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Abstract

Rationale & Objective: Novel approaches to the assessment of kidney disease risk during 

hypertension treatment are needed because of the uncertainty of how intensive blood pressure (BP) 

lowering impacts kidney outcomes. We determined whether longitudinal N-terminal pro–B-type 

natriuretic peptide (NT–proBNP) measurements during hypertension treatment are associated with 

kidney function decline.

Study Design: Prospective observational study.

Setting & Participants: 8,005 SPRINT (Systolic Blood Pressure Intervention Trial) 

participants with NT–proBNP measurements at baseline and 1 year.

Exposure: 1-year change in NT–proBNP categorized as a ≥25% decrease, ≥25% increase, or 

<25% change (stable).

Outcome: Annualized change in estimated glomerular filtration rate (eGFR) and ≥30% decrease 

in eGFR.

Analytical Approach: Linear mixed-effect and logistic regression models were used to evaluate 

the association of changes in NT–proBNP with subsequent annualized change in eGFR and 

≥30% decrease in eGFR, respectively. Analyses were stratified by baseline chronic kidney disease 

(CKD) status.
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Results: Compared with stable 1-year NT–proBNP levels, a ≥25% decrease in NT–proBNP 

was associated with a slower decrease in eGFR in participants with CKD (adjusted difference, 

1.09%/y; 95% Cl, 0.35–1.83) and without CKD (adjusted difference, 51 %/y; 95% Cl, 0.21–0.81; 

P = 0.4 for interaction). Meanwhile, a ≥25% increase in NT–proBNP in participants with CKD 

was associated with a faster decrease in eGFR (adjusted difference, −1.04%/y; 95% Cl, −1.72 

to −0.36) and risk of a ≥30% decrease in eGFR (adjusted odds ratio, 1.44; 95% Cl, 1.06–1.96); 

associations were stronger in participants with CKD than in participants without CKD (P = 

0.01 and P < 0.001 for interaction, respectively). Relationships were similar irrespective of the 

randomized BP arm in SPRINT (P > 0.2 for interactions).

Limitations: Persons with diabetes and proteinuria >1 g/d were excluded.

Conclusions: Changes in NT–proBNP during BP treatment are independently associated with 

subsequent kidney function decline, particularly in people with CKD. Future studies should assess 

whether routine NT–proBNP measurements may be useful in monitoring kidney risk during 

hypertension treatment.

PLAIN-LANGUAGE SUMMARY

N-terminal pro–B-type natriuretic peptide (NT–proBNP) is a biomarker in the blood that reflects 

mechanical stress on the heart. Measuring NT–proBNP may be helpful in assessing the risk of 

long-term losses of kidney function. In this study, we investigated the association of changes 

in NT–proBNP with subsequent kidney function among individuals with and without chronic 

kidney disease. We found that increases in NT–proBNP are associated with a faster rate of 

decline of kidney function, independent of baseline kidney measures. The associations were 

more pronounced in individuals with chronic kidney disease. Our results advance the notion of 

considering NT–proBNP as a dynamic tool for assessing kidney disease risk.

Graphical Abstract

In nondiabetic individuals with hypertension and at high risk of cardiovascular disease 

(CVD), the Systolic Blood Pressure Intervention Trial (SPRINT) demonstrated that targeting 

a systolic blood pressure (SBP) of <120 mm Hg compared with <140 mm Hg led to 

significant reductions in CVD events and all-cause death.1 However, the effect of lower 

SBP targets on kidney outcomes was less clear. Although randomization to intensive SBP 
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lowering in SPRINT led to greater dereases in estimated glomerular filtration rate (eGFR) in 

the first months of the trial, these acute changes are most likely related to hemodynamic 

changes rather than intrinsic kidney injury. However, even after these acute changes, 

participants in the intensive SBP lowering arm experienced a greater risk of incident chronic 

kidney disease (CKD) and a slightly faster decrease in eGFR compared with the standard 

am.2–6 Given the CVD and mortality benefits of intensive SBP lowering and the central 

role hypertension is believed to play in the development and progression of CKD, novel 

approaches are needed to understand kidney disease risk during hypertension treatment.

Subclinical elevations in N-terminal pro–B-type natriuretic peptide (NT–proBNP), a 

measure of cardiac wall stress and neurohormonal activation, are common in the general 

population and have strong associations with CVD and early death.7–9 Previous studies have 

shown that single NT–proBNP measurements are associated with increased risk of incident 

CKD and CKD progression.10–25 However, it is unknown whether changes in NT–proBNP 

levels during hypertension treatment can aid in the assessment of kidney disease risk.

In this ancillary study of SPRINT, we evaluated associations of baseline and 1-year changes 

in NT–proBNP with subsequent kidney function decline. We also evaluated whether these 

associations varied by baseline CKD status and randomization to intensive versus standard 

SBP lowering. We hypothesized that higher baseline levels and greater 1-year increases in 

NT–proBNP would be associated with faster decreases in eGFR independent of clinical 

characteristics, randomized treatment arm, and baseline eGFR and albuminuria.

Methods

Study Design

The design and protocol of SPRINT have been reported previously.1,26 In brief, SPRINT 

was an National Institutes of Health–funded, open-label clinical trial that randomized 

participants with hypertension to an intensive SBP target of <120 mm Hg versus a standard 

SBP target of <140 mm Hg, with individual patient management at the discretion of the trial 

investigators. Inclusion criteria were age at least 50 years, SBP 130–180 mm Hg, and high 

CVD risk (defined as prior clinical or subclinical CVD other than stroke, CKD [eGFR 20–

59 mL/min/1.73 m2], age ≥75 years, or 10-year CVD risk >15% based on Framingham risk 

score). Key exclusion criteria included diabetes mellitus, prior stroke or transient ischemic 

attack, eGFR <20 mL/min/1.73 m2, symptomatic heart failure, or left ventricular ejection 

fraction <35%. A total of 9,361 participants were enrolled between November 2010 and 

March 2013 across 102 sites in the United States and Puerto Rico. The SPRINT protocol 

included a baseline visit and follow-up visits monthly for the first 3 months and then every 3 

months thereafter. The trial was stopped early on the recommendation of the data and safety 

monitoring board, which noted substantive evidence of treatment benefits for CVD events 

and mortality during their regularly scheduled interim evaluation of the data.

Baseline and 12-month concentrations of NT–proBNP were measured in 8,027 SPRINT 

participants. We excluded 22 participants without at least one follow-up eGFR measurement 

after the baseline measurement. SPRINT was approved by the institutional review boards 

at each participating study site, and all participants provided written informed consent. 
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This ancillary study was approved by the institutional review boards at the University 

of Texas Southwestern Medical Center; the University of California, San Francisco; the 

San Francisco Veterans Affairs Health Care System; and the Veterans Affairs San Diego 

Healthcare System.

Exposure of Interest

Blood specimens were collected at the baseline and 12-month study visits in serum separator 

tubes, processed immediately, and stored at −80°C until NT–proBNP measurement was 

performed at the SPRINT Central Laboratory (University of Minnesota, Minneapolis, 

MN). NT–proBNP was measured from freshly thawed serum samples using an 

electrochemiluminescence immunoassay on the Cobas 6000 platform (Roche Diagnostics) 

as previously described.27 The NT–proBNP assay has interassay coefficients of variation 

of 2.9% at 140.3 pg/mL and 2.7% at 4,563 pg/mL, with a lower limit of detection of 5 

pg/mL. Three percent of NT–proBNP levels were below the lower limit of detection; we 

assigned these measurements a value of 3.5 pg/mL, equivalent to the lower limit of detection 

divided by the square root of 2. Consistent with our previous work, baseline NT–proBNP 

was modeled as a continuous log-linear predictor and according to sex-specific tertiles, and 

the 1-year change in NT–proBNP was categorized as a ≥25% decrease, ≥25% increase, or 

<25% change (ie, stable) relative to the baseline NT–proBNP level on the original scale (ie, 

not log-transformed).27,28 For analyses using 1-year change in NT–proBNP as the exposure, 

the 12-month study visit was used as the starting point for annualized eGFR slope and ≥30% 

decrease in eGFR (Fig SI).

Outcomes

The primary outcome of interest was annualized percentage change in eGFR, which was 

estimated from a linear mixed-effect model based on serial serum creatinine measurements 

collected at each monthly visit for the first 3 months and then every 3 months thereafter. 

Participants were followed until death or the last available study visit before the trial was 

stopped in August 2015. The secondary outcome was a ≥30% decrease in eGFR. Serum 

creatinine was measured at the SPRINT Central Laboratory using an enzymatic creatinine 

method traceable to isotope dilute mass spectrometry (Roche). Estimated GFR was 

calculated by the 2021 CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 

equation for creatinine.29

Covariates

Age, sex, race, ethnicity, medical history, medications, and smoking status (current, former, 

or never) were obtained by questionnaire. Trained study coordinators measured blood 

pressure (BP) with an automated oscillometric device (Model 907; Omron Healthcare) 

according to a standardized protocol and recorded BP as the mean of 3 seated BP 

measurements taken 1 minute apart after a 5-minute rest period.30 Body mass index was 

calculated as weight in kilograms divided by height in meters squared. Fasting serum 

total cholesterol, high-density lipoprotein cholesterol, triglycerides, and urine albumin and 

creatinine were measured at the SPRINT Central Laboratory.
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Statistical Analyses

Descriptive statistics for baseline characteristics are reported as mean (standard deviation), 

median (interquartile range), or number (percentage) by sex-specific tertiles of baseline NT–

proBNP. NT–proBNP was log2-transformed to correct its right-skewed distribution.

Linear mixed-effect models with random intercepts, random slopes, and an exchangeable 

covariance structure were used to evaluate the associations of baseline NT–proBNP and 

1-year changes in NT–proBNP levels with annualized eGFR slope. Fixed effects in the 

models include NT–proBNP, time, and the interactions between NT–proBNP and time, 

whereby the parameters of time and the interactions represent the annualized eGFR 

slope. An exchangeable correlation structure assumes that the correlation between any two 

observations within the same individual is the same regardless of the specific time points or 

conditions at which the measurements were taken. This assumption simplifies the correlation 

structure by assuming a constant correlation within individuals, and it is commonly used 

when there is no prior knowledge or specific information about the correlation patterns 

within individuals. The linear mixed-effect models used all available eGFR measures for 

each subject (median number of eGFR measures, 10 [IQR, 9–11]). To allow interpretation 

of annualized eGFR slope as a percentage, eGFR was log-transformed. Logistic regression 

models were used to evaluate associations of baseline NT–proBNP and 1-year changes in 

NT–proBNP levels with a ≥30% decrease in eGFR. SPRINT participants were followed 

until death or the last available follow-up before the trial was stopped in August 2015.

Models constructed for each outcome were adjusted for the following baseline potential 

confounders: demographic characteristics (age, sex, race, and ethnicity), randomization arm, 

kidney disease risk factors (body mass index, smoking status, prevalent CVD, baseline 

SBP, baseline diastolic BP [DBP], number of antihypertensive medications, diuretic use, 

and angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker use), baseline 

eGFR, and baseline urine albumin-creatinine ratio. Analyses of 1-year change in NT–

proBNP as the exposure adjusted for the baseline NT–proBNP level. In addition, we 

adjusted for the first-year change in eGFR and the first-year change in SBP to determine 

whether the associations of change in NT–proBNP with subsequent change in eGFR were 

independent of concurrent changes in eGFR and SBP. We also evaluated for interactions by 

baseline CKD status (eGFR <60 mL/min/1.73 m2), albuminuria (urine albumin-creatinine 

ratio ≥30 mg/g), age, sex, prevalent CVD, baseline NT–proBNP level, and randomization 

arm in multivariable adjusted models using likelihood ratio tests. P values for interactions 

were adjusted for multiple testing by using the Benjamini-Hochberg procedure and setting 

the false discovery rate to 5%.31

All analyses were conducted using Stata Statistical Software (release 13; StataCorp LP) and 

SPSS Statistics for Windows (version 26.0; IBM Corp).

Results

Among the 8,005 SPRINT participants included in this analysis, mean age was 68 ± 9 

years, 36% were women, and mean baseline eGFR was 74 ±19 mL/min/1.73 m2. The 

median NT–proBNP levels were 86 pg/mL at baseline and 82 pg/mL at year 1. Relative to 
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baseline NT–proBNP levels, year-1 NT–proBNP levels remained stable in 2,362 participants 

(30%), increased by ≥25% in 2,804 (35%), and decreased by ≥25% in 2,839 (35%). 

SPRINT participants with higher NT–proBNP levels at baseline were older, more likely 

to be White, and had higher SBP and lower DBP, more prevalent CVD, lower eGFR, and 

greater albuminuria (Table SI). Compared with participants with stable 1-year NT–proBNP 

levels, those with increases in NT–proBNP had similar baseline characteristics, and those 

with decreases in NT–proBNP were younger, less likely to report White race, and had higher 

SBP, DBP, and eGFR (Table 1). Baseline CKD was present in 1,958 (24%) participants. 

Significant interactions by CKD status were identified for associations between baseline 

NT–proBNP and change in eGFR (P = 0.003 for interaction) and between increases in 

NT–proBNP and subsequent change in eGFR (P = 0.01 for interaction). Thus, all further 

analyses are reported stratified by CKD status.

Among 1,958 participants with baseline CKD and 6,047 without CKD, mean baseline 

eGFRs were 47 ± 10 and 82 ± 13 mL/min/1.73 m2, respectively, and annualized changes in 

eGFR during a median of 3.3 years of follow-up were −1.37%/y (95% Cl, −1.54 to −1.20) 

and −1.24%/y (95% Cl, −1.31 to −1.17), respectively. Median NT–proBNP levels at baseline 

among participants with and without CKD were 170 pg/mL and 65 pg/mL, respectively. 

A ≥25% increase or ≥25% decrease in NT–proBNP corresponded to larger absolute NT–

proBNP changes in the CKD subgroup (Table S2).

In the CKD and non-CKD groups, the rate of decrease in eGFR was incrementally faster 

from the lowest to the highest tertile of baseline NT–proBNP (Fig 1). After multivariable 

adjustment, higher baseline NT–proBNP levels were independently associated with a faster 

decrease in eGFR, with a stronger association among participants with CKD at baseline 

(adjusted difference in annualized eGFR slope per 2-fold higher baseline NT–proBNP 

level: −0.44%/y; 95% Cl, −0.56 to −0.33) than in those without CKD (adjusted difference: 

−0.10%/y; 95% Cl, −0.14 to −0.05; P = 0.003 for interaction). A similar pattern of results 

was observed using tertiles of baseline NT–proBNP (Table 2).

We next modeled associations between 1-year NT–proBNP changes and subsequent change 

in eGFR. Participants with CKD with stable, ≥25% increased, and ≥25% decreased NT–

proBNP all had small changes in eGFR from baseline to year 1 (Table S3). However, 

after year 1, annualized eGFR slope was slowest in the group with a ≥25% decrease in NT–

proBNP and fastest among those with a ≥25% increase (Fig 2). Compared with stable NT–

proBNP levels, a ≥25% decrease in NT–proBNP was associated with a significantly slower 

decrease in eGFR in the CKD and non-CKD groups after year 1 (Table 3). Meanwhile, a 

≥25% increase in NT–proBNP was associated with a significantly faster decrease in eGFR 

in the CKD group, but this was not evident in the non-CKD group (P = 0.01 for interaction).

There were 1,552 (19.4%) participants who experienced a ≥30% decrease in eGFR. Among 

those who did not experience a ≥30% decrease in eGFR, only 155 (2%) died during 

follow-up. Higher baseline NT–proBNP levels were independently associated with a greater 

risk of a ≥30% decrease in eGFR, with stronger associations observed in those with baseline 

CKD (Table S4). A ≥25% decrease in NT–proBNP appeared to be associated with lower risk 

of a ≥30% decrease in eGFR after year 1 in the non-CKD group (odds ratio, 0.85; 95% Cl, 
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0.72–1.01), but not in the CKD group (odds ratio, 0.95; 95% Cl, 0.67–1.33). Conversely, a 

≥25% increase in NT–proBNP was associated with greater risk of a ≥30% decrease in eGFR 

in the CKD group (odds ratio, 1.44; 95% Cl, 1.06–1.96), but not in the non-CKD group 

(odds ratio, 1.02; 95% Cl, 0.87–1.20; P < 0.001 for interaction).

Consistent with the observed interactions by CKD status, higher baseline NT–proBNP levels 

were more strongly associated with a faster decrease in eGFR among participants with 

a urine albumin-creatinine ratio ≥30 mg/g versus <30 mg/g (P = 0.003 for interaction; 

Table S5). The association of 1-year decreases in NT–proBNP (vs stable NT–proBNP) 

with subsequent decreases in eGFR also appeared stronger among participants with a urine 

albumin-creatinine ratio ≥30 mg/g, although die interaction was not statistically significant 

(P = 0.1 for interaction; Table S5). Across the intensive and standard SBP lowering groups, 

annualized eGFR slope after year 1 was similarly slowest in those with a ≥25% decrease in 

NT–proBNP (Fig S2). None of the NT–proBNP associations with annualized eGFR slope 

and risk of a ≥30% decrease in eGFR were modified by randomized treatment assignment 

(P ≥ 0.1 for all interactions). Participants with a baseline NT–proBNP level ≥125 pg/mL 

had faster annualized decreases in eGFR after year 1 across all 1 - year NT–proBNP change 

categories compared with those with a baseline NT–proBNP level <125 pg/mL (Fig S3). 

However, the associations of a ≥25% increase or a ≥25% decrease in NT–proBNP with a 

subsequent decrease in eGFR were similar irrespective of baseline NT–proBNP level (P ≥ 

0.1 for all interactions). NT–proBNP associations with eGFR decrease also did not vary by 

age, sex, or prevalent CVD (P ≥ 0.1 for all interactions).

Discussion

In this analysis of SPRINT that included repeated NT–proBNP measurements in more than 

8,000 participants, higher baseline NT–proBNP levels and greater 1-year increases in NT–

proBNP levels were associated with subsequent decreases in eGFR independent of clinical 

characteristics, randomized treatment assignment, and baseline eGFR and albuminuria. 

These associations were stronger among participants with CKD than in those without CKD.

Previous studies have shown that higher single NT–proBNP measurements are associated 

with more rapid kidney function decline and with incident CKD among individuals without 

CKD11,13 and with the risk of CKD progression and kidney failure among those with 

CKD.16–19,21,22 The present analysis expands these findings by demonstrating that: 1) 

longitudinal changes in NT–proBNP levels are also associated with subsequent changes 

in eGFR; 2) these findings appear particularly strong in those with prevalent CKD; and 3) 

baseline NT–proBNP and changes in NT–proBNP levels have prognostic value for kidney 

function decline regardless of the intensity of SBP lowering. The stronger associations in 

the CKD subgroup may be explained in part by higher baseline NT–proBNP levels and 

correspondingly greater absolute NT–proBNP changes. The NT–proBNP associations and 

interactions by CKD status were robust to adjustment for baseline and 1-year changes in 

eGFR, and similar interactions were observed in persons with and without albuminuria. The 

strength and consistency of these findings makes it unlikely that these findings are explained 

by chance, regression to the mean, or confounding by reduced NT–proBNP clearance in the 

setting of CKD.
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Subclinical elevations in NT–proBNP may reflect chronic neurohormonal activation and 

venous congestion, which are mechanisms that can also contribute to the progression of 

kidney disease by impairing intrarenal blood flow.32–34 However, the complex, bidirectional 

interplay between the heart and kidney and the reduced NT–proBNP excretion in the 

setting of CKD make it difficult to attribute an individual’s elevated NT–proBNP level 

to a specific pathophysiological process. We recently demonstrated in SPRINT that intensive 

SBP lowering leads to greater reductions in NT–proBNP, and that this is primarily mediated 

by reductions in SBP.28 Here we show that 1-year increases in NT–proBNP levels are 

associated with subsequent decreases in eGFR independent of treatment assignment and 1-

year changes in SBP. Furthermore, we observed that decreases in NT–proBNP are associated 

with slower decreases in eGFR despite intensive SBP lowering having been shown to lead 

to decreased NT–proBNP levels and slightly faster decreases in eGFR.5,6 Collectively, these 

results suggest that hemodynamic effects on NT–proBNP and eGFR do not fully explain our 

findings.

The results of this study suggest that longitudinal monitoring of NT–proBNP levels during 

hypertension treatment, particularly in those with CKD, may be useful for identifying 

individuals at higher risk for subsequent loss of kidney function. This builds upon previous 

work in SPRINT that showed individuals with higher baseline NT–proBNP levels derive 

greater benefit from intensive SBP lowering and that baseline NT–proBNP levels and 

changes in NT–proBNP over time provide prognostic information about the risks of heart 

failure and death during hypertension treatment.27,28 Taken together, these data suggest 

a plausible role for routine NT–proBNP measurements during hypertension treatment to 

provide ongoing risk assessment of cardiorenal outcomes.

As an ancillary study of SPRINT, the present analysis benefited from the inclusion of a 

large cohort of individuals with and without CKD, repeated NT–proBNP measurements, 

and frequent and protocol-driven eGFR and BP assessments during follow-up. These data 

allowed us to evaluate the degree to which associations of dynamic changes in NT–proBNP 

levels with subsequent declines in eGFR were independent of concurrent changes in eGFR 

and SBP. There are also several limitations. Because of the SPRINT design, our findings 

may not generalize to persons with heart failure, diabetes mellitus, eGFR <20 mL/min/1.73 

m2, or severe proteinuria. In addition, the relatively short follow-up period of the trial 

precluded the evaluation of long-term changes in kidney function.

In summary, among individuals with hypertension without diabetes, higher baseline NT–

proBNP levels and greater 1-year increases in NT–proBNP were associated with subsequent 

decreases in eGFR independent of baseline eGFR and albuminuria and regardless of the 

intensity of SBP lowering. These associations are particularly pronounced in persons with 

CKD. In the context of prior literature, these results advance the notion of considering NT–

proBNP as a dynamic tool for assessing kidney disease risk dining hypertension treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Baseline tertiles of N-terminal pro–B-type natriuretic peptide (NT–proBNP) and subsequent 

kidney function decline. Bars represent unadjusted estimated annual change in estimated 

glomerular filtration rate (eGFR) from baseline with 95% CIs. Results were stratified by 

baseline chronic kidney disease (CKD) status. Estimates are derived from linear mixed-

effect models.
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Figure 2. 
Change in N-terminal pro–B-type natriuretic peptide (NT–proBNP) and subsequent kidney 

function decline. Bars represent unadjusted estimated annual change in estimated glomerular 

filtration rate (eGFR) from year 1 with 95% CIs. Results were stratified by baseline chronic 

kidney disease (CKD) status. Estimates are derived from linear mixed-effect models.
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Table 3.

Associations of 1-Year Changes in NT–proBNP With Annualized eGFR Slope After Year 1 Stratified by 

Baseline CKD Status in SPRINT

1-Year ΔNT–proBNP N

Annualized eGFR Slope After Year 1, %/y (95% Cl)

Mean Adjusted Difference

CKD

≥25% decreasea 609 −0.25 (−0.74 to 0.24) 1.09 (0.35 to 1.83)

Stable 592 −1.05 (−1.56 to −0.55) Reference

≥25% increaseb 757 −2.05 (−2.48 to −1.62) −1.04 (−1.72 to −0.36)

No CKD

≥25% decrease 2,230 −0.16 (−0.36 to 0.04) 0.51 (0.21 to 0.81)

Stable 1,770 −0.69 (−0.91 to −0.47) Reference

≥25% increase 2,047 −0.53 (−0.74 to −0.33) 0.12 (−0.18 to 0.42)

Models adjust for age, sex, race/ethnicity, randomization arm, baseline cardiovascular disease, current smoking, body mass index, diastolic blood 
pressure, number of antihypertensive medications used, diuretic agent use, angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker 
use, urine albumin-creatinine ratio, baseline NT–proBNP, baseline and 1-year change in systolic blood pressure, and year-1 and 1-year change in 
eGFR.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; NT–proBNP, N-terminal pro–B-type natriuretic peptide; 
SBP, systolic blood pressure; SPRINT, Systolic Blood Pressure Intervention Trial.

a
P = 0.4 for interaction by CKD status comparing ≥25% decrease in NT–proBNP versus stable NT–proBNP.

b
P = 0.01 for interaction by CKD status comparing ≥25% increase in NT–proBNP versus stable NT–proBNP.
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