UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A Delay-Based Congestion-Control Protocol for Information-Centric Networks

Permalink
https://escholarship.org/uc/item/0404n0c4

Authors

Albalawi, A.A.
Garcia-Luna-Aceves, J.J.

Publication Date
2019

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/04q4n0c4
https://escholarship.org
http://www.cdlib.org/

A Delay-Based Congestion-Control Protocol for
Information-Centric Networks

Abdulazaz Ali Albalawi’ and J.J. Garcia-Luna-Aceves$!
§Computer Science and Engineering Department, University of California, Santa Cruz, CA 95064
TPARC, Palo Alto, CA 94304
Email: aalbalaw @ucsc.edu, jj@soe.ucsc.edu

Abstract—The Delay-based Congestion-control Protocol (DCP)
is presented. DCP is designed to detect and control congestion at
the consumer end of a network based on an Information-Centric
Networking (ICN) architecture without the use of round-trip
time measurements or additional congestion signaling. DCP is
based on a receiver-driven, window-based approach to congestion
control using measurements of delays along the forwarding path
from a producer or caching site to a consumer. DCP was
implemented using the ndnSim simulator and compared to two
other protocols, namely: an end-to-end protocol that behaves in
the same way as TCP, and a pure implementation of the Low
Extra Delay Background Transport (LEDBAT) algorithm as a
congestion-control protocol for ICN’s. The results clearly show
that DCP outperforms LEDBAT when caching is involved. We
evaluate the known latecomer-advantage problem that exists in
LEDBAT in the context of an ICN architecture and address how
DCP can overcome this issue.

I. INTRODUCTION

This paper focuses on congestion control in the context
of information-centric network (ICN) architectures in which
content is disseminated using Interests issued by consumers
and producers or caching sites respond to them with the con-
tent requested. Examples of Interest-based ICN architectures
are Named Data Networking (NDN) [2] and Content-Centric
Networking (CCN) [1]. An Interest requesting the desired
content states the name of the content and other information
that can be used for the retrieval of the content. Interests are
forwarded towards those sites that advertise names that are
the best matches to the names stated in the Interests. Data
packets sent in response to Interests are sent following the
reverse paths traversed by those Interests that are successfully
delivered. The in-network caches used in an ICN allows
Interests to be resolved from caching sites closest to the
consumers along the paths to the nodes with the best-match
names for the Interests.

The main approach used in the Internet to support reliable
end-to-end communication and congestion control today is
TCP, which relies on establishing end-to-end connections over
which byte streams are sent reliably between two specific
sites identified by their addresses and ports. Replacing end-
to-end connections with Interest-based exchanges between a
consumer and one or more other parties providing the re-
quested content raises a number of challenges in the design of
end-to-end mechanisms for reliability and congestion control.
Section II provides a summary of related work on congestion-
control protocols for ICN architectures addressing these chal-

lenges. Interestingly, most congestion-control protocols for
ICN architectures rely on RTT estimates. The LEDBAT (Low
Extra Delay Background Transfer) protocol [8] was recently
introduced as the new transport protocol operating on UDP for
BitTorrent, and has the distinctive feature that it is based on
a delay-based congestion-control algorithm that uses queuing
delay estimates over the forward path between senders and
receivers of packets.

The contribution of this paper is the introduction of the
Delay-based Congestion-control Protocol (DCP), an end-to-
end congestion control protocol for ICN architectures based
on queuing delay estimates similar to the one used in the
LEDBAT algorithm. Section III presents the motivation for the
design of DCP and Section IV describes its operation. Section
V explains fairness issues among DCP consumers. Section VI
evaluates the performance of DCP through simulations and
provides a comparison between DCP and other congestion-
control approaches, LEDBAT and an approach based on TCP
in the context of an ICN architecture. Section VII provides
our conclusions and an insight on our future work.

II. RELATED WORK

Considerable research has been conducted in different areas
of ICN architectures, such as content routing, caching policies,
and congestion control. Several congestion-control schemes
have been proposed in the context of ICN architectures and
NDN in particular. The novelty of the schemes is that the re-
ceiver is in charge of controlling retransmissions and managing
congestion, given that their design is based on the exchange of
Interests and responses sent to them. Some of these proposals
depend on network assistance to detect and control congestion
in the network, either by shaping Interests or using congestion
signaling.

Depending on the caching policy, some protocols [4], [3]
assume that content chunks might be served by different
sources. Accordingly, they rely on measurements of a single
round-trip time (RTT) as it is done in TCP can give the
wrong indications of congestion in the network, because
content could be served from multiple sources over multiple
paths to the same consumer. Furthermore, keeping multiple
RTT’s for multiple sources adds complexity on the receiver
side. In addition, an out-of-order delivery can cause duplicate
acknowledgments for the case of TCP, which can be used as
an indication of congestion in the network. However, based



on the caching policy implemented in an ICN, data packets
can be delivered out-of-order without having anything to do
with congestion. Protocols that follow a hop-by-hop approach
require the network router’s assistance to detect and control
congestion in the network. Some of these protocols control
congestion by dropping Interests using Interest shapers to
force a timeout at the consumer end which can be costly.
Surprisingly, most of these schemes are based on using RTT
estimates as the primary indication for congestion in the
network.

ConTug [4] and ICP [3] are among the first proposed
transport protocols for ICN’s. They are window-based pro-
tocols that mimic the AIMD (additive increase multiplica-
tive decrease) operation of TCP and assume that content
chunks could be served from multiple sources. In ConTug,
the retransmission timeout is set to the maximum RTT that
is measured during a session. This approach can lead to a
long timeout value for the Interest in a scenario in which a
content chunk is served from the original producer or a remote
cache, while the rest of the chunks are served from a nearby
cache. If one of the chunks of the nearby caches is lost, the
consumer has to wait for a long time before a retransmission
timeout (RTO) is triggered and an Interest for the lost chunk
is retransmitted. The same scenario can be applied to the way
ICP sets the timeout value, because the timeout value is set
to the mean of the maximum and minimum RTT that was
measured throughout the session.

Most of the congestion control protocols proposed in the
context of NDN follow a hop-by-hop approach taking ad-
vantage of NDN’s stateful forwarding plane. Wang et al. [5]
propose a hop-by-hop Interest shaper for congestion con-
trol. Each router shape Interests going upstream in order to
control the rate of returning data thus avoiding congestion
in downstream links. However, the author assumes that data
and Interest size are fixed and link capacity is known. This
approach is improved in [10] by incorporating congestion
signaling using NACK packets, which is also proposed in [11].
Recently, Schneider et al. [13] propose PCON a congestion-
control scheme fro ICN’s that performs congestion signaling
to consumers by marking returning data packets. The protocol
does not require routers to have knowledge about the link
capacity, and does not require Interest and data packets sizes
to be fixed. The protocol detects congestion in the network by
measuring packet queuing time over an interval and compares
it to a target using CoDel AQM [12]. One of the main
differences between PCON and other hop-by-hop protocols
(e.g., the one in [S5]) is that PCON does not reject Interests
when it detects congestion but instead signals congestion back
to consumers by explicitly marking returning data packets.

ICP and ContTug use RTT estimates to determine conges-
tion in the network and follow Karn’s algorithm [6], which
states that a RTT estimate for a retransmitted packet cannot be
used in the RTT estimation. The disadvantage of this approach
is that during the period of congestion (when a packet is lost)
no estimates can be made. This leads to inaccurate estimates
of RTT during congestion, which may cause the consumer to

retransmit prematurely or after undue delays.

III. MOTIVATION

One of the main data structures used in NDN is the Pending
Interest Table (PIT). The PIT is used to aggregate faces of
Interests of the same data name. Once a router receives the
data packet in response to a given Interest, it delivers it to all
aggregated faces from which an Interest for the same content
was received.

Estimates regarding the increase or decrease of RTT should
not be used as primary indications of congestion in the
network. Using RTT estimates is not efficient to determine
whether congestion is increasing or decreasing along the
interest-path or data-path. Fig. 1 shows an example of two
Interests sent by the same consumer and their corresponding
data packets. Using only RTT measurements could lead to
an incorrect conclusion of congestion developing in the data-
path for the second packet. However, the true cause for the
increased RTT for the second data packet is congestion along
the interest-path, not the data-path. Such congestion could be
caused by a congestion at the PIT of one of the relaying
routers, for example.

t=1 I

NS T
t=2 L~
B R RTT1=4
~ = -
~ alt=25
~
D t=5 RTT2=45
= o
t=5 b
=
t=6.5

Fig. 1: Example of RTT ambiguity

Some of the congestion control protocols proposed for NDN
use packet losses or Explicit Congestion Notifications (ECN)
as indications of congestion in the end-to-end path. These
protocols allow the consumer to increase its sending window
until a loss occurs or a ECN mark is received. However,
this approach leads to delayed reactions to congestion, given
that a packet loss or an ECN notification at the bottleneck is
triggered after an increase in the queuing delay occurs. Hence,
consumers should use the increase in queuing delay along the
data-path as an early signal of congestion, instead of waiting
for packet losses or ECN notifications.

Because of the presence of PIT’s, an Interest other than the
one that creates the PIT entry experiences a shorter retrieval
delay than the first Interest. This can cause a consumer to
erroneously increase its Interest window size, because a shorter
RTT is used as an indication of more bandwidth being avail-
able. To address such a problem, consumers can determine if
data packets are being served from a close cache or a distance
producer by using measurements of delays along the data-path
instead RTT. The motivation in the design of DCP is to create
an approach that can be used as a building block for future
congestion-control protocols for NDN that avoid replicating



the same design and performance limitations in TCP. An ideal
congestion control protocol for NDN architecture should be
able achieve the following goals: (a) To utilize end-to-end
available bandwidth and knowledge of whether content is
being served from from a close cache or a distance producer;
(b) to maintain low queuing delays for data packets in a way
that does not affect the application performance; and (c) to use
the bottleneck fairly link by yielding to other network flows
that share the same link.

IV. DCP DESIGN
A. Measuring Packets Delay

In NDN, consumers can calculate the one-way delays
incurred by data packets in their own system time by us-
ing timestamps returned from the producer or middle nodes
(caches) in the data-packet headers. A producer or middle
nodes stamps the transmission time of the data packet in its
header so that the consumer can calculate the one-way delay
of data packet. The consumer then keeps both the transmission
time and arrival time of a data packet. Based on these time
stamps the consumer can calculate the one-way delay for
the data packet as follows: delayqy = Aq — Tq, where A is
the arrival time for a packet and T is the transmission time
of that packet. We note that aggregating Interests does not
affect the calculation of the one-way delays packets in DCP
even though all aggregated Interests for a certain data packet
receive the same transmission time as the one given to the
first Interest. This is because consumers in DCP are only
interested in measuring the relative delay among data packets
as an indication that content is being served from a new data
site.

B. Congestion Control

To meet our first design goal, DCP uses delay measurements
along the data-path to estimate the queuing delay. Whenever
the estimated queuing delay is less than a predetermined
threshold, the consumer infers that the network is not yet
congested and increases its sending rate by increasing the
congestion window (interest window) to utilize any bandwidth
capacity in the network. When the estimated queuing delay be-
comes greater than the predetermined threshold, the consumer
decreases its sending rate as a response to potential congestion
in the network.

The approach used for congestion detection in DCP is
shown in Algorithm 1. The algorithm is similar to the one
used in LEDBAT [14] with slight changes. We use the same
or similar terminology as in LEDBAT, where TARGET is the
maximum queuing delay that the consumer may introduce
in the network. To ensure fairness between multiple DCP
flows, the TARGET value must be the same. off-target is a
normalized value representing the difference between the cur-
rent measured queuing delay and the predetermined TARGET.
Notice that off-target can be positive or negative; a negative
off-target will result in a reduction in the congestion window as
the queuing delay is exceeding the application delay threshold.

C. Measuring Base Delay

A consumer using DCP can detect congestion in the network
by measuring data packets queuing delay and compare it to the
TARGET. However, it is important to distinguish the queuing
delay from the rest of the end-to-end delay components as
stated by the LEDBAT protocol. The end-to-end delay is the
time taken for a packet to be transmitted across a network
from source to destination, and can be decomposed into nodal
processing delay, transmission delay, propagation delay, and
queuing delay. Except for the queuing delay, the rest of the
end-to-end delay components are considered constant.

Separating the queuing delay component from the rest of the
end-to-end delay enables the consumer to detect any change
in the queuing delay in the network. The minimum delay that
packets experience along either the data-path or interest-path
is referred to as the base delay. The base delay is considered
to be the sum of all of the constant delay components since
queuing delay is always an additive element of the end-to-end
delay. Calculating the base delay in DCP is done with a similar
approach to that used in LEDBAT. It works by maintaining a
list of one-way delay minimal over a time interval. Then only
the the minimum value of the minimal delays in the list is
used as the approximate base delay for this path. A longer
time interval results in a higher likelihood the true base delay
is detected. However, a shorter time interval allows the base
delay to respond quickly to route changes. We set the time
interval to be 60 seconds as in LEDBAT’s original algorithm
and the length of the base delay list to be 6.

Algorithm 1 DCP: Estimating Queuing Delay

: function on initialization()
base_delay= +INFINITY

1
2
3:
4: function ONDATA (dataPkt)

5: dataPkt < current_delay

6 base_delay=min(base_delay, current_delay)

7 if (current_delay > base_delay)

8 queuing_delay=(current_delay-base_delay)

9: off_target=(Target-queuing_delay)/TARGET
10: else
11: queuing_delay=(base_delay - current_delay)
12: off_target=(Target+queuing_delay)/TARGET
13:

14: function updateCWND(off_target)
15: end function

Algorithm 2 DCP: Window Update
: function on initialization()

flightsize= 0

CWND= INIT_CWND

: function updateCWNDI(off_target)

: CWND+=(off_target*threshold_)/CWND
max_allowed_CWND=flightsize +1
CWND=min(CWNDI, max_allowed_CWND)
CWND=max(CWNDI, MIN_CWND)

end function

SRR A

—_

D. Measuring Current Delay

The consumer calculates the current delay for every data
packet. It is clear that the current delay value can fluctuate
from one data packet to another, which affects extracting the
actual delay estimate. To eliminate any outliers, LEDBAT



suggest the use of filters. One suggestion was to use Expo-
nentially Weighted Moving Average (EWMA) of the current
delay. Another suggestion was to use a NULL filter that does
not filter at all. However, in our implementation of DCP the
consumer maintains a fixed size list of the current delay that
gets updated for every new value it calculates. The length of
the current delay list is 5 and only the minimum value is used
to estimate the queuing delay.

E. Measuring Queuing Delay

The queuing delay estimation is simply the difference
between an end-to-end delay measurement and the current
estimate of base delay. The consumers measure the queue
delay for every data packet received after updating the base
delay and the current delay using Algorithm 1. If the queuing
delay of each packet exceeds the TARGET delay, the con-
sumer will consider the network is congested and reduce the
congestion window size according to Algorithm 2. However,
if the queuing delay is less than or equal to the delay target,
the consumer increases the size of the congestion window.
DCP uses a linear controller for increasing and decreasing the
consumer congestion window, allowing the protocol to recover
quickly from bad delay samples. The increase and decrease
of the congestion window is proportional to the difference
between the current queuing delay estimate and the TARGET
delay. The congestion window in DCP refers to the number
of Interests a consumer is allowed to send.

As the queuing delay gets closer to the TARGET delay,
the window growth slows down. To compete with concurrent
TCP flows fairly, the LEDBAT algorithm maximizes the
congestion window growth by 1 per RTT. This happens when
the queuing delay estimate is zero. The same approach is
used in DCP in the congestion avoidance state, where the
maximum window growth is only 1 per RTT as seen in line
7 in Algorithm 2. Also, in LEDBAT, the sender may maintain
its congestion window (cwnd) in bytes or in packets. The
decrease in the congestion window in DCP happens when
the queuing delay estimate exceeds the application’s TARGET
delay. The decrease in the window is proportional to the
difference between the TARGET delay and the current queuing
delay. This allows the consumer to decrease its sending rate as
a response to potential congestion in the network unlike loss-
based congestion control protocol. However, data loss can still
occur in DCP. A data loss is considered an indication of strong
congestion in the network.

The TARGET delay determines how much queuing delay is
tolerated in the network. For example, if the value of the target
is set to 0, it means that no delay is tolerated in the network.
This may lead to underutilization of the available capacity
in the network, because the bottleneck queue will always be
empty. A high TARGET delay might increase congestion in
the bottleneck and cause packets to be dropped. Therefore,
the choice of the TARGET delay is a trade off between these
two cases. The LEDBAT algorithm uses a TARGET value
of 100 ms or less [14]. The TARGET value is set to 50 ms

in our current version of DCP. The dynamic selection of the
TARGET value is left for future work.

F. Timeout

If the timeout interval for Interests is too small, unneces-
sary retransmissions of Interests occur. On the other hand,
a timeout interval that is too large results in the consumer
retransmitting Interests too late when a data packet or an
Interest is dropped. LEDBAT uses a congestion timeout (CTO)
as a strong indication of heavy congestion in the bottleneck
when a packet get dropped. The LEDBAT CTO approach is
based on retransmission timeout (RTO) in TCP.

Even though consumers in DCP are able to indicate con-
gestion in the network before a data packet is dropped at the
bottleneck queue, DCP uses CTO as an indication of strong
congestion in the network. When an Interest or data packet is
dropped, a CTO event is triggered and the consumer reducing
its congestion window to 1. The calculation of the CTO is
based on the RTT estimation, which is the time it takes to
send an Interest and receive the data packet for it.

G. Synchronization

No synchronization between the consumer and the producer
or middle nodes is required in DCP if data are retrieved from
the same source. This is because measurement errors in delays
due to clock offset are canceled out by their difference in the
queuing delay estimate.

Even though clock offset errors have no impact on LEDBAT,
cock offsets may be critical in an ICN architecture, because
Interests may be resolved from caching sites. For example, if
two consumers connected to the same router with caching want
to retrieve the same data and consumer b starts few seconds
after consumer a, consumer b initial requests will be satisfied
by the cache at the nearby router. If consumer b receives all the
cached content, it joins consumer « in retrieving the data from
the producer, This could lead to inconsistent calculation of the
one-way delays of data packets if the cache and the producer
have different clock offsets. Thus, causing clock offset to show
up as a linearly changing error in a time estimate instead
of fixed error. Such inconsistency is limited to the amount
of delay history maintained in the base delay estimator used
by DCP for measuring the one-way delays for data packet.
However, a more suitable solution is needed as explained next.

Measurement errors in delays in an ICN can be caused by
different clock offsets of different caching sites. This translates
into a difference of the clock rate from its true rate and can
be seen as a clock skew problem similar to the the skew of
LEDBAT’s one-way delay estimate. One possible consequence
of this issue in DCP occurs when data are retrieved from a new
data site with a clock offset that is greater than the previous
site clock offset. This results in a low estimate of the queuing
delay; however, it also lead to a lower base delay measurement,
so it does not lead to unfairness for the consumer. Another
possible consequence of the issue happens when data are being
retrieved from a new data site with a clock offset that is
less than the previous site clock offset. This results in a high



estimate of the queuing delay. This increase can reduce the
throughput of a flow, because the base delay will only keep
the minimal samples over a time interval. A high change in the
relative delay of data packets could be used by the consumer
to infer that such change in the delay is due to clock drift in
the clock offset, which means data is being be retrieved from a
new source. The sender then can compensate by recalculating
its base delay estimate.

LEDBAT suggested a correction mechanism for the syn-
chronization problem and related to clock skew. Even though
clock skew is usually very small, we believe more research
is needed to define the synchronization issue in an ICN
architecture. We leave the topic of researching and testing
different solutions to the issue as part of our future work.

Ipkt#1— — __

Ipkt#2=~_

Dpkt #1

Dii

Dpkt #2 "

RD;;=D;i- I

Fig. 2: Transmission of two data packets and the correspond-
ing relative-delay measurements

V. FAIRNESS AMONG DCP CONSUMERS
A. Latecomer’s Advantage

LEDBAT’s algorithm suffers from the “late-comer advan-
tage,” where late flows arriving at a non-empty bottleneck
increase their sending window more aggressively than already
existing flows due to wrong estimates of the base delay. For
example, If one flow arrives at an empty bottleneck it will be
able measure the correct base delay of the network, leading
to a correct estimate of the queuing delay. However, if a new
flow arrives at the bottleneck, it will calculate the queue delay
of the first flow as part of its base delay. Leading to wrong
estimate of the queuing delay, thus a higher target delay than
the first flow. This will result in aggressive increase of the
window size of the second flow causing the first flow to
back off as it sees the true queuing delay of the bottleneck
increase. Eventually, the second flow will start using the entire
bottleneck’s capacity while shutting the first flow out. There
have been several solutions to the late-comer advantage in
LEDBAT [9][15]. DCP solution to the late-comer advantage
is based on LEDBAT’s original approach, by using TCP like
slow-start.

A solution to the late-comer advantage is to introduce TCP
slow-start at the beginning of DCP flows. The goal is to
drain the queue empty by filling it which will likely induces
losses on already existing flows, allowing the new comer to

measure the correct base delay. Such a mechanism cannot
ensure fairness without causing packet drops in other flows.
Although such drops are limited, this suggests that a more
suitable solution is needed. We leave the topic of evaluating
different fairness solution in DCP for our future work. The
slow-start mechanism in DCP is similar to the one in TCP.
DCP uses it for new consumers joining the network to ensure
correct measurement of the base delay. During the slow-start
state, consumers double their sending window for every round-
trip time until a timeout event is triggered. After a timeout
event is triggered, consumers enters the congestion avoidance
state. Consumers in the congestion avoidance state follow
the the original algorithm in LEDBAT, where the maximum
increase of the window size is 1 per RTT.

B. Latecomer’s Disadvantage

The aggregation of Interests does not cause unfairness be-
tween consumers trying retrieve the same data content in DCP.
Even though a new consumer with aggregated Interests will
experience less delay than the consumer with initial Interest
request. For example, consider two consumers connected to the
same router, operating with the same link speed, and wanting
to retrieve the same data. Assume that Consumer 2 starting
after Consumer 1 before any of the Interests from Consumer
lare satisfied. The Interests from Consumer 2 Interests are
aggregated at the router, which could result in Consumer 2
having a low estimate of the queuing delay, because some
of the data packets for Consumer 2 may experience less
delay than data packets for Consumer 1. However, aggregated
Interests of Consumer 2 will also result in a smaller base delay
than the base delay for Consumer 1. The same happens when
caching takes place, as Consumer 2 experiences a low base
delay compared to Consumer 1.

However, there could be a case where a specific caching
scenario may cause underutilization of the link’s capacity.
Using our previous example, if the initial requests by Con-
sumer 2 were satisfied by a close cache resulting from prior
requests by consumer 1, Consumer 2 joins Consumer 1 in
retrieving the data from the producer after exhausting the
cache hits. If consumer 1 leaves the network, consumer 2
Interests will no longer be aggregated and instead they have
to traverse all the way to the producer or a more further away
cache. This scenario will cause underutilization of the link’s
capacity for consumer 2. This is because consumer 2 base
delay measurements were affected by the close caching site.
We identify this is as the “latecomer’s disadvantage”.

Consumers in DCP overcome this issue by resetting their
base delay list and calculating a new base delays whenever
they identify contents are being retrieved from a new site.
An immediate calculation of the relative delay can help
determine whenever contents are being retrieved by a new
site. To determine the change in the relative delay value of
data packets, we use RD;; = AD;; — Al;;, where RDj, 4
represents the delay experienced by packet j with respect to
packet i.



Fig. 2 shows the arrival of two Interests 1 and 2 at the
provider and the arrival of two data packets corresponding
to Interests 1 and 2 at the consumer. The relative delay value
fluctuates from one data packet to another due to congestion in
the network. Therefore, it is important to distinguish between
a change in the relative delay of data packets due to congestion
in the network rather than being the result of data being
retrieved from a new site. Because of this fluctuation, any
specific relative-delay value could be atypical, and hence an
average of the relative delay gives a better estimate of the delay
between packets in the network. The mean absolute deviation
(MAD) is the average of the absolute deviations between each
relative delay value and the average delay. Calculating MAD
helps deal with relative delays with negative value. The MAD
value is measured for the last 10 relative delays samples and
is updated with every new value. Upon obtaining a new value
of the relative delay, DCP measures how far the new relative
delay is from the average relative delay. If it is higher than
the MAD value, then the consumer infers that content is being
received from a new site. To ensure fairness between this
consumer and existing DCP flows, a consumer should resume
slow start whenever the base delay history is reset. as we
mentioned earlier. Also, since the value of the relative delay is
affected by packet dropout at the bottleneck queue, the relative
delay is not measured during slow start.

VI. PERFORMANCE

We evaluate the performance of DCP under different sce-
narios using simulation using ndnSIM [7].

A. Basic Bottleneck Configuration

The first experiment shows the protocol performance over
a simple network consisting of a single consumer and a
single producer scenario. We compare DCP against an end-
to-end protocol that behaves in the same way as TCP, where
consumers can only infer congestion via a retransmission
timeout and use AIMD window control to avoid congestion,
such a mechanism is used by most end-to-end protocols in
ICN. The simulations last for 60s, where the consumer will
be issuing Interests non stop as long as its remitted by it
congestion control protocol. The topology of the network is a
singe path of four nodes with a single consumer at one end
sending Interests for a content served at the other end. The size
of the data packet of the content is fixed at 1024 Byte with
Interest size of 24 Byte. The router’s queue is set to be equal 60
packets. The bandwidth delay product of the network is around
133 packets including the size of the queue. Since ndnsim
ignores the processing delay per packet, the only constant end-
to-end delay in the network would be the propagation delay
and the transmission delay. In our test we would be using a
TARGET delay of 50 ms, based on the network’s parameters,
this will allow enough packets to be build up in the queue
without being dropped.

Fig. 3b shows the size of the bottleneck’s buffer for the
whole duration of the simulation. Packets dropout is the only
way to detect congestion in the network for TCP. Therefore,

a consumer keeps increasing its sending rate, until it cause
a buffer overflow which will result in a timeout event to
be triggered. Thus, a consumer reduces its sending rate by
halving is congestion window. This process drains the queue
empty for few seconds until it get filled again and the same
cycle repeat. However, DCP (slow-start disabled) allows the
consumer to increase its congestion window as long as the
queuing delay is less than the TARGET delay. As soon as
queue builds, the consumer slow down its sending rate. Once
the queue delay reaches the TARGET delay in both protocols,
the consumer halts the window growth. This demonstrates
the main strength of DCP as a congestion control for ICN
by transmitting Interests at the bandwidth of the connection,
without congesting the network and without overflowing the
bottleneck’s queue. The congestion window reaches a steady
state value of 133 Interests as it can be seen in Fig. 3a.
DCP maintains this steady state value for the duration of the
connection with no occurrence of timeout since slow-start was
disabled. Fig. 3c shows the throughput for both protocols for
the duration of the simulation. With a bottleneck link of speed
10 Mbps the consumer in DCP was able to almost utilize the
link’s capacity with an average throughput around 9.3 Mbps.
As a result of the multiple packets dropout in the TCP based
protocol, the consumer was only able to achieve an average
throughput of 8.7 Mbps.

B. Caching

The topology of the network used to evaluate performance
with caching consists of two consumers retrieving the same
data. However, consumer 1 stops after retrieving around 100
data packets. Since caching is used, a consumer 2 initial
requests are satisfied by the closest cache. The cache starts
retrieving the data from the producer after consumer 2 exhausts
its capacity. Fig. 4 shows the increase of the congestion
window for both LEDBAT and DCP for consumer 2. It is clear
that a pure implementation of LEDBAT in ICN architecture
suffer from the “latecomer disadvantage”. This is because
consumer 2 initial requests were satisfied by a close cache, this
resulted in a small base delay. Therefore, once consumer 2 start
retrieving the data from the producer it will experience a high
queuing delay even thought the network is empty. However,
DCP (slow-start disabled) overcome this issue by using relative
delay measurements of data packets. Consumer 2 conclude
that an increase in the relative delay value if due to data
being retrieved from a new distance caching site or producer.
Resulting in consumer 2 resetting its base delay history.

C. Multi-Flow Scenario

We evaluate LEDBAT’s “latecomer advantage”in NDN and
how DCP with slow-start overcome this issue. The topology
used in the scenario consists of two consumers (Consumer 1
and Consumer 2) and two producers (Producer 1 and Producer
2). The two consumers request different content files of a fixed
data packet size of 1024 Bytes, each one is hosted by one of
the producers. The queue size is set to 120 to allow packets
not to be dropped due to buffer overflow. To simulate the



= DCP = = TCP

CWND

Time

(a) Window Size

= DCP = = TCP

(b) Buffer Size

Throughput

Time

(¢) Throughput

Fig. 3: Single-flow scenario

latecomer advantage in ICN, the second consumer should start
sending Interests when the queue is starting to build up and
the first consumer begin to experience an increase in current
delay. Based on our network parameter, that should be when
the window size of the first consumer is greater than 73, which
is equal to the bandwidth delay product of the network. This
way a later consumer account the queuing delay of the first
consumer as its base delay measurement, leading to a higher
target delay. Which lead to unfairness as the first consumer
will have to back off as it can sense true increase in the queue
delay of the bottleneck. The simulation for this scenario runs
for 60 seconds.

== LEDBAT == == DCP

140

120 -
100 +

80 .

CWND

60

40 4

30 40 50 60

Time

Fig. 4: DCP and LEDBAT performance under caching

== Consumer2 == == Consumer ]

150

100 - F

CWND

50

20 30 40 50

Time

Fig. 5: DCP performance under latecomer advantage

Fig. 5 shows the results for DCP with slow-start enabled.
Once Consumer 2 joins the network it will go into the slow-
start state. During this state Consumer 2 double its sending
window for every round-trip time until a timeout event is

triggered. Such a mechanism drains the queue empty, allowing
Consumer 2 to measure the correct base delay and hence
achieving fairness between the two consumers.

ACKNOWLEDGMENTS

This work was supported in part by the Jack Baskin Chair
of Computer Engineering at UC Santa Cruz.

VII. CONCLUSION

We introduced DCP, which adopts the congestion estimation
algorithm of LEDBAT in the context of an ICN. DCP is based
on a receiver driven, window-based approach to congestion
control using measurements of delays along the forwarding
path. We analyzed the known “latecomer advantage” problem
that exists in LEDBAT for ICN and how slow-start in DCP
can enable fairness. We also analyzed a new issue raised
by LEDBAT algorithm in ICN due to caching we call it
“latecomer disadvantage” and showed how the use of relative
measurements delay in DCP allow consumers to overcome this

problem.

REFERENCES

Community ICN,https://wiki.fd.io/view/Cicn, March 2, 2005.

[2] Named Data Networking, https://named-data.net.

[3] G. Carofiglio, et al. ICP: Design and Evaluation of an Interest Control
Protocol for Content-Centric Networking. In IEEE NOMEN 12, 2012.

[4] S. Arianfar, et al. “Contug: A receiverdriven transport protocol for

content-centric networks,” in IEEE ICNP 2010 (Poster session), 2010.

N. Rozhnova, et al. “An Improved Hop-by-hop Interest Shaper for

Congestion Control in Named Data Networking,” ICN 2013

P. Karn and C. Partridge. Improving round-trip time estimates in reliable

transport protocols. In Computer Communication Review, volume 17 No.

5, pages 2 — 7, August 1987.

A. Afanasyeyv, et al. ndnSIM: NDN simulator for NS-3. Technical Report

NDN-0005. (NDNsim)

D. Rossi, C. Testa, S. Valenti, and L. Muscariello, LEDBAT: The New

BitTorrent Congestion Control Protocol. IEEE ICCCN ‘10, Aug. 2010.

[9] D. Rossi, et al. News from The Internet Congestion Control World. ArXiv
e-prints, Aug. 2009.

[10] Y. Wang Caching, Routing and Congestion Control in a Future
Information-Centric Internet

[11] C. Yi, et al., A Case for Stateful Forwarding Plane. Technical Report
NDN-0002, July 2012.

[12] S. Braun, et al. An empirical study of receiver-based AIMD flow-control
for CCN. IEEE ICCCN, 2013

[13] K. Schneider, et al. A Practical Congestion Control Scheme for Named
Data Networking In ICN , 2016

[14] S. Shalunov. Low Extra Delay Background Transport (LEDBAT).IETF
Draft, Mar. 2009.

[15] G. Carofiglio, et al., The Quest for LEDBAT Fairness. Jun, 2010.

(1]

(5]
(6]

(7]
(8]





