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When	Is	Information	Explicitly
Represented?
David	Kirsh*

INTRODUCTION

Computation	is	a	process	of	making	explicit,	information	that	was	im	plicit.	In
computing	5	as	the	solution	to	 ,	for	example,	we	move	from	a	description
that	 is	 not	 explicitly	 about	 5	 to	 one	 that	 is.	 We	 are	 drawing	 out	 numerical
consequences	of	the	description	 .	We	are	extracting	information	implicit	in
the	 problem	 statement.	 Can	 we	 precisely	 state	 the	 difference	 between
information	that	is	implicit	in	a	state,	structure	or	process	and	information	that	is
explicit?
Most	 discussions	 of	 implicit/explicit	 belief,	 knowledge,	 and	 representation

confidently	 assume	 that	 we	 know	 what	 it	 is	 for	 information	 to	 be	 explicitly
encoded;	 the	 problematic	 notion	—	 if	 any	 notion	 is	 problematic	 at	 all	—	 is
implicit	 information.1	 What	 inspires	 this	 confidence	 is	 a	 particular	 vision	 of
computation.
Let	us	 suppose	 that	 to	understand	a	computation	 it	 is	necessary	 to	 track	 the

trajectory	of	 informational	 states	 the	computing	system	follows	as	 it	winds	 its
way	to	an	explicit	answer.	If	a	computer	is	seen	as	a	mechanism	which	applies
rules	 to	 syntactically	 structured	 representations,	 it	 is	 natural	 to	 view	 explicit
information	 as	 an	 encoding	 of	 information	 in	 syntactic	 structures	 that	 are
interpretable	 according	 to	 a	 well-behaved	 theory	 of	 content,	 such	 as	 a	 truth
theory.	We	can	 then	point	 to	 a	 syntactic	 structure	 in	 the	 system	and	 say	 ‘that
form	 encodes	 this	 content.’	This,	 I	 believe,	 is	 our	 underlying	 idea	 behind	 our
intuitions	about	explicit	encodings.
As	different	kinds	of	computational	mechanisms	are	discovered	and	explored

—	PDP	systems,	massive	cellular	automata,	analogue	relaxation	systems	—	it	is
becoming	increasingly	difficult,	however,	to	track	the	trajectory	of	informational
states	 these	mechanisms	 generate.	 There	 is	 no	 doubt	 that	we	must	 find	 some
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method	of	tracking	them;	otherwise	there	is	no	reason	to	think	of	them	as	more
than	complex	causal	systems.2	But	it	is	at	present	an	open	question	whether	the
model	of	 rules	operating	on	explicit	 representations	 is	a	perspicuous	model	of
their	style	of	computation.
Once	the	 lid	has	been	raised	on	new	styles	of	computation	we	are	forced	to

re-examine	our	uncritical	 intuitions	about	basic	notions.	We	already	know	that
there	are	many	ways	information	can	be	implicit	in	a	state,	structure	or	process,
and	that	we	are	largely	ignorant	of	the	full	variety	of	ways	that	information	can
be	 built	 into	 architecture,	 internal	 dynamics,	 and	 environment-system
interaction.	 It	 seems	 to	 follow	 that	 one	 reason	 it	 is	 hard	 for	 us	 to	 track
informational	 trajectories	 is	 that	 we	 don't	 yet	 know	 how	 to	 determine	 what
information	is	in	a	system.
The	same	problem	arises	for	computational	systems	that	are	familiar:	we	do

not	know	how	to	determine	unambiguously	exactly	what	information	is	encoded
in	a	system,	even	explicitly.
For	 instance,	 what	 information	 is	 contained	 in	 a	 system	 that	 has	 lost	 its

pointers	 to	one	of	 its	data	sets?	The	data	 is	still	 recorded	 in	 the	system,	 in	 the
sense	 that	 if	 the	 system	 could	 regain	 its	 obliterated	 pointers,	 the	 full	 data	 set
could	 be	 retrieved.	 But	 ex	 hypothesis	 those	 pointers	 are	 unrecoverable.	 The
states	are	unusable.	Does	the	system	still	explicitly	encode	the	data	even	though
they	are	absolutely	inaccessible?
Suppose	the	pointers	are	not	simple	address	locations,	themselves	stored	in	a

look-up	 table,	 but	 rather	 are	 calculated	 by	 solving	 a	 complex	 function.	 Or
suppose	 the	data	 is	not	 found	 in	a	 single	 location	but	 spills	over	 to	many	cell
locations	connected	by	pointers	of	the	most	complex	sort.	Is	the	data	explicitly
encoded?
Again,	suppose	a	set	of	axioms	is	represented	in	a	language	as	expressive	as

first	order	predicate	calculus.	Is	the	whole	deductive	closure	of	the	set	implicit?
Even	if	 that	set	 is	 infinite,	or	would	require	exponential	computation	to	derive
its	members?	What	about	the	2100100	digit	of	π?	Is	that	implicit	in	the	state	of	an
arithmetical	engine?
Or	 suppose	 that	 a	 system	 has	 highly	 ambiguous	 encodings	 and	 must

deliberate	 in	 order	 to	 choose	 the	 right	 interpretation	 for	 a	 given	 word.	What
information	 is	 encoded	 explicitly?	 Is	 any?	 Must	 explicit	 encodings	 be	 non-
ambiguous?
That	such	questions	arise	is	proof	that	we	have	unsettled	intuitions	about	the

meaning	 of	 explicit	 and	 implicit	 information	 even	 in	 familiar	 programmable



symbol	manipulating	systems.	Computer	and	cognitive	scientists	talk	as	if	they
have	a	precise	idea	of	these	concepts.	But	they	do	not.
My	 intent	 in	what	 follows	 is	 to	articulate	a	particular	conception	of	explicit

information	that	at	least	may	serve	as	a	stable	basis	for	subsequent	inquiries	into
the	meaning	of	 implicit	 information.	When	I	began	 this	 inquiry	I	 too	assumed
that	our	notion	of	explicit	was	unproblematic.	No	longer.	The	paper	is	divided
into	three	sections.
In	 the	 first,	 I	 show,	 in	 greater	 detail,	 why	 the	 notions	 of	 explicit	 and

implicitness	 elucidation.	 Our	 intuitions	 are	 not	 consistent;	 nor	 is	 there	 any
settled	 view	 how	 to	 resolve	 them.	 Yet	 the	 concepts	 are	 important	 for	 both
computer	and	cognitive	scientists.
In	 the	 second	 section,	 I	 explore	 efforts	 to	 identify	 explicit	 information	with

syntactically	and	semantically	well-defined	representations.	It	is	hard	to	imagine
any	more	natural	image	of	explicit	encodings	of	information	than	sentences	in	a
natural	language.	But	as	we	shall	see	it	is	not	enough	that	information	be	present
in	an	encoding;	it	must	be	usably	present,	it	must	be	‘instantly’	accessible.	This
condition	of	use	places	a	heavy	constraint	on	what	sorts	of	representations	can
encode	information	explicitly.
In	a	brief	 third	section,	I	mention	some	of	the	implications	of	my	view.	My

approach	throughout	will	be	informal.

OUR	INTUITIONS	ABOUT	EXPLICITNESS	ARE	INCONSISTENT

Perhaps	the	simplest	and	most	persistent	 intuition	we	have	about	what	explicit
means	 is	 that	 information	 is	 explicit	 if	 it	 is	 there,	 for	 all	 to	 see,	much	 like	 an
unambiguous	word	in	a	book.	This	image	of	words	in	a	text	has	four	properties
which	it	is	tempting	to	ascribe	to	explicit	representations	generally:

(1)	locality:	they	are	visible	structures	with	a	definite	location;
(2)	movability:	no	matter	where	in	a	book	a	word	is	to	be	found,	or	where	in	a

library	 the	 book	 is	 stored,	 that	 word	 retains	 its	 meaning	 and	 retains	 its
explicitness;

(3)	meaning:	words	have	a	definite	informational	content;
(4)	availability:	the	informational	content	of	a	word	is	directly	available	to	the

system	 reading	 it;	 no	 elaborate	 translation	 or	 interpretation	 process	 is
necessary	to	extract	the	information	it	represents.



On	the	surface,	these	four	properties	seem	to	explain	some	obvious	facts.	For
instance,	we	believe	that	the	number	3	is	explicitly	represented	as	being	 in	 the
set	A:	{1,5,3,7,4,4}	because	the	information	that	3	is	a	member	of	the	set	is	on
the	 surface	 of	 the	 data	 structure.	 The	 meaning	 of	 the	 numeral	 ‘3’	 is	 readily
understood	 by	 any	 numerically	 literate	 agent,	 so	 its	 informational	 content	 is
directly	available.	It	is	not	so	context	sensitive	that	the	agent	must	read	the	entire
data	 structure	 or	 the	 entire	 contents	 of	 current	 memory	 to	 determine	 that
meaning.	And	 it	 has	 a	 specific	 location	 in	 the	data	 structure.	We	can	point	 to
what	in	the	data	structure	explicitly	carries	meaning.
By	contrast,	 if	we	say	 that	an	element	 is	a	member	of	a	set	 iff	 it	 satisfies	a

given	list	of	properties,	say	{x	|	x	is	an	even	integer	and	0	≤	x	≤9}	we	designate	a
unique	set	but	in	a	manner	which	requires	computation	on	the	part	of	the	user.
The	elements	cannot	be	just	read	off.	It	 is	true	that	we	are	stating	the	property
list	 explicitly	 as	 opposed	 to	 using	 the	 elliptical	 …	 notation	 to	 denote	 the
elements,	 as	 in	 {0,2,4,…},	 which	 specifies	 the	 properties	 of	 the	 elements
implicitly.	But	both	specifications	fail	to	present	the	elements	in	a	manner	that
can	be	directly	read	off.	They	do	not	explicitly	encode	the	elements	of	the	set.
The	same	difference	holds	between	a	table	of	trigonometric	functions	where

there	is	a	separate	entry	for	each	value	of	sin	n°,	and	Eider's	equation	eix	=	cosx
+	i	sin	x	for	generating	trigonometric	values.	Eider's	equation	is	a	compact	way
of	describing	a	trigonometric	table.	But	it	does	not	explicitly	represent	the	table.
Taken	 to	 a	 first	 approximation,	 and	 restricted	 within	 certain	 bounds,	 Eider's
equation	offers	 the	same	information	as	the	table.	Yet	 it	 is	 in	a	different	form.
The	informational	content	of	the	table	is	not	directly	available	in	the	equation;
an	elaborate	reasoning	process	is	necessary	to	extract	the	information	explicitly
contained	in	the	table.
Another	way	a	representation	can	carry	information	inexplicitly	is	by	display.

For	instance,	the	number	of	elements	in	A:	{1,5,3,7,4,4}	–	A's	cardinality	—	is
not	explicitly	represented	by	A,	even	though	each	digit	in	A	is	explicit	and	ready
to	 be	 counted.	 A	 displays	 its	 cardinality;	 it	 does	 not	 explicitly	 represent	 or
encode	it.
Let	us	say	that	information	is	displayed	if	there	is	a	process	in	a	system	which

can,	in	short	order,	extract	that	information,	while	it	is	explicitly	represented	if
there	 is	a	process	 in	 the	system	which	can	 immediately	grasp	 the	 information.
Information	 that	 is	 displayed	 lies	 just	 beneath	 the	 surface.	 Information	 that	 is
explicitly	represented	lies	on	the	surface.
The	 trouble	 with	 using	 immediate	 graspability,	 or	 better	 immediate



readability	as	 the	mark	of	explicitness	is	 that	we	run	into	problems	as	soon	as
we	ask	whether	to	count	accessing	time	as	part	of	the	reading	process.	Are	the
elements	in	large	sets	immediately	readable?	Suppose	we	have	a	matrix	10,000
by	 10,000	 and	 we	 want	 to	 know	 the	 identity	 of	 the	 element	 in	 position
(6754,9629).	 Even	 if	 each	 position	 in	 the	 matrix	 is	 marked	 by	 two	 numbers
representing	 row	 and	 column,	 we	 shall	 have	 to	 expend	 some	 computational
energy	in	locating	the	right	position	and	identifying	the	symbol	found	there.	The
task	 of	 finding	 a	 position	 seems	 no	 different	 in	 principle	 from	 determining
cardinality,	 both	 involve	 counting,	 or	 some	 other	 numerical	 operation.	 Both
require	computation.	But	 then	if	we	deny	that	cardinality	 is	explicitly	encoded
because	it	can	be	determined	only	through	computation,	shall	we	not	also	have
to	deny	that	the	value	at	location	(i,	j)	is	explicit?
The	 point	 at	 issue	 here	 is	 whether	 symbols	 which	 are	 on	 the	 surface	 in	 a

structural	sense	may	be	below	the	surface	in	a	process	sense.	I	believe	they	can,
and	 that	 this	 difference	 between	 structural	 immediacy	 and	process	 immediacy
lies	at	the	heart	of	confusions	about	explicitness.
From	a	process	perspective	information	is	explicit	only	when	it	is	ready	to	be

used.	No	computation	is	necessary	to	bring	the	content	into	a	usable	form.	From
a	 structural	 perspective	 information	 is	 explicit	when	 it	 has	 a	 definite	 location
and	a	definite	meaning.	The	confusion	arises	when	a	representation	that	seems
to	 be	 in	 a	 usable	 form	 when	 viewed	 structurally	 turns	 out	 to	 be	 in	 a	 non-
immediately	usable	form	procedurally.
For	instance,	imagine	a	reader	who	wishes	to	use	the	suggestions	in	a	book	to

help	him	solve	a	particular	engineering	problem.	The	suggestions	are	there,	in	a
phrase	or	a	line	somewhere,	but	if	the	book	has	no	index	or	no	obvious	ordering,
the	 reader	 will	 have	 to	 scan	 an	 arbitrary	 amount	 of	 the	 book	 to	 find	 the
information	he	needs.	Should	we	say	that	the	sought-after	information	is	explicit
for	that	reader?	Relative	to	his	goal	of	problem-solving,	an	indexless	book	is	an
inefficient	 representation	 of	 the	 information	 he	 needs.	 It	 fails	 to	 record	 the
information	in	an	easy	to	use	form.
It	 will	 no	 doubt	 be	 objected	 that	 there	 is	 an	 important	 difference	 between

finding	 information	 and	using	 it	 once	 found.	Most	 everyone	will	 agree	 that	 if
information	is	encrypted	in	a	baroque	code	requiring	lengthy	decryption	before
being	 comprehensible	 then	 that	 information	 is	 not	 explicit.	 Encrypted
information	requires	preprocessing.	The	 information	 is	present,	 in	some	sense,
but	not	present	in	a	usable	enough	form	to	be	deemed	explicit.
But	 in	 the	case	of	our	 imagined	engineer,	 there	 is	no	question	 that	once	 the



representation	is	actually	retrieved	it	is	easy	to	read.	The	question	is	whether	the
accessing	process	should	be	viewed	as	part	of	the	representation's	readableness.
Is	 there	 a	 relevant	 difference	 between	 spending	 time	 and	 effort	 to	 locate
information,	 and	 spending	 time	 and	 effort	 to	 decrypt?	 Both	 retrieval	 and
decryption	 are	 algorithmic	 processes;	 both	 involve	 some	 form	 of	 pattern
matching	or	network	following.
My	own	view	is	that	there	is	not	a	relevant	difference.	Explicitness	is	tied	to

usability.	And	usability	implies	a	match	up	between	the	procedures	available	to
the	 agent	 and	 the	 forms	 the	 content	 is	 encoded	 in.	Granted,	 these	 are	matters
over	which	we	have	no	fixed	intuitions.	But	we	have	biases.	Are	words	that	are
hidden	 in	 a	 tangle	 of	 other	words	 any	 different	 than	 encryptions?	A	 standard
method	 of	 passing	 secret	 information	 is	 to	 send	 a	 book	 to	 one's	 ally	with	 the
unwritten	understanding	that	message	words	are	found	in	certain	spots.	Was	the
secret	message	encrypted?	The	question	is	open	to	dispute.	Suppose	the	reader
must	deliberate	to	determine	which	passages	in	the	book	are	the	relevant	ones.
Does	the	book	explicitly	encode	the	information	he	needs?
From	 a	 purely	 computational	 standpoint	 there	 is	 no	 fundamental	 difference

between	 spending	 time	 and	 cycles	 in	 finding	 a	 datum	 in	 space	 (memory)	 and
spending	a	similar	measure	of	time	and	cycles	computing	that	datum	in	time.	It
may	seem	that	there	is	a	principled	difference	here,	just	as	it	seems	that	there	is	a
principled	difference	between	space	and	 time.	But	we	have	 learned	otherwise.
Accordingly,	 just	 taking	 computational	 effort	 as	 the	 measure	 of	 explicitness,
there	is	no	way	of	choosing	whether	to	represent	a	given	block	of	information
by	 a	 powerful	 procedure	 plus	 limited	 data	 or	 by	 a	 weak	 procedure	 plus
exhaustive	data.	Either	 form	may	be	 able	 to	 provide	 the	 information	we	want
when	we	want	it	and	in	the	form	we	want	it.	Accordingly,	out	structural	notion
of	 explicitness	 may	 run	 at	 odds	 with	 our	 procedural	 notion.	 Despite	 out
intuitions	about	what	is	on	the	surface	we	cannot	decide	what	is	explicit	without
knowing	in	detail	how	a	system	works.

OUR	INTUITIONS	ABOUT	IMPLICITNESS	ARE	INCONSISTENT

Our	 intuitions	 are	 even	 more	 unsettled	 concerning	 implicit	 information.	 It	 is
natural	 to	 suppose	 that	 information	 is	 implicit	 if	 it	 is	mediately	 readable;	 the
information	 is	 structurally	 hidden	 and/or	 procedurally	 distant	 but	 nonetheless
recoverable	by	additional	processing.	It	can	be	made	explicit.	Thus,	 it	 is	often



thought	 that	 the	 hallmark	 of	 implicit	 information	 is	 that	 it	 is	 not	 explicit	 but
could	be	made	explicit.
To	 take	 the	 canonical	 example,	 in	 formal	 logic	 it	 is	 generally	 assumed	 that

formulas	 which	 are	 not	 part	 of	 a	 given	 axiom	 set	 are	 implicit	 if	 they	 lie
anywhere	 in	 the	 set's	 deductive	 closure.	 Structurally	 they	 are	 absent	 but
procedurally	they	are	recoverable.	Given	enough	processing	they	can	be	brought
to	the	surface	and	represented	explicitly.
This	definition,	however,	runs	into	problems	as	soon	as	we	try	to	say	what	‘in

principle,	recoverable’	means.	Returning	to	deduction,	shall	we	say	that	certain
formulas	are	implicit	regardless	of	how	much	effort	is	required	to	recover	those
formulas?	Our	 intuitions	are	not	decisive	here.	For	any	set	of	premisses,	 there
are	going	to	be	certain	theorems	that	are	easy	to	prove	—	nearby	in	lemma	space
—	and	certain	others	 that	 are	computationally	distant.3	Are	 all	 these	 theorems
equally	 implicit?	 Perhaps	 implicitness	 is	 a	matter	 of	 degree?	But	 in	 that	 case
what	shall	we	say	about	theorems	that	are	infinitely	distant,	or	infinitely	hard	to
reach?	And	what	shall	we	say	about	as	yet	unproven	theorems?	Is	Fermat's	last
theorem	 implicit	 in	 Peano's	 axioms?	 We	 know	 that	 most	 interesting
representational	 systems	 are	 incomplete.	 It	 is	 possible,	 then,	 that	Fermat's	 last
theorem	is	neither	provably	true	nor	provably	false.	Assuming	that	it	is	true	but
not	 provable	 is	 it	 implicit?	On	one	 account	 it	 is	 not,	 for	 it	 does	 not	 lie	 in	 the
deductive	closure	of	the	axioms.	Yet	if	the	theorem	is	true	(and	constructivists
are	right),	 then	there	must	exist	some	non-deductive	processes	 that	can	extract
that	 information	 from	 the	 axiom	 set.	 Shall	 we	 say	 that	 a	 given	 datum	 of
information	is	implicit	in	a	representation	only	relative	to	a	set	of	operations?
To	 press	 the	 point,	 consider	 a	 system	 able	 to	 discover	 generalizations.	 For

such	 a	 system	 Euler's	 equation	 might	 be	 discovered	 by	 reasoning	 about	 a
trigonometric	 table.	 Euler's	 equation	 is	 potentially	 implicit	 in	 a	 trigonometric
table	 for	 that	 system.	 Yet	 whether	 we	 think	 the	 equation	 is	 actually	 implicit
depends	 on	 how	much	 other	 knowledge	we	 believe	 is	 necessary	 to	make	 the
discovery.	A	system	which	can	draw	generalizations	has	a	chance	at	discovering
Euler's	equation.	But	such	a	discovery	would	be	remarkable.	For	one	thing,	the
equation	contains	more	information	than	the	table	itself	—	it	applies	to	any	real
value	of	x	—	so	it	represents	a	powerful	abstraction.	The	generalization	is	more
than	 a	 simple	 interpolation	 of	 the	 data.	 It	 generalizes	 to	 new	 entities.	No	 one
knows	what	 is	 required	 for	 such	abstractions.	Often	 they	are	 inspired	guesses.
This	 is	 particularly	 true	 where	 the	 generalization	 refers	 to	 a	 fundamental
concept,	such	as	e,	which	is	not	in	the	descriptive	language	of	the	data.	e	is	like



a	 theoretical	entity:	supported	by	observations	but	not	reducible	 to	 them.	How
these	 new	 concepts	 are	 discovered	 depends	 on	 so	 many	 factors	 that	 it	 is
impossible,	in	general,	to	determine	whether	a	given	agent	will	ever	stumble	on
the	 correct	 generalization.	 But	 then	 should	 we	 allow	 that	 generalizations	 are
implicit	in	data?
Given	 these	difficulties	 it	 is	hard	 to	make	precise	a	notion	of	 recoverability

which	can	serve	to	demarcate	the	realm	of	the	implicit	accurately.	I	still	think	it
is	hard	to	imagine	a	more	natural	criterion	of	implicitness	that	has	any	chance	of
working	 than	 that	 which	 is	 not	 explicit	 but	 which	 could	 be	made	 so.	 But	 not
everyone	would	agree.
For	 example,	 it	 has	 become	 popular	 in	 some	 circles4	 to	 call	 information

implicit	if	it	is	latent	in	a	system	even	if	it	is	unrecoverable.	It	is	well	known	that
a	computation	can	often	be	made	more	efficient	by	exploiting	regularities	rather
than	by	explicitly	 representing	 them.	These	 regularities	are	 really	assumptions
about	 the	 environment,	 or	 about	 the	 interaction	 of	 the	 agent	 with	 the
environment.	 For	 instance,	 a	 vision	 module	 designed	 to	 extract	 a	 3-D	 shape
from	two	stereoscopic	images	works	rapidly	if	it	is	equipped	with	an	algorithm
which	differentiates.	Such	an	algorithm	will	work	 if	 the	 assumption	about	 the
world	—	in	this	case,	that	objects	change	in	shape	smoothly	and	continuously	—
is	true.
Smoothness	 is	 a	 condition	 of	 the	world	 that	 justifies	 differentiation.	 It	 is	 a

success	condition	determining	whether	the	algorithm	will	work.	If	the	condition
is	 false	 the	 algorithm	will	 fail	 to	 compute	 a	 correct	 answer.	 A	 designer	 who
wishes	to	determine	the	algorithm's	reliability	will	need	to	know	how	often	the
assumption	 is	 correct.	 For	 the	 truth	 of	 the	 assumption	 is	 the	 theoretical
justification	 of	 the	 algorithm.	 But	 shall	 we	 say	 that	 the	 algorithm	 implicitly
represents	 the	 assumption?	 Or	 that	 information	 about	 the	 visual	 world	 is
implicitly	encoded	in	certain	of	the	states,	structures	or	processes	of	the	visual
system?	Clearly,	this	assumption	is	not	recoverable	by	the	system	itself	because
the	vocabulary	of	early	vision	does	not	 include	terms	such	as	smoothness.	We
find	 expressions	 of	 values	 for	 wavelength,	 physical	 intensity,	 zero-crossings,
surface	 contours,	 depth	measures,	 and	 so	on.	But	 nowhere	 in	 this	 vocabularly
does	a	 term	for	smoothness	appear.	Nonetheless,	 it	has	become	fashionable	 to
speak	 of	 the	 system	 as	 having	 an	 implicit	 theory	 of	 the	 world.	 Some	 would
argue	that	the	information	is	causally	effective.	Is	this	just	sloppy	language?
To	take	another	case,	some	robots	currently	under	research	navigate	without

maps.	 Such	 systems	 are	 equipped	 with	 a	 compass,	 with	 knowledge	 of	 their



orientation	with	respect	to	an	origin,	and	suitable	instructions	to	find	their	way
from	 any	 point	 in	 a	 maze	 to	 any	 other.	 These	 robots	 explicitly	 represent
information	of	the	form	if	at	position	A	then	to	get	to	B	orient	90°	go	10	steps,
turn	 120°	 then	 go	 15	 steps.	 It	 is	 easy	 to	 prove	 that	 the	 total	 information
contained	in	such	instruction	sets	is	sufficient	to	define	a	structural	map	giving
the	position	of	all	points	and	identifying	all	open	corridors.	A	structural	map	is,
in	principle,	recoverable	from	the	instruction	set,	though	not	recoverable	by	the
system	itself	unless	it	has	certain	analytic	skills.
Should	we	 say	 that	 information	 about	 structural	 relations	 is	 implicit	 in	 the

instruction	set?	By	our	condition	of	explicit	recovery	we	must	not.	According	to
the	condition	of	recoverability,	a	system	does	not	encode	information	implicitly
unless	it	can	recover	that	information	and	explicitly	encode	it.	Because	the	robot
lacks	the	ability	to	translate	from	its	instructions	to	structural	representations	of
its	environment	we	are	obliged	to	say	the	instructions	do	not	contain	structural
information	implicitly.	Yet	what	shall	we	make	of	the	intuition	that	it	is	because
the	instructions	do	contain	structural	 information	 implicitly	 that	when	 they	are
interpreted	correctly	they	generate	the	right	behaviour?	If	the	instruction	set	did
not	conform	to	the	structure	of	the	world	what	could	explain	its	success?	Prima
facie,	the	instructions	succeed	because	they	implicitly	encode	information	about
the	structure	of	their	environment.	They	contain	structural	information.
What	these	examples	show,	I	believe,	is	that	we	have	not	yet	any	settled	view

about	our	intuitions	about	explicit	and	implicit	information.	On	the	one	hand,	it
is	reasonable	to	require	that	information	be	actually	recoverable	to	be	implicit.
Yet,	on	the	other,	it	is	reasonable	to	grant	that	information	can	be	embedded	in	a
system	 so	 that	 it	 is	 causally	 efficacious	 despite	 being	 unrecoverable.
Recoverability	 is	 contingent	 on	 a	 host	 of	 other	 arguably	 incidental	 processes.
This,	at	any	rate,	is	a	position	some	would	like	to	defend.

WHY	IT	MATTERS	WHETHER	OUR	INTUITIONS	ARE	UNSETTLED

Such	 inconsistencies	 would	 be	 unproblematic	 if	 terms	 like	 explicit	 and
implicit	never	appear	in	psychological	and	philosophical	theories.	But	they	do.
Fodor,5	 for	 instance,	maintains	 that	mental	 states	 are	 functional	 relations	 to

explicit	 representations.	To	know	or	believe	a	certain	 fact	 is	 to	be	 in	a	certain
computational	relation	to	a	representation	which	explicitly	encodes	information
about	 that	 fact.	 Explicitness	 is	 important	 to	 Fodor.	 Yet	 he	 never	 states	 what



explicitness	amounts	to	short	of	saying	it	must	satisfy	some	ill-defined	formality
condition.	This	leaves	us	groping	for	a	workable	criterion	of	formal.	We	do	not
know,	for	example,	whether	cardinality	when	displayed	rather	than	represented
directly	 is	 a	 formal	 property.	 The	 same	 applies	 to	 the	 relation	 of	 having	 a
location	 in	a	matrix,	or	 to	 the	 relation	of	being	connected	 to,	or	being	beside.
Some	of	these	properties	are	usually	represented,	others	are	displayed.	Are	they
formal	properties?	How	we	answer	these	questions	has	deep	consequences.	For,
according	to	Fodor,	it	determines	what	shall	count	as	an	episode	in	our	mental
life.
Gibson	and	his	followers,	too,	make	strong	claims	about	implicit	information.

They	 maintain	 that	 information	 about	 shape	 and	 distance,	 for	 example,	 is
implicit	 in	 the	 ambient	 flux	 of	 light	 energy	 striking	 our	 retinas.	 The	 visual
system,	 we	 are	 told,	 does	 not	 explicitly	 represent	 edges	 etc.,	 then	 construct
further	 representations	 of	 shape.	 It	 picks	 up	 the	 invariants	 implicit	 in	 visual
energy	 fields	 and	 puts	 that	 information	 to	 use	 in	 controlling	 behaviour
“directly,”	without	ever	representing	it.	Because	such	information	is	put	directly
to	use,	the	visual	system	has	no	facility	for	explicitly	naming	invariants;	it	never
represents	them	explicitly.	Visual	invariants	in	Gibson's	sense,	fail	to	be	implicit
by	our	condition	of	recoverability.	For	by	that	condition	a	system	can	implicitly
encode	information	only	if	it	can,	in	principle,	explicitly	encode	it	as	well,	since
to	 recover	 information	 it	 must	 be	 possible	 to	 represent	 that	 information
explicitly.	 How	 shall	 we	 interpret	 Gibson's	 remarks?	 Can	 information	 about
visual	invariants	be	implicit	in	light	energy?
More	 recently,	 Perry,	 Smith,	 and	 Rosenschein6	 have	 contended	 that

information	can	be	 implicit	 in	a	 system	because	 that	 system	 is	embedded	 in	a
particular	 environment.	 A	 system	 well-adapted	 to	 its	 environment	 contains
information	 about	 that	 environment	 and	 its	 momentary	 relations	 to	 that
environment,	even	though	that	information	is	built	into	the	design	of	the	system
and	 so	 is	 in	 principle	 inaccessible.	On	 their	 account,	 information	 need	 not	 be
amenable	to	eventual	explicit	representation	to	be	implicit.	The	information	we
decide	 is	 present	 in	 a	 sytem	 is	 not	 identical	 to	 the	 sum	of	 information	 that	 is
explicit	plus	the	information	that	is	recoverable.	Once	again	information	can	be
implicit	but	unrecoverable.	Yet	again	what	are	we	to	make	of	these	claims?
The	upshot,	it	seems	to	me,	is	that	we	know	somewhat	less	about	information

processing	 than	 we	 suppose.	 Information	 processing	 has	 always	 been
understood	as	a	process	of	transforming	representations	—	transforming	explicit
representations.	But	owing	to	the	variety	of	physical	mechanisms	that	are	often



interpreted	 to	be	computing	 functions,	 this	view	 is	no	 longer	universally	held.
This	 does	 not	mean	 that	 information	 processing	 is	 not	 explicit	 representation
processing.	But	until	we	have	an	adequate	 theory	of	 the	relation	of	 implicit	 to
explicit	information	we	cannot	decide	the	issue.

TOWARDS	A	THEORY	OF	EXPLICITNESS

Because	implicit	is	defined	largely	negatively	as	information	that	is	present	but
not	explicitly	encoded,	any	inquiry	into	implicit	information	must	presuppose	a
theory	 of	 explicit	 information.	 If	 I	 am	 right,	 however,	 our	 structural	 and
procedural	 intuitions	 about	 explicitness	 are	 so	 confused	 that	 there	 is	 no	 easy
theory	to	offer.	We	may	offer	a	stipulative	theory	but	it	will	never	satisfy	all	our
intuitions.
I	 shall	 argue	 that	 the	 source	of	 confusion	 lies	 in	 the	bewitching	 image	of	 a

word	printed	on	a	page.	Words	on	a	printed	page	have	four	properties	that	make
them	an	attractive	model	of	 explicitness:	 locality,	movability,	meaningfulness,
and	immediate	readability.	When	we	look	closely	at	each	attribute	we	find	each
is,	in	some	manner,	misleading.
In	 the	 remainder	 of	 this	 paper,	 I	 will	 discuss	 each	 attribute	 in	 an	 effort	 to

separate	truth	from	fantasy.	My	own	positive	account	emerges	along	the	way.

Four	Conditions	on	Explicitness

Locality.	 It	 is	a	 fact	of	English	and	all	other	natural	 languages	 that	words	are
represented	by	written	 tokens	 that	 are	 spatially	 compact	 and	 readily	 separable
from	 their	 spatial	 neighbours.	 It	 is	 tempting	 to	 suppose	 that	 all	 explicit
encodings	of	 information	share	 this	property.	Explicit	 information,	after	all,	 is
encoded	in	codings.	These	codings	must	present	 the	information	in	a	modular,
readily	surveyable	manner;	otherwise	they	could	not	present	the	information	in	a
ready	to	use	form.
If	 locality	 were	 true,	 however,	 it	 would	 eliminate,	 in	 one	 stroke,	 the

possibility	 of	 distributed	 connectionist	 systems	 ever	 having	 explicit
representations.	This	seems	to	me	a	good	reason	to	deny	it.	The	kernal	of	truth
in	 the	 locality	 condition	 is	 that	 a	word,	 however	 it	 be	 represented,	must	 be	 a
determinate	something.	It	must	have	identity	conditions.	It	is	pointless	talking	of
a	 state,	 structure	 or	 process	 encoding	 information	 explicitly	 unless	we	 can	 be



precise	 about	 which	 state,	 structure	 or	 process	 does	 the	 encoding.	 But	 it
certainly	does	not	follow	that	these	identity	conditions	mandate	spatial	isolation.
They	 don't.	 They	 require,	 of	 course,	 that	 the	 system	 using	 the	 representation
must	 have	 operators	which	 can	 recognize	 those	 representations.	 Humans	 find
spatial	 boundaries	 especially	 easy	 to	 use	 for	 individuation.	 But	 there	 is	 no	 a
priori	 reason	 why	 symbols	 must	 be	 spatially	 separate.	 To	 demand	 spatial
separation	places	an	unmotivated	restriction	on	the	range	of	recognition	devices
that	non-humans	might	use	in	reading	and	communicating.
For	example,	we	can	readily	imagine	a	system	which	encodes	information	in

the	wavelengths	of	the	visible	spectrum.	Since	many	wavelengths	and	intensities
can	be	superposed	on	the	same	spatial	region	but	later	filtered	out,	one	colour,
such	as	a	shade	of	white	or	pink,	can	actually	explicitly	encode	many	different
pieces	of	 information.	A	system	appropriately	endowed	with	colour	 filters	can
read	off	the	information	immediately.	It	“sees”	separate	colour	tokens	and	reads
them	 directly.	 To	 anyone	 without	 the	 filters,	 however,	 the	 information	 is
invisible.
The	 same	principle	 applies	 to	 information	 encoded	 in	 scatter	 diagrams.	We

can	 imagine	 a	 fax	 machine,	 for	 instance,	 which	 distributes	 information	 like
buckshot	 sprayed	 over	 a	 page.	 Several	 such	 pages	 could	 be	 superposed.	To	 a
system	appropriately	set	up,	each	page	is	separable	without	loss.	But	again,	only
to	 a	 system	 with	 the	 appropriate	 operators	 to	 read	 the	 buckshot	 distribution.
Humans	would	find	such	distributions	unreadable	because	they	lack	edges	and
simple	spatial	forms.	The	problem	would	be	compounded	by	superposition.	Yet
what	humans	are	able	to	see	is	irrelevant.	There	are	many	codes	we	cannot	read
unaided.
The	only	constraint	on	explicitness	that	locality	imposes,	then,	has	little	to	do

with	 spatial	 forms,	 spatial	 cohesiveness	 or	 spatial	 size.	 It	 is	 about	 identity
conditions:	a	representation	that	explicitly	encodes	information	must	be	made	up
of	 tokens	 that	 are	 readily	 separable	 from	 their	 surroundings.	 This	 separation
process	may	vary	arbitrarily	from	system	to	system.	To	be	sure,	there	are	limits.
A	system	must	be	able	to	identify	tokens	quickly	without	engaging	in	substantial
computation.	Later	I	will	state	more	precisely	what	this	means.	But	for	now	the
point	is	that	locality	does	not	mean	spatial	isolation.	It	means	separability	by	the
host	system.
This	then	is	the	first	condition	on	explicit	encoding	of	information:

Condition	(1):	The	states,	structures,	or	processes	—	henceforth	symbols	—



which	 explicitly	 encode	 information	 must	 be	 easily	 separable	 from	 each
other.

Movability.	 The	 ideal	 of	 operational	 identity	 conditions	 also	 lies	 at	 the
bottom	 of	 the	 movability	 condition.	 In	 its	 simplest	 form	 the	 movability
condition	states	that	a	word	can	occur	in	more	than	one	location	and	still	carry
its	meaning.	That	is,	the	identity	of	a	word	is	largely	independent	of	context.
There	 is	 a	 profound	 justification	 for	 this	 idea.	 If	 we	 grant	 that	 there	 is	 no

fundamental	 difference	 between	 transmitting	 information	 across	 space,	 and
transmitting	 it	 across	 time,	 then	 transmission	 across	 time	 is	 storage,	 while
transmission	 across	 space	 is	 spatial	 communication.	Words	 serve	 as	 compact
vehicles	for	meaning.	They	are	the	carriers	of	information.	It	is	natural,	then,	to
assume	that	we	can	use	them	both	to	store	and	to	send	information.
This	 view	 leads	 quite	 naturally	 to	 the	 idea	 that	 a	word	 retains	 its	meaning

whether	on	page	1	or	page	601.	In	principle,	it	could	be	sent	from	one	page	to
the	other.	Either	in	token	or	in	type.	One	consequence	of	this	view,	however,	is
that	 context	 is	 largely	 irrelevant	 to	word	 content.	 This	 follows	 because	 if	 the
information	content	of	a	word	changed	once	it	was	transmitted	we	would	have
no	way	of	reliably	sending	information.	The	very	idea	of	a	word	is	of	a	physical
vehicle	that	holds	its	meaning	across	situations.	But	then	the	identity	of	a	word
must	be	largely	independent	of	where	and	when	the	word	appears	in	a	system.
Now	 symbols	 which	 are	 totally	 mobile	 and	 which	 retain	 their	 identity

whatever	 their	 context	 lie	 at	 one	 extreme	 of	 a	 continuum	 of	 symbol	 systems.
Such	 symbols	 can	 never	 by	 polysemous;	 they	 can	 never	 have	 indexical
elements;	and	they	can	never	be	read	differently	by	different	operators.	In	short,
an	information	processing	system	using	totally	mobile	symbols	must	be	uniform
throughout:	there	can	be	no	regions	where	the	symbol	is	interpreted	differently,
and	 no	 states	 which	 the	 system	 can	 enter	 into	 which	 cause	 exactly	 similar
symbols	to	be	read	differently.
To	 see	 just	 how	 restrictive	 this	 constraint	 is	 I	 shall	 briefly	 examine	 several

representational	languages.	We	can	then	test	the	reasonableness	of	movability	as
a	 condition	 on	 explicit	 encoding.	 For	 if	 we	 believe	 that	 we	 can	 encode
information	 explicitly	 in	 a	 language	 that	 violates	 the	movability	 condition	we
have	grounds	for	rejecting	movability	as	just	construed	as	a	condition	on	explicit
encoding.
Which	 languages	 satisfy	 movability?	 By	 a	 language	 I	 mean	 any	 set	 of

individuatable	 states,	 structures	 or	 processes	 which	 can	 be	 paired	 with



meanings.	In	the	simplest	cases,	the	theory	which	specifies	a	language	consists
of	two	components:	a	notational	component	and	a	meaning	component.
The	notational	component	tells	us	what	to	accept	as	allowable	variation	in	the

structure	 of	 a	 token.	 It	 is	 the	 theory	 of	 symbol	 separation.	 So,	 for	 example,
although	my	writing	changes	from	page	to	page	as	I	change	my	posture,	a	good
notational	component	would	specify	enough	variability	in	tokens	to	cluster	my
written	words	into	correct	equivalence	classes.	It	gives	the	identity	conditions	of
atomic	symbols.
The	meaning	component	tells	us	what	information	is	carried	by	each	symbol.

So,	for	example,	a	meaning	theory	for	the	symbols	on	a	map	will	tell	us	that	‘•’
means	cities	with	populations	in	excess	of	50,000.
Now	just	how	restrictive	is	a	language	that	allows	no	ambiguity	whatsoever?

Restrictive,	 very	 restrictive.	 Such	 systems	 can	 have	 no	 syntax,	 even	 a	 simple
syntax.	For	instance,	simple	languages	such	as	Arabic	notation	for	numbers	will
have	too	complex	a	structure.	Perfect	notational	mobility	implies	that	the	‘5’	in
105	and	the	‘5’	in	501	must	carry	the	same	information.	It	implies	that	identical
notational	elements	encode	identical	information	whatever	their	context.	But	of
course	the	meaning	of	‘5’	changes	with	position.	In	105,	‘5’	means	units,	in	501,
‘5’	means	500.
In	 order	 to	 capture	 this	 variability	 of	 meaning	 with	 position,	 we	 need	 to

introduce	a	syntax.	The	point	of	syntax	is	to	allow	us	to	determine	how	to	adapt
the	information	content	of	a	symbol	to	its	position.	For	languages	with	syntax,
the	meaning	 component	must	 factor	 in	 the	 contribution	 to	meaning	which	 the
word's	syntactic	role	makes.	Since	most	languages	do	have	syntax,	a	theory	of
language	 will	 usually	 contain,	 in	 addition	 to	 its	 notational	 and	 meaning
components,	 a	 third	 component	—	a	 syntactic	 component	—	which	 describes
the	syntactic	role	symbols	play	when	combined	into	compound	structures.
In	the	case	of	Arabic	notation	the	contribution	to	meaning	made	by	position	is

trivial.	Defining	position	as	location	in	a	string	read	from	right	to	left,	we	then
interpret	‘5’	as	follows:

'5’	in	position	i	means	5	×	10i-1

The	 language	 for	 counting	 based	 on	 Arabic	 numerals	 has	 a	 very	 simple
syntax.	Yet	even	this	syntax,	we	have	seen,	violates	the	movability	condition.	I
think	 that	 few	 of	 us	 would	 deny	 that	 Arabic	 numerals	 represent	 numbers
explicitly.	 So	 movability	 in	 its	 extreme	 form	 is	 too	 restrictive.	 But	 there	 are



many	 other	 natural	 languages	 in	 which	 position	 is	 not	 all	 that	 can	 affect
meaning.	 The	 symbols	 which	 come	 before	 or	 after	 may	 matter.	 Can	 these
encode	information	explicitly?
For	 instance,	 a	 standard	 trick	 for	 extending	 an	 instruction	 set	 beyond	 the

limits	 set	 by	 the	 individual	 keys	 on	 a	 keyboard	 is	 to	 use	 some	 characters	 as
switches.	A	control	character,	for	example,	allows	any	character	that	follows	it
to	be	interpreted	as	a	command	rather	than	as	a	typed	letter.	A	in	the	context	of
Control-a	does	not	have	its	normal	meaning.	The	control	character	switches	a.
To	accomodate	switches	we	need	to	increase	the	complexity	of	the	syntax	of

languages	discussed	 so	 far.	Up	until	now	a	 syntactically	primitive	 symbol	has
had	no	apparent	 structure.	Our	notational	 theory	 told	us	exactly	what	 symbols
were	 syntactically	 atomic.	 Now,	 however,	 we	 must	 treat	 certain	 strings	 of
characters	as	 syntactically	 simple.	They	are	 to	be	accorded	 the	 same	syntactic
role	as	atomic	symbols	despite	their	apparent	molecular	structure.	This	will	have
no	 real	 effect	 on	 our	 meaning	 theory.	 For	 once	 a	 language	 has	 syntax,	 its
meaning	rules	are	defined	over	syntactic	elements.	Thus,	in	our	meaning	theory
we	will	find	axioms	such	as:

'Control-a'	means	move	cursor	to	line's	beginning
‘Control-e'	means	move	cursor	to	line's	end

These	 revisions	 extend	 the	 representational	 power	 of	 a	 language	 by	 adding
more	 primitive	 symbols	 to	 its	 list	 of	 meaningful	 expressions.	 Because	 these
syntactically	primitive	symbols	are	not	notationally	primitive,	however,	the	host
system	has	a	slightly	more	complex	recognition	task,	for	it	must	first	recognize
the	 notation	 for	 ‘control’	 and	 the	 notation	 for	 ‘a’	 before	 it	 can	 recognize	 the
presence	of	‘control-a’	as	a	syntactic	primitive.
Is	the	presence	of	a	set	of	switches	in	a	language	sufficient	to	prevent	it	from

encoding	 information	explicitly?	That	depends	on	how	 local	 is	 the	connection
between	a	switch	and	the	notational	element	it	changes.	For	instance,	if	a	switch
may	 be	 set	 at	 an	 arbitrarily	 early	 point	 in	 a	 sentence,	 then	 the	 user	 of	 the
language	 must	 keep	 track	 of	 which	 switches	 have	 been	 set.	 This	 never	 gets
complicated	in	a	computational	sense	because	the	user	need	only	keep	a	stack	of
active	 switches	 and	 compare	 each	 current	 element	 against	 the	 stack.	 In	 fact,
even	if	a	switch	once	turned	on	may	be	switched	off	by	a	later	switch,	the	job	of
tracking	 which	 switches	 are	 on	 is	 still	 simple.	 For	 again,	 the	 user	 need	 only
check	the	current	element	against	the	stack.	If	that	element	is	a	switch,	the	user



removes	a	member	from	the	stack.	If	it	is	a	non-switch,	the	user	either	changes
its	meaning	(and	removes	a	switch),	or	 the	user	 interprets	 the	element	with	 its
standard	meaning.	Accordingly,	the	only	taxing	feature	of	this	language	is	that
one	must	remember	which	switches	have	been	set.	If	there	are	few	switches,	and
each	 switch	 is	 a	 distinct	 notational	 element	 such	 as	 Meta	 or	 Control	 which
cannot	 itself	be	switched	 in	meaning,	 this	 task	should	be	 trivial.	 If	humans	do
not,	 in	 fact,	 find	 reading	 this	 language	 trivial,	 that	 they	may	 tell	us	 something
about	 how	 long,	 and	 how	 large	 is	 the	 stack	which	 humans	 can	manage	with
ease.
Switches	 are	 a	 simple	method	 for	 expanding	 the	 vocabulary	 of	 a	 language

while	 keeping	 notation	 concise.	 But	 they	 do	 not	 allow	 us	 to	 compact	 our
meaning	theory:	for	every	switched	symbol	there	must	be	a	meaning	axiom.
In	most	economical	languages,	however,	the	same	switch	can	effect	different

symbols	 in	 similar	 ways.	 For	 instance,	 the	 manual	 describing	 the	 commands
available	 for	my	editor	 tells	me	 that	 ‘a’	and	 ‘e’	when	 following	 ‘Control’	and
‘Meta’	mean	beginning	and	end	respectively,	while	‘Control’	and	‘Meta',	when
preceding	‘a’	and	‘e,’	 indicate	 line	and	sentence	 respectively.	Thus	 'Control-a'
means	move	 cursor	 to	 line's	 beginning,	 while	 'Meta-a'	means	move	 cursor	 to
sentence's	beginning.7
Such	 systematic	 variation	 in	 meaning	 allows	 us	 to	 compact	 our	 meaning

theory.	We	can	save	memory.	But	it	does	not	save	computation.	Once	again,	a
stack	 will	 be	 needed	 to	 mark	 the	 switches	 that	 are	 on,	 and	 once	 again	 each
notational	element	will	be	compared	against	it.	Memory	is	saved	because	we	can
get	by	with	fewer	meaning	axioms.	But	now	instead	of	determining	the	meaning
of	Control	a	by	looking	up	that	entry	in	a	memory	intensive	meaning	theory,	we
must	 compute	 its	 meaning	 by	 looking	 up	 Control	 and	 a	 separately,	 and
combining	 those	 meanings	 according	 to	 a	 general	 rule	 of	 combination.
Computation	increases.
Should	we	say	such	languages	explicitly	encode	information?	Again,	it	seems

an	 open	 question.	 As	 codes	 go,	 such	 languages	 are	 no	 more	 compact	 than
ordinary	 switched	 languages.	 They	 do	 get	 by	 with	 a	 more	 memory-compact
decoder;	but	that	decoder	may	take	slightly	longer	to	apply	than	one	which	just
looks	up	the	answer.	Everything	turns	on	how	much	time	it	takes	to	determine
meaning.	If	the	set	of	switches	is	small,	or	the	host's	decoder	is	highly	parallel,
then	meaning	may	be	determined	almost	instantly.
Let	us	grant	 that	 there	 is	 room	 for	doubt	whether	 languages	with	dedicated

switches	can	be	counted	on	always	to	encode	information	explicitly.	There	can



be	no	doubt,	however,	that	if	we	allow	that	any	symbol	may	serve	as	a	switch
for	 any	 other,	 then	 information	 will	 sometimes	 be	 hidden.	 For	 now	 every
symbol	may,	in	principle,	be	ambiguous.
The	 net	 effect	 of	 unconstrained	 ambiguity	 is	 that	 syntactic	 rules	 may	 be

arbitrarily	complex	because	the	disambiguations	they	must	help	to	perform	may
be	 arbitrarily	 complex.	 The	 set	 of	 syntactic	 rules	 necessary,	 for	 example,	 for
deciding	 which	 type	 of	 ‘a’	 we	 find	 in	 a	 given	 expression,	 may	 enjoin	 us	 to
examine	many	 letters,	 or	 combinations	 of	 letters,	 before	 and	 after	a.	 Because
each	of	these	letters	in	turn	might	be	ambiguous	we	might	eventually	require	a
set	 of	 syntactic	 rules	 that	 computes	 a	 function	 of	 staggering	 complexity.	 For
instance,	to	decide	what	a	means	in	a	certain	context	we	might	have	to	compute
a	function	such	as	a	=	f(b,	c,/1(d),	f2(f3(f4(e))),…	)	to	determine	the	particular	a
we	are	dealing	with,	and	then	look	up	its	meaning.
To	 take	 an	 example	 from	English,	 the	 sentence	Police	 police	 police	 police

police8	 is	 in	 principle	 grammatical.	 Read	 as:	 Police	 who	 are	 policed	 by
policemen,	are	themselves	policers	of	policemen,	we	see	that	each	occurrence	of
‘police’	has	a	unique	syntactic	and	semantic	identity.	In	some	contexts	‘Police’
means	policeman,	in	others	it	means	to	enforce.	Complexity	enters	because	there
are	so	many	combinations	of	meanings	to	consider.	The	amount	of	computation
needed	 just	 to	 determine	 what	 a	 single	 expression	 means	 rises	 exponentially
with	the	length	of	the	sentence.	Should	we	say	that	each	occurrence	of	‘police’
is	explicit	when	it	is	so	hard	to	identify	the	symbol?
If	there	remains	any	doubt	here	it	is	because	we	have	not	completely	resolved

whether	 to	 base	 our	 judgment	 of	 explicitness	 on	 the	 computational	 cost	 of
recognizing	and	using	a	symbol	or	on	the	fact	that	the	notational	and	syntactic
elements	are	well-defined.	On	the	other	hand,	it	is	tempting	to	go	with	our	eyes
and	say	that	if	we	can	see	there	in	front	of	us	a	well	defined	symbol	we	know	to
be	meaningful,	 it	must	be	explicit.	We	can	see	the	term	police,	so	its	meaning
must	 be	 explicitly	 encoded.	 Its	 identity	 is	 well	 defined,	 though	 hard	 to
determine.	On	the	other	hand,	if	efficiency	is	important	then	it	is	not	enough	that
there	 exists	 some	 mechanism,	 however	 complex,	 for	 recognizing	 the	 symbol.
For	by	that	token,	structure	hidden	arbitrarily	deeply	in	a	represention	could	also
be	 called	 explicit.	 Thus,	 an	 edge	might	 be	 said	 to	 be	 explicitly	 encoded	 on	 a
retinal	intensity	matrix	because	there	is	an	effective	procedure	for	extracting	it.
This	is	absurd.	Surely	there	is	a	substantive	difference	between	information	that
is	explicitly	encoded	and	information	that	must	recovered?	But	then	efficiency
does	matter;	it	is	the	driving	condition.



Accordingly,	 each	 step	 away	 from	 total	 movability	 —	 total	 context
independence	 —	 is	 a	 step	 which	 increases	 the	 complexity	 of	 the	 processes
which	 recognize	 a	 symbol	 and	 its	 meaning.	 At	 some	 point	 these	 recognition
costs	 become	 too	high	 and	 a	 language	becomes	unable	 to	 encode	 information
explicitly.	 Such	 languages	 are	 too	 complex	 to	 be	 read	 and	 understood
immediately.	The	truth	in	the	movability	condition	then	is	this:

Condition	 (2):	 An	 ambiguous	 language	may	 explicitly	 encode	 information
only	 if	 it	 is	 trivial	 to	 identify	 the	 syntactic	 and	 semantic	 identity	 of	 the
symbol.

Immediately	 readable.	 I	 have	 been	 arguing	 that	 for	 an	 expression	 in	 a
language	 to	 encode	 information	 explicitly	 it	must	 be	 trivial	 for	 a	 user	 of	 that
language	 to	 recognize	 the	 notational	 components	 of	 the	 expression;	 trivial	 for
that	user	to	recognize	the	syntactic	role	of	those	components,	and	trivial	as	well
for	it	to	recognize	the	meaning	of	both	the	components	and	the	expression	as	a
whole.	 In	 short,	 I	 have	been	 arguing	 that	 the	 expression	must	be	 immediately
readable.
But	what	does	it	really	mean	for	a	recognitional	process	to	be	trivial?	Can	we

say	 in	more	 precise	 computational	 terms	what	 immediately	 readable	 amounts
to?
The	definition	I	propose	is	that	we	call	a	recognitional	process	trivial	if	there

is	 a	mechanical	 process	 that	 identifies	 the	 relevant	 property	 in	 constant	 time.
Constant	 time	 is	 a	 measure	 of	 the	 absolute	 computational	 complexity	 of	 a
process.	It	means	that	the	number	of	computational	operations	needed	to	solve	a
problem	 is	 a	 constant	 independently	 of	 the	 size	 of	 the	 problem	 instance.	 For
example,	 the	 time	 needed	 to	 recognize	 whether	 a	 binary	 number	 is	 even	 is
constant	 regardless	 of	 size	 because	 the	 test	 for	 evenness	 is	 local,	 it	 involves
checking	the	last	digit.	Similarly,	to	decide	if	an	encoding	is	all	1's,	all	we	need
to	do	is	add	1	and	check	to	see	if	the	new	number	overflows,	i.e.,	has	a	longer
encoding	length.	This	too	can	be	done	in	constant	time.
Constant	time	is	the	smallest	complexity	order	known.	Few	computations	fall

within	 it.	 Accordingly,	 in	 saying	 that	 an	 expression	 explicitly	 encodes
information	 only	 if	 it	 can	 be	 parsed	 and	 interpreted	 in	 constant	 time,	 we	 are
placing	 a	 strong	 and	 precise	 condition	 on	 explicitness.	 Instead	 of	 vague
intuitions	 about	 structures	 being	 immediately	 usable	 or	 permitting	 their
information	 to	 be	 directly	 read	 off,	 we	 now	 have	 a	 precise	 principle	 for



interpreting	immediacy.
The	criterion	of	constant	time,	like	all	complexity	orders,	is	meaningful	only

if	we	know	what	can	be	done	in	a	single	step.	For	example,	on	some	machines	a
piece	of	 information	can	be	retrieved	 in	a	 few	steps	 regardless	of	how	big	 the
memory	storage	unit	is.	On	such	machines,	retrieval	is	a	constant	time	operation.
On	other	machines,	as	memory	size	increases	the	number	of	steps	needed	to	find
information	rises	logarithmically.	On	these	machines,	memory	retrieval	is	a	log
time	operation.
The	 one	 weakness	 in	 using	 constant	 time	 as	 a	 mark	 of	 immediacy	 is	 that

sometimes	 we	 may	 recognize	 small	 inputs	 immediately,	 even	 though	 the
recognitional	 process	 for	 arbitrary	 inputs	 takes	 non-constant	 time.	 Strictly
speaking,	 complexity	 is	 not	 meaningful	 for	 finite	 inputs;	 for	 in	 principle	 the
answers	to	any	finite	problem	can	be	stored	in	a	giant	look-up	table,	where	the
minimal	 amount	 of	 computation	 required	 to	 find	 an	 answer	 would	 be
approximately	the	same	across	all	problems.
Yet	 sometimes	 this	 is	 exactly	 what	 we	 believe	 is	 the	 case:	 patterns	 are

recognized	immediately	because	they	are	matched	in	memory.
To	 accommodate	 this	 intuition	 let	 us	 think	 of	 operators	 as	 having	 a	 certain

spatial	attention	span.	We	may	think	of	the	attention	span	of	an	operator	as	its
input	window,	the	number	of	basic	notational	elements	that	may	be	in	focus	at
any	time.	In	a	sense,	it	is	the	measure	of	parallelism	inherent	in	the	operator.
For	 example,	 to	determine	whether	 a	given	encoding	 is	 symmetric	—	as	 in

0110,	where	one	half	is	a	mirror	image	of	the	other	—	a	system	with	an	attention
span	 of	 1	 will	 iteratively	 compare	 numerals	 at	 each	 end.	 In	 our	 own	 case,
however,	if	the	number	of	digits	is	small,	we	can	tell	at	a	glance,	without	aid	of
iteration,	 if	 the	 two	 are	mirror	 images.	We	 gestalt	 this	global	 property	 of	 the
numeral.	And	so	we	can	decide	symmetry	in	constant	time	for	any	numeral	up	to
some	 length	 n.	 Once	 n	 is	 reached	 there	 are	 too	many	 digits	 to	 fit	 inside	 our
attentional	field.	At	that	point,	we	too	must	iteratively	scan.	And	so	the	property
is	no	longer	explicit.	We	no	longer	just	‘see’	it.
Attention	 span	 sets	 an	 upper	 bound	 on	what	 can	 be	 immediately	 gestalted.

That	means	that	the	net	affect	of	attention	span	for	larger	problems	is,	at	best,	to
reduce	by	a	constant	factor	the	absolute	number	of	steps	required.9	This	has	the
effect	that	complexity	orders	are	unchanged	by	attention	span.	If	a	problem	was
order	log	it	remains	order	log,	except	for	problem	instances	that	fall	within	the
attention	 span.	 The	 upshot	 is	 recognition	 processes	 that	 are	 normally	 non-
constant	 time,	 such	 as	 recognizing	 switched	 symbols,	 remain	 so,	 unless	 the



symbols	are,	for	instance,	close	together	in	time	or	space.
Accordingly:

Condition	(3):	symbols	explicitly	encode	information	if	they	are	either:
			readable	in	constant	time;	or
			sufficiently	small	to	fall	in	the	attention	span	of	an	operator.

Meaning.	 The	 final	 condition	 of	 explicitness	 is	 that	 every	 expression	 that
contains	 explicit	 information	 must	 have	 a	 definite	 information	 content.	 It	 is
tautological	 that	 a	 symbol	 can	 explicitly	 encode	 information	 only	 if	 there	 is
some	 information	 that	 it	 encodes.	 Although	 I	 have	 been	 arguing	 that	 the
question	of	explicitness	 really	concerns	how	quickly	 information	can	be	made
available	in	an	encoding,	I	have	yet	to	explain	what	I	mean	by	information.
Just	what	it	is	for	a	state,	structure,	or	process	to	express	meaning	remains	the

premiere	 issue	 of	 twentieth-century	 philosophy.	My	objective	 here,	 though,	 is
not	 to	 clarify	 what	 information	 means,	 but	 to	 show	 that	 whatever	 theory	 of
meaning	 one	 holds,	 the	 same	 concept	 of	 immediate	 apprehension	 can	 apply.
Accordingly,	let	us	consider	some	contenders.
The	first	theory	of	meaning	is	the	most	widely	held:

A	 system	 immediately	 recognizes	 the	meaning	 of	 a	 symbol	 if	 it	 grasps	 the
contribution	which	the	symbol	makes	to	the	meaning	of	the	larger	expression
of	which	it	is	a	part.

For	 instance,	 recognizing	 the	meaning	of	 ‘cat’	 in	 the	 cat	 in	 the	hat,	 on	 this
view,	consists	in	entering	a	state	which	contributes	to	the	larger	state	of	knowing
the	 truth	 conditions	of	 the	whole	 sentence.	To	discharge	 the	question-begging
term	 ‘knowing’	we	might	 reformulate	 the	 claim	 in	more	 verificationist	 terms.
Thus,	recognizing	the	meaning	of	‘cat’	in	the	cat	in	the	hat	consists	in	turning
on	 a	 subset	 of	 the	 abilities	 involved	 in	 recognizing	 when	 a	 cat	 is	 in	 a	 hat.
Associated	with	 ‘cat,’	 then,	would	be	a	 set	of	 abilities,	or	dispositional	 states,
some	of	which	are	perceptual	and	motor,	which	are	triggered	(in	constant	time)
by	 the	 appearance	 of	 the	 symbol	 ‘cat’	 and	 which	 can	 combine	 with	 other
abilities	 triggered	 by	 other	 symbols.	 The	 substance	 of	 the	 theory	 lies	 in	 first
identifying	 the	 relevant	 abilities,	 and	 second	 explaining	 how	 they	 come	 to	 be
triggered	 in	 just	 the	 right	way	 and	 just	 the	 right	 order	 to	 produce	 appropriate
composite	abilities.
When	understood	in	its	referential	version,	this	theory	requires	that	the	agent



be	able	to	‘know	the	referent’	of	an	expression	in	constant	time.	If	we	identify
this	 condition	with	 the	 agent's	 being	 in	 a	 certain	 state,	 then	we	can	 say	 that	 a
symbol	explicitly	encodes	a	certain	datum	of	information	for	a	system	S	only	if
S	can	enter	a	state	of	knowing	the	truth	conditions	of	the	expression	in	constant
time.	It	 is	an	empirical	and	conceptual	problem	to	determine	what	 this	state	 is
for	any	given	system.
The	second	theory	of	meaning	also	attempts	to	explain	in	process	terms	what

understanding	consists	in.	Unlike	the	first,	this	theory	places	most	emphasis	on
reasoning	skills.

A	system	immediately	recognizes	the	meaning	of	a	symbol	if	it	directly	enters
a	 state	 that	 rationally	 constrains	 the	 system's	 future	 inferences	 and
judgements.

For	 instance,	 recognizing	 the	 meaning	 of	 ‘cat’	 in	 the	 cat	 in	 the	 hat	 may
consist	 in	 entering	 a	 state	 which	 constrains	 the	 class	 of	 deductions	 and
inductions	that	the	system	might	make	about	cats,	hats,	being	inside,	and	so	on.
These	possible	 inferences	 and	 judgements	 are	 somehow	 rationally	regimented
by	the	semantic	 import	of	‘cat.’	The	substance	of	 the	 theory	 lies	 in	explaining
first,	the	norms	of	reasoning	and	judgment,	and	second,	how	a	given	proposition
fares	 in	 the	 cognitive	 economy	 of	 a	 rational	 agent.	 If	 we	 accept	 the	 second
theory	of	meaning,	then,	we	will	say	that	a	symbol	explicitly	encodes	a	certain
datum	of	information	for	S	only	if	S	can,	in	constant	time,	enter	a	state	which
appropriately	constrains	S's	possible	trajectories	of	reasoning	and	judgment.	It	is
an	empirical	and	conceptual	problem	to	determine	what	these	constraints	are	for
any	given	system.
The	 third	 theory	of	meaning	 I	 shall	mention,	unlike	 the	other	 two,	does	not

attempt	 to	 provide	 a	 full	 blooded	 account	 of	 meaning	 that	 grounds
understanding	 in	 a	 set	 of	 abilities	 to	 recognize	 truth	 conditions	 or	 to	 reason
rationally.	This	theory	offers	no	explanation	of	the	abilities	an	agent	must	have
to	 understand	 a	 concept.	 It	 does,	 however,	 ever,	 tie	 understanding	 to	 the
activation	of	symbols.	These	symbols	in	turn	might	activate	abilities.

A	system	immediately	recognizes	the	meaning	of	a	symbol	if	it	accesses	(in
constant	time)	any	relevant	associated	symbols.10

For	 instance,	 recognizing	 the	 meaning	 of	 ‘cat’	 in	 the	 cat	 in	 the	 hat	 may
consist	in	retrieving	certain	other	symbols.	Eventually	this	process	must	ground



out	 in	 basic	 abilities	 to	 act,	 perceive,	 and	 reason.	 Because	 these	 grounding
abilities	might	be	slow	to	activation	they	cannot	be	part	of	the	explicit	content	of
a	 symbol.	 They	may	 be	 part	 of	 the	 symbol's	 total	meaning.	 But	 they	 are	 not
explicitly	encoded.
Thus	 to	 take	an	example	 from	English	once	again,	 the	symbol	“him”	 in	 the

sentence	 ‘Then	 John	 read	 him	 his	 rights.’	 explicitly	 encodes	 only	 that
information	 that	 can	 be	 directly	 read	 from	 it.	 The	 referent	 is	 not	 part	 of	 this
information,	 for	 a	 parser	 may	 have	 to	 look	 arbitrarily	 back	 among	 other
sentences	 to	 locate	 it.	 Sometimes	 this	 process	 of	 locating	 the	 referent	 of	 a
pronoun	can	be	done	by	syntactic	means.	There	are	binding	rules	and	in	certain
cases	 these	will	 suffice	 to	determine	 reference.	 In	 short	 sentences,	 though,	 the
referent	may	be	within	the	attention	span	of	the	agent.	Hence	explicitly	encoded.
For	example,	John	shot	himself.	In	other	cases,	 the	parser	may	have	to	rely	on
extra-syntactic	knowledge	which	no	agent	could	have	within	its	attention	span.
For	 instance,	 to	determine	 the	referent	of	 ‘it’	 in	 ‘Christine	put	 the	candle	onto
the	wooden	table,	lit	a	match,	and	lit	it,'	the	interpreter	must	exploit	knowledge
about	 tables	 and	 candles.	 Tables	 are	 rarely	 lit,	 and	 especially	 not	 simply	 by
applying	matches	 to	 them.	 The	 knowledge	 that	 is	 employed	 to	 decide	 that	 it
refers	 to	 the	 candle,	 is	 located	 somewhere	 in	 the	 system,	 but	 there	 is	 no
predetermined	 place	 it	 must	 be.	 It	 could	 be	 encoded	 in	 the	 state	 of	 the
interpreter,	in	rules	for	meta-level	control,	or	in	a	lexical	data	base.	Determining
where	 this	 state	 is	 could	 take	 arbitrarily	 long.	 Accordingly,	 its	 content	 is	 not
explicitly	present.
Sketchy	as	 these	accounts	of	meaning	are	 they	provide	us	with	a	hint	at	 the

fourth	 condition,	 for	 they	 share	 a	 common	 feature:	 namely	 that	 whatever
meaning	 is,	 the	 states,	 structures,	or	processes	 that	 instantiate	 apprehension	of
that	meaning	must	be	able	to	be	turned	on	in	constant	time.	Thus:

Condition	(4):	The	 information	which	a	symbol	explicitly	encodes	 is	given
by	the	set	of	associated	states,	structures,	or	processes	it	activates	in	constant
time.

IMPLICATIONS

I	 have	 claimed	 throughout	 this	 paper	 that	 our	 intuitions	 about	 explicit
information	are	confused.	Explicitness	really	concerns	how	quickly	information



can	be	accessed,	retrieved,	or	in	some	other	manner	put	to	use.	It	has	more	to	do
with	what	is	present	in	a	process	sense,	than	with	what	is	present	in	a	structural
sense.	Three	notable	consequences	follow.
The	first	consequence	is	that	not	everything	which	we	can	assign	a	meaning

to	 is	 explicitly	 encoded.	 If	 a	 sentence	 takes	 longer	 than	 constant	 time	 to
interpret,	 then	 its	meaning	 is	not	on	 the	 surface.	Again	 this	holds	whether	 the
sentence	 is	a	declarative,	 such	as	Buffalo	buffalo	buffalo	buffalo	buffalo11	 or	 a
procedure.	 For	 instance,	 the	 sentence	 (add(square	 2)	 (5th-root	 3125))	 in	 one
sense	means	 (add	4	5).	But	not	explicitly.	On	 the	surface,	 it	means	 to	add	 the
square	of	4	to	the	5th	root	of	3125.
On	the	other	hand,	if	(add	4	5)	were	a	constant	time	procedure	we	would	be

obliged	 to	 say	 that	 its	 evaluation	 was	 explicitly	 represented.	 This	 has	 the
consequence	that	information	may	be	explicit	even	if	it	is	not	represented	by	its
canonical	symbol.	Returning	to	our	adding	example,	(add	11)	explicitly	encodes
2	 for	 any	 system	 that	 can	 add	 in	 constant	 time	 or	 which	 has	 memorized	 the
answer	 and	 can	 trivially	 retrieve	 it.	 Normally,	 we	 would	 expect	 that	 the
difference	between	2	and	(add	11)	is	precisely	that	the	first	explicitly	encodes	2
while	the	second	explicitly	encodes	information	about	a	procedure.	Yet,	while	it
is	 true	 that	 (1	 +	 1)	 does	 explicitly	 encode	 information	 about	 adding,	 it	 also
explicitly	 contains	 information	 about	 the	 evaluation	 of	 the	 procedure.	 This
ambiguity	rarely	occurs,	however,	because	usually,	procedures	do	not	evaluate
in	constant	time.	So	the	information	they	contain	is	not	explicit.	It	is	only	when
the	 procedure	 is	 a	 constant	 time	 procedure,	 or	 when	 the	 performance	 of	 the
procedure	 is	 in	 the	 attention	 span	 of	 the	 host,	 that	 the	 symbols	 become
ambiguous.	In	such	cases,	there	is	no	reason	not	to	regard	the	procedure	call	as
both	a	call	to	a	certain	procedure	with	certain	values,	and	a	special	name	for	its
evaluation.
If	this	seems	unreasonable,	consider	a	related	case.	In	binary	notation	the	last

digit	 which	 ordinarily	 encodes	 explicitly	 the	 number	 of	 units,	 also	 encodes
whether	a	number	is	even	or	odd.	Should	we	say	information	about	evenness	is
explicitly	 present?	 I	 think	 we	 must.	 We	 would	 not	 likely	 find	 an	 entry	 in	 a
Tarski	meaning	 theory	 stating	 that	 ‘…0	means	 even	 number.’	But	 if	 the	 host
system	has	an	understanding	of	what	even	or	odd	is,	and	it	tests	for	evenness	by
checking	the	last	digit,	then	what	grounds	have	we	for	denying	that	the	last	digit
carries	two	meanings	explicitly?	It	is	reasonable	to	suppose	that	‘1’	in	the	units
location	just	is	how	we	represent	oddness.	To	be	sure,	a	system	may	not	always
make	use	of	information	that	is	explicit.	Being	explicit	is	not	the	same	as	being



occurrent.	 Occurrent	 states	 are	 occurrent	 because	 control	 has	 passed	 to	 a
procedure	 which	 interprets	 the	 symbol.	 The	 control	 makes	 occurrent	 an
interpretation.	But	what	a	symbol	explicitly	represents	is	independent	of	what	is
happening	in	the	control	structure.	The	only	connection	is	that	if	we	do	not	know
all	the	constant	time	procedures	that	might	act	on	the	representation	we	cannot
know	all	the	bits	of	information	the	representation	might	encode	explicitly.
The	upshot	is	that	an	ordinary	meaning	theory	for	a	language	will	not	specify

all	 the	 meanings	 of	 a	 symbol	 unless	 that	 theory	 was	 constructed	 with
foreknowledge	 of	 the	 constant	 time	 procedures	 present	 in	 the	 system,	 and
foreknowledge	of	what	can	be	the	contents	of	a	span	of	attention.
This	need	for	foreknowledge	is	one	reason	procedural	semantics	is	hard.	But

by	 restricting	 the	 focus	 of	 procedural	 semantics	 to	 the	 constant	 time	 effects	 a
representation	can	have	rather	than	to	arbitrarily	long	term	effects,	the	project	of
procedural	 semantics	 may	 become	 more	 tractable.	 This,	 I	 take	 it,	 is	 one
substantial	virtue	of	the	proposed	theory	of	explicitness.
A	second	consequence	of	tying	explicitness	to	rate	of	access	is	that	there	is	no

principled	distinction	between	declarative	 and	procedural	 representations.	 It	 is
irrelevant	whether	‘place	10’	means	a	location	in	some	vector,	or	it	means	some
compiled	 procedure	which	when	 invoked	 starts	 a	 set	 of	 processes	 for	 placing
object	10	somewhere.	Either	meaning	may	be	explicitly	encoded.	What	counts	is
that	the	link	to	the	vector	location	or	to	the	compiled	procedure	be	negotiable	in
constant	time.
This	 focus	on	process	 is	 significant	because	 it	 encourages	us	 to	 think	about

information	processing	in	terms	of	informational	movement.	Representations	are
inert	 unless	 coupled	with	 processes	which	 interpret	 them.	This	 trivial	 point	 is
often	ignored	in	correlational	theories	of	meaning.	Thus	we	find	correlationists
looking	 for	 static	 structures	 to	 interpret	 as	 representations	 even	 in	 essentially
dynamic	 systems	 such	 as	 relaxation	 networks.	 The	 truth,	 however,	 is	 that	 for
such	dynamical	systems,	 information	content	 is	 to	be	found	in	 the	coupling	of
structure	 with	 process.	 It	 is	 the	 union	 of	 structure	 and	 process	 which	 can
explicitly	encode	information.
The	 final	and	most	philosophically	significant	point	 is	 that	 the	Language	of

Thought	as	usually	conceived	 is	capable	of	generating	 representations	 that	are
not	actually	explicit	in	the	proprietary	sense	I	have	been	discussing.	This	has	the
consequence	that,	at	a	minimum,	one	of	the	following	is	false:

	 	 	 the	 language	 of	 thought	 is	 the	 best	 level	 of	 analysis	 to	 represent



perspicuously	the	episodes	in	our	mental	life;
	 	 	 the	 events	 in	 our	 mental	 life	 are	 identical	 with	 operations	 on	 explicit
representations;

	 	 	 the	 language	 of	 thought	 perspicuously	 describes	 human	 information
processing.

The	primary	motive	for	postulating	a	language	of	thought,	it	will	be	recalled,
is	 that	 there	are	 important	 regularities	 in	 thought,	belief	and	action	 that	would
otherwise	be	missed	were	we	to	look	for	explanations	at	the	neural	level	alone
or	at	 the	competence	 level	alone.	Competence	 theories	are	above	all	structural
theories:	they	tell	us	what	is	computed,	what	knowledge	a	system	must	have	to
be	 able	 to	 perform	 those	 computations,	 and,	 in	 the	 best	 competence	 theories,
they	tell	us	something	about	the	decompositional	structure	of	the	computational
process.	 But	 the	 details	 of	 the	 actual	 computational	 trajectories	 they	 leave
undescribed.	 The	 opposite	 is	 true	 at	 the	 neural	 level:	 so	 many	 details	 are
available	 about	 particular	 computational	 trajectories	 individual	 people	 follow
that	it	is	hard	to	find	a	level	of	characterization	which	perspicuously	captures	the
important	 informational	 transitions	 that	 generalize	 well.	 The	 language	 of
thought	 is	 meant	 to	 be	 the	 right	 level	 of	 abstraction	 to	 describe	 these
informational	transitions.
Does	the	language	of	thought	successfully	describe	this	middle	level?	In	most

discussions,	the	language	of	thought	is	assumed	to	be	as	complex	as	first	order
predicate	 calculus.	 Yet	 we	 know	 that	 parsing	 and	 assigning	 a	 semantic
interpretation	 to	 first	 order	 predicate	 calculus	 is	 a	 non-constant	 time	 process.
Something	 must	 give.	 We	 cannot	 believe	 the	 language	 of	 thought	 to	 be
simultaneously	a	complete	description	of	human	 information	processing	and	a
complete	description	of	human	mental	life.	If	we	opt	for	the	language	of	thought
as	a	complete	description	of	the	mental,	then	we	must	forsake	identifying	mental
activity	with	computation	on	explicit	representations.
If	any	of	these	three	conclusions	seems	counterintuitive	it	is	because	we	tend

to	think	of	explicitness	as	a	local	property	of	a	data	structure:	something	which
can	be	ascertained	without	studying	the	system	in	which	it	is	embedded.	But	that
is	a	mistake.
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