeh, we thus see that y(Er) = 1 is
only true, by definition, for events that obey this linear
relationship.

For SiC, this factor Eeh varies along with the band gap
among the different polytypes. The charge yield from
minimum ionizing particles (γ, β and α) in 4H SiC is
explored in Ref. [56]. The response of 3C, 4H, and 6H to
lower energy X-rays is subsequently discussed in Ref. [32].
The results of both studies are consistent with a highly
linear yield in electron-recoils down to O(10 keV) ener-
gies, but the pair creation energy Eeh is only character-
ized for two of the polytypes, as shown in Table I.

For the polytypes in which energy per electron-hole
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pair has not been characterized, we can predict Eeh based
on other measured properties. The generic expression for
Eeh is [55, 57, 58]

Eeh = Egap + 2L · (Ei,e + Ei,h) + Eph , (2)

where L is a factor which depends on the dispersion curve
of the conduction and valence bands, Ei,e and Ei,h are
the ionization thresholds for electrons and holes, and Eph

are phonon losses. Ref. [55] shows that, for Ei,e ∼ Ei,h ∝
Egap, we get the formula

Eeh = A · Egap + Eph (3)

where Eph takes on values from 0.25 to 1.2 eV, and A is
found to be ∼2.2 to 2.9. Ref. [57] finds, using a broader
range of materials, the parameters A ∼ 2.8 and Eph ∼
0.5 – 1.0 eV. These allow us to predict a probable range
of Eeh values for the polytypes without existing measure-
ments, which we summarize in Table I. For the detector
models in this paper, we assume the values in Table I
apply linearly for all electron-recoil events down to the
band gap energy.

The response of SiC detectors to neutrons is less char-
acterized than the electronic response. A detailed review
can be found in Ref. [21], which we refer the reader to
for more details on existing measurements. In particu-
lar, the NIEL for different particles in SiC is computed
and compared to measurements for different ion beams
in Ref. [59], but this is characterized as a loss per gram,
and not as a fractional energy loss compared to that lost
to ionization. Ref. [60] explores the thermal neutron re-
sponse, but only a count rate is measured; a linear re-
sponse with respect to fluence is measured, but there is
no characterization of ionization yield on an event-by-
event basis.

We instead appeal to simulations calibrated to sili-
con measurements, in which the single tunable parameter
with largest effect is the displacement energy threshold
for freeing a nucleus from the lattice, Edefect. Known and
estimated values for Edefect are summarized in Table I.
The large range is due to the difference in thresholds for
the Si and C atoms; comparing the threshold values to
Si and diamond, it seems that a Si atom in SiC has a
diamond-like displacement threshold, while a C atom in
SiC has a Si-like displacement threshold. Ref. [54] calcu-
lates NIEL for Si and diamond, with the difference pa-
rameterized only in terms of defect energy. This suggests
that SiC, with a defect energy intermediate between Si
and diamond, will behave identically to Si and diamond
above ∼1 keV, and give a yield below Si and above dia-
mond for lower energy interactions.

Finally, we consider the sub-gap excitations. The most
prominent features are the optical phonons, with energies
of 100–120 meV, as shown in Table I and Fig. 3. An inter-
esting property of the hexagonal polytypes is that the op-
tical phonon energy depends on the bond direction along
which they propagate, though weakly. We can expect,
due to the polar nature of SiC, to see strong absorption

around the optical phonon energies. We can also expect
direct optical and acoustic phonon production by nuclear
recoils sourced by DM interactions.

In contrast to the large change in electron gap en-
ergy and expected pair-creation energy between poly-
types, we see very little variation in phonon properties,
dielectric constants, and—to some degree—displacement
energy. This suggests that different polytypes will be
beneficial for enhancing signal-to-noise for desired DM
channels. Nucleon-coupled and phonon excitation chan-
nels would prefer higher-gap polytypes with suppressed
charge production, while electron-coupled channels favor
the smaller gap materials. Optimization of readout will
depend on the polytype due to differences in phonon life-
time and charge diffusion length, as discussed in the next
subsection, as well as differences in phonon transmission
between polytypes and choice of phonon sensor. Other
aspects of the design, such as capacitance and bandwidth,
are constant across polytypes, somewhat simplifying the
comparison of polytypes.

B. Charge Readout

The first readout mode we consider is the direct read-
out of charge produced in SiC crystals by low noise charge
amplifiers. This mode is limited to energy deposits ex-
ceeding the gap energy of the relevant polytype, but is of
interest due to the ability to run these charge detectors at
higher temperatures, without requiring a dilution refrig-
erator, and due to the simpler readout scheme. We begin
by considering the charge collection in SiC, and how the
band structure of the polytypes will affect charge mo-
bility. We then contrast the expected resolution with
diamond and silicon via the resolution model of Ref. [7].
The resulting expected detector performance for these
devices is summarized in Table II.

1. Charge Collection

The primary questions for charge readout of SiC are
whether complete charge collection is achievable in mono-
lithic, insulating samples, and whether charge collection
varies across polytypes. While full charge collection for
the 4H polytype has been demonstrated [61], detailed
studies of charge collection efficiency suggest that semi-
insulating samples have a fairly limited charge diffusion
length at room temperature [62]. In Ref. [62] this is
attributed to either recombination due to impurities or
the inability to separate electron-hole pairs in the initial
interaction, which causes rapid carrier recombination.
More recent studies of charge collection efficiency (CCE)
in SiC radiation detectors suggest that CCE is improving
with substrate quality and fabrication techniques [63],
though single crystal 4H-SiC still has diffusion lengths
closer to polycrystalline diamond than to single crystal
diamond [64].
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The only studies to demonstrate near full charge collec-
tion in SiC are Refs. [21, 32, 65], which all study energy
deposition in thin films (∼40 µm). Studies of depositions
in a ten times larger detector volume in e.g. Refs. [21, 62]
do show much reduced collection efficiency for the same
bias voltage and detector readout.

These studies suggest that there remain significant
bulk dislocations in these commercial wafers, which
present trapping or recombination-inducing defect sites.
While it is possible that charge collection will improve
at lower temperatures or with higher quality substrates,
there is not yet sufficient data to show this. Note that
most radiation detectors to date have been constructed of
4H and 6H polytypes; it is possible that the 3C polytype,
with a more symmetric band structure, could demon-
strate better charge collection. A rough analogy would be
comparing the charge collection of graphite to diamond,
though one would expect 4H and 6H to be much more
efficient than graphite. Charge collection is also likely
dependent on crystal orientation relative to the BZ min-
ima as discussed in Section II, with more efficient charge
collection occurring when the electric field is aligned with
an electron valley.

For the resolution calculation presented later in this
section, we will assume perfect collection efficiency; an in-
complete efficiency will not affect resolution in the single-
charge limit, but will instead reduce effective exposure.
To minimize the effect of limited charge collection on de-
tector performance, we require the drift length (detector
thickness) to be equal to or less than the diffusion length
of the target charge carrier at the design voltage.

To make this more quantitative, one can model the
CCE in terms of a few measured parameters. Given a
carrier mobility µ (in principle different for electrons and
holes) and saturation velocity vd,sat, we use an ansatz for
carrier velocity as a function of voltage V :

vd(V, d) =

[
1

vd,sat
+

d

µV

]−1

(4)

where d is the detector thickness. This gives the drift
length D = vdτscat → vd,satτscat in the high-field
limit [21], where τscat is the carrier scattering lifetime.
Given this drift length, we can model the CCE as [65]

CCE =
D

d

[
1− exp

(
− d

D

)]
(5)

where for long diffusion length (D � d) we have CCE∼ 1.
For short diffusion length, and in the small-field limit, we
find that charge collection goes as

CCE ≈ µV τscat

d2
=
µτscat

d
E � 1 (6)

with E the electric field in the bulk. This tells us that
when the gain is linear in voltage, the inferred CCE will
be small and the effective diffusion length is much shorter
than the crystal thickness.

The best measure of the drift constant µτscat in 4H-
SiC (the only polytype for which detailed studies are
available) was found to be µτscat ∼ 3 × 10−4 cm2/V,
and for a saturation drift field of 8 kV/cm, we find a
maximum drift length D ∼ 2.4 cm [65]. While this
does imply full charge collection for devices up to 1 cm
thick, the very high voltages required are likely to in-
duce some measure of charge breakdown, despite the very
high dielectric strength of SiC. The devices studied in
Refs. [21, 32, 65] are all thin films which did not break
down at field strengths in this regime; however, for low
temperature operation of these devices, voltages of this
magnitude are atypical for monolithic, gram-scale detec-
tors. Ref. [32] suggests there is a very small difference
in mobility between the 3C, 4H, and 6H polytypes, but
it is possible that the more isolated valleys of 3C, and
different growth process, may lead to larger charge life-
time. To better determine the polytype best suited to
charge collection, more studies of drift length in high-
purity samples are needed.

2. Charge Resolution

Recalling the model for charge resolution from Ref. [7],
the minimum resolution of a charge integrating readout
is completely determined by the noise properties of the
amplifier, the bias circuit, and the capacitance of the
detector (Cdet) and amplifier (Cin) (see e.g. Ref. [66]):

σq ≥
Nv(Cdet + Cin)

εq
√
τ

, (7)

where Nv is assumed to be a flat voltage noise spectral
density of the amplifier in V/

√
Hz, εq is the CCE and τ

is the response time of the detector and readout. For an
integrator, the readout time τ is determined by the rate
at which the input is drained by some bias resistor Rb,
and thus τ = Rb(Cdet + Cin).

Following the discussion of Ref. [7], the current best
cryogenic high electron mobility transistor (HEMT) am-
plifiers [67] allow for a detector resolution of

σq ≈ (28 e−h+ pairs) (Cdet/(100 pF))
3/4

, (8)

where we have enforced the optimal design condition
Cin = Cdet, and we assume full CCE can be achieved
(this is ensured by limiting thickness to 1 cm). Note that
if this resolution for 100% CCE is sub-electron, it affects
the effective resolution on the input signal rather than
the resolution of the readout.1

1 For the case of incomplete charge collection for detectors with
single electron resolution, the resolution is not smeared due to
Poisson fluctuations, but the conversion from charge to energy
scale requires folding in charge collection statistics. For detec-
tors without single electron resolution, limited CCE effectively
contributes an additional Poisson smearing to the Gaussian noise
PDF.
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Readout Design Dimensions Mass (g) Temp. (K) Vbias σq

Charge

Single Cell 1.0 cm side length× 0.5 cm thick 1.6

4.2 K

4 kV 1.4e−

Single Cell 0.5 cm side length× 0.5 cm thick 0.4 4 kV 0.5e−

Single Cell 1.0 cm diameter× 1.5 cm thick 4.8 500 V 0.5e−

Segmented 0.2 cm side length× 0.2 cm thick 0.025 50 V 0.25e−/segment

TABLE II. Summary of the detector designs discussion for charge readout. Voltage bias for the charge designs should be high
enough to ensure full charge collection. For the lower two charge readout designs, improved charge lifetime is assumed, allowing
for lower voltage bias and thicker crystals. We note that, due to the relatively high dielectric constant of SiC, the optimal
geometry (given current readout constraints) is such that cells have a thickness greater than or equal to the side length in order
to minimize capacitance per unit mass.

We give example design parameters for a charge de-
tector in Table II. We consider both monolithic and seg-
mented detectors, the latter necessary to achieve statisti-
cally significant sub-electron resolution at reasonable de-
tector mass. One benefit of SiC over e.g. diamond is that
larger crystals are readily available commercially, allow-
ing for designs with O(1e−) resolution. All designs are
limited to 1.5 cm thickness—the largest thickness cur-
rently available, and to ensure full charge collection at
a field of 8 kV/cm. We likewise assume significant volt-
age bias in our designs for this reason, and in our lat-
ter charge designs assume improvements can be made in
drift length by improving mean carrier lifetime through
advances in crystal growth technology (see Ref. [65] for
a more detailed discussion).

The size and resolution of the segmented design sug-
gest that development of SiC detectors with a skipper
CCD readout is likely a more straightforward develop-
ment path; large-scale fabrication of SiC devices has
been available for decades, and feature sizes required are
fairly modest. Such developments would be useful for
employing large-area SiC sensors as beam monitors and
UV photon detectors, and would be complementary to
Si substrates for dark matter detection thanks to the re-
duced leakage current due to the higher gap and dielectric
strength of SiC.

C. SiC Calorimetry

The most promising direction for application of SiC to
dark matter searches is direct phonon readout at cryo-
genic temperatures. The intrinsic phonon resolution σph

is the primary metric for determining DM reach in this
case. Here we take a technology-agnostic approach to
computing expected phonon resolution; rather than cal-
culating resolutions for a specific detector technology,
we will relate resolution to phonon collection efficiency,
intrinsic phonon properties of the material, and input-
referred noise equivalent power (NEP) of the readout.
For the last quantity, we will use reference values compa-
rable to those currently achievable by a range of cryogenic
sensing techniques. We will compare this with currently
achieved resolutions using other crystals, as well as tech-
nologies of sufficiently low noise temperature to achieve
sub-eV resolutions, and suggest form factors and noise

temperature targets for the various thresholds discussed
for DM sensitivities later in this paper.

Following this parameterization, we thus calculate res-
olution as

σph =
1

εph

√
Sphτpulse (9)

where εph is the energy efficiency for phonon collection,

Sph is the NEP for the readout in W 2/Hz ∝ eV2/s, and
τpulse is the duration of the signal in seconds.2 This is
similar to the detector treatment in Refs. [7, 12], and
uses the same terminology as for Transition Edge Sen-
sor (TES) noise modeling [68], but is written more gener-
ally for ease of comparison between readout technologies.

1. Phonon Collection Efficiency

The primary metric which determines whether a mate-
rial will allow for efficient phonon collection is the phonon
lifetime τlife. As discussed in Ref. [7], for pure crystals
at low temperature, the lifetime is limited primarily by
boundary scattering. This scaling for the phonon lifetime
can be inferred from thermal conductance data, given
knowledge of material density, sound speed and crystal
size. A model for the thermal conductance and its rela-
tion to the phonon lifetime is described in Appendix B.

For diamond, it was found that boundary scattering
is dominant for phonons of ≤10 K, implying that the
bulk mean free path for phonons at and below this en-
ergy (. 1 meV) is much longer than the typical crystal
length scale (1-10 mm) [7]. For SiC, the thermal con-
ductivity (at least that of 6H [69]) and sound speeds
are close to that of diamond, so we can infer that SiC
will similarly be limited by boundary scattering, at least
for phonons near the pair-breaking energy of the super-
conducting phonon sensors. The phonon band structure
calculations from Section II (calculation details in Ap-
pendix A) were used to verify that low-energy acoustic

2 τpulse can also be thought of as the inverse of the bandwidth
(τpulse = 2π/ωpulse). We use τpulse rather than ωpulse for easier
comparison with sensor response time τsensor, given that τpulse =
τph + τsensor, where τph is the phonon signal time.
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phonons (below 2 THz) have bulk lifetimes much longer
than their collection timescales (> 10 ms). For 3C, the
calculated average phonon lifetime within 0-2 THz is of
the order 30 ms at 2 K. In the hexagonal polytypes, the
phonon lifetimes will be smaller because of increased scat-
tering from the variations in stacking sequences inherent
to the structures, but initial calculation results at 10 K
indicate that the 2H lifetimes will be within an order of
magnitude of those for 3C.

Assume a detector in the form of a prism of thickness
η and area A. With only one type of phonon absorber,
the phonon collection time-constant is [7, 12]

τcollect =
4η

fabsn̄abscs
(10)

where fabs is the fraction of the detector surface area
covered by phonon absorber material and n̄abs is the
transmission probability between the bulk and the ab-
sorber. n̄abs is calculated in detail in Appendix C with
values in Table IV. As a basis for comparison, the worst-
case scenario that phonons are completely thermalized
at the crystal sidewalls gives a bound on the phonon
lifetime of τlife & η/cs, a single phonon crossing time
across the crystal. In the following we will explore the
case where boundaries are highly reflective, in which case
τlife � τcollect, as well as the case where boundaries are
sources of phonon losses, in which τcollect & τlife.

In all cases, the phonon pulse time is determined by
combining phonon collection time with phonon lifetime
as [12]:

τ−1
pulse ≈ τ−1

ph = τ−1
life + τ−1

collect , (11)

where we assume the sensor is much faster than the
timescale of phonon dynamics (τph � τsensor). Then the
overall collection efficiency is then

fcollect =
τpulse

τcollect
=

τlife
τlife + τcollect

. (12)

The total detector efficiency is then given as a product
of the conversion and readout efficiencies,

εph = fcollectεqpεtrap (13)

where εqp is the efficiency of generating quasiparticles in
the phonon absorber, and εtrap is the efficiency of read-
ing out these quasiparticles before they recombine. εqp
has a generic limit of 60% due to thermal phonon losses
back into the substrate during the quasiparticle down-
conversion process [70], though it rises to unity as the
captured energy approaches 2∆ ∼ 7kbTc/2, the Cooper
pair binding energy for an absorber at Tc. Meanwhile,
εtrap is technology dependent. For quasiparticle-trap as-
sisted TESs, εtrap is limited by quasiparticle diffusion and
losses into the substrate, while for superconducting res-
onators such as KIDs, εtrap is governed by the response
time of the resonator compared to the recombination life-
time of the quasiparticles.

2. Material-Limited Resolution

Since different readout technologies are possible, here
we instead focus on the material-limited resolution of a
SiC detector. We will thus consider an idealized phonon
readout with a response time much faster than the char-
acteristic phonon timescale and a benchmark noise tem-
perature near that currently achieved by infrared photon
detectors and prototype TES calorimeters. Taking a sin-
gle sensor with NEP

√
Ss ∼ 10−19 W/

√
Hz [71–73],3 and

assuming our idealized readout is limited by the timescale
of phonon dynamics, we find a single-sensor resolution of

σph ≈ 10−19 W/
√

Hz
1

εph

√
τpulse (14)

≈ 10 meV
1

fcollectεtrap

√
τpulse

100 µs
(15)

≈ 10 meV

εtrap

√
τ2
collect

τpulse × 100 µs
(16)

where we have set εqp = 0.6. We thus see that the chal-
lenges for excellent resolution are to achieve high internal
quantum efficiency between phonon absorber and phonon
sensor (εtrap), and to ensure fast phonon collection (short
τcollect, with τlife not too small compared to τcollect).

Realistically, readout noise power scales with sensor
volume, and we can tie the above benchmark noise tem-
perature to a reasonable sensor area. For current technol-
ogy, a single superconducting sensor can typically read-
out about As ∼1 mm2 of area, and thus we can param-
eterize the above equations more accurately in terms of
this sensor area and detector geometry. We find that

fabs = NsAs/A (17)

Sph = NsSs =
fabsA

As
Ss. (18)

For the above reference noise temperature and assuming
τlife � τcollect, this gives an energy resolution of

σph ≈
6 meV

εtrap

√
V

100 mm3

1 mm2

As

0.95

n̄abs

14 km/s

cs
(19)

where V is the detector volume. This is the generic
result that an ideal athermal detector has a resolution
that scales as

√
V for a given readout technology, and

as (n̄abscs)
−1/2 for a given crystal/phonon absorber cou-

pling.
In the opposite limit where τlife � τcollect, we find the

resolution scales as

σph ≈
13 meV

εtrap

(
0.95

n̄abs

)√
1

fabs

V

100 mm3

(η/cs)

τlife
(20)

3 Here we are scaling the noise power measured in the reference to
the effective volume of a single QET as characterized in Ref. [52].
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Design
Parameter A B C D
Polytype 6H or 4H 3C 3C Any

Phonon Absorber Al AlMn
2∆ Pair-Breaking Threshold 700 µeV 60 µeV
εqp Efficiency to generate quasiparticle in absorber 60%
εtrap Efficiency to readout quasiparticle in absorber 75%
τac Acoustic Phonon Lifetime (crystal limited) > 30 µs
τlife Assumed phonon lifetime (boundary limited) ∼100 µs ∼1 µs√
Ss/As Noise power per unit sensor area (W/mm ·Hz1/2) 10−19 10−20a

√
Ss Noise power per sensor (meV/s1/2) 600 60
A Detector area 45 cm2 5 cm2 1 cm2

η Detector thickness 1 cm 1 cm 4 mm
n̄abs Transmission probability to absorber 0.83 0.94 ∼0.94b

fabs Fractional coverage of detector surface with absorber 0.1 0.7 0.95
Ns Number of sensors 450 350 95

τcollect Time scale to collect ballistic phonons 34 µs 4.3 µs 1.3 µs
τpulse Time scale of phonon pulse 25 µs 4.2 µs 0.5 µs
fcollect Collection efficiency into absorber 74% 95% 45%
εph Total signal efficiency for detector ∼30% ∼40% 20%

Detector mass 145 g 16 g 1 g
σph Resolution on phonon signal 200 meV 50 meV 2 meV ∼0.5 meVc

a This noise power is the best currently achievable in any quantum sensor; see for example Refs. [71, 72].
b AlMn films are primarily Al, containing <1% Mn [74], and we assume the transmission coefficient will be approximately equal to the

pure Al case.
c This assumes 5 or fewer sensors can be used to read out the total phonon signal, and that the phonon dynamics are still the

bandwidth limiting timescale.

TABLE III. Reference phonon detector designs. Designs A and B assume performance parameters for currently demonstrated
technology, while design C assumes an improvement by a factor of 10 in noise equivalent power per sensor. The main limitation
affecting design C is that, for very low thresholds, effective phonon lifetime may be as short as a few times the crystal crossing
time, due primarily to phonon thermalization at crystal boundaries. If significant phonon thermalization is allowed to occur, the
phonon resolution will quickly be limited by statistical fluctuations in signal collection efficiency rather than sensor input noise.
For this reason, our third design assumes an effective phonon lifetime equivalent to 3 crystal crossings, a lower gap absorber,
and 95% sensor coverage. The limited absorption probability and realistic constraints on sensor area coverage severely limit the
overall efficiency (εph) of the design relative to the other two reference designs. The polytype selection is primarily determined
by the impedance match between the substrate and phonon absorber. All polytypes are fairly well matched to the chosen
absorbers, but the 3C polytype is a close match and maximizes phonons absorbed per surface reflection.

where we have again used As = 1 mm3 and the sound
speed in SiC. In this case, the detector design relies on
high surface coverage fabs to maximize phonon collection,
and the resolution is more sensitive to the phonon trans-
mission probability, n̄abs. For the chosen parameters
this is only about twice the resolution of the long-lived
phonon case, but it is more sensitive to details of sensor
coverage and will be more sensitive to phonon losses both
in the crystal and at the crystal-absorber interface.

These estimates assume that the detector in question
can be read out with sub-microsecond precision (such
that τsensor � τph, as stated earlier), while sensors at
this level of power sensitivity are not necessary capable
of being read out at this rate [73, 75]; we comment on this
more below. Finally, this term does not include phonon
shot noise, which will be a significant source of additional
variance in the limit of small phonon lifetime. All of this
goes to say that the ideal detector design will be highly
dependent on whether phonons are completely thermal-
ized at the boundaries, or if there is a reasonable chance
of reflection of athermal phonons such that there’s a non-

zero survival probability for each surface interaction.

Table III summarizes our four reference designs, with
resolutions varying from 200 meV (design A) down to
500 µeV (design D). Designs A and B assume the de-
vice is read out by phonon sensors comparable to those
that have currently been demonstrated, and the resolu-
tion is in the long phonon lifetime regime of Eq. (19).
The design thresholds for these devices assume that the
majority of initial phonons lie far above the absorption
gap of the phonon sensor (2∆ ∼ 0.7 meV in Al) and
that down-conversion at the crystal surfaces has a small
impact on total phonon energy absorbed by the sensors.
The resolution scaling between A and B then comes just
from relative reduction of crystal volume.

For designs C and D, we consider an initial phonon
energy small enough that only a few phonon scattering
events can occur before phonons are absorbed. This im-
plies we will be in the short lifetime regime and need to
have large coverage fabs → 1 to avoid substantial signal
loss. To attain resolutions low enough to observe sin-
gle phonon production, we also assume here an order of
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FIG. 4. Left: The dependence of energy resolution on fractional surface area covered by sensors (fabs) is shown for each of
the designs from Table III. Dots indicate the resolutions quoted in the table. For designs C and D, the resolution is the same
in the small fabs limit, or where there are 5 or fewer sensors; in this limit, all sensors are assumed necessary to reconstruct
events. Meanwhile, for larger fabs, the improved scaling of design D over design C results from the fixed number of sensors read
out (here taken to be 5) as the detector bandwidth is increased. Also shown are devices with the current best demonstrated
noise power and resolution. The TES and SNSPD benchmarks come from Refs. [14, 73], where the shaded band corresponds
to the detectors listed in Ref. [73], and the lines correspond to best DM detector performance from the respective references.
We also include two superconducting photon detectors optimized for high detection efficiency for THz photons, where the best
demonstrated NEP, roughly 10−20W/

√
Hz in both cases, is comparable to the NEP assumed for designs C and D. The quantum

capacitance detector (QCD) is from Ref. [72], and the SNS junction is from Ref. [71]. Right: The relative change in resolution
as polytype and interface transmission are changed for a range of (surface-limited) phonon lifetimes, compared to the nominal,
impedance-matched 3C/Al design at the chosen phonon lifetime. The resolutions of these devices are best case scenarios for
perfect phonon detection efficiency, and thus represent a lower resolution limit for the given technology.

magnitude decrease in noise power over currently demon-
strated phonon sensors. Design C obeys the scaling of
Eq. (20). Design D has the same detector geometry,
but here we assume that only 5 or fewer sensors need
to be read out to reconstruct a signal. This provides
an improvement in resolution by reducing the number
of sensors read out by a factor of 20, without necessarily
changing the detector or sensor properties. The timescale
for this process is still the phonon crossing time for the
crystal; additional resolution reduction could still be ac-
complished by reducing the size of the crystal, though
gains would be fairly modest.

In addition, the resolution for sensors using quasi-
particle traps to read out phonons will hit a floor at the
pair-breaking energy of the phonon absorber, which for
Al is 2∆ ∼ 0.7 meV, and for AlMn (with a Tc around 100
mK [74]) is ∼ 0.06 meV (see also Table III). For this rea-
son we assume that detectors with resolution < 50 meV
(designs C and D) will need to transition to lower-gap
materials; this ensures that the phonons they intend to
detect can break & 100 quasiparticles per sensor to min-
imize shot noise contributions to the noise budget.

In Fig. 4, we show the scaling of resolution with sen-
sor area, along with our reference designs, in comparison
to currently achieved resolutions by an array of super-
conducting sensors. These scalings are based on a fixed
sensor form factor, with the given noise performance cor-
responding to an areal coverage of As ∼ 1mm2, and the

lines assume a fixed power noise per unit area (as de-
scribed earlier in this section) for a variety of sensor cov-
erage and crystal form factors. In all cases, significant en-
hancements in sensor noise power are required to achieve
less than 100 meV resolutions even for gram-scale detec-
tors, and we note that the detection thresholds for these
detectors will be a multiple of these resolutions. This
limitation is not specific to SiC but broadly applies to
any solid-state phonon calorimeters using superconduct-
ing readout. In particular, we note that only designs C
and D would be expected to detect single optical phonon
excitations.

The choice of different polytypes in the detector de-
signs in Table III lead to minor changes in expected res-
olution due to sound speed (which varies by 25% be-
tween polytypes) and impedance matching between the
crystal and the absorber (a difference of less than 20%).
The same sensor design ported to different polytypes can
therefore vary by up to around a factor of 2 in resolu-
tion, a non-trivial amount but small compared to the
range of energies considered in this paper. Selection of
polytype is therefore informed more by sample quality,
mass, and ease of fabrication, as well as potential science
reach, than by ultimate phonon resolution. The differ-
ence in science reach between the polytypes is the focus
of the next sections of this paper.

Finally, we note that the quoted resolutions apply to
readout limited by phonon dynamics, and implicitly as-
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sume that the phonon sensors used to read out these
signals have a higher bandwidth than the crystal collec-
tion time. For these designs, a sensor with a response
time of ∼1 µs would be able to achieve within a factor of
a few of these projected resolutions. This requirement,
and the additional requirement that sensors be individu-
ally read out for design D, suggests that superconducting
resonator technologies, such as Kinetic Inductance Detec-
tors (KIDs), or switching technologies, such as supercon-
ducting nanowires, are more likely to be the technology
of choice than TESs or thermal sensors. The former tech-
nologies have noise temperature and response time that
are independent of thermal conductance, and are intrin-
sically multiplexable. The development of faster, low-Tc
TES detectors which are capable of frequency-domain
multiplexing would allow them to be competitive at the
lower thresholds quoted here.

IV. THEORETICAL FRAMEWORK

We now move to describing the DM frameworks that
can be detected via SiC detectors. We consider the
following possible signals from sub-GeV DM interac-
tions: scattering off nuclei elastically, scattering into elec-
tron excitations for mχ & MeV, phonon excitations for
keV . mχ . 10 MeV, and absorption of dark matter into
electronic and phonon excitations for 10 meV . mχ .
100 eV. In all cases, ρχ = 0.3 GeV/cm3 is the DM den-
sity, and fχ(v) is the DM velocity distribution, which we
take to be the Standard Halo Model [76] with v0 = 220
km/s, vEarth = 240 km/s, and vesc = 500 km/s.

A. Elastic DM-nucleus scattering

Assuming spin-independent interactions, the event
rate from dark matter scattering off of a nucleus in a
detector of mass mdet is given by the standard expres-
sion [77]

dR

dEr
=
mdetρχσ0

2mχµ2
χN

F 2(q)F 2
med(q)

∫

vmin

fχ(v)

v
d3v. (21)

Here q =
√

2mTEr is the momentum transfer, mT is
the target mass, mχ is the DM mass, µχN is the re-
duced mass of the DM-nucleus system, Er is the recoil
energy, F (Er) is the nuclear form factor of DM-nucleus
scattering (we adopt the Helm form factor as in Ref. [77]),
and the form factor F 2

med(q) captures the form factor for
mediator interactions (i.e., long-range or short-range).
The cross-section σ0 is normalized to a target nucleus,
but to compare different media, this cross-section is re-
parameterized as [20, 77]

σ0 = A2

(
µχN
µχn

)2

σn, (22)

where A is the number of nucleons in the nucleus, and
µχn is the DM-nucleon reduced mass.

For a sub-GeV dark matter particle, we have µχN →
mχ, σ0 → A2σn, and F (Er)→ 1, such that

dR

dEr
≈ mdet

ρχA
2σn

2m3
χ

F 2
med(q)

∫

vmin

fχ(v)

v
d3v, (23)

which would seem to imply that a heavier nucleus is al-
ways more sensitive to dark matter from a pure event-rate
perspective. Hidden in the integral, however, is the fact
that

vmin =

√
Er(mχ +mT )

2µχNmχ
→
√
ErmT

2m2
χ

(24)

in this limit, which implies scattering off of heavier tar-
gets is kinematically suppressed.

For heterogeneous targets, the standard modification
to this rate formula is to weight the event rate for a given
atom by its fractional mass density. For a SiC crystal of
mass mdet and equal number density of Si and C nuclei,
we have the total rate
(
dR

dEr

)

SiC

=
1

2mSiC

[
mSi

(
dR

dEr

)

Si

+mC

(
dR

dEr

)

C

]

where the rates for Si and C are computed for the given
detector mass. This is a reasonable assumption for inter-
actions in which the scattered DM particle only probes
a single nucleus. For sufficiently low Er comparable to
the typical phonon energy, the assumption is no longer
valid. This can be seen from the fact that the interaction
of DM with single or multi-phonons is an expansion in
q2/(mTω) [78, 79], so that we transition to the nuclear
recoil regime when Er � ωphonon. In this paper we con-
sider elastic nuclear recoils down to 0.5 eV, well above
the energy at the highest optical phonon, and consider
DM as acting locally on a single nucleus from the stand-
point of the initial interaction. For energy depositions
between the highest optical phonon energy, ∼ 120 meV,
and 0.5 eV, we expect the signal rate to be dominated
by multiphonon interactions.

To compute NR limits, the behavior at low DM mass
is strongly dependent on the energy threshold, while the
high-mass behavior depends on the upper limit for accu-
rate energy reconstruction. Athermal phonon calorime-
ters can provide very low thresholds but are intrinsically
limited in dynamic range. To account for this, we as-
sume 3 orders of magnitude in dynamic range, similar
to what has been seen in detectors with O(eV) thresh-
olds [37]. This means that the upper integration limit is
set to 103σt, where the threshold σt is assumed to be 5
times the resolution.

B. DM-phonon scattering

The formalism to compute single phonon excitations
from DM scattering was detailed previously in Refs. [16,
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17, 78]. The scattering rate per unit time and per unit
target mass can be written generally as

R =
1

ρT

ρχ
mχ

∫
d3vfχ(v) Γ(v), (25)

where ρT is the total target density. Γ(v) is the scattering
rate per dark matter particle with velocity v, given by

Γ(v) ≡ σ̄χ
4πµ2

χn

∫
d3q

Ω
F 2

med(q)Smed(q, ω). (26)

µχn is the DM-nucleon reduced mass and σ̄χ is a fidu-
cial cross section which we will define later for specific
models. Ω is the primitive cell volume, and can also
be written as (

∑
dmd)/ρT where d sums over all atoms

in the cell. As above, the form factor F 2
med(q) captures

the form factor for mediator interactions (i.e., long-range
or short-range). Finally, the structure factor Smed(q, ω)
encapsulates the phonon excitation rate for a given mo-
mentum transfer q and energy deposition ω; note that
it depends on the mediator through its couplings to the
nuclei and electrons in a given target.

As specific examples, we first consider a mediator that
couples to nuclei proportional to atomic number A, in
which case

Smed(q, ω) =
∑
ν,k,G

δ(ω − ων,k)

2ων,k
|FN,ν(q,k)|2δk−q,G (27)

where ν labels phonon branch and k denotes crystal mo-
mentum within the first Brillouin zone. The G are recip-
rocal lattice vectors, and for sub-MeV dark matter the
G = 0 piece of the sum dominates. The phonon form
factor for this mediator is

|FN,ν(q,k)|2 =

∣∣∣∣∣∑
d

Ad q · e∗ν,d,k√
md

e−Wd(q) ei(q−k)·r0d

∣∣∣∣∣
2

, (28)

where d labels atoms in the primitive cell and r0
d are the

equilibrium atom positions. We determine the phonon
eigenvectors, eν,d,k, and band structure ων,k numerically
from first-principles calculations described later in this
section. Finally, Wd(q) is the Debye-Waller factor, which
we can approximate as Wd(q) ≈ 0 since the rates for sub-
MeV DM are dominated by low q. With this phonon
form factor, sub-MeV dark matter dominantly couples
to longitudinal acoustic phonons.

We next consider a mediator that couples to electric
charge, such as a dark photon mediator A′. The structure
factor has the same form as in Eq. (27), but with FN,ν
replaced by the phonon form factor

|FA′,ν(q,k)|2 =

∣∣∣∣∣∑
d

q · Z∗d · e∗ν,d,k
ε∞
√
md

e−Wd(q) ei(q−k)·r0d

∣∣∣∣∣
2

,

where we have assumed diagonal high-frequency dielec-
tric constant ε∞ and where Z∗d is the matrix-valued Born
effective charge of atom d in the unit cell. It is the
nonzero Born effective charges in polar semiconductors
that permits sensitivity to these models, and it has been
found that the most important mode excitation is the
highest energy longitudinal optical phonon mode.

1. Daily modulation

The anisotropic crystal structures of SiC polymorphs
imply a directional-dependence of DM-phonon scatter-
ing. As the Earth rotates, there is a corresponding mod-
ulation in the rate over a sidereal day, which can provide
a unique discriminant for a DM signal in the event of a
detection. This effect can be captured by accounting for
the time-dependent direction of the Earth’s velocity with
respect to the lab frame in the DM velocity distribution,
fχ(v).

This approach to calculating the directional signal was
previously taken in Ref. [17], where it was computed for
Al2O3 (sapphire) which has a rhombohedral lattice struc-
ture. The rate depends on the orientation of the crystal
relative to the DM wind or equivalently Earth’s velocity.
Similar to Ref. [17], we choose the crystal orientation
such that the z-axis is aligned with the Earth’s velocity
at t = 0. Since the Earth’s rotation axis is at an an-
gle of θe ≈ 42◦ relative to the Earth’s velocity, at time
t = 1/2 day, the z-axis of the crystal will be approxi-
mately perpendicular to the DM wind. For the rhombo-
hedral and hexagonal lattice structures, the convention is
that the z-axis corresponds to the primary crystal axis,
and so we expect that this configuration should give a
near-maximal modulation rate.

C. DM-electron scattering

Eqs. (25) and (26) are applicable to electron scattering
as well, with the appropriate substitutions. The struc-
ture factor S(q, ω) for electron recoil is given by [6, 78]

S(q, ω) = 2
∑

i1,i2

∫

BZ

d3k d3k′

(2π)6
2πδ(Ei2,k′ − Ei1,k − ω)×

∑

G

(2π)3δ(k′ − k + G− q)|f[i1k,i2k′,G]|2 (29)

where Ei,k is the energy of a electron in band i with
crystal momentum k and G are the reciprocal lattice
vectors. The crystal form factor f[i1k,i2k′,G] is given by

f[i1k,i2k′,G] =
∑

G′

u∗i1(k′ + G + G′)ui2(k + G′) (30)

where ui(k) are the electron wavefunctions written in
plane wave basis and normalized such that

∑

G

|ui(k + G)|2 = 1 . (31)

In our calculation of the electron recoil limits, we make
the isotropic approximation following the formalism out-
lined in Ref. [6]. The scattering rate per unit time and
per unit target mass is then simplified to

R =
σ̄e

2ρTµ2
χe

ρχ
mχ

∫
qdqdω F 2

med(q)S(q, ω)η(vmin(q, ω)) (32)
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where µχe is the reduced mass of the DM and electron,
and the integrated dark matter distribution η(vmin) is
given as in Ref. [6]. The reference cross section σ̄e is at
a fixed reference momenta, which will be taken as αme,
with α the fine structure constant and me the electron
mass. Results for daily modulation and thus directional
detection of electron recoil signals in SiC will be pre-
sented in future work [80].

D. Absorption of sub-keV DM

For a number of models, the bosonic DM absorption
rate can be determined in terms of the conductivity of
the material and photon absorption rate. Then the ab-
sorption rate is given as

R =
1

ρT

ρχ
mχ

g2
effσ1(mχ) (33)

where σ1(mχ) is real part of the optical conductivity σ̂
of the material, namely the absorption of photons with
frequency ω = mχ, and geff is an effective coupling con-
stant appropriate per model [17, 81], as will be detailed
below.

The conductivity of the material can be obtained from
measurements or by calculation. For mχ greater than the
electron band gap, we use measurements on amorphous
SiC thin films from Ref. [82]. This data does not capture
the differences between polymorphs of SiC, with band
gaps ranging from 2.36 eV to 3.25 eV for those considered
here, but we expect the differences to be small formχ well
above the electron band gap.

For mχ below the electron band gap, absorption
can occur into single optical phonons as well as multi-
phonons. In this case, there is limited data or calcula-
tion available for sub-Kelvin temperatures. To gain fur-
ther insight, we can use an analytic approximation for
the dielectric function [17]:

ε̂(ω) = ε∞
∏

ν

ω2
LO,ν − ω2 + iωγLO,ν

ω2
TO,ν − ω2 + iωγTO,ν

, (34)

with a product over all optical branches, and where
γ is the phonon linewidth, and TO (LO) abbreviate
transverse (longitudinal) optical phonons. The dielectric
function is related to the complex conductivity σ̂(ω) by
ε̂(ω) = 1 + iσ̂/ω.

We separately consider the conductivity parallel to the
c-axis, ε̂‖(ω), and perpendicular to the c-axis, ε̂⊥(ω). In
SiC, there is a strong optical phonon branch for each
of these directions, corresponding to the highest energy
optical phonons (A1 in the parallel direction, E1 in the
perpendicular direction) [39]. For these phonons, the LO
and TO frequencies are compiled in Ref. [39], where the
values are nearly identical across all polymorphs. Be-
cause there are very limited low-temperature measure-
ments of the phonon linewidths, we use γLO = 2.6/cm
and γTO = 1.2/cm in all cases. These values come from

our calculations of the linewidth of the optical phonons
in the 3C polymorph, and are also in agreement with
experimental data [83]. The calculation of linewidths is
discussed in Appendix A.

Here we only consider the absorption into the strongest
phonon branch for the parallel and perpendicular direc-
tions. Accounting for the fact that the DM polarization
is random, we will take an averaged absorption over these
phonon modes, 〈R〉 = 2

3R⊥ + 1
3R‖. With the above ap-

proximations, we find that the absorption rate for the
strongest mode is nearly identical across all polymorphs.
However, depending on the polymorph, there are addi-
tional lower energy optical phonons with weaker absorp-
tion, and which can have large mixing of transverse and
longitudinal polarizations. Furthermore, there is absorp-
tion into multiphonons. While these contributions are
not included in our analytical computation, we expect
the qualitative behavior of the low-mass absorption rate
to be well captured by the range formed by the available
measurements from Ref. [82] and the above calculation.

V. RESULTS

A. DM with scalar nucleon interactions

For dark matter with spin-independent scalar interac-
tions to nucleons, we consider both the massive and mass-
less mediator limit, corresponding to different choices of
mediator form factor F 2

med(q). A discussion of the astro-
physical and terrestrial constraints on both cases can be
found in Ref. [84].

For the massive scalar mediator coupling to nucleons,
the form factor is F 2

med(q) = 1. The sensitivity of SiC to
this model is shown in the left panel of Fig. 5 for the var-
ious SiC polytypes and also a few different experimental
thresholds. For energy threshold ω > 0.5 eV, we show
the reach for nuclear recoils in a SiC target and compare
with a representative target containing heavy nuclei.

The DM-phonon rate is determined using Eq. (26),
where the fiducial cross section is σ̄χ ≡ σn and σn is
the DM-nucleon scattering cross section. With a thresh-
old ω > meV, it is possible to access DM excitations
into single acoustic phonons, which provide by far the
best sensitivity. While this threshold would be challeng-
ing to achieve, we show it as a representative optimistic
scenario where access to single acoustic phonons is possi-
ble. The reach here is primarily determined by the speed
of sound [79], and is thus fairly similar for all crystal
structures. For comparison with additional polar crystal
targets, see Ref. [85].

When the threshold is ω & 20− 30 meV, the only ex-
citations available are optical phonons. For DM which
couples to mass number, there is a destructive interfer-
ence in the rate to excite optical phonons, resulting in
significantly worse reach [16, 86]. In Fig. 5, we also show
a representative optical phonon threshold of ω > 80 meV
as this is just below the cluster of optical phonons of en-
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FIG. 5. Reach and daily modulation for DM interactions mediated by a scalar coupling to nucleons, assuming a massive
mediator. Left: All reach curves are obtained assuming kg-year exposure and zero background. For single phonon excitations
relevant for mχ . 10 MeV, we show two representative thresholds of 1 meV (solid lines) and 80 meV (dotted) for the different
SiC polytypes. We also show the reach for a superfluid He target [19]. The dashed lines show sensitivity to nuclear recoils
assuming threshold of 0.5 eV. In the shaded region, it is expected that the dominant DM scattering is via multiphonons (see
discussion in Refs. [78, 79]). Right: The daily modulation of the DM-phonon scattering rate as a function of DM mass, where
the quantity shown corresponds exactly to the modulation amplitude for a purely harmonic oscillation. The modulation is much
smaller for scattering into acoustic phonons ω > 1 meV, so we only show scattering into optical phonons with ω > 80 meV.
The modulation amplitude is generally largest for 2H and smallest for 3C. The inset compares the phase of the modulation
among the polymorphs for mχ = 80 keV.
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FIG. 6. Similar to Fig. 5, but for DM interactions mediated by a massless scalar coupling to nucleons. In this case, we also
compare with the reach of another polar material, GaAs, for acoustic and optical branch thresholds [17].

ergy 90−110 meV present in all polymorphs (see Fig. 3).
Note that the reach for ω > 30 meV is not significantly
different from ω > 80 meV, due to the destructive inter-

ference mentioned above.

While the optical phonon rate is much smaller than the
acoustic phonon rate, the same destructive interference
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allows for a sizeable directionality in the DM scattering
rate, and thus daily modulation. The right panel of Fig. 5
gives the daily modulation for DM scattering into opti-
cal phonons with threshold ω > 80 meV. We find that
the lowest modulation is for the 3C polytype, as expected
given its higher degree of symmetry, and the largest mod-
ulation can be found in the 2H polytype. While the
other polytypes of SiC can give comparable modulation
to 2H, they contain many more phonon branches, which
can wash out the signal. We also note that the mod-
ulation could be even larger with a lower threshold on
the optical phonons, which was the case for sapphire in
Ref. [17]. However, if the threshold is reduced all the way
to ω > meV such that acoustic phonons are accessible,
the modulation is much smaller.

In the massless mediator limit, we assume dark matter
couples to nucleons through a scalar with mass mφ �
mχv ∼ 10−3mχ. For sub-MeV DM, constraints on this
model are much less severe than in the heavy mediator
case [84]. Then we can approximate the DM-mediator
form factor as

F 2
med(q) =

(
q0

q

)4

(35)

where q0 = mχv0 is a reference momentum transfer. In
this case σn is a reference cross section for DM-nucleon
scattering with momentum transfer q0. The projected
sensitivity to the massless mediator model from single-
phonon excitations in SiC is shown in the left panel of
Fig. 6. Here we also show the reach for a GaAs target,
which has a lower sound speed and thus more limited
reach at low DM mass [17]. For comparison with addi-
tional polar crystal targets, see Ref. [85].

The daily modulation amplitude for a massless scalar
mediator is shown in the right panel of Fig. 6. Similar
to the massive mediator case, we only have a sizeable
modulation for scattering into optical phonon modes, and
find that 2H (3C) tends to give the largest (smallest)
amplitude.

We conclude with a brief discussion of how SiC com-
pares with other commonly considered target materials
for DM with scalar nucleon interactions. Because SiC has
a high sound speed similar to that of diamond, the sen-
sitivity to acoustic phonon excitations extends to lower
DM mass than in Si, Ge, or GaAs. Furthermore, depend-
ing on the polytype of SiC, the daily modulation in SiC
is expected to be much larger than Si, Ge, GaAs and dia-
mond. The latter materials have cubic crystal structures
where the atoms in a unit cell have identical or very sim-
ilar mass, so we expect the modulation to be similar to
that of GaAs, found to be sub-percent level in Ref. [17].
In terms of both reach and directionality, SiC is perhaps
most similar to sapphire, and has advantages over many
other well-studied target materials.

B. DM-electron interactions

We now present our results for DM that scatters with
electrons through exchange of a scalar or vector media-
tor (that is not kinetically mixed with the photon). Our
results for the reference cross section σ̄e of Eq. (32) are
given in Fig. 7 for the heavy (left) and light (right) me-
diator cases, with form factors

F 2
med(q) =

{
1 heavy mediator

(αme)
4/q4 light mediator

(36)

For comparison, we also show the reach of Si and di-
amond. Thick blue curves indicate relic density targets
from Ref. [1]. The grey shaded region show existing limits
from SENSEI [87], SuperCDMS HVeV [88], DAMIC [49],
Xenon10 [89], Darkside [90] and Xenon1T [92].

The results of Fig. 7 show that the reach of SiC to DM-
electron scattering is similar to that of diamond at high
mass for the case of a light mediators, and comparable
to the silicon two-electron reach for the heavy mediator
case. The relation of the reach between SiC polytypes is
similar to that found in Figs. 5 and 6, in that the major-
ity of the difference at low-mass can be attributed to the
different band gaps. We do observe, however, that the
reach of 3C at high mass is roughly half an order of mag-
nitude less than the hexagonal polytypes, despite having
the smallest band gap. This can be understood by notic-
ing that the density of state near the conduction band
minima is smaller than that in the other polytypes, thus
limiting the available phase space. The reach of 15R is
also significantly worse than the other polytypes because
the size of its small Brillouin zone is poorly matched to
the typical momentum transfer (few keV).

We learn that SiC can probe DM-electron scattering
processes in a complementary manner to silicon and di-
amond. As mentioned earlier, prospects for directional
detection of electron recoil signals in the various poly-
types of SiC will be described in future work [80].

C. DM with dark photon interactions

We now consider a DM candidate with mass mχ that
couples to a dark photon A′ of mass mA′ , where the dark
photon has a kinetic mixing κ with the Standard Model
photon,

L ⊃ −κ
2
FµνF

′µν . (37)

We again take two representative limits of this model:
scattering via a massive or nearly massless dark photon.

For a massive dark photon, the electron-scattering
cross section σ̄e in terms of model parameters is

σ̄e =
16π κ2αχαµ

2
χe

[(αme)2 + (mA′)2]
2 (38)
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shown assuming kg-year exposure and zero background. The reach from single optical phonon excitations in SiC (solid lines)
is similar for all the polytypes, while the dotted lines in same colors are the electron recoil reach from Fig. 7. The thick solid
blue line is the predicted cross sections if all of the DM produced by freeze-in interactions [3, 93], and the shaded regions are
constraints from stellar emission [94, 95] and Xenon10 [89]. We also show the reach from phonon excitations in other polar
materials, GaAs and Al2O3 [16, 17], and from electron excitations in an aluminum superconductor [12] and in Dirac materials,
shown here for the examples of ZrTe5 and a material with gap of ∆ = 2.5 meV [15]. (For clarity, across all materials, all
electron recoil curves are dotted and all phonon excitation curves are solid.) Right: The daily modulation of the DM-phonon
scattering rate as a function of DM mass, where the quantity shown corresponds exactly to the modulation amplitude for a
purely harmonic oscillation. The modulation is negligible in the 3C polytype due to its high symmetry, and is largest in 2H.
The inset compares the phase of the modulation among the polytypes for mχ = 80 keV.

and the DM-mediator form factor is F 2
med(q) = 1. For the parameter space below mχ ≈ MeV, there are strong
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astrophysical and cosmological constraints [6, 84] and the
reach from exciting optical phonons is limited, so we do
not consider DM-phonon scattering. The electron scat-
tering reach is the same as the heavy mediator limit of
the previous section, shown in the left panel of Fig. 7.

For a nearly-massless dark photon, we consider both
electron recoils and optical phonon excitations. Optical
phonons are excited through the mediator coupling to the
ion (nucleus and core electrons), which is given in terms
of the Born effective charges discussed in Section IV B.
For comparison with the literature, we will show both the
electron recoil and optical phonon reach in terms of the
electron-scattering cross section. This electron-scattering
cross section is defined at a reference momentum transfer,
given in terms of the dark fine structure constant αχ =
g2
χ/(4π):

σ̄e =
16π κ2αχαµ

2
χe

(αme)4
(39)

where α is the fine structure constant and µχe is DM-
electron reduced mass. As a result, for phonon scattering,
the relevant cross section σ̄χ in Eq. (26) is

σ̄χ ≡
µ2
χn

µ2
χe

σ̄e. (40)

The DM-mediator form factor for both electron and
phonon scattering is

F 2
med(q) =

(
αme

q

)4

. (41)

The reach for different polytypes of SiC to the light
mediator limit of this model is shown in the left panel of
Fig. 8. The reach for mχ > MeV is from DM-electron
scattering, and is the same as the light mediator limit of
the previous section (shown in the right panel of Fig. 7).
Although there is an additional in-medium screening for
dark photon mediators compared to Section V B, we ex-
pect this to be a small effect for a relatively high-gap
material such as SiC. The sensitivity of SiC for mχ <
MeV is from exciting optical phonons, and is very sim-
ilar across all polytypes. This is because the DM dom-
inantly excites the highest energy optical phonon [17],
which has the largest dipole moment and has similar en-
ergy in all cases. Furthermore, the coupling of the DM to
this phonon is characterized by an effective Fröhlich cou-
pling that depends only on the phonon energy, ε∞, and
ε0 [16]. Again, it can be seen in Table I that all of these
quantities are quite similar across the different polytypes.
For completeness, we also show existing constraints from
stellar emission [94, 95] and Xenon10 [89]; projections
for other materials such as Dirac materials [15], super-
conductors [12], and polar materials [16, 17]; and target
relic DM candidate curves [3, 93].

There are larger differences between polytypes in di-
rectional detection, which depends on the details of the

crystal structure. The results for DM-phonon scatter-
ing are provided in the right panel of Fig. 8. Similar to
the case of DM with scalar nucleon interactions, we find
that 3C has the smallest modulation due to its higher
symmetry, while 2H has the largest modulation.

Comparing with other proposed polar material targets
such as GaAs and sapphire, the reach of SiC for dark
photon mediated scattering does not extend as low in DM
mass because of the higher LO phonon energy. However,
the directional signal is similar in size to that of sapphire
and substantially larger than in GaAs. For additional
proposed experiments or materials that can probe this
parameter space, see for example Refs. [85, 96–98].

D. Absorption of dark photon dark matter

Taking a dark photon with mass mA′ and kinetic mix-
ing κ to be the dark matter candidate, the effective cou-
pling g2

eff in the absorption rate in Eq. (33) must ac-
count for the in-medium kinetic mixing. Thus we have
g2

eff = κ2
eff , with in-medium mixing of

κ2
eff =

κ2m4
A′

[m2
A′ − Re Π(ω)]

2
+ Im Π(ω)2

=
κ2

|ε̂(ω)|2 . (42)

where Π(ω) = ω2(1− ε̂(ω)) is the in-medium polarization
tensor in the relevant limit of |q| � ω.

The projected reach for absorption of SiC into the pa-
rameter space of kinetically mixed dark photons is shown
in the left panel of Fig. 9. As discussed in Section IV D,
we consider absorption into electron excitations using
measurements of the optical conductivity of SiC from
Ref. [82] (solid curve) as well as absorption into the
strongest optical phonon mode for low masses (dashed
curve). These black curves indicate the 95% C.L. ex-
pected reach in SiC for a kg-year exposure, correspond-
ing to 3 events. For comparison, we also show in dotted
curves the projected reach of superconducting aluminum
targets [13] and WSi nanowires [14], semiconductors such
as silicon, germanium [81] and diamond [7], Dirac mate-
rials [15], polar crystals [17] and molecules [99]. Stellar
emission constraints [100, 101] are shown in shaded or-
ange, while the terrestrial bounds from DAMIC [102], Su-
perCDMS [103], Xenon data [101] and a WSi supercon-
ducting nanowire [14] are shown in shaded gray. As is ev-
ident, SiC is a realistic target material that has prospects
to probe deep into uncharted dark photon parameter
space over a broad range of masses, from O(10 meV)
to 10’s of eV.

E. Absorption of axion-like particles

Next we consider an axion-like particle (ALP) a with
mass ma that couples to electrons via

L ⊃ gaee
2me

(∂µa)ēγµγ5e . (43)
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solid and dashed black curves (using the data of Ref. [82] and strongest phonon branch, respectively). Projected reach for
germanium and silicon [81], diamond [7], Dirac materials [15], polar crystals [17], molecules [99] superconducting aluminum [13]
and WSi nanowire [14] targets are indicated by the dotted curves. Constraints from stellar emission [100, 101], DAMIC [102],
SuperCDMS [103] Xenon [101] data and a WSi nanowire [14] are shown by the shaded orange, green, purple, light blue and
blue regions, respectively. Right: Projected reach at 95% C.L. for absorption of axion-like particles. The reach of a kg-year
exposure of SiC is shown by the solid black curve, where only excitations above the band gap are assumed. The reach for
semiconductors such as germanium and silicon [81], diamond [7] and superconducting alumnium [13] targets is depicted by
the dotted curves. Stellar constraints from Xenon100 [104], LUX [105] and PandaX-II [106] data and white dwarfs [107] are
shown by the shaded red and orange regions. Constraints arising from (model-dependent) loop-induced couplings to photons
are indicated by the shaded blue regions [108, 109], while the QCD axion region is given in shaded gray.

The absorption rate on electrons can be related to the
absorption of photons via the axioelectric effect, and the
effective coupling in Eq. (44) is then given by

g2
eff =

3m2
a

4m2
e

g2
aee

e2
. (44)

Because the ALP directly couples to electrons, we con-
sider only the absorption above the electron band gap.
(Relating the couplings of the sub-gap phonon excita-
tions is less straightforward due to the spin-dependence
of the ALP coupling.) The projected reach for a kg-year
exposure shown in the right panel of Fig. 9 by the solid
black curve. For comparison, we show the reach of super-
conducting aluminum [13] targets as well as silicon [81],
germanium [81] and diamond [7] by the dotted curves.
Constraints from white dwarfs [107], Xenon100 [104],
LUX [105] and PandaX-II [106] are also shown. Con-
straints from the model-dependent loop-induced cou-
plings to photons are indicted by shaded blue [108, 109].
The QCD axion region of interest is shown in shaded
gray. We learn that SiC detectors can reach unexplored
ALP parameter space complementary to stellar emission
constraints.

VI. DISCUSSION

In this paper we proposed the use of SiC for direct
detection of light DM. With advantages over silicon and
diamond— including its polar nature and its many sta-
ble polymorphs—we have shown that SiC would serve
as an excellent detector across many different DM chan-
nels and many mass scales: DM-nuclear scattering (di-
rect and via single or multiple phonon excitations) down
to O(10 keV) masses, DM-electron scattering down to
O(10 MeV) masses, dark photon absorption down to
O(10 meV) masses and axion-like absorption down to
O(10 meV) masses, with prospects for directional detec-
tion as well.

In particular, the high optical phonon energy in SiC
(higher than that of sapphire) coupled with the high
sound speed of all polytypes and long intrinsic phonon
lifetime, makes SiC an ideal substrate for calorimetric
phonon readout. There is substantial reach for dark
photon coupled DM at higher energy thresholds than
competing materials, and the presence of a strong bulk
plasmon in SiC makes it a promising follow-up mate-
rial for potential inelastic interactions of DM at the en-
ergy scales in the multi-phonon regime, as described in
Refs. [53, 110].

In fact, since SiC exists in many stable polytypes, it al-
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lows us to compare the influence of crystal structure and
hence bonding connectivity on their suitability as targets
for various dark matter channels. Broadly, we see simi-
lar sensitivities and reach across the calculated polytypes
as expected for a set of materials comprised of the same
stoichiometric combination of elements. For DM-nucleon
and DM-phonon interactions, we find very similar reach
given the similar phonon spectra of the SiC polytypes.
One difference is that polytypes with smaller unit cells
will have the advantage of higher intrinsic phonon life-
times, as the higher unit cell complexity will increase
scattering. More variation in reach among the polytypes,
however, is found for DM-electron scattering due to the
variation in electronic bandgaps across the SiC family.
This trend in bandgap variation in SiC polytypes is well-
discussed in the literature and is a result of the third
nearest neighbor effects [25]. We indeed see that, with
increasing unit cell size, the decrease in bandgap in the
H polytypes correspondingly leads to better reach, as ex-
pected.

Materials-by-design routes explored for dark matter
detection have focused on bandgap tuning [111], and
materials metrics for improved electron and phonon in-
teractions [85, 112–114]. A key advantage of SiC over
other target proposals is its prospect for directionality-
by-design—given the similar performance in reach across
the polytypes, we can select a material that is optimized
for directional detection. Our results indicate that, as ex-
pected, the highly symmetric cubic phase, 3C, exhibits
no daily modulation, whereas the maximal modulation
is achieved for the 2H phase. The 2H phase has inequiv-
alent in-plane and out-plane crystallographic axes and
so naturally has an anisotropic directional response. We
further find that this effect is diminished for increasing
the number of out-of-plane hexagonal units (decreasing
the regularity of the unit cell) as the directional response
becomes integrated out over repeated unit cells.

As discussed earlier, one of the primary benefits of us-
ing SiC over other carbon-based crystals is the availabil-
ity of large samples of the 4H and 6H polytypes; the 3C
polytype is not currently at the same level of fabrication
scale, and the 2H, 8H and 15R polytypes are scarce in
the literature and not made in significant quantities. The
charge mobility measurements for existing SiC samples
indicate that purity of these crystals is not at the same
level as comparable diamond and silicon, and there are
few measurements of intrinsic phonon properties at cryo-
genic temperatures. In order to further develop SiC de-
vices, studies of charge transport and phonon lifetime in
a range of samples need to be undertaken so that current
limitations can be understood and vendors can work to
improve crystal purity. Device fabrication, on the other
hand, is expected to be fairly straightforward due to past
experience with basic metallization and the similarity of
SiC to both diamond and Si. The availability of large
boules of SiC, unlike for diamond, means that scaling to
large masses for large detectors is much more commer-
cially viable and cost effective.

The material response of the SiC polytypes should also
be better characterized. In particular, studies of the non-
ionizing energy loss of nuclear recoils needs to be mod-
eled and characterized; photo-absorption cross-sections
at cryogenic temperatures are needed, both above and
below-gap; and the quantum yield of ionizing energy de-
posits needs to be better understood. SiC has already
been shown to be much more radiation hard than Si,
but more studies of radiation-induced defects will bene-
fit both the use of SiC as a detector as well as a better
understanding of vacancies used in quantum information
storage. More practical studies of breakdown voltage and
electron/hole saturation velocity will also inform detector
modeling and readout.
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Appendix A: First-Principles Calculation Details of
Electronic and Phononic Properties

Full geometry optimizations were performed using
Density Functional Theory (DFT) with the Vienna Ab
initio Simulation Package (vasp) [115–118], using projec-
tor augmented wave (PAW) pseudopotentials [119, 120]
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and the Perdew-Becke-Ernzerhof exchange-correlation
functional revised for solids (PBEsol) [121]. This gave
lattice constants within 0.5% of experimental values. The
high frequency dielectric constants and Born effective
charges were calculated using the density functional per-
turbation routines implemented in vasp. Force constants
for generating the phonon dispersion spectra were calcu-
lated with the finite displacement method, using vasp
and phonopy [122].

The pseudopotentials used in the DFT calculations in-
cluded s and p electrons as valence. A plane wave cutoff-
energy of 800 eV was used with a Γ-centered k -point
grid with k -point spacing <0.28 Å−1. This is equal to
a 9 × 9 × 9 grid for the 3C unit cell, and the equiv-
alent k -point spacing was used for the other polytypes
and supercells. The cutoff-energy and k -point spacing
were chosen to ensure convergence of the total energy
to within 1 meV per formula unit and dielectric func-
tions, Born effective charges and elastic moduli to within
1%. The self-consistent field energy and force conver-

gence criteria were 1× 10−8 eV and 1× 10−5 eV Å
−1

re-
spectively. For calculation of force constants within the
finite displacement method, the following supercell sizes
were used: 5× 5× 5 for 3C (250 atoms), 4× 4× 4 for 2H
(256 atoms), 3×3×3 for 4H (216 atoms), 3×3×3 for 6H
(324 atoms), 3× 3× 3 for 8H (432 atoms) and 3× 3× 3
for 15R (270 atoms).

For phonon lifetimes and lidewidths, the phono3py
code [123] was used for calculation of phonon-phonon
interactions within the supercell approach. Third-order
force constants were were obtained from 4× 4× 4 super-
cells for 3C and 3×3×3 supercells for 2H. Lifetimes were
computed on grids up to 90× 90× 90. The acoustic life-
times were averaged close to Γ in the 0-2 THz frequency
range. At 2 K the acoustic lifetimes are converged to an
order of magnitude with respect to sampling grid. The
optical lifetimes were averaged over all frequencies, and
these converged to 3 significant figures. The correspond-
ing optical linewidths were sampled close to Γ for use in
Eq. (34).

The electronic structures and wavefunction coefficients
were also calculated by DFT, however the Heyd-Scuseria-
Ernzerhof (HSE06) screened hybrid functional [124, 125]
was used on PBEsol lattice parameters which gave excel-
lent agreement with experimental band gaps (Table I).
Band structures and isosurfaces were calculated with
vasp using an increased k -point density to ensure conver-
gence of the band gap (12×12×12 grid for the 3C unit cell
and equivalent for the other polytypes). For calculation
of the electron wavefunction coefficients, the Quantum
Espresso code [126, 127] was used to enable the use of
norm-conserving Vanderbilt-type pseudopotentials [128].
All other calculation choices between vasp and Quantum
Espresso were kept consistent. The calculated detection
rate was checked with respect to the k -point density and
plane wave energy cutoff of the underlying DFT calcula-
tions, and was found to be converged within 10%. The
following k-grids were used: 8×8×4 for 2H, 8×8×8 for

3C, 8×8×2 for 4H, 8×8×2 for 6H, 4×4×1 for 8H, and
4 × 4 × 4 for 15R. Bands up to 50 eV above and below
the Fermi energy were used to evaluate the electron-DM
matrix elements.

Appendix B: Thermal Conductance and Phonon
Lifetime

Here we show how thermal conductance measurements
inform our estimations of phonon lifetime, which in turn
are used in our discussion of phonon collection efficiency
in Section IV B. This model was used previously in
Ref. [7] to estimate phonon lifetimes in diamond, but
was not given explicitly in that paper.

Ref. [129] defines the phonon relaxation time in the
limit that T → 0 as4

τ−1
r = Aω4 +

cs
L

+B1T
3ω2 (B1)

=
cs
L

[
1 +

AL

cs
ω4 +

L

cs
B1T

3ω2

]
(B2)

= τ−1
b

[
1 + (ω/ωp)

4
+ (ω/ωB)2

]
(B3)

where L is the characteristic length scale of the crys-
tal5, ω is the angular phonon frequency, A describes the
strength of isotopic scattering, and B1 the strength of the
three-phonon scattering interactions. All of these inter-
actions represent an inelastic scattering event which can
contribute to phonon thermalization and therefore signal
loss for a phonon calorimeter.

We have defined a benchmark time constant for bound-
ary scattering (τb = L

cs
) and the critical frequency for

phonons

ωp =
( cs
AL

)1/4

=

(
1

Aτb

)1/4

(B4)

below which boundary scattering dominates phonon re-
laxation time, and above which isotopic scattering is
the more important process. We also defined the three-
phonon scattering frequency

ωB =

√
1

τbB1T 3
=

√
cs

LB1T 3
. (B5)

which is explicitly temperature dependent and is assumed
to be larger than ωp here.

In a perfect crystal of finite size at low temperature,
A → 0 and thermal conductivity is determined entirely

4 The assumption of zero temperature allows us to ignore Umklapp
processes, significantly simplifying this analysis.

5 For rough boundaries, L is simply the geometric size of the crys-
tal. For highly reflective, conservative boundaries, it may be
many times larger than the crystal’s size. Using the crystal size
should therefore be a lower bound on thermal conductivity for a
sufficiently pure sample.
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by crystal geometry and temperature. In particular,
thermal conductivity is determined by losses at the sur-
face (this model implicitly assumes reflections are diffu-
sive and non-conservative, not specular). In most real
crystals A will be non-zero, and is thus included in the
calculation as a perturbation term. In this limit, the ther-
mal conductivity of a sample obeys the equation [129]

κ =
2kBπ

2

15

τb
cs
ω3
T

[
1−

(
2πωT
ωp

)4

− 5

7

(
2πωT
ωB

)2
]

(B6)

where ωT is the mean phonon frequency at temperature
T , defined as

ωT =
kBT

~
. (B7)

This is the mean phonon frequency at the given temper-
ature, but to good approximation, we can use this fre-
quency to bound the phonon energies that are expected
to be limited by boundary scattering or bulk processes
based on deviations from the leading order conductivity
in the above equation.

Thermal conductivity measurements at low tempera-
ture allow us to determine the purity and phonon inter-
action length scales for high-quality crystals, given that
the volumetric specific heat is an intrinsic quantity, while
the thermal conductivity depends on the extrinsic length
scale of the crystal. Fitting the thermal conductivity to a
model with three free parameters, L, ωp, and ωB , we can
infer the parameters L, A, and B1, assuming the sound
speed and volumetric heat capacity are known for a given
material.

High purity samples of Ge, Si, SiC, and diamond all
demonstrate T 3 dependence and scaling with crystal size
for temperatures below 10 K [69] and mm-scale crystals.
This allows us to assert that phonons with energy be-
low 10 K have lifetime limited by boundary scattering
in 1 mm size crystals for all four substrates. The scaling
law here also implies that high-purity SiC crystals should
have similar κ0 to diamond, which is indeed shown to be
the case in Ref. [69].

To understand this scaling, we can re-write Eq. (B6)
in terms of the specific heat of the crystal. We use the
volumetric Debye specific heat,

CV =
12π4nkB

5

(
T

TD

)3

, (B8)

where kBTD ≡ π~cs(6ρ/π)1/3 is the Debye temperature
(values for ~ωDebye = kBTD are given in Table. I). This
gives us the modified equation

κ =
1

3
CV csL

[
1−

(
2πωT
ωp

)4

− 5

7

(
2πωT
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]
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= κ0

[
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(
2πωT
ωp

)4

− 5

7

(
2πωT
ωB

)2
]

(B10)

with κ0 = CV csL/3. We thus find that the tempera-
ture dependence of the leading order term is only due
to the increase in the thermal phonon population, and
thus dividing a measurement of thermal conductivity by
heat capacity gives a temperature dependent measure of
effective mean phonon lifetime ( κ

CV
= 1

3c
2
sτb).

The ultimate limit to ballistic phonon propagation for
a crystal of given purity can be taken in the limit T → 0,
in which phonons below ωp can be considered ballistic,
and those above ωp are unlikely to propagate to sensors at
the crystal surface. Because ωp depends on crystal purity
and crystal size, we can use this property to inform our
design rules. Suppose we have a superconducting phonon
absorber with minimum gap frequency

ωg ∼
7kbTc

2~
. (B11)

In order to achieve a high collection efficiency, we need a
large crystal sufficiently pure enough to ensure that

ωg � ωp (B12)

7kbTc
2~

�
( cs
AL

)1/4

(B13)

Tc �
2~
7kb

( cs
AL

)1/4

. (B14)

This matches the general intuition that higher sound
speed implies that the mean phonons have a higher en-
ergy, and higher-gap absorbers are acceptable. This con-
dition allows for a quantitative crystal size optimiza-
tion given known crystal purity, and allows us to com-
pare crystals using low-temperature thermal conductance
data (which can be used to extract A).

Appendix C: Phonon Transmission Probabilities

The phonon transmission probabilities across mate-
rial interfaces are estimated using the acoustic mismatch
model in [130]. The calculation is completely analogous
to that of electromagnetic wave propagation across a
boundary, except for phonons we also have an additional
longitudinal mode.

An exemplary situation is illustrated by Fig. 10. An
longitudinal wave is propagating in the x− z plane with
the interface between medium 1 and medium 2 situated
along the x-axis. The incoming wave can be reflected and
refracted into both longitudinal and co-planar transverse
mode (but not the transverse mode parallel to y-axis).
The various angles are related via laws of geometric op-
tics. For example, we have

sin θ1

cl1
=

sin θ2

cl2
=

sin γ1

ct1
=

sin γ2

ct2
(C1)

where c denotes the speed of sound with subscripts de-
noting the polarization and the medium. We assume
isotropy and do not include any angular dependence in
the speed of sounds.
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Substrate Si Diamond 3C-SiC 4H/6H-SiC
Material nl nt n̄ nl nt n̄ nl nt n̄ nl nt n̄

Al 0.98 0.89 0.91 0.72 0.63 0.65 0.85 0.95 0.94 0.86 0.82 0.83
Al2O3 0.76 0.61 0.64 0.96 0.88 0.90 0.90 0.32 0.35 0.95 0.97 0.96

Diamond 0.30 0.11 0.15 1.00 1.00 1.00 0.42 0.06 0.08 0.61 0.29 0.34
Ga 0.97 0.89 0.90 0.67 0.58 0.61 0.84 0.90 0.89 0.84 0.79 0.80
Ge 0.90 0.83 0.84 0.90 0.82 0.84 0.87 0.90 0.89 0.94 0.91 0.91
In 0.97 0.89 0.90 0.68 0.59 0.61 0.88 0.90 0.90 0.86 0.79 0.80
Ir 0.47 0.36 0.38 0.84 0.76 0.78 0.63 0.37 0.38 0.70 0.55 0.58
Nb 0.83 0.74 0.75 0.93 0.85 0.87 0.92 0.86 0.86 0.97 0.88 0.89
Si 1.00 1.00 1.00 0.79 0.71 0.73 0.86 0.48 0.51 0.89 0.85 0.85

3C-SiC 0.77 0.96 0.93 0.84 0.75 0.78 1.00 1.00 1.00 0.97 0.80 0.83
4H/6H-SiC 0.58 0.48 0.50 0.95 0.86 0.89 0.71 0.24 0.27 1.00 1.00 1.00

Sn 0.94 0.85 0.86 0.84 0.76 0.78 0.90 0.87 0.87 0.94 0.89 0.89
Ta 0.65 0.54 0.56 0.95 0.87 0.89 0.80 0.58 0.59 0.88 0.76 0.78
Ti 0.95 0.90 0.91 0.86 0.77 0.79 0.91 0.95 0.95 0.95 0.89 0.90
W 0.51 0.41 0.43 0.88 0.80 0.82 0.67 0.42 0.44 0.75 0.61 0.64
Zn 0.91 0.81 0.82 0.90 0.81 0.83 0.89 0.87 0.87 0.95 0.90 0.90

TABLE IV. Phonon transmission probabilities for materials relevant to the detector designs discussed in this paper. The
probability nl (nt) is the probability for a longitudinal (transverse) phonon incident on the interface from the substrate to get
into the film. n̄ is the probability averaged by the density of states of the two modes.

Medium 1

Medium 2

L L

L

T(SV)

T(SV)

x

z

𝛾1

𝛾2

𝜃1 𝜃1

𝜃2

FIG. 10. An incident longitudinal (L) acoustic wave is
both reflected and refracted into longitudinal and transverse
(SV) modes in the two media. The various angles here sat-
isfy geometric-optical relations such as law of reflection and
Snell’s law. Reproduced from [130].

In order to calculate the transmission coefficient we
assume all our waves are plane waves with various am-
plitudes. For example the incident wave can be written
as

vinc = B exp(ikinc · r) = B exp(−iβz + iσx) (C2)

where vinc denotes the particle velocity due to the inci-
dent acoustic wave, B is the amplitude of the incident
wave, β = ω/cl1 cos θ1 and σ = ω/cl1 sin θ1.

We can relate the various amplitudes using 4 boundary
conditions:

1. The sum of normal (tangential) components of the
particle velocity at the boundary should be contin-

uous:

v1⊥ = v2⊥, v1‖ = v2‖ (C3)

2. The sum of normal (tangential) components of the
mechanical stress at the boundary should be con-
tinuous:

ρ1c
2
1

∂v1

∂z
= ρ2c

2
2

∂v2

∂z
, etc. (C4)

Writing these boundary conditions and combining with
Eqs. C1 and C2 would produce a system of linear equa-
tions for the various amplitudes which can be solved to
obtain the transmission coefficient η as a function of in-
cident angle. The phonon transmission probability n
across the boundary is then defined as the angular av-
erage of the transmission coefficient:

n =

∫ π/2

0

η(θ1) sin(2θ)dθ

=

∫ θc

0

η(θ1) sin(2θ)dθ

where θc is the critical angle. For detailed derivation we
refer reader to the appendix of Ref. [130].

Table IV contains a collection of transmission proba-
bilities calculated in this manner.

Appendix D: Brillouin Zones

Fig. 11 shows the Brillouin zones for each of the lat-
tice symmetries considered in this paper. Of particular
importance are the X-valleys in the face-centered cubic
type, and the L-M symmetry line in the hexagonal type,
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as shown in Fig. 2. These points have a basic rotational
symmetry about one of the cardinal axes. The rhombo-
hedral type is more complex, integrating a twisted crys-
tal structure which results in asymmetric valleys. The F
symmetry point is the location of the indirect gap.
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FIG. 11. Brillouin zones and high-symmetry points for the
polytypes of SiC. (a) Face-centred cubic type for the 3C poly-
type. (b) Primitive hexagonal type for the 2H, 4H, 6H and
8H polytypes. (c) Rhombohedral hexagonal type for the 15R
polytype.
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Lake, A. M. Gunyhó, K. Y. Tan, S. Simbierow-
icz, L. Grönberg, J. Lehtinen, M. Prunnila, J. Has-
sel, A. Lamminen, O.-P. Saira, and M. Möttönen,
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