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Abstract
Purpose Multi-gene signatures provide biological insight and risk stratification in breast cancer. Intrinsic molecular subtypes 
defined by mRNA expression of 50 genes (PAM50) are prognostic in hormone-receptor positive postmenopausal breast 
cancer. Yet, for 25–40% in the PAM50 intermediate risk group, long-term risk remains uncertain. Our study aimed to (i) 
test the long-term prognostic value of the PAM50 signature in pre- and post-menopausal breast cancer; (ii) investigate if the 
PAM50 model could be improved by addition of other mRNAs implicated in oncogenesis.
Methods We used archived FFPE samples from 1723 breast cancer survivors; high quality reads were obtained on 1253 
samples. Transcript expression was quantified using a custom codeset with probes for > 100 targets. Cox models assessed 
gene signatures for breast cancer relapse and survival.
Results Over 15 + years of follow-up, PAM50 subtypes were (P < 0.01) associated with breast cancer outcomes after account-
ing for tumor stage, grade and age at diagnosis. Results did not differ by menopausal status at diagnosis. Women with Luminal 
B (versus Luminal A) subtype had a > 60% higher hazard. Addition of a 13-gene hypoxia signature improved prognostication 
with > 40% higher hazard in the highest vs lowest hypoxia tertiles.
Conclusions PAM50 intrinsic subtypes were independently prognostic for long-term breast cancer survival, irrespective 
of menopausal status. Addition of hypoxia signatures improved risk prediction. If replicated, incorporating the 13-gene 
hypoxia signature into the existing PAM50 risk assessment tool, may refine risk stratification and further clarify treatment 
for breast cancer.

Keywords Breast cancer · Long-term survival · Gene signatures · Hypoxia · PAM50 subtypes · Prognostic modeling

Introduction

Breast cancer is a heterogeneous disease with large varia-
tions in relapse rates even among patients with similar clini-
cal profiles. Several multi-gene prognostic tests are included Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s1054 9-019-05446 -y) contains 
supplementary material, which is available to authorized users.
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in national and international guidelines to assist in determin-
ing risk of relapse and to better inform treatment decisions 
[1–7]. Even so, more information is needed regarding how 
these tests perform in well-characterized cohorts of breast 
cancer patients with long-term follow-up [8].

The breast cancer intrinsic molecular subtypes, defined by 
mRNA expression of 50 genes (PAM50), have been shown 
to improve prognostication significantly compared to stand-
ard tumor characteristics and other genomic signatures [3, 
9–15]. The related proprietary Prosigna gene signature, 
FDA-approved in 2013, was validated to estimate relapse 
risk in postmenopausal women with early stage, hormone-
receptor positive breast tumors, but has not been validated in 
pre-menopausal women [16]. In addition, for the research-
based PAM50 signature and the Prosigna test [16, 17], an 
estimated 25–40% of patients are characterized as having 
“intermediate risk,” and for these patients, the long-term 
risk of relapse remains uncertain.

Gene expression studies have identified hundreds of 
mRNAs implicated in breast cancer. One approach to 
improving predictive accuracy of existing signatures, such 
as PAM50, is to evaluate the added prognostic value of inde-
pendent biomarkers. However, given the large number of 
potential candidate biomarkers, false positives pose a seri-
ous obstacle. Consideration of a priori genes with known 
oncogenic function could partially mitigate these problems. 
Hypoxia impacts tumor progression, and hypoxia-related 
genes are prognostic in breast cancer [18, 19]; hence addi-
tion of hypoxia genes to a PAM50 model could elucidate 
their added prognostic value. Another approach to reduce 
false discoveries is to use modern statistical methods, such 
as penalized regression [20], to select prognostic markers 
from a large candidate list. These methods reduce overfit-
ting of prognostic models and improve future model perfor-
mance, especially for models with a large number of candi-
date markers.

Women with ER+ breast cancer continue to relapse 
15 years after their primary diagnosis [21, 22]. Treatment 
options and survival for women with Her2+ tumors have 
vastly improved since the approval of trastuzumab [23]. 
However, the Her2+ subgroup comprises < 25% of breast 
cancers, while women with ER+/Her2− tumors constitute 
a majority of all breast cancers. Recent research has focused 
on this ER+/Her2− group to evaluate biomarker-driven 
treatment approaches in this subgroup [14, 24–27]. Thus, 
evaluating long-term prognostic value of PAM50 subtypes 
in the ER+/Her2− subgroup could further clarify its clinical 
utility. Similarly, although the PAM50-Prosigna signature 
was originally validated in postmenopausal breast cancer 
survivors, it may also be prognostic in pre-menopausal 
breast cancer. Thus it is important to test if the prognos-
tic value of this signature varies by menopausal status at 
diagnosis.

In this study, using > 1200 archived tumor samples from a 
large breast cancer cohort with 15 + years of follow-up [28], 
we investigated genomic predictors of long-term disease-
free survival and breast cancer mortality. We previously 
examined an a priori set of microRNA targets in this sample 
[29]. The focus in the current work was to examine mRNA 
expression and breast cancer outcomes, and as a first step 
we investigated the original research-use PAM50 signature 
which classified tumors into five distinct subtypes: Luminal 
A, Luminal B, Basal, Her2-enriched, and normal-like [10]. 
We also tested a refinement [30], which adds a sixth subtype, 
the claudin-low cluster. This claudin subtype is character-
ized by low luminal, Her2, proliferation expression, high 
immune response, and epithelial-to-mesenchymal transition 
expression. Second, we tested if addition of other mRNAs 
improved prediction via (i) a targeted approach with two a 
priori hypoxia signatures [18, 19] (ii) an unbiased approach 
with penalized regression used to select the most prognos-
tic features from among clinical factors, PAM50 subtypes, 
and 61 individual mRNAs. Third, we investigated PAM50-
prognostic value in the ER+/Her2− subgroup, and if sub-
type-outcome associations differed by menopausal status at 
diagnosis.

Methods

Study sample

The Women’s Healthy Eating and Living (WHEL) Study, a 
randomized controlled trial of 3088 breast cancer survivors, 
tested whether a high fruit/vegetable diet reduced recurrence 
rates in early stage breast cancer [28, 31]. Women within 
4 years of diagnosis with primary operable invasive Stage I 
(≥ 1 cm), Stage II or Stage III breast carcinoma [32], aged 
18 to 70 years at diagnosis, and completed primary treatment 
for breast cancer were recruited between 1995 and 2000. We 
obtained IRB approval from participating institutions, and 
written informed consent from all participants, including 
for genomic analyses. Formalin-fixed paraffin-embedded 
(FFPE) tissue samples from the primary tumor were avail-
able for 60% (n = 1723) of the WHEL cohort. The final anal-
ysis for this investigation was based on 1253 participants. As 
the dietary intervention produced no group effect [28], we 
treated the study population as a single cohort.

Study endpoints

In this study, we evaluated two outcomes (i) a breast can-
cer event (locoregional recurrence, metastasis, or contralat-
eral), and (ii) death from breast cancer. Events were inde-
pendently adjudicated by two breast oncologists. Carcinoma 
in situ was not counted as a breast cancer event. The WHEL 
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study ceased active surveillance for cancer events in 2010. 
Since then, deaths were ascertained by annual searches of 
the National Death Index. Time from diagnosis to a second 
breast cancer event defined the disease-free survival out-
come; time from diagnosis to breast cancer death defined the 
breast cancer survival outcome. Time-to-event was censored 
at death (from non-breast cancer causes), last contact or end 
of follow-up (2010 for breast cancer events, 2015 for death).

Nucleic acid extraction

Details on our assay were previously published [29]; for the 
sake of completeness, we briefly summarize the approach 
here. Archival tumor blocks were prepared into histological 
sections. (5 µm each). One slide was stained with hema-
toxylin and eosin for histopathological review and to guide 
tumor macrodissection from four unstained sections. The 
remaining unstained slides from samples with ≥ 40% tumor 
cellularity were incubated at 65 °C for 30 min and depar-
affinized using Citrisolv (Fisher Scientific, Pittsburgh, PA) 
followed by ethanol wash. Tumor tissues were macrodis-
sected into RNAse-free microfuge tubes, and nucleic acids 
isolated using the Qiagen AllPrep FFPE kit (#80234). Manu-
facturer’s instructions were followed with the exception that 
the proteinase K digestion step was extended to an overnight 
incubation for DNA isolation. Total RNA and DNA were 
quantified using the Invitrogen Qubit and corresponding 
quantification kits. DNA pellets were stored at − 80° C for 
future use.

mRNA quantification

Transcript expression was quantified with 250 ng total RNA 
using the NanoString nCounter analysis system with a cus-
tom miRGE CodeSet containing probes for 123 gene expres-
sion targets (see Table S1). This gene set was chosen primar-
ily to include targets in the PAM50, claudin-low, VEGF13 
and VEGF15 signatures. Assay reactions were assembled 
per manufacturer’s specifications (NanoString Technologies, 
INC Seattle, WA).

Gene signatures

PAM50: Expression of the PAM50 (Table S1) genes were 
normalized to negative and positive controls, and standard-
ized to five housekeepers, as per standard practice [10]. The 
published PAM50 algorithm [10] was used to classify each 
subject into an intrinsic subtype: Luminal A, Luminal B, 
basal-like, Her2-enriched, normal-like. Prior to implement-
ing this algorithm, mRNA values were platform-adjusted 
[33]. Risk-of-recurrence scores incorporating tumor size and 
proliferation index (ROR-PT) were calculated, and catego-
rized into low, medium and high risk strata [10].

Claudin‑low

A 30-gene set was used to classify tumors to the claudin-
low versus non-claudin subtypes. Centroids were derived 
using publicly available microarray data [30] previously 
used to train the claudin-low signature. Spearman corre-
lations between these centroids and the 30-gene expres-
sion values for each tumor were calculated. Tumors with 
correlation ≥ 0.4 with the claudin-low centroid were clas-
sified as claudin-low; else they were classified as non-
claudin-low type. Non-claudin-low tumors were assigned 
their PAM50 class as per the research-based subtype call 
[10]. Again, Zhao’s method [33] was used for platform 
adjustment.

Hypoxia signatures

We evaluated two hypoxia signatures. A 13-gene VEGF sig-
nature [19], VEGF13, and a 15-gene network-based hypoxia 
metagene [18], VEGF15 (Table S1). After standardizing to 
housekeepers, VEGF13 and VEGF15 were calculated as the 
average of log-transformed 13- and 15- gene expression val-
ues, respectively. Tertiles of these scores were used to create 
low, medium or high risk groups. The VEGF13 and VEG15 
signatures have only three mRNAs in common, thus poten-
tially provide independent prognostic information.

Other genes

We also obtained mRNA expression for six genes (Table S1) 
implicated in tumor invasion, proliferation, or other onco-
genic function.

Statistical approach

Prognostic modeling

Associations between PAM50 subtypes and tumor char-
acteristics were investigated via ANOVA and Chi square 
tests. Prognostic value of PAM50 subtypes and ROR-PT 
risk categories for breast cancer outcomes were assessed 
via Kaplan–Meier plots, and unadjusted and adjusted Cox 
models, adjusted for clinical variables, namely age at diag-
nosis, tumor stage, and grade. The VEGF13 or VEGF15 
signatures were then added to the model which included 
clinical variables (age at diagnosis, stage, grade) and PAM50 
subtypes. We used delayed entry models [34] to account for 
varying times from cancer diagnosis to study entry. Likeli-
hood ratio tests and Akaike information criteria (AIC) were 
used to compare models.
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Variable selection

We used penalized regression for unbiased variable selec-
tion. We included all variables, namely, clinical factors, 
PAM50 subtypes, and 61 individual mRNAs (including 
25 hypoxia, 30 claudin-low genes) in the model and used 
penalized Cox regression implemented via a lasso penalty 
[20]. The tuning parameter λ, which controls overfitting, 
was chosen by 10-fold cross-validation to minimize model 
deviance.

The statistical software package R [35] was used for all 
statistical analysis.

Results

PAM50 and clinical and demographic characteristics

Of the 1723 FFPE samples, 25% had low tumor cellular-
ity or low RNA content and could not be assayed. Gene 
expression was obtained on 1291 samples; of these 38 were 
eliminated due to outliers or poor-quality reads. The final 
WHEL-PAM50 sample comprised of N = 1253 breast cancer 
survivors. Study characteristics were similar to the parent 
WHEL Study (N = 3088) [28]. Women were at an average 
of 50 years at cancer diagnosis: 85% were White, 36% had 
Stage I, and 46% had Stage II tumors, three-quarters had 
ER+ histopathology, and 16% had triple negative histopa-
thology (Table 1). In addition, 78.5% of them were post-
menopausal. There were 303 breast cancer events (locore-
gional recurrence, metastasis, or contralateral breast cancer) 
and 219 deaths due to breast cancer.

PAM50 subtype distributions were 45% Luminal A, 
23% Luminal B, 18% basal, 11% Her2-enriched, and 3% 
normal-like. Subtypes were significantly associated with 
clinical characteristics and menopausal status at diagnosis 
(Table 2). The proportion of Luminal A tumors decreased 
with increasing tumor stage (56% Stage 1, 29% Stage IIIC). 
Also, 25% Stage IIIC vs 16% Stage I tumors were basal. 
Poorly differentiated tumors had a high proportion of basal 
subtype. Luminal A subtype tumors were more prevalent, 
while basal and Luminal B subtypes were less prevalent in 
women who were postmenopausal at diagnosis compared to 
women who were pre-menopausal at diagnosis (Table 2). As 
expected (Table S2), basal subtype constituted 77% of tri-
ple negative tumors, while ER+ tumors were predominantly 
luminal (55% Luminal A, 29% Luminal B). The subtype dis-
tribution for ER+/Her2− tumors was similar to ER+ tumors, 
whereas ER+/Her2+ tumors were split across Her2-enriched 
(34%), Luminal A (29%) and B subtypes (31%). Due to low 
prevalence, the “normal-like” subtype was excluded from 
the outcome analysis.

PAM50 and breast cancer outcomes

Kaplan–Meier curves (Fig. 1) for the four subtypes were 
well separated (P < 0.001 for disease-free and breast cancer 

Table 1  Participant demographic and clinical characteristics at study 
entry (N = 1253)

Age at breast cancer diagnosis
 Median (range) 50 (27–70)

Race/Ethnicity N (%)
 White 1060 (84.6%)
 Black 45 (3.6%)
 Hispanic 85 (6.8%)
 Asian 31 (2.5%)
 Other 32 (2.6%)

Stage N (%)
 I 453 (36.2%)
 IIA 432 (34.5%)
 IIB 144 (11.5%)
 IIIA 166 (13.2%)
 IIIC 58 (4.6%)

Nodal status N (%)
 Negative 702 (56%)
 Positive 551 (44%)

Tumor size (cm)
 Mean (SD) 2.3 (1.44)

Grade N (%)
 Poorly differentiated 497 (39.7%)
 Moderately differentiated 496 (39.6%)
 Well differentiated 159 (12.7%)
 Unspecified 101 (8.1%)

Histopathology N (%)
 ER+ 909 (73.7%)
 PR+ 809 (66.4%)
 Her2+ 217 (17.3%)
 Triple negative 199 (15.9%)

Years diagnosis to study entry
 Median (25th, 75th %-iles) 1.8 (1.03, 2.8)

Chemotherapy and Anti-estrogen therapy N (%)
 Yes, yes 590 (47.1%)
 Yes, no 314 (25.1%)
 No, yes 258 (20.6%)

No, no 76 (6.1%)
 Yes, unknown 5 (0.4%)
 No, unknown 9 (0.7%)

Outcomes
 Breast cancer events (N) 303
 Disease-free survival (years)
 Median (25th, 75th)%-iles 9.5 (6.7, 11.3)
 Breast cancer deaths (N) 219
 Breast cancer survival (years)
 Median (25th, 75th)%-iles 16.8 (15.3, 18.2)
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survival). Luminal A subtype had the best outcomes with 
10-year rate of 0.85 (95% CI 0.81–0.88). Interestingly, the 
10-year rate was the lowest in the Luminal B group—0.61 
(95% CI 0.55–0.69), and basal and Her2-enriched tumors 
had intermediate rates of 0.69 (95% CI 0.62–0.76) and 0.71 
(95% CI 0.60–0.84), respectively.

Multivariable adjusted Cox models (Table 3) showed 
similar effects, with a 60% higher hazard of a breast cancer 
event or death for the Luminal B versus Luminal A subtype. 
Likelihood ratio tests confirmed the prognostic value of the 
PAM50 signature over clinical factors (P < 0.01).

Hypoxia gene signatures and prognosis

Adding VEGF13 to the PAM50 model improved prognos-
tication (likelihood ratio test P = 0.04), with > 40% higher 
hazard of breast cancer events for the highest vs lowest ter-
tile (Table 3). Hazard ratios were similar for VEGF13 and 
breast cancer deaths, although results were not statistically 
significant (Table 3). The results for VEGF15 were similar 
to VEGF13 (Table 3).

Identifying individual prognostic mRNAs

The penalized regression [20] analysis for disease-free 
survival identified tumor stage and PAM50 subtype as the 
most prognostic variables. Additional selected features were 
FLVCR2, which encodes a calcium transporter protein, 
and FABP5, implicated in fatty acid binding, both in the 
VEGF13 signature, justifying our a priori models. These 
four variables were also selected in the breast cancer mor-
tality model, in addition to ANGPTL4, a VEGF-13 marker 

implicated in angiogenesis, and SPINT1, a claudin-low fea-
ture involved in epithelial cell differentiation. The estimated 
hazard ratios with 95% CIs of the selected features are pre-
sented Table 4; the 95% CIs do not account for the selection 
process, and should be interpreted with caution.

Subgroups and refinements

Results did not differ by menopausal status at diagnosis 
(subtype*menopausal interaction P value ≥ 0.3). Among 
pre-menopausal women, adjusted hazard ratios for disease-
free survival were: 1.24 for basal, 0.96 for Her2-enriched, 
and 1.55 for Luminal B subtypes compared to Luminal A 
subtypes, and for postmenopausal women the corresponding 
hazard ratios were 1.25 for basal, 1.05 for Her2-enriched, 
and 1.63 for Luminal B subtypes. Hazard ratios for PAM50 
subtypes also did not differ by age categories: < 50 versus 
≥ 50 years at diagnosis.

With the inclusion of 30 claudin genes, 5% (N = 64) were 
classified as claudin-low. Of these, 59% were previously 
classified as basal, 22% as luminal A, and 11% as normal-
subtype. The 10-year disease-free survival rate (95% CI) 
for the claudin-low group (Fig S1) was 0.81 (0.71, 0.94); 
10-year rates for the other subtypes, after incorporation of 
the claudin-low subtype, were similar to the original PAM50 
calls. Inclusion of the claudin-low subtype did not improve 
model fit: Akaike information criterion statistic was 3839.5 
for the claudin-low-added versus 3837.9 for the standard 
PAM50 signatures.

Further investigation of PAM50 risk scores in the ER+/
Her2− subgroup confirmed that ROR-PT risk categories 
were associated with disease-free survival and breast 

Table 2  Distribution of PAM50 subtypes by clinical characteristics

Luminal A % Luminal B % Basal-like % Her2% Normal % P
N 564 284 225 139 41

Cancer stage < 0.0001
 I 453 55.6 17.7 15.9 8.2 2.6
 IIA 432 42.4 22.9 20.1 11.1 3.5
 IIB 144 34.7 26.4 20.1 15.3 3.5
 IIIA 166 37.4 31.3 13.3 13.9 4.2
 IIIC 58 29.3 25.9 25.9 15.5 3.5

Tumor grade < 0.0001
 Well-differentiated 159 80.5 12 2.5 1.3 3.8
 Moderately-diff 496 57.3 26.6 4.8 7.9 3.4
 Poorly diff 497 17.9 23.9 37.4 18.1 2.6
 Unspecified 101 62.4 13.9 10.9 7.9 5

Mean age at diagnosis (SE) 52.8 (0.4) 50.8 (0.5) 48.2 (0.6) 50.5 (0.8) 49.6 (1.2) <0.0001
Menopausal status at diagnosis 0.02
 Pre-menopausal 40.3 25 19.9 10.9 3.9
 Post-menopausal 49.7 20.3 16.3 11.3 2.7
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cancer death (Fig. 1b). We stratified plots by nodal sta-
tus given its established prognostic value and key role in 
determining course of breast cancer treatment [8]. Ten-
year breast cancer mortality rates were 3%, 5%, and 10% 
for the low, medium, high ROR-PT categories among 
node-negative (P = 0.007), and 10%, 16% and 23% in the 
low, medium, high ROR-PT groups among node-positive 
(P = 0.003) survivors. Similarly, for disease-free survival 
in the node-negative stratum, 10-year event rates were 
10%, 13%, and 32% (P = 0.05) for the low, medium, and 
high risk groups, respectively. For node-positive patients, 
the corresponding 10-year event rates were 19%, 36%, and 
44% (P = 0.02). These results are concordant with previous 

findings on risk separation by ROR-PT categories and 
breast cancer outcomes in ER+/Her2− breast cancer [36].

Discussion

In this study, we confirmed the prognostic value of PAM50 
subtypes over clinical factors in an independent breast can-
cer cohort with long-term follow-up. Our results did not dif-
fer by age or menopausal status at diagnosis, suggesting that 
PAM50 subtypes are prognostic across the age spectrum. 
In recent years, a plethora of gene markers implicated in 
breast cancer have been identified. Hypoxia impacts tumor 

Fig. 1  a Kaplan–Meier curve of PAM50 subtype and Disease-free 
survival (left, P < 0.001) and Breast cancer survival (right P < 0.001). 
b Kaplan–Meier curve of ROR-PT category and Breast cancer sur-

vival by nodal status (left node-negative P = 0.007; right node-posi-
tive P = 0.003). P-value based on likelihood ratio test comparing null 
(unadjusted) to PAM50 model
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progression, and hence we investigated two hypoxia-related 
gene signatures [18, 19]. These signatures added significant 
prognostic value to the model with clinical variables (age at 
diagnosis, stage, grade) and PAM50 subtypes: participants 
with high levels of the hypoxia signature (i.e., highest tertile) 

had 30–40% increased hazard for relapse compared to those 
with lower levels (bottom tertile). Replication of this finding 
in independent cohorts and additional research on incorpo-
rating these signatures for clinical use is needed.

We evaluated the claudin-low subtype [30] and found that 
incorporation of this refinement did not improve prognosti-
cation for disease-free or breast cancer survival in our sam-
ple. Our results are similar to Dias [37], but differ from other 
studies [30], which found worse survival in the claudin-low 
group. There are clinical and treatment differences between 
studies, which could explain these discrepancies. Only 5% 
(N = 64) of tumors in our study were classified as claudin-
low, limiting our ability to conduct further sensitivity analy-
sis on this subgroup.

An important finding is the consistently worse survival 
rates in the Luminal B subtype irrespective of menopausal 
status. Women with this subtype, which constitutes ~ 25% of 
breast cancers, continued to experience poor outcomes even 

Table 3  Associations between PAM50 subtypes and hypoxia signatures with breast cancer outcomes: Multiple regression survival analysis*

*Subjects who were classified as normal-like subtype were excluded from this analysis
a Model adjusted for age at diagnosis, tumor grade, tumor stage
b Model adjusted for age at diagnosis, tumor grade, tumor stage, PAM50 subtype

Disease-free survival
(N = 295 relapse events)*

Breast cancer 
survival
(N = 212 breast 
cancer deaths)*

PAM50  subtypea HR (95% CI) HR (95% CI)
 Luminal A (ref) 1.0 1.0
 Basal 1.24 (0.87, 1.78) 1.01 (0.65, 1.55)
 Her2 0.98 (0.65, 1.49) 0.91 (0.56, 1.49)
 Luminal B 1.60 (1.19, 2.13) 1.68 (1.20, 2.35)

Model comparison: clinical vs (PAM50 + clinical)
Likelihood ratio test: Chi square statistic 11.7 12.9
 Degrees of freedom 3 3
 P-value 0.009 0.005

VEGF13  signatureb

 Low (ref) 1.00 1.00
 Medium 1.33 (0.99, 1.78) 1.27 (0.90, 1.79)

High 1.48 (1.08, 2.02) 1.41 (0.98, 2.03)
Model comparison: (PAM50 + clinical) vs (PAM50 + clinical +VEGF13)
 Likelihood ratio test: chi square statistic 6.2 3.6
 Degrees of freedom 2 2
 P-value 0.04 0.16

VEGF15  signatureb

 Low (ref) 1.00 1.00
 Medium 0.92 (0.68, 1.24) 0.92 (0.65, 1.31)
 High 1.33 (0.99, 1.78) 1.33(0.94,1.87)

Model comparison: (PAM50 + clinical) vs (PAM50 + clinical +VEGF15)
Likelihood ratio test: chi square statistic 6.7 4.8
 Degrees of freedom 2 2
 P-value 0.03 0.09

Table 4  Transcripts associated with breast cancer outcomes: results 
of penalized regression

a Models also adjusted for tumor stage, grade, and PAM50 subtype
b Hazard ratio represents increase in hazard per unit increase in 
(log2)-mRNA

Selected mRNAs Disease-free  survivala
Hazard  ratiob (95% CI)

Breast cancer  mortalitya

Hazard  ratiob (95% CI)

FLVCR2 0.85 (0.77, 0.93) 0.8 (0.70, 0.90)
FABP5 1.14 (1.06, 1.23) 1.13 (1.04, 1.24)
ANGPTL4 Not selected 1.09 (1.02, 1.17)
SPINT1 Not selected 1.11 (1.01, 1.22)
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15 years after diagnosis. Identifying genomic markers, treat-
ments and modifiable risk factors specific to this subgroup 
could improve long-term outcomes for a large proportion of 
breast cancer survivors.

Our study has many strengths. The study sample com-
prised a large well-characterized clinical cohort with over 
15 years follow-up including both pre-and post-menopausal 
women of all hormonal and Her2 subtypes. We obtained 
high-quality assays using the validated Nanostring platform, 
and derived subtype calls of > 95% confidence for 90% of 
our sample. We used rigorous statistical approaches for 
model development and implemented modern penalized 
regression methods for unbiased variable selection. There 
are limitations. Our study cohort was diagnosed with breast 
cancer between 1991 and 2000, and did not receive cur-
rent standard of care: women with Her2+ tumors did not 
receive adjuvant trastuzumab, few postmenopausal women 
received adjuvant aromatase inhibitors. Women entered the 
WHEL Study on average of 2 years after cancer diagnosis. 
While we used left-truncated survival models to account 
for this delayed entry, there could nevertheless have been a 
selection bias, whereby women who recurred early would 
not have been eligible to enter our study. Women with the 
basal, Her2-overexpressed and claudin-low subtypes could 
have been most susceptible to this selection bias, a possible 
explanation for the attenuated hazard ratios observed for 
these groups in our study.

In summary, we confirmed the prognostic value of 
PAM50 subtypes for breast cancer outcomes in pre- and 
post-menopausal women in a large independent cohort with 
15-year follow-up. Addition of hypoxia signatures further 
improved prognostication. Relapse and breast cancer mortal-
ity rates for women with Luminal B tumors were the highest, 
especially over the long-term. Future research and clinical 
trial innovation should focus on this high-risk group.
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