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A NEW FORM OF STRIP APPROXIMATION
Geoffrey F. Chew and C. Edward Jones
Lawrence Radiation Laboratory
University of California

Berkeley, California
August 8, 1963
ABSTRACT.

A detailed set of "bootstrap" equations is formulated, based on a
combination of the N/D method with the superposition of top-ranking Regge
poles in all three channels of a two-body reaction. The contribution from
each pole arises from a distinct strip in the Mandelstam representation so
that double counting is avoided. 'Oﬁly real values of £ with £ 1 need
be considered in.the bootstrap calculation. The amplitude emerging from our
N/b equations is meromorphic in the right-half £ plane, and the Regge poles
approach high energy limits that are dynamically determined and which in some

cases may lie to the right of £ = 0. The reduced residues vanish in the

high energy limit.
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I. INTRCDUCTION

It has been proposed that an approximation procedure for strong-
interaction "bootstrap" calculations might be based on a combination of the
N/b method with the superposition of a finite number of top-ranking Regge
poles for all the different channels connected by analytic continuational
By "top-ranking" is mesant poles whose trajectories reach or closely approach
the right-half { plane for real values of the energy. Since it is expected
that these leading poles make large contributions over only a finite energy
interval (at most a few GeV in width), the approximation is designed to be
accurate in "strips" covering the low-energy resonrance region and high
energies at low momentum transfer. The spirit of ocur scheme is similar in
this sense to that of the strip approximation proposed earlier by Chew and
Frautschi2 but differs through its dependence on continuation in angular
momentum with the consequent absence of arbitrary ccupling constants. The
first paper dealing with the Reggeized strigp approximationl contains at
least one mathematical error and certain of the assumptions need reexamination.
In this paper we present a revised set of strip equations and analyze certain
general features of their solutions.

Physically the most significant features relate to the asymptotic
behavior of pole positions and residues. The poles generated by our N/D
equations do not necessarily all retreat to the left-half J plane but their

reduced residues decrease with a negative power of energy outside the strip.



UCRL-10992

-0-

It is this behavior of the residues that is primarily responsible for the
dominance of the strip regions and perhaps for the sharp forward and backward

peaking in high-energy scattering.

IT. THE SUPERPOSITION OF POLE CCONTRIBUTIONS
The Mandelstam representation breaks the fwo-body scattering

ampiitude into three portions corresponding to the three possible pairings

of the channel variables s, t, u. For example, the (s,t) portion is3
A%%(s,t) = 3 ff as' at' —2leat) (11.1)
’ 2 (s" - s)(t' - t)’

where subtractions if necessary are to be determined by analytic continuation
from large £ in theb s and t channels. Explicitly, if one assumes an
analytic interpclation between all physical £ values as well as meromorphy
in the right-half angular-momentum plane, ASt(s;t) mey be decomposed into

three parts:h

A%%(s, 1)
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where the first term needs no subtractions and the second end third arise
from Regge poles in the s &and +t channels, respectively. Mathematically
speaking, only poles that reach the right-half £ plane for some real
interval of energy need be recognized; the remaining poles may remain buried

in the first term of (II.2). It is proposed here, however, also to separate
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out any poles that closely approach the right-half 2 plane in order to make

the remeinder as small as possible.

We shall take the following formula for the contribution from the

ith pole in the s channel:

by X R (t',s) | :
R iew - 5 [ H e (11.5)
) ‘

A

t - %

with

a,.(s) ‘ :
Ri(t’s) = .g (Qai(s) + l) 7i(s)<—q32> 1 PO:i(S)<,—l - -2-2:—§>-
S

t
The quantity R, l(s,t) is defined in an elementary sense by formula (II.3)

for -1 <Re a, (s) <0 and otherwise by analytic continuation. The
function ai(s) is the position of the ith Regge pole and is assumed .to
be real analytic in the s plane cut from SO to +co. The fug;t%z?
7i(s) is the reduced residue (the actual residue divided by q i
and is assumed to have the same reality-analyticity properties as ozi(s)n
The terms Ritl(s,t) can be shown individually to satisfy the Mandelstam

representation with double spectral functions asymptotic to s = g ~and

s .
t =t, . Similarly, Rj l(t,s) will be a sum of terms satisfying Mandelstam,

1
but here the asymptotes are s = S and t = to a5
The displacement of the +t branch point from to to tl (tl > to)
t
in R, l(s,t) and of the s branch point from s, to s, in

s
Rj l(t,s) facilitates the formulation of dynamical equations in the new

form of strip approximation, as already discussed in reference 1 where the

physical meaning of t., is explained. So long as one maintains in (17.2)

1

the convergent double integral, the displacement in question merely changes
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the value of psé , and one of the features of the new strip approximation
is the assumption that this convergent integral is small.
The first step in our approximation scheme then is to represent the

full amplitude as

A(s,t) =~ 2 [Ritl(s,t) +og Riul(s,u):}

) [stl(t,s) .Y Rjul(t,u)]
; |
+ }: [Rksl(u,s) + & Rktl(u,t)]
k (II.4)

with only the leading trajectories being included and the sign factor vgi,j’k
being *1 depending on the signeture of the trajectory in question. Each
of the six terms corresponds to a pieceFOf the double spectral funcfion that
is dominant in a particular strip in the sense of Fig. 1. Expiicit formulas
for the double spectral functions'corresponding to (II.4) are given below
in Eq. (III.6).

We now list thé obvious aspects in which the approximation (II.4) is
satisfactory. First, it contains all the poles near the physical region
with the correct residues, and if all selected trajectories stay'to the
right of £ = -1 +there are no spurious singularities with a strength to
compete with poles. HNear any important pole of s , in other words, for all
values of t (or u) we are guaranteed accuracy; a correspornding statement
also holds near poles in t or u. At Jow energies, in‘particular, we have

at least the accuracy of the (many level) Breit-Wigner formula in the physical
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resonance region for low angular momentum, whereas scattering for high
angular momentum is controlled by the low mass particles in the t and u
channels in the manner by now experimentally verified,6 The correct
threshold behavior as a function of angular momentum is guaranteed by (IT.4)
as is the general analytic structure of partial-wave amplitudes..

What about high energies? If the only £ singularities are simple
poles, then as is well-known (II.4) becomes asymptotically accurate for low
momentum transfers as well as for individual partial waves. With branch
points in £ the situation is more complicated, but we know from empirical
fits to experiment that the pole approximation at high energies does not go
wildly wrong. In particular, it represents the experimental behavior of
total cross sections rather well. The use of (II.4) therefore ensures a
more satisfactory treatment of high energies than has been achieved in any
pre-Regge dynamical calculations. It is the intermediate energies, i.e.,
near the edge of the strip, whose description is of dubious status. In
particular, the formula (II.3) becomes logarithmically infinite at t = t,
in violation of the unitarity comdition in the + chamnel. This deficiency
will be remedied in the second stage of our approximation scheme when we
apply the unitarity condition in Sec. IV, but its presence in (IT.4) forces
us to remember that the sharp boundary for the strip is artificial.

Even though {II.L4) does not satisfy unitarity exactly in any channel,
we hope that the violation is minor except near the strip boundaries and that
by explicit imposition of unitarity in the second step of our program a
sensible, smooth connection between high and low energies across the boundary
can be achieved. As a final argument in support of the .plausibility of
formula (II.4) we remark that it corresponds to the separation of the amplitude,

familiar in classical nuclear physics, into "direct" and "indirect" scattering.
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In the s channel, for example, the terms Rj and Rk arising from crossed
poles give the "direct" or "potential" scattering that dominates high angular
"

momentum and high energies. The terms Ri represent "indirect" or "resonance

scattering and are important only for’low angular momentum and low energies.

IITI. THE GENERALIZED POTENTIAIS
As a preliminary to step two of our scheme we intrcduce now two new
amplitudes Ai(s,zs) , each having a cut only for positive cos 8 = zsb When
s > s, . The Mandelstam representation for the original amplitude A(s,zs)

can be written

A(s,zs) = AR(S’Zs) + AL(s,zs) , (IIT.1)
where
. m .
_ ; dat '
AR‘S’Zs) oo _/. t' - t{s,zs)V Dt(t »s)
tO
(111.2)
o)
/ _ 1 du' t
AL(S’ZS) T X Jr u' - u(s,zs) vDu(u ’S) ’
: 4

Dt and Du being the absorptive parts for the t+ and u channels,

respectively. We then define

A%(s, t)

Ap(s,z) + A (s,-z) (11I.3)

and observe that

Ai(s,t)

1 f(s',t") |
e e ottty
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where
pst(s’t) * psu(s;t) » s > SO’
+
o (s,t) =
-0, (t1) oy (u,%) s < 0.

(111.5)

The even part in z_ of the original amplitude A(s,zs) coincides with the
even part of A+(s,zs) while the odd part coincides with the odd part of
A“(s,zs)o Note, however, that AY and A~ ‘are individually néither even
nor odd.

In the approximation (IT.4) the various double spectral functions

are given by

pils,t) = e(t - ) 2{: Im -{ Ri(t,s)}- + 6(s - S1>§E: Im-{ Rj(s,t) }3 A
i J
psu(s,u). = 8(u - u]). Z;' & Im'{ Ri(u,s) }- + o(s - 51)2;: Im{ Rk(s,u)}j
and
patr®) = 0(t - 8) ) g T KRGt} + ow-u) ) g ml R},
k ' J

so that after some calculation we find

+
a 1
t : u . , v (t,s)
+ 1 1 1 s ?
A(s,t) = > [Ri (s,t) & & R, (s,t)] + = fdp'w ,

i
(1IT.7)
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+
where the function Vs_(t,s) arising from the crossed poles is given by

v Yt = L f 1 :cm{z R(s',0) £ ) Rk<s',t>}’
. k
(o o] a .
+ % f 3,9%"3 Im Z 6, By(u',t) % ;tl- f%-'i%lngk R (t',t)
Y J 51 K

+ o(t - tl)Ej & Rk(t,u) £ 6(t - u )}j E. R (t u) ,
. k

(III 8)

and may be identified with the generalized potential defined by Chew and
Frautschi.7 The long-range parts of the potential inéluding the poles in t
are contained in the first two lines of (III.8).,8 The third line is a short-
range part without poles.

Tt is possible to evaluate the crossed pole contributions to give

00

.]- ' Vsi(t',s) s, u,
at' ——g— = E:v[ (t s) + g R (t u) ]

J

Al

(111.9)

* Ez [ RkSI(t’S) o Rktl(t’u) ]
X

o0
1 ' 1
+ = ‘/’ dt <;, — :>2{: & R (t'u")
tl -
1 1
+ - T du'<u, ™ )t'):

4
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2
EJ m  , the last two terms of (III.9)

with s +u' +t = s +u+t
being odd functions of cos es for A+ and even functions for A~ and
therefore not contributing to the physicsl ampiitude A . 1In reference 1
these last terms were erroneocusly omitted. They correspond to short-range
forces and contain no poles but are needed if the left-hand cut in cos es_
is to be completely removed. As will be seen in Sec. VL they are important
in connection with asymptotic behavior. The essential feature of (III.9) as
the pole positions and

0

residues occur only with negative arguments and are correspondingly real.

opposed to (III.8) is that for t <0 and s> s

Thus the bootstrap calculation can be carried through with consideration only

of £ real and in view of the Froissart limit,9 51 .

IV. THE N/D DYNAMICAL EQUATIONS FOR THE s CHARNEL

We assume as in reference 1 that inside each strip the two-body

unitarity condition is adequate, leaving open the question of how many
two-body reactions to include. For the s chamnel, if we suppress the (i)‘
superscript, the considerations described in Sec. III of reference 1 lead
to the integral equation (III.1l of the earlier paper)

B, (s') - B, (s)

1
Nz(s) = BZP(s) + % .[ ds' pz(s') Nﬁ(s') s

0 (1v.1)

S = 8

the amplitude for the fth partial wave in the s channel being given by

28
() -
As) = o7 B,(s)
N (s)
28 g
R FOR (1v.2)

where
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%1 p,(s') N,(s") '
Ds) = 1 - 2 f L M AR | (1v.3)

s' - s

P being the phase-space factor. The dynamics is then concentirated in the

function B zP(s) , defined by

P Lt Im B,(s') :
— - = ® ———————————
B, (s) = Bz(s) - “[ ds' ——— s 2 real,
s

o (1v.k)

so as to contain the poles of the t and u channeis bu£ not those of the

s channel. The latter arise from the zeros of Dz(s) al The function
BZP(s) plays for the s- channel somewhst the same role as the potential

in a Schrodinger equation, but the analogy is not perfect. In particular
BZP(S) is not simply the partial-wave projection of formula (III.9),
although such an approximation is often made and was advocated in reference 1.
We shall see in the following section that BEP(s) receives a contribution

from the s-channel pole terms even though it contains itself no poles in s .

IV. THE CALCULATION OF BzP(s)

. .
The Froissart-Gribov definition of Bz'(s) for complex £ can be

given in either of two forms. The original form involves the discontinuity

+, + 1
D, (t,s) of A (s,t) in crossing the t cut, 1

oo

+ 1 ol *

B, (s) = = 222 1 + —% )b, (t,s) , (v.1)
fto e 7)

+
while the second form, pointed out by D. Wong,12 involves A (s,t) itself:
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+ 1 dt . *
B, (s) = - B ‘T 5 [Im Qg(l ¢ 2 )} A7(s,t) .
-0 qs q'S (V»Q)

+
In the new strip approximation, A (s,t) is given by formula (III.7) for

which the corresponding t discontinuity is

+ +
- = - \ + g . -+ -
D, (t,s) z Ri(t,s) [ et t) g e(t ui):] v, (t,s) -
i
(v.3)

+
Now Vs”(t,s) has no discontinuity in s for s, <s <s, , so from (Iv.4)

we see that in calculating BﬁP(s) we are to take the entire generalized
potential contribution, subtracting nothing away. The first term in (V.3)
when substituted irto (V.1) gives a function cut in s between =-oc and
sO - tl , due to the s discontinuvity in qS»EE Qﬁ(l + t/éqsg), and also
cut between s. and +oo due to the & discontinuity of Ri(t,s) . Thus

0
we have (taking t, = u; and all masses equal)
' .
S =t s ~s' t O\
P+ * z Ofl as' jr \Pg(nl ) :??1:9
= _ = — + 1
BZ (s) = Vs,z (s) + x 8! -« 8 }; at(1 # gi)Ri(t’"s / 5+1
oo it “h(-q .2
= 1 qS' /
t
@ @ Qg(l ) 2q 2>
1 as' (1 + &) ") 5!
+ f 7 Zf at(1 £ &) Im Ri(t,s ) —
5, ity 2n(aq,,”)

(v.lh)

+
By V, z‘(s) is meant the f-wave projection of the generalized potential
2

+
contribution: e.g., formula (ITI.9) inserted in place of A~ on the right-
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hand side of (V.2). By choosing this particular method only real pole

positions and residues are encountered in the evaluation for g <s < 8y ¢ ¢

0 L
* 1 2
Vs’z (s) -5 /:11: [Im Qz(l + t/EqS ) }
en q
s -
_]; ds! k ' { ot
X{ = [S’ s[ ERJ(S t)E Z Rls'st)
1 J k
00
1/ _du' ' . at.t
F 1L Y (e - rGns)) |
uy J
.
1 du'’ ‘
+ = —e ' - 14!
- f T Z.Ek(Bk(u »t) R (u', 4 )>
tl k
@ o
2_. d‘t' [ [ + _l dt' ? 1
+ 7T f .-tw - B Z gk Rk(t »u ) - x ! = 1 gj R,j(t s ) °
tl k uy J :
(v.5)

The expression (V.4) together with (V.5) is considerably more
complicated than that for reference 1 but still contains the pole parameters
only where they are real. The second and third terms in (V.4), arising from
the s-channel poles, had no counterpart in reference 1 and may not be of ks

great importance for s inside the strip since the integral over ds' is
entirely outside. Keeping these terms, however, tends to alleviate the N/b,

conflict between threshold and asymptotic behavior that becomes severe for
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high values of £ . Our N/D -equations (IV.1l) and (iV.B) in aﬁy event
minimize this conflict by gvoiding an integration to infinity, but the
solutions for £ > 1, if examined.as s - 00, necessarily violate the
unitarity condition unless terms like those in (V.4) are included in BzPi(s)o
If the partial-wave amplitude emerging from the N/b calculaticn were exactly
of the form implied by the ansatz (II.M), the conflict with unitarity would
be entirely removed by the extra terms. To the extent that input and output
are roughly consistent, the conflict is alleviated.

In formula (V.5) integrations to -@0 in t occur, whose convergence
depends on the asymptotic behavior of the pole parameters. It is not
expected in the strip approximation that this asymptotic behavior should be
reliable, but unless the integrals in (v.5) are'strcngly convergent there
will be important contributions from outside the strip tha® cast dcubt on
the consistency 6f the whole apprcach. Let us now consider, therefcre, the

behavior of pole parameters for large negative argument in comnection with

the evaluation of (v.5).
VI. ASYMPTCTIC BEHAVICR OF THE POIE PARAMETERS
It is not difficult to show that as t -+ o for s fixed R.sl(t,s)
a(t) - 1 !

behaves like 7J.(t) t J n” t, so this combination of factors should
vanish for large t if the strip éoncept is to have any validity. Such a
vanishing, furthermore, is reguired if the integrals appearing in the
expressions (V.4t) and (V.5) are”to converge for all Re £ >0 . The
Froissart 1imit9 guarantees that all poles retreat to the left of £ = 1
for negatiQe t , so it will suffice to have 7j(t) decrease asymptotically

at least as fast as t’l . Such a decrease will now be shown to be a

property of our N/D equations.
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As our deqominator function Dz(s) is constrained through (IV.B) to
approach 1 as s —» oo for any finite Nz(s), the position in the £ plane of -
a zero of Dz(s) for large s must approach an infinite fixed-£ singularity
of the numerator function Nz(s)° In particular, the numerator function may
have fixed poles arising from the solution of Eq. (IV.l), which has been

15

shown to be essentially Fredholm in character. For nonrelétivistic potential
scattering J. R. Taylor has shown that there are no poles in Nz(s) beyond
those already appearing in the potential and that it suffices to analyze the
fixed singularities of the potential (i.e., the Born approximation) in order

to deduce the asymptotic behavior of Regge pole parameters,16 We have no

such assurance in our case and in fact must expect Fredholm_(dynamical)

fixed poles in the numerator function. The point is that:there are neighbor-
hoods in the complex £ plane where the kernel of the integral equation

(Ivﬂl) is unbounded in normalization. The most apparent such neighborhcods

are near the Gribov-Pomeranchuk fixed poles at £ = -1, -2, +°- of formula
(III.9) for the s-channel generalized potential. These poles necessarily occur
in BEP(S) through the first term of (V.4), a straightforward calculation
showing that they cannot be cancelled by the second term of this formula,17
Near one of these poles the kernel of (IV.l) can achieve an almost arbitrary
normalization without much change in the (s,s‘) dependenéeq It follows that

an infinite number of eigenvalues of the homogeneous equatioh will be

accessible. In other words, each fixed-£ pole of the generalized potential .
will produce a swarm of Fredholm fixed-£ poles in the numerator function,

and each of the Fredholm fixed-4 poles then will serve as a possible terminal

point for a Regge trajectory. The novel feature of this situétion is that

our terminal points are dynamically determined and will vary according to

the force strength.
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Iet us now examine the possible additional fixed-£ singularities
contained in formula (III,9)'for the generalized potential of the s channel.
There are two types of terms, corresponding to the two distinct double

spectral regions in (ITI.5):

o0
l R:I(Sn)t)
(a) = f ds? ——
o s' - 8
1 (VI.1)
© .
1 ' (Y {‘ 1 e 1 + L _1
(b) 7 f at {Rj(t s U )[_ - £ + t'- u - RJ(L' 7t) t1 e

e
[%

1

The asymptotic behavior for large t determines the location of the leading
=€,
singularity in the £ plane. By assuming that 7j(t} ~ t 9 the leading

singularity in (a) occurs at 2 = aj(oo) - €, » On the other hand, terms of
5 ,

the type (b) have the Gribov-Pomeranchuk pocle at 4 = -1 for even signature
and £ = -2 for odd, as well as a singularity at £ = aj(oo) - €
18
Now suppose that ej > 2 so the contributions cutside the strip

are really small. Terms of the type {(b) then dominate the + asymptotic
behavior of the generalized potential at least for positive signature and
correspondingly should play a controlling role in the asyﬁptotic behavior

of Regge poles. In particular, for positive signature we anticipate a cloud
of fixednﬂ Fredholm poles in the numeratcr function to surround the point

£ = -1 (where there must be an essential singularity, as emphasized by
Gribov and Pomeranchuk), the maximum displacement of the poles from their
"source" depending on the force strength. Assuming no trajectory inter-
sections, the Fredholm pole standing farthest to the right must be the

terminal point of the leading Regge trajectory, and without a numerical

}
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calculation all we -can say about its position is that it must lie between

1 .
£=-1 and £ =+1. 4 Of course, once the possibility is raised that with

very strong forces this terminal pcint may lie to the right of £ = O , one
is tempted to see here a means of avoiding the well-known awkwardness with
the Pomeranchuk trajectory when the point £ = 0 is crossed at regative
energy.

Next, what about the asymptotic behavior of reduced residues? For
a particular Regge pole this depends on the residue ri(s) of the fixed-ﬂ

pole in Nz(s)' that serves as terminal point for the trajectory. In the

neighborhood of £ = ai(oo)

ri(S)
2 - czi(oo)

Nz(s) + fi(s) , (vi.2)

L= ai(oo)

ri(s) being a solution of the homogeneous equation

ri(s) == ds' Qxi(oo)(sv) Ti(s') s
0 (VI.3)

b

P 1
and fi(s) for large s approaching B (oo)(s) . Tt is then straight-
i

forward in terms of (IV.3) to show that

a -
a,(s) ——— o,(0) - =, (VI.4)
8§ * ©
where
°1
I N B U O EXCO (vI.5)

0
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whereas the reduced residuve 7i(s) has a behavior

7;(8) ———— r.(s) + £.(s)lo,(s) - a,(c0)]

- .
3

(vr.s)
that vanishes at least as fast as 1/s . We have not demonstreted as strong
a tendency to vanish asymptotically as is indicated experimentally or as
was assumed above, and if ej is actually equal to 1 ; the potential terms
would have a fixed singularity at £ = aj(oo) - 1 ~for both signstures which
might be more important than the Gribov-Pomeranchuk singularity. The above
arguments would not thereby be altered in any important way, but in any event
there is no reason to trust our equations cutside the strip. If the rate

of change of ¥ (s) near 8 = 0 1is successfully described we shall be

i

satisfied.

ViI. SUMMARY AND CONCLUSION

We have presented a set of dynamical equations suitable for bootstrap
calculations with low=-spin external particles., The scattering amplitude is
represented in two alternative ways, the pole superposition (II.4) and the
N/D prescription of Sec. IV, neither of which is exact but both of which are
supposed to be reasonably accurate at low energies and low angular momentum
where bound states and rescnances occur. The bootstrap calculation consists
of a matching of the pole ﬁarameters in the two forms for‘real £ L1 eand
low energies. The pole superposition then gives the high angular-momentum
components at low energy and hopefully the low momentum-transfer behavior at

high energy.
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The spirit of this paper is the same as that of reference 1, and the
N/D prescription has not been changed ir any way from that ¢f the earlier .
paper. We have proposed here, however, an expileit and simple expression

‘ o
for the pole superposition that conforms term by term to the Mandelstam
representation. The clarity thereby achieved has allowed the correction of
an error in reference 1 involving the "+third" dcuble spectrsl region. We

R - P -
are also proposing now to augment the “input" function B, (s) for the N/D
N Y
~equations by & contribution from the direct-channel poles.

An snalysis of our bootstrap eguetions has revealed two physically
important features absent in ordinary potential scattering {and which do not
accord with conjectures made in reference 1: {a) The terminal point for our
Regge trajectories is dynamically determined and for strongly attrasctive
' . . 20 i .
forces may lie to the right of £ = O . (t) Our reduced residues venish
for large energy at least es Tast as 1/s . Both these features have
immediate relevance to the problem of Titting high-energy data with Regge
poles.

There remains the problem raised by Mandelstam of cubts in angular

21 . pps s

momentum. This difficulty has had no chance to arise here because we have
not attempted explicitly tc impose unitarity beyond the two-body region.
Conceding the correctness of Mandelstam's conclugion, there is still room for
belief that cur bootstrap scheme is sensible if the cuts are weak in importance
compared to the poles. In energy and momentum-transfer variables the dominant -
role played by poles has been the striking {eature of strong-interaction

N
physics; the same may well be true for angular momentum.

Put another way, in reference 1 it was pointed out that experimentally

the bulk of resonance decay scems to occur in two-bedy chennels if unstable

particles are considered. This circumstance, courled with the assumption



]
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that stable and unstable particles eventually will achieve equivalent status
in the dynamics, suggests that conclusions based on the two-body unitarity
condition have a wide range of validity. Our approximation scheme can
handle any finite number of two-body reactions, with the choice of the
parameter Sy depending on how many channels are included. Hopefully, when
a sufficieﬁtly large number of channels is incorporated into the N/D
calculation, the precise value of S will become unimportant., Were that

to happen, the goal of a parameter-free dynamics would have been achieved.



9.

].O L

11,

UCRL-10992
=20~

REFERENCES AND FOOTNOTES

This work was done under the auspices of the U. S. Atomic Energy Commission.
G. F. Chew, Phys. Rev. 129, 2363 (1963).

G. F; Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).

We ignore spin complications to simplify the discussion.

N. Khuri, Phys. Rev. Letters 10, 420 (1963) and Institute for Advanced
Study préprint (1963), has proposed a similar decomposition using simple
powers of s and t rather than legendre functions of cos 8 . The
Khuri form, however, turns out to have asymptotic properties that are
unsuited to the strip approximation.

In reference 1 a more complicated form than (II.3) was proposed for the
contribution from a single pole. Both the old and the new forms seem
physically acceptable.

We refer here to what are usually called "peripheral"” collisions.

G. F. Chew and S. C. Frautsehi, Phys. Rev. 124, 264 (1961).

With proper attention to thé definition éf divergent integrals a bound
state in the t or u channelé can be shown on the bésis pf (IIIO8) to
give the expected delta function in t .

M. Froissart, Phys. Rev. 123, 1053 (1961).

Note that Qecause' Dz(s) is”feal analytic in the s—p}ane cut between

s = 5, and s = 8 the same will be true for any s-channel pole position
o&(s) or reduqed:residue 71(6)' calculated from a zero of Dz(s) .

M. Froissart, Report to the La Jolla Conference on Theoretical Physics,

June 1961 (unpublished); V. N. Gribov, Zh. Eksperimic Teor. Fiz. 41,

667 and 1962 (1961).



3]

1k,

15.

16.

17.

18.

19.

20.

21.

ol
3

1-10992

-]~

D. Wong (private communication, 1962).

We have written Eq. (V.2) for £ real and qs2 > 0 , the imaginary part
of Qz to be evaluated as the negative t axis is apprcached from above.
This demonstration will be given explicitly in a separate paper by one of
the authors (C. E. J.).

G. F. Chew, Phys. Rev. 130, 1264 (1963).

John Robert Taylor, Ph.D. thesis, Analytic Properties in Energy and
Angular Momentum of Partial-Wave Amplitudes, University of California,
Berkeley, June 1963.

It is the presence of energy cuts in the relativistic generalized
potential that prevents a cancellation, as first noted by Gribov and

Pomeranchuk, in Proceedings of the 1962 International Conference on High

Energy Physics at CERN, p. 522.

R. Serber, Phys. Rev. Letters 10, 357 (1963}, has pointed out that high-
energy elastic-scattering cross sections appear to fall off as the inverse
fifth power of momentum transfer squared. This would imply € = 2.5 for
the Pomeranchuk trajectory.

The constraint to lie tc the left of £ = +1 is not built explicitly
into our equations but, as explained in reference 1, is to be imposed
separately.

The latter circumstance would not invalidate our whole .program because
there will still be regions of energy (perhaps‘on unphysical sheets)
vhere the pole retreats to the left and allows the function (II.3) to
be defined.

S. Mandelstam, preprint, University of Birmingham (1963).



UCRL-10992

-0
FIGURE CAPTIONS

Fig. 1. The Mandelstam diagram, showing the strip regions where the double

“spectral functions are dominated by Regge poles.
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