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Abstract 

Cortical encoding and decoding models of speech production 

Josh Chartier 

 

To speak is to dynamically orchestrate the movements of the articulators (jaw, tongue, lips, and 

larynx), which in turn generate speech sounds. It is an amazing mental and motor feat that is 

controlled by the brain and is fundamental for communication. Technology that could translate 

brain signals into speech would be transformative for people who are unable to communicate as 

a result of neurological impairments. This work first investigates how articulator movements that 

underlie natural speech production are represented in the brain. Building upon this, this work 

also presents a neural decoder that can synthesize audible speech from brain signals. Data to 

support these results were from direct cortical recordings of the human sensorimotor cortex 

while participants spoke natural sentences. Neural activity at individual electrodes encoded a 

diversity of articulatory kinematic trajectories (AKTs), each revealing coordinated articulator 

movements towards specific vocal tract shapes. The neural decoder was designed to leverage 

the kinematic trajectories encoded in the sensorimotor cortex which enhanced performance 

even with limited data. In closed vocabulary tests, listeners could readily identify and transcribe 

speech synthesized from cortical activity. These findings advance the clinical viability of using 

speech neuroprosthetic technology to restore spoken communication. 
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Introduction 

Speaking to one another is a distinctly human process. It forms the basis for communication, 

which is perhaps the single most important action we do. Communication allows us to share 

experiences and to connect with one another. Without communication, we would also feel 

helpless and isolated from one another. Given the core significance of communication, it is 

remarkable how little we know about the extraordinary mechanisms that give rise to our ability to 

communicate, that is, our ability to speak. 

 

At a fundamental level, speaking is the act of using our vocal tract to create vibrations in air to 

transmit information in the form of sounds to another individual. We accomplish this feat by 

coordinating the activations of nearly 100 muscles to dynamically position the speech 

articulators: lips, tongue, jaw, larynx, etc. First, we exhale air that blows across tensioned vocal 

folds; causing them to vibrate with a specific frequency we associate with pitch. Then with our 

supralaryngeal articulators, we further modulate the exhalation by superimposing additional 

perturbations. For instance, when creating a vowel sound, the jaw and tongue move to change 

the volume of the oral cavity to introduce resonant frequencies into the output sound. 

Consonants are formed by constricting the oral cavity at various points in time to disrupt the 

more continuous nature of these harmonic sounds. For example a /b/ sound is formed by 

blocking the oral cavity with the lips and then releasing the lips after some pressure is built up.  

 

To speak, we must rapidly generate sequences of perceptually distinct sounds, called 

phonemes, thereby requiring immense coordination and rapid successive movements of the 

vocal tract. The sequences of phonemes must also adhere to a set of mutually understood rules 

that dictate how sounds can be combined to form words. Despite the vast complexity of 
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speaking, it often feels automatic. We rarely need to stop and consider what words we want to 

say and how to say each word. In fact, many of us often do not heed the proverb, “think before 

you speak.” This begs the question, “What processes occur in the human brain that enable the 

amazing mental and motor feat of speaking?” Over the years, this singular, unifying question 

has brought forth a collection of partial answers that build upon one another from 

psycholinguists, speech scientists, neuroscientists, and others alike. This dissertation offers 

another partial answer, which addresses the role of the sensorimotor cortex in relation to vocal 

tract movements during speaking through the lens of electrocortiographic (ECoG) recordings. 

 

Like all methods of investigating brain activity, ECoG offers a unique and distinctly limited 

perspective of the brain. ECoG grants the capability of measuring multi-unit firing patterns of 

neuronal populations with high temporal precision and targeted spatial coverage, both of which 

are necessary for the rapid process of speaking. By using high-density ECoG electrode arrays, 

it is possible to measure the changes in voltages associated with neural firing at a distance of 

4mm between electrodes, often in a grid of 16 x 16 electrodes. ECoG is an invasive neural 

recording technique because the electrodes are placed sub-durally, directly on the surface of 

the cortex offering direct insight to activity patterns of cortical neurons. ECoG grids are clinically 

implanted for use in epilepsy treatment to isolate seizure epicenters for resection. This 

dissertation is built upon data collected from patients undergoing this treatment who graciously 

volunteered their time to read several hundred sentences aloud while being monitored with 

ECoG. 

 

ECoG grids are sometimes placed over brain areas important to speech production and can be 

used to help limit resection of areas crucial to speaking. One brain area involved in speech 

production is the sensorimotor cortex, which is often regarded as the command center for 

movement. It has long since been mapped out where each cortical section is associated with a 
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part of the human body. A natural progression from understanding where each body part is 

represented in the sensorimotor cortex has been to understand how the movement of each 

body part can be generated from the brain. The studies that followed often isolated their focus to 

understanding the relationship between single unit recordings in non-human primates and arm 

movements. Many fascinating theories have emerged, but little has been done to study the 

neural basis for movements of the vocal tract. Unlike arm reaching, movements of the inner 

vocal tract are notoriously difficult to observe, and neural recordings must be done in humans as 

opposed to non-human primates. 

 

In Chapter 1, we made use of electromagnetic articulography (EMA) to study vocal tract 

movements. Sensors are placed on the upper and lower lips, on the tip, blade, and dorsum of 

the tongue, and on upper and lower incisors. A magnetic field is projected across the vocal tract 

and as the sensors move, an electrical current is induced that can be associated with their 

position in space. Unfortunately, due to clinical restrictions this recording apparatus could not be 

used to track the vocal tract movements of the subjects undergoing ECoG recordings. Instead, 

we used simultaneous recordings of EMA and audio recordings from other subjects to construct 

and inversion algorithm that could predict EMA traces from audio recordings. We then used the 

audio recordings from subjects with ECoG and audio recordings to infer what the EMA traces 

would be for these subjects. Finally, we fit a linear encoding model that predicted electrode 

activity from vocal tract movements. Individual electrodes encoded a diversity of articulatory 

kinematic trajectories (AKTs), each revealing coordinated articulator movements toward specific 

vocal tract shapes. AKTs captured a wide range of movement types, yet they could be 

differentiated by the place of vocal tract constriction. Additionally, AKTs manifested out-and-

back trajectories with harmonic oscillator dynamics. While AKTs were functionally stereotyped 

across different sentences, context-dependent encoding of preceding and following movements 
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during production of the same phoneme demonstrated the cortical representation of 

coarticulation.  

 

The articulatory movements encoded in sensorimotor cortex during speech production offered 

us clues into what a brain-computer interface for speaking might look like. Often when we think 

about interacting with a computer we think of typing on a keyboard or mobile phone. Naturally, 

we could expect that a brain-computer interface would allow one to type using brain signals. 

However, with the findings from Chapter 1 in mind, the speech sensorimotor cortex does not 

represent letters, but rather the vocal tract movements that make up a word. A brain-computer 

interface that directly decodes speech in terms of vocal tract movement would allow a user to 

communicate at the rate of natural speech production, a rate 3-4 times faster than typing on a 

keyboard. 

 

In Chapter 2, we detail a proof-of-concept speech brain-computer interface that would restore 

spoken communication to people with severe speech and movement impairments. We again 

used ECoG signals from participants who underwent intracranial monitoring for epilepsy 

treatment as they spoke several hundreds of sentences aloud. We designed a neural decoder 

that explicitly leverages kinematic and sound representations encoded in human cortical activity 

to synthesize audible speech. Recurrent neural networks first decoded directly recorded cortical 

activity into representations of articulatory movement, and then transformed these 

representations into speech acoustics. In closed vocabulary tests, listeners could readily identify 

and transcribe speech synthesized from cortical activity. Intermediate articulatory dynamics 

enhanced performance even with limited data. Decoded articulatory representations were highly 

conserved across speakers, enabling a component of the decoder to be transferrable across 

participants. Furthermore, the decoder could synthesize speech when a participant silently 
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mimed sentences. These findings advance the clinical viability of using speech neuroprosthetic 

technology to restore spoken communication. 
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Chapter 1. Encoding of articulatory kinematics trajectories in 

human speech sensorimotor cortex 

Josh Chartier,1,2,3,5 Gopala K. Anumanchipalli,1,2,5 Keith Johnson,4 and Edward F. 
Chang1,2,6  
1Weill Institute for Neurosciences, University of California, San Francisco, San 
Francisco, CA 94158, USA 2Department of Neurological Surgery, University of 
California, San Francisco, San Francisco, CA 94143, USA 3Joint Program in 
Bioengineering, University of California, Berkeley and University of California, San 
Francisco, Berkeley, CA 94720, USA 4Department of Linguistics, University of California, 
Berkeley, Berkeley, CA 94720, USA  
5These authors contributed equally  
 
Abstract When speaking, we dynamically coordinate movements of our jaw, tongue, 
lips, and larynx. To investigate the neural mechanisms underlying articulation, we used 
direct cortical recordings from human sensorimotor cortex while participants spoke 
natural sentences that included sounds spanning the entire English phonetic inventory. 
We used deep neural networks to infer speakers’ articulator movements from produced 
speech acoustics. Individual electrodes encoded a diversity of articulatory kinematic 
trajectories (AKTs), each revealing coordinated articulator movements toward specific 
vocal tract shapes. AKTs captured a wide range of movement types, yet they could be 
differentiated by the place of vocal tract constriction. Additionally, AKTs manifested out-
and-back trajectories with harmonic oscillator dynamics. While AKTs were functionally 
stereotyped across different sentences, context dependent encoding of preceding and 
following movements during production of the same phoneme demonstrated the cortical 
representation of coarticulation. Articulatory movements encoded sensorimotor cortex 
give rise to the complex kinematics underlying continuous speech production. 

 
 
Introduction 

To speak fluently, we perform an extraordinary movement control task by engaging nearly 100 

muscles to rapidly shape and reshape our vocal tract to produce successive speech segments 

to form words and phrases. The movements of the articulators—lips, jaw, tongue, and larynx—

are precisely coordinated to produce particular vocal tract patterns (Fowler et al., 1980; 

Bernstein, 1967). Previous research that has coded these movements by linguistic features 

(e.g. phonemes—well studied units of sound) has found evidence that the neural encoding in 

the ventral sensorimotor cortex (vSMC) is related to the presumed kinematics underlying 

speech sounds (Bouchard, et al., 2013, Lotte et al., 2015, Carey et al., 2017). However, there 
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are two key challenges that have precluded a complete understanding of how vSMC neural 

populations represent the actual articulatory movements underlying speech production. 

 

The first challenge is to move beyond the experimentally convenient approach, taken in most 

studies, of studying the vSMC during isolated speech segments (Grabski et al., 2012, Bouchard, 

et al., 2013, Carey et al., 2017), towards studying the richer, complex movement dynamics in 

natural, continuous speech production. The second challenge is to go beyond categorical 

linguistic features (e.g. phonemes or syllables), towards describing the precise representations 

of movement, that is, the actual speech kinematics. Overcoming these challenges is critical to 

understanding the fluid nature of speech production. While speech is often described as the 

combination of discrete components with local invariances (i.e. vocal tract gestures (Browman & 

Goldstein, 1989) or phonemes), at any given time, the articulatory movements underlying the 

production of a speech segment may be influenced by previous and upcoming speech 

segments (known as coarticulation) (Hardcastle & Hewitt, 1999). For example, in “cool,” lip 

rounding necessary for /u/ is also present in /k/ while in “keep” /k/ is palatalized in anticipation of 

/i/. A central question remains as to whether cortical control invokes combinations of these 

primitive movement patterns to perform more complicated tasks (Bernstein, 1967, Bizzi et al., 

1991, Bizzi & Cheung, 2013). 

 

To address these challenges, we recorded high-density intracranial electrocorticography 

(ECoG) signals while participants spoke aloud full sentences. Our focus on continuous speech 

production allowed us to study the dynamics and coordination of articulatory movements not 

well captured during isolated syllable production. Furthermore, since a wide range of articulatory 

movements is possible in natural speech, we used sentences to cover nearly all phonetic and 

articulatory contexts in American English. Our approach allowed us to characterize 

sensorimotor cortical activity during speech production in terms of vocal tract movements. 
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A major obstacle to studying natural speech mechanisms is that the inner vocal tract 

movements can only be monitored for extended durations with specialized tools for tracking 

tongue movements with high spatial and temporal resolution, most of which are not practically 

compatible with intracranial recordings nor suitable for capturing naturalistic speech patterns. 

We overcame this obstacle by developing a statistical approach to derive the vocal tract 

movements from the produced acoustics. Then, we used the inferred articulatory kinematics to 

determine the neural encoding of articulatory movements, in a manner that was model 

independent and agnostic to pre-defined articulatory and acoustic patterns used in speech 

production (e.g. phonemes, gestures, etc.). By learning how combinations of articulator 

movements mapped to electrode activity, we estimated articulatory kinematic trajectories 

(AKTs) for single electrodes, and characterized the heterogeneity of movements that were 

represented through the speech vSMC. 

 

Results 

Inferring articulatory kinematics 

To estimate the articulatory kinematics during natural speech production, we built upon recent 

advances in acoustic-to-articulatory inversion (AAI) to obtain reliable estimates of vocal tract 

movements from only the produced speech acoustics (Richmond, 2001; Afshan et al., 2015, 

Mitra et. al., 2017). While existing methods for AAI work well in situations where simultaneously 

recorded acoustic and articulatory data are available to train for the target speaker, there are 

few successful attempts for AAI in which no articulatory data is available from the target 

speaker. Specifically for this purpose, we developed an approach for Speaker-Independent 

Acoustic-to-Articulatory Inversion (AAI). We trained the AAI model using publicly available multi-

speaker articulatory data recorded via Electromagnetic Midsagittal Articulography (EMA), a 
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reliable vocal tract imaging technique well suited to study articulation during continuous speech 

production (Berry, 2011). The training dataset comprised simultaneous recordings of speech 

acoustics and EMA data from 8 participants reading aloud sentences from the MOCHA-TIMIT 

dataset (Wrench, 1999; Richmond, et. al., 2011). EMA data for a speech utterance consisted of 

six sensors that tracked the displacement of articulators, critical to speech articulation (Figure 

1.1A) in the caudo-rostral (x) and dorso-ventral (y) directions. We approximated laryngeal 

function by using the fundamental frequency (f0) of produced acoustics and whether or not the 

vocal folds were vibrating (voicing) during the production of any given segment of speech. In all, 

a 13 dimensional feature vector described articulatory kinematics at each time point (Figure 

1.1B).  

We modified the deep learning approach by Liu et. al., 2015 by incorporating phonological 

context to capture context dependent variance. Additionally, we spectrally warped training 

speakers to sound like the target (or test) speaker to improve cross-speaker generalizability 

(Toda et al., 2007). With these modifications, our AAI method performed markedly better than 

the current state-of-the-art methods within the speaker independent condition, and proved to be 

a reliable method to estimate articulatory kinematics. Using leave-one-participant-out cross 

validation, the mean correlation of inferred trajectories with ground truth EMA for a held out test 

participant was 0.68 ± 0.11 across all articulators and participants (0.53 correlation reported by 

Afshan et al., 2015). Figure 1.1B shows the inferred and ground truth EMA traces for each 

articulator during an example utterance for an unseen test speaker. There was a high degree of 

correlation across all articulators between the reference and inferred movements. Figure 1.9A 

shows a detailed breakdown of performance across each of the 12 articulators. 

 

To investigate the ability of our AAI method to infer acoustically relevant articulatory 

movements, we trained identical deep recurrent networks to perform articulatory synthesis, i.e., 

predicting the acoustic spectrum (coded as 24 dimensional mel-cepstral coefficients and 
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energy) from articulatory kinematics, for both the real and inferred EMA. We found on average 

that there was no significant difference (p=.4, Figures S1B and C) in the resulting acoustic 

spectrum of unseen utterances when using either the target speaker’s real EMA or those 

inferred via from the AAI method. This suggests that the difference between inferred and real 

EMA may largely be attributed to kinematic excursions that do not have significant acoustic 

effects. Other factors may also include differences in sensor placement, acquisition noise, and 

other speaker/recording specific artifacts that may not have acoustic relevance. 

 

To further validate the AAI method, we examined how well the inferred kinematics preserved 

phonetic structure. To do so, we analyzed the phonetic clustering resulting from both real and 

inferred kinematic descriptions of phonemes. For one participant’s real and inferred EMA, a 200 

millisecond window of analysis was constructed around the kinematics for each phoneme onset. 

We then used linear discriminant analysis (LDA) to model the kinematic differences between 

phonemes from the real EMA data. We projected the both real and inferred EMA data for 

phonemes into this two dimensional LDA space to observe the relative differences in phonetic 

structure between real and inferred EMA. We found that the phonetic clustering and relative 

distances between phonemes centroids were largely preserved (Figure 1.1C) between inferred 

and real kinematic data (correlation r = 0.97 for consonants and 0.9 for vowels, p<.001). 

Together, these results demonstrate that using kinematic, acoustic, and linguistic metrics, it is 

possible to obtain high-resolution descriptions of vocal tract movements from easy-to-record 

acoustic data. 

 

Encoding of articulatory kinematic trajectories at single vSMC electrodes 

Using AAI, we inferred vocal tract movements as traces from EMA sensor locations (Figure 

1.1A) while participants read aloud full sentences during simultaneous recording of acoustic and 

high-density intracranial electrocorticography signals. To describe the relationship between 
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vocal tract dynamics and sensorimotor cortical activity, we used a trajectory encoding model 

(Saleh et al., 2012) to predict each electrode’s high gamma (70 – 150 Hz) activity (z-scored 

analytic amplitude) (Crone et al., 2001) as a weighted sum of articulator kinematics over time. 

Similar to models describing spectro-temporal receptive fields (Theunissen et al., 2001), a 

widely used tool to describe acoustic selectivity, we used ridge regression to model high gamma 

activity for a given electrode from time-varying estimated EMA sensor positions. In Figure 1.2, 

we show for an example electrode (Figure 1.2A), the weights learned (Figure 1.2C) from the 

linear model act as a spatio-temporal filter that we then convolved with articulator kinematics 

(Figure 1.2B) to predict electrode activity (Figure 1.2D). 

 

The resulting filters described specific patterns of articulatory kinematic trajectories (AKTs) 

(Figure 1.2C), which are the vocal tract dynamics that best explain each electrode’s activity. By 

validating on held-out data, we found that the AKT model significantly explained neural activity 

for electrodes active during speech in the vSMC (108 electrodes across 5 participants, mean r = 

0.25 ± 0.08 up to 0.5, p<.001) compared to AKT models constructed for electrodes in other 

anatomical regions (p<.001, Wilcoxon signed rank tests, Figure S7). 

 

To provide a more intuitive understanding of these filters, we projected the X and Y coordinates 

of each trajectory onto a midsagittal schematic view of the vocal tract (Figure 1.2E). Each trace 

represents a kinematic trajectory of an articulator with a line that thickens with time to illustrate 

the time course of the filter. For the special case of the larynx, we did not estimate actual 

movements because they are not measured with EMA, and therefore used voicing-related pitch 

modulations that were represented along the y-axis with the x-axis providing a time course for 

visualization. 
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We observed a consistent pattern across articulators where each exhibited a trajectory that 

moved away from the starting point in a directed fashion before returning to the starting point. 

The points of maximal movement describe a specific functional vocal tract shape involving the 

coordination of multiple articulators. For example, the AKT (Figure 1.2E) for the electrode in 

Figure 1.2A exhibits a clear coordinated movement of the lower incisor and the tongue tip in 

making a constriction at the alveolar ridge. Additionally, the tongue blade and dorsum move 

frontward to facilitate the movement of the tongue tip. The upper and lower lips remain open 

and the larynx is unvoiced. The vocal tract configuration corresponds to the classical description 

of an alveolar constriction (e.g., production of /t/, /d/, /s/, /z/, etc.). The tuning of this electrode to 

this particular phonetic category is apparent in Figure 1.2D, where both the measured and 

predicted high gamma activity increased during the productions /st/, /dɪs/, and /nz/, all of which 

require an alveolar constriction of the vocal tract. 

 

While vocal tract constrictions have typically been described as the action of one primary 

articulator, the coordination among multiple articulators is critical for achieving the intended 

vocal tract shape (Kelso, et al., 1984). For example, in producing a /p/, if the lower lip moves 

less than it usually does (randomly, or because of an obstruction) the upper lip compensates 

and the lip closure is accomplished (Abbs & Gracco, 1984). This coordination may arise from 

the complex and highly overlapping topographical organization of articulator representation in 

the vSMC (Meier et al., 2008, Grabski et al., 2012). We asked whether, like the coordinated limb 

movements encoded motor cortex (Aflalo & Graziano, 2006; Saleh et al., 2012), the encoded 

AKTs were the result of coordinated articulator movements. Alternatively, high gamma activity 

could be related to a single articulator trajectory with the rest of articulators representing 

irrelevant correlated movements. To evaluate these hypotheses, we used a cross-validated, 

nested regression model to compare the neural encoding of a single articulator trajectory with 

the AKT model. Here, we refer to one articulator as one EMA sensor. The models were trained 
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on 80% of the data and tested on the remaining 20% data. For each electrode, we fit single 

articulatory trajectory models using both X and Y directions for each estimated EMA sensor and 

chose the single articulator model that performed best for our comparison with the AKT model. 

Since each single articulator model is nested in the full AKT model, we used a general linear F-

test to determine whether the additional variance explained by adding the rest of the articulators 

at the cost of increasing the number of parameters was significant. After testing each electrode 

on the data held-out from the training set, we found that the multi-articulatory patterns described 

by the AKT model explained significantly more variance compared to the single articulator 

trajectory model (F(280, 1820)>1.31, p <.001 for 96 of 108 electrodes, mean F-statistic=6.68, 

p<.001, Wilcoxon signed rank tests, Figure 1.11, mean change in R2: 99.55% ± 8.63%, Figure 

1.12). This means that activity of single electrodes is more related to vocal tract movement 

patterns involving multiple articulators than those of a single articulator. 

 

One potential explanation for this result is that single electrode neural activity in fact encodes 

the trajectory of a single articulator, but could appear to be multi-articulatory because of the 

correlated movements of other articulators due to the biomechanical properties of the vocal 

tract. While we would expect some coordination among articulator movements due to the 

intrinsic dynamics of the vocal tract, it is possible that further coordination could be cortically 

encoded. To evaluate these hypotheses, we examined the structure of correlations among 

articulators during periods of high and low neural activity for each speech-active electrode. If the 

articulator correlation structures were same regardless of electrode activity, the additional 

articulator movements were solely the result of governing biomechanical properties of the vocal 

tract. However, we found that articulator correlation structures differed according to whether 

high gamma activity was high or low (threshold at 1.5 standard deviations) (p<.001 for 108 

electrodes, Bonferroni corrected) indicating that, in addition to coordination due to 

biomechanical properties of the vocal tract, coordination among articulators was reflected in 
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changes of neural activity. Contrary to popular assumptions of a one-to-one relationship 

between a given cortical site and articulator in the homunculus, these results demonstrate that, 

similar to cortical encoding of coordinated movements in limb control (Saleh, et al., 2012), 

neural activity at a single electrode encodes the specific, coordinated trajectory of multiple 

articulators. 

 

Kinematic organization of vSMC 

In our previous work, we used hierarchical clustering of electrode selectivity patterns to reveal 

the phonetic organization of the vSMC (Bouchard et al., 2013). We next wanted to examine 

whether clustering based upon all encoded movement trajectories, i.e. grouping of kinematically 

similar AKTs, yielded similar organization. Because the AKTs were mostly out-and-back in 

nature, we extracted the point of maximal displacement for each articulator along their principal 

axis of movement (see methods) to concisely summarize the kinematics of each AKT. We used 

hierarchical clustering to organize electrodes by their condensed kinematic descriptions (Figure 

1.3A). To interpret the clusters in terms of phonetics, we fit a phoneme encoding model for each 

electrode. Similar to the AKT model, electrode activity was explained as a weighted sum of 

phonemes in which the value each phoneme was either 1 or 0 depending on whether it was 

being uttered at a given time. For each electrode, we extracted the maximum encoding weight 

for each phoneme. The encoded phonemes for each electrode were shown in the same order 

as the kinematically clustered electrodes (Figure 1.3B). 

 

There was a clear organizational structure that revealed shared articulatory patterns among 

AKTs. The first level organized AKTs by their direction of jaw movement (lower incisor goes up 

or down). Sub-levels manifested four main clusters of AKTs with distinct coordinative 

articulatory patterns. The AKTs in each cluster were averaged together yielding a representative 

AKT for each cluster (Figure 1.3C). Three of the clusters described constrictions of the vocal 
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tract: coronal, labial, and dorsal, which broadly cover all consonants in English. The other 

cluster described a vocalic (vowel) AKT involving laryngeal activation and a jaw opening motion. 

 

Instead of distributed patterns of electrode activity representing individual phonemes, we found 

that electrodes exhibited a high degree of specificity towards a particular group of phonemes. 

Electrodes within each AKT cluster also primarily encoded phonemes that had the same 

canonically defined place of articulation. For example, an electrode within the coronal AKT 

cluster was selective for /t/, /d/, /n/, /ʃ/, /s/, and /z/, all of which have a similar place of 

articulation. However, there were differences within clusters. For instance, within the coronal 

AKT cluster (Figures 3A and B, green), electrodes that exhibited a comparatively weaker tongue 

tip movement (less purple) had phonetic outcomes less constrained to phonemes with alveolar 

places of constriction (less black for phonemes in green cluster). 

 

Hierarchical clustering was also performed on the phoneme encoding weights to identify 

phoneme organization to both compare with and help interpret the clustering of AKTs. These 

results confirm our previous description of phonetic organization of the vSMC (Bouchard, et al., 

2013), as phonetic features defined by place-of-articulation were dominant. We found a strong 

similarity in clustering when electrodes were described by their AKTs and phonemes (Figures 

3A and B), which is not surprising given that AKTs reflected specific locations of vocal tract 

constrictions (Figure 1.3C). 

 

We observed broad groupings of electrodes that were sensitive to place-of-articulation, but 

within those groupings, we found differences in encoding for manner and voicing in consonant 

production. Within the coronal cluster, electrode encoding weights were highest for fricatives, 

then affricates, and followed by stops (F(3) = 36.01, p < .001, ANOVA). Conversely, bilabial 

stops were more strongly encoded than labiodental fricatives (p < .001, Wilcoxon signed rank 
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tests). Additionally, we found that consonants (excluding liquids) were clustered entirely 

separately from vowels. This is an important distinction from our previous work (Bouchard et al., 

2013), where clustering was performed independently for the consonants and vowels in a CV 

syllable. Again, the vocalic AKTs were defined by both laryngeal action (voicing) and jaw 

opening configuration. Vowels were organized by three primary clusters which correspond to 

low vowels, mid/high vowels, and high front vowels. 

 

To understand how kinematically and phonetically distinct each AKT cluster was from one 

another, we quantified the relationship between within-cluster and between-cluster similarities 

for each AKT cluster using the silhouette index as a measure of clustering strength (Figure 

1.13). The degrees of clustering strength of AKT clusters for kinematic and phonetic 

descriptions were significantly higher compared to shuffled distributions indicating that clusters 

had both similar kinematic and phonetic outcomes (p < .01, Wilcoxon signed rank tests). 

 

We also examined the anatomical clustering of AKTs across vSMC for each participant. While 

the anatomical clusterings for coronal and labial AKTs were significant (p < .01, Wilcoxon 

signed rank tests), clusterings for dorsal and vocalic AKTs were not. We found that only one 

participant had more than two dorsal AKT electrodes so we could not justly quantify the 

clustering strength of this cluster. Furthermore, vocalic AKTs were not well clustered because 

two spatial locations (dorsal and ventral LMC) were found, as previously seen in Bouchard et 

al., 2013. To further investigate the anatomical locations of AKT clusters, we projected electrode 

locations from all participants onto a common brain (Figure 1.4). Previous research has 

suggested that somatomotor maps of place of articulation are organized along the dorsal-ventral 

axis of the vSMC with labial constrictions were more dorsal and velar constrictions more ventral 

(Bouchard et al., 2013, Carey et al., 2017). We found that this coarse somatotopic organization 

was present for AKTs, which were spatially localized according to kinematic function and place 
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of articulation. Since AKTs encoded coordinated articulatory movements, we did not find single 

articulator localization. For example, with detailed descriptions of articulator movements, we 

found lower incisor movements were not localized to a single region, but rather opening and 

closing movements were represented separately as seen in vocalic and coronal AKTs, 

respectively. 

 

Damped oscillatory dynamics of trajectories 

Similar to motor cortical neurons involved in limb control, we found that the encoded kinematic 

properties were time-varying trajectories (Hatsopoulos et al., 2007). However, in contrast to the 

variety of trajectory patterns found during limb control from single neurons, we observed that 

each AKT exhibited an out-and-back trajectory from single ECoG electrode recordings. To 

further investigate the trajectory dynamics of every AKT, we analyzed phase portraits (velocity 

and displacement relationships) for each articulator. In Figure 1.5A, we show the encoded 

position and velocity of trajectories of each articulator, along its principal axis of displacement, 

for AKTs of 4 example electrodes, each representative of a main AKT cluster. The trajectory of 

each articulator was determined by the encoding weights from each AKT. All trajectories moved 

outwards and then returned to the same position as the starting point with corresponding 

increases and decreases in velocity forming a loop. This was true even for articulators that only 

made relatively small movements. In Figure 1.5B, we show the trajectories for each articulator 

from all 108 AKTs, which again illustrate the out-and-back trajectory patterns. Trajectories for a 

given articulator did not exhibit the same degree of displacement, indicating a level of specificity 

for AKTs within a particular cluster. Qualitatively, we observed that trajectories with more 

displacement also tended to correspond with high velocities. 

 

While each AKT specifies time-varying articulator movements, the governing dynamics dictating 

how each articulator moves, may be time-invariant. In articulator movement studies, the time-
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invariant properties of vocal tract gestures have been described by damped oscillatory 

dynamics (Saltzman & Munhall, 1989). Just like a pendulum, descriptors of movement (i.e. 

velocity and position) are related to one another independent of time. We found that there was a 

linear relationship between peak velocity and displacement for every articulator described by the 

AKTs (Figure 1.5C, r: 0.85, 0.77. 0.83, 0.69, 0.79, 0.83 in respective order, p < .001), 

demonstrating that AKTs also exhibited damped oscillatory dynamics. Furthermore, the slope 

associated with each articulator revealed the relative speed of that articulator. The lower incisor 

and upper lip moved the slowest (0.65 and 0.65 slopes) and the tongue varied in speed along 

the body with the tip moving fastest (0.66, 0.78, 0.99 slopes, respectively). These dynamics 

indicate that an AKT makes a stereotyped trajectory to form a single vocal tract configuration, a 

sub-syllabic speech component, acting as a building block for the multiple vocal tract 

configurations required to produce single syllables. While we were unable to dissociate whether 

the dynamical properties of single articulators were centrally planned or resulted from 

biomechanical properties of the vocal tract (Fuchs & Perrier, 2005), the velocity-position 

relationship strongly indicates that the AKT model encoded movements for each articulator 

corresponding to the intrinsic dynamics of continuous speech production. 

 

Coarticulated kinematic trajectories 

Some of the patterns observed in the detailed kinematics of speech result from interactions 

between successive vocal tract constrictions, a phenomenon known as coarticulation 

(Farnetani, 1997). Depending on the kinematic constraints of upcoming or previous vocal tract 

constrictions, some vocal tract constrictions may require anticipatory or carryover modifications 

to be optimally produced. Despite these modifications, each vocal tract constriction is often 

thought of as an invariant articulatory unit of speech production in which context-dependent 

kinematic variability results from the co-activation (i.e. temporal overlap) of vocal tract 

constrictions (Fowler, 1980; Browman & Goldstein, 1989; Saltzman & Munhall, 1989). We 
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investigated whether the vSMC shared similar invariant properties by studying how vSMC 

representations of vocal tract AKTs interacted with one another during varying degrees of 

anticipatory and carryover coarticulation. 

 

During anticipatory coarticulation, kinematic effects of upcoming phonemes may be observed 

during the production of the present phoneme. For example, consider the differences in jaw 

opening (lower incisor goes down) during the productions of /æz/ (as in ‘has’) and /æp/ (as in 

‘tap’) (Figure 1.6A). The production of /æ/ requires a jaw opening but the degree of opening is 

modulated by the upcoming phoneme. Since /z/ requires a jaw closure to be produced, the jaw 

opens less during /æz/ to compensate for the requirements of /z/. On the other hand, /p/ does 

not require a jaw closure and the jaw opens more during /æp/. In each context, the jaw opens 

during /æ/, but to differing degrees based the compatibility of the upcoming movement. 

To investigate whether anticipatory coarticulation is neurally represented, we investigated the 

change in neural activity during the production /æz/ and /æp/, two contexts with differing 

degrees of coarticulation. While vSMC activity at the electrode population level is biased 

towards surrounding contextual phonemes (Bouchard & Chang, 2014), we investigated the 

representation of coarticulation at single electrodes. We studied high gamma of an electrode 

that encoded a vocalic AKT, crucial for the production of /æ/ (high phonetic selectivity index for 

/æ/, see methods). In Figure 1.6B, the AKT for electrode 120, describes a jaw opening and 

laryngeal vocal tract configuration. Time locked to the acoustic onset of /æ/, high gamma for 

electrode 120 was higher during /æp/ than /æz/ (Figure 1.6C). To quantify this difference, we 

compared the median high gamma activity during 50 ms centered at point of peak 

discriminability for all phonemes (p<.05, Wilcoxon signed rank tests). We also found that the 

predicted high gamma from the AKT was similarly higher during /æp/ than /æz/ (p<.001, 

Wilcoxon signed rank tests) (Figure 1.6D). For this electrode, we found that high gamma activity 
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reflected changes in kinematics, as predicted by the AKT, due to anticipatory coarticulation 

effects. 

 

We then examined whether coarticulatory effects were present in all vSMC electrodes during all 

the anticipatory contexts of every phoneme. To quantify this effect, we fit a mixed-effects model 

to study how high gamma for a given electrode changed during the production of a phoneme 

with different following phonemes. In particular, we expected that for an electrode with an AKT 

heavily involved in producing a given phoneme, the kinematic compatibility of the following 

phoneme would be reflected in its peak high gamma. The model used cross-random effects to 

control for differences across electrodes and phonemes and a fixed effect of predicted high 

gamma from the AKT to describe the kinematic variability to which each electrode is sensitive. 

In Figure 1.6E, each line shows the relationship between high gamma and coarticulated 

kinematic variability for a given phoneme and electrode in all following phonetic contexts with at 

least 25 instances. For example, one line indicates how high gamma varied with the kinematic 

differences during /tæ/, /tɑ/, …, /ts/, etc. Kinematic variability due to following phonemes was a 

significant effect of the model indicating that neural activity associated with particular articulatory 

movements is modulated by the kinematic constraints of the following articulatory context (β = 

0.30, SE = 0.04, χ2(1) = 38.96, p = 4e–10). 

 

In a similar fashion, we also investigated the neural representation of carryover articulation, in 

which kinematic effects of previously produced phonemes are observed. In Figure 1.6F, we 

again show two coarticulated contexts with varying degrees of compatibility: /æz/ (as in ‘has’) 

and /iz/ (as in ‘ease’). /æ/ involves a large jaw opening while /i/ does not. However, in both 

contexts the jaw is equally closed for /z/ and the major difference between /æz/ and /iz/ is how 

much the jaw must move to make the closure. While the target jaw position for /z/ was achieved 

in both contexts, we found that for an electrode with a coronal AKT involved in producing /z/ 
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(Figure 1.6G), the difference in high gamma reflected the kinematic differences between the two 

preceding phonemes (Figures 6H and I). Again, we used a mixed-effects model to examine the 

effects of carryover coarticulation in all vSMC electrodes to find that neural activity reflected 

carried-over kinematic differences in electrodes with AKTs for making the present phoneme (β = 

0.32, SE = 0.04, χ2(1) = 42.58, p = 6e–11) (Figure 1.6J). These results indicate that electrodes 

involved in producing a particular vocal tract configuration reflect kinematic variability due to 

anticipatory and carryover coarticulation. 

 

Comparison with other encoding models 

To evaluate how well AKTs are encoded in the vSMC, we compared i) the AKT model’s 

encoding performance with respect to other cortical regions, and ii) vSMC encoding models for 

alternative representations of speech. 

 

To determine how specific AKTs are to the vSMC, we compared AKT model performance 

(Pearson’s r on held-out data) of every cortical region recorded from across participants (Figure 

1.7A). Besides electrodes from middle frontal gyrus (MFG) and pars orbitalis (n = 4), the AKT 

model significantly explained some of the variance for all recorded cortical regions above 

chance level (p<.001, Wilcoxon rank-sum test). However, for the considered electrodes in this 

study (EIS)—i.e., the speech active electrodes in the vSMC—the AKT model explained neural 

activity markedly better than in other cortical areas (p<1e–15, Wilcoxon rank-sum test). The 

other cortical areas we examined were all previously shown to be involved in different aspects 

of speech processing: acoustic and phonological processing (STG & MTG) (Mesgarani et al., 

2013), and articulatory planning (IFG) (Flinker et al., 2015). Therefore, it was expected that 

cortical activity in these regions would have some correlation to the produced kinematics. The 

higher performance of the AKT model for EIS indicates that studying the neural correlates of 

kinematics may best focused in the vSMC. 
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While AKTs were best encoded in vSMC, there may be alternative representations of speech 

that may better explain vSMC activity. We evaluated vSMC encoding of both acoustics 

(described here by using the first three formants: F1, F2, and F3) and phonemes with respect to 

the AKT model. Each model was fit in the same manner as the AKT model and performance 

compared on held-out data from training. If each vSMC electrode represented acoustics or 

phonemes, we would expect a higher model fit for that representation than the AKT model. Due 

to the similarity of these representations, we expected the encoding models to be highly 

correlated. It is worth noting that the inferred articulator movements are unable to provide an 

account of movements without correlations to acoustically significant events, a key property that 

would be invaluable for differentiating between models. Furthermore, while acoustics and 

phonemes are both complete representations of speech, the midsagittal movements of a few 

vocal tract locations captured by EMA are a partial description of speech relevant movements of 

the vocal tract in that we are missing palate, lateral and oropharyngeal movements. Even so, we 

found that articulator movements were encoded markedly better than both the acoustic and 

phoneme encoding models despite the limitations of the AKT model (Figure 1.7B & C, p<1e–20, 

Wilcoxon rank-sum test). 

 

These comparisons were consistent with previous findings that vSMC encoding is tuned to 

articulatory features (Bouchard et al., 2013; Cheung et al., 2015). During single vowel 

production, vSMC showed encoding of directly measured kinematics over phonemes and 

acoustics (Conant et al., 2018). Furthermore, vSMC is also responsible for non-speech 

voluntary movements of the lips, tongue, and jaw, in behaviors such as swallowing, kissing, oral 

gestures. While vSMC is critical for speech production, it is not the only vSMC function. Indeed, 

when vSMC is injured, patients have facial and tongue weakness, in addition to dysarthria. 
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When vSMC is electrically stimulated, we observe movements -- not speech sounds, 

phonemes, or auditory sensations (Penfield & Boldrey, 1937; Breshears et al., 2015). 

 

Decoding articulator movements 

Given that we could determine encoding of AKTs at single electrodes, we next wanted to 

understand how well we could decode vocal tract movements from the population of electrodes. 

We decoded articulatory movements during sentence production with a long short-term memory 

recurrent neural network (LSTM), an algorithm well suited for time series regression (Hochreiter 

& Schmidhuber, 1997). The performance of the decoder was high, especially in light of the 

articulatory variance lost due to process of inferring kinematics and the neural variance 

unrecorded by the ECoG grid (i.e. within the central sulcus or at a resolution finer than the 

capability of the electrodes). For an example sentence (Figure 1.8A), the predicted articulator 

movements from the decoder closely matched with the inferred articulator movements from the 

acoustics. All of the articulator movements were well predicted across 100 held-out sentences 

significantly above chance (mean r: 0.43, p<.001) (Figure 1.8B). Prior work has demonstrated 

the possibility of decoding phonemes from ECoG recordings (Mugler et al., 2014) with automatic 

speech recognition techniques to decode full sentences (Herff et al., 2015) in addition to phrase 

classification with non-invasive recordings (Wang et al. 2017). Here, we show that decoding 

articulator movements directly from neural signals may be an additional approach for decoding 

speech. 

 

Discussion 

Our goal was to demonstrate how neural activity in human sensorimotor cortex represents the 

movements of vocal tract articulators during continuous speech production. We used a novel 

acoustic-to-articulatory inversion (AAI) method to infer vocal tract movements, which we then 
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related directly to high-resolution neural recordings. By describing vSMC activity with respect to 

detailed articulatory movements, we demonstrate that discrete neural populations encode 

articulatory kinematic trajectories (AKTs), a level of complexity that has not been observed 

using simpler syllable-level speech tasks in our previous work. 

 

There are two important features of the AKTs that are encoded in the vSMC. First, encoded 

articulator movements are coordinated to make a specific vocal tract configuration. While the 

structure of coordination across articulators has been shown shown to be task-specific (e.g. 

different coordinative patterns during /p/ versus /z/) (Kelso et al., 1984), cortical control of this 

coordination has not been previously studied. However, studies in limb control have discovered 

single motor cortical neurons that encode complex coordinated movements involving both the 

arm and hand with specific functions (Aflalo & Graziano, 2006; Saleh et al., 2012). While 

previous studies have investigated vSMC activity on the basis of whether or not a given 

articulator is involved (Bouchard et al., 2013), we studied vSMC activity using detailed 

articulatory trajectories that suggest, similar to limb control, coordinated movements across 

articulators for specialized vocal tract configurations are encoded at the single electrode level. 

For example, the coordinated movement to close the lips is encoded rather than individual lip 

movements. This finding is consistent with studies where stimulation of localized neural 

populations in non-human primates has revealed functional action maps of complex arm and 

hand movements (Graziano et al., 2002). For speech, we found four major clusters of AKTs that 

were differentiated by place of articulation and covered the main vocal tract configurations that 

comprise American English. At the sampling level of ECoG, cortical populations encode sub-

syllabic coordinative movements of the vocal tract. 

 

The second important feature of AKTs is the trajectory profile itself. Encoded articulators moved 

in out-and-back trajectories with damped oscillatory dynamics. During limb control, single motor 
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cortical neurons have been also found to encode time-dependent kinematic trajectories, but the 

patterns were very heterogeneous and did not show clear spatial organization (Hatsopoulos et 

al., 2007). It is possible that individual neurons encode highly specific movement fragments that 

combine together to form larger movements represented by ensemble activity at the ECoG 

scale of resolution. For speech, these larger movements correspond to canonical vocal tract 

configurations. While motor cortical neurons encoded a variety of trajectory patterns, we found 

that AKTs only exhibited out-and-back profiles which may be a fundamental movement motif in 

continuous speech production. 

 

With both coordinative and dynamical properties, each AKT appeared to encode the movement 

necessary to make a specific vocal tract configuration and return to a neutral position. Although 

we have described neural activity associated with articulatory movements without regard to any 

particular theory of speech production, the AKTs discovered here bear a striking resemblance to 

the vocal tract gestures theorized to be the articulatory units of speech production (Fowler et al., 

1980; Browman & Goldstein, 1989). Each vocal tract gesture is described as a coordinated 

articulatory pattern to make a vocal tract constriction. Like the AKTs, each vocal tract gesture 

has been characterized as a time-invariant system with damped oscillatory dynamics (Saltzman 

and Munhall, 1989). 

 

Articulatory theories suggest that each vocal tract gesture is an invariant unit and that the 

variability in the kinematics of continuous speech directly results from the temporal overlapping 

of successive gestures (Saltzman and Munhall, 1989). A particularly interesting phenomenon is 

that some vocal tract gestures are incompatible with one another in that the two vocal tract 

patterns require opposing movements of the articulators. This incompatibility results in a 

coarticulated compromise of target vocal tract patterns while compatible gestures are able to 

combine without inhibiting any necessary articulator movements (Farnetani, 1991; Farnetani & 
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Faber, 1992). Despite the theorized invariance of vocal tract gestures, we found that AKTs 

encoded in vSMC neural activity reflected kinematic differences due to constraints of the 

phonetic or articulatory context. While the invariant properties of vocal tract gestures may be 

represented elsewhere in higher order speech processes, the AKTs encoded in the vSMC 

represent coarticulation of successive AKTs. 

 

The neural encoding of coarticulation also suggests that the vSMC does not locally encode 

phonemes. Phonemes by definition are segmental, perceptually defined, discrete units of 

sound. We would expect that an electrode encoding a particular set of phonemes as features 

would exhibit the same patterns of activation during the production of the same phoneme 

regardless of preceding or following phonemes and the accompanying kinematic constraints. 

However, we found that not only was there a difference in neural activity between productions of 

the same phoneme in different contexts, but also that the differences in kinematics partially 

explained the changes in neural activity. Furthermore, a direct comparison showed that AKTs 

were better encoded than both phoneme and acoustic models at single electrodes. We find the 

neural encoding of coarticulation to offer compelling support for AKTs as dominant features 

encoded in the speech sensorimotor cortex. 

 

In summary, we described the cortical encoding of the movements underlying the rich dynamics 

of continuous speech production. These findings paint a new picture about the cortical basis of 

speech, and perhaps other sequential motor tasks. Coordinated articulator trajectories are 

locally encoded and fluidly combine while taking into account the surrounding movement 

context to produce the wide range of vocal tract movements we require to communicate. The 

insights gained by understanding the vSMC in terms of articulatory movements will help frame 

new questions of higher order planning and its realization as speech, or more broadly, 

movement. 
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Methods 

Experimental model and subject details 

Subjects. Five human subjects (Female, ages: 30, 31, 43, 46, 47) underwent chronic 

implantation of high-density, subdural electrode array over the lateral surface of the brain as 

part of their clinical treatment of epilepsy (2 left hemisphere grids, 3 right hemisphere grids). 

Subjects gave their written informed consent before the day of the surgery. No subjects had a 

history of any cognitive deficits that were relevant to the aims of the present study. All subjects 

were fluent in English. All procedures were approved by the University of California, San 

Francisco Institutional Review Board.  

 

Method details 

Experimental Task. Subjects read aloud 460 sentences from the MOCHA-TIMIT database 

(Wrench, 1999). Sentences were recorded in 9 blocks (8 of 50, and 1 of 60 sentences) spread 

across several days of patients’ stay. Within each block, sentences are presented on a screen, 

one at a time, for the subject to read out. The order was random and subjects were given a few 

seconds of rest in between. MOCHA-TIMIT is a sentence-level database, a subset of the TIMIT 

corpus designed to cover all phonetic contexts in American English. Each subject read each 

sentence 1-10 times. Microphone recordings were obtained synchronously with the ECoG 

recordings. 

 

Data acquisition and signal processing. Electrocorticography was recorded with a multi-

channel amplifier optically connected to a digital signal processor (Tucker-Davis Technologies). 

Speech was amplified digitally and recorded with a microphone simultaneously with the cortical 

recordings. ECoG electrodes were arranged in a 16 x 16 grid with 4 mm pitch. The grid 
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placements were decided upon purely by clinical considerations. ECoG signals were recorded 

at a sampling rate of 3,052 Hz. Each channel was visually and quantitatively inspected for 

artifacts or excessive noise (typically 60 Hz line noise). The analytic amplitude of the high-

gamma frequency component of the local field potentials (70 - 150 Hz) was extracted with the 

Hilbert transform and down-sampled to 200 Hz. Finally, the signal was z-scored relative to a 30 

second window of running mean and standard deviation, so as to normalize the data across 

different recording sessions. We studied high-gamma amplitude because it has been shown to 

correlate well with multi-unit firing rates and has the temporal resolution to resolve fine 

articulatory movements (Crone et al., 2006). 

 

Phonetic and phonological transcription. For the collected speech acoustic recordings, 

transcriptions were corrected manually at the word level so that the transcript reflected the 

vocalization that the subject actually produced. Given sentence level transcriptions and acoustic 

utterances chunked at the sentence level, hidden Markov model based acoustic models were 

built for each subject so as to perform sub-phonetic alignment (Prahallad et. al., 2006). 

Phonological context features were also generated from the phonetic labels, given their 

phonetic, syllabic and word contexts. 

 

Speaker-Independent Acoustic-to-Articulatory Inversion (AAI). To perform articulatory 

inversion for a target subject for whom only acoustic data is available, we developed a method, 

we refer to as  “Speaker-Independent AAI”, where parallel EMA and speech data were 

simulated for the target speaker. In contrast to earlier approaches for speaker-independent AAI, 

where normalization is performed to remove speaker identity from acoustics, we accomplished 

the opposite goal of transforming the 8 EMA subjects’ spectral properties to match those of the 

target speaker for whom we want to estimate vocal tract kinematics. To transform the acoustics 

of all data to the target speaker, we applied voice conversion (as proposed in Toda et al., 2007) 
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to transform the spectral properties of each EMA speaker to match those of the target subject. 

This method assumes acoustic data corresponding to the same sentences for the two subjects. 

When parallel acoustic data was not available across subjects in our case (the mngu0 corpus 

uses a different set of sentences than the MOCHA-TIMIT corpus), concatenative speech 

synthesis were used to synthesize comparable data across subjects (Hunt and Black ‘94). 

Since there was no information about the target speaker’s kinematics, we back off to 

using a subject and articulator normalized average of the 8 speakers’ articulatory space. For 

cross-subject utilization of kinematic data, for each of the training speakers, we use an 

articulator specific z-scoring across each subject’s EMA data. This ensured that the target 

speaker’s kinematics were an unbiased average across all available EMA subjects.  The 

kinematics were described by 13 dimensional feature vectors (12 dimensions to represent X 

and Y coordinates of 6 vocal tract points and fundamental frequency, F0, representing the 

Laryngeal function).  

 

We used 24 dimensional mel-cepstral coefficients as the spectral features. Both kinematics and 

acoustics were sampled at a frequency 200 Hz (each feature vector represented a 5 ms 

segment of speech). Additionally, phonetic and phonological information corresponding to each 

frame of speech was coded as one-hot vectors and padded onto the acoustic features. These 

features included phoneme identity, syllable position, word part of speech, positional features of 

the current and of the neighboring phoneme and syllable states. We found that contextual data 

provided complementary information to acoustics and improved inversion accuracies. 

 

Using these methods for each EMA subject-to-target subject pair, we were able to create a 

simulated dataset of parallel speech and EMA data, that were both customized for the target 

subject. For training the inversion model itself, we used a deep recurrent neural network based 

articulatory inversion technique (replicating Liu. et al., 2015) to learn a mapping from spectral 
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and phonological context to a speaker generic articulatory space. Following (Liu., et. al., 2015) 

an optimal network architecture with a 4 layer deep recurrent network with two feedforward 

layers (200 hidden nodes) and two bidirectional LSTM layers ( with 100 LSTM cells) was 

chosen. The trained inversion model was then applied to all speech produced by the target 

subject to infer articulatory kinematics in the form of Cartesian X and Y coordinates of articulator 

movements. The network was implemented using Keras (Chollet et. al., 2015), a deep learning 

library running on top of a Tensorflow backend. 

 

Electrode selection. We selected electrodes located on either the precentral and postcentral 

gyri that had distinguishable high gamma activity during speech production. We measured the 

separability of phonemes using the ratio of between-class to within-class variability (F statistic) 

for a given electrode across time. We chose electrodes with a maximum F statistic of 8 or 

greater. This resulted in a total of 108 electrodes across the 5 subjects with robust activity 

during speech production. 

 

Encoding models. To uncover the kinematic trajectories represented in electrodes, we used 

linear encoding models to describe the high gamma activity recorded at each electrode as a 

weighted sum of articulator kinematics over time. This model is similar to the spectrotemporal 

receptive field, a model widely used to describe selectivity for natural acoustic stimuli 

(Theunissen et al., 2001). However, in our model, articulator X and Y coordinates are used 

instead spectral components.  The model estimates the time series xi(t) for each electrode i as 

the convolution of the articulator kinematics A, comprised of kinematic parameters k, and a filter 

H, which we refer to as the articulatory kinematic trajectory (AKT) encoding of an electrode.  
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Since our task was not designed to differentiate between motor commands and somatosensory 

feedback, we designed our filter to use a 500 ms window of articulator movements centered 

about the high gamma sample to be predicted. Movements occurring before the sample of high 

gamma are indicated by a negative lag while movements occurring after the high gamma 

sample are indicated by a positive lag. The 500 ms window was chosen to both maximize the 

performance of the AKT model (Figure 1.14) and allow full visualization of the AKTs. While 

Figure 1.14, indicates the filters need only be 200 ms long for optimal performance, we found 

that extending filters to 500 ms with appropriate regularization ensured that we could visualize 

every AKT in its entirety. Some AKTs encoded movements occurring well before or after the 

corresponding neural activity resulting AKTs cutoff using a 200 ms window. L2 regularization 

ensured that weights from time points not encoding an articulatory trajectory (e.g. at 250 ms 

before the neural sample) had no weighting and did not affect interpretability of the AKTs. 

 

Additionally, we fit acoustic and phoneme encoding models to electrode activity. Instead of 

articulator X and Y coordinates, we used formants (F1, F2, and F3) as a description of acoustics 

and a binary description of the phonemes produced during a sentence. Each feature indicated 

whether a particular phoneme was being produced or not with a 1 or 0, respectively. 

 

The encoding models were fit using ridge regression and trained using cross-validation with 

70% of the data used for training, 10% of the data held-out for estimating the ridge parameter, 

and 20% held out as a final test set. The final test set consisted of sentences produced during 

entirely separate recording sessions from the training sentences. Performance was measured 

as the correlation between the predicted response of the model and the actual high gamma 

measured in the final test set. 

 



	 32 

Hierarchical clustering. We used Ward’s method for agglomerative hierarchical clustering. 

Clustering of the electrodes was carried out solely on the kinematic descriptions for encoded 

kinematic trajectory of each electrode. To develop concise kinematic descriptions for each 

kinematic trajectory, we extracted the point of maximal displacement for each articulation. We 

used principal components analysis on each articulator to extract the direction of each 

articulator that explained the most variance. We then projected the filter weights onto each 

articulator’s first principal component and chose the point with the highest magnitude. This 

resulted in length 7 vector with each articulator described by the maximum value of the first 

principal component. Phonemes were clustered based on the phoneme encoding weights for 

each electrode. For a given electrode, we extracted the maximum encoding weight for each 

phoneme during a 100 ms window centered at the point of maximum phoneme discriminability 

(peak F statistic) for the given electrode. 

 

Cortical surface extraction and electrode visualization. To visualize electrodes on the 

cortical surface of a subject’s brain, we used a normalized mutual information routine in SPM12 

to co-register the preoperative T1 MRI with a postoperative CT scan containing electrode 

locations. We used Freesurfer to make pial surface reconstructions. To visualize electrodes 

across subjects on a common MNI brain, we performed nonlinear surface registration using a 

spherical sulcal-based alignment in Freesurfer, aligned to the cvs avg35 inMNI152 template 

(Fischl et al., 1999). While the geometry of the grid is not maintained, the nonlinear alignment 

ensures that electrodes on a gyrus in the subject’s native space will remain on the same gyrus 

in the atlas space. 

 

Decoding model. To decode articulatory movements, we trained a long short-term memory 

(LSTM) recurrent neural network to learn the mapping from high gamma activity to articulatory 

movements. LSTM are particularly well suited for learning mappings with time-dependent 
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information (Hochreiter & Urgen Schmidhuber, 1997). Each sample of articulator position was 

predicted by the LSTM using a window of 500 ms of high gamma activity, centered about the 

decoded sample, from all vSMC electrodes.  The decoder architecture was a 4 layer deep 

recurrent network with two feedforward layers (100 hidden nodes each) and two bidirectional 

LSTM layers (100 cells). Using Adam optimization and dropout (40% of nodes), we trained the 

network to reduce mean squared error of the decoded and actual output. The network was 

implemented using Keras (Chollet et. al., 2015), a deep learning library running on top of a 

Tensorflow backend. 

 

Quantification and statistical analyses 

Nested encoding model comparison. We used a nested regression model to compare the 

neural encoding of a single articulator trajectory with the AKT model (Allen, 1997). For each 

electrode, we fit single articulatory trajectories models using both X and Y directions for each 

EMA sensor and chose the single articulator model that with the lowest residual sum of squares 

(RSS) on held-out data. From RSS values for the full (2) and nested (1) models, we compared 

the significance of the explained variance by calculating an F statistic for each electrode.  

𝐹 =

𝑅𝑆𝑆! − 𝑅𝑆𝑆!
𝑝! − 𝑝!
𝑅𝑆𝑆!
𝑛 − 𝑝!

 

p and n are the number of model parameters and samples used in RSS computation, 

respectively. An F statistic greater than the critical value defined by the number of parameters in 

both models and confidence interval indicates that the full model (AKT) explains statistically 

significantly explains more variance than the nested model (single articulator) after accounting 

for difference in parameter numbers. 

 



	 34 

Correlation structure comparison. To test whether the correlational structure of articulators 

(EMA points) was different between periods of low and high gamma activity for a speech 

responsive electrode, we split the inferred articulator movements into two data sets based on 

whether the z-scored high gamma activity of given electrode for that sample was above the 

threshold (1.5). We then randomly sampled 1000 points of articulator movement from each data 

set to construct two cross-correlational structures between articulators. To quantify the 

difference between the correlational structures, we computed the Euclidean distance between 

the two structures. We then sampled an additional 1000 points from the below threshold data 

set to quantify the difference between correlational structures within the sub-threshold data. We 

repeated this process 1000 times for each electrode and compared the two distributions of 

Euclidean distances with a Wilcoxon rank sum test (Bonferroni corrected for multiple 

comparisons) to determine whether correlational structures of articulators differed in relation to 

high or low high gamma activity of an electrode. 

 

Silhouette analysis. To assess cluster separability, we computed the silhouette index for each 

electrode to compare how well each electrode matched its own cluster based on the given 

feature representation. The silhouette index for an electrode is calculated by taking the 

difference between the average dissimilarity with all electrodes within the same cluster and the 

average dissimilarity with electrodes from the nearest cluster. This value is then normalized by 

taking the maximum value of the previous two dissimilarity measures. A silhouette index close 

to 1 indicates that the electrode is highly matched to its own cluster. 0 indicates that that the 

clusters may be overlapping, while -1 indicates that the electrode may be assigned to the wrong 

cluster. 

 

Phoneme Selectivity Index (PSI). To determine the phoneme selectivity of each electrode, we 

use the statistical framework as described in Mesgarani et al., 2014 to test whether the high 



	 35 

gamma activity of an electrode is significantly different during the productions of two different 

phonemes. For a phoneme pair and a given electrode, we created two distributions of high 

gamma activity from data acoustically aligned to each phoneme. We used a 50 ms window of 

activity centered on the time point with the peak F statistic for that electrode. We used a non-

parametric statistical hypothesis test (Wilcox rank-sum test) to assess whether these 

distributions have different medians (p<0.001). The PSI is the number of phonemes that have 

statistically distinguishable high gamma activity for a given electrode. A PSI of 0 indicates that 

no other phonemes have a distinguishable high gamma activity. Whereas, a PSI of 40 indicates 

that all other phonemes have distinguishable high gamma activity. 

  

Mixed effects model. To examine the relationship between high gamma and coarticulated 

kinematics, we used a mixed-effects model with several crossed random effects. In particular, 

for a given electrode, we computed the “peak activity” by taking the median high gamma activity 

during a 50 ms window centered about the peak F statistic for that electrode (see PSI method) 

during the production of a target phoneme. We then took the mean peak activity for each unique 

phoneme pair (target phoneme preceded by context phoneme). For each electrode, we only 

considered phoneme pairs with at least 25 instances and a target PSI > 25. This helped 

stabilize the means and targeted electrodes that presumably encoded the AKT necessary to 

produce the target phoneme. In Figure 1.6C,D,H,I, we extended /z/ to include /z/ and /s/, and /p/ 

to include /p/ and /b/ since, from an EMA standpoint, the articulation is nearly identical and it 

increased the number of coarticulated instances we could analyze, thus decreasing biases from 

other contextual effects and variability from noise. In a similar fashion to high gamma, we 

computed high gamma activity predicted by the AKT model to provide insight into the kinematics 

during the production of a particular phoneme pair. Our mixed-effects model described high 

gamma from a fixed effect of kinematically predicted high gamma with crossed random effects 

(random slopes and intercepts) controlling for difference in electrodes, and target and context 
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phonemes (Barr et al., 2013). To determine model goodness, we used ANOVA to compare the 

model with a nested model that retained the crossed random effects but removed the fixed 

effect. The mixed-effects model was fit using the lme4 package in R (Baayen et al., 2008). 
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Figure 1.1. Inferred Articulator Kinematics 

(A) Approximate sensor locations for each articulator during EMA recordings. Midsagittal movements represented as 
Cartesian x and y coordinates.  (B) Midsagittal articulator movements inferred from both acoustic and phonetic 
features (in color). The trace of each reference sensor coordinate is also shown (in black). The larynx was 
approximated by fundamental frequency (f0) modulated by whether the segment of speech was voiced.  (C) 
Recorded articulator movements (EMA) representing consonants and vowels projected into a low-dimensional (LDA) 
space. Inferred articulator movements projected into the same space were highly correlated with the original EMA. 
Correlations were pairwise distances between phonemes (consonants, r = 0.97, p < 0.001; vowels, r = 0.90, p < 
0.001).  
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(A) Magnetic resonance imaging (MRI) reconstruction of 
single participant’s brain where an example electrode is 
shown in the ventral sensorimotor cortex (vSMC). (B) Inferred 
articulator movements during the production of the phrase 
‘‘stimulating discussions.’’ Movement directions are 
differentiated by color (positive x and y directions, purple; 
negative x and y directions, green), as shown in Figure 1.1A.  
(C) Spatiotemporal filter resulting from fitting articulator 
movements to explain high gamma activity for an example 
electrode. Time 0 represents the alignment to the predicted 
sample of neural activity. (D) Convolving the spatiotemporal 
filter with articulator kinematics explains high gamma activity 
as shown by an example electrode. High gamma from 10 
trials of speaking ‘‘stimulation discussions’’ was dynamically 
time warped based on the recorded acoustics and averaged 
together to emphasize peak high gamma activity throughout 
the course of a spoken phrase. (E) Example electrode-
encoded filter weights projected onto a midsagittal view of the 
vocal tract exhibits speech-relevant articulatory kinematic 
trajectories (AKTs). Time course of trajectories is represented 
by thin-to-thick lines. Larynx (pitch modulated by voicing) is 
one dimensional along the y axis, with the x axis showing 
time course.  
 

  

Figure 1. Neural Encoding of Articulatory Kinematic 
Trajectories 
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Figure 1.3. Clustered Articulatory Kinematic Trajectories and Phonetic Outcomes. 

(A) Hierarchical clustering of encoded articulatory kinematic trajectories (AKTs) for all 108 electrodes across 5 
participants. Each column represents one electrode. The kinematics of AKTs were described as a seven-dimensional 
vector by the points of maximal displacement along the principal movement axis of each articulator. Electrodes were 
hierarchically clustered by their kinematic descriptions resulting in four primary clusters. (B) A phoneme-encoding 
model was fit for each electrode. Kinematically clustered electrodes also encoded four clusters of encoded phonemes 
differentiated by place of articulation (alveolar, bilabial, velar, and vowels). (C) Average AKTs across all electrodes in 
a cluster. Four distinct vocal tract configurations encom- passed coronal, labial, and dorsal constrictions in addition to 
vocalic control.  
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Figure 1.4. Spatial Organization of Vocal Tract Gestures. 

Electrodes from five participants (two left and three right hemisphere) colored by kinematic cluster warped to the 
vSMC location on common MRI-reconstructed brain. Opacity of electrode varies with Pearson’s correlation coefficient 
from the kinematic trajectory encoding model.  
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Figure 1.5. Damped Oscillatory Dynamics of Kinematic Trajectories.  

(A) Articulator trajectories from encoded AKTs along the principal movement axes for example electrodes from each 
kinematic cluster. Positive values indicate a combination of upward and frontward movements. (B) Articulator 
trajectories for all 108 encoded kinematic trajectories across 5 participants. (C) Linear relationship between peak 
velocity and articulator displacement (r = 0.85, 0.77. 0.83, 0.69, 0.79, and 0.83 in respective order; p < 0.001). Each 
point represents the peak velocity and associated displacement of an articulator from the AKT for an electrode.  
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(A) Example of different degrees of anticipatory 
coarticulation for the lower incisor. Average 
traces for the lower incisor (y direction) are shown 
for /æz/ and /æp/ aligned to the acoustic onset of 
/æ/. (B) Electrode 120 is crucially involved in the 
production of /æ/ with a vocalic AKT (jaw opening 
and laryngeal control) and has a high phonetic 
selectivity index for /æ/. (C) Average high gamma 
activity for electrode 120 during the productions 
of /æz/ and /æp/. Median high gamma during 50 
ms centered at the electrode’s point of peak 
phoneme discriminability (gray box) is 
significantly higher for /æp/ than /æz/ (p < 0.05, 
Wilcoxon signed-rank tests). (D) Average 
predicted high gamma activity predicted by AKT 
in (B). Median predicted high gamma is 
significantly higher for /æp/ than /æz/ (p < 0.001, 
Wilcoxon signed-rank tests). (E) Mixed-effect 
model shows relationship of high gamma with 
kinematic variability due to anticipatory 
coarticulatory effects of following phonemes for 
all electrodes and phonemes (b = 0.30, SE = 
0.04, c2(1) = 38.96, p = 4e 10). Each line shows 
the relationship between high gamma and 
coarticulated kinematic variability for a given 
phoneme and electrode in all following phonetic 
contexts with at least 25 instances. Relationships 
from (C) and (D) for /æz/ (red) and /æp/ (yellow) 
are shown as points. Electrodes in all participants 
were used to construct the model. (F) Example of 
different degrees of carryover coarticulation for 
the lower incisor. Average traces for the lower 
incisor (y direction) are shown for /æz/ and /iz/ 
aligned to the acoustic onset of /z/. (G) Electrode 
122 is crucially involved in the production of /z/ 
with a coronal AKT and has a high phonetic 
selectivity index for /z/. (H) Average high gamma 
activity for electrode 122 during the productions 
of /æz/ and /iz/. Median high gamma is 
significantly higher for /æz/ than /iz/ (p < 0.05, 
Wilcoxon signed-rank tests). (I) Average 
predicted high gamma activity predicted by AKT 
in (G). Median predicted high gamma is 
significantly higher for /æz/ than /iz/ (p < 0.001, 
Wilcoxon signed-rank tests). (J) Mixed-effect 
model shows relationship of hi gh gamma with 
kinematic variability due to carryover 
coarticulatory effects of preceding phonemes for 
all electrodes (in all participants) and phonemes 
(b = 0.32, SE = 0.04, c2(1) = 42.58, p = 6e 11). 
Relationships from (H) and (I) for /æz/ (green) 
and /iz/ (blue) are shown as points.  

Figure 1.6. Neural Representation of 
Coarticulated Kinematics. 
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Figure 1.7. Neural-Encoding Model Evaluation. 

(A) Comparison of AKT encoding performance across electrodes in different anatomical regions. Anatomical regions 
compared: electrodes in study (EIS), superior temporal gyrus (STG), precentral gyrus* (preCG*), postcentral gyrus* 
(postCG*), middle temporal gyrus (MTG), supramarginal gyrus (SMG), pars opercularis (POP), pars triangularis 
(PTRI), pars orbitalis (PORB), and middle frontal gyrus (MFG). Electrodes in study were speech selective electrodes 
from pre- and post-central gyri while preCG* and postCG* only included electrodes that were not speech selective. 
EIS encoding performance was significantly higher than all other regions (p < 1e 15, Wilcoxon signed-rank test). (B) 
Comparison of AKT- and formant-encoding models for electrodes in the study. Using F1, F2, and F3, the formant-
encoding model was fit in the same manner as the AKT model. Each point represents the performance of both 
models for one electrode. (C) Comparison of AKT- and phonemic-encoding models. The phonemic model was fit in 
the same manner as the AKT model, except that phonemes were described as one hot vector. The best single 
phoneme predicting elec- trode activity was said to be the encoded phoneme of that particular electrode, and that r 
value was reported along with the r value of the AKT model. Pear- son’s r was computed on held-out data from 
training for all models. In both comparisons, the AKT performed significantly better (p < 1e 20, Wilcoxon signed-rank 
test). Error bars represent SEM.  
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Figure 1.8. Decoded Articulator Movements from vSMC Activity.  

(A) Original (black) and predicted (colored) x and y coordinates of articulator movements during the production of an 
example held-out sentence. Pearson’s correlation coefficient (r) for each articulator trace. (B) Average performance 
(correlation) for each articulator for 100 sentences held out from training set. Error bars represent SEM.  
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Figure 1.10. Articulatory kinematic trajectories for an individual subject, related to Figure 1.2. 

For one subject with a right hemisphere ECoG grid, we plotted the encoded articulatory kinematic trajectories (AKTs) 
for each electrode in correspondence to its location on the cortical surface. Electrodes not active during speech were 
not shown. Each vocal tract plot shows the encoding model filter weights. Thin to thick lines indicate the time course 
of each articulator trajectory. We found AKTs were encoded in both the precentral and postcentral gyri. Furthermore, 
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AKTs with similar trajectory shapes appeared to spatially close to one another. r values for the correlation of each 
encoding model with high gamma are shown above the vocal tract plots. 
 

 

 

Figure 1.11. Electrodes encode coordinated articulatory movements involving multiple articulators, related to 
Quantification and Statistical Analyses. We used a nested regression model to compare whether the additional 
variance explained by trajectories of multiple articulatory was significant when compared to the variance explained by 
the trajectory of a single articulator. Since differences in parameter numbers can influence the explained variance 
solely by changing model complexity, we computed an F statistic on held-out data for each electrode to statistically 
test for model significance. Here, we plotted the distribution of F statistics and found that 96 out of 108 electrodes had 
F statistic greater than the critical value (F(280, 1820)>1.31, p<.001). The mean F statistic was 6.68 indicating that 
single electrodes encoded coordinated trajectories of 
multiple articulators. 
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Figure 1.12. Comparison of variance explained by AKT model over single articulator model, related to 
Quantification and Statistical Analyses. The change in explained variance on held-out data by using the AKT 
model (all articulators) instead of the single articulatory trajectory model (X and Y for one articulator) is shown for 
each electrode as a percentage. The mean increase in explained variance from the AKT model was 99.55% +/- 
8.63%. 
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Figure 1.13. Silhouette analysis of clusters, related to Figures 3 and 4. We quantified the relationship between 
within-cluster and between-cluster similarities for each AKT cluster using the silhouetteindex as a measure of 
clustering strength. A silhouette index close to 1 indicates that the electrode is highly matched to its own cluster. 0 
indicates that that the clusters may be overlapping, while -1 indicates that the electrode may be assigned to the 
wrong cluster. The degrees of clustering strength of AKT clusters for kinematic and phonetic descriptions were 
statistically significant above clusters of shuffled AKTs indicating that clusters had both similar kinematic and phonetic 
outcomes (p < .01, Wilcoxon signed rank tests). However, only the spatial clusterings for coronal and labial AKTs 
were statistically significant (p < .01, Wilcoxon signed rank tests). Only one subject had more than two dorsal AKT 
electrodes and we could not justly quantify the clustering strength of this cluster. The low silhouette index for 
anatomical clustering of the vocalic AKTs was expected because two spatial clusters were later found. 
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Figure 1.14. Effect of window size and offset from neural activity on AKT model performance, related to 
Method Details. Using varying window sizes of articulatory movements and offsets of those movements to electrode 
activity, the AKT model was fit and then tested on data held-out from training to compute mean correlations (r-value) 
between high gamma and predicted high gamma activity across all electrodes from all subjects in the study. 
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Abstract Technology that translates neural activity into speech would be transformative 
for people who are unable to communicate as a result of neurological impairments. 
Decoding speech from neural activity is challenging because speaking requires very 
precise and rapid multi-dimensional control of vocal tract articulators. Here we designed 
a neural decoder that explicitly leverages kinematic and sound representations encoded 
in human cortical activity to synthesize audible speech. Recurrent neural networks first 
decoded directly recorded cortical activity into representations of articulatory movement, 
and then transformed these representations into speech acoustics. In closed vocabulary 
tests, listeners could readily identify and transcribe speech synthesized from cortical 
activity. Intermediate articulatory dynamics enhanced performance even with limited 
data. Decoded articulatory representations were highly conserved across speakers, 
enabling a component of the decoder to be transferrable across participants. 
Furthermore, the decoder could synthesize speech when a participant silently mimed 
sentences. These findings advance the clinical viability of using speech neuroprosthetic 
technology to restore spoken communication. 
 

Introduction 

Neurological conditions that result in the loss of communication are devastating. Many patients 

rely on alternative communication devices that measure residual nonverbal movements of the 

head or eyes (Fager et al., 2019), or on brain–computer interfaces (BCIs) (Brumberg et al., 

2018; Pandarinath et al., 2017) that control a cursor to select letters one-by-one to spell out 

words. Although these systems can enhance a patient’s quality of life, most users struggle to 

transmit more than 10 words per min, a rate far slower than the average of 150 words per min of 

natural speech. A major hurdle is how to overcome the constraints of current spelling-based 

approaches to enable far higher or even natural communication rates. 
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A promising alternative is to directly synthesize speech from brain activity (Guenther et al., 

2009; Bocquelet et al., 2016). Spelling is a sequential concatenation of discrete letters, whereas 

speech is a highly efficient form of communication produced from a fluid stream of overlapping, 

multi-articulator vocal tract movements (Browman & Goldstein, 1992). For this reason, a 

biomimetic approach that focuses on vocal tract movements and the sounds that they produce 

may be the only means to achieve the high communication rates of natural speech, and is also 

likely to be the most intuitive for users to learn (Sadtler et al., 2014; Golub et al., 2018). In 

patients with paralysis—caused by for example, amyotrophic lateral sclerosis or brainstem 

stroke—high-fidelity speech-control signals may only be accessed by directly recording from 

intact cortical networks. 

 

Our goal was to demonstrate the feasibility of a neural speech prosthetic by translating brain 

signals into intelligible synthesized speech at the rate of a fluent speaker. To accomplish this, 

we recorded high-density electrocorticography (ECoG) signals from five participants who 

underwent intracranial monitoring for epilepsy treatment as they spoke several hundreds of 

sentences aloud. We designed a recurrent neural network that decoded cortical signals with an 

explicit intermediate representation of the articulatory dynamics to synthesize audible speech. 

 

Results 

Speech decoder design 

The two-stage decoder approach is shown in Fig. 2.2.1a–d. Stage 1, a bidirectional long short-

term memory (bLSTM) recurrent neural network (Graves et al., 2005), decodes articulatory 

kinematic features from continuous neural activity (high-gamma amplitude envelope (Crone et 

al., 2001) and low frequency component (Nourski et al., 2015; Pesaran et al., 2018), see 

Methods) recorded from ventral sensorimotor cortex (vSMC) (Bouchard et al., 2013), superior 
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temporal gyrus (STG) (Mesgarani et al., 2014) and inferior frontal gyrus (IFG) (Flinker et al., 

2015) (Fig. 2.1a, b). Stage 2, a separate bLSTM, decodes acoustic features (pitch (F0), mel-

frequency cepstral coefficients (MFCCs), voicing and glottal excitation strengths) from the 

decoded articulatory features from stage 1 (Fig. 2.1c). The audio signal is then synthesized from 

the decoded acoustic features (Fig. 2.1d). To integrate the two stages of the decoder, stage 2 

(articulation-to-acoustics) was trained directly on output of stage 1 (brain-to-articulation) so that 

it not only learns the transformation from kinematics to sound, but also corrects articulatory 

estimation errors made in stage 1. 

 

A key component of our decoder is the intermediate articulatory representation between neural 

activity and acoustics (Fig. 2.1b). This step is crucial because the vSMC exhibits robust neural 

activations during speech production that predominantly encode articulatory kinematics 

(Chartier et al., 2018; Mugler et al., 2018). Because articulatory tracking of continuous speech 

was not feasible in our clinical setting, we used a statistical approach to estimate vocal tract 

kinematic trajectories (movements of the lips, tongue and jaw) and other physiological features 

(for example, manner of articulation) from audio recordings. These features initialized the 

bottleneck layer within a speech encoder–decoder that was trained to reconstruct a participant’s 

produced speech acoustics (see Methods). The encoder was then used to infer the intermediate 

articulatory representation used to train the neural decoder. With this decoding strategy, it was 

possible to accurately reconstruct the speech spectrogram. 

 

Synthesis performance 

Overall, we observed detailed reconstructions of speech synthesized from neural activity alone 

(see Supplementary Video 1). Figure 2.1e, f shows the audio spectrograms from two original 

spoken sentences plotted above those decoded from brain activity. The decoded spectrogram 

retained salient energy patterns that were present in the original spectrogram and correctly 
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reconstructed the silence in between the sentences when the participant was not speaking. 

Figure 2.5a, b illustrates the quality of reconstruction at the phonetic level. Median spectrograms 

of original and synthesized phonemes—units of sound that distinguish one word from another—

showed that the typical spectrotemporal patterns were preserved in the decoded examples (for 

example, resonant frequency bands in the spectrograms called formants F1–F3 in vowels /i:/ 

and /æ/; and key spectral patterns of mid-band energy and broadband burst for consonants /z/ 

and /p/, respectively). 

 

To understand to what degree the synthesized speech was perceptually intelligible to naive 

listeners, we conducted two listening tasks that involved single-word identification and 

sentence-level transcription, respectively. The tasks were run on Amazon Mechanical Turk (see 

Methods), using all 101 sentences from the test set of participant 1. 

 

For the single-word identification task, we evaluated 325 words that were spliced from the 

synthesized sentences. We quantified the effect of word length (number of syllables) and the 

number of choices (10, 25 and 50 words) on speech intelligibility, since these factors inform 

optimal design of speech interfaces (Huggins et al., 2011). Overall, we found that listeners were 

more successful at word identification as syllable length increased, and the number of word 

choices decreased (Fig. 2.2a), consistent with natural speech perception (Luce et al., 1998). 

 

For sentence-level intelligibility, we designed a closed vocabulary, free transcription task. 

Listeners heard the entire synthesized sentence and transcribed what they heard by selecting 

words from a defined pool (of either 25 or 50 words) that included the target words and random 

words from the test set. The closed vocabulary setting was necessary because the test set was 

a subset of sentences from MOCHA-TIMIT (Wrench, 1999), which was primarily designed to 
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optimize articulatory coverage of English but contains highly unpredictable sentence 

constructions and low-frequency words. 

 

Listeners were able to transcribe synthesized speech well. Of the 101 synthesized trials, at least 

one listener was able to provide a perfect transcription for 82 sentences with a 25-word pool and 

60 sentences with a 50-word pool. Of all submitted responses, listeners transcribed 43% and 

21% of the trials perfectly, respectively (Fig. 2.6). Figure 2b shows the distributions of mean 

word error rates (WER) of each sentence. Transcribed sentences had a median 31% WER with 

a 25-word pool size and 53% WER with a 50-word pool size. Table 2.1 shows listener 

transcriptions for a range of WERs. Median level transcriptions still provided a fairly accurate, 

and in some cases legitimate, transcription (for example, ‘mum’ transcribed as ‘mom’). The 

errors suggest that the acoustic phonetic properties of the phonemes are still present in the 

synthesized speech, albeit to the lesser degree (for example, ‘rabbits’ transcribed as ‘rodents’). 

This level of intelligibility for neurally synthesized speech would already be immediately 

meaningful and practical for real world application. 

 

We then quantified the decoding performance at a feature level for all participants. In speech 

synthesis, the spectral distortion of synthesized speech from ground-truth is commonly reported 

using the mean mel-cepstral distortion (MCD) (Kominek et al., 2011). Mel-frequency bands 

emphasize the distortion of perceptually relevant frequency bands of the audio spectrogram 

(Davis & Mermelstein, 1990). We compared the MCD of neurally synthesized speech to a 

reference synthesis from articulatory kinematics and chance-level decoding (a lower MCD is 

better; Fig. 2.2c). The reference synthesis simulates perfect neural decoding of the kinematics. 

For our five participants (participants 1–5), the median MCD scores of decoding speech ranged 

from 5.14 dB to 6.58 dB (P < 1 × 10−18, Wilcoxon signed-rank test, for each participant). 
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We also computed the correlations between original and decoded acoustic features. For each 

sentence and feature, the Pearson’s correlation coefficient was computed using every sample 

(at 200 Hz) for that feature. The sentence correlations between the mean decoded acoustic 

features (consisting of intensity, MFCCs, excitation strengths and voicing) and inferred 

kinematics across participants are plotted in Fig. 2.2d. Prosodic features such as pitch (F0), 

speech envelope and voicing were decoded well above the level expected by chance (r > 0.6, 

except F0 for participant 2: r = 0.49 and all features for participant 5; P < 1 × 10−10, Wilcoxon 

signed-rank test, for all participants and features in Fig. 2.2d). Correlation decoding 

performance for all other features is shown in Fig. 2.8a, b. 

 

Decoder characteristics 

The following analyses were performed on data from participant 1. When designing a neural 

decoder for clinical applications, there are several key considerations that determine model 

performance. First, in patients with severe paralysis or limited speech ability, training data may 

be very difficult to obtain. Therefore, we assessed the amount of data that would be necessary 

to achieve a high level of performance. We found a clear advantage in explicitly modelling 

articulatory kinematics as an intermediate step over decoding acoustics directly from the ECoG 

signals. The ‘direct’ decoder was a bLSTM recurrent neural network that was optimized for 

decoding acoustics (MFCCs) directly from same ECoG signals as used in an articulatory 

decoder. We found robust performance could be achieved with as little as 25 min of speech, but 

performance continued to improve with the addition of data (Fig. 2.2e). Without the articulatory 

intermediate step, the direct ECoG to acoustic decoding MCD was offset by 0.54 dB (0.2 dB is 

perceptually noticeable21) using the full dataset (Fig. 2.3a; n = 101, P = 1 × 10−17, Wilcoxon 

signed-rank test). 
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This performance gap between the two approaches persisted with increasing data sizes. One 

interpretation is that aspects of kinematics are more preferentially represented by cortical 

activity than acoustics (Chartier et al., 2018), and are thus learned more quickly with limited 

data. Another aspect that may underlie this difference is that articulatory kinematics lie on a low-

dimensional manifold that constrains the potential high-dimensionality of acoustic signals 

(Sadtler et al., 2014; Golub et al., 2018; Gallego et al., 2017) (Fig. 2.9). Therefore, separating 

out the high-dimensional translation of articulation to speech, as done in stage 2 of our decoder 

may be critical for performance. It is possible that with sufficiently large datasets both decoding 

approaches would converge on one another. 

 

Second, we wanted to understand the phonetic properties that were preserved in synthesized 

speech. We used Kullback–Leibler divergence to compare the distribution of spectral features of 

each decoded phoneme to those of each ground-truth phoneme to determine how similar they 

were (Fig. 2.10). We expected that, in addition to the same decoded and ground-truth phoneme 

being similar to one another, phonemes with shared acoustic properties would also be 

characterized as similar to one another. 

 

Hierarchical clustering based on the Kullback–Leibler divergence of each phoneme pair 

demonstrated that phonemes were clustered into four main groups. Group 1 contained 

consonants with an alveolar place of constriction (for example, /s/ and /t/). Group 2 contained 

almost all other consonants (for example, /f/ and /g/). Group 3 contained mostly high vowels (for 

example, /i/ and /u/). Group 4 contained mostly mid and low vowels (for example, /α/ and /æ/). 

The difference between groups tended to correspond to variations along acoustically significant 

dimensions (frequency range of spectral energy for consonants and formants for vowels). 

Indeed, these groupings explain some of the confusions reflected in listener transcriptions of 

these stimuli. This hierarchical clustering was also consistent with the acoustic similarity matrix 



	 66 

of only ground-truth phoneme pairs (Fig. 2.11; cophenetic correlation (Sokal & Rohlf, 1962) = 

0.71, P = 1 × 10−10). 

 

Third, because the success of the decoder depends on the initial electrode placement, we 

quantified the contribution of several anatomical regions (vSMC, STG and IFG) that are involved 

in continuous speech production (Brumberg et al., 2016. Decoders were trained in a leave-one-

region-out fashion, for which all electrodes from a particular region were held out (Fig. 2.2f). 

Removing any region led to some decrease in decoder performance (Fig. 2.2g; n = 101, P = 3 × 

10−4, Wilcoxon signed-rank test). However, excluding the vSMC resulted in the largest decrease 

in performance (MCD increase of 1.13 dB). 

 

Fourth, we investigated whether the decoder generalized to novel sentences that were never 

seen in the training data. Because participant 1 produced some sentences multiple times, we 

compared two decoders: one that was trained on all sentences (not the particular instances in 

the test set), and one that was trained excluding every instance of the sentences in the testing 

set. We found no significant difference in decoding performance of the sentences for both MCD 

and correlations of spectral features (P = 0.36 and P = 0.75, respectively, n = 51, Wilcoxon 

signed-rank test; Fig. 2.12). Notably, this suggests that the decoder can generalize to arbitrary 

words and sentences that the decoder was never trained on. 

 

Synthesizing mimed speech 

To rule out the possibility that the decoder is relying on the auditory feedback of participants’ 

vocalization, and to simulate a setting in which subjects do not overtly vocalize, we tested our 

decoder on silently mimed speech. We tested a held-out set of 58 sentences in which the 

participant 1 audibly produced each sentence and then mimed the same sentence, making the 

same articulatory movements but without making sound. Even though the decoder was not 
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trained on mimed sentences, the spectrograms of synthesized silent speech demonstrated 

similar spectral patterns to synthesized audible speech of the same sentence (Fig. 2.3a–c). With 

no original audio to compare, we quantified performance of the synthesized mimed sentences 

with the audio from the trials with spoken sentences. We calculated the spectral distortion and 

correlation of the spectral features by first dynamically time-warping the spectrogram of the 

synthesized mimed speech to match the temporal profile of the audible sentence (Fig. 2.3d, e) 

and then comparing performance. Although synthesis performance for mimed speech was 

inferior to the performance for audible speech—which is probably due to absence of phonation 

signals during miming—this demonstrates that it is possible to decode important spectral 

features of speech that were never audibly uttered (P < 1 × 10−11 compared to chance, n = 58; 

Wilcoxon signed-rank test) and that the decoder did not rely on auditory feedback. 

 

State–space of decoded speech articulation 

Our findings suggest that modelling the underlying kinematics enhances the decoding 

performance, so we next wanted to better understand the nature of the decoded kinematics 

from population neural activity. We examined low-dimensional kinematic state–space 

trajectories, by computing the state–space projection using principal components analysis onto 

the articulatory kinematic features. The first ten principal components (of 33 components in 

total) captured 85% of the variance and the first two principal components captured 35% (Fig. 

2.9). 

 

We projected the kinematic trajectory of an example sentence onto the first two principal 

components (Fig. 2.4a, b). These trajectories were well decoded, as shown in the example 

(Pearson’s correlation: r = 0.91 and r = 0.91, principal components 1 and 2, respectively; Fig. 

2.4a, b), and summarized across all test sentences and participants (median r > 0.72 for all 

participants except participant 5, where r represents the mean r of first two principal 
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components, Fig. 2.4e). Furthermore, state–space trajectories of mimed speech were well 

decoded (median r = 0.6, P = 1 × 10−5, n = 38, Wilcoxon signed-rank test; Fig. 2.4e). 

 

The state–space trajectories appeared to manifest the dynamics of syllabic patterns in 

continuous speech. The time courses of consonants and vowels were plotted on the state–

space trajectories and tended to correspond with the troughs and peaks of the trajectories, 

respectively (Fig. 2.4a, b). Next, we sampled from every vowel-to-consonant transition (n = 

22,453) and consonant-to-vowel transition (n = 22,453), and plotted 500-ms traces of the 

average trajectories for principal components 1 and 2 centred at the time of transition (Fig. 2.4c, 

d). Both types of trajectories were biphasic in nature, transitioning from the ‘high’ state during 

the vowel to the ‘low’ state during the consonant and vice versa. When examining transitions of 

specific phonemes, we found that principal components 1 and 2 retained their biphasic 

trajectories of vowel or consonant states, but showed specificity towards particular phonemes, 

indicating that principal components 1 and 2 do not necessarily describe only jaw opening and 

closing, but rather describe global opening and closing configurations of the vocal tract (Fig. 

2.13). These findings are consistent with theoretical accounts of human speaking behaviour, 

which postulate that high-dimensional speech acoustics lie on a low-dimensional articulatory 

state–space (Browman & Goldstein, 1992). 

 

To evaluate the similarity of the decoded state–space trajectories, we correlated productions of 

the same sentence across participants that were projected onto their respective kinematic 

state–spaces (only participants 1, 2 and 4 had comparable sentences). The state–space 

trajectories were highly similar (r > 0.8; Fig. 2.4f), suggesting that the decoder is probably 

relying on a shared representation across speakers, a critical basis for generalization. 
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A shared kinematic representation across speakers could be very advantageous for someone 

who cannot speak as it may be more intuitive and faster to learn to use the kinematics decoder 

(stage 1), while using an existing kinematics-to-acoustics decoder (stage 2) trained on speech 

data collected independently. We show synthesis performance when transferring stage 2 from a 

source participant (participant 1) to a target participant (participant 2) (Fig. 2.4g). The acoustic 

transfer performed well, although less than when both stage 1 and stage 2 were trained on the 

target (participant 2), probably because the MCD metric is sensitive to speaker identity. 

 

Discussion 

Here we demonstrate speech synthesis using high-density, direct cortical recordings from the 

human speech cortex. Previous strategies for neural decoding of speech production focused on 

direct classification of speech segments such as phonemes or words (Martin et al., 2014; 

Mugler et al., 2014); however, these approaches are generally limited in their ability to scale to 

larger vocabulary sizes and communication rates. Meanwhile, sensory decoding of auditory 

cortex has been promising for speech sounds (Herff et al., 2015; Moses et al., 2016; Pasley et 

al., 2012) or for auditory imagery (Akbari et al., 2019) in part because of the direct relationship 

between the auditory encoding of spectrotemporal information and the reconstructed 

spectrogram. An outstanding question has been whether motor decoding of vocal tract 

movements during speech production could be used for generating high-fidelity acoustic speech 

output. 

 

Previous work focused on understanding movement that was encoded at single electrodes 

(Chartier et al., 2018); however, a fundamentally different challenge for speech synthesis is 

decoding the population activity that addresses the complex mapping between vocal tract 

movements and sounds. Natural speech production involves over 100 muscles and the 
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mapping from movement to sounds is not one-to-one. Our decoder explicitly incorporated this 

knowledge to simplify the translation of neural activity to sound by first decoding the primary 

physiological correlate of neural activity and then transforming to speech acoustics. This 

statistical mapping permits generalization with limited amounts of training. 

 

Direct speech synthesis has several major advantages over spelling-based approaches. In 

addition to the capability to communicate unconstrained vocabularies at a natural speaking rate, 

it captures prosodic elements of speech that are not available with text output, such as pitch 

intonation (Dichter et al., 2018). Furthermore, a practical limitation for current alternative 

communication devices is the cognitive effort required to learn and use them. For patients in 

whom the cortical processing of articulation is still intact, a speech-based BCI decoder may be 

far more intuitive and easier to learn to use (Sadtler et al., 2014; Golub et al., 2018). 

 

BCIs are rapidly becoming a clinically viable means to restore lost function. Neural prosthetic 

control was first demonstrated in participants without disabilities (Wessberg et al., 2000; Serruya 

et al., 2002; Taylor et al., 2002) before translating the technology to participants with tetraplegia 

(Hochberg et al., 2006; Collinger et al., 2013; Aflalo et al., 2015; Ajiboye et al., 2017). Our 

findings represent one step forward for addressing a major challenge posed by patients who are 

paralysed and cannot speak. The generalization results presented here demonstrate that 

speakers share a similar kinematic state–space representation that is speaker-independent and 

that it is possible to transfer model knowledge about the mapping of kinematics to sound across 

subjects. Tapping into this emergent, low-dimensional representation of neural activity from a 

coordinated population in the intact cortex may be a critical for bootstrapping a decoder 

(Gallego et al., 2017), as well facilitating BCI learning (Sadtler et al., 2014). Our results may be 

an important next step in realizing speech restoration for patients with paralysis. 

 



	 71 

Methods 

Participants and experimental task. Five human participants (30 F, 31 F, 34 M, 49 F, 29 F) 

underwent chronic implantation of high-density, subdural electrode array over the lateral surface 

of the brain as part of their clinical treatment of epilepsy (right, left, left, left, left) hemisphere 

grids, respectively, Figure 2.11). Participants gave their written informed consent before the day 

of the surgery. All participants were fluent in English. All protocols were approved by the 

Committee on Human Research at UCSF and experiments/data in this study complied with all 

relevant ethical regulations. Each participant read and/or freely spoke a variety of sentences. P1 

read aloud two complete sets of 460 sentences from the MOCHA-TIMIT (Wrench, 1999) 

database. Additionally, P1 also read aloud passages from the following stories: Sleeping 

Beauty, Frog Prince, Hare and the Tortoise, The Princess and the Pea, and Alice in 

Wonderland. P2 read aloud one full set of 460 sentences from the MOCHA-TIMIT database and 

further read a subset of 50 sentences an additional 9 times each. P3 read 596 sentences 

describing three picture scenes and then freely described the scene resulting in another 254 

sentences. P3 also spoke 743 sentences during free response interviews. P4 read two 

complete sets of MOCHA-TIMIT sentences, 465 sentences drawn of scene descriptions and 

399 sentences during free response interviews. P5 read one set of MOCHA-TIMIT sentences 

and 360 sentences of scene descriptions. In addition to audible speech, P1 also read 10 

sentences 12 times each alternating between audible and silently mimed (i.e. making the 

necessary mouth movements) speech. Microphone recordings were obtained synchronously 

with the ECoG recordings. 

 

Data acquisition and signal processing. Electrocorticography was recorded with a multi-

channel amplifier optically connected to a digital signal processor (Tucker-Davis Technologies). 

Speech was amplified digitally and recorded with a microphone simultaneously with the cortical 
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recordings. The grid placements were decided upon purely by clinical considerations. ECoG 

signals were recorded at a sampling rate of 3,052 Hz. Each channel was visually and 

quantitatively inspected for artifacts or excessive noise (typically 60 Hz line noise). The analytic 

amplitude of the high-gamma frequency component of the local field potentials (70 - 200 Hz) 

was extracted with the Hilbert transform and down-sampled to 200 Hz. The low frequency 

component (1-30 Hz) was also extracted with a 5th order Butterworth bandpass filter, down-

sampled to 200 Hz and parallelly aligned with the high-gamma amplitude. Finally, the signals 

were z-scored relative to a 30 second window of running mean and standard deviation, so as to 

normalize the data across different recording sessions. We studied high-gamma amplitude 

because it has been shown to correlate well with multi-unit firing rates and has the temporal 

resolution to resolve fine articulatory movements (Crone et al., 2001). We also included a low 

frequency signal component due to the decoding performance improvements note for 

reconstructing perceived speech from auditory cortex (Nourski et al., 2015; Pesaran et al., 

2018). Decoding models were constructed using all electrodes from vSMC, STG, and IFG 

except for electrodes with bad signal quality as determined by visual inspection. We removed 8 

electrodes for P1, 7 electrodes for P2, and 16 electrodes for P3. No electrodes were removed 

for P4 or P5. The decoder uses both high-gamma amplitude and raw low-frequency signals 

together as input to the model. For instance, n electrodes will result as n * 2 input features. 

 

Phonetic and phonological transcription. For the collected speech acoustic recordings, 

transcriptions were corrected manually at the word level so that the transcript reflected the 

vocalization that the participant actually produced. Given sentence level transcriptions and 

acoustic utterances chunked at the sentence level, hidden Markov model based acoustic 

models were built for each participant so as to perform sub-phonetic alignment (Prahallad et al., 

2006) within the Festvox (Anumanchipalli et al., 2006) framework. Phonological context features 

were also generated from the phonetic labels, given their phonetic, syllabic and word contexts. 
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Cortical surface extraction and electrode visualization. We localized electrodes on each 

individual’s brain by co-registering the preoperative T1 MRI with a postoperative CT scan 

containing the electrode locations, using a normalized mutual information routine in SPM12. Pial 

surface reconstructions were created using Freesurfer. Final anatomical labeling and plotting 

was performed using the img_pipe python package (Hamilton et al., 2017). 

 

Inference of articulatory kinematics. Among the most accurate methods to record vocal tract 

kinematics is called Electromagnetic Midsagittal Articulography (EMA). The process involves 

gluing small sensors to the articulators, generally 3 sensors on the tongue, 1 on each lip, 1 on 

each incisor. A magnetic field is projected at the participant’s head and as the participant 

speaks, each sensor can be precisely tracked as it moves through the magnetic field. Each 

sensor has a wire leading out of the participant’s mouth and connected to a receiver to record 

measurements.  

 

Because of the above requirements, we did not pursue using EMA in the setting of our ECoG 

recordings because potential disruption of medical instruments by the magnetic field, long setup 

time conflicted with limited recording session time with patients, the setup procedure was too 

uncomfortable. Instead, we developed a model to infer articulatory kinematics from audio 

recordings. The articulatory data used to build the articulatory inference models was from 

MOCHA-TIMIT (Wrench, 1999) and MNGU0 corpora (Richmond et al., 2011). 

 

The articulatory kinematics inference model comprises a stacked deep encoder-decoder, where 

the encoder combines phonological (linguistic and contextual features, resulting from the 

phonetic segmentation process) and acoustic representations (25 dimensional MFCC vectors 

sampled at 200 Hz) into a latent articulatory representation (also sampled at 200 Hz) that is then 
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decoded to reconstruct the original acoustic signal. The latent representation is initialized with 

inferred articulatory movement and appropriate manner features. 

 

We performed statistical subject-independent acoustic-to-articulatory inversion (Chartier et al., 

2918) to estimate 12 dimensional articulatory kinematic trajectories (x and y displacements of 

tongue dorsum, tongue blade, tongue tip, jaw, upper lip and lower lip, as would be measured by 

EMA) using only the produced acoustics and phonetic transcriptions. Since EMA features do not 

describe all acoustically consequential movements of the vocal tract, we append 

complementary speech features that improve reconstruction of original speech. First, to 

approximate laryngeal function, we add pitch, voicing (binary value indicating if a frame is 

voiced or not), and speech envelope, i.e., the frame level intensity computed as the sum total 

power within all the Mel scale frequencies within a 25 millisecond analysis window, computed at 

a shift of 5 milliseconds. Next, we added place-manner tuples (represented as continuous [0-1] 

valued features) to bootstrap the EMA with what we determined were missing physiological 

aspects in EMA. There were 18 additional values to capture the following place-manner feature 

tuples (palatal approximant, labial stop etc., see Supplemental Information (a) for the complete 

list). We used an existing annotated speech database (Wall Street Journal Corpus; Paul & 

Baker, 1992) and trained speaker independent deep recurrent network regression models to 

predict continuous valued place-manner vectors only from the acoustics features, the phonetic 

labels were used to determine the ground truth values for these labels (e.g., the dimension 

“labial stop” would be 1 for all frames of speech that belong to the phonemes /p/, /b/ and so 

forth). However, with a regression output layer, predicted values were not constrained to the 

binary nature of the input features. The network architecture was 3 feedforward layers followed 

by one bLSTM layer to predict each time point of these manner descriptors from a 100 

millisecond window of acoustic features. Combined with the EMA trajectories, these 33 feature 

vectors form the initial articulatory feature estimates. 
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To ensure that the articulatory representation has the potential to reliably reconstruct speech for 

the target subject, we designed a stacked encoder-decoder network to optimize these initial 

estimates for these values. Specifically, a recurrent neural network encoder is trained to convert 

phonological and acoustic features to the articulatory representation and then a decoder that 

converts the articulatory representation back to the acoustic features (original MFCC). The 

encoder is implemented as 2 feedforward layers followed by 2 bLSTM layers. The decoder is 

implemented as 3 feedforward layers. Software implementation was done using Keras 

Functional API within Tensorflow (Martin et al., 2015). The stacked network is re-trained 

optimizing the joint mean squared error loss on acoustic and EMA parameters using the ADAM 

optimizer, with an initial learning rate set at 0.001. For regularization 40% dropout was allowed 

in all feedforward layers. After convergence, the trained encoder is used to estimate the final 

articulatory kinematic features that act as the articulatory intermediate to decode acoustic 

features from ECoG. 

 

Neural decoder. The decoder maps ECoG recordings to MFCCs via a two stage process by 

learning intermediate mappings between ECoG recordings and articulatory kinematic features, 

and between articulatory kinematic features and acoustic features. All data (ECoG, kinematics, 

and acoustics) are sampled and processed by the model at 200 Hz.  We implemented this 

model using TensorFlow in python. In the first stage, a stacked 3-layer bLSTM (Graves 

&Schmidhuber, 2005) learns the mapping between 300 ms (60 time points) sequences of high-

gamma and LFP signals and a corresponding single time point (sampled at 200 Hz) of the 33 

articulatory features. In the second stage, an additional stacked 3-layer bLSTM learns the 

mapping between the output of the first stage (decoded articulatory features) and 32 acoustic 

parameters (200 Hz) for full sentences sequences. These parameters are 25 dimensional 

MFCCs, 5 sub-band voicing strengths for glottal excitation modelling, log(F0), voicing.  
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During testing, a full sentence sequence of neural activity (high-gamma and low-frequency 

components) is processed by the decoder. The first stage processes 300 ms of data at a time, 

sliding over the sequence sample by sample, until it has returned a sequence of kinematics that 

is equal length to the neural data. The neural data is padded with an additional 150 ms of data 

before and after the sequence to ensure the result is the correct length. The second stage 

processes the entire sequence at once, returning an equal length sequence of acoustic 

features. These features are then synthesized into an audio signal.  

 

At each stage, the model is trained using the Adam optimizer to minimize mean-squared error. 

The optimizer was initialized with learning rate=0.001,beta1=0.9, beta2=0.999, epsilon=1e-8. 

Models were stopped from training after the validation loss no longer decreased. Dropout rate is 

set to 50% in stage 1 and 25% in stage 2 to suppress overfitting tendencies of the models. 

There are 100 hidden units for each LSTM cell. Each model employed 3 stacked bLSTMs with 

an additional linear layer for regression. We use a bLSTM because of their ability to retain 

temporally distant dependencies when decoding a sequence (Hochreither & Schmidhuber, 

1997).  

 

In the first stage, the batch size for training is 256, and in the second stage the batch size is 25. 

Training and testing data were randomly split based off of recording sessions, meaning that the 

test set was collected during separate recording sessions from the training set.  The training and 

testing splits in terms of total speaking time (minutes:seconds) are as follows: P1 – training: 

92:15, testing: 4:46 (n=101); P2 – training: 36:57, testing: 3:50 (n=100); P3 – training: 107:42, 

testing: 4:44 (n=98); P4 – training: 27:39, testing 3:12 (n=82).; P5 – training 44:31, testing 2:51 

(n=44). n=number of sentences in test set.  
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For shuffling the data to test for significance, we shuffled the order of the electrodes that were 

fed into the decoder. This method of shuffling preserved the temporal structure of the neural 

activity.  

 

The “direct” ECoG to acoustics decoder described in Figure 2e a similar architecture as the 

stage 1 articulatory bLSTM except with an MFCC output. Originally we trained the direct 

acoustic decoder as a 6-layer bLSTM that mimics the architecture of the 2 stage decoder with 

MFCCs as the “intermediate layer” and as the output. However, we found performance was 

better with a 4-layer bLSTM (no intermediate layer) with 100 hidden units for each layer, 50% 

dropout and 0.005 learning rate using Adam optimizer for minimizing mean-squared error. 

Models were coded using Python’s version 1.9 of Tensorflow.   

 

Speech synthesis from acoustic features. We used an implementation of the Mel-log spectral 

approximation algorithm with mixed excitation (Maia et al., 2007) within Festvox to generate the 

speech waveforms from estimates of the acoustic features from the neural decoder.  

 

Mel-Cepstral Distortion (MCD). To examine the quality of synthesized speech, we calculated 

the Mel-Cepstral Distortion (MCD) of the synthesized speech when compared the original 

ground-truth audio. MCD is an objective measure of error determined from MFCCs and is 

correlated to subjective perceptual judgments of acoustic quality (Kominek et al, 2008). For 

reference acoustic features 𝑚𝑐!
(!) and decoded features 𝑚𝑐!
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Intelligibility Assessment. Listening tests using crowdsourcing are a standard way of 

evaluating the perceptual quality of synthetic speech (Wolters et al., 2010). To comprehensively 

assess the intelligibility of the neurally synthesized speech, we conducted a series of 

identification and transcription tasks on the Amazon Mechanical Turk.  The unseen test set from 

P1 (101 trials of 101 unique sentences, shown in Supplemental Information (b)) was used as 

the stimuli for listener judgments. For the word level identification tasks, we created several 

cohorts of words grouped by the number of syllables within. Using the time boundaries from the 

ground truth phonetic labelling, we extracted audio from the neurally synthesized speech into 

four classes of 1-syllable, 2-syllable, 3-syllable and 4-syllable words. We conducted tests on 

each of these groups of words that involve identification of the synthesized audio from a group 

of i) 10 choices, ii) 25 choices, and iii) 50 choices of what they think the word is. The presented 

options included the true word and the remaining choices randomly drawn from the other words 

within the class (see Supplemental Information (c) for class sizes across these conditions). All 

words within the word groups were judged for intelligibility without any further sub-selection. 

 

Since the content words in the MOCHA-TIMIT data are largely low frequency words to assess 

sentence-level intelligibility, along with the neurally synthesized audio file, we presented the 

listeners a pool of words that may be in the sentence. This makes it task a limited vocabulary 

free response transcription. We conducted two experiments where the transcriber is presented 

with pool of i) 25 word choices, and ii) 50 word choices that may be used the sentence (a 

sample interface is shown in Supplemental Information (d)). The true words that make up the 

sentence are included along with randomly drawn words from the entire test set and displayed 

in alphabetical order. Given that the median sentence is only 7 words long (std=21., min=4, 

max=13), this task design allows for reliable assessment of intelligibility.  Each trial was judged 

by 10-20 different listeners. Each intelligibility task was performed by 47-187 unique listeners (a 

total of 1755 listeners across 16 intelligibility tasks, see supplemental information (e) for 
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breakdown per task) making all reported analyses statistically reliable. All sentences from the 

test set were sent for intelligibility assessment without any further selection. The listeners were 

required to be English speakers located in the United States, with good ratings (>98% rating 

from prior tasks on the platform). For the sentence transcription tasks, an automatic spell 

checker was employed to correct misspellings. No further spam detection, or response rejection 

was done in all analyses reported. Word Error Rate (WER) metric computed on listener 

transcriptions is used to judge the intelligibility of the neurally synthesized speech. Where I is 

the number of word insertions, D is the number of word deletions and S is the number of word 

substitutions for a reference sentence with N words, WER is computed as 

𝑊𝐸𝑅 =
𝐼 + 𝐷 + 𝑆

𝑁  

 

Data limitation analysis. To assess the amount of training data affects decoder performance, 

we partitioned the data by recording blocks and trained a separate model for an allotted number 

of blocks. In total, 8 models were trained, each with one of the following block allotments: [1, 2, 

5, 10, 15, 20, 25, 28]. Each block comprised an average of 50 sentences recorded in one 

continuous session. 

 

Quantification of silent speech synthesis. By definition, there was no acoustic signal to 

compare the decoded silent speech. In order to assess decoding performance, we evaluated 

decoded silent speech in regards to the audible speech of the same sentence uttered 

immediately prior to the silent trial. We did so by dynamically time-warping (Brendt & Clifford, 

1994) the decoded silent speech MFCCs to the MFCCs of the audible condition and computing 

Pearson’s correlation coefficient and Mel-cepstral distortion. 
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Phoneme acoustic similarity analysis. We compared the acoustic properties of decoded 

phonemes to ground-truth to better understand the performance of our decoder. To do this, we 

sliced all time points for which a given phoneme was being uttered and used the corresponding 

time slices to estimate its distribution of spectral properties. With principal components analysis 

(PCA), the 32 spectral features were projected onto the first 4 principal components before 

fitting the gaussian kernel density estimate (KDE) model. This process was repeated so that 

each phoneme had two KDEs representing either its decoded and or ground-truth spectral 

properties. Using Kullback-Leibler divergence (KL divergence), we compared each decoded 

phoneme KDE to every ground-truth phoneme KDE, creating an analog to a confusion matrix 

used in discrete classification decoders. KL divergence provides a metric of how similar two 

distributions are to one another by calculating how much information is lost when we 

approximate one distribution with another. Lastly, we used Ward’s method for agglomerative 

hierarchical clustering to organize the phoneme similarity matrix. 

 

To understand whether the clustering of the decoded phonemes was similar to the clustering of 

ground-truth phoneme pairs (Figure 2.11), we used the cophenetic correlation (CC) to assess 

how well the hierarchical clustering determined from decoded phonemes preserved the pairwise 

distance between original phonemes, and vice versa (Sokal & Rohlf, 1962). For the decoded 

phoneme dendrogram, the CC for preserving original phoneme distances was 0.71 as 

compared to 0.80 for preserving decoded phoneme distances. For the original phoneme 

dendrogram, the CC for preserving decoded phoneme distances was 0.64 as compared to 0.71 

for preserving original phoneme distances. p<1e-10 for all correlations. 

 

State-space kinematic trajectories. For state-space analysis of kinematic trajectories, 

principal components analysis (PCA) was performed on the 33 kinematic features using the 

training data set from P1. Figure 4a,b shows kinematic trajectories (original, decoded (audible 
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and mimed) projected onto the first two principal components (PCs). The example decoded 

mimed trajectory occurred faster in time by a factor of 1.15 than the audible trajectory so we 

uniformly temporally stretched the trajectory for visualization. The peaks and troughs of the 

decoded mimed trajectories were similar to the audible speech trajectory (r=0.65, r=0.55) 

although the temporal locations are shifted relative to one another, likely because the temporal 

evolution of a production, whether audible or mimed, is inconsistent across repeated 

productions. To quantify the decoding performance of mimed trajectories, we used the dynamic 

time-warping approach described above, although in this case, temporally warping with respect 

to the inferred kinematics (not the state-space) (Figure 4e). 

 

For analysis of state-space trajectories across participants (Figure 4f), we measured the 

correlations of productions of the same sentence, but across participants. Since the sentences 

were produced at different speeds, we dynamically time-warped them to match and compared 

against correlations of dynamically time-warped mismatched sentences.  
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Fig. 2.1 | Speech synthesis from neurally decoded spoken sentences. a, The neural decoding process begins by 
extracting relevant signal features from high-density cortical activity. b, A bLSTM neural network decodes kinematic 
representations of articulation from ECoG signals. c, An additional bLSTM decodes acoustics from the previously 
decoded kinematics. Acoustics are spectral features (for example, MFCCs) extracted from the speech waveform. d, 
Decoded signals are synthesized into an acoustic waveform. e, Spectrogram shows the frequency content of two 
sentences spoken by a participant. f, Spectrogram of synthesized speech from brain signals recorded simultaneously 
with the speech in e (repeated five times with similar results). MCD was computed for each sentence between the 
original and decoded audio. Fivefold cross-validation was used to find consistent decoding.  
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Fig. 2.2 | Synthesized speech 
intelligibility and feature-specific 
performance. a, Listening tests for 
identification of excerpted single words 
(n = 325) and full sentences (n = 101) 
for synthesized speech from 
participant 1. Points represent mean 
word identification rate. Words were 
grouped by syllable length (n = 75, 
158, 68 and 24, respectively, for one, 
two, three and four syllables). 
Listeners identified speech by 
selecting from a set of choices (10, 25 
or 50 words). Data are mean ± s.e.m. 
b, Listening tests for closed 
vocabulary transcription of 
synthesized sentences (n = 101). 
Responses were constrained in word 
choice (25 or 50), but not in sequence 
length. Outlines are kernel density 
estimates of the distributions. c, 
Spectral distortion, measured by MCD 
(lower values are better), between 
original spoken sentences and 
neurally decoded sentences (n = 101, 
100, 93, 81 and 44, respectively, for 
participants 1–5). Reference MCD 
refers to the synthesis of original 
(inferred) kinematics without neural 
decoding. d, Correlation of original 
and decoded kinematic and acoustic 
features (n = 101, 100, 93, 81 and 44 
sentences, respectively, for 
participants 1–5). Kinematic and 
acoustic values represent mean 
correlation of 33 and 32 features, 
respectively. e, Mean MCD of 
sentences (n = 101) decoded from 
models trained on varying amounts of 

training data. The neural decoder with an articulatory intermediate stage (purple) performed better than the direct 
ECoG to acoustics decoder (grey). All data sizes: n = 101 sentences; P < 1 × 10−5, Wilcoxon signed-rank test. f, 
Anatomical reconstruction of the brain of participant 1 with the following regions used for neural decoding: ventral 
sensorimotor cortex (vSMC), superior temporal gyrus (STG) and inferior frontal gyrus (IFG). g, Difference in median 
MCD of sentences (n = 101) between decoder trained on all regions and decoders trained on all-but-one region. 
Exclusion of any region resulted in decreased performance. n = 101 sentences; P < 3 × 10−4, Wilcoxon signed-rank 
test. All box plots depict median (horizontal line inside box), 25th and 75th percentiles (box), 25th or 75th percentiles 
±1.5× interquartile range (whiskers) and outliers (circles). Distributions were compared with each as other as 
indicated or with chance-level distributions using two-tailed Wilcoxon signed-rank tests. ***P < 0.001.  
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Fig. 2.3 | Speech synthesis from neural decoding of silently mimed speech. a–c, Spectrograms of original 
spoken sentence (a), neural decoding from audible production (b) and neural decoding from silently mimed 
production (c) (repeated five times with similar results). d, e, MCD (d) and correlation of original and decoded 
spectral features (e) for audibly and silently produced speech (n = 58 sentences). Decoded sentences were 
significantly better than chance-level decoding for both speaking conditions. n = 58; audible, P = 3 × 10−11; mimed, P 
= 5 × 10−11, Wilcoxon signed-rank test. Box plots as described in Fig. 2.2. ***P < 0.001.  
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Fig. 2.4 | Kinematic state–space representation of speech production. a, b, A kinematic trajectory (grey–blue) 
from a single trial (participant 1) projected onto the first two principal components—principal components (PC)1 (a) 
and 2 (b)—of the kinematic state–space. Decoded audible (dashed) and mimed (dotted) kinematic trajectories are 
also plotted. Pearson’s r, n = 510 time samples. The trajectory for mimed speech was uniformly stretched to align 
with the audible speech trajectory for visualization as it occurred at a faster time scale. c, d, Average trajectories for 
principal components 1 (c) and 2 (d) from a and b, respectively, for transitions from a vowel to a consonant (black, n 
= 22,453) and from a consonant to a vowel (white, n = 22,453). Time courses are 500 ms. e, Distributions of 
correlations between original and decoded kinematic state–space trajectories (averaged across principal components 
1 and 2) (n = 101, 100, 93, 81, 44 sentences, respectively, for participants 1–5). Pearson’s correlations for mimed 
trajectories were calculated by dynamically time-warping to the audible production of the same sentence and then 
compared to correlations of the dynamically time-warping of a randomly selected sentence trajectory. n = 58 
sentences; ***P = 1 × 10−5, Wilcoxon signed-rank test. f, Distributions of correlations for state–space trajectories of 
the same sentence across participants. Alignment between participants was done by dynamically time-warping and 
compared to correlations of dynamically time-warping of unmatched sentence pairs. n=92;****P=1×10−16 and 
n=44;***P=1×10−8, respectively, Wilcoxon signed-rank test. g, Comparison between acoustic decoders (stage 2) (n = 
101 sentences). ‘Target’ refers to an acoustic decoder trained on data from the same participant as the kinematic 
decoder (stage 1) is trained on (participant 1). ‘Transfer’ refers to an acoustic decoder that was trained on kinematics 
and acoustics from a different participant (participant 2). Box plots as described in Fig. 2.2.  
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Fig. 2.5 | Median original and decoded spectrograms. a, b, Median spectrograms, time-locked to the acoustic 
onset of phonemes from original (a) and decoded (b) audio (/i/, n = 112; /z/, n = 115; /p/, n = 69, /ae/, n = 86). These 
phonemes represent the diversity of spectral features. Original and decoded median phoneme spectrograms were 
well-correlated (Pearson’s r > 0.9 for all phonemes, P = 1 × 10−18).  
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Fig. 2.6 | Transcription WER for individual trials. a, b, WERs for individually transcribed trials for pools with a size 
of 25 (a) or 50 (b) words. Listeners transcribed synthesized sentences by selecting words from a defined pool of 
words. Word pools included correct words found in the synthesized sentence and random words from the test set. 
One trial is one transcription of one listener of one synthesized sentence.  
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Fig. 2.7 | Electrode array locations for participants. MRI reconstructions of participants’ brains with overlay of 
electrocorticographic electrode (ECoG) array locations. P1–5, participants 1–5.  
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Fig. 2.8 | Decoding performance of kinematic and spectral features. Data from participant 1. a, Correlations of all 
33 decoded articulatory kinematic features with ground-truth (n = 101 sentences). EMA features represent x and y 
coordinate traces of articulators (lips, jaw and three points of the tongue) along the midsagittal plane of the vocal 
tract. Manner features represent complementary kinematic features to EMA that further describe acoustically 
consequential movements. b, Correlations of all 32 decoded spectral features with ground-truth (n = 101 sentences). 
MFCC features are 25 mel-frequency cepstral coefficients that describe power in perceptually relevant frequency 
bands. Synthesis features describe glottal excitation weights necessary for speech synthesis. Box plots as described 
in Fig. 2.2.  
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Fig. 2.9 | Comparison of cumulative variance explained in kinematic and acoustic state–spaces. For each 
representation of speech— kinematics and acoustics—a principal components analysis was computed and the 
explained variance for each additional principal component was cumulatively summed. Kinematic and acoustic 
representations had 33 and 32 features, respectively.  
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Fig. 2.10 | Decoded phoneme acoustic similarity matrix. Acoustic similarity matrix compares acoustic properties 
of decoded phonemes and originally spoken phonemes. Similarity is computed by first estimating a Gaussian kernel 
density for each phoneme (both decoded and original) and then computing the Kullback–Leibler (KL) divergence 
between a pair of decoded and original phoneme distributions. Each row compares the acoustic properties of a 
decoded phoneme with originally spoken phonemes (columns). Hierarchical clustering was performed on the 
resulting similarity matrix. Data from participant 1.  
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Fig. 2.11 | Ground-truth acoustic similarity matrix. The acoustic properties of ground-truth spoken phonemes are 
compared with one another. Similarity is computed by first estimating a Gaussian kernel density for each phoneme 
and then computing the Kullback–Leibler divergence between a pair of a phoneme distributions. Each row compares 
the acoustic properties of two ground-truth spoken phonemes. Hierarchical clustering was performed on the resulting 
similarity matrix. Data from participant 1.  
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Fig. 2.12 | Comparison between decoding novel and repeated sentences. a, b, Comparison metrics included 
spectral distortion (a) and the correlation between decoded and original spectral features (b). Decoder performance 
for these two types of sentences was compared and no significant difference was found (P = 0.36 (a) and P = 0.75 
(b), n = 51 sentences, Wilcoxon signed-rank test). A novel sentence consists of words and/or a word sequence not 
present in the training data. A repeated sentence is a sentence that has at least one matching word sequence in the 
training data, although with a unique production. Comparison was performed on participant 1 and the evaluated 
sentences were the same across both cases with two decoders trained on differing datasets to either exclude or 
include unique repeats of sentences in the test set. ns, not significant; P > 0.05. Box plots as described in Fig. 2.  
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Fig. 2.13 | Kinematic state–space trajectories for phoneme- specific vowel–consonant transitions. Average 
trajectories of principal components 1 (PC1) and 2 (PC2) for transitions from either a consonant or a vowel to specific 
phonemes. Trajectories are 500 ms and centred at transition between phonemes. a, Consonant to corner vowels (n = 
1,387, 1,964, 2,259, 894, respectively, for aa, ae, iy and uw). PC1 shows separation of all corner vowels and PC2 
delineates between front vowels (iy, ae) and back vowels (uw, aa). b, Vowel to unvoiced plosives (n = 2,071, 4,107 
and 1,441, respectively, for k, p and t). PC1 was more selective for velar constriction (k) and PC2 for bilabial 
constriction (p). c, Vowel to alveolars (n = 3,919, 3,010 and 4,107, respectively, for n, s and t). PC1 shows separation 
by manner of articulation (nasal, plosive or fricative) whereas PC2 is less discriminative. d, PC1 and PC2 show little, 
if any, delineation between voiced and unvoiced alveolar fricatives (n = 3,010 and 1,855, respectively, for s and z).  
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