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Abstract

In this paper, we make a methodological point concerning the
contribution of the representation of the output of a neural net-
work model when using the model to compare to human er-
ror performance. We replicate part of Dell, Juliano & Govin-
djee’s work on modeling speech errors using recurrent net-
works (Dell et al., 1993). We find that 1) the error patterns
reported by Dell et al. do not appear to remain when more net-
works are used; and 2) some components of the error patterns
that are found can be accounted for by simply adding Gaussian
noise to the output representation they used. We suggest that
when modeling error behavior, the technique of adding noise
to the output representation of a network should be used as a
control to assess to what degree errors may be attributed to the
underlying network.

Introduction

Human error performance has often been cited as a window
into the mechanisms underlying behaviors. Cognitive model-
ers, unlike artificial intelligence researchers, aim to have their
models make the same mistakes people do, as well as account
for correct behavior. They may then argue that, to the extent
which the model matches both kinds of data, it is a better
model than one that only accounts for correct performance.
They may then be somewhat more confident in making the
inference that, however the model works, humans may work
the same way.

However, once a model makes error patterns similar to hu-
mans, it is important to understand what the source of those
errors is in the model. In this paper, we replicate Dell et al.’s
(1993) (henceforth Dell93) model of speech errors. While
our error patterns are somewhat different than the ones they
found, their error patterns are exhibited by some of our net-
works. On average, however, the performance of these net-
works do not match the human data as well as they did in
Dell93. We attribute this to a large N for our models (we test
fifteen networks of each type to Dell93’s three).

This is not the point of this paper, however. Rather, it is a
methodological one. Lachter & Bever (1988) criticized neu-
ral networks for using representations that predetermined the
results. Of course, one chooses representations that are good
for the domain. But how can we separate the importance of
the representation in studies modeling error data? Here, we
give a technique for assessing the contribution of the repre-
sentation to the error patterns that separates it from the under-
lying network. Essentially, the technique is to add Gaussian
random noise to the output patterns. To the extent that errors
can be explained in this way, the underlying noise generating
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Figure 1: Pronunciation Network (Dell et al., 1993)

process (the network) is not very relevant. On the other hand,
differences from this noise represent biases in the errors that
can be attributed to the underlying network processing. In
the following, we review Dell et al.’s model and results, we
present our replications both with and without an underlying
network, and discuss the implications.

The Model

Figure 1 shows the structure of the networks used in this
work. This structure is identical to one of the networks used
in Dell93 (they varied whether they had output recurrence or
hidden recurrence or both). The network consists of a feed-
forward path from input and state units through a hidden layer
to a final output layer. Activation levels from both the hidden
units and the output units are copied directly to their corre-
sponding state units at the start of the subsequent time step.
The networks were trained to map from a representation
of a word to pronunciation, using two types of input repre-
sentation of the word. One consisted of a random pattern of
bits, simulating the arbitrary nature of mapping from meaning
to sound (Cottrell and Plunkett, 1991; Cottrell and Plunkett,
1995). The other input pattern simulated reading, by using
three banks of five bits to represent the letters in the word,
with a random code for each letter. In order to capture the
temporal aspect of speech, the network output produces each
phoneme segment sequentially, as in (Cottrell and Plunkett,
1991). The training set we used, identical to that from Dell93
(see Acknowledgments), consists of a subset of 50 frequent
English words which have both 3 letters in their written form
and 3 phonemes in their spoken form. Each word then is
completed with a “null” end-of-word segment, so each out-
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put pattern is a sequence of four elements, always ending in
the null pattern.

As in Dell93, networks were not trained to full compe-
tence; rather, training was halted at the end of any series of 50
epochs for which the errors on a per segment basis were less
than 10%. This was done in order to analyze the types of er-
rors made by the nets and to compare the frequency and types
to those produced by humans in natural discourse settings.

In general, there are 3 types of errors which can occur:
segment omission, insertion, and substitution. We classify
these errors as to whether they violate any of the following
constraints:

1. Phonotactic Regularity. Errors will usually produce sound
sequences which are valid in the language (an estimated

1% of errors in humans violate this).

. CV Category Effect. Vowels replace vowels; consonants
replace consonants (violation rate 0.5%).

. Syllabic Constituency. When a vowel and an adjacent con-
sonant are in error, it is more likely to be a VC than a CV
(estimated to be at a ratio of 3).

. Initialness. Onset consonants are more likely to be in error
than noninitial consonants (estimated at 62%).

Table 1 gives the rate at which these errors occur in human
speech, as estimated by Dell93 from several error corpora and
secondary sources (e.g., (Shattuk-Hufnagel, 1983; Shattuk-
Hufnagel, 1987; Stemberger, 1983)).

Methods

We attempted to follow the methods outlined by Dell93 as
closely as possible in training our networks. In the following,
we give these procedures in detail as well as our methods for
producing the noise model and scoring the errors.

The data consisted of the frequent word vocabulary from
Appendix B of Dell93, which consisted of English words
with both 3 letters and 3 phonological segments. Two input
representations were used: a 30-unit random representation
and a 15-unit correlated representation where each input let-
ter was assigned an arbitrary 5-bit code. The networks were
comprised of a feedforward path with 30 or 15 input units, de-
pending on input representation, 20 hidden units, and 18 out-
put units which were a feature-based representation of each
phoneme. The output coding used is that from Dell93 Ap-
pendix A. The networks had as additional inputs a state layer
which consisted of a copy of the output activations from the
previous time step (hence it contained 18 units) and a context
layer which consisted of a copy of the hidden layer activa-
tions from the previous time step (hence, 20 units). All con-
nection weights were initialized to a random number in the
range [-0.1,0.1], and each hidden and output unit had an ad-
ditional bias input. The standard logistic activation function
was used; momentum was 0.5 while the learning rate was 1.0
for the correlated input vector networks and 0.25 for the ran-
dom input vector networks.

For each epoch of training, the words in the training set
were presented in a new random order. At the beginning of
each word, the context units were set to zero and the state
units were initialized to the “null segment” (all values of 0.5).
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Each word’s training input representation was clamped at the
input layer while the output layer was trained to produce each
phonemic segment of the word sequentially, followed by the
null segment vector. Online backpropagation was used, with
error propagated back and weights updated at the end of each
forward pass of an output segment. An output segment was
then considered correct if the values at the output layer were
closer (by Euclidean distance) to the correct output than to
any other valid segments.

15 separate networks of each of the two model types were
trained, each starting with different random seeds. Perfor-
mance of each network was examined at every 50 epochs;
training was stopped when the networks achieved greater than
90% correct output segments. This occurred by 200 epochs
for (Dell et al., 1993) and from 100 to 300 epochs for the
replications presented here.

For the Noise simulations, a vector consisting of each out-
put segment in the training set was perturbed with random
noise generated by a Gaussian distribution with mean 0.0
and standard deviation of 0.31. This standard deviation was
selected to produce overall segment correctness percentages
consistent with those produced by (Dell et al., 1993) net-
works, approximately (but no less than) 90% correct seg-
ments. 15 noise sequences were produced, again each with a
different random seed. Since the networks were constrained
to perform at greater than 90% correct segments, any noise
sequence which correspondingly caused more than 19 seg-
ment errors was climinated from consideration and substi-
tuted with another sequence. Two such sequences were elim-
inated until the desired 15 sequences were produced. For
both the noise model and the random- and correlated-input
replication networks, each training set output segment was
marked for type of error occurrence (omission, insertion, sub-
stitution). These errors were subsequently analyzed at the
word level to determine how well they followed the word
constraints. Phonotactic Regularity was assessed by hand-
scoring the errors produced. Some ambiguous cases were
given to Gary Dell for scoring (see Acknowledgments). Spe-
cific rules for error categorization (mutually exclusive but not
exhaustive), labeled by the constraint they were used to mea-
sure, are as follows, scored in the following order:

1. CV Category Effect: A word has a cross category C-V error
if the target output segment was a vowel and the produced
output segment was a consonant, or vice versa.

2. Syllabic Constituency Constraint: A word has a syllabic
constituent error if two immediately adjacent segments are
in error, where one is a vowel replaced by another vowel
and the other is a consonant replaced by another conso-
nant. Further, any other consonant immediately adjacent
to the vowel must not be replaced by an incorrect conso-
nant. A syllabic constituent is then further categorized as a
VC slip or a CV slip, depending on the relative location of
the vowel in the pair.

. Initialness Constraint: An error was categorized as a
single-consonant substitution if the output segment pro-
duced a consonant different from the target segment con-
sonant, and any immediately adjacent vowels were not re-
placed by an incorrect vowel. Each single-consonant sub-
stitution was then classified as initial or final depending on



whether the erroneous consonant preceded or followed the
vowel within the same syllable. Finally, the consonant on-
set ratio is then the ratio of initial-consonant errors to the
total of both initial and final consonant errors.

Since the purpose of this work is to attempt to model and
explain human performance, we are interested in how well
our models track human error data based on the constraints
discussed earlier: Phonotactic Regularity, Cross-Category Er-
rors, Consonant Initialness, and CV/VC Constituency. To this
end, we use the deviation score described in Dell93, based
on the differences in error proportions between the models’
performance and human performance. Since we do not have
variances, but only average data for humans, this measure
tests for differences in means. For the overall deviation, the
score is the sum of the squared differences between the hu-
man proportion and the model proportion. Each proportion
is transformed by an arcsine conversion, included to correct
“for differences in variability for extreme proportions” (Dell
et al., 1993).

Deviation = Z (arcsin(Hp;"®) - «:u*csz'n(!l./fp.-0‘5))2

where Hp; and M p; are the human and model proportion
of errors on constraint type i, respectively. i ranges over the
five constraint types above. We are also interested in the de-
viation score for each constraint considered individually. The
square roots of these scores were then compared using analy-
sis of variance (ANOVA). Analysis of variance was also com-
puted on the raw error proportions themselves.

Results and Discussion

Each pair of the 3 methods covered in this paper (ran-
dom network input, correlated network input, and Gaussian
noise-perturbed output units) was analyzed for difference in
both overall deviation score and for deviation from human
standards for each measure separately. The correlated and
random networks performed significantly differently on the
Phonotactic Regularity constraint, F(1,28)=9.134, p=0.005,
with the correlated model deviating less from the human
standard. These two models did not perform in a signif-
icantly different manner for the Cross-Category error con-
straint [F(1,28) = 2.991, p = 0.095], the CV Constituency
[F(1,28) = 0.178, p = 0.676], the VC Constituency [F(1,28)
= 0.101, p = 0.753], the Onset Consonant Ratio [F(1,28) =
0.022, p = 0.884], or the overall deviation measure [F(1,28) =
0.119, p =0.733].

The Gaussian Noise model compared similarly with the
random input model, with its smaller deviation from the hu-
man standard differing significantly for Phonotactic Regu-
larity F(1,28) = 19.631, p < 0.001 while not differing in
the other measures (Cross-Category F(1,28) = 0.261, p =
0.118, CV Constituency F(1,28) = 0.060, p=0.808, VC Con-
stituency F(1,28) = 0.348, p = 0.560, Onset Consonant Ra-
tio F(1,28) = 0.029, p = 0.865, Overall F(1,28) = 0.822,p =
0.372).

The Gaussian-Noise model differed significantly from the
correlated model on both Phonotactic Regularity [F(1,28) =
4,816, p = 0.037] and on Cross-Category errors [F(1,28) =
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17.808, p < 0.001] with a closer match to the human stan-
dard for both measures; it was not different on the CV Con-
stituency [F(1,28) = 0.326, p = 0.572], the VC Constituency
[[5(1,28) = 0.068, p = 0.796], the Onset Ratio [F(1,28) =
0.001, p =0.979], or the overall deviation measure [F(1,28) =
0.371, p = 0.547).

Using the deviation score measure, it would appear that all
three techniques performed approximately the same on most
of the measures, However, examining the raw average error
proportions gives a different picture, as shown in Table 1.

One important measure to consider in Table | is that of
the Onset Ratio. Based on the deviation score measure used
in Dell93, the error proportions for each of the 3 simulation
methods presented here appear nearly equivalent. However,
inspection of the raw scores makes it clear that this is not the
case: the random and noise model are much less than, and
the correlated model much greater than, the human standard
of 62%. This distinction does not present itself in the ANOVA
results because the measure used calculates the squared devi-
ation from the standard. This type of measure is intended to
ensure that data with high variance centered around a mean
receives a worse score than data centered on that mean which
has small variance. The systematic offset to one side or the
other can then potentially be lost in this type of measure, as
can be seen above. Clearly, use of the deviation measure was
necessary in the original case, since the only data available
from the human standard is the means, and the data sets could
not be directly compared in the usual manner without some
form of variance measure on the human standard. However,
in this case we actually do want to compare the three models
with each other so we can dispense with the deviation score
and compare the raw error proportions with analysis of vari-
ance.

For this measure, the analysis appears a bit different. For
the Phonotactic Regularity constraint the random model dif-
fers from both the noise (F(1,28) = 18.445, p < 0.001) and
the correlated model (F(1,28) = 7.439, p = 0.011), and the
noise and correlated models also differ (F(1,28) = 6.886, p
= 0.014). For the Cross-Category error constraint, the noise
and correlated models produce different results (F(1,28) =
17812; p < 0.001). Neither the noise and random (F(1,28)
= 2.574, p = 0.120) nor the correlated and random (F(1,28)
= 2.836, p = 0.103) differ. For the CV and VC Constituent
measures, no significant differences were found: noise and
random (F(1,28) = 0.154 for CV & 0.000 for VC, p = 0.698
& 0.997); noise and correlated (F(1,28) = 1.799 & 0.157, p
= 0.191 & 0.695); correlated and random (F(1,28) = 3.035
& 0.136, p = 0.092 & 0.715). In the case of the Onset Ra-
tio, the correlated model differs from both the random model
(F(1,28) = 36.390, p < 0.001) and the noise model (F(1,28)
= 50.835, p < 0.001). The noise and random models do not
differ, (F(1,28) = 0.455, p = 0.506).

What does this maze of statistics tell us? Recall that what
we want to know is how much the representations chosen af-
fect the outcome of the simulations. Thus, we are concerned
with how the noise model performs in terms of the human
performance standard, and then how the network models add
to that,



Table 1: Model Error Characteristics

Phonotactic Cross Onset VC CvV vciey
Model Regularity Category Ratio Slips Slips  Ratio
Random 86.0 97.8 379 493 173 2.85
Correlated 95.5 95.3 834 425 400 1.06
Noise 99.7 99.7 322 494 2.19 2.26
Dell93
Random 98.0 100.0 58 10 4 2.5
Correlated 94.3 100.0 62 9 2 45
Human 99.0 99.5 62 6 2 3

Analysis: Phonotactic Regularity

The noise model produces only one phonotactic regularity vi-
olation, thus averaging 99.7% across the 15 noise runs. This
high level of correctness corresponds well with the human
error data estimated at 99%, allowing attribution of perfor-
mance on this measure to the representation chosen.

Analysis: Cross Category Constraint

As alluded to in Dell93, the high conformance to the Cross-
Category constraint is mostly due to the output representa-
tion, Cluster analysis of the output representations show that
the vowel representations are distinct from the consonant rep-
resentations, and thus small deviations are more likely to
change a vowel to another vowel or a consonant to another
consonant. This is empirically verified by the performance of
the noise model: vowels do not, in general, become closer to
consonants with small errors and vice versa. Thus, the Cross-
Category constraint is attributable to the representation rather
than the network structure or learning. In fact, the network
models move the errors further from the human data.

Analysis: Onset Ratio

Analysis of the Onset Ratio constraint is more complex. Re-
call that this constraint claims that segment onset consonants
are more likely to be in error than segment coda consonants.
Both human standards and some of the networks in Dell93
show this. However, the noise model examined here shows
the opposite effect, with coda consonants being in error al-
most twice as much as onsets. This phenomena can be ex-
plained by confluence of two statistical factors. First, the
output phoneme data set is biased toward coda consonants.
There are 40 consonant phonemes in the onset category, com-
pared to 54 in the coda set. This produces an onset to total
consonant ratio of 42%. If each consonant was equally likely
to be in error, this is what the Onset ratio should be. One
would then expect the noise model to have produced this ra-
tio, but it did not. For the total of 15 instances of the noise
generation, there were 34 consonant-to-consonant errors in
the onset position with 66 in the coda position (a ratio of
approximately 34%). However, there are several consonants
which occur in the coding of the output phonemes, which do
not occur at all in the training set. Of specific interest are the 4
syllabic consonants, commonly depicted as /rS/, /1S/, /nS/ and
/mS/. These syllabic consonants have representation identical
to their “plain” consonant partners except in the case of the
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voicing feature. That is, /rS/ differs from /r/ in having one
additional bit turned on. All of the syllabic consonants have
this same difference, and additionally no other consonants in-
clude this feature. This means that there is a bit turned on in
the coding of the syllabic consonants which is not used in any
other consonants.

Examination of the error set for the noise model revealed
21 cases where a target consonant produced a syllabic conso-
nant in error; in each of these cases, the intended consonant
was the corresponding “plain” version of the consonant (In all
30 networks of the random and correlated models, there was
only one error of this type total). Since an output segment is
classified as the phoneme to which it is closest in Euclidean
distance, none of these phonemes would have been marked
in error if the syllabic consonants were excluded from the set.
The majority of the syllabic errors which did occur were tar-
gets of /t/ and /n/, both of which occur more frequently in the
coda position. Eliminating these from the total error counts
mentioned in the above paragraph, we then are left with 24
onset consonants and 56 coda consonants in error, for an On-
set Ratio of 44%, much more in line with the predicted 42%.

This being accounted for by the representation, it can then
be concluded that the difference between the above rates and
the performance of the correlated model (and the analogous
networks from Dell93) on the Onset Ratio constraint is due
to the sequential nature of the networks.

Analysis:Syllabic Constituency

The Syllabic Constituency Constraint (VC/CV Ratio) derives
from the observance of predominantly more VC than CV type
substitutions in human error data. The respective frequencies
cited by Dell93 are 6% and 2% of all segment errors. While
analysis of the deviation scores and raw error proportions re-
vealed no significant differences in either the VC or CV sub-
stitution error rates between any pair of the three model types,
it also did not show any of them to be different from the hu-
man data. On the whole, given that all of the models were
constructed to make errors, it is not surprising that some per-
centage of them should make errors on adjacent segments,
nor that some of these errors should be VC or CV substi-
tutions. As previously noted, the segment representation is
such that the easiest errors to make are V- Vand C —» C
substitutions. The interesting phenomena is, rather, that the
predominance of VC over CV substitutions observed in the
human data is maintained in the models’ errors. The VC to
CV ratio for the human data is 3:1; those for the correlated



input, random input, and Gaussian Noise models are, respec-
tively, 4.9:1.7, 4.3:4.0, and 3.1:1.9. Though none of the mod-
els' ratios match the human ratio precisely, the random input
and Gaussian Noise models show a strong preference for VC
errors. The correlated-input model's VC slips barely outnum-
ber its CV slips, however.

If not for the fact that the Gaussian Noise model also ex-
hibits this bias toward VC slips, this evidence would seem to
suggests that at least the random input network model may
have captured some facet of the human production process
— for how can the representation of the individual segments
possibly explain the preference for erring on adjacent seg-
ments solely because the vowel precedes the consonant? In
discussion Dell93 attributed the presence of the syllabic con-
stituency effect in their networks’ errors to an interaction be-
tween the training vocabulary and the sequential nature of
the networks. Pointing out that the training vocabulary has
a greater redundancy in its VC than in its CV patterns, Dell93
conjectured that this caused the networks to develop such a
strong association between the segments of the oft repeated
VC sequences that they came to represent them internally as
a single unit. Hence, when an error occurred by chance on
the initial vowel of an infrequent VC pair and resulted in an-
other vowel that was part of a frequent VC pair, the network
was apt to be pulled off its original course and onto the well-
worn trajectory between the in-error segment and its compa-
triot consonant. This seems like a sound enough explanation,
but we conjecture that it is only part of the story.

Since the Gaussian Noise model has a strong tendency to
produce VC over CV errors, even more so than one of the
neural network models, we are forced to look harder for the
source of this predisposition. Looking at the training vocab-
ulary from a slightly different angle than Dell93, a second
potential explanation for VC to CV predominance becomes
apparent.

In Table 3 below it can be seen that there are simply more
opportunities for a VC error to be made than for a CV error.
To assess the contribution of this imbalance toward inducing
a greater number of VC errors, we calculated the expected
number of CV and VC errors based on the token type prob-
abilities and a random distribution of segment errors. The
probability of a segment error occurring on any given seg-
ment was based on the average number of segment errors for
all models combined. The expected error rates obtained were
0.00475 and 0.00434 for VC and CV errors, respectively. Us-
ing these predictions we then estimated the expected VC and
CV error proportions as 0.0684 and 0.0629.

The expected proportions above, however, show only a
slight bias toward VC errors. What then can be responsi-
ble for the Gaussian Noise model producing nearly double
the amount of VC errors as CV? Since the effect cannot
be entirely explained by token type frequency with the as-
sumption that errors are randomly distributed, perhaps this
assumption is fallacious. The only reasonable explanation re-
maining is that there is a consistent and qualitative difference
between vowel-preceding and vowel-succeeding consonants.
For some reason, vowel-succeeding consonants must be pre-
disposed at the representational level to errors.

To investigate this possibility, we analyzed the consonants
that follow a vowel compared to the ones that precede a
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Table 2: Frequency & Neighbor Density of Vowel-adjacent
Consonants

Pre- # Post- #
vowel Freq Neighs || vowel Freq Neighs

h 5 2 t 14 8
g 5 2 n 12 8
r 4 8 r 6 8
b 4 8 d 6 11
y 3 2 z 4 10
w 3 2 s 2 8
] 3 8 g 2 2
n 3 8 m 1 7
m 3 7 | 1 8
k 3 2 b 1 8
1 2 8
f 1 6
t 1 8
P 1 7
J 1 5
d 1 11

vowel. In particular, we examined the number of neighbors
each kind of consonant has within a Hamming distance of
3. As seen in Table 2, the consonants following a vowel
have many more neighbors, on average, than the consonants
preceding a vowel. This means that consonants following a
vowel are much more likely to slip to an erroneous conso-
nant, which, if their neighboring vowel also slips, would lead
to more VC errors than CV errors.

Again, Dell93 claim that the greater redundancy of VC ver-
sus CV units in the frequent vocabulary is responsible for
creating the effect of the syllabic constituency constraint in
their models. Presumably, the VC units come to be consid-
ered a single unit and the VC slip predominance is a resultant
“emergent property”. Our explanation above suggests that
the Gaussian Noise models that we produced can account for
this effect. However, there is a noticeable qualitative differ-
ence between the VC slips of the network models and the VC
slips of the Gaussian Noise model. Dell93 cited the following
three errors as particular examples of VC errors that indicated
the networks were learning to associate redundant VC pairs :

big — /bed/
him — /h3n/
old — /#nd/ (#=schwa)

In all the cases above, the low frequency VCs : /lg/, /Im/
and /ld/ are replaced with VCs that occur more that once in
the training set. These very same errors also showed up in
our network models’ output — some, exactly as listed above,
and others with just the relevant VC — VC substitution repli-
cated. Furthermore, looking at the frequencies of replaced
vs. replacing VC units for all such errors made by our mod-
els shows that the random model produces VC errors that are
frequent in the target vocabulary, while the correlated model
and the Gaussian model do not, In particular, the Gaussian



Table 3: Vocabulary syllable structure

Target V-C Pattern

CCC Ccv CcvC CVvV vVCC VCV VvVC VVV

Frequency in Vocabulary 0 1

model takes frequent pairs and replaces them with pairs that
never occur.

The conclusion we draw from this is that, while the net-
work models have the VC/CV ratios in the right ballpark, they
cannot claim to have them because of an effect of the underly-
ing network. Rather, all that can be claimed is that the content
(which is much more human-like), not the proportion, of the
errors is due to the network’s action.

Conclusion

While this work is still at a preliminary stage, we believe we
have demonstrated that an important component of any anal-
ysis of network error must separate out the contribution of
the network from the representation. In the above analysis
we found, for example, that several of the components of the
error pattern could simply be accounted for by adding noise
to the output representation. In this case, the network’s role
is simply as the supplier of that noise.
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