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Abstract

Regression-based methods are commonly used for riverine constituent concentra-

tion/flux estimation, which is essential for guiding water quality protection practices

and environmental decision making. This paper developed a multivariate adaptive

regression splines model for estimating riverine constituent concentrations (MARS-

EC). The process, interpretability and flexibility of the MARS-EC modelling approach,

was demonstrated for total nitrogen in the Patuxent River, a major river input to

Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was

further analysed using nitrate plus nitrite datasets from eight tributary rivers to Ches-

apeake Bay. Results showed that the MARS-EC approach integrated the advantages

of both parametric and nonparametric regression methods, and model accuracy was

demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC

is flexible and allows consideration of auxiliary variables; the variables and interac-

tions can be selected automatically. MARS-EC does not constrain concentration-

predictor curves to be constant but rather is able to identify shifts in these curves

from mathematical expressions and visual graphics. The MARS-EC approach provides

an effective and complementary tool along with existing approaches for estimating

riverine constituent concentrations.

K E YWORD S

concentration-discharge curve, concentration-season curve, pollutant flux, uncertainty

analysis, water quality, watershed management

1 | INTRODUCTION

Water quality degradation, particularly to drinking water sources and

aquatic habitats, is a major global concern (Calamari, Nauen, & Naeve,

1987; Dumont, Williams, Keller, VoÃ, & Tattari, 2012; Huang, Chen,

Zhang, Zeng, & Dahlgren, 2014; León, Soulis, Kouwen, & Farquhar,

2001; Ouyang, Cai, Huang, & Hao, 2016). Riverine constituent con-

centration and load estimation is a primary data requirement for guid-

ing basic water quality protection practices, water quality risk

assessment, and watershed management and remediation (Huang

et al., 2017). Currently, the common methods for riverine concentra-

tion and load estimation can be divided into two categories of

(a) mechanistic model-based methods, such as the soil and water

assessment tool and hydrological simulation program—Fortran

(Saleh & Du, 2004), and (b) regression-based methods, such as the

multiple log linear regression model (ESTIMATOR; Cohn, Delong, Gil-

roy, Gilroy, & Wells, 1989), and the weighted regressions on time, dis-

charge, and season (WRTDS; Hirsch et al., 2010). Mechanistic models

generally require considerable time and effort and may be impractical

because they have large data requirements, complex structure, and

require large calibration parameter sets that are difficult to estimate at

the watershed scale (Chen, Dahlgren, & Lu, 2013). In contrast,Hong Huang and Xiaoliang Ji contributed equally to this work.
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regression-based methods require discrete paired samples of concen-

tration and discharge for parameter estimation and continuous

records of discharge to estimate concentrations for a desired period

(Grizzetti, Bouraoui, de Marsily, & Bidoglio, 2005; Huang, Zhang, &

Lu, 2014).

From a statistical perspective, current regression-based methods

can be further divided into parametric and nonparametric methods,

whose prototypical representations are ESTIMATOR and WRTDS,

respectively. A common assumption of regression-based methods is

that riverine concentrations are a function of several factors, such as

time, discharge, and season. ESTIMATOR is a parametric linear multi-

variate regression model that predicts constituent concentration or

load by developing a linear relationship between predictor variables,

such as ln discharge, ln discharge2, time, time2, and season (Cohn,

Caulder, Gilroy, Zynjuk, & Summers, 1992). However, ESTIMATOR

assumes that the concentration-season and concentration-discharge

curves are constant through time. To overcome this shortcoming,

Yochum (2000) suggested using estimation windows (e.g., 9 years),

yet the window length selection process lacks a rigorous theoretical

basis and is therefore subjective (Appling, Leon, & McDowell, 2016).

By comparison, WRTDS does not require any underlying mathemati-

cal form and makes a three-dimensional matrix of locally weighted

regressions in time–discharge–season (Hirsch & Cicco, 2015; Shipley &

Hunt, 1996). The most significant advantage of WRTDS may be its

capacity to allow concentration-season and concentration-discharge

curves to change through time (Hirsch, Archfield, & Cicco, 2015;

Hirsch & Cicco, 2015). If the advantages of parametric and nonpara-

metric regression-based methods could be integrated in a new

approach, it would provide valuable and practical significance to a

wide range of water quality studies.

Multivariate adaptive regression splines (MARS) is a method for

flexible modelling of high dimensional data (Friedman, 1991). MARS

does not impose any specific relationship type between the response

variable and predictor variables but takes the form of an expansion in

product spline functions, where the number of spline functions and

interactions are automatically determined by the data (Friedman &

Roosen, 1995). Because of these beneficial features, MARS has strong

pattern detection ability, which has been widely used in fields such as

ecology (Leathwick, Elith, & Hastie, 2006), medicine (Koba & Bączek,

2013), and economics (Lorca & Juez, 2011). In recent years, MARS

was successfully applied in hydrology and water resources, such as for

drought forecasting (Deo, Kisi, & Singh, 2017) and evaporation model-

ling (Kisi, 2015). MARS can be considered a semiparametric method

that can often fill the gap between parametric and nonparametric

methods and therefore has potential as a new approach for estimating

riverine constituent concentrations and fluxes.

The U.S. Geological Survey (USGS) monitors water quality in

Chesapeake Bay watershed at nine long-term River Input Monitoring

stations located on the Susquehanna, Potomac, James, Rappahannock,

Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers.

Since 1985, the USGS has collected a minimum of 20 samples per

year at each of the nine River Input Monitoring stations, and the sam-

ples are collected across the full range of the hydrologic conditions,

including 12 monthly samples and eight targeted storm flow samples

(i.e., periods of elevated discharge; Moyer, Hirsch, & Hyer, 2012).

These datasets were selected for their several beneficial attributes,

such as being long term with consistent analytical methods and

QC/QA protocols, nonmonotone data distribution, and sufficiently

high sampling frequencies. Furthermore, this dataset was open access

and has been used in previous studies (Brakebill, Scott, & Schwarz,

2010; Moyer et al., 2012; Zhang, Brady, & Boynton, 2015; Zhang,

Hirsch, & Ball, 2016). Description of the rivers and water quality

parameters is provided in the Supplementary Information A. The aim

of this paper is (a) to introduce a new semiparametric method called

MARS-EC for estimating river constituent concentrations from river

discharge records, (b) to demonstrate the process, interpretability and

flexibility of the MARS-EC modelling approach, and (c) to assess

model accuracy and uncertainty. The performance of MARS-EC was

evaluated using river water quality and discharge datasets from the

USGS monitoring program in Chesapeake Bay.

2 | METHODOLOGIES

2.1 | A brief introduction to MARS

Objectively speaking, MARS is a nonparametric regression technique

but can be used as an adaptive non-linear regression that uses piece-

wise functions to define relationships between a response variable

and multiple predictors. The model form of MARS is

f̂ xð Þ= c0 +
Xk

i=1

ciBi xð Þ+ ε, ð1Þ

where c0 is a constant representing the model intercept, Bi(x) is a basic

function (spline function), k is the number of basic functions, ci is the

constant coefficient of Bi(x), and ε is the unexplained variation.

In MARS models, each basic function takes the form of a constant

(i.e., the intercept) and a hinge function, as well as a product of two or

more hinge functions to model interactions between variables if neces-

sary. Hinge functions are a key component of MARS models and take

the form of

max 0,x−cð Þ
or

max 0,c−xð Þ,
ð2Þ

where c is a constant called a knot (i.e., a break point value), and max

(0, x − c) or max(x − c, 0) refer to hinge functions where max(0, x − c) is

0 if x − c < 0, else x − c.

MARS builds a model in two phases using a forward and back-

ward pass. The forward pass usually builds an overfit model. In the

backward pass, the generalized cross validation (GCV) criterion is used

to find the overall best model from a sequence of fitted models,

where a larger GCV value tends to produce a smaller model, and vice

versa (Oduro, Metia, Duc, Hong, & Ha, 2015). The GCV is use to

2 HUANG ET AL.



achieve a balance between model fitting ability and model complexity

(Friedman & Roosen, 1995):

GCV =RSS= N 1−ENP=Nð Þ2
� �

, ð3Þ

where RSS is the residual sum-of-squares measured on the training

data, ENP is the effective number of parameters, and N is the number

of observations.

The effective number of parameters is defined as

ENP=NMT +Penalty NMT−1ð Þ=2, ð4Þ

where NMT is the number of MARS terms and Penalty is about

2 or 3.

Note that (Number of MARS Terms - 1)/2 is the number of hinge-

function knots, so the formula penalizes the addition of knots, and

therefore, the GCV formula adjusts (i.e., increases) the training RSS to

F IGURE 1 Concentration and predictor variables for TN in the Patuxent River (1985–2017). The smooth curve is the loess smooth line and
the shadow is the standard error
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take into account the flexibility of the model (Fazel Zerandi, Zarinbal,

Ghanbari, et al., 2013).

2.2 | Mars-EC

In the MARS-EC approach, riverine constituent concentrations are

assumed to be functions of environmental factors such as time,

discharge, and season, as well as other environmental factors. The

predictor variables in MARS-EC are adopted from but not limited to

those used in ESTIMATOR and WRTDS (Cohn et al., 1992; Hirsch

et al., 2010). However, MARS-EC assumes riverine constituent con-

centrations to be piecewise linear functions of predictors and allows

concentration-predictors such as concentration-discharge curves to

change over time by means of interaction items. The mathematical

expression of MARS-EC for concentration estimation is

F IGURE 2 Model evaluation metrics of MARS-EC model for TN in Patuxent River (1985–2017). (a) Model selection graph, (b) residuals
versus fitted graph, (c) cumulative distribution graph, and (d) residual QQ graph

4 HUANG ET AL.



lnConcentration Tð Þ= c0 +
Xk

i=1

ciBiTime Tð Þ+

Xk

i=1

ciBilnDischarge Tð Þ+

Xk

i=1

ciBiSeason Tð Þ+

Xk

i=1

ciBiEnvironFactori Tð Þ+ � � �ε,

ð5Þ

where lnConcentration(T) is the logarithmic value of measured daily

constituent concentration, c0 is a constant representing the model

intercept, k is the number of basic functions, ci is a constant coeffi-

cient for each basic function,
Pk
i
ciBiTime Tð Þ represents the relation-

ship between concentration and time (in decimal years),Pk
i
ciBi lnDischargeð Þ represents the relationship between concentra-

tion and discharge,
Pk
i
ciBi Seasonð Þ represents the relationship

between concentration and season (day in year, in decimal days),Pk
i
ciBiEnviron Factori Tð Þ represents the relationship between concen-

tration and environmental factor i, and ε is the unexplained variation.

2.3 | Model example

MARS-EC was developed in R programming language for statistical

computing using the “earth” package (Version 4.6.3; Milborrow,

2018). The earth R package builds regression models using the tech-

niques in Friedman's papers “Multivariate Adaptive Regression

Splines” and “Fast MARS” (Milborrow, 2019a). To demonstrate the

step-by-step modelling approach using MARS-EC, an example for

estimating total nitrogen (TN; nitrate + nitrite + ammonia + organic-

N) is provided for a 33-year record from the Patuxent River near

Bowie, Maryland, a major river input to Chesapeake Bay. The main R

codes for this model example are provided in Supplementary

Information B.

2.3.1 | Data processing

In this model example, TN concentration is regressed using three predic-

tor variables of Trend, Discharge, and Season, as well as potential inter-

action effects. Discrete TN concentration (about semi-monthly) and daily

discharge data were downloaded from USGS Data Services (http://

waterservices.usgs.gov/). Data were retrieved using the “data Retrieval”

packages (Version 2.7.5) in R (DeCicco, Hirsch, & Lorenz, 2019). A data

frame containing these dependent and predictor variables was set up in

accordance with format requirements for “earth” packages. Visual plots

were used to assess data patterns before the subsequent model selec-

tion step, such as the need to make log transformations of concentration

and discharge data before model development (Figure 1).

2.3.2 | Model selection and residual evaluation

In MARS, the final model was selected at the maximum GCV, and the

generalization ability of the model was assessed by RSq (i.e., the coef-

ficient of determination) and GRSq statistics.

GRSq=1-GCV=GCV:null, ð6Þ

where GCV.null is the GCV of an intercept-only model.

Upon completion, the “earth” packages produce graphs to

describe model selection and evaluate performance. Commonly

used graphs include “Model Selection,” “Residuals vs Fitted,”

“Cumulative Distribution,” and “Residual QQ”. In our example, the

best model had 18 terms and used all three predictors

(Equation 7 and Figure 2a); GRSq and RSq were ~0.80

(Figure 2a). The “Cumulative Distribution” graph indicates that the

distribution starts at 0 and shoots up quickly to 90% at 0.3

(Figure 2b). The “Residuals vs Fitted” and “Residual QQ” graphs

highlight the cases (default is 3) having the largest residuals

(Figure 2c,d). Although cases having large residuals could be

excluded when building the model, they might reveal important

data considerations that could warrant changes to the model

(Milborrow, 2019a). However, dealing with potential outliers

requires careful consideration and knowledge of the system, which

were beyond the scope of this example. Additionally, “earth”

packages provide “Abs residuals vs fitted,” “Sqrt abs residuals vs

fitted,” “Abs residuals vs log fitted,” “Cube root of the squared

residuals vs log fitted,” and “Log abs residuals vs log fitted” for

user analysis (Milborrow, 2019b). MARS-EC also calculates the

prediction and confidence intervals that are useful for uncertainty

assessment (Buckner, Choi, & Gibson, 2006; Khosravi, Mazloumi,

Nahavandi, Creighton, & Lint, 2011). In this example, the mean,

smallest, and largest values of the 95% prediction interval were

0.72, 0.62, and 0.89, respectively, with 92% of the values falling

into the 90% prediction intervals (Figure 3).

lnConcentration=0:406

+0:222max 0, 1993:781−Trendð Þ
+1:588max 0, 3:582− lnDischargeð Þ
−0:187max 0, lnDischarge−3:582ð Þ
+0:236max 0, 0:838−Seasonð Þ
+1:196max 0, Season−0:838ð Þ
−0:073max 0, Trend−1989:800ð Þmax 0, 3:582− lnDischargeð Þ
−0:106max 0, 1993:781−Trendð Þmax 0, lnDischarge−1:287ð Þ
+0:091max 0, 1993:781−Trendð Þmax 0, lnDischarge−2:168ð Þ
−0:067max 0, 2011:931−Trendð Þmax 0, 3:582− lnDischargeð Þ
+0:030max 0, Trend−2011:931ð Þmax 0, 3:582− lnDischargeð Þ
−0:122max 0, 1993:781−Trendð Þmax 0, Season−0:595ð Þ
−0:109max 0, 1993:781−Trendð Þmax 0, 0:595−Seasonð Þ
+0:325max 0,3:582− lnDischargeð Þmax 0,Season−0:688ð Þ
+0:172max 0,3:582− lnDischargeð Þmax 0,0:688−Seasonð Þ:

ð7Þ
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2.3.3 | Results visualization

MARS provides mathematical expressions and graphs for visualization

of results. For the TN concentration model in the Patuxent River, the

mathematical expression with calibrated coefficients is shown in

Equation (7). For the main effect, MARS-EC generates a separate

graph to show the concentration-predictor relationship by holding all

other variables at their median values. For interaction effects, MARS-

EC plots changing concentrations for two variables while holding all

other variables at their median values. In our example, the main effect

and interaction effects are showed in Figure 4. TN concentration

gradually decreased with time (Figure 4a) and change points were

detected at 1989.800, 1993.781, and 2011.931 (Equation 7). For the

concentration-discharge curve (Figure 4b), lnConcentration decreased

with increasing lnDischarge, especially at lnDischarge greater than

3.583 (Equation 7). For the concentration-season curve (Figure 4a),

lnConcentration decreased with the progression of seasons (i.e., day

in year) from January to October and then showed an increase (after

day in year >0.838; Equation 7). The main effects quantify each

concentration-predictor curve on the whole, whereas the interaction

effects identify changes in each concentration-predictor curve caused

by other predictors. The interaction effect is essential to concentra-

tion estimation since the concentration-discharge and concentration-

season curves can change over time (Hirsch et al., 2010; Moyer et al.,

2012). Using the calibrated model and daily discharge, decimal date

(trend pattern) and decimal day in year (season pattern), it is easy to

calculate trends in concentrations for any time scale/parameter

(Figure 5).

3 | RESULTS AND DISCUSSION

3.1 | Model interpretability

Model interpretability refers to the capability of the model to express

the behaviour of the system in an understandable way (Casillas, Cor-

dón, Herrera, & Magdalena, 2003). For riverine constituent concentra-

tion estimation, model interpretability mainly depends on the

capability of the model to capture long-term trends and seasonal pat-

terns, as well as the important influence of discharge. The trend pat-

tern of water quality is very important in environmental water

management and remediation (Chang, 2008; Huang et al., 2017).

MARS-EC demonstrated a strong capacity for trend and change point

analysis for water quality constituents. In MARS-EC, the trend pattern

was calculated using the calibrated model and the same predictors,

but all variables except trend item were held at their median values.

Therefore, the trend patterns derived from MARS-EC could be con-

sidered as discharge-season-adjusted concentrations. This is a differ-

ent approach from previous methods. For instance, in WRTDS, the

flow-normalization uses the actual historical discharge values for a

given day, with each historical value being assigned an equal probabil-

ity of occurrence in any given year (Hirsch et al., 2010). In our exam-

ple, trend patterns for yearly concentrations (Figure 6) showed three

change points in 1989, 1993, and 2011. Therefore, we can say that

the trend patterns for annual TN concentrations in the Patuxuent

River decreased from 4.26 mg L−1 in 1985 to 3.72 mg L−1 in 1989

(slope = −0.14 mg L−1 year−1), more rapidly to 2.08 mg L−1 in 1993

(slope = −0.42 mg L−1 year−1), more slowly to 1.64 mg L−1 in 2011

(slope = −0.02 mg L−1 y−1), and finally to 1.09 mg L−1 in 2017

(slope = −0.09 mg L−1 year−1). The MARS-EC approach determines

coefficients for explanatory variables, the non-linear and

nonmonotonic influences of predictor variables and their interaction

effects can be quantitatively estimated and visually displayed. From

this point of view, the MARS-EC approach provides an effective and

useful tool for trend change detection (i.e., change point identifica-

tion), which is an important attribute for devising water protection

plans, as well as for assessing the effectiveness of ongoing watershed

management activities (Chang, 2008; Huang et al., 2017; Renwick,

Vanni, Zhang, & Patton, 2008).

A key goal in riverine constituent concentration and load model-

ling is to accurately capture the concentration-discharge and

concentration-season relationships (Aulenbach et al., 2016; Hirsch,

2014). Another important capacity of MARS-EC is its ability to iden-

tify shifts in concentration-discharge and concentration-season cur-

ves. In accordance with the interaction plot between Trend and

lnDischarge (Figure 4a), as well as the change points in Equation (7),

the lnConcentration–lnDischarge relation curves showed distinct

F IGURE 3 Prediction and 90% CI (red lines) of MARS-EC model
for TN in Patuxent River (1985–2017)

6 HUANG ET AL.



changes between four time periods (1985–1989, 1990–1993,

1994–2011, and 2012–2017). Similarly, the lnConcentration–Season

relation curves indicated differences between two time periods

(1985–1993 and 1994–2017). The lnConcentration–lnDischarge

curve showed lnConcentration progressively decreased with decreas-

ing lnDischarge in three steps between 1985–1989, 1990–1993, and

1994–2011 before reversing this trend since 2012 (Figure 7). The

lnConcentration–Season curve showed an inverted U-shape curve

during the 1985–1993 period that has tended to reverse since 1994

(Figure 8).

River discharge is a major factor regulating constituent concentra-

tions as it incorporates dilution and changing hydrologic flow paths

(i.e., run-off vs. groundwater inputs) associated with storm events. In

a watershed dominated by point source pollution, riverine constituent

concentration might decrease with increasing discharge due to dilu-

tion (Chen et al., 2013). In a watershed dominated by nonpoint source

pollution, riverine constituent concentration is generally assumed to

be a power law function of discharge (Grizzetti et al., 2005; Huang,

Zhang, & Lu, 2014). The shifts in the concentration versus discharge

relationship in the Patuxent River appear to result from sewage treat-

ment plant upgrades over the study period (Moyer et al., 2012). In

accordance with the shifting trend pattern (Figure 6) and

concentration-discharge and concentration-season curves with time

(Figures 7 and 8), we posit that (a) TN concentration in the Patuxent

River has decreased since 1985, (b) point-source pollution played a

major role before 1995, and (c) nonpoint source pollution was domi-

nant after 1995, particularly since 2010.

3.2 | Model flexibility

Constituent concentrations in a river segment are a function of dis-

charge, time, and season, as well as several other environmental fac-

tors such as water temperature (TM), specific conductivity (SC),

dissolved oxygen (DO), and pH (Chen et al., 2013; Huang, Zhang, &

Lu, 2014). In order to improve model performance, it is necessary and

meaningful to take into account additional explanatory variables. The

exploratory variables in MARS-EC were set similar to ESTIMATOR

and WRTDS. In 2004, the U.S. Geological Survey published a

LOADEST program that incorporated parts of the original ESTIMA-

TOR program code but had many enhancements, such as the ability to

have user specified models with additional variables (e.g., turbidity

F IGURE 4 Main and interaction effects of MARS-EC model for TN in Patuxent River (1985–2017). (a) Concentration-time curve,
(b) concentration-discharge curve, (c) concentration-season curve, (d) interaction between time and discharge, (e) interaction between time and
season, and (f) interaction between discharge and season

HUANG ET AL. 7



and specific conductance; Runkel, Crawford, & Cohn, 2004). MARS is

good at dealing with high dimensional data (Friedman & Roosen,

1995), and therefore, MARS-EC is very flexible in taking into account

auxiliary exploratory variables. Herein, in addition to the standard pre-

dictor variables (lnTrend, lnDischarge, and Season) in Equation (5), we

add three auxiliary predictor variables (TM, DO, and pH) to the

MARS-EC model for estimating TN in the Patuxent River. Note that

these auxiliary predictor variables are not daily measurements, but

semi-monthly measurements taken in conjunction with TN concentra-

tions at each monitoring date. The RSq increased from 0.80 to 0.82

with the addition of the auxiliary predictor variables, whereas the

number of model terms decreased from 18 to 15 (Figures 2 and 9).

Thus, the inclusion of auxiliary predictor variables provided a small

improvement to model performance. Similarly, whether or not interac-

tion effects are included in the MARS-EC model may also influence

model performance. MARS-EC modelling in the “earth” packages can

select variables automatically and thereby quickly determines the effi-

cacy of including additional predictor variables and various interac-

tions (Milborrow, 2018; Milborrow, 2019a). Given recent

technological developments in monitoring, several environmental fac-

tors can be monitored in real time at a high frequency and at a greater

number of monitoring stations. Inclusion of enhanced monitoring data

could appreciably improve model performance. The flexibility of

MARS-EC has the potential to improve the concentration fitting and

estimation capabilities, as well as model interpretability, in many water

resource applications (Figure 10). Therefore, the model flexibility of

MARS-EC should be handled case by case with respect to the addition

of auxiliary variables and inclusion of interaction effects. Interaction

effects and auxiliary variables should only be included if they enhance

model performance in a meaningful way.

3.3 | Model accuracy and uncertainty

Metrics for model accuracy and uncertainty are necessary to evaluate

the efficacy of models for estimation of constituent concentrations

for various water resource management activities. Model accuracy

refers to the capability of the model to faithfully predict the true out-

come (Casillas et al., 2003). The model accuracy of MARS-EC was

evaluated by modelling nitrate plus nitrite concentrations for eight riv-

ers in the Chesapeake Bay watershed during 1985–2017; model

results were compared with those from the ESTIMATOR model. Note

that the Potomac River was not used in this analysis because daily dis-

charge records were not available for this site. Although we would

ideally like to test the modelling efficacy of other important constitu-

ents, such as TN and total phosphorus (TP), data gaps for these

parameters (>10 years) in about half of the Chesapeake Bay monitor-

ing sites prevented their inclusion. The percentage of variance

explained (in log space) and mean relative error (in real space) of the

models were used to evaluate model accuracy. The percentage of

F IGURE 5 Measured (triangle) and daily estimated (line) TN
concentrations in Patuxent River (1985–2017)

F IGURE 6 Yearly TN concentrations (triangle) and the trend
patterns (line) in Patuxuent River (1985–2017)
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variance explained value represents the closeness of estimated values

to the measured values. The mean, minimum, and maximum percent-

age of variance explained values for MARS-EC models of the eight riv-

ers were 57%, 38%, and 84%, compared with 45%, 15%, and 72% for

ESTIMATOR models (Table 1). The mean relative error value repre-

sents the deviation of model estimates. The mean, minimum, and max-

imum values of mean relative error for MARS-EC models of the eight

rivers were 38%, 17%, and 85%, compared with 50%, 22%, and 123%

for ESTIMATOR models (Table 1). In general, accuracy of the MARS-

EC models was superior to ESTIMATOR models. ESTIMATOR

assumes the concentration-time and concentration-discharge curves

to be either linear or quadratic (Cohn et al., 1989), and the shape of

the curves is not allowed to change over time (Aulenbach et al.,

2016). In contrast, MARS-EC uses multiple linear segmented regres-

sions to approximate the underlying relationships between concentra-

tions and explanatory variables, with interaction effects also being

taken into account. Hence, the multiple linear segmented regression

approach appears to enhance model accuracy of MARS-EC models

compared with the ESTIMATOR approach for these datasets. It

should be noted that RSq values of concentration estimating models

are expected to be lower than flux estimating models because flux

regression equations are inflated because discharge is an explanatory

variable. Considering the complexities involving the transport and

transformation of nutrients and in-stream assimilation (Chen et al.,

2013), the model accuracy of the MARS-EC model is considered rea-

sonable, and the model has good capability for accurately estimating

riverine constituent concentrations.

Water quality modelling incorporates several uncertainties due to

the complexity of hydro-biogeochemical interactions at the watershed

scale (Defew, May, & Heal, 2013; Nguyen & Willems, 2016;

Shrestha & Solomatine, 2008). We need to realize that both MARS-

EC and ESTIMATOR had relatively poor performances on several riv-

ers, such as the Susquehanna River and Choptank River, resulting in

large uncertainties. Modelling uncertainty can be further classified

into input, structural, parameter, and input components

(Kasiviswanathan & Sudheer, 2017). Input uncertainty mainly arises

from measurement and sampling uncertainties. Measurement errors

are inherent in river discharge quantification and analytical errors in

water quality analysis, while sampling uncertainty results from

F IGURE 7 TN concentration-discharge curves for different time
periods in the Patuxent River. The smooth curve is the loess smooth
line and the shadow is the standard error

F IGURE 8 TN concentration-season curves for different time
periods in the Patuxent River. The smooth curve is the loess smooth
line, and the grey area is the standard error

HUANG ET AL. 9



deficiencies in collecting a representative sample from a stream chan-

nel and across the full range of hydrologic conditions (Snelder,

McDowall, & Fraser, 2017). For example, during the 1985–1995

periods, concentrations of nitrate plus nitrite in the Susquehanna

River exhibited appreciable variability across monitoring dates

(Figure 11). Relatively invariant datasets across different times, sea-

sons, and discharge rates also hinder an effective model calibration.

For sampling uncertainty, samples must be collected across the full

range of hydrologic conditions (including targeted storm flow samples)

to provide full representation of concentration-discharge conditions

(Bowes, Smith, & Neal, 2009; Moyer et al., 2012). Model and parame-

ter uncertainty originate from nonoptimum variable selection, model

functions, residual variation, and model parameterization

(Kasiviswanathan & Sudheer, 2017; Qin, Zhang, Zhong, & Yu, 2017).

For structure and parameter uncertainty, both ESTIMATOR and

MARS-EC share the premise that riverine constituent concentrations

are functions of time, discharge, and season. A lnConcentration–

lnDischarge relationship is a basic premise of regression-based models

as illustrated by the nitrate plus nitrite versus discharge curve for the

Susquehanna River during 1985–2017 (Figure 12). A linear regression

F IGURE 9 Model evaluation metrics of MARS-EC model with auxiliary predictor variables for TN in Patuxent River (1985–2017). (a) Model
selection graph, (b) residuals versus fitted graph, (c) cumulative distribution graph, and (d) residual QQ graph
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based on lnDischarge explained 16% of the variance of

lnConcentration, whereas a loess regression explained 32%. In this

case, both ESTIMATOR and MARS-EC performed poorly due to the

weak relationship between nitrate plus nitrite and discharge. Objec-

tively speaking, no model will perform well in cases where the relation-

ships between constituent concentrations and predictors are weak or

irregular. Thus, uncertainty analysis is essential in modelling constituent

concentrations to determine model efficacy for a given watershed of

interest (Appling et al., 2016; Johnes, 2007). The more tools we have

available, the better our chances of effectively modelling water quality

dynamics for water resource protection and remediation.

3.4 | Summary

The major aim of this methodology-based research was to introduce a

new MARS-EC approach that integrates the advantages of parametric

and nonparametric models for estimating riverine constituent

F IGURE 10 Main and interaction effects for MARS-EC model with auxiliary predictor variables for TN in the Patuxent River.
(a) Concentration-discharge curve, (b) concentration-time curve, (c) concentration-season curve, (d) concentration-pH curve, (e) interaction
between time and discharge, (f) interaction effect between discharge and DO, (g) interaction between time and DO, and (h) interaction between
time and TM
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concentrations. The various methods available for estimating riverine

constituent concentrations have relative advantages and limitations.

The MARS-EC approach developed in this study provides some obvi-

ous advantages. First, MARS-EC has a strong capacity to deal with

high-dimensional analyses that allows for the investigation of several

auxiliary explanatory variables to improve model performance, yet is

flexible enough to optimize the “important” variables and interactions

automatically. Second, MARS-EC does not assume an a priori

concentration-predictor relationship but uses piecewise regression to

approximate relationships and provides mathematical expressions and

visual outputs to define break points (gradual or abrupt) in trend lines.

Third, MARS-EC takes into account interactions between predictor

variables and has the ability to adjust concentration-predictor rela-

tionship curves, such as shifts in concentration-discharge curves, that

may occur over long time periods. In general, MARS-EC is expected to

have good potential for estimating constituent concentrations and

trend analysis. Concentration-discharge and concentration-season

relationships are important and perhaps sensitive indicators of biologi-

cal and hydrological functioning in watersheds (Moatar, Abbott,

Minaudo, Curie, & Pinay, 2017). Therefore, these relationships may

change in response to land-use change and watershed management

TABLE 1 Percentage of variance
explained (in log space) and mean relative
error (in real space) of MARS-EC and
ESTIMATOR models for nitrate plus
nitrite concentration estimates in eight
rivers of Chesapeake Bay watershed

River name

Percentage of variance explained (%) Mean relative error (%)

MARS-EC ESTIMOTER MARS-EC ESTIMOTER

Susquehanna 38 31 21 22

James 69 58 49 62

Rappahannock 74 61 85 123

Appomattox 41 64 47 66

Pamunkey 46 16 25 32

Mattaponi 47 15 36 50

Patuxent 84 72 17 22

Choptank 55 42 21 26

Mean 57 45 38 50

F IGURE 11 Concentrations of nitrate plus nitrite in Susquehanna
River (1985–2017)

F IGURE 12 lnConcentration–lnDischarge curve of nitrate plus
nitrite in Susquehanna River (1985–2017) determined by linear
regression (green) loess smooth line (red)

12 HUANG ET AL.



practices over time (Moyer et al., 2012; Moatar et al., 2017; Zhang,

2018). Importantly, MARS-EC does not constrain concentration-

discharge and concentration-season curves to be constant over long-

term periods. This attribute is a big advantage of MARS-EC as

detecting thresholds (i.e., change points) is a critical issue during this

period of rapid environmental change.

We also identified several limitations of the newly developed

MARS-EC approach that warrant further investigation. First, MARS-EC

does not have the ability to directly deal with outlier/inaccurate data,

an issue ubiquitous in water quality datasets (Oblinger, 1999). Second,

MARS-EC is highly sensitive to data outliers and the lack of representa-

tive data across the entire range of environmental/hydrological condi-

tions. Third, MARS-EC performance was weak, similar to other

modelling approaches, when constituent concentrations showed little

variability with respect to predictor variables. Furthermore, in contrast

to mechanistic models, MARS-EC is a statistically based model that

does not directly consider the influence of surface water and ground-

water dynamics on riverine constituent concentrations. River discharge

can be separated into surface water (direct run-off) and groundwater

(baseflow) components, which often have very different chemical signa-

tures. Although the concentration versus discharge curves incorporate

some aspects of surface water-groundwater contributions, it may be

beneficial to better quantify the contributions from surface water and

groundwater on the integrated riverine concentrations. In any case, it is

important to have several options to provide a simple and reliable esti-

mate of water quality parameters to assist in watershed pollution con-

trol, management, and remediation (Huang, Zhang, & Lu, 2014; Santos,

de Weys, Tait, & Eyre, 2013).

4 | CONCLUSIONS

The MARS-EC modelling approach achieves operational integration of

several beneficial aspects of parametric and nonparametric

regression-based methods and was demonstrated to be straightfor-

ward and effective for estimating riverine constituent concentrations.

The modelling process of MARS-EC is flexible and allows consider-

ation of several auxiliary explanatory variables, whereas variable

selection and interactions are automatically optimized in the final

model. MARS-EC is not constrained by the need for constant

concentration-predictor curves but is rather able to identify shifts in

these relationships (i.e., change points) due to environmental change

using both mathematical expressions and visual outputs. The MARS-

EC approach was developed to complement and supplement existing

approaches for estimating riverine constituent concentrations. Each

particular modelling approach may have advantages/disadvantages

for a given watershed providing motivation for developing new

approaches to enhance water quality management.
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