
UC Davis
UC Davis Previously Published Works

Title
Effect of drought stress on the genetic architecture of photosynthate allocation and 
remobilization in pods of common bean (Phaseolus vulgaris L.), a key species for food 
security

Permalink
https://escholarship.org/uc/item/04q1641s

Journal
BMC Plant Biology, 19(1)

ISSN
1471-2229

Authors
Berny Mier y Teran, Jorge C
Konzen, Enéas R
Palkovic, Antonia
et al.

Publication Date
2019-12-01

DOI
10.1186/s12870-019-1774-2
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04q1641s
https://escholarship.org/uc/item/04q1641s#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE Open Access

Effect of drought stress on the genetic
architecture of photosynthate allocation
and remobilization in pods of common
bean (Phaseolus vulgaris L.), a key species
for food security
Jorge C. Berny Mier y Teran1 , Enéas R. Konzen1,2,3 , Antonia Palkovic1, Siu M. Tsai2, Idupulapati M. Rao4,5,
Stephen Beebe4 and Paul Gepts1*

Abstract

Background: Common bean is the most important staple grain legume for direct human consumption and
nutrition. It complements major sources of carbohydrates, including cereals, root crop, or plantain, as a source of
dietary proteins. It is also a significant source of vitamins and minerals like iron and zinc. To fully play its nutritional
role, however, its robustness against stresses needs to be strengthened. Foremost among these is drought, which
commonly affects its productivity and seed quality. Previous studies have shown that photosynthate remobilization
and partitioning is one of the main mechanisms of drought tolerance and overall productivity in common bean.

Results: In this study, we sought to determine the inheritance of pod harvest index (PHI), a measure of the
partitioning of pod biomass to seed biomass, relative to that of grain yield. We evaluated a recombinant inbred
population of the cross of ICA Bunsi and SXB405, both from the Mesoamerican gene pool, to determine the effects
of intermittent and terminal drought stresses on the genetic architecture of photosynthate allocation and
remobilization in pods of common bean. The population was grown for two seasons, under well-watered
conditions and terminal and intermittent drought stress in one year, and well-watered conditions and terminal
drought stress in the second year. There was a significant effect of the water regime and year on all the traits, at
both the phenotypic and QTL levels. We found nine QTLs for pod harvest index, including a major (17% of variation
explained), stable QTL on linkage group Pv07. We also found eight QTLs for yield, three of which clustered with PHI
QTLs, underscoring the importance of photosynthate remobilization in productivity. We also found evidence for
substantial epistasis, explaining a considerable part of the variation for yield and PHI.

Conclusion: Our results highlight the genetic relationship between PHI and yield and confirm the role of PHI in
selection of both additive and epistatic effects controlling drought tolerance. These results are a key component to
strengthen the robustness of common bean against drought stresses.
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Background
Yield potential is genetically determined by the efficiencies
in light interception, conversion of light to photosynthates,
and translocation and partitioning of photosynthates to bio-
mass of the harvestable organ [1, 2]. For biomass partition-
ing to seeds, breeding efforts in major crops have achieved
significant gains [3]. Nevertheless, partitioning remains rela-
tively low in most pulses [4]. Furthermore, photosynthate
partitioning and remobilization are important mechanisms
of drought tolerance in common bean [5, 6]. Other mecha-
nisms, like conservative transpiration [7, 8] and deep root-
ing [9, 10] can help maintain high water status at pod
filling, thus enhancing remobilization, increasing the har-
vest index and grain yield.
Understanding the genetic basis of yield productivity,

physiological efficiency (rates of biomass and seed yield
accumulation), and drought resistance mechanisms is an
essential component for the design and implementation
of efficient breeding strategies and marker-assisted selec-
tion for drought tolerance [11–13]. The timing and se-
verity of the drought stress can significantly alter the
balance between vegetative and reproductive growth [4].
For example, stress during flowering can induce flower
drop and, in turn, cause more vigorous, compensatory
vegetative growth, while drought stress during pod filling
would cause more biomass production and decreased
sink strength, resulting in a low harvest index [5]. In
common bean, pod walls serve as a temporary storage of
carbohydrates before rapid seed growth and efficient
translocation of carbohydrates during grain filling. Thus,
carbohydrate storage in pod walls and their translocation
to seeds is of great importance for productivity [14].
Common bean (Phaseolus vulgaris L.; 2n = 2x = 22) is

the most important legume for direct human consump-
tion, because of its wide consumption and cultivation,
and nutritional and agronomic role, which complements
that of cereals and other sources of carbohydrates like
root crops and plantain [15, 16]. Its role as a comple-
mentary source of nutrition is limited, nevertheless, be-
cause more than half of its area of production is affected
by drought, which causes yield reduction or even crop
failure as the production of common bean is mostly
rainfed [17, 18]. Terminal (TD) and intermittent (ID)
drought are two of the patterns of drought most com-
mon in bean production. The specific growth and devel-
opment stage affected by drought stress, as well as its
duration and intensity, are major factors affecting yield
and seed quality [17, 19]. In addition, one of the major
effects of global warming is the change of patterns and
reliability of rainfall, which will likely increase drought
severity, especially near the tropics [20]. An important
approach to coping with drought constraints and main-
tain or increase productivity is through breeding and de-
velopment of resilient cultivars [21, 22].

Yield, and its components, are quantitative traits under
polygenic control [23–25]. Pod Harvest Index (PHI), de-
fined as the partitioning of biomass from pods to seeds,
has been identified as a useful and stable trait for indirect
yield selection in drought and non-drought stressed envi-
ronments [19, 26, 27]. Previous efforts in QTL discovery
for PHI have identified associated genomic regions in the
presence or absence of drought stress [28–30] or only in
well-watered conditions [31, 32]. However, any differential
expression of PHI QTLs between terminal and intermit-
tent drought has not been investigated to our knowledge.
Furthermore, variation in PHI is determined by variation
in allocation of photosynthates to pod and seed, as well as
the capacity of the remobilization from the pod wall to
the seed; these three factors could be differentially con-
trolled genetically. Although the role of epistasis in com-
mon bean has been quantified previously for yield
components [23] and pod shape [33, 34], there are no esti-
mates of epistasis for PHI and its components. Therefore,
the objectives of the research presented here were to: 1)
estimate the differential effect of intermittent and terminal
drought on yield, PHI, and its components; 2) identify
QTLs for these traits; and 3) estimate the role of
pleiotropy-tight linkage and epistasis in controlling PHI.

Results
Phenotypic segregations
Comparison of parents across environments
ICA Bunsi and SXB405 differ significantly for pod-wall
weight (PWW), whole-seed weight (average seed dry
weight per pod: WSW), whole-pod weight (average dry
pod weight, including seeds: WPW), 100-seed weight
(SW100), but not for days to flowering (DTF), number
of seeds per pod (SPP), pod harvest index PHI), and
yield (YLD; Table 1). SXB405 had higher phenotypic
values for all traits, except for PHI. SXB405 had 61, 59
and 60% higher weight in pod wall, seed and whole pod
weight, respectively. It also had a 100-seed weight that
was 10 g heavier (59%). In all traits, there was transgres-
sive segregation among the RILs, resulting in phenotypic
values that went beyond parental values (Table 1; Fig. 1).
For flowering time, some genotypes were six days earlier
than ICA Bunsi, and 10 days later than SXB405. For
PHI, the highest line showed a value of 0.76, compared
with the high parent (0.71). For yield, the highest line
had 3682 kg ha− 1 across environments, which is 24%
higher than SXB405. For PWW, WSW, and WPW, the
transgressive segregation was less marked.

Sources of variation
Among RILs, the effects of genotype, environment and their
interaction were significant for all traits at the P < 0.001 level
(Table 1). In general, the differences between the two years
were larger than those between treatments. For days to
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flowering, the effect of year was significant. Within years,
the drought treatments caused significantly earlier flowering,
although the average difference was less than one day. For
PWW, terminal drought led to heavier pod walls in both
years compared to the control. For WSW andWPW, reduc-
tions were observed in both years compared to the control.
For 100-seed weight (SW100), terminal drought led surpris-
ingly to heavier seeds than intermittent drought in the first
year, and to the control in the two years. SPP was lower
under intermittent drought, compared to the control and
terminal drought in the first year. The second year had sig-
nificantly lower number of seeds per pod, with no statistical
difference among treatments. PHI was significantly lower in
the well-watered control and only in the intermittent
drought in the first year. In the second year, PHI under ter-
minal drought treatment was also lower than in the control
treatment. In both comparisons, however, the reduction in
PHI was only 0.01. For yield, there was a reduction of 27%
under terminal drought in the first year and 23% in the sec-
ond year, compared to the well-watered control (Table 1).

Correlations among traits
PHI (r = 0.5), followed by WSW (r = 0.25) and SPP (r = 0.22)
(Fig. 1, Table 2) were the traits most positively correlated
with yield. In contrast, DTF was negatively correlated with
yield (r = − 0.22). PHI had a higher (negative) correlation

with the weight of pods (r =− 0.47) than to the number of
seeds (r = 0.032). There was a relatively high positive correl-
ation of the number of seeds per pod and pod harvest index
(r = 0.41). SPP was correlated with the whole-pod seed
weight (r = 0.38) but not significantly correlated with
whole-pod weight. Correlations between yield and yield-asso-
ciated traits in each year (Table 2), were similarly significant
between treatments (fully irrigated control and terminal
drought) within each year. WSW, WPW, SW100, SPP, and
PHI were significantly correlated with yield in all year/treat-
ment combinations. In contrast, DTF and WPW weight
were only significantly (and negatively) correlated with yield
in 2014. For DTF, the correlation was higher in the drought
treatment than in the full irrigation treatment in both years.
The correlation between yield and PHI was similar be-
tween treatments but lower in 2013 than in 2014, with
0.28, 0.26, 0.55 and 0.53 for 2013I, 2013D, 2014I and
2014D, respectively.

Molecular linkage map and QTL analyses
Molecular linkage map
The length of the linkage map was 951 cM using 378
markers across the 11 linkage groups of the common
bean genome (Fig. 2). There were on average 34 markers
per linkage group with an average and range of spacing
of 3.0 and 1.7–5.3 markers/cM, respectively (Table 3).

Table 1 Descriptive statistics and analysis of variance for 8 traits: days to flowering (DTF), pod wall weight (PWW), whole-seed
weight (WSW), whole-pod weight (WPW), 100-seed weight (SW100), seeds per pod (SPP), pod harvest index (PHI), and yield (YLD), in
three water regimes in two year

Trait DTF PWW WSW WPW SW100 SPP PHI YLD

Units g pod−1 g pod−1 g pod−1 g 100-seed− 1 WSW / WPW kg ha− 1

Parent mean1 ICA Bunsi 46.0 0.38A 0.93A 1.31A 16.87A 5.49 0.71 2619

SXB405 47.8 0.62B 1.48B 2.09B 26.92B 5.54 0.70 2969

RIL Mean 47.6 0.49 1.22 1.71 20.88 5.87 0.71 2497

Min 40.9 0.32 0.90 1.22 14.93 4.92 0.64 1445

Max 57.4 0.65 1.78 2.40 28.57 6.67 0.76 3682

F values2 Genotype 35.3*** 25.9*** 19*** 21.5*** 36.8*** 5.8*** 16.1*** 8.4***

Env 114.1*** 41.2*** 99.5*** 82.2*** 241.9*** 127.4*** 174.1*** 325.9***

GxE 1.9*** 1.2** 1.7*** 1.6*** 1.7*** 1.6*** 1.7*** 2.6***

Environmental means3,4 2013-C 49.64 A 0.48 C 1.36 A 1.85 A 21.06 C 6.48 A 0.74 A 2515 B

2013-TD 49.3 B 0.49 B 1.33 B 1.81 B 21.98 A 6.53 A 0.74 AB 1846 C

2013-ID 49.02 B 0.48 C 1.35 AB 1.84 AB 21.37 B 6.3 B 0.73 C

2014-C 45.53 D 0.48 C 1.07 C 1.58 C 19.24 ABCD 4.98 ABC 0.67 C 3173 A

2014-TD 44.64 C 0.52 A 0.95 D 1.43 D 20.42 D 4.86 C 0.66 D 2456 B

CV 3.2 7.4 8.6 7.5 5.6 6.7 2.4 17.7

R squared 0.81 0.70 0.78 0.76 0.78 0.76 0.80 0.70

Heritability 0.94 0.96 0.92 0.93 0.96 0.73 0.90 0.68
1Levels not connected with the same letter are significantly different according to the Student’s t test (P < 0.05)
2Differences among RILs: significance codes: ‘***’ < 0.001, ‘**’, < 0.01
3Levels not connected with the same letter are significantly different according to the Tukey-Kramer HSD test (P < 0.05)
4Treatments: full irrigation (C), terminal drought (TD), intermittent drought (ID)
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By comparing the genetic map with the physical map
using shared markers with the reference genome of
G19833 (Version 1.0; [35]), the map covered a physical
length of 479,410,006 base pairs or 82% of the total se-
quence length of the 587Mb bean genome. The cover-
age of the genome among linkage groups ranged from
98 to 67% of physical length. The average maximum
interval without markers across linkage groups was 19
cM long. The longest interval was on linkage group
Pv03 with 29 cM between flanking markers. A relatively
large part of the short arm of linkage group Pv08 (~ 20
Mbp from the beginning of the linkage group) was

nearly devoid of polymorphic SNPs. The average phys-
ical distance (kbp) per unit of genetic distance (cM) was
516 kbp/cM and ranged between 362 kbp/cM (Linkage
group Pv09) and 680 Kbp/cM (Linkage group Pv10).

Identification of additive QTLs and their distribution on the
molecular linkage map
Quantitative trait loci analyses were performed for each
treatment and year combination as well as for the overall
mean across environments, as an indication of the de-
gree of stability of each QTL (Table 4, Additional file 1:
Table S1, and Fig. 2). We found 51, 48, 49, 40, 41, 51

Fig. 1 Matrix of trait frequency distribution (diagonal), joint distribution (lower triangle), and correlation coefficient (upper triangle) of the traits
averaged across environments in the ICA Bunsi x SXB405 RIL population. Traits: days to flowering (DTF), pod wall weight (PWW), whole seed
weight (WSW), whole pod weight (WPW), 100- seed weight (SW100), seeds per pod (SPP), pod harvest index (PHI), Yield (YLD). Parental means are
showed as arrows in red (ICA Bunsi) and green (SXB405)

Table 2 Correlation coefficients between grain yield and other traits studied in the ICA-Bunsi x SXB405 RIL population grown under
different irrigation schemes and years

Trait 2013 Irrigated 2013 Terminal Drought 2014 Irrigated 2014 Terminal Drought

Days to flowering 0.06 0.09 −0.33*** −0.46***

Pod wall weight 0.12 0.12 −0.17* −0.13*

Whole seed weight 0.36*** 0.36*** 0.37*** 0.36***

Whole pod weight 0.31*** 0.31*** 0.23*** 0.23***

Seed weight 0.31*** 0.25*** 0.23*** 0.15*

Seeds per pod 0.18*** 0.20*** 0.32*** 0.38***

Pod harvest index 0.28*** 0.26*** 0.55*** 0.53***

Significance codes: ‘***’ < 0.001, ‘*’ < 0.05
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QTLs for the 2013-C, 2013-TD, 2013-ID, 2014-C,
2014-TD environments and overall mean, respectively.
There were QTLs in all linkage groups. Nevertheless,

only one QTL was found in linkage groups 08 and 10.
Across environments, the percentage of explained vari-
ation (PVE) ranged from 24% (SPP) to 73% (DTF)

(Table 4). PHI and YLD had a percentage of explained
variation of 43 and 33%, respectively. Interestingly, PHI
had higher PVE in 2013 than in 2014, while for yield PVE
was lower in 2013 and higher in 2014.
For days to flowering, 10 QTLs were found in eight link-

age groups. Five of these QTLs were significant across all

Fig. 2 Linkage groups and QTLs of the ICA Bunsi x SXB405 RI population for pod harvest index (PHI), pod wall weight (PWW), whole seed weight
(WSW), whole pod weight (WPW), 100-seed weight (SW100), seeds per pod (SPP), days to flowering (DTF) and yield (YLD). Full bars represent QTLs that
were detected in all years or in the overall mean across environments. Open bars represent QTLs that were not consistent across environments. The
length of the bars represent the 99% confidence interval. The color of the bars represents the positive effect of the parent, ICA Bunsi in green and
SXB405 in red. The positions in the linkage group are the physical positions of the markers in Mb and plotted with MapChart [36]
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environments. The remaining QTLs were year-specific,
and not treatment-specific. In four of the 10 QTLs, ICA
Bunsi contributed the negative allele (earliness). The QTL
with the largest percentage of explained phenotypic vari-
ation was located on linkage group Pv01 with 26% of the
additive variance across environments, an additive effect
of 1.2 days, and ICA Bunsi contributing to earliness.

Photosynthate allocation and remobilization traits
For PWW, 11 QTLs were found distributed over nine
linkage groups. The ICA Bunsi allele contributed posi-
tively for only three of them. Four QTLs were expressed
in all environments. The QTL explaining the largest
variation at 19 cM in Pv06, explaining 29%, with SXB405
allele having the positive effect. Three QTLs were
expressed only in 2013, in the control and terminal
drought treatments, but not in the intermittent drought

treatment. There were 10 QTLs for WSW, distributed
on seven linkage groups. SXB405 was the source of the
positive allele in six QTLs.
Similar to PWW, the largest QTLs for WPW were lo-

cated on Pv05 and Pv06, with 28 and 11% of the vari-
ance across environments explained, and SXB405 being
the source of the positive allele. For WPW, there were
12 QTLs distributed on nine linkage groups. The posi-
tive allele was contributed by SXB405 for eight QTLs.
Two relatively large QTLs were found on Pv05 and
Pv06, with 24 and 17% of the additive variation. In both
cases, SXB405 was the source of the positive allele.
These two QTLs were the only ones being expressed
across environments.
For PHI, there were nine QTLs on seven linkage

groups. ICA Bunsi alleles contributed positively to five
QTLs. Only the QTL at the 59 cM position on Pv07 was
expressed across environments. This QTL also had the
highest percentage of the variation explained (17%), with
SXB405 contributing the positive allele. In general, the
other QTLs were expressed similarly between treat-
ments, but not between the two years. Five QTLs were
significant in all treatments in 2014, but not in 2013,
while one QTL was significant across treatments in 2013
but not in 2014. The QTL on Pv01 was significant only
under terminal drought in 2014. The QTL in Pv04 was
significant only in the control conditions in both years.
For SPP, four QTLs were found. All QTLs were

expressed in 2013, but only one in 2014. The QTL
explaining the largest variation was located on Pv05
(8%), the allele of SXB405 had the positive effect. While
the other three QTLs positive effect was from the ICA
Bunsi. There were 10 QTLs for SW100 distributed in

Table 3 SNP distribution among the linkage groups/chromosomes of the ICA Bunsi x SXB405 RIL population

Linkage
groups

No. of
markers

Length linkage
groups

Average
spacing

Maximum
spacing

Physical range Physical
length

Recombi-nation
distance

Genome
coverage

cM Marker cM−1 cM bp bp bp Kbp cM−1 %

Pv01 19 95 5.3 24.5 1,401,251 52,025,956 50,624,705 532.9 97.0

Pv02 64 104.5 1.7 11.8 1,026,678 48,100,260 47,073,582 450.5 96.0

Pv03 17 83.2 5.2 29.3 61,877 49,728,839 49,666,962 597.0 95.0

Pv04 41 101.1 2.5 17 261,173 45,468,422 45,207,249 447.2 98.4

Pv05 41 89.6 2.2 20.7 129,685 40,309,715 40,180,030 448.4 98.4

Pv06 42 77.1 1.9 13 200,825 31,799,267 31,598,442 409.8 98.8

Pv07 40 100.4 2.6 15.3 61,520 50,054,206 49,992,686 497.9 96.6

Pv08 17 59.6 3.7 24.2 19,218,321 59,337,170 40,118,849 673.1 67.2

Pv09 28 97.3 3.6 16.6 1,487,977 36,698,444 35,210,467 361.9 94.0

Pv10 24 60.6 2.6 11.8 1,969,500 43,194,406 41,224,906 680.3 95.3

Pv11 45 82.8 1.9 21.5 730,195 49,242,323 48,512,128 585.9 96.3

Average 34.4 86.5 3.0 18.7 2,413,546 45,996,273 43,582,728 516.8 93.9

Total 378 951.2 479,410,006

Table 4 Number of QTLs and percent of variation explained for
the 5 environments and overall performance

Trait 2013-C 2013-TD 2013-ID 2014-C 2014-TD Mean

N PVE N PVE N PVE N PVE N PVE N PVE

DTF 8 74.4 8 73.4 8 73.5 8 56.0 7 55.4 8 73.1

PWW 9 63.1 6 48.6 9 64.4 5 50.3 5 50.3 10 67.8

WSW 7 60.7 4 53.7 7 60.0 7 53.4 7 52.9 6 59.2

WPW 7 62.6 9 64.5 8 63.9 7 54.3 6 50.9 8 63.2

SW100 8 63.2 9 67.9 8 64.4 4 40.3 7 59.7 7 62.0

SPP 3 27.0 3 31.2 3 29.3 1 12.1 1 12.1 4 23.6

PHI 6 50.5 6 49.2 6 52.4 3 40.4 3 40.8 4 43.1

YLD 3 17.9 3 21.0 5 46.1 5 41.8 4 33.3

PVE: proportion of value explained, as the linear sum of the maximum values
corresponding to each marker
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eight linkage groups. SXB405, the parent with the heavi-
est seed, was the source of the allele with positive effect
in seven QTLs. The QTL on Pv05, had the largest ex-
plained variation with 30% of the additive variation, and
limited environmental influence. The SXB405 allele in-
creased the seed weight by 1.27 g per hundred seeds over
the mean.

Yield
For YLD, eight QTLs were found across seven linkage
groups. SXB405 was the source of the positive allele in
six of these QTLs. None of the QTLs were significant in
all environments. The differential expression was mostly
due to the year than to the treatment effect; none of the
QTLs were significant in both years. In 2014, all the
QTLs expressed were significant in both treatments.
However, in 2013, two of the three QTLs were signifi-
cant only under terminal drought. Nevertheless, the ana-
lysis across environments detected three QTLs, of which
the major QTL in Pv06 explained 11% of the additive
variation. The positive allele was conferred by SXB405,
increasing yield by 106 kg ha− 1 above the average.

Clustering of QTLs
All nine QTLs for PHI clustered with other QTLs (Figs. 2
and 3). They grouped with WSW and WPW on Pv01,
with PWW on Pv02, with WSW, SPP, YLD, and WPW
on Pv04, with DTF, SPP and YLD on Pv05, with WSW,
WPW, SW100, PWW, and YLD on Pv06, and with YLD
and Pv07. For three of the four PHI QTLs clustering
with YLD QTLs (Pv04, Pv05, and Pv07), SXB405 pro-
vided the positive allele for each of the QTLs. In con-
trast, the PHI QTL originated in the ICA Bunsi parent
and the YLD QTL in the SXB405 parent.

Genetic interactions
Epistatic interactions among QTLs for the same trait
Digenic epistatic interactions were analyzed for the aver-
age of the traits across environments (Table 5) and within
each environment (Additional file 2: Table S2). Across en-
vironments, epistatic interactions were found for 13 pair-
wise interactions, including PWW, WSW, SW100, PHI,
and YLD (Table 5). Six epistatic QTL combinations were
detected for PHI, two for PWW, three for WSW, and one
each for WPW, SW100, and YLD. Furthermore, we found
51 epistatic interactions when analyzing each environment
separately (Additional file 2: Table S2). The interactions
were more consistent across treatments than across years.
When analyzing the overall mean, PHI had the largest
number of epistatic interactions.

Pleiotropy and epistasis across traits
We further modeled pleiotropy and epistasis jointly with
CAPE (Tyler et al. 2013, 2016). Analyzing the mean

phenotypes across environments, there were genomic
areas that had a pleiotropic effect for all traits, especially
in Pv02, Pv05, Pv06 and Pv07 (Fig. 3). In addition, we
found 47 loci, which were interacting in a network in-
volving all linkage groups. In all traits, the main effects
explained most of the variance (Fig. 3). However, for
SW100, PHI and YLD, the interactions accounted for
18, 25, and 16% of the variation, respectively.

Discussion
This study had three major goals: 1) to estimate the differ-
ential effect of intermittent and terminal drought on yield,
PHI, and its components; 2) to identify QTLs for these
traits; and 3) to estimate the role of pleiotropy-tight link-
age and epistasis in controlling PHI.

Differential effect of drought type on yield, PHI, and its
components
The full population was grown for two years (2013 and
2014); the first year, both a terminal drought and inter-
mittent drought treatment were imposed, while in the
second year, only a terminal drought was considered.
The dry conditions of the field site in Davis, California,
allowed us to control the drought level through irriga-
tion as rainfall during the summer is very rare, localized,
and limited. In general, for all the traits, we found a sig-
nificant effect in the treatment effects within each year,
indicating that the reduced number of irrigations had
imposed a sufficient experimental drought stress.
While the drought stress under terminal drought was

encountered after flowering, the intermittent drought
treatment overlapped during mid flowering. Neverthe-
less, the difference between years was even more not-
able. Heat waves are an occasional issue and can induce
inflorescence and pod abortion, as well as reduced
fertilization [37–39]. There was a heat wave during flow-
ering in the second year causing flower drop and a lower
number of seeds per pod. Nevertheless, the yields recov-
ered, probably through re-growth and compensation that
can occur in indeterminate cultivars [38, 40]. We found
a significant genotype-by-environment interaction in all
traits; however, pod traits (PWW, WPW, WSW, and
PHI), SW100, and DTF showed high broad-sense herit-
ability, while, unsurprisingly, SPP and YLD showed
lower heritability (Table 1).
When comparing the effects of intermittent and ter-

minal drought to the control, PHI was similar in ter-
minal drought and the control [29, 40], but was lower in
intermittent drought. These results suggest that photo-
synthate allocation towards pods is enhanced under TD
but decreased under ID. The SPP was lower in ID than in
control and TD, probably because of heat stress during
the reproductive stage that has an effect on fertilization
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and seed abortion [38, 41]. Therefore, photosynthate allo-
cation could be hampered due to lower sink strength [14].
The study of correlated traits, which arise through

pleiotropy and linkage disequilibrium [42], is important

because they influence the progress from selection in
breeding. Across environments, the correlations of YLD
with the other traits were consistent. When comparing
the mean of phenotypic traits across environments, PHI

Fig. 3 Network plot of pleiotropy and epistasis QTL interactions derived from CAPE. a The main effects are plotted in the circles with the ICA Bunsi
positive allele in brown and SXB405 positive allele in blue. The interactions are shown in the arrows with enhancing (blue) and suppressing (brown) effect.
DTF: Days to Flower; PHI: Pod Harvest Index; PWW: Pod Wall Weight; SPP: Seeds per Pod; SW100: One-hundred Seed Weight; WSW: Whole Seed Weight;
WPW: Whole Pod Weight. b Variance explained by the main effects and the interactions, and the number of factors included in the final model
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had the highest correlation with YLD (r = 0.5) among
traits, suggesting the importance and usefulness of the
trait for indirect selection for yield [6, 27]. Among its
component traits, PHI had a higher absolute correlation
with PWW (− 0.47) than with WSW (0.32) and SW100
(0.17), suggesting both the importance of photosynthate
allocation to pods and its remobilization to the seeds. The
number of seeds per pod was also correlated with PHI
(0.41), suggesting that sink strength due to the number of
seeds is higher than sink strength based on seed size.
Individual seed weight usually has lower plasticity and

higher heritability [43, 44]. The number of seeds per pod
is highly affected by temperature [37, 38, 45] and drought
stress [46]. The latter is consistent with our findings that
the number of seeds per pod was significantly lower in the
second year, when the plants suffered a high heat episode
during flowering and the differences between treatments
were only significant under intermittent drought, when
drought stress was present at the beginning of flowering.
Interestingly, there was no correlation between SPP and
PWW or SW100, in addition to the high heritability of the
latter two traits, and medium correlation between pod
wall and seed weight. This observation suggests that pod
walls have relatively low plasticity; hence, seed and pod
morphologies may be inherited differently.

Identification of QTLs
Map development
A genetic map was developed with the BARCBean6K_3
SNP chip platform with an average density of 3 markers
per cM. The marker density of linkage maps of other
populations genotyped with the same BARCBean6K_3
SNP chip had an average of 1.61 and a range from 0.64
to 2.4 markers per cM [25, 29, 30, 47, 48]. Overall, the

sample size and marker density for our analyses were ad-
equate for QTL mapping [49, 50].
However, the distribution of SNPs was uneven over

the eleven linkage groups. In most of the metacentric
chromosomes ([51]: Pv02, Pv03, Pv04, Pv05, Pv07,
Pv08, Pv10, and Pv11, the SNPs were distributed to-
wards the ends of the two arms. An exception was
Pv08, a metacentric chromosome, with a large region
of towards one end of the chromosome. This large
monomorphic area may be due to common ancestry
from ICA Bunsi, as this cultivar was not only one of
the parents of this RI population but has also been
used as a parent of at least two of the lines (A686,
SEA15) used in the development of the other parent,
SXB405 (S. Beebe, unpublished information). It may
also contain genes that were under the same selection
during the development of the two RI parents. Traits
that have been mapped to these regions include prin-
cipally growth habit and phenology traits. These in-
cluded number of nods and pods on the main stem,
harvest index, and days to flowering and maturity
[52], lodging and seed weight [53], and shoot ant
total weight, hypocotyl length, root weight, and SPAD
index (chlorophyll content [54]. This overall focus on
plant type is also reflected in the use of ICA Bunsi as
a parent to obtain white mold resistance. Miklas et al.
[55] mapped several QTLs for white mold (Sclerotinia
sclerotiorum Lib. de Bary) avoidance to this same re-
gion on Pv08, including canopy porosity, height, and
lodging, suggesting that selection for a more upright
and porous plant type is controlled at least partially
by this region on Pv08 and has been selected by mul-
tiple breeding programs, whether directly for growth
habit or for avoidance of white mold.

Table 5 Digenic-epistatic interactions across environments for pod wall weight (PWW), whole-seed weight (WSW), whole-pod
weight (WPW), 100-seed weight (SW100), pod harvest index (PHI) and yield (YLD)

Trait Position 1 Interval 1 Position 2 Interval 2 LOD PVE Add1 Add2 A x A

PWW Pv07.94 ss715646018-ss715639206 Pv09.63 ss715646367-ss715647626 4.0 7.4 −0.004 −0.014 −0.010

PWW Pv09.0 ss715641128-ss715647842 Pv11.28 ss715645480-ss715645542 3.9 2.6 0.002 −0.007 −0.009

WSW Pv05.43 ss715648643-ss715649151 Pv06.39 ss715646419-ss715645797 3.7 14.4 −0.001 0.002 0.021

WSW Pv01.39 ss715639556-ss715649290 Pv10.53 ss715645501-ss715647381 3.5 17.7 0.001 − 0.001 0.024

WSW Pv03.58 ss715639345-ss715639245 Pv11.38 ss715646672-ss715650431 3.6 16.2 −0.001 0.002 0.023

WPW Pv05.41 ss715640122-ss715640788 Pv07.46 ss715646455-ss715644972 4.2 36.3 −0.002 −0.003 0.031

SW100 Pv07.41 ss715646353-ss715649276 Pv09.62 ss715646367-ss715647626 3.8 1.3 0.028 −0.502 0.312

PHI Pv01.87 ss715645248-ss715645244 Pv06.3 ss715641022-ss715648313 3.6 4.7 −0.001 0.001 0.004

PHI Pv02.1 ss715646675-ss715649308 Pv06.29 ss715645033-ss715648132 3.9 3.6 0.000 0.001 −0.004

PHI Pv02.37 ss715650549-ss715650341 Pv09.0 ss715641128-ss715647842 3.6 3.0 −0.001 0.000 −0.004

PHI Pv06.17 ss715649329-ss715646829 Pv09.26 ss715647012-ss715639456 3.6 3.1 −0.001 0.000 −0.003

PHI Pv06.30 ss715648132-ss715650285 Pv10.34 ss715645510-ss715645516 4.0 3.6 0.001 −0.001 0.004

YLD Pv04.13 ss715646227-ss715646223 Pv05.87 ss715646707-ss715646695 4.4 5.6 29.85 −22.92 −61.79
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QTL mapping
Additive and epistatic marker-trait association analysis
for PHI, its components, and YLD were performed for
each irrigation treatment/year combination as well as for
the overall mean across environments. In addition, we
included a QTL by environment analysis to estimate the
consistency of the marker QTLs across environments.
Nine QTLs were detected for PHI with the positive al-

leles of the QTLs contributed by both parents. A major
and stable QTL was detected on linkage group Pv07
explaining 17% of the additive variation across environ-
ments. It was detected in all environments and had a
low (3%) additive-by-environmental percentage of ex-
plained variation. SXB405 contributed the positive allele.
No QTL in Pv07 has been reported before in previous
analyses [28–30, 32].
The other eight QTL were not detected in all environ-

ments, but were detected mostly either in one year or
the other.
We found eight QTLs for yield. None of the QTLs

were detected in all environments; instead, they ap-
peared in one year or the other. However, despite the in-
consistency of yield QTLs, a frequent observation
among QTL studies [32, 56], three QTLs were detected
when mapping the mean yield across environments. The
co-location of some yield and PHI QTLs across popula-
tions (and environments) is encouraging. Furthermore,
the sign of the parental effect of all the QTLs across en-
vironments was similar, that is, the allele that had a posi-
tive effect in one environment did not have a negative
effect in another environment.

Role of pleiotropy-tight linkage and epistasis in
controlling PHI
Clustering of QTLs and pleiotropy
Pleiotropy refers to the condition when one genetic
element regulates more than one gene product and trait
[57]. Pleiotropy can be assessed first by the clustering of
genes controlling different traits to a specific sequence
although co-location does not necessarily imply plei-
otropy, as it could be due to tightly linked genes. The
expectation of the underlying variation and genetic con-
trol of PHI would be that the photosynthate remobiliza-
tion rate, as well the intrinsic allocation to pod walls and
seeds co-localize. As expected, PHI QTLs co-localized
with QTLs of some of its components. However, the
components were co-localized differentially. Three QTLs
co-localized solely with PWW, two with the seed and
WPW, one with WSW and SPP, one with SPP and DTF,
and one with pod wall, seed and whole pod weight and
SW100. In addition, the major QTL at Pv07 did not
co-localize with any of its components, but it
co-localized with a yield QTL.

This confirms that the variation in PHI is not only a
measure of photosynthate remobilization capacity, but
also depends on the variation in allocation of photosyn-
thates to seeds and pod-walls. For example, the seed
weight in a pod is a function of the number of seeds and
the individual seed weight. The former is a factor of the
number of ovules and fertilization/abortion rates (Naka-
mura, 1986, 1988). The latter is a factor of seed volume
and density. The seed volume in turn is controlled by
seed dimension variation (length, width, thickness,
shape, and distance between ovules within the pod). The
weight of pod wall per pod would also be a factor of the
pod dimension and wall thickness and density. All these
traits can have unique or pleotropic genetic control as
well as being constrained by the availability of photoassi-
milates, water, and nutrients [14, 58].
Four of the eight QTLs for yield co-located with other

traits. Three of them co-located with PHI, underlying
the importance of photosynthate allocation and remobi-
lization for high productivity. No co-localization be-
tween QTLs for PHI with YLD has been observed before
[28–30, 32].

Evidence of epistasis
A substantial number of digenic epistatic interactions
were observed across and within environments. How-
ever, the interactions were not usually consistent among
environments, especially between the two years. In
addition, from the 13 pairwise interactions found in the
mean across environments, only 5 were detected within
years, confirming the complexity and lack of consistency
of epistasis. Nevertheless, we found significant epistatic
networks in all traits and linkage groups. For some
traits, like PHI and yield, epistasis accounted for a large
part of the variation. Our results support previous find-
ings of digenic interactions for yield and yield compo-
nent traits in beans, as well the importance of
interacting genomic regions that do not show main ef-
fects [23, 34]. They also suggest the importance of
higher-order epistasis [23]. Furthermore, epistasis, in
addition to gene complementarity, would explain the
significant transgressive segregation we found in all traits
[59]. As epistatic effects are substantial, especially in
complex traits like yield, genomic selection in beans
would benefit from models that include epistasis, which
have been proven useful in improving the accuracy in
other species [60–64]. Accumulating the right epistatic
combinations is complex because of the large number of
factors and, thus, the low probability of recovery of pro-
geny with the desired gene combinations. However, im-
proved capabilities of high-throughput genotyping and
phenotyping, allows us to relatively cheaply screen large
numbers of recombinant individuals with a large num-
ber of markers.
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Conclusions
Through the detailed phenotypic and genetic evaluations
under different irrigation regimes, we have identified a
substantial number of genomic regions associated with
photosynthate allocation and remobilization under
drought stress in common bean. We found a significant
effect of the water regime on all the traits, at both the
phenotypic and QTL levels. However, the year effect was
stronger. With some exceptions, when the QTL was not
consistent across environments, they tended to be de-
tected across treatments within the same year. We found
several QTLs for PHI, including a major QTL on Pv07.
In addition, QTLs for PHI co-localized with its compo-
nent traits, but pod wall or seed allocation and remobili-
zation patterns varied among QTLs. PHI co-localized
with three out of seven QTLs for YLD, underscoring its
importance as a determinant of productivity. All the
QTLs had the same sign of effect between environments,
strongly suggesting there are no tradeoffs among water
regimes. We also found substantial evidence for epista-
sis, especially for yield and PHI. Although epistasis was
not consistent across environments, it explained a con-
siderable part of the phenotypic variation. Our results
support an approach of joint genomic and phenotypic
selection of yield and its components. PHI is a valuable
selection goal in both well-watered and water-stressed
environments because of its high correlation with yield
and its higher heritability than yield. Information about
physiological traits can be useful for improving the effi-
ciency of selection and abiotic stress resilience [11, 65].
Ultimately, more robust beans, able to better withstand
yield-reducing stresses, will enhance its nutritional role as
a source of dietary protein, fibers, vitamins, and minerals.

Methods
Population development
To investigate the genetic basis of PHI [defined as seed
dry weight per pod at harvest or whole-seed weight
(WSW) over average dry pod weight, including seeds, at
harvest or whole-pod weight (WPW)] and other
yield-related traits, a bi-parental population was evalu-
ated consisting of 226 F9 Recombinant Inbred Lines
(RILs) from the cross of ICA Bunsi and SXB405, devel-
oped at the Centro Internacional de Agricultura Tropical
(CIAT), Colombia. This population was selected for a
QTL analysis because a previous study using a subset of
this population (78 lines, F4:6) found large phenotypic
variation and transgressive segregation for PHI, as well
as relatively high heritability and correlation with yield
[27]. This study provides a more extensive analysis on
the entire population; it also combines phenotypic and
genotypic data, leading to an as yet unperformed QTL
analysis in this population.

ICA Bunsi is a navy type bean developed in 1968 by
the Instituto Colombiano Agropecuario (ICA) from a
cross between Magdalena 8 and Japón 3 [66]. It has been
used extensively in Canadian breeding programs [67],
due to its high productivity and resistance to white mold
(Sclerotinia sclerotiorum) [68, 69]. ICA Bunsi carries the
I gene, which confers Bean Common Mosaic Virus resist-
ance [70]. SXB405 is a cream-colored type experimental
line developed at CIAT from a four-way cross (A 686/A
774//NXB 80/SEA 15) and selected for its high productiv-
ity under drought and common bacterial blight (Xantho-
monas axonopodis pv. phaseoli) resistance [27, 71]. Both
genotypes belong to the Mesoamerican gene pool, are
photoperiod-neutral, and have a type II (indeterminate,
bush) growth habit [27].

Trial design
Field experiments were carried out at the Plant Sciences
Farm at the University of California, Davis (38.53 °N,
121.78 °W) for a total of five environments in two years
and three water regime treatments. The soil type of the
site belongs to the Yolo series, a member of fine-silty
loam, mixed, nonacid, thermic Mollic Xerofluvents, con-
sidered well-drained, with slow to medium runoff and
moderate permeability (https://soilseries.sc.egov.usda.gov).
The seeding was carried out on the 5th of June in 2013
and 8th of June in 2014. The plants were harvested on the
10th of September in 2013 and 12th of September in
2014. All water was provided by irrigation as there were
no rain events during the experiments. In 2013, there were
three irrigation treatments: terminal drought (TD), inter-
mittent drought (ID), and full irrigation (well-watered).
The full irrigation treatment received four irrigations
while the intermittent drought received the first and third
irrigation, and the terminal drought received the first and
second irrigation. Only terminal drought and full irriga-
tion treatments were carried out in 2014, receiving 4 irri-
gations for the full irrigation treatment, and the first two
irrigations for terminal drought. The second irrigation of
the terminal drought was applied during early flowering.
The timing of the irrigation was decided according to
weather and evapotranspiration (Fig. 4). The agricultural
management was according to standard practices [72].
The parental lines and 226 of the RIL lines were planted
in a split plot design with 3 blocks and one repetition per
block. The experimental unit was a plot of 60 plants
grown in two 3m-long rows and 76 cm between rows
(density of 131,578 plants per hectare).

Phenotyping
From each plot, 15 to 20 pods were collected at random
across the plot during harvest and dried for 5 days at 50 °C.
Seed and pod number and pod mass were recorded. The
seeds and pod walls were weighed separately. Pod harvest
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index was calculated as the proportion of seed biomass to
the overall pod biomass (sum of pod wall + seed biomass)
[17]. Days to flowering (DTF) was assessed when at least
50% of the plants in the plot had an open flower. Agro-
nomic yield was weighed after four days of drying at 40 °C
to standardize grain water content. Yield was not measured
on the intermittent drought treatment in 2013 as the plots
were mixed after cutting due to unexpectedly high winds.

Statistical analyses
The data were analyzed in a linear mixed model: geno-
type, irrigation treatment and their interaction were con-
sidered as fixed effects, while the block and the
interaction of block and treatment were considered as
random effects. Each irrigation treatment and year was
combined into one treatment with five levels. This ap-
proach was chosen since one irrigation pattern (inter-
mittent drought) was not present in the second year. In
addition, stress levels can vary between years, as weather
variables and the precise timing of irrigation (in relation
to growth and development of the plant) might have dif-
ferential effects.
Statistical analyses were performed in the R environ-

ment [73], with the “lme4” package [74]. The “lmerTest”
was used to determine the effect significance and least
squared mean calculation [75], with type III hypothesis
testing using the Satterthwaite approximation for de-
grees of freedom. R squared was obtained with the “pie-
cewiseSEM” package [76]. The coefficient of variation
was calculated with “sjstats” [77]. Broad sense heritability
was estimated with REML [78] as h2 ¼ σ2G=ðσ2G þ σ2GT=e

þσ2
E=erÞ where σ2G is the genetic variance, σ2

GT is the
variance of the genotype by treatment interaction, σ2E is
the variance of the experimental error, e is the number
of environments and r the number of repetitions per en-
vironment. The correlation between traits was calculated
and plotted with the “ggally”package [79].

Genotyping
A single F7 plant of each of the 226 RILs and the two
parents were used for extracting DNA with a modified
ammonium acetate based protocol [80]. The samples
were genotyped with 5398 SNP markers from the
BARCBean6K_3 BeadChip SNP chip platform [81] at
the USDA-ARS Soybean Genomics Improvement La-
boratory, Beltsville, MD. After filtering, GenomeStudio
Module v1.8.4 (Illumina Inc., San Diego, CA, USA) was
used for automatic SNP calling. After subsequent man-
ual adjustments, filtering for quality control, and a 0.15
Gencall score cutoff, 5186 SNPs remained.

Genetic map construction
The SNP segregation database was filtered for marker
monomorphism, missing data less than 5%, co-located
markers, genetic clones and segregation distortion. The
construction of the genetic linkage map markers was
carried out with the “qtl” and “asMAP” packages using
the Kosambi function [82, 83]. From 1039 polymorphic
markers between the parents, three-hundred seventy-
eight markers remained after filtering for missing data
and co-located markers.

Fig. 4 Field environmental conditions of the experiment at the Plant Sciences Farm, University of California, Davis in 2013 (A) and 2014 (B).
Maximum, average, and minimum temperature (0C) and evapotranspiration (ETo, mm) were obtained from the Davis station of the California
Irrigation Management Information System (CIMIS; www.cimis.water.ca.gov)
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QTL mapping
The identification of QTLs was performed using inclusive
composite interval mapping (ICIM) with QTL IciMapping
version 4.1 [84]. ICIM uses a two-step strategy using step-
wise regression for marker selection followed by interval
mapping using phenotypes adjusted from the markers se-
lected in the first step except the flanking markers of the
current marker interval [85, 86]. All the traits/environ-
ment combinations, as well as the mean value across envi-
ronments, were analyzed with the ICIM-ADD for testing
additive interactions. A probability of 0.001 and a step of
1 cM was used for the stepwise regression and the signifi-
cance LOD threshold was calculated by 1000 permuta-
tions in each trait at a significance level of 0.01. QTL-
by-environment interaction and stability was studied with
the ICIM-QEI mapping function, which detects average
and environment specific effects [87]. To study epistasis,
two-dimensional scanning was carried out in each trait/
environment combination by the ICIM-EPI method [84],
with a 1 cM step and a minimum p-value and LOD score
of 0.01 and 3.5, respectively.
Because of evidence of both pleiotropy and epistasis, we

further modeled them through the “CAPE” package [88, 89].
CAPE infers epistatic networks of QTLs affecting one or
more traits First, it integrates multiple related phenotypes as
eigentraits through singular value decomposition to de-cor-
relate traits [88, 90]. We used first three eigentraits, capturing
85% of the variance across traits. A single-variant scan was
performed with linear regression with 1000 permutations to
obtain the significance threshold. After selection of markers
as covariates, a pairwise scan, for interaction detection, was
carried out with 500,000 permutations to obtain empirical p
values and a maximum Pearson correlation between markers
of 0.7 to avoid testing highly correlated markers. The regres-
sion coefficients of single markers and marker interaction on
the eigentraits were combined and reparameterized to detect
between marker-pair influence independently of the eigen-
traits. Then, the influences were translated to the original
phenotypes. The final network was obtained with a mini-
mum adjusted p value of 0.01, and a minimum threshold
power of 1. We estimated the variance explained by the
QTLs as main effects and the interacting markers using lin-
ear regression. The Stepwise regression with model selection
using the Akaike information criterion (AIC) in the package
“MASS” [91] was used first and only the significant markers
and interactions were included in the final model.

Additional files

Additional file 1: Table S1. QTLs identified for various phenotypic traits
in different years and under different water availability treatments. C:
well-watered control; ID: intermittent drought; TD: terminal drought. PVE:
proportion of variation explained by QTL. (XLSX 28 kb)

Additional file 2: Table S2. Digenic epistatic interactions in each
environment (year, irrigation treatment). C: well-watered control; ID: inter-
mittent drought; TD: terminal drought. (XLSX 15 kb)
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