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ABSTRACT OF THE DISSERTATION 

 

Deciphering the Therapeutic Accessibility of the Human Cysteinome  

using Experimental Quantitative Chemoproteomics 

 

by  

 

Lisa Marie Boatner 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2024 

Professor Keriann M. Backus, Chair 

 

Small molecule chemical probes are valuable tools for modulating protein function and 

have the potential to serve as leads for future medications. However, the pharmacological targeting 

of the human proteome with FDA-approved small molecules remains limited, addressing only 4% 

of all proteins. Furthermore, ~80% of proteins lack well-defined binding pockets for engagement 

by conventional small drug-like molecules. Mass spectrometry-based cysteine chemoproteomics 

has emerged as a promising strategy to bridge this druggability gap by mapping cysteine 

‘druggability’ across the proteome. However, key challenges persist, including limited sampling 

(~13% of all cysteines), insufficient stratification of functional significance, and limited 

mechanistic insights into the labeling preferences of electrophilic compounds. 
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This work integrates experimental and computational approaches to address these 

challenges and improve the design and analysis of cysteine chemoproteomics datasets. First, the 

Mass Spectrometry-based Chemoproteomics Detected Amino Acids (MS-CpDAA) Analysis Suite 

was developed to streamline the deconvolution of covalent labeling sites from high-throughput 

chemoproteomics experiments and to quantify the performance of novel experimental methods for 

expanding cysteine coverage (Chapter 1). Using MS-CpDAA, we expanded cysteine coverage 5.5-

fold compared to prior studies, identifying 34,225 covalently labeled cysteines. Building on this, 

CysDB, a publicly accessible SQL database with an interactive web interface, was established to 

aggregate experimental measures of cysteine reactivity alongside structural and functional 

annotations for over 24% of the cysteinome (Chapter 2). Designed to integrate diverse datasets 

and prioritize protein targets, CysDB provides a scalable platform for advancing the field. 

Designed to facilitate target prioritization, CysDB also provides a scalable platform for data 

integration and supports continued learning as the field evolves. Finally, CIAA (Cysteine reactivity 

towards IodoAcetamide Alkyne), a random forest model, was developed to predict cysteines with 

enhanced reactivity toward the small molecule iodoacetamide alkyne (IAA) (Chapter 3). CIAA 

offers a structure-based approach to investigating protein-ligand interactions, linking cysteine 

reactivity to druggability and functionality. 

Together, this dissertation expands our understanding of the druggable cysteinome by 

providing computational resources and methodologies to target biologically significant proteins 

previously considered ‘undruggable’ and advancing approaches for covalent drug design. 

Furthermore, these approaches can be readily adapted to assess the druggability of other residues, 

such as lysines and tyrosines, across the human proteome. By addressing key challenges in 

cysteine chemoproteomics, these approaches contribute to a broader foundation for structure-based 
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investigations of protein functionality and ligandability, offering valuable contributions to the 

fields of drug discovery and precision medicine. 
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Chapter 1: Introduction 

One of the biggest challenges in chemical biology, particularly in drug development, is 

addressing the “druggability gap.” Out of the 20,000 protein-coding genes in the human genome, 

over 3,000 are implicated in disease.1–4 Yet, fewer than 4% of human proteins have been 

successfully targeted by FDA-approved small molecule drugs,5 demonstrating the difficulty of 

translating genetic insights into pharmaceutical advancements.  

This challenge is compounded by the fact that most human proteins lack chemical probes 

capable of selectively modulating their activity, leaving entire classes historically labeled as 

“undruggable” or, more recently, “tough-to-drug.” While classically druggable proteins, such as  

enzymes (CASP3, TXN, and DUBs)7–9 and receptors (BTK and EGFR),10–13 possess well-defined, 

hydrophobic, solvent-accessible binding pockets suitable for engagement by small, drug-like 

molecules, undruggable proteins often lack these features. These include transcription factors, 

intrinsically disordered proteins, and proteins involved in complex protein-protein interactions 

(PPIs), such as STAT3, NF-kB, p53, and c-Myc.6,14–17 Despite their structural and functional 

challenges, thousands of genetic drivers of human disease have been discovered within the 

undruggable proteome, representing a pool of novel potential therapeutic targets.18–20  

To overcome the limitations of traditional therapeutic strategies for undruggable proteins, 

innovative approaches are needed. One promising strategy involves leveraging the unique 

chemical properties of cysteine residues, which play critical roles in protein function and present 

new opportunities for therapeutic targeting. Although cysteine is one of the rarest amino acids 

(comprising only 2.3% of the human proteome),21 it is highly conserved due to its functional 

significance. Cysteines serve as redox sensors, catalytic nucleophiles, structural motifs, and targets 

for chemical probes and FDA-approved drugs.22–26 Cysteine-reactive compounds, particularly 

https://sciwheel.com/work/citation?ids=316295,3321663,8542520,15453145&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=14904677&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1061374,222713,154974&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1634138,17196236,1134658,5638677&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=638721,435965,917613,5402,9774063&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=11059915,15342513,16591308&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8318645&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13758036,230850,535673,1013528,10439764&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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covalent inhibitors, have emerged as a promising class of molecules for modulating protein 

function, especially for tough-to-drug proteins.27,28 A notable example is the successful targeting 

of KRAS, a protein previously thought to be undruggable, through cysteine-reactive compounds 

that label the Gly12Cys mutant form of KRAS.29,30 Consequently, the identification of functional 

and potentially druggable cysteines is a central challenge of functional biology and drug 

development.  

Identifying functional and potentially druggable cysteines requires robust tools to profile 

their reactivity and “druggability” (termed “ligandability”) across the proteome. Mass 

spectrometry-based chemoproteomics has emerged as a powerful approach for this purpose, 

enabling systematic mapping of cysteine reactivity and ligandability. One such method, Isotopic 

Tandem Orthogonal Proteolysis-Activity-Based Protein Profiling (isoTOP-ABPP), has been 

applied to target cysteine residues using a pan-cysteine reactive probe, iodoacetamide alkyne 

(IAA).31 IAA contains an alkyne group, which facilitates copper-catalyzed azide-alkyne 

cycloaddition (CuAAC), commonly known as “click” chemistry. 

A general chemoproteomics workflow begins by treating lysates or cells with micromolar 

concentrations of IAA or a cysteine-reactive electrophile functionalized compound. After labeling, 

peptides are conjugated with an enrichment tag via click chemistry, selectively enriched using 

affinity purification (e.g., streptavidin), and identified by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Biotinylated peptides are first ionized and detected at the MS1 level, 

where their mass-to-charge (m/z) ratios are recorded. These precursor ions are then isolated and 

fragmented at the MS2 level, allowing for detailed sequencing and identification. Peptide 

sequences are typically determined using data-dependent acquisition (DDA), where experimental 

spectra are matched to reference spectra from a specified database or FASTA file, enabling 
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https://sciwheel.com/work/citation?ids=123544,4835814&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0
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identification of both the peptide sequence and the modification site targeted by the IAA probe.32 

The application of isoTOP-ABPP has enabled proteome-wide measurements that have 

identified numerous potentially druggable sites. Measurements of cysteine reactivity have revealed 

hundreds of highly reactive cysteine residues within both known functional sites and previously 

unannotated protein domains.31,33,34 In 2016, Backus et al. identified over 600 proteins liganded by 

cysteine-reactive compounds, with only 27 of these proteins overlapping with targets of FDA-

approved drugs, highlighting the potential of cysteine chemoproteomics to access new “druggable 

space.” A key limitation of current chemoproteomic profiles, however, is their ability to assay only 

a small fraction (~13%) of the approximately 260,000 cysteines present in the human 

proteome.35,38 

Over the past decade, significant advancements in cysteine chemoproteomics have greatly 

expanded the field’s capabilities. Key developments include enhanced sample enrichment 

methods, such as single-pot, solid-phase-enhanced sample preparation (SP3), simplified and 

ultrafast peptide enrichment and release (superTOP-ABPP), and desthiobiotin-based tags 

(isoDTB), which improve the capture and identification of labeled cysteines.36–40 Quantitative 

labeling strategies, including isobaric tags, tandem mass tags (TMT) and 96-well plate assays, now 

allow for higher throughput and simultaneous profiling across multiple conditions.41–51 

Additionally, innovations in cysteine-reactive electrophiles—such as maleimides, heteroaromatic 

sulfones, bifunctional probes, and stereoprobes—have increased the precision and versatility of 

cysteine-targeting warheads.52–62 

Mass spectrometry has seen remarkable advancements in data acquisition strategies and 

instrumentation, significantly enhancing the analytical sensitivity and depth of proteomics studies. 

Technologies such as data-independent acquisition (DIA) methods,63–66 the Orbitrap Ascend 

https://sciwheel.com/work/citation?ids=4425100&pre=&suf=&sa=0
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Tribrid Mass Spectrometer,67 and the Orbitrap Astral Mass Spectrometer68 now enable more 

comprehensive and high-resolution analyses. These innovations have expanded sample coverage, 

supporting detailed profiling of diverse post-translational modifications (PTMs), including 

phosphoproteomics,69,70 the mapping of subcellular localizations,71–73 and sampling across a wide 

variety of cell lines and tissues.38,44,52,74 Complementing these technological breakthroughs, 

proteomics analysis software such as MaxQuant,75 Skyline,76 Spectronaut,77 and MSFragger78—

together with interactive datasets—have streamlined workflows and greatly improved data 

interpretability in cysteine chemoproteomics.21,44,74 

While recent advancements in cysteine chemoproteomics have significantly expanded 

profiling capabilities—detecting up to >78,000 cysteines in a single study—several critical 

challenges remain. First, the lack of robust pipelines for data processing and integration limits the 

systematic analysis and cross-comparison of cysteine chemoproteomic datasets. Existing tools 

often generate separate output folders with numerous files for each biological and technical 

replicate, relying on comparisons based on protein names, peptide sequences, or peptide-spectrum 

matches (PSMs), rather than residue-level identifiers, such as Protein_C#. As a result, analyzing 

whether specific cysteine residues are consistently labeled across replicates often requires time-

consuming manual inspection. 

Second, there is no rapid or scalable approach to stratify cysteines based on functional 

importance. As chemoproteomic studies identify thousands of residues, such stratification is 

crucial for prioritizing targets for follow-up studies. Third, existing approaches lack mechanistic 

insight into why certain cysteines are predisposed to labeling by electrophilic compounds, a key 

limitation for facilitating lead development and understanding specific protein-ligand interactions. 

To address these challenges and advance the identification of functional and druggable cysteines, 
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this dissertation combines mass spectrometry-based cysteine chemoproteomics with the 

development of novel computational tools. 

Among these, MS-CpDAA (Mass Spectrometry-based Chemoproteomics Detected Amino 

Acids Analysis Suite; https://github.com/lmboat/ms_cpdaa_analysis), is an automation software 

that expedites identification of covalently targeted residues in high-throughput chemoproteomics 

experimentation. This tool facilitated the evaluation of a novel experimental approach that 

combines single-pot, solid-phase-enhanced sample preparation with high-field asymmetric 

waveform ion mobility spectrometry (SP3-FAIMS) for high-coverage profiling of the human 

cysteineome.38 This approach enabled the aggregation of covalent labeling sites across 18 samples, 

spanning seven cell lines, three proteolytic digestion conditions, and two subcellular fractions, 

culminating in the detection of 34,225 cysteines. This represents a 5.5-fold increase in coverage 

compared to prior studies, expanding cysteine coverage from 2% to 13% of the cysteinome. 

Beyond profiling advancements, MS-CpDAA has been applied in diverse contexts, 

including the identification of covalent labeling sites with bifunctional probes in multiplexed 

CuAAC Suzuki-Miyaura chemoproteomics (mCSCP)55 and the evaluation of efficiency and 

selectivity of electrophilic labeling with Tunable Amine-Reactive Electrophiles (TARE probes).79 

The MS-CpDAA output simplifies the integration of datasets, facilitating database consolidation 

and structured analyses for broader applications. 

Building on the ability to aggregate and analyze high-throughput data with MS-CpDAA, 

Chapter 2 introduces CysDB,5 a publicly accessible SQL database with an interactive web 

interface that integrates experimental chemoproteomic measures of cysteine reactivity with protein 

functional and structural annotations. This resource provides an infrastructure for integrating high 

throughput chemoproteomic datasets and facilitates the rapid prioritization of functional target 

https://github.com/lmboat/ms_cpdaa_analysis
https://sciwheel.com/work/citation?ids=11898879&pre=&suf=&sa=0
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proteins. 

While CysDB integrates experimental and structural data for target prioritization, Chapter 

3 focuses on CIAA (Cysteine reactivity towards IodoAcetamide Alkyne), a framework designed 

to determine the structural features of proteins promoting elevated cysteine reactivity. This work 

establishes a foundation for structure-based artificial intelligence (AI) approaches to model 

protein-ligand interactions, paving the way for future advancements in cysteine-targeted drug 

discovery. 
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2.1 - Introduction 

Small molecule chemical probes are useful tools for modulating protein function that can 

serve as leads for future medications. Therefore, ongoing efforts in the chemical biology 

community have set ambitious goals in matching every protein with a chemical probe.3 

Complicating matters, <4% of the human proteome has been pharmacologically targeted by U.S. 

Food and Drug Administration (FDA)-approved small molecules. Cysteine chemoproteomics 

has emerged as an enabling technology that addresses this druggability gap by identifying 

thousands of functional and potentially druggable cysteines proteome-wide.1–25 Demonstrating 

this utility, prior cysteine chemoproteomic studies, including our own, have revealed a strikingly 

low overlap between proteins containing ‘‘ligandable’’ or potentially ‘‘druggable’’ cysteines and 

those that have been targeted by FDA-approved molecules.11  

Cysteine proteomics experiments can be generally classified into four main categories: 

(1) identification, (2) measuring hyperreactivity, (3) measuring ligandability, and (4) measuring 

redox state. We consider identification studies as those aiming to increase coverage of cysteine-

containing peptides.4–6 Hyperreactivity experiments measure the intrinsic reactivity of cysteines 

to ward highly electrophilic probes,7–10 while ligandability experiments measure the intrinsic 

ligandability or potential ‘‘druggability’’ of cysteines using libraries of drug-like electrophilic 

molecules, natural products, and lipid-derived electro philes.2,11,15–19  Finally, redox protocols are 

tailored to identify redox-sensitive cysteines.1,20–23  

Although the overarching objectives of these studies are non-redundant, they do share 

general features, including conceptually similar workflows and, most important, shared targets. 

In a standard cysteine chemoproteomics experiment for example, the proteome is treated with a 

pan-cysteine-reactive probe, followed by enrichment on streptavidin resin, sequence-specific 
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proteolysis, and tandem liquid chromatography-mass spectrometry analysis (LC-MS/MS).  

Despite considerable recent advances in instrumentation, sample preparation, and data 

analysis, most cysteine chemo proteomics studies only sample a small fraction of all cysteines in 

the proteome, with the highest coverage studies sampling  13% of all cysteines.1,7,9 Reasons for 

this gap include protein abundance and restricted expression profiles, location of cysteines in 

very long or very short tryptic peptides, which are not detected in standard trypsin digests, and 

unreactive cysteines, such as those buried within protein cores or located in structural disulfides. 

Despite these technical limitations, the cysteinome continues to grow, with the addition of 

multiple high-coverage studies in 2022 alone.6,10,14  

The availability of easily searchable cysteine databases— including Oximouse,1 the 

Ligandable Cysteine Database, and previously reported Cysteinome24—has increased the general 

accessibility of these large proteomics datasets, allowing rapid queries for targets of interest.9,12,13 

However, except for the Cysteinome database, which was launched in 2016 and is no longer 

publicly accessible, these databases are restricted to datasets derived from single publications.  

To facilitate future studies aimed at global or target focused analyses of the cysteinome, 

we envisioned the establishment of a unified cysteine-focused database that would fulfill the 

following criteria. First, the database would incorporate datasets from many large-scale 

cysteinomic studies and therefore enable rapid and facile inter- and intra-dataset comparisons. 

Second, the database would include information about the reactivity and ligandability of 

cysteines together with the druggability of their corresponding proteins, as indicated by 

availability of FDA-approved drugs. Last, and most significant, the database would integrate 

functional and structural data from UniProtKB/Swiss-Prot, Cancer Gene Census (CGC), 

ClinVar, Human Protein Atlas (HPA), ChEMBL, DrugBank, and the Protein Data Bank 
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(PDB),26–32 to enable prioritization of targets for future studies. Here we present CysDB, which 

is an interactive database that fulfills these criteria for 62,888 cysteines and 11,621 proteins. 

Importantly, to promote the continued growth of cysteine chemoproteomics, we also provide a 

straightforward route for addition of future datasets.  

2.2 - Results 

2.2.1 - Data curation to establish a set of processed and aggregated chemoproteomics datasets 

to enable CysDB  

Our first step toward creating CysDB was to assemble a set of publicly available datasets. 

With the overarching goal of establishing a high coverage and highly curated database of human 

chemoproteomics studies to enable cross-dataset exploration, we opted to focus on a reduced set 

of available datasets. We prioritized studies that reported high-coverage datasets that measured 

one or more of the following parameters: (1) total number of cysteines identifiable by pan-

cysteine-reactive probes, (2) measurement of cysteine intrinsic reactivity toward iodoacetamide 

alkyne (iodoacetamide alkyne [IAA, 1]; Figures 1A and S1), and (3) assaying cysteine 

ligandability (Figures 1A and S2). In total, we collected nine datasets that fulfilled our criteria 

(Figure 1B for all datasets used).2,4–11  

Notably, all these studies rely on the same general cysteine chemoproteomic workflow: 

cells or lysates are treated with a cysteine-reactive probe (Figure 1A; iodoacetamide alkyne) or 

an iodoacetamide desthiobiotin reagent (e.g., DBIA2 or IA-DTB8) to cap all accessible cysteines. 

Labeled proteins are subjected to enrichment on streptavidin or related resins together with 

sequence-specific proteolysis, followed by liquid chromatography-tandem mass spectrometry. 

Several of our included studies7–9 further classify cysteine intrinsic reactivity and pinpoint 

hyperreactive cysteines by comparing relative cysteine labeling by two concentrations (103 and 
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13) of a cysteine enrichment handle (Figures 1A and S1). Signal intensity differences between 

100- and 10-mM treated proteomes are reflected by a ratio (R[high]/[low]). Hyperreactive cysteines 

are defined as those with R10:1 value <2, indicating labeling events that are not concentration 

dependent. Most included studies provide a metric of cysteine ligandability or putative 

druggability,2,4,5,8,10,11 which is generated by comparing relative labeling by equimolar 

iodoacetamide in the presence and absence of electrophilic compound, with decreased labeling 

indicative of a high-occupancy labeling event (Figures 1A and S2).  

To produce a rigorously curated database, we subjected our prioritized datasets to a series 

of data-processing steps. First, we aggregated all non-redundant cysteines published by all studies, 

using the unique identifier UniProtKBID_CYS#. For some studies2,4–9,11 residue positions and 

protein identifiers were provided in the supporting information. For a subset of studies, the 

supporting tables instead provided labeled peptide sequences and protein IDs.7,10 To merge these 

two data types, we mapped each peptide to the corresponding canonical protein sequence using 

the UniProtKB reference FASTA from January 2022; this approach recovered nearly all cysteines, 

with only 37 dropped because of mismapping (Data S1), likely caused by differences in 

UniProtKB releases used in dataset search, as observed in our prior study.9 In the event of 

proteomic analyses comparing cysteine labeling using different experimental conditions (e.g., 

unstimulated versus stimulated cells), we opted to incorporate only the datasets derived from 

control (no treatment) conditions, with the goal of limiting the potential impact of cell state-

dependent differences of cysteine reactivity as a potential confounder to our downstream analyses. 

To address the many additional parameters, including data analysis pipeline differences, cysteines 

with incorrect residue numbers and peptides that match to multiple protein sequences (2,823 

entries), we include the UniProtKB release and software used to process mass spectrometry data 
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for each dataset in Data S1.7,18,33–38 Aggregation of all datasets, including results from using 

multiple cell lines,2,4–11 resulted in the chemoproteomic identification of 62,888 unique cysteines 

and 11,621 proteins (Figures 1C and 1D), which to our knowledge represents the most 

comprehensive cysteinome dataset reported to date.  

Using the studies reporting measures of cysteine ligandability or labeling by electrophilic 

fragments or drug-like molecules, we further stratified our dataset to generate a master set of all 

ligandable cysteines. The datasets included in our database (Figure 1A) were all prepared using 

the same general workflow where samples (lysates or cells) were treated by either a vehicle 

(DMSO) or a cysteine-reactive electrophile functionalized compound and the compound-

dependent changes in IAA, DBIA, or IA-DTB reactivity assayed using LC-MS/MS analysis. Prior 

analyses have revealed that comparable competition ratios can be calculated using either MS1 or 

MS2 level quantification.2,4,5,8,10,11 Therefore, we opted not to differentiate between samples 

analyzed using different quantification methods, including isotopic labeling strategy (TMT or 

isotopically enriched biotinylation reagents),2,6 label-free quantification, and data-independent 

acquisition (DIA) based MS2 level quantification (see Figure S2 for general workflow).4,8,10 The 

vast majority (97.2%) of all compounds screened were found to be functionalized with either a 

chloroacetamide or acrylamide moieties (Figure S3). A small data subset of compounds did, 

however, feature alternative electrophiles, including covalent reversible cyanoacrylamides,38 

fumarates, and activated esters; although activated esters are primarily lysine reactive, our prior 

data indicates that they do also exhibit cysteine reactivity.40,41  

All datasets included in our database relied on competition ratio cutoffs for what defines a 

cysteine as ‘‘ligandable.’’ Generally, cysteines were categorized as liganded if they had at least 

two ratios R <= 4 (hit fragments) and one ratio between 0.5 and 2 (control fragments). However, 
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when processing the ligandability data for each dataset, we observed manuscript-specific 

differences in either the ratio cutoff value or number of minimum unique hit fragments (1 or 2) 

required to have the associated ratio cutoff value for designating a cysteine as ligandable. For 

example, Cao et al.5 implemented a slightly more permissive ratio cutoff of 3 to account for high-

field asymmetric waveform ion mobility spectrometry (FAIMS)-induced ratio compression. By 

comparison, Vinogradova et al.8 implemented a more stringent ratio cutoff of 5. Another case we 

encountered was the inclusion of ‘‘ligandable’’ cysteines where the unique identifier contained 

multiple modified cysteine residues, such as UniProtKBID_- CYS#1_CYS#2. These types of 

identifiers are derived from peptide sequences simultaneously labeled with capture reagents at 

multiple cysteine residues (C1*XXXC5*) within the same sequence. On the basis of our 

experience with such peptides yielding noisy ratios, we opted to remove them from CysDB; a total 

of 2,584 peptides were excluded because of this criterion. Otherwise, despite the differences in 

defining ligandability, we opted to retain all remaining liganded cysteines to accurately represent 

each study’s reported findings (the criteria for ligand ability applied to each study are available in 

Data S1). In aggregate across all ligandability studies, a total of 43,475 unique cysteines (Data 

S2) had quantified ratios, and 9,246 unique cysteines were deemed ligandable. These cysteines 

were found in 4,404 proteins (Figures 1C and 1D).  

Next, we parsed processed data from published datasets measuring cysteine 

hyperreactivity.7–9 The three hyperreactivity studies included in CysDB measured the relative 

IAA reactivity toward two concentrations of IAA (100 and 10 mM), where a quantitative isoTOP-

ABPP ratio (R[high]/[low]) reflects the differences in signal intensities between the 100 and 10 mM 

treated proteomes. Highly reactive cysteines, termed ‘‘hyperreactive’’ residues, are identified as 

those that exhibit saturation or near saturation of labeling at the lower IAA concentration. All 
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three publications used the same numerical ranges to delineate cysteines into ‘‘high,’’ 

‘‘medium,’’ and ‘‘low’’ reactivity subsets, with high-reactivity, also termed ‘‘hyperreactive,’’ 

residues as those with R10:1 < 2, medium-reactivity cysteines between R100:10 R 2 and R10:1 < 5, 

and low-reactivity cysteines R10:1 > 5. During dataset processing, we observed that Weerapana et 

al.7 and Pala fox et al.9 reported median values of all the replicates for each individual measure 

of cysteine reactivity, as well as an overall mean of medians to quantify the average reactivity 

per cysteine. In contrast, Vinogradova et al.8 reported the average of medians across all 

measurements. To accommodate these dataset dependent differences, we opted to report the 

mean of median ratio values for each detected cysteine. In aggregate, 8,604 cysteine on 4,032 

proteins were quantified by these three studies, which resulted in identification of 489 

hyperreactive cysteines and 426 proteins containing hyperreactive cysteines (Figures 1C and 

1D).  

Collectively across all cysteines identified through our data aggregation efforts, 14.7% 

were deemed ligandable, and fewer than 1% were determined to be hyperreactive. Cross-dataset 

comparisons reveal the highest overall coverage dataset was reported by Yan et al.4 (Figures 1E 

and S4), where an optimized SP3-FAIMS strategy was applied to analyze the proteomes of seven 

cell lines, which in aggregate identified more than 34,000 cysteines on 9,714 proteins from 7 cell 

lines (Figures S4 and S5). A key outcome of the dataset aggregation required to build CysDB is 

an effective doubling of the size of the identified cysteinome. Collectively across all studies 

analyzed in CysDB, ~24% of all cysteines found on 57% of human proteins in UniProtKB have 

been assayed at least once by chemoproteomics (Figures 1C and 1D). 
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1 Figure 1. Dataset selection and curation for the creation of CysDB. 

Figure 1. Dataset selection and curation for the creation of CysDB. (A) Table of datasets used 

as input for CysDB, including which datasets were used in each chemoproteomic category 

(identified, hyperreactive, and ligandable).2,4–11 (B) General workflows for three categories of 

chemoproteomic methods included in CysDB that use iodoacetamide alkyne (IAA, 1) or an 

iodoacetamide desthiobiotin reagent (DBIA2 or IA-DTB8, 2) to capture cysteines for (1) high-

coverage identification of cysteine-containing peptides, (2) quantitative profiling of intrinsic 

cysteine reactivity, and (3) assaying cysteine ligandability using an electrophile of interest. (C and 

D) Quantification of the unique proteins (C) and cysteines (D) found in the Human 

UniProtKB/Swiss-Prot database, together with the identified, ligandable, and hyperreactive 

chemoproteomics subsets in CysDB. (E) Study-specific breakdown of total number of unique 

cysteines, including those that are identified as hyperreactive and ligandable. 

See also Figures S1–S5 and Data S1.  
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2.2.2 - Establishing an SQL database with an RShiny user interface for CysDB 

With a complete, curated dataset in hand, we constructed the CysDB database and web 

user interface outlined in Figure 2A. Processed data from prioritized studies (Data S1)2,4-11 were 

prepared into a standardized input format for SQL integration (see Data S1 for example data 

format and required information for future data integration to CysDB) and loaded into a database 

hosted in Google Cloud using MySQL version 8.0 (see STAR Methods for more details on data 

preparation and processing). CysDB is a relational database composed of six individual tables 

(Figure S6). For public accessibility of CysDB, we developed a front-end user interface powered 

by the Shiny framework (Figure 2B). Shiny converts queries from remote users into visualizations 

and results that are displayed on a web browser. Not only does our web application access the 

Cloud CysDB, but it additionally calls from both structural and functional external databases, 

including UniProtKB, COSMIC, ClinVar, and PDB.26–29,32  

One challenge we faced during our data processing was one-to-one mapping of protein 

accessions to gene names for SQL querying. For gene-centric queries, not all HUGO Gene 

Nomenclature Committee (HGNC)42 or Entrez gene symbols are associated with a single protein. 

Gene sequences translated to the same protein sequence can lead to multi-mapping of various gene 

names to one UniProtKB accession.9 In CysDB, we found that 16 UniProtKB entries were 

associated with multiple gene names (Data S1; STAR Methods). To address this limitation, we 

included the capability to search entries using gene symbols or protein names. The user then 

selects one of the resulting UniProtKB accessions for CysDB search. The CysDB RShiny interface 

enables the user to interact with cysteine chemoproteomics datasets, generate personalized figures, 

and download their results. Anywhere in the app, a user can save graphs as an image by clicking 

on a camera button at the top right corner and export query results to a CSV (comma-separated 
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value) file by clicking a download button at the bottom of a table. The CysDB app includes five 

sections: Protein, Mutation, Enrichment, Compound, Statistics, and Datasets.  

First, users can visualize the CysDB data in a protein-centric manner by selecting the 

protein explorer button, which is found on the homepage (Figure 3). Searching for a protein of 

interest (POI) by querying a UniProtKB ID returns the ‘‘Protein Section,’’ which is further broken 

up into three separate tabs detailing activity, structure, and function. The activity tab provides a 

‘‘site map’’ indicating whether any cysteines in the POI are hyperreactive or ligandable together 

with the measured reactivity, measured competition ratios and the structures of all compounds that 

ligand the POI. The structure tab provides the user with annotations of proximal active site and 

binding site residues in both linear sequence and three-dimensional space and an easily accessible 

mechanism to visualize the three-dimensional protein microenvironment of chemoproteomic 

detected cysteines, including for structures reported in the PDB. Last, the function tab reports 

functional annotations for the POI generated from UniProtKB, Gene Ontology (GO), and 

Reactome.26,43,44  

The ‘‘Mutation’’ section of CysDB provides information complementary to that presented 

in the ‘‘Protein Explorer’’ section. Querying for a POI yields the aggregate number of CysDB 

cysteines, missense variants identified in ClinVar,28 the public repository of relationships between 

human genetic variation and phenotype, and CGC genes mapped to the POI. This page also 

generates a one-dimensional depiction of the corresponding protein sequence, decorated with the 

positions of ligandable and hyperreactive CysDB cysteines alongside individual missense 

variants, sequence elements, and known ligand binding sites (Figure 4A). To further enable 

pinpointing of cysteines relevant to human health, CysDB also provides CGC annotations of 

tumor types associated with POI, where relevant.  
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Looking beyond individual POIs, the ‘‘Enrichment’’ section of CysDB was built for facile 

visualization and analysis of aggregated ligandable and hyperreactive CysDB subsets. Global 

analyses provided powered by the Enrichr package include functional pathways, ontologies, and 

disease enrichments of CysDB categories (Figure 4B).45,46 As with the dataset-wide meta-analysis 

provided by the Enrichment section, the ‘‘Compound’’ section of CysDB provides users with a 

global perspective of the electrophilic compounds employed in the CysDB cysteine ligandability 

studies. This portion of CysDB includes details of each molecule used in the ligandability 

experiments, including the publication name of each compound, corresponding CysDB names for 

each corresponding compound and data set in an easily downloadable table.  

For the ‘‘Compound’’ section, results can be searched on the basis of SMILES strings or 

newly created identifiers, defined by a unique combination of SMILES strings, cell lines, and 

publication authors. Consistent with previous studies,47 we found that the molecular connectivity 

for a single two-dimensional (2D) chemical structure could be written in various forms (e.g., 

ethanol can be denoted as C(O)C, as well as CCO). Thus, we transformed the SMILES strings 

extracted from each publication into 2D chemical structures and converted these 2D chemical 

structures into new SMILES strings using RDKit. Selection of a compound identifier using the 

provided drop down menus, affords a two-dimensional rendering of the chemical structure and 

computed properties of ‘‘drug-likeness,’’ including the number of hydrogen bond donors and 

acceptors (Figure 4C).48–53 For this section, we created two separate CysDB compound identifiers 

to produce scatter plots showing the highest ratios collected for each compound.  

The final ‘‘Statistics’’ section is accessible from the homepage both via the 

chemoproteomics explorer button and from the left menu. The Statistics section provides 

interested users with CysDB-wide metrics for hyperreactive and ligandable cysteine containing 
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proteins, proteins targeted by FDA-approved drugs, proteins associated with cancer, and proteins 

containing missense variants. In a user-centric manner, this section also allows interested users to 

compare individual datasets including by identification of unique and overlapping residues and 

proteins. 
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2 Figure 2. Workflow to generate CysDB SQL database. 

Figure 2. Workflow to generate CysDB SQL database. (A) Data extracted from nine datasets 

(Data S1) was transformed and loaded into a MySQL relational database on the Google Cloud 

Platform. An accompanying front-end web interface was developed using RShiny to allow 

remote-user querying of the SQL database. (B) Homepage of the CysDB app publicly available 

at https://backuslab.shinyapps.io/cysdb/. See Figure S6 and Data S1 and S2. 

https://backuslab.shinyapps.io/cysdb/
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3 Figure 3. CysDB enables protein-centric queries. 
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Figure 3. CysDB enables protein-centric queries. Users can search for a protein of interest 

(POI) in the search bar on the protein page. Centered on the activity tab is a ‘‘site map,’’ indicating 

which cysteines have been identified, liganded, or hyperreactive by chemoproteomics. In addition, 

the activity tab allows users to assess the potential druggability of their POIs through scatter plots 

and heatmaps for quantitative chemoproteomic measurements. For a comprehensive view of the 

structural environment surrounding the chemoproteomic detected cysteines, publicly available 3D 

crystal structures are displayed in the structure tab. Users can choose which structure is shown 

and add customized labels. By clicking the function tab, one can view general information on the 

POI, including subcellular locations, functional pathways, and GO/Kyoto Encyclopedia of Genes 

and Genomes (KEGG) terms. 
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4 Figure 4. CysDB enables disease, dataset, and cysteine-reactive compound wise queries. 
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Figure 4. CysDB enables disease, dataset, and cysteine-reactive compound wise queries. (A) 

The disease relevance of a POI can be explored through the mutation page. Proximity of 

chemoproteomic detected cysteines, annotated small molecule binders and variants of ranging 

clinical significance are visualized on a one-dimensional schematic of a protein sequence. 

Chemoproteomic cysteines are colored in gold for identified, pink for ligandable and orange for 

hyperreactive, while the remaining points are variant positions. (B) Users can specify subsets of 

data available in CysDB, such as by compound chemotype or ranges of reactivity ratio, for 

pathway, ontology, and disease enrichment analyses. The results can then be downloaded as a 

CSV-formatted table or a bar graph as an image. (C) Chemical structures and calculated ‘‘drug-

likeness’’ properties of compounds used to ligand cysteines in CysDB can be accessed from the 

dropdown menu in the compound page. 
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2.2.3 - Understanding the scope of the CysDB ligandable or putative ‘‘druggable’’ proteome  

We further parsed the data available in CysDB to showcase features built into CysDB and 

to facilitate the identification of new potential targets for future chemical probe development 

campaigns. More broadly, we also seek to highlight future opportunities for the cysteine 

chemoproteomic community. Given the low overlap between FDA-approved drug targets and 

proteins labeled by cysteine-reactive compounds for prior smaller cysteine chemoproteomics 

studies,11 we next extended this analysis to CysDB. Fewer than 4% of all human proteins in 

UniProtKB have been targeted by FDA-approved small molecules (Figure S7). As only 14.7% of 

all cysteines in CysDB were reported as likely ligandable, we next performed the same analysis 

on the subset of proteins in CysDB that contain a ligandable cysteine. Again, consistent with the 

prior reports that have demonstrated a low overlap between targets of covalent compounds and 

FDA-approved drugs, we find that 3% of proteins that contain one or more ligandable cysteine 

have been targeted by FDA-approved drugs (Figure 5A). Broadening this analysis to a less 

restrictive set of compound-protein interactions, we find that 32.5% of proteins with ligandable 

cysteines have been targeted by small molecules, as reported by ChEMBL, DrugBank, and the 

FDA (Figure 5B). These findings showcase the opportunities for targeting undrugged proteins 

using cysteine-reactive chemical probes.  

Prior studies have shown that drug and putative drug targets are highly enriched for protein 

classes featuring well-defined binding sites, including enzymes and receptors. Therefore, we 

characterized whether the CysDB members represent new drug gable space by parsing UniProtKB 

keyword functional annotations of all ligandable proteins in CysDB. Stratification of the CysDB 

ligandable proteins into two categories, targeted and untargeted by FDA-approved compounds, 

acknowledged an enrichment for enzymes in the FDA-approved subset (Figure 5C). In contrast, 
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the functions of the non-FDA subset of ligandable proteins in CysDB span important protein 

classes, including transcription factors (TFs), which are often categorized as a largely 

‘‘undruggable’’ class of proteins, with the notable exception of TFs with well-defined small 

molecule ligand binding pockets, such as nuclear hormone receptors.  

Next, we analyzed the compounds that target ligandable cysteine residues to further dissect 

the potential druggability of CysDB entries. Several different electrophilic moieties, often termed 

‘‘warheads,’’ have been developed, which react with cysteine residues in both irreversible and 

covalent reversible modes of labeling.39,54–56 Examples of these electrophilic handles include 

compounds that react via a thiol-Michael addition (e.g., irreversible modifiers such as acrylamide, 

fumarate esters, vinyl sulfonamide together with reversible modifiers such as cyanoacrylamide), 

compounds that react via SN2 (e.g., alpha-halo compounds), as well as compounds that react via 

SNAr (e.g., halogen-substituted electron deficient heterocycles such as chlorotriazine). As prior 

studies have revealed varying proteome-wide reactivity and structure-activity relationships 

(SARs) for different cysteine-reactive electrophiles, we decided to quantify the number of 

cysteines detected as labeled by individual electrophile chemotypes. For this analysis, a cysteine 

was labeled by one of the five warheads if the cysteine had R <= 4 for at least one compound 

(Figures 5D, S8, and S9).2,27–62 Over all, we found that a large majority of the ligandability data 

were acquired for samples subjected to labeling by acrylamides (AAs) and chloroacetamide (CA)-

substituted compounds across the panel of cell lines tested (Figures 5D and S10), with a small 

fraction derived from additional probes ranging from cyanoacrylamides to dimethyl fumarate 

listed in Data S2. Interestingly, we noticed that some cysteines react promiscuously with both AA 

and CA electrophiles, whereas others show an electrophile preference (Figure 5E). The proteins 

glutathione S-transferase omega-1 (GSTO1) and carbonyl reductase (CBR1) exemplify the 
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striking electrophile preference observed for some proteins (Figure 5F). For GSTO1, the highly 

ligandable cysteine (Cys 32) exhibits strong preference for reacting with chloroacetamide 

substituted compounds (1 to 11.5 in favor of CA electrophiles, with respect to unique SMILES 

strings with the CA moiety). In contrast, cysteine 226 of CBR1 shows marked acrylamide bias (5 

to 1 in preference of AA warheads, with respect to unique SMILES strings with the AA moiety).  
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5 Figure 5. Cysteines with available ligandability data. 

Figure 5. Cysteines with available ligandability data. (A) Overlap between CysDB ligandable 

(LIG) proteins and proteins targeted by FDA-approved drugs. (B) Overlap between CysDB LIG 

proteins, proteins targeted by FDA-approved drugs, small molecules in DrugBank and ChEMBL. 

(C) Distributions of protein functions for CysDB LIG proteins not targeted by FDA and CysDB 

LIG proteins targeted by FDA. (D) Grouped bar graph showing the number of unique ligandable 

cysteines targeted by acrylamides or chloroacetamide for each dataset (R <= 4 for at least one 

compound). (E) Bar graph of the overall number of unique cysteines targeted by acrylamides or 

chloroacetamide. (F) Number of unique SMILES strings with an acrylamide and chloroacetamide 

moiety (on the basis of the ‘‘group compound identifier’’), compounds with ratios R <= 4 for 

protein carbonyl reductase (CBR1; UniProtKB: P16512) and protein glutathione s-transferase 

omega-1 (GSTO1; UniProtKB: P78417). See also Figures S7–S10 and Data S2.  
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2.2.4 - Characterizing CysDB proteins on the basis of structural, activity, and functional 

annotations  

Given the sheer scope of available chemoproteomics datasets, one of the foremost ongoing 

challenges with cysteine chemo proteomic studies is delineating the functional impact of covalent 

cysteine modification in a high throughput manner. Although for some cysteines, such as catalytic 

nucleophiles, covalent modification will almost invariably afford a defined functional outcome, 

the impact of modifying other less well annotated cysteines, such as those in proteins or protein 

domains of unknown function, remains less clear. To encourage discovery of likely functional and 

disease-relevant cysteines, CysDB includes metrics of functionality from UniProtKB, known 

CGC, and genetic variants in ClinVar. These databases were chosen to provide measures of 

relevance to functional biology and human disease.  

We first harnessed UniProtKB annotations to determine which CysDB proteins had 

functional annotations of the following active sites, binding sites, catalytic activity, disulfide 

bonds, and redox potentials. Analysis concluded 1,505 CysDB proteins possess an active site, 

2,961 possess a binding site, 2,784 have experimental evidence for catalytic activity, 1,077 have 

annotated disulfide bonds and 52 have experimental evidence for redox potentials (Figure 6A). 

Comparable distribution of functional annotations was observed when stratifying the CysDB 

dataset to consider hyperreactive and ligandable proteins.  

To assess whether any CysDB cysteines were annotated as known active or binding sites, 

we parsed the UniProtKB site and notations for residue positions. This analysis uncovered that, 

while cysteine is a relatively rare amino acid (2.3% of all proteinaceous amino acids are 

cysteines1), cysteine is the second most abundant binding site amino acid and the third most 

abundant active site amino acid (Figures S11 and S12). Overall, CysDB reports identification of 
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1,335 (31.8%) of all known cysteine matching UniProtKB annotated binding sites and 288 (49%) 

of all known cysteine-active sites (Figure 6B). Of the 4,198 cysteine specific binding sites, 178 

of them have been liganded by a compound in CysDB. In addition, 98 out of the 583 cysteine-

active sites have been liganded by a compound in CysDB and 41 out of the 583 cysteine-active 

sites were deemed hyperreactive (Figure S13).  

Extending this analysis to look for cysteines ‘‘in or near’’ annotated active or binding sites 

using protein sequences, we searched 10 amino acids upstream and downstream of a CysDB-

identified cysteine. Using this method, we were able to increase the number of cysteines proximal 

to these functional sites. In total, 2,602 CysDB cysteines are near binding sites, including 396 

ligandable and 41 hyperreactive CysDB cysteines (Figure S14), and 496 CysDB cysteines are 

near active sites, including 56 ligandable and 12 hyperreactive cysteines (Figure S15).  

As the UniProtKB dataset is limited to 1D analysis, we asked whether CysDB could also 

provide insight into the three-dimensional (3D) microenvironment of identified cysteines, using 

structures reported in the PDB. In total, 5,270 CysDB ID proteins are associated with an available 

PDB structure, which represents 70% of all human genes with available crystallographic structures 

(Figure S16). Of these, 2,314 (31%) contain one or more ligandable cysteines and 279 feature at 

least one hyperreactive cysteine (Figure 6C). To confirm whether a CysDB cysteine was resolved 

in a PDB structure, we parsed the residue numbers and coordinates from PDB files. To account 

for discrepancies between UniProtKB and PDB residue numbers, residue to protein sequence 

numbering was mapped using SIFT annotations63 (Figure S16). This systematic analysis of 

residue-level mapping established that out of all the proteins with annotated binding or active 

sites, 2,684 and 1,315 proteins, respectively, are associated with PDB structures (Figures S17 and 

S18; STAR Methods). Of these, 1,007 proteins have cysteine-binding sites resolved in a 
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corresponding structure, while 338 proteins have cysteine-active sites resolved in a corresponding 

structure. In aggregate, 18,959 (30.1%) of CysDB-identified cysteines are resolved in a 

corresponding crystal structure. Further inspection of this dataset revealed that 1,212 CysDB 

cysteines are proximal (within 10 Å) to binding site residues and 704 CysDB cysteines are 

proximal to active site residues in 3D space (Figures S19 and S20; STAR Methods). To assist 

structure-guided analysis of cysteine datasets, CysDB provides users with 3D interactive 

renderings of cysteine-containing structures that include known functional annotations.  

Notably, 8,214 proteins (71%) identified by chemoproteomics do not have highly 

supported evidence in UniProtKB for binding or active sites. Therefore, we next asked whether 

the CysDB platform could provide additional information about these proteins and corresponding 

identified cysteines to further aid in delineation of functionally significant cysteines. To guide our 

platform development efforts, we tested whether the ligandable and hyperreactive cysteine-

containing protein subsets are enriched for particular structural domains and functional pathways. 

Enrichment analysis of protein family (Pfam)64 domains elucidated a 13-fold enrichment of 

liganded proteins in the DEAD/DEAH box helicase family, which is consistent with our prior 

observation of enrichment for RNA binding proteins in chemoproteomics datasets (Figure 6D).65 

Responsible for unwinding the duplex of double-stranded RNA, mutations in DEAD/DEAH 

proteins have been linked to autoimmune disease and some cancers, such as DEAD-box helicase 

3 X-linked (DDX3X) in medulloblastoma.66–69 Pfam domain enrichment analysis for the 

hyperreactive cysteine subset, revealed an enrichment of thioredoxin and arginine kinase families. 

These findings are consistent with prior reports of redox enzymes featuring highly reactive 

cysteines.7 Notably, creatine kinase enzymes are members of the arginine kinase family of 

enzymes, which are known to have highly reactive active site cysteines.7  
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We then extended these studies to Panther70 pathway analysis to assess if pathways are 

enriched for reactive or ligandable cysteines. We observe an enrichment of ligandable cysteine 

containing proteins implicated in apoptosis (Figure 6E). Examples of ligandable cysteine-

containing proteins include TP53, caspase-8, and APBB2. Given the central relevance in 

modulating cell death to treat numerous disorders, including cancers and neurodegenerative 

disorders, we expect that this observed notable enrichment indicates untapped opportunities for 

the development of probes targeting cell death.71,72 The hyperreactive cysteine-containing protein 

set, by contrast, was distinctly enriched for proteins involved in integrin signaling. These findings 

are consistent with the enrichment for hyperreactive cysteines in thioredoxin proteins and related 

antioxidant systems that are critical for regulation of integrin abundance, secretion, and disulfide 

formation.73,74  
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6 Figure 6. Cysteines with available functional and structural annotations. 

Figure 6. Cysteines with available functional and structural annotations. (A) CysDB-

identified, ligandable, and hyperreactive proteins with annotated active sites, binding sites, 

catalytic activity, disulfide bonds, and redox potentials. (B) Distribution of identified cysteines in 

CysDB ID annotated as cysteine-specific binding sites or active sites (left). The total number of 

cysteines in UniProtKB annotated as binding or active sites are shown in gray. Percentage of 

proteins associated with a PDB structure and containing an identified cysteine. (C) Percentage of 

proteins associated with a PDB structure and containing a ligandable (CysDB LIG) or 



 46 

hyperreactive (CysDB HYPERREACTIVE) cysteine. (D) Top 10 enriched protein domains from 

Pfam term enrichment analysis of liganded (green) and hyperreactive (light blue) proteins. (E) 

Top 10 enriched pathways from Panther term enrichment analysis of liganded (green) and 

hyperreactive (light blue) proteins. See also Figures S11–S20 and Data S3. 
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2.2.5 - Stratifying CysDB proteins on the basis of disease relevant annotations, including 

cancer association and measures of genetic variation  

Building upon our analyses of protein function, we assessed the human disease relevance 

of the CysDB proteins. Restricting our analysis to the ligandable and hyperreactive subsets, we 

analyzed which phenotypes were associated with CysDB proteins. Using disease annotations from 

the Online Mendelian Inheritance in Man (OMIM)75 knowledge base, ligandable cysteine-

containing proteins showed terms related to a broad range of cancers, including colorectal, breast, 

and leukemia. The hyperreactive cysteine-containing protein subset was enriched for terms 

associated with immune-relevant diseases, specifically those affecting the lymphatic system 

(Figure S25). Next, we determined how many CysDB proteins are annotated as cancer-driving 

genes, as dictated by the CGC.27 Seventy-six percent of CGC genes have been identified by 

CysDB (559/733) (Figure S28). Of all the CGC genes, 38% are annotated as ligandable in CysDB, 

indicating untapped opportunities for the development of tailored therapies targeting driver 

mutations (Figure 7A; Data S4). These results compare favorably with the 11% of cancer-driving 

genes that have been targeted by FDA-approved small molecules (Figure S29; Data S2). We 

observed a considerable difference in the number of available therapies for different cancers 

during our enrichment analysis for CysDB proteins associated with different tumor types. 

Although acute myeloid leukemia (AML) genes are the most represented somatic tumor type in 

CGC, only 5% of these genes are targets of FDA-approved small molecules. By contrast, 13 out 

of 38 (34%) of non-small cell lung cancer (NSLC) genes have been targeted by FDA-approved 

drugs. Toward addressing this therapy gap, CysDB detects most CGC genes associated with AML, 

71 out of 81 (88%) (Figure 7B). In fact, 36 of these AML genes have been liganded by a 

compound in CysDB, such as the class 2 AML genes nucleophosmin 1 (NPM1) and core-binding 



 48 

factor subunit beta (CBFB).  

Genetic variants, along with wild-type genes, can contribute toward harmful disease 

phenotypes. The ClinVar28 database provides a curated set of clinical significance for more than 

1 million genetic variants, which are classified as benign, pathogenic, or variants of unknown 

significance (VUS). Of 12,858 unique UniProtKB proteins associated with ClinVar variants 

(mapped to 31,685 unique genes), 9,478 proteins (73.7%) have a missense variant (Figure S30). 

Overall, more than half of the proteins identified in CysDB have an associated ClinVar missense 

variant, of which 3,075 contain liganded cysteines and 330 contain hyperreactive cysteines 

(Figure 7C). Previously we reported a trend between chemoproteomic identified cysteines and 

missense pathogenicity, where chemoproteomic detected cysteine codons were predicted to be 

more deleterious than undetected cysteine codons.9 Consistent with the ubiquity of missense 

variants in ClinVar, the most common mutation associated with CysDB ID CGC genes are 

missense mutations.27 Of the CysDB ID proteins that have a ClinVar missense variant, 4,418 

proteins have a benign variant, 2,524 proteins have a pathogenic variant, and 3,333 proteins have 

a variant of unknown significance (Figure S31). The proteins with the highest number of 

pathogenic variants are fibrillin-1 (FBN1; UniProtKB: P35555) and low-density lipoprotein 

receptor (LDLRl UniProtKB: P01130) (Figure 7D). Mutations in FBN1 are known to frequently 

cause Marfan syndrome by destabilizing disulfide bonds of conserved cysteine residues in 

epidermal growth factor (EGF)-like domains.76–78 Additionally, LDLR contains cysteine-rich 

repeats that bind lipoproteins. Loss-of-function mutations in these regions result in the disruption 

of cholesterol transport, leading to an increased risk for heart disease.79,80 In addition to enabling 

human genotype-guided target prioritization, targeting variant containing chemoproteomic 

detected proteins may also prove useful precision therapy development in a manner akin to the 
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recent Gly12Cys-directed KRAS compounds, including FDA approved Sotorasib.81–83  
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7 Figure 7. Assessment of the scope of disease-relevant proteins contained in CysDB of biologically relevant proteins 
using cysteine chemoproteomics. 

Figure 7. Assessment of the scope of disease-relevant proteins contained in CysDB of 

biologically relevant proteins using cysteine chemoproteomics. 

(A) Overlap between genes associated with cancer by the Cancer Gene Census (CGC), genes 

associated with CysDB ligandable proteins, and genes associated with CysDB hyperreactive 

proteins. (B) For the five most abundant tumor types in CGC, the number of CGC genes targeted 

by FDA-approved drugs (CGC_FDA), non-FDA targeted CGC genes identified in CysDB 

(CysDB_ID), non-FDA targeted CGC genes liganded in CysDB (CysDB_LIG), and non-FDA 

targeted CGC genes not identified in CysDB (CGC_Other). (C) Overlap between unique proteins 

associated with ClinVar genes containing missense variants (9,951 genes mapped to 9,478 

proteins), CysDB ligandable proteins, and CysDB hyperreactive proteins. (D) Top ten CysDB 

identified proteins with the highest number of benign missense variants (teal), missense variants 

of unknown significance (VUS) (gray), and pathogenic missense variants (purple). See also 
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Figures S21–S31 and Data S4.  
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2.3 - Discussion  

Leading groups in cysteine chemoproteomics have discovered thousands of functional and 

potentially druggable cysteines proteome-wide.1–9 These studies have yielded global measures of 

the SAR of compounds that target specific cysteines together with the intrinsic reactivity toward 

promiscuous electrophilic probes. Given the functional and clinical significance of identification 

of reactive and ligandable cysteines, the development of strategies that enable rapid cross-dataset 

comparisons between these studies represents an important opportunity for the cysteine 

chemoproteomics community that will enable a more comprehensive understanding of the 

cysteinome. Here we present CysDB as such a tool that unites high coverage chemoproteomic 

measures of identification, ligandability, and hyperreactivity across multiple studies, together with 

integration with relevant resources to provide metrics of functionality and disease relevance. 

CysDB achieves identification of an impressive 62,888 unique cysteines and 11,621 proteins, 

which represents a 100% increase in total number of identified cysteine residues compared with 

individual prior studies, with added potential for further growth as new data sets become available.  

For our first step toward constructing CysDB, we accumulated and curated a selected set 

of cysteine chemoproteomics studies, which were prioritized because of the high coverage of 

identified cysteines. During our stringent data curation, we observed study-dependent differences 

in conventions for designating a cysteine as hyperreactive and/or ligandable. To account for the 

potential uncertainty caused by a general absence of field-wide data analysis conventions, we 

retained all hyperreactive and/or liganded cysteines to accurately represent each study’s reported 

findings. The development of statistically rigorous conventions for the field will aid in 

normalizing future cross-dataset comparison efforts. Recently, in our studies we have required 

comparable ratios with low SDs identified across multiple biological replicates together with 
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inclusion of inactive control datasets to further simplify removal of potentially spurious elevated 

ratios. For studies that rely on MS1-based quantification, so-called singleton values should be 

treated with an additional level of stringency, as these can prove more prone to yielding spurious 

ratios. These ratios are derived from peptides with precursor ions that have only been identified 

with either a heavy or light isotopic modification. Therefore, we followed general conventions for 

filtering singletons, by setting a maximum ratio value of log2(ratio) equivalent to 20 requiring 

identification of additional lower ratio ions. Future studies, including our own, will benefit 

significantly from harnessing advances in data acquisition and analysis to improve reproducibility, 

including imputation and data-independent acquisition, as showcased by recent efforts by the 

Wang group.84  

Illustrating the utility of CysDB, we find that by combining datasets generated across 

multiple cell lines and using different labeling reagents, we substantially increase aggregate 

coverage of the cysteinome. Alongside cysteine coverage, CysDB reveals that cell line selection 

can impact not only which cysteines are identified in proteomes derived from different cell lines 

(Figure S5), but also the hyperreactivity and ligandability of individual cysteines. We ascribe 

these differences in part to both cell state specific expression as well as the stochastic nature of 

data dependent acquisition (DDA), which is the acquisition method used to generate nearly all 

datasets analyzed.  

In its current iteration, CysDB provides a low-throughput mechanism to assess 

reproducible ligandability of cysteines across studies, including those that analyze identical 

compounds. To enable such comparisons, we grouped identical compounds shared across multiple 

publication datasets under a shared identifier, termed ‘‘group compound ID.’’ The group 

compound ID allows users to easily visualize the reproducibility of cysteine ligand ability across 
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studies. The relative rarity of shared compounds used across multiple studies (25 in total in 

CysDB) remains a limitation for reproducibility analysis at the level of specific compounds. One 

notable exception to this paradigm is the recent work by Yang et al.10 that validates many 

compounds assayed by DDA using a DIA approach. We hope that future studies will consider 

inclusion of several benchmark scout fragments to stimulate efforts in assessing the 

reproducibility of ligandable ratios across studies. In addition, these cross-dataset comparisons 

revealed a marked bias toward chemoproteomic analysis of chloroacetamide and acrylamides, 

which points to largely untapped opportunities in expanding the scope of the ligandable 

cysteinome through assaying additional classes of electrophiles.  

A key feature of CysDB is the inclusion of functional and disease annotations from 

UniProtKB, CGC, and ClinVar. We expect that the centralization of the annotations should allow 

rapid prioritization of ligandable cysteines for future studies. Showcasing the utility of cysteine 

chemoproteomics to access tough-to-drug classes of proteins, we find a considerable enrichment 

in transcription factors containing ligandable cysteines (Figure 5C). We also observe that many 

Cancer Gene Census driver genes contain a cysteine identified in a chemoproteomics study. These 

findings together with our observation that a smaller but still substantial 38% of all Cancer Gene 

Census genes contain a ligandable cysteine suggests opportunities for future studies to more 

comprehensively assess the ligandability of these genes.  

During our efforts to map annotations generated from genomics data (e.g., ClinVar/Cancer 

Gene Census data), we encountered issues with mismapping for a subset of identifiers. While 

processing all datasets included in CysDB, we observed that a handful (16) of gene names did not 

map to UniProtKB protein accession numbers in a one-to-one manner during SQL querying; 

multiple HGNC or Gene Entrez symbols can be associated with a single protein identifier if the 
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translated gene products are identical protein sequences.26 Given the utility of a gene-centric 

search, we have incorporated such identifiers in this release of CysDB to aid future proteogenomic 

analysis.  

An ongoing goal of CysDB is to facilitate expanding the scope of the ligandable and 

potentially druggable cysteinome, particularly for functional and disease-relevant proteins. Given 

our observed bias in CysDB ligandability datasets toward chloroacetamide and acrylamide 

moieties, we expect that future expansions of the ligandable cysteinome may stem in part from 

chemo proteomic studies using additional classes of electrophiles. In a similar manner, we expect 

that inclusion of datasets generated using alternatives to iodoacetamide as promiscuous cysteine 

reactive capping agents, including, for example, hypervalent iodine-based probes,19 should further 

increase coverage of labeled cysteines. In this first iteration of CysDB, we have opted to restrict 

our datasets to those generated through lysate-based proteomic studies, which eliminates 

challenges associated with deconvolving changes in protein abundance from direct cysteine 

labeling. Given the importance of cell-based studies for target discovery and hit-to-lead 

optimization, we look forward to including such datasets in future releases, particularly when 

combined with bulk measures of protein abundance. In a similar manner, we look forward to 

incorporating redox proteomics datasets in subsequent iterations of CysDB, alongside generalized 

strategies to merge the diverse data formats generated by these studies. Looking ahead, we are 

enthusiastic about the continued growth of CysDB and encourage all interested users to consider 

submission of relevant chemoproteomics datasets that comply with our submission format (Data 

S1) and that include spectral files deposited in a public data repository, such as Pride.85  
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2.4 - Methods 

Data and Code Availability 

● This paper analyzes existing, publicly available data. These accession numbers for the 

datasets are listed in the key resources table.  

● Original code has been deposited at https://github.com/lmboat/cysdb_app and is publicly 

available as of the date of publication.  

● Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.  

Proteomics Data Analysis 

Chemoproteomics data was collected from publicly accessible supplementary tables of 

previous literature.2,4–11 Columns were parsed for UniProtKB protein identifiers and locations of 

the corresponding modified cysteine amino acid numbers to create a new identifier for CysDB: 

UniProtKBID_CYS#. Any cysteine classified as ‘ligandable’ or ‘hyperreactive’ is listed in CysDB 

as ligandable or hyperreactive. Individual ligandability and reactivity ratios found from each 

publication are listed in Data S1 and Data S2. In some cases, for the ligandability and reactivity 

datasets, publications listed ratios for peptides simultaneously modified at multiple cysteines such 

as UniProtKBID_CYS#1_CYS#2, where the ratios provided for UniProtKBID_CYS#1_CYS#2 

differed from UniProtKBID_CYS#1. Thus, ratios for peptides modified at multiple cysteines were 

not included in further analyses. 

Compounds found in ligandability studies were stratified according to their cell line and 

chemotype. Unique identifiers for each compound were constructed based on their chemotype 

within the five categories: acrylamide, bromoacetamide, chloroacetamide, dimethyl fumarate 

(dmf) and others, such as ACRYL_#. Unique group identification numbers were constructed for 

https://github.com/lmboat/cysdb_app
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compounds based on their chemotype and SMILES string, such as GROUP_ACRYL_# 

Publication names for each compound and CysDB names are provided in Data S2. 

SMILES strings listed in the Supplementary Tables for each publication were copied and 

pasted into a new document. To obtain a uniform SMILES format for all the compounds in 

CysDB, published SMILES strings were converted into molecules and converted back into 

SMILES strings using RDKit.53 

In the event amino acid numbers were not provided by the author, python scripts (available 

on GitHub) were utilized to map the listed peptide sequences to the canonical protein sequences 

of the 2201-release UniProtKB human fasta reference file, as this release is the only version saved 

in the UniProtKB archive for future mapping. Cysteines from unmatched peptides were removed 

prior to subsequent analyses. To inspect the extent of mismapped identifiers in CysDB, we 

collected peptides mapped to multiple proteins or peptides labeled at multiple cysteine sites from 

each publication (Data S1). Peptides labeled at multiple cysteines were dropped from our 

ligandability and hyperreactivity data aggregation. 

Cancer Gene Census (CGC) website reports were downloaded Sept. 2022 and mapped to 

CysDB data using UniProtKB accessions. Due to frequent UniProtKB updates, Gene symbols 

reported in the Cancer Gene Census were mapped to gene names in UniProtKB to identify the 

updated UniProtKB codes (2209-release). 

Functional, Structural, and Druggability Annotations Data Analysis 

Custom Python scripts classified protein functions based on annotations in the 

UniProtKB/Swiss-Prot26 database (2209-release). UniProtKB accessions were collected from 

proteins with available ChEMBL and DrugBank UniProtKB annotations. Data from the Human 

Protein Atlas29 (HPA) version 21.1 was downloaded and parsed to obtain genes targeted by FDA 
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approved drugs. HGNC gene symbols were mapped to UniProtKB accessions to collect proteins 

targeted by FDA approved drugs. 

Custom Python scripts classified protein functions based on annotations in the 

UniProtKB/Swiss-Prot database (2209-release), HPA version 21.1 and the ScaPD database.86 

UniProtKB keywords were parsed to classify proteins into five broad functional categories: 

chaperones/transporter/channel/receptor, enzyme, nucleic acid and small molecule binding, 

scaffolding/modulator/adaptor, transcription factor/regulator and uncategorized. Transcription 

factors, channels and transporters were also found using protein class descriptions from the HPA. 

In addition, examples of experimentally validated scaffolding proteins were collected from the 

ScaPD database. For proteins in more than one category, annotations were prioritized based on 

the following: enzyme > chaperones/transporter/channel/receptor > 

scaffolding/modulator/adaptor > transcription factor/regulator > nucleic acid and small molecule 

binding. 

Counts of how many CysDB proteins had UniProtKB annotations for active sites, binding 

sites, catalytic activity, disulfide bonds and redox potentials were calculated based on matches 

between the position of the identified residue and UniProtKB functional annotation. Further 

parsing of UniProtKB active and binding site annotations were extracted to obtain specific 

residues and amino acid numbers. Positions of binding and active sites that were not cysteine 

residues were discarded. Exact amino acid positions of UniProtKB cysteine active and binding 

sites were cross-referenced with CysDB cysteine identifiers. 

CysDB cysteines ‘in or near’ UniProtKB annotated active or binding sites were assessed 

using primary protein sequences. Positions of identified cysteines were found via their amino acid 

numbering. Annotated active or binding sites within +/-10 amino acids from the identified cysteine 
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were considered as a cysteine ‘in or near’ an active or binding site. 

Protein Data Bank32 identifiers were found from UniProtKB annotations. Proteins without 

PDB structures were filtered out. PDB structures for proteins with PDB annotations were 

downloaded and parsed for amino acid numbering and residue names. A list of cysteines resolved 

in each PDB was stored for further processing. SIFTS63 files, providing residue level mapping 

between PDB sequences and protein sequences, were downloaded for each PDB. Cysteines 

resolved in each PDB were mapped to their appropriate UniProtKB protein sequence and 

identifiers for PDB to UniProtKB pairs were created: PDB_C#_UniProtKBID_C#. From these 

paired identifiers, the number of unique UniProtKBID_C# records were counted to determine the 

number of UniProtKB cysteines resolved in PDBs. 

CysDB cysteines ‘in or near’ UniProtKB annotated active or binding sites were assessed 

using 3D PDB structures. From the workflow described below (determining cysteines in PDB 

structures), PDB structures were parsed to find all neighboring residues within a 10 Angstrom 

distance of a cysteine residue. PDB_UniProtKB identifiers were created for each cysteine and 

corresponding list of neighboring residues. If the UniProtKB annotated active or binding sites 

were resolved in an associated crystal structure and found within the 10 Angstroms net, it was 

classified as a cysteine proximal to a known active or binding site. 

CysDB Database 

CysDB was created as a relational database using MySQL v.8.0. Overall, the database 

contains six tables and is hosted on Google Cloud. The major parent tables, ‘Datasets’ and 

‘Identifiers’, were further broken down into child tables, such as ‘Ligandable’, ‘Reactive’, 

‘Compound’ and ‘Warheads’ (Figure S6). The Datasets table contains information specific to 

each of the nine publications, while the Identifiers table contains information specific to each 
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modified cysteine or protein identifier. Columns within Datasets and Identifiers include binary 

results for the following three categories: identified, hyperreactive and ligandable. However, 

individual competition ratios are listed in the Ligandable table and individual reactivity ratios are 

listed in the Reactive table. Calculated molecular properties for ‘drug-likeness’ were acquired 

using RDKit53 and are stored in the ‘Compounds’ table. This table also contains the CysDB 

compound identifier mapped to their associated publication abbreviation or designated name. 

Group compound identifiers (‘‘GROUP_WARHEAD_#’’) were defined by unique standardized 

SMILES strings and individual compound identifiers (‘‘WARHEAD_#’’) were defined by unique 

standardized SMILES string, cell line and publication author combinations. Finally, the warhead 

table holds chemotype classifications for each compound. The five chemotype classifications were 

as follows: acrylamide, bromoacetamide, chloroacetamide, dimethyl fumarate and other. 

CysDB Web Application 

The CysDB web application was developed using the Shiny R package 

(https://shiny.rstudio.com/). Schematics of protein sequence chains, domains and motifs on the 

CysDB web server are constructed using the drawProteins R package (https://github.com/ 

brennanpincardiff/drawProteins). Interactive viewing of PDB crystal structures is performed using 

NGLViewR (https://github.com/ nglviewer/nglview). Protein protein interaction networks are 

accessed via the STRING database (https://string-db.org/). Gene set library enrichment analyses 

are provided with the Enrichr R package (https://maayanlab.cloud/Enrichr/) and ontology 

enrichment plots are produced with the gprofiler2 R package (https://biit.cs.ut.ee/gprofiler/gost). 

All plots are generated with the ggplot2 and plotly (https://plotly.com/r/) R libraries. 

Quantification and Statistical Analysis 

Enrichment of Panther 2016, Pfam Domains 2019 and OMIM Disease gene set library 
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terms were performed using the GSEApy package.87 Proteins identified by chemoproteomics 

studies in CysDB were utilized as the background protein set. UniProtKB protein identifiers were 

mapped to Entrez gene symbols as input for Enrichr. P-values were computed from Fisher’s exact 

test to determine the significance of each enriched term. The negative log of these p-values was 

calculated using R. 

Additional Resources 

The CysDB dataset is provided as an interactive web resource at 

https://backuslab.shinyapps.io/cysdb/. 

Dataset Addition to CysDB Guidelines 

Email submission materials to cysteineomedb@gmail.com with the following 

information: copy of publication, supplemental information, additional details for data filtering 

and note the version of UniProtKB used to obtain protein accessions. Proteins must be identified 

through UniProtKB accessions. Please use the format, UniProtKBID_CYS#, to indicate which 

residues have been labeled. For ligandability experiments using a variety of electrophiles, 

inclusion of SMILES strings and criteria for ‘ligandability’ classification is required (ex. R >= 4 

for at least n number of compounds). Table templates and additional information for submission 

requests can be found in Data S1. 

  

https://backuslab.shinyapps.io/cysdb/
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2.5 - Supporting Information 

 

 

 

Figure S1. General chemoproteomics workflow for measuring intrinsic cysteine-reactivity 

towards electrophilic probes such as iodoacetamide alkyne (IAA), related to Figure 1. For these 

intrinsic reactivity studies, including those that use the Isotopic Tandem Orthogonal Proteolysis‒

ABPP (isoTOP‒ABPP) platform, relative cysteine labeling by a high (10x) and low (1x) 

concentration of IAA or other probes are compared using isotopically labeled enrichment handles 

and MS1-based quantification. Hyper-reactive residues are those that show R10:1 ratios close to 

1, indicating saturation of labeling at the lower reagent concentration. 
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Figure S2. General chemoproteomics workflow for measuring cysteine ligandability using 

competitive isoTOP-ABPP and related methods, related to Figure 1. Proteomes are treated with 

electrophilic compounds or vehicle (DMSO), labeled with an iodoacetamide (IA)-alkyne probe, 

and conjugated to isotopically-differentiated, biotin enrichment handles by click chemistry. 

Treated and control samples are combined, processed, and analyzed by LC-MS/MS, where the 

isotopic label is used to distinguish between peptides from control and fragment-treated samples, 

with elevated RH:L ratios indicative of a liganded cysteine. 
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Figure S3. Total number of unique compounds for each warhead category in CysDB Lig, related 

to Figure 1: acrylamide (AA), bromoacetamide (BA), chloroacetamide (CA), dimethyl fumarate 

(DMF) and other (OTHER). Unique compounds were determined by SMILES strings/group 

compound identifiers. 
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Figure S4. Total number proteins for each category in CysDB & in UniProtKB/Swiss-Prot, related 

to Figure 1. 
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Figure S5. Number of identified cysteines shared between different cell lines, related to Figure 1. 
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Figure S6. Entity-relationship diagram of all ten tables in CysDB and relationships with external 

data sources, such as UniProtKB, COSMIC, ClinVar and the Human Protein Atlas (HPA), related 

to Figure 2. 
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Figure S7. Total number of proteins in the human proteome from UniProtKB/Swiss-Prot and the 

subset targeted by FDA approved drugs (a). Total number of CysDB ligandable proteins, CysDB 

hyperreactive proteins and proteins targeted by FDA approved drugs (b), related to Figure 4. 
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Figure S8. Total number of cysteines with an R > 4 by each warhead per dataset, in aggregate 

across all cell lines analyzed, related to Figure 4. 
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Figure S9. Total number of proteins (a) and cysteines (b) liganded by the following electrophiles, 

related to Figure 4: chloroacetamides (CA), acrylamides (AA), other (OTHER), dimethyl 

fumarate (DMF) and bromoacetamides (BA). Note, some proteins or cysteines were liganded by 

multiple warheads. Therefore, the counts in these graphs are not reflective of mutually exclusive 

events. 
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Figure S10. Total number of proteins liganded by both acrylamides and chloroacetamides, 

exclusively acrylamides and exclusively chloroacetamides, related to Figure 4. 
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Figure S11. Distribution of amino acids annotated as binding sites in UniProtKB proteins, related 

to Figure 5. 
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Figure S12. Distribution of amino acids annotated as active sites in UniProtKB proteins, related 

to Figure 5. 
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Figure S13. Distributions of ligandable (green) and hyperreactive (light blue) cysteines annotated 

as cysteine-specific binding sites (a) or cysteine-specific active sites (b), related to Figure 5. The 

total number of cysteines in UniProtKB annotated as binding or active sites are shown in gray. 
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Figure S14. Number of CysDB ID cysteines that are annotated binding sites (BS) and cysteines 

that are not binding sites but in or near a binding site in 1D sequence, related to Figure 5. Primary 

sequences were searched +/- 10 amino acids from the location of a detected cysteine. If another 

binding site was within this +/- 10 amino acid window, the cysteine was considered ‘in or near’ a 

binding site. 
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Figure S15. Number of CysDB ID cysteines that are annotated active sites (AS) and cysteines that 

are not active sites but in or near an active site in 1D sequence, related to Figure 5. Primary 

sequences were searched +/- 10 amino acids from the location of a detected cysteine. If another 

active site was within this +/- 10 amino acid window, the cysteine was considered ‘in or near’ an 

active site. 
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Figure S16. Number of UniProtKB proteins in the human proteome, with an associated PDB 

structure, residue mapped SIFTS file and with a cysteine resolved in the corresponding associated 

PDB, related to Figure 5. 
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Figure S17. Number of UniProtKB proteins with an annotated binding site, associated PDB 

structure, with an annotated cysteine binding site and with cysteines near an annotated binding site 

in an associated PDB structure, related to Figure 5 and see STAR Methods. The distance from 

the sulfur atom of each cysteine to an annotated binding site residue was calculated. Cysteines 

within 10 Angstroms of the annotated binding site residue were considered as cysteines ‘in or near’ 

binding sites. 
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Figure S18. Number of UniProtKB human proteins with an annotated active site, associated PDB 

structure, with an annotated as cysteine active site and with cysteines near an annotated active site 

in an associated PDB structure, related to Figure 5 and see STAR Methods. The distance from 

the sulfur atom of each cysteine to an annotated active site residue was calculated. Cysteines within 

10 Angstroms of the annotated active site residue were considered as cysteines ‘in or near’ active 

sites. 
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Figure S19. Number of CysDB ID cysteines identified by chemoproteomics, resolved in an 

associated PDB and CysDB ID cysteines that are not annotated binding sites but are ‘in or near’ 

an annotated binding site in 3D space, related to Figure 5. Proteins with an annotated binding site, 

annotated as a binding site resolved in an associated PDB structure and with cysteines ‘in or near 

‘an annotated binding site. The distance from the sulfur atom of each cysteine to an annotated 

binding site residue was calculated. Cysteines within 10 Angstroms of the annotated binding site 

residue were considered as cysteines ‘in or near’ binding sites. 
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Figure S20. Number of CysDB ID cysteines identified, resolved in an associated PDB and CysDB 

ID cysteines that are not annotated active sites but are ‘in or near’ an annotated active site in 3D 

space, related to Figure 5. Proteins with an annotated active site, annotated as an active site 

resolved in an associated PDB structure and with cysteines ‘in or near’ an annotated binding site. 

The distance from the sulfur atom of each cysteine to an annotated active site residue was 

calculated. Cysteines within 10 Angstroms of the annotated active site residue were considered as 

cysteines ‘in or near’ active sites. 
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Figure S21. Top 10 enriched protein domains from Pfam-term enrichment analysis of liganded 

proteins with gene counts, related to Figure 6. 
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Figure S22. Top 10 enriched protein domains from Pfam-term enrichment analysis of hyper-

reactive proteins with gene counts, related to Figure 6. 
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Figure S23. Top 10 enriched pathways from Panther-term enrichment analysis of liganded 

proteins with gene counts, related to Figure 6. 
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Figure S24. Top 10 enriched pathways from Panther-term enrichment analysis of hyperreactive 

proteins with gene counts, related to Figure 6. 
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Figure S25. Top 10 enriched pathways from OMIM-term enrichment analysis of ligandable 

proteins (a) and hyperreactive proteins (b), related to Figure 6. 
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Figure S26. Top 10 enriched pathways from OMIM-term enrichment analysis of ligandable 

proteins with gene counts, related to Figure 6. 
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Figure S27. Top 10 enriched pathways from OMIM-term enrichment analysis of hyperreactive 

proteins with gene counts, related to Figure 6. 



 90 

 

 

Figure S28. Overlap between the number of genes associated with CysDB identified proteins and 

Cancer Gene Census (CGC) genes (a), related to Figure 6. Overlap between the number of CysDB 

identified proteins and proteins associated with ClinVar variants (b).
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Figure S29. Overlap between the number of FDA targeted genes, Cancer Gene Census (CGC) 

genes and genes associated with ClinVar variants, related to Figure 6. 
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Figure S30. Overlap between the number of CysDB LIG, CysDB HYPERREACTIVE proteins 

and proteins associated with ClinVar variants, related to Figure 6. 
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Figure S31. Overlap between the number of benign, variants of unknown significance (VUS) and 

pathogenic ClinVar missense variants for CysDB ID proteins, related to Figure 6. 
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3.1 - Introduction 

Cysteine residues are privileged sites in proteins, acting as redox sensors, catalytic 

nucleophiles, structural motifs, and even targets of chemical probes and FDA approved drugs.1–5 

Consequently, the identification of functional and potentially druggable cysteines is a central 

challenge of functional biology and drug development. The intrinsic reactivity of the cysteine thiol 

side chain towards electrophilic reagents has emerged as a key parameter that correlates with both 

functionality and druggability.6 While the pKa of a thiol is around 8.5,1 the pKa of a cysteine’s 

thiol side chain can vary significantly depending on protein microenvironment (pKa 3.5 to 10), the 

reactivity of cysteines towards minimalized electrophilic molecules, such as iodoacetamide alkyne 

(IAA), is both time- and concentration-dependent.7  

Measurements of cysteine reactivity have been generated proteome-wide, using the 

chemoproteomic method, isotopic Tandem Orthogonal Proteolysis-Activity-Based Protein 

Profiling (isoTOP-ABPP). For these analyses cysteine reactivity is assessed by quantifying the 

relative labeling with high (10x) versus low (1x) concentrations of IAA, using a proteomic readout. 

Highly reactive, or “hyper-reactive,” cysteines are those that show a similar labeling with high and 

low IAA concentrations, (Ratio[high]/[low] =1), indicating saturation of labeling at the lower IAA 

concentration. High-reactivity has been found to be indicative of cysteine functionality, including 

involvement in catalytic activity and susceptibility to oxidative modifications.8,9 Further 

illustrating the functional relevance of these measurements, our recent work revealed an 

enrichment for high predicted pathogenicity (high CADD score) for the codons of high-reactive 

cysteines.10  

Despite the considerable value of these reactivity measurements, coverage remains a major 

challenge that has yet to be fully addressed. Reactivity measurements are currently only available 

https://sciwheel.com/work/citation?ids=1013528,10439764,230850,2062765,10717931&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1013528&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2843108&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5384920,16938914&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14205248&pre=&suf=&sa=0
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for  ~1.5% of all cysteines.6,10,11 However, ~78% of cysteines should be theoretically detectable 

based on tryptic peptide length (>6 & <45 amino acids).12 Reasons for this incomplete coverage 

include protein sequences that differ from reference sequences, genes with restricted expression, 

cysteines that are buried or in structural disulfides, and ionization properties of peptides.  

Computational predictions of cysteine reactivity represent an exciting strategy to pinpoint 

functional residues, in a manner complementary to chemoproteomic analysis. 13–17tructure-based 

programs like PROPKA18 and H++19 can predict pKa values with variable accuracy. Advances 

such as Cy-preds20 and GB-CpHMD21 incorporate both sequence and 3D structural data, but their 

application remains limited to a small set of protein structures and conformations.22–24 Stepping 

beyond these smaller datasets, machine learning applied to chemoproteomics datasets has proven 

useful in identifying primary sequence motifs correlated with cysteine reactivity.13–17 Whether the 

addition of 3D structural information can enhance the performance of such models remains to be 

seen. While not yet applied to reactivity analysis, the availability of in silico packages for covalent 

docking at cysteine residues25–29 points towards as yet untapped opportunities for integrating 

reactivity measurements with protein structures to further guide discovery of reactive cysteine 

residues.  

Here we establish the CIAA (Cysteine reactivity towards IodoAcetamide Alkyne) 

platform, which is tailored to guide the in silico discovery of high-reactive cysteines. To build 

CIAA we first generated a high coverage proteomic dataset of high-reactive cysteines that features 

823 total high-reactive cysteines, identified in both newly generated and previously published 

datasets. We achieve >50% increase in total high-reactive cysteines when compared to prior 

datasets. We then subject a class-balanced set of high- and low-reactive cysteines to feature 

analysis, both in linear sequence and 3D protein space. While we find several features that are 

https://sciwheel.com/work/citation?ids=1241563,14205248,16493959&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11898879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7348561,16967702,16967703,7348529,16967879&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=356934&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9279027&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9508290&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16967709,16967710,16967711&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=7348561,16967702,16967703,7348529,16967879&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=1520324,9352844,12365788,15554270,11739936&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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suggestive of cysteine reactivity, including most notably frequent proximity to histidine and 

proline residues, no single feature showed a strong correlation with cysteine high reactivity. 

Therefore, we developed a Random Forest model that was trained on 3D protein structures from 

the Protein Data Bank (PDB). The model integrates curated chemoproteomic datasets with 

additional publicly available datasets, creating a robust framework for training. Validated with 

external datasets achieved an overall accuracy of 68%. Notable features identified by the model as 

correlated with cysteine reactivity include backbone hydrogen bond donor atoms, proximity to 

pockets and intermediate values of solvent accessibility. Taken together we expect that the CIAA 

platform will facilitate ongoing and future efforts towards high accuracy in silico discovery of 

functional and potentially druggable cysteine residues.  

3.2 - Results 

3.2.1 - Establishing a high coverage dataset of high-reactive cysteines towards iodoacetamide 

alkyne (IAA) 

Our first step towards enhancing the in silico discovery of high-reactive cysteines, was to 

generate a high coverage dataset of known cysteines that exhibit a range of reactivities towards the 

pan-cysteine reactive probe iodoacetamide alkyne (IAA). We opted to pursue a hybrid strategy, 

both aggregating previously reported datasets6,10 together with production of new in-house 

generated proteome-wide measures of cysteine reactivity. We curated a set of cysteine high-

reactivity data that had previously been generated using the Isotopic Tandem Orthogonal 

Proteolysis-Activity-Based Protein Profiling (isoTOP-ABPP) chemoproteomic sample 

preparation method (Figure 1A).6 In these studies, relative intrinsic cysteine reactivity towards 

IAA was quantified by comparing labeling with either high (100 µM) or low (10 µM)  

concentration IAA, with saturation of labeling at lower probe concentration indicative of cysteine 

https://sciwheel.com/work/citation?ids=1241563,14205248&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0
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high-reactivity.  

Samples analyzed by isoTOP-ABPP were reprocessed for Weerapana et al. 2010 (n = 6)6 

and Palafox et al. 2021 (n = 5).10 Reanalysis was conducted to ensure consistency in processing, 

address reproducibility, and confirm high-confidence identification of high-reactive cysteines 

across datasets. In total these prior datasets contained 489 total high-reactive cysteines, defined as 

R[high IAA]/[low IAA] = R100:10 values ≤ 2.3, with the remaining 8,115 total cysteines categorized as 

either medium (2.3 < R10:1 values < 10), or low reactivity (R10:1 values ≥ 10). Given the 

comparatively modest size of this dataset—the human proteome harbors ~260,000 cysteines by 

comparison30–we also generated additional in-house reactivity analysis  (n = 13) for proteome 

derived from the HEK293T cell line. HEK293T cells are a commonly used workhorse cell line 

that has not to our knowledge been subjected to such reactivity analysis. In total, the relative 

reactivity of 9,783 cysteines from 3,974 proteins were quantified across both newly generated and 

previously reported data. Of these, ~80% of residues (7,964) showed medium reactivity, with 

~10% of cysteines exhibiting either high- or low-reactivity towards IAA (823 cysteines from 717 

proteins and 996 cysteines from 803 proteins, respectively; (Data S1). 

3.2.2 - Cysteine reactivity correlates with UniProtKB indications of functionality 

As our newly generated data has more than doubled the total number of high-reactive 

cysteines identified to-date (Figure 1B), we further benchmarked this new data to ensure that 

quality was maintained during this scale-up process. We observe a good overlap in cysteines 

identified (3,445 total shared) and a positive correlation between our new dataset and those 

previously reported (Pearson correlation coefficient 0.5, Figure S1). Consistent with prior reports 

of cell-line dependent differences in cysteine reactivity and ligandability,6,31 we do note some 

likely cell-type specific differences in reactivity, for example cysteine 140 in Inosine-5'-

https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14205248&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14904677&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1241563,16378834&pre=&pre=&suf=&suf=&sa=0,0
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monophosphate dehydrogenase 2 (IMPDH2). In addition to comparing ratio concordance between 

datasets, we also assessed whether previously reported properties of high-reactive cysteines were 

maintained in our new and larger dataset. Notably, and corroborating prior findings6, we observe 

that cysteine high-reactive provides a good metric of likely functional significance, as indicated 

by the enrichment for residues in functional sites, including active sites, redox sensitive sites and 

disulfides, with the latter expected to be redox-active disulfides (Figure 1C and Data S1). 

Intriguingly, our UniProtKB analysis also revealed a notable correlation between low reactivity 

residues and metal binding sites, including zinc fingers (Figure S2). In total, 30 low-reactive 

cysteines were identified with UniProtKB annotations related to zinc binding or zinc finger 

regions, compared to 20 high-reactive cysteines. This analysis confirmed that our newly generated 

data did extend cysteine coverage while showing a similar properties distribution of previously 

reported datasets.  

  

https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0
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8 Figure 1. Establishing a high coverage dataset of high-reactive cysteines towards iodoacetamide alkyne (IAA). 

Figure 1. Establishing a high coverage dataset of high-reactive cysteines towards 

iodoacetamide alkyne (IAA). (A) Experimental workflow for isoTOP-ABPP. Cell lysates are 

treated with either high (100 µM) or low (10 µM) concentration of this IAA probe followed by 

click conjugation to isotopically differentiated tobacco etch virus (TEV)-cleavable biotinylated 

enrichment tags. After single pot solid phase sample preparation (SP3) cleanup12,32 and on-resin 

sequence-specific digestion, samples were enriched (streptavidin), eluted with TEV protease and 

the labeled peptides subjected to LC-MS/MS analysis followed by search with MSFragger,33 using 

the FragPipe user interface and MS1-based quantification with IonQuant.34 MS1 ratios correspond 

to Rheavy/light = R[100 µM]/[10 µM] with the following cutoffs for reactivity,  high (R100:10 ≤ 2.3), medium 

(2.3 < R100:10 < 10), and low (R100:10 ≥ 10). (B) Comparison of the number of high-reactive 

cysteines identified in prior studies as reported in CysDB V130 for Weerapana et al. 20106, Palafox 

https://sciwheel.com/work/citation?ids=6655289,11898879&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3455721&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11108983&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14904677&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0


 113 

et al. 202110, and Vinogradova et al. 2020 versus high-reactive cysteines identified in newly 

generated datasets (n = 13). High-reactive cysteines were required to be identified in two replicates 

and had a R100:10 standard deviation of <= 3 for further data analysis. (C) Comparison of UniProtKB 

functional annotations for high- vs low-reactive cysteines. See also Figure S1, Figure S2, and 

Data S1. 

  

https://sciwheel.com/work/citation?ids=14205248&pre=&suf=&sa=0
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3.2.3 - Primary sequence amino acid composition of high-reactive cysteines 

Previous analysis of a focused set (n = 74) of high-reactive cysteines had revealed   

enrichment for tryptophan, histidine, proline, and cysteine residues in linear sequence proximity 

to high-reactive sites.13,14 Therefore, to further assess how our dataset compares to this prior study 

and, particularly, to characterize whether these sequence-based enrichments hold true for our 

larger dataset, we next subject our data to sequence motif analysis (Figure 2A). We generated a 

sequence logo using pLogo35 to assess the frequencies of amino acids flanking high- and low-

reactive cysteines, starting with 823 high-reactive cysteines and 996 low-reactive cysteines. After 

aligning the sequences to ensure they were of the same size and length, as required by the pLogo 

software, the dataset was reduced to 765 high-reactive cysteines as the foreground and 805 low-

reactive cysteines as the background (Figure 2B and Data S1). This analysis revealed an increased 

occurrence of cysteines (C) near high-reactive cysteines at specific positions. At position -3, 

cysteines were slightly increased, with a log-odds of 4.1, consistent with a CXXC motif observed 

in the thioredoxin family.36 A larger increase was found at position -1, with a log-odds of 7.2, 

indicating cysteines are most over-represented at this position. In addition to cysteines, histidine 

(H) and proline (P) were frequently found at position -1, while hydrophobic residues such as 

tryptophan (W), phenylalanine (F), and methionine (M) were identified within high-reactive 

cysteine neighborhoods. Acidic residues, including glutamate (E) and aspartate (D), were depleted, 

likely due to incompatible electrostatic interactions with cysteine thiolates. These trends are 

generally consistent with the aforementioned prior studies,13,14 which indicates that sequence-

based analysis likely can provide some indication of relative cysteine reactivity.  

https://sciwheel.com/work/citation?ids=7348561,16967702&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=401025&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10562563&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7348561,16967702&pre=&pre=&suf=&suf=&sa=0,0
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9 Figure 2. Amino acid contents of IAA-reactive cysteines using primary sequences. 

Figure 2. Amino acid contents of IAA-reactive cysteines using primary sequences.  (A) 

Schematic highlighting Figure 2 analysis focuses on using primary sequences of IAA-labeled 

cysteines. (B) Sequence logo created using pLogo (http://plogo.uconn.edu).35 Starting with 823 

high-reactive and 996 low-reactive cysteines, sequences were aligned to meet pLogo input 

requirements, reducing the dataset to 765 high-reactive cysteines as the foreground and 805 low-

reactive cysteines as the background. (A) shows the primary sequence motifs for these cysteines. 

The y-axis represents the log-odds binomial probability of an amino acid residue at a specific 

position, while the x-axis shows the position relative to a reactive cysteine fixed at position 0. The 

http://plogo.uconn.edu/
https://sciwheel.com/work/citation?ids=401025&pre=&suf=&sa=0
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red horizontal line indicates the statistical significance threshold (p = 0.05) after applying the 

Bonferroni correction. See Data S1. 
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3.2.4 - Defining a training set of reactive cysteines with 3D structural data available in the 

PDB 

As one of the key overarching goals of our study is to define structural features that drive 

cysteine high reactivity, our next step was to step beyond linear sequence and to associate protein 

structural information with our identified cysteines (Figure 3A). Of our entire reactivity dataset, 

66% (2636/3969) of the IAA-labeled proteins identified had experimentally determined protein 

structures deposited in the PDB (Figure S3). Similarly, 67% of proteins containing high-reactive 

cysteine proteins were structurally resolved (483/717) (Figure 3B). To check for potential biases 

in the representation of structures for the different protein families and for different cysteine 

reactivity classes, we analyzed their distribution in the available PDB structures. We found that 

the distribution of proteins with PDB structures closely resembles the distribution of proteins in 

the proteome with PDBs and those experimentally labeled by IAA (Figure S4). However, we 

observed an enrichment of enzyme structures among proteins with PDBs, while proteins without 

associated structures showed a higher prevalence of uncategorized proteins. 

Many proteins still remain incompletely resolved and so some of our identified cysteines 

could be located in unresolved protein regions. Therefore, we next further filtered our dataset to 

ensure that all detected cysteines were structurally resolved. We matched the residue numbering 

and coordinates in the PDB files with UniProtKB amino acid numbering using custom scripts (see 

Supplementary Computational Methods). 345 out of 823 (42%) high-reactive cysteines and 322 

out of 996 (33%) low-reactive cysteines were resolved in at least one corresponding crystal 

structure (Figure 3C).  

To establish our curated training set, we opted to subject these structures to several 

additional pre-processing steps. Among these, we ensured that the IAA-reactive cysteine and its 
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+/- 3 neighboring residues were fully resolved, with no missing density. This was a crucial step to 

achieve a comprehensive representation of the local microenvironment surrounding each cysteine. 

To exclude possible confounding effects of mutations or other protein modifications, we 

additionally excluded structures harboring these features from further analysis. Through these 

filtering steps, we also noted that nearly half of all proteins (241/505) had more than one associated 

structure in the PDB, with a small subset matching to >20 structures (Figure S5A and Figure 

S5B). To reduce the potential for data redundancy, we used the PISCES37 server (accessed 

November 2023), which prioritized X-ray structures by selecting representatives based on 

structural quality and sequence diversity. This filtering reduced our set of structures from 22,821 

to 1,179 PDBs, including 306 high-reactive and 297 low-reactive cysteines across 644 and 662 

unique PDBs (Figure 3C and Figure S5A). Notably, 32 of these proteins contained both a high-

reactive and a low-reactive cysteine. Importantly, and demonstrating that our filtering steps did 

not introduce significant bias to the datasets, the high-reactive and low-reactive protein sets 

exhibited similar distributions of experimental techniques, structural resolutions, and biological 

complexes (Figure S6). 

  

https://sciwheel.com/work/citation?ids=1235898&pre=&suf=&sa=0
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10 Figure 3. Defining a training set of reactive cysteines with 3D structural data available in the PDB. 

Figure 3. Defining a training set of reactive cysteines with 3D structural data available in the 

PDB. (A) Workflow for defining a training set of tertiary structures. (B) Bar graph showing the 

number of experimentally identified proteins containing high- or low-reactive cysteines, number 

of experimentally identified unique high- or low-reactive cysteines associated with PDB 

structures, number of experimentally identified unique high- or low-reactive cysteines resolved in 

at least one associated PDB structure, and number of experimentally identified unique high- or 

low-reactive cysteines in the training set after a series of filtering steps. (C) Bar graph showing the 

number of experimentally identified unique high- or low-reactive cysteines, number of 

experimentally identified unique high- or low-reactive cysteines associated with PDB structures, 

number of experimentally identified unique high- or low-reactive cysteines resolved in at least one 
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associated PDB structure, and number of experimentally identified unique high- or low-reactive 

cysteines in the training set after a series of filtering steps. See Figure S3-S6, and Data S2. 
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3.2.5 - Tertiary structure amino acid composition of hyper-reactive cysteines 

With our curated set of structurally resolved cysteines in hand, we next sought to assess 

the amino acid content of IAA high-reactive cysteine 3D neighborhoods (Figure 4A). Similar to 

our linear sequence analysis (Figure 2), we hypothesized that the 3D protein environment 

surrounding high-reactive cysteine residues should be enriched for reactivity-potentiating residues, 

such as histidine and cysteine. Therefore, to enable quantification of the proximal amino acid 

content around reactive and unreactive cysteines, we aggregated the coordinates of all atoms 

within 7.5 Å of the sulfhydryl group (SG) atoms for each structurally resolved cysteine, excluding 

atoms from the cysteine residue itself.  

We selected the 7.5 Å distance as it provided a balanced approach to capturing neighboring 

residues without sampling more distal residues (Figure S7). This threshold was chosen after 

testing 5, 7.5, and 10 Å cutoffs. The 5 Å radius resulted in a higher enrichment of residues, while 

the 10 Å radius yielded too few, potentially missing relevant neighbors. The 7.5 Å distance offered 

a middle ground, capturing an appropriate number of residues without over- or under-

representation. 

To prevent overcounting and generate a non-redundant set of cysteine identifiers, residues 

were grouped by the corresponding PDB chain and residue number, retaining only unique residue 

identifiers (PDB_Chain_C#). The frequency of each amino acid within the high- and low-reactive 

cysteine neighborhoods was then calculated and normalized by the total number of unique residue 

identifiers within 7.5 Å of the SG atoms, accounting for potential differences, particularly for more 

buried cysteines.17 To avoid overcounting, each residue was included only once if any of its atoms 

fell within the 7.5 Å radius, ensuring that residues were counted as unique entities rather than based 

on the total number of atoms they contributed. 

https://sciwheel.com/work/citation?ids=16967879&pre=&suf=&sa=0
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This analysis identified a propensity of histidine and proline residues near high-reactive 

cysteines, aligning with our previous primary sequence analysis findings (Figure 4B and Data 

S3). Additionally, we observed an increase in arginine and glutamine residues and a decrease in 

hydrophobic residues, such as isoleucine and valine. Looking beyond these specific cysteine 

microenvironments, we observed generally similar amino acid content for proteins in our dataset 

compared to a UniProtKB reference human proteome (Figure S8), which indicates that our dataset 

is not inherently enriched or depleted for particular amino acids. Therefore, we conclude that the 

aforementioned high-reactive cysteine-specific amino acid enrichment represents bona fide 

features within the 3D cysteine microenvironment that drive cysteine nucleophilicity.  
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11 Figure 4. Amino acid content of IAA-reactive cysteines using 3D protein structures. 

Figure 4. Amino acid content of IAA-reactive cysteines using 3D protein structures. (A) 

Schematic highlighting Figure 4 analysis focuses on using tertiary structures of IAA-labeled 

cysteines resolved in associated PDB structures (306 high-reactive cysteines and 297 low-reactive 

cysteines). (B) Log2 ratio of amino acid frequencies within a 7.5 Å neighborhood around high-

reactive cysteines relative to low-reactive cysteines. Red bars indicate enriched residues in high-

reactive cysteine neighborhoods, while blue bars indicate depleted residues in these 
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neighborhoods. See Figure S7, Figure S8, and Data S3. 
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3.2.6 - Descriptors of IAA-reactive cysteines from 3D structures 

As pKa prediction was insufficient to predict cysteine reactivity and amino acid content 

analysis had pointed towards the likelihood of clear differences between the microenvironment of 

high- and low-reactive cysteines, we next opted to extend our analysis to consider additional 

features beyond amino acid content (Figure 5A). To capture potential structural features of 

reactive cysteines, we aggregated descriptors in the following categories: residue proximity, 

general structural motifs, solvent accessibility, predicted pocket presence, predicted pKa metrics, 

overall amino acid content (AAC), amino acid interactions (AAI), hydrogen bond interactions, 

physicochemical properties.  

We started with larger structural features, including  Secondary structure motifs and 

relative solvent accessibility (RSA) of cysteines, which we classified using the Dictionary of 

Secondary Structure-238,39 (DSSP-2). Parallel RSA values were also computed, based on the 

Kabsch and Sander method,39 for cysteines resolved in PDB structures to assess their exposure 

within the associated crystal structure. Fpocket40 release 4.2 was used to detect ligand-binding 

pockets and predicted pKa values were computed using PROPKA18 v3.1. B-factor and disorder 

were assessed using BioPython41 functions. We also focused on amino acid physicochemical 

properties and hydrogen bond interactions. For both 1D and 3D amino acid content, we used the 

aforementioned 7.5 Å cutoff and incorporated all amino acid information within this region into 

the descriptors. Amino acid type descriptors were then assigned based on residue and atom 

properties defined by Cheng et al,42 with  amino acid interaction descriptors assigned based on 

residue and atom properties defined by the Graph-based Residue neighborhood Strategy to Predict 

binding sites (GRaSP)43 method. Hydrophobicity around the cysteine was evaluated using the 

Kyte-Doolittle44 scale, and steric interactions were defined when the distance between the 

https://sciwheel.com/work/citation?ids=1235896,322014&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=322014&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=106566&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=326540&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16967878&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10264297&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=492614&pre=&suf=&sa=0
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cysteine’s SG atom and a neighboring atom was less than the sum of their Van der Waals radii.45 

Hydrogen bond descriptors categorized neighboring atoms as donors or acceptors from backbone 

or side chains,46–48 with counts divided by the total atoms within 5 Å and 7.5 Å distances, creating 

a detailed hydrogen bond profile. Rosetta49 was used to compute energetic contributions of various 

physicochemical properties for each reactive cysteine, using talaris2013 weights. In total, we 

generated 82 features for each cysteine (Data S3).  Full description of how the descriptors were 

generated can be found in the Supplementary Computational Methods.  

3.2.7 - pKa prediction is insufficient to predict cysteine reactivity  

Alongside structural features, availability of computational tools that predict cysteine pKa, 

most notably PROPKA18, highlights another potential opportunity for rapid discovery of reactive 

cysteines. Therefore, we next sought to investigate whether predictions of pKa could inform IAA 

reactivity—we acknowledge the clear limitation that IAA reactivity does not directly measure thiol 

pKa but instead provides a proxy for relative reactivity towards electrophiles. Towards 

understanding the relationship between pKa and IAA reactivity, we first examined five 

experimental cases where both reactivity and pKa had been directly measured (Table S2)50–54  

Several of these test cases corroborated the relationship between higher IAA reactivity and lower 

pKa values, such as C145 of MGMT which had a ratio of 0.87 and an experimental pKa of 5.3 

(Figure S9).50  

To further assess the relatedness of pKa predictions and measures of IAA-cysteine 

reactivity, we next expanded our analysis to a larger dataset using a predictive program to estimate 

pKa values across multiple cysteines. Using PROPKA18 version 3.1, we computed the predicted 

pKa for each cysteine-structure pair and calculated a median predicted pKa for all structures 

associated with a specific UniProtKB_C# identifier, and any predicted pKa greater than 14 was 

https://sciwheel.com/work/citation?ids=2282956&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16850053,16977191,5742769&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4578685&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16967944,345663,3282463,16970375,13376865&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=16967944&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
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set to 14 for clarity. Our analysis did not reveal a significant correlation between median theoretical 

predicted pKa values and isoTOP-ABPP reactivity measurements (Figure 5B). The average 

median predicted pKa for high reactive cysteines was 11.18 versus 10.71 for low-reactive 

cysteines. Thus, we conclude that PROPKA predicted pKa is generally not a useful proxy for IAA 

reactivity. 

A small subset of both the high- and low-reactive cysteines had predicted pKa values that 

strongly contrasted with their measured reactivity. Exemplifying this difference, for the high-

reactive cysteines, 34 residues had predicted pKa values greater than or equal to 14. For the low 

reactivity subset, 16 cysteines had predicted pKa values less than 8.5. Therefore, we opted to 

inspect these cysteines further to better understand the discrepancies between pKa prediction and 

measured IAA reactivity.  

For the high reactivity subset, we noted 16 cysteines involved in disulfide bonds, as 

annotated by UniProtKB and resolved structurally. This category of cysteine is exemplified by the 

redox active disulfide between C32 and C35 of thioredoxin (TXN) (Figure S10A).55 Five 

additional cysteines were also likely localized to disulfide bonds, as indicated by the presence of 

a disulfide bond in at least one associated structure or when another cysteine sulfur atom was 

within 3 Å (Figure S11 and Data S3). We also noted several additional proximal cysteine pairs 

just beyond this distance cutoff as exemplified by  ATP-dependent RNA helicase, DDX3X, in 

which the sulfur atom of C317 is 5.1 Å away from the sulfur atom of C298 (Figure S10B).56 

Intriguingly and pointing to possible unique features of the low reactivity and low pKa prediction, 

six of 16 cysteines were located near zinc ions in their associated structures, including C166 of 

Hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) and C150 of Zinc finger 

CCCH-type antiviral protein 1 (ZC3HAV1) (Data S3). Five of these 6 cysteines also had 

https://sciwheel.com/work/citation?ids=7348352&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15966055&pre=&suf=&sa=0
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UniProtKB annotations supporting their involvement in zinc binding or indicating their presence 

in zinc finger regions. Thus, we conclude that the difference in reactivity and predicted pKa may 

stem from redox active disulfide bonds and metal coordination for the high-reactive and low-

reactive cysteine subsets, respectively.   

3.2.8 - Prevalence of hyper-reactive cysteines in secondary structure motifs 

Previous studies have suggested that high-reactive cysteines are often located near alpha-

helices.16 Therefore, we next investigated whether this enrichment held true for our newly 

generated descriptors. We used the DSSP-2 algorithm to classify cysteines into four main 

categories: helices, beta sheets, loops, and conflicting annotations (Data S3). Among these 

classifications, 102 high-reactive cysteines were found in helices, 36 in beta sheets, and 116 in 

loops. In comparison, we observed 81 low-reactive cysteines in helices, 64 in beta sheets, and 97 

in loops (Figure 5C). As these analyses do not consider residue position in the secondary structure, 

we further subsetted the cysteines located in alpha helices to assess proximity to the helix N-

terminus. We defined a cysteine as being near the N-terminus of a helix if the nitrogen atoms of 

the two downstream residues (i+2 and i+3) were part of a helix and within 5 Å, even if the cysteine 

itself was not located within the helix. With this added filtering, we observe an increased number 

of reactive cysteines at the N-terminus of helices relative to lowly reactive cysteines, which 

indicates that our data corroborates that of prior reports (Figure S12).  

3.2.9 - Relative solvent accessibility and pocket detection of high-reactive cysteines 

We also examined the contribution of computationally predicted relative solvent 

accessibility (RSA) for each reactive cysteine. Again, using DSSP-2 program, we calculated the 

median RSA for each structure associated with a UniProtKB_C# identifier. We did not identify a 

statistically significant difference in RSA between high- and low-reactive cysteines (Mann-

https://sciwheel.com/work/citation?ids=7348529&pre=&suf=&sa=0
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Whitney U: 47,509.5, p = 0.2970) using either PDB structures or predicted protein structures from 

AlphaFold 257 (Figure 5D and Figure S13). On average, high-reactive cysteines had a median 

solvent accessibility of 15%, with 26% classified as “high-solvent accessible” (RSA ≥ 20), 15.7% 

as medium solvent accessible (10 ≤ RSA < 20), and the remainder as low-solvent accessible. Thus, 

we conclude that solvent accessibility is not sufficient to predict cysteine reactivity and that 

cysteines are frequently not highly solvent accessible, regardless of relative reactivity.  

Given the relatively small nature of the cysteine SG, we postulated that solvent 

accessibility alone might inadequately capture the accessibility of specific residues to labeling with 

the comparatively bulky IAA probe. Therefore, we also analyzed the proximity to pockets, using 

Fpocket40 release 4.2. Consistent with our hypothesis, we found a modestly increased number of 

high-reactive cysteines were located in pockets, when compared to low reactivity residues, 45% 

(139 out of 306) versus 34% (101 out of 297), respectively (Figure 5E). These findings are 

consistent with prior studies which noted that cysteines identified by IA-DTB or liganded by scout 

fragments (e.g. KB02, KB03, or KB05) are typically not exclusively in highly exposed 

regions.31,58,59 This pattern may reflect the functional importance of shielding high-reactive sites 

within potential binding pockets away from bulk solvent. 

3.2.10 - Correlation analysis of structural descriptors highlights the complex determinants 

of cysteine high reactivity 

Guided by the suggestive enrichments for high-reactive cysteines in pockets and alpha 

helices, we next broadened our analysis to the rest of our descriptors, with the goal of pinpointing 

key features that drive cysteine reactivity. We assessed the correlation between the descriptors and 

experimental cysteine reactivity measurements via Pearson Correlation Coefficients (PCC). The 

highest PCC, 0.16, was observed for the percentage of hydrogen bond acceptor backbone atoms 

https://sciwheel.com/work/citation?ids=11380218&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=106566&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16392525,16765782,16378834&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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within a 5 Å radius of high-reactive cysteines (Figure S14). This inverse relationship suggests that 

less reactive cysteines (higher isoTOP-ABPP reactivity ratios) may have fewer hydrogen bond 

donors available to stabilize the thiolate form. Unfortunately, no single descriptor emerged as a 

strong predictor of cysteine high reactivity. This lack of strong correlations between any individual 

descriptors and cysteine reactivity leads us to conclude that cysteine high reactivity towards IAA 

is likely governed by a combination of factors rather than any single structural feature.  
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12 Figure 5. Chemical, reactivity and structural properties of IAA-reactive cysteines. 

Figure 5. Chemical, reactivity and structural properties of IAA-reactive cysteines. (A) 

Collection of chemical, reactivity, and structural properties of IAA-reactive cysteines using tertiary 

structures. (B) Comparing computationally predicted pKa (PROPKA 3.1)18 values and quantitative 

cysteine reactivity isoTOP-ABPP ratios (R10:1). (C) Percentage of IAA-reactive cysteines in 

various secondary structure regions, as determined by DSSP-2.38,39 (D) Comparison of 

computationally determined relative solvent accessibility (DSSP-2) and quantitative cysteine 

reactivity isoTOP-ABPP ratios (R10:1). (E) Number of IAA-reactive cysteines in a predicted pocket 

(Fpocket 4.2)40. See Figures S9-S14 and Data S3. 

https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1235896,322014&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=106566&pre=&suf=&sa=0
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3.2.11 - Supervised learning for initial model development 

To test the hypothesis that a combination and features is driving cysteine reactivity, we set 

out to develop a model that could enhance our understanding of the structural drivers of cysteine 

reactivity (Figure 6A). Given the complexity of the data, we pursued a supervised machine 

learning approach to predict whether a cysteine was low-reactive (0) or high-reactive (1) towards 

IAA. Our goal was to identify patterns within the structural features that could distinguish between 

these two classes with a focus on correctly predicting the high-reactive cysteine class. 

To maximize the number of high-reactive cysteines in our training set, we opted to use the 

entirety of our experimental dataset as the “ground truth.”  Therefore, to establish an external test 

dataset, we subjected several additional published cysteine reactivity datasets11,26,63–65  to our 

curation pipeline, applying the  same filtering criteria and structural processing as we had for our 

training set, ensuring consistency in data handling (Data S2). Our external test dataset contains a 

randomly sample set of unique cysteines not included in our training set (Figure 6B). Out of the 

proteins in the test set, 231 are shared with proteins in the training set, though their cysteine 

residues are distinct between the sets.  

To determine the most suitable model for this task, we initially compared several machine 

learning algorithms, each offering distinct advantages based on the dataset’s characteristics. We 

tested Random Forest (RF), K-Nearest Neighbors (KNN), Classification and Regression Tree 

(CART), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) (Figure 

S15A). These algorithms were selected to cover a range of approaches, from ensemble methods 

(RF) to distance-based (KNN) and linear separation techniques (LDA and SVM), ensuring that we 

considered different ways of modeling the data. After running preliminary tests, we observed that 

while some algorithms excelled in certain aspects, they struggled with balancing the true positive 

https://sciwheel.com/work/citation?ids=3081773,16971383,9352844,16971382,16493959&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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rate (TPR) and false positive rate (FPR). To further optimize the models, we performed recursive 

feature elimination (RFE) (Figure S15B), which allowed us to reduce the feature set by selecting 

the most important descriptors. Despite these efforts, the best model performance we could achieve 

at this stage resulted in a TPR of 70% and an FPR of 44% (Figure S15C), testing on our external 

validation set. 

3.2.12 - Ablation studies for descriptor importance 

We refined the model by conducting ablation studies that assessed the influence of different 

categories of descriptors on the model’s TPR and FPR. By systematically removing individual 

descriptor categories, we identified the features that contributed most to true positive predictions 

(Data S3). This process revealed that including only three categories—AAC, hydrogen bond 

statistics, and RSA—resulted in a modest improvement for decreasing the false positive rate 

(baseline TPR of 71% and FPR of 39%) (Figure 6C). The optimized model comprised 29 features 

(Figure S16), with the most influential being the relative percentage of hydrogen bond acceptor 

backbone atoms within 5 Å, the percentage of valine residues within 7.5 Å, and RSA (Figure 6D). 

During model optimization, we also observed a trend in cysteines represented by multiple 

PDB structures, which showed an increase in correct prediction rates compared to those with only 

one structure (Figure S17). For cysteines with a single structure, the correct prediction rate was 

47%, while those with multiple structures achieved over 50% accuracy in 83 out of 267 cases. This 

indicates that additional structural data may provide further context for predictions.  

3.2.13 - Effect of multiple structural representations on prediction accuracy 

For example, the CIAA method predicted C141 of Flap Endonuclease (FEN1) to be high-

reactive in three out of four test structures, achieving 75% accuracy (Data S3). The structure 

3Q8M, which yielded an incorrect prediction, included both Chains A and B, each bound to a 
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double-stranded DNA segment, while the other structures—3Q8K, 5FV7, and 5ZOD—contained 

only one or no DNA segment (Figure S18). Studies show that FEN1’s cap helices near C141 in 

α-helix 6 become more ordered upon DNA binding,66 potentially altering access to C141 based on 

DNA-bound conformation.  

Another example, C2093 in DNA-dependent protein kinase (DNA-PK), demonstrated a 

similar pattern where multiple structures captured conformation-induced dynamics upon DNA and 

Ku70/80 binding. The X-ray crystallography structure 5LUQ, representing Apo-DNA-PKcs, 

predicted C2093 as low-reactive. In contrast, the electron microscopy structures 6ZFP (DNA-PKcs 

“state 2”), 7OTY (DNA-PKcs), and 5Y3R (DNA-PK holoenzyme) each representing various 

conformational states, predicted C2093 as high-reactive. In these structures, DNA-PK undergoes 

conformational adjustments, such as rotations and flexing of the N-terminal arm toward the FAT 

domain,67 altering the local environment around C2093 (Figure S19). These examples highlight 

how the inclusion of multiple structural states provides additional data that can influence predictive 

outcomes.  

3.2.14 - SHAP Analysis of feature contributions 

To further explore the impact of these features, we performed a SHapley Additive 

exPlanations (SHAP) analysis. Shapley values, derived from cooperative game theory, quantify 

the average marginal contribution of each feature to the model’s prediction of low-reactive (0) or 

high-reactive (1) cysteines.62,68 In our analysis, positive SHAP values indicated an increased 

likelihood of predicting high-reactive cysteines, while negative values decreased this likelihood. 

Specifically, lower values of hydrogen bond acceptor backbone atoms within 5 Å, valine residues 

within 7.5 Å, and RSA were found to increase the model’s ability to predict high-reactive cysteines 

(Figure 6E). These insights highlight the role of structural features related to hydrogen bonding, 

https://sciwheel.com/work/citation?ids=8645571&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12144976&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16970337,16311758&pre=&pre=&suf=&suf=&sa=0,0
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residue composition, and solvent accessibility as key drivers of the model’s improved predictive 

performance.  

Two examples of correctly predicted cases are high-reactive C100 in the Multifunctional 

methyltransferase subunit TRM112-like protein (TRNT112) and low-reactive C309 in Gasdermin-

D (GSDMD) (Figure 6F and Figure 6G, respectively). The microenvironment of C100 features 

an abundance of backbone hydrogen bond donors from nearby residues such as Ser11, Gly20, and 

Ser103, compared to a limited number of backbone acceptor hydrogen bond atoms. In contrast, 

C309 in GSDMD has fewer hydrogen bond donors available in its microenvironment and is 

situated near the acidic residue Asp305. 

3.2.15 - Model limitations and performance across protein functional classes 

It is important to acknowledge the limitations of our model by examining cases where it 

failed. We compared correct and incorrect predictions across experimental structure determination 

methods. The model performed consistently across methods, with the highest TPR of 69% for X-

ray structures (n = 370 PDBs) and the lowest TPR of 50% for NMR structures (n = 31 PDBs) 

(Figure S20). Despite a true negative rate (TNR) of 72% for NMR structures, the false negative 

rate (FNR) was also 50%. Interestingly, many cysteines incorrectly predicted as high-reactive 

using NMR structures were from proteins involved in transcription or regulation, particularly 

DNA/RNA-binding proteins, which may undergo significant conformational changes upon ligand 

binding. Examples include C416 near the flexible loop region of Nucleus accumbens-associated 

protein 1 (NACC1)69 and C1070 in the unstructured C-terminal region of bifunctional 3’-5’ 

exonuclease/ATP-dependent helicase (WRN).69,70 This suggests that including NMR structures 

from conformationally flexible proteins may have reduced model performance by introducing false 

negatives. 

https://sciwheel.com/work/citation?ids=11941494&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11941494,1474663&pre=&pre=&suf=&suf=&sa=0,0
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To explore whether protein functional classes influenced incorrect predictions, we further 

examined model accuracy across these classes. The model achieved the highest accuracy (78%) 

when predicting high-reactive cysteines in nucleic acid/small molecule-binding proteins, 

chaperones, transporters, channels, and receptors (Figure S21). However, it struggled with 

correctly predicting low-reactive cysteines for enzymes, leading to an increase in false positives. 

Most high-reactive cysteines in our training set fall within a modest RSA range (5-20%), but the 

model struggles with highly solvent-accessible cysteines in enzymes that appear ligandable but are 

not necessarily high-reactive (Figure S22). This could be due to missing descriptors that capture 

pre-binding states, hidden allosteric pockets, or metrics accounting for ligand accessibility and 

specific protein-ligand interactions. For instance, low-reactive C14 of Uroporphyrinogen-III 

synthase (UROS) (R10:1 = 19.22) was incorrectly predicted to be high-reactive. However, C14 of 

UROS was shown to be liganded by an acrylamide derivative with a phenyl-oxazole substituent71 

and has a high RSA of 84% (PDB: 1JR2).  

3.2.16 - Model limitations and performance using AlphaFold 2 structures 

We also explored the application of the CIAA model using AlphaFold 2 structures, as not 

all proteins in our experimental dataset had associated crystal structures in the PDB, or the reactive 

cysteines of interest were not resolved in their structures. AlphaFold 257 provides computational 

predictions of protein structures based on sequences for over 200 million proteins. Leveraging this 

abundance of data, we tested our CIAA model using AlphaFold 2 structures in place of PDB 

structures. We identified cases from our test set that were correctly predicted using PDB structures 

(Figure 6C) and obtained the corresponding AlphaFold 2 structures (accessed 2301). Upon 

testing, the model achieved an accuracy of 72.5% (Figure S23A). 

https://sciwheel.com/work/citation?ids=10692184&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11380218&pre=&suf=&sa=0
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Next, we examined whether we could use AlphaFold 2 structures to predict cysteine 

reactivity towards IAA for proteins lacking associated crystal structures in the PDB or those 

without resolved reactive cysteines. We identified such proteins from our experimental dataset (n 

= 409) and downloaded their AlphaFold 2 structures. However, unlike the prior performance with 

AlphaFold 2 structures, the model showed lower accuracy, achieving only 52.3%. Most of the 

misclassifications involved high-reactive cysteines incorrectly predicted as low-reactive (Figure 

S23B). 
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13 Figure 6. Features of reactive cysteines can be used to build CIAA, a random forest model to predict cysteine 
reactivity towards IAA. 

Figure 6. Features of reactive cysteines can be used to build CIAA, a random forest model 

to predict cysteine reactivity towards IAA. (A) Workflow of extracting features of cysteine 

reactivity using protein structures as input for a random forest algorithm to predict cysteines highly 

reactive and lowly reactive towards IAA. (B) Table of datasets obtained from literature, showing 

the number of randomly sampled unique highly reactive and low-reactive cysteines used as input 

for our testing set. (C) Confusion matrix heatmap showing the distribution of true positive, false 
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positive, true negative, and false negative cases from the random forest algorithm. The matrix 

provides a visual representation of the model’s classification performance, where the rows 

represent the actual classes (high- or low-reactive) and the columns represent the predicted classes. 

The observed reactivity classes are based on quantitative cysteine reactivity isoTOP-ABPP ratios 

(R10:1). (D) Bar graph showing the most important features of the model, where feature importance 

scores were calculated using Gini importance.60 The height of each bar represents the relative 

contribution of each feature to the model’s predictions, with higher bars indicating greater 

importance in determining high- or low-reactive cysteines. (E) SHapley Additive exPlanations 

(SHAP) summary showing the impact of selected features on the predicted classification (high- or 

low-reactive cysteines).61,62 Each point represents a test case, with the position on the x-axis 

indicating the magnitude and direction of the feature’s effect on the prediction. The color of each 

point represents the feature value, with pink indicating higher feature values and blue indicating 

lower feature values. Features with larger SHAP values have a greater impact on the prediction. 

(F) Close up view of correctly predicted high-reactive C100 of Multifunctional methyltransferase 

subunit TRM112-like protein (TRNT112) (PDB: 6KHS). Hydrogens are omitted for clarity. 

Potential hydrogen bonds are represented by blue dashed lines. (G) Close up view of correctly 

predicted low-reactive C309 of Gasdermin-D (GSDMD) (PDB: 5NH1). Hydrogens are omitted 

for clarity. Potential hydrogen bonds are represented by blue dashed lines. See Figure S15-23 and 

Data S3. 

  

https://sciwheel.com/work/citation?ids=16973054&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12157078,16970337&pre=&pre=&suf=&suf=&sa=0,0
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3.3 - Discussion  

To enhance the discovery of high-reactive and likely functional cysteine residues, here we 

developed “Cysteine reactivity towards IodoAcetamide Alkyne (CIAA),” an in silico method 

designed for high-throughput, high-coverage investigations of cysteine reactivity. CIAA 

incorporates published and in-house chemoproteomics studies, which in aggregate measure 

reactivity towards IAA for 9,783 cysteines, including 823 classified as high-reactive—thus our 

work more than doubles the number of known high-reactive cysteines previously reported in the 

literature. Enabled by this data, we mined protein structures to define features that indicate cysteine 

reactivity. Consistent with prior studies, find that high-reactive cysteines are frequently located 

near histidines, prolines, and positively charged residues and are found in alpha helices.13 Aligning 

with recent efforts to analyze a related class of ligandable, potentially “druggable,” cysteines,72 we 

also observe an enrichment for high-reactive cysteines in pockets—we expect that some of these 

residues could serve as useful starting points for drug development campaigns and that such highly 

reactive cysteines may prove particularly tractable for hit-to-lead optimization.  

As none of these features alone were sufficient to provide a high confidence metric of 

cysteine likely reactivity, we incorporated all descriptors into a supervised random forest model, 

which resulted in an overall accuracy of 68%, with key predictive features including the depletion 

of hydrogen bond acceptor atoms, depletion of valine residues, and intermediate values of relative 

solvent accessibility. Although the model achieved a true positive rate of 71%, the false positive 

rate of 39% prompted further examination of its limitations. Many misclassified cysteines were 

located within conformationally dynamic proteins or highly solvent-accessible regions, indicating 

that protein dynamics, such as shifts between open and closed states, significantly impact reactivity 

predictions. For example, C285 of CASP1, experimentally classified as low-reactive, was 

https://sciwheel.com/work/citation?ids=7348561&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15188932&pre=&suf=&sa=0
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predicted to be high-reactive by the CIAA model when analyzed in the active conformation of 

CASP1 (PDB: 6BZ9)-we expect this disconnect stems from the nonapoptotic nature of the 

proteomes analyzed, in which CASP1 should exist largely in the zymogen or inactive form. Thus 

we conclude that state-dependent cysteine reactivity may rationalize some of the differences 

observed between the model and proteomic measurements.11,73 Looking beyond state-dependent 

activities, our work also highlights ongoing challenges in computational predictions, particularly 

in protein structure selection and dataset curation as being critical for model performance. Future 

efforts to improve our model’s performance will likely benefit from incorporating protein 

dynamics and other state-specific features, such as protein interactions, together with stringent 

dataset and structure curation.  

Looking beyond structurally resolved cysteines, the rapid growth of protein structure 

prediction, most notably via AlphaFold,57 opens up tremendous opportunities for in silico 

discovery of reactive, functional, and ligandable cysteines proteome-wide in a species-agnostic 

manner 

Analyzing over 1,000 Protein Data Bank (PDB) structures alongside computationally 

predicted AlphaFold 2 models, CIAA distinguishes high-reactive cysteines from low-reactive ones 

with notable accuracy. This work represents a significant step forward in merging proteomics with 

structural biology, providing a robust tool for exploring cysteine reactivity towards IAA and 

paving the way for new applications in drug discovery and protein research. Here, our first-pass 

attempts at realizing this vision fell short, likely due to side chain conformations that differed from 

experimentally determined structures,74 which diminished the model performance. We are 

optimistic that future implementations of AlphaFold 2 and related tools will prove compatible with 

https://sciwheel.com/work/citation?ids=17064053,16493959&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11380218&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15153357&pre=&suf=&sa=0
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in silico cysteine analysis.75 Such efforts will also benefit from ongoing efforts to increase 

chemoproteomic dataset size to further improve training set quality.71,76–78 
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3.4 Methods 

Data Storage 

This work used computational and storage services associated with the Hoffman2 Shared 

Cluster provided by UCLA Office of Advanced Research Computing’s Research Technology 

Group. 

Data Availability 

The MS data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset 

identifier PXD056064. File and peptide details are listed in Table 3.1. 

Code Availability 

The original code has been deposited at https://github.com/BackusLab/ciaa_app and is 

publicly available as of the date of publication. 

3.4.1 - Experimental Methods 

Cell culture.  

Cell culture reagents including Dulbecco’s phosphate-buffered saline (DPBS), Roswell 

Park Memorial Institute (Gibco™ RPMI 1640 Medium, 11875119) media, Dulbecco’s Modified 

Eagle Medium (DMEM, Gibco™ 11995073) media and penicillin/streptomycin (Pen/Strep, 

Gibco™, Penicillin-Streptomycin 10,000 U/mL, 15140122) were purchased from Fisher 

Scientific. Fetal Bovine Serum (FBS) was purchased from Avantor Seradigm (Avantor®, 

Seradigm, Premium Grade Fetal Bovine Serum, Cat.No. 97068-085, lot #214B17). All cell lines 

were obtained from ATCC and were maintained at a low passage number (< 20 passages). 

HEK293T (ATCC: CRL-3216) cells were cultured in DMEM supplemented with 10% FBS and 

1% antibiotics (Penn/Strep, 100 U/mL). Jurkat (ATCC: TIB-152) cells were cultured in RPMI-

http://proteomecentral.proteomexchange.org/
https://github.com/BackusLab/ciaa_app
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1640 supplemented with 10% FBS and 1% antibiotics (Penn/Strep, 100 U/mL). Media was filtered 

(0.22 μm) prior to use. Cells were maintained in a humidified incubator at 37 °C with 5% CO2. 

Cell line was tested monthly with the Mycoplasma detection kit (InvitroGen). 

Cell harvesting and cell lysis.  

Cells were harvested by centrifugation (4500g, 5 min, 4 °C) and washed twice with cold 

DPBS. Cell pellets were then lysed with sonication using an Ultrasonic Probe Sonicator at 

amplitude 2 for 10 pulses, 1 second pulse, 1 second off on ice and fractionated with 

ultracentrifugation (100,000 g, 1 hr, 4 °C). Supernatant was saved as the soluble fraction. Pellet 

was resuspended with 500 μL PBS, sonicated and saved as the membrane fraction. Protein 

concentrations were determined using a Bio-Rad DC protein assay kit (Cat. No. 5000112 BioRad 

Life Science) and the lysates were diluted to lysate diluted to the working concentrations indicated 

below. 

Cysteine labeling.  

After cells were harvested and lysed, as stated, lysate concentrations were then adjusted to 

2 mg/mL. For cysteine reactivity quantification, lysates were then labeled with either 10 µM or 

100 µM iodoacetamide alkyne (IAA) for 1h at room temperature (RT). Samples were then 

subjected to bioorthogonal copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate 

isotopically labeled tobacco etch virus (TEV)-cleavable biotinylated peptide tags. To 200 µL cell 

lysates (2 mg/mL), samples were combined with a premixed cocktail of click reagents consisting 

of TEV tags (4µl of 5 mM stock, final concentration= 100 µM), TCEP (4 µl of fresh 50 mM stock 

in water, final concentration 1 mM), TBTA (12 µl of 1.7 mM stock in DMSO/t-butanol 1:4, final 

concentration = 100 µM), and CuSO4 (4 µl of 50 mM stock in water, final concentration = 1 mM). 

After 1h, the samples were then combined pairwise (400 µL total) and treated with 40 µL of 10% 
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SDS (1% SDS final) followed by 0.5 µL of benzonase (Novagen™ Benzonase™ Nuclease, Purity 

>90% MilliporeSigma™ 707464). Samples were left to incubate for 30 min at 37 ℃. Following 

benzonase treatment, samples were subjected to the previously reported Single-Pot Solid-Phase-

enhanced sample-preparation (SP3) protocol.12,32 

Single-Pot Solid-Phase-enhanced sample-preparation (SP3).  

40 μL Sera-Mag SpeedBeads Carboxyl Magnetic Beads, hydrophobic (GE Healthcare, 

65152105050250) and 40 μL Sera-Mag SpeedBeads Carboxyl Magnetic Beads, hydrophilic (GE 

Healthcare, 45152105050250) were mixed and washed with water three times. The bead slurries 

were then transferred to the lysate, incubated for 10 min at RT with shaking (1000 rpm). 400uL of 

200 proof EtOH was added to each sample and the mixtures were incubated for 5 min at RT with 

shaking (1000 rpm). The beads were then washed (2 × 1 mL 80% EtOH) with a magnetic rack. 

Proteins were eluted from SP3 beads with 200 μL of 0.5% SDS in PBS for 30 min at 37 °C with 

shaking (1000 rpm). 10 μL of 200 mM DTT (10 μM final concentration) was then added to each 

sample and the samples incubated at 65 °C for 15 min. Following reduction, 10 μL of 400 mM 

iodoacetamide (20 μM final concentration) was added to each sample and the samples incubated 

for 30 min at 37 °C with shaking at 300 rpm. Subsequently, 600 μL of 200 proof ethanol was added 

to each sample, and the samples were incubated for 5 min at ambient temperature with shaking 

(500 rpm). Beads were then washed three times with 80 % ethanol in water. Samples were then 

diluted with 150 μL 2M urea in PBS followed by the addition of reconstituted MS grade trypsin 

(2 µg, Promega, V5111). The samples were subjected to water bath sonication for 1 min and 

subsequently left to digest overnight (16 - 18hr) at 37℃ and shaking at 200 rpm. The digested 

peptide solution and SP3 beads were then transferred into 15 mL falcon tubes. Peptides were then 

rebound to SP3 beads via the addition of 3.8 mL of 100% acetonitrile for a final percentage of 

https://sciwheel.com/work/citation?ids=6655289,11898879&pre=&pre=&suf=&suf=&sa=0,0
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≥95% acetonitrile by volume and the peptides were subjected to shaking at 1000 rpm for 10 

minutes at ambient temperature. Beads were collected using a magnet and solution was discarded. 

Samples were washed with 1 mL of 100% acetonitrile three times. Digested peptides were then 

eluted with 100 µL of 2% DMSO in water, shaking at 1000 rpm for 30 min at 37℃. Supernatant 

was collected in a 1.5 mL centrifuge tube on ice after separating SP3 beads with a magnetic rack. 

SP3 beads were resuspended with an additional 100 µL of 2% DMSO in water, shaking at 1000 

rpm for 45 min at 37℃. Supernatant was collected after separating SP3 beads with a magnetic 

rack and combined with the previous elution volume (200 µL total).  

Streptavidin enrichment of labeled proteins.    

PierceTM Streptavidin Agarose resin (Thermo ScientificTM, PI20353) (100 µL of resin) was 

first washed 3x in 10 mL of PBS by centrifugation at 1,800 x g for 3 min per wash. Solution was 

aspirated, making sure not to disturb spun down resin. After washing, resin was resuspended in 1 

mL PBS/sample and re-distributed into 1.5 mL microcentrifuge tubes. The 200 µL peptide elution 

from previously prepared SP3 method was then added to the 1 mL of PBS/streptavidin resin. 

Samples were enriched by rotation for 2h at ambient temperature. After enrichment, the resin was 

collected by centrifugation at 1,400 x g for 5 min, and supernatant was aspirated and discarded. 

The resin was then subjected to washes 2x in 1 mL of PBS and 2x in 1 mL of water by 

centrifugation at 1,400 x g for 5 min per wash. After carefully aspirating and discarding the water, 

the resin/peptide slurry was then treated with a TEV protease following the “TEV digestion” 

protocol. 

TEV digestion of labeled peptides.  

Following streptavidin enrichment, samples were resuspended in 75 µL TEV buffer (50 

mM Tris, pH 8, 0.5 mM EDTA, 1 mM DTT). To the resuspended samples, 1.5 µL TEV protease 
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(2 mg/mL or 70 µM; MacroLab, UC Berkeley) was added and the reactions were rotated for 7h at 

30°C. The samples were then harvested by centrifugation (3,000 x g, 1 min) and the supernatant 

was collected. The collected peptides were then desalted using PierceTM C18 100 µL Tips (Thermo 

ScientificTM, 87784) following the manufacturer's protocol. Briefly, 10 mL of the following four 

solutions were prepared; A) 100% acetonitrile, B) 50:50 acetonitrile:ultra pure water, C) Ultra pure 

water with 0.1% trifluoroacetic acid, and D) 60% acetonitrile with 0.1% trifluoroacetic acid in 

ultrapure water. Each C18 100 µL tip was first equilibrated with 100 µL with solution A for a total 

of two times followed by equilibration with solution B for a total of two times. The tips were then 

washed with 100 µL of solution C for a total of three times. Finally, 100 µL of samples were loaded 

into the tips and subsequently washed 2x with solution C. Samples were then eluted with 100 µL 

of solution D. Following desalting, each 100 µL sample was dried by speedvac, reconstituted in 

20 μL of 5% acetonitrile and 1% formic acid in water, and analyzed by LC-MS/MS. 

Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) analysis.  

The samples were analyzed by liquid chromatography tandem mass spectrometry using a 

Thermo Scientific™ Orbitrap Eclipse™ Tribrid™ mass spectrometer. Peptides were fractionated 

online using a 18 cm long, 100 μM inner diameter (ID) fused silica capillary packed in-house with 

bulk C18 reversed phase resin (particle size, 1.9 μm; pore size, 100 Å; Dr. Maisch GmbH). The 

70-minute water-acetonitrile gradient was delivered using a Thermo Scientific™ EASY-nLC™ 

1200 system at different flow rates (Buffer A: water with 3% DMSO and 0.1% formic acid and 

Buffer B: 80% acetonitrile with 3% DMSO and 0.1% formic acid). The detailed gradient includes 

0 – 5 min from 3 % to 10 % at 300 nL/min, 5 – 64 min from 10 % to 50 % at 220 nL/min, and 64 

– 70 min from 50 % to 95 % at 250 nL/min buffer B in buffer A. Data was collected with charge 

exclusion (1, 8, >8). Data was acquired using a Data-Dependent Acquisition (DDA) method 
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consisting of a full MS1 scan (Resolution = 120,000) followed by sequential MS2 scans 

(Resolution = 15,000) to utilize the remainder of the 1 second cycle time. Precursor isolation 

window was set as 1.6 and normalized collision energy was set as 30%. The MS data have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset 

identifier PXD056064.  

Protein, peptide, and cysteine identification.  

Raw data collected by LC-MS/MS were converted to mzML and searched with MSFragger 

(v3.3) and FragPipe (v19.0).33,34,79,80 The proteomic workflow and its collection of tools was set 

as default and PTMprophet was enabled.81  Precursor and fragment mass tolerance was set as 20 

ppm. Missed cleavages were allowed up to 1. Peptide length was set 7 - 50 and peptide mass range 

was set 500 - 5000. For identification, cysteine residues were searched with differential 

modification C+. For cysteine reactivity quantification, MS1 labeling quant was enabled with 

Light set as C+521.3074 and Heavy set as C+527.3213. MS1 intensity ratio of heavy and light 

labeled cysteine peptides were reported with Ionquant (v1.8.9).34 Calibrated and deisotoped 

spectrum files produced by FragPipe were retained and reused for this analysis. The MS search 

data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository 

with the dataset identifier PXD056064. MS2 spectra data were searched using a reverse 

concatenated, non-redundant variant of the Human UniProtKB database (release-2020_01). 

Custom python scripts were implemented to compile labeled peptide datasets. Unique proteins, 

unique cysteines, and unique peptides were quantified for each dataset. Unique proteins were 

established based on UniProtKB protein IDs. Unique peptides were found based on sequences 

containing a modified cysteine residue. Unique cysteines were classified by an identifier consisting 

of a UniProtKB protein ID and the amino acid number of the modified cysteine 

https://sciwheel.com/work/citation?ids=3455721,11108983,9495613,10203340&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=13066303&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11108983&pre=&suf=&sa=0
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(UniProtKBID_C#); residue numbers were found by aligning the peptide sequence to the 

corresponding UniProtKB protein sequence. When there are multiple cysteines in one peptide, all 

the modified cysteine residue numbers will be reported as UniProtKBID_C#. Unique cysteines 

that were not found in at least two replicates and had an average isoTOP-ABPP ratio greater than 

three were discarded from further analysis.  
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3.4.2 - Computational Methods 

Identification of High-reactive Cysteines in CysDB v1.5 

Cysteines identified as high-reactive towards IAA from isoTOP-ABPP cysteine 

chemoproteomics experiments were downloaded from  CysDB30 (2401-release). CysteineIDs of 

“high-reactive” cysteines were cross-referenced with the list of cysteine identifiers in Data S1. 

Active Site, Binding Site, Catalytic Activity, Disulfide Bond and Redox Potential Annotations 

of Detected Cysteines 

Counts of how many proteins had UniProtKB annotations for active sites, binding sites, 

catalytic activity, disulfide bonds and redox potentials were calculated. Further parsing of 

UniProtKB active and binding site annotations were extracted to obtain specific residues and 

amino acid numbers. Positions of binding and active sites that were not cysteine residues were 

discarded. Exact amino acid positions of UniProtKB cysteine active and binding sites were cross-

referenced with cysteine identifiers.  

Cysteines Resolved in Crystal Structures 

UniProtKB proteins from cysteines identified in Data S1 were mapped to their 

corresponding Protein Data Bank82 (PDB) identifiers. Peptides associated with reactive cysteines 

from Data S1 were extracted for mapping to the corresponding PDB residue numbers. PDB 

structures were programmatically downloaded and parsed using the fetchPDB() and parsePDB() 

functions from the Protein Dynamics & Sequence Analysis83 (ProDy) python package. To identify 

peptide sequences of reactive cysteines that were resolved in their associated PDB structures, 

fragments of each peptide (i - 3 : i : i + 3) were mapped to the residues in the associated structure. 

Lists of peptide fragments found in associated PDB structures were stored. 

  

https://sciwheel.com/work/citation?ids=14904677&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3366828&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11319537&pre=&suf=&sa=0
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PDB Filtering 

From the list of peptide fragments found in PDB structures, these PDBs were parsed again 

to obtain further information including, protein modifications, mutations, engineered mutations, 

experimental determination method and resolution (for X-ray crystallography and electron 

microscopy structures). PDB sequences were also inspected for “completeness.” The number of 

disordered residues, designated by an “X”, at the N- and C-termini were counted. If the sum of 

disordered residues at the N- and C-termini were equivalent to the total number of disordered 

residues within the structure, the PDB was classified as “complete.” For these “complete” PDBs, 

a new PDB structure was written, removing any water molecules and crystallographic additives.  

Each “complete” PDB was analyzed for potential heteroatoms, ions, and protein or nucleic 

acids within 6 Å of the reactive cysteine’s resolved SG atom. The presence of alternative locations 

for side chains within 6 Å were noted, as well as the completeness of the side chains within 6 Å. 

These structures were then cross-referenced with a pre-compiled list of non-redundant protein 

chains from PISCES 37 (accessed November 2023). Representative chains were chosen based on 

either the highest resolution for X-ray crystallography or R-values for nuclear magnetic resonance 

spectroscopy (NMR) structures, where X-ray structures are given priority over other experimental 

determination methods.37 

  

https://sciwheel.com/work/citation?ids=1235898&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1235898&pre=&suf=&sa=0
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Criteria 

No mutated or modified cysteine residue 

Sequence complete 

(tolerance of 5 missing residues on N-, C-terminus, or both) 

No heteroatoms (including ions, except Zn) nearby (at < 6 Å of SG atom) 

No nucleic acids nearby (at < 6 Å of SG atom) 

No altloc for sidechains (at < 6 Å of SG atom) 

Nearby side chains complete (at < 6 Å of SG atom) 

Functional Annotations of Detected Proteins 

Custom Python scripts classified protein functions based on annotations in the 

UniProtKB/Swiss-Prot database (2301-release), Human Protein Atlas84 (HPA) version 21.1 and 

the ScaPD85 database. UniProtKB keywords were parsed to classify proteins into five broad 

functional categories: chaperones/transporter/channel/receptor, enzyme, nucleic acid and small 

molecule binding, scaffolding/modulator/adaptor, transcription factor/regulator and 

uncategorized. Transcription factors, channels and transporters were also found using protein class 

descriptions from the HPA. In addition, examples of experimentally validated scaffolding proteins 

were collected from the ScaPD database. For proteins in more than one category, annotations were 

prioritized based on the following: enzyme > chaperones/transporter/channel/receptor > 

scaffolding/modulator/adaptor > transcription factor/regulator > nucleic acid and small molecule 

binding. 

https://sciwheel.com/work/citation?ids=25431&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15381278&pre=&suf=&sa=0
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Primary Sequence Logo 

Peptides associated with high-reactive cysteines from Data S1 were mapped to their 

corresponding canonical protein sequences using the UniProtKB reference FASTA (2301-release). 

Sequences were generated by fixing the high-reactive cysteine at position 0 and including the 10 

amino acids upstream and downstream in the primary sequence, resulting in 21-amino-acid 

peptides. Starting with 823 high-reactive cysteines and 996 low-reactive cysteines, sequences were 

aligned to meet the input requirements of the pLogo software. The dataset was subsequently 

reduced to 765 high-reactive cysteines as the foreground and 805 low-reactive cysteines as the 

background. These sequences (n = 765) and their corresponding UniProtKB identifiers were 

compiled into a FASTA file for multiple sequence alignment (MSA) using CLUSTALW.86 The 

MSA results were then used as input for pLogo.35 The same process was applied to peptides 

associated with low-reactive cysteines (n = 805), which served as the background set. The 

sequence logo was generated using pLogo (http://plogo.uconn.edu). 

  

https://sciwheel.com/work/citation?ids=714483&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=401025&pre=&suf=&sa=0
http://plogo.uconn.edu/
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Tertiary Structure Amino Acid Composition of Hyper-reactive Cysteines 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 5 Å, 7.5 Å, and 10 Å of the reactive cysteine SG 

atom was generated, excluding atoms from the reactive cysteine itself. These neighboring atoms 

were grouped by their residue names and amino acid numbers, and only unique residue identifiers 

(PDB_Chain_C#) were retained to avoid overcounting the same residue. If a residue had at least 

one atom within the specified radius, it was counted only once as a unique entity, ensuring a non-

redundant representation of the local environment. 

To determine the amino acid composition, we calculated the ratio of each of the 20 amino 

acids in both the high-reactive and low-reactive sets. For the high-reactive set, each amino acid 

was counted once per residue within the 7.5 Å radius and divided by the total number of unique 

residues in the set. This process was repeated for each of the 20 amino acids. The same procedure 

was applied to the low-reactive set. Finally, the Log2 ratio of each amino acid’s distribution in the 

high-reactive set to its distribution in the low-reactive set was calculated. This allowed us to 

compare the differences in amino acid content between the two sets using 3D protein structures. 

A 5 Å cutoff provided a larger number of significant proximal relations, while a 10 Å cutoff 

dramatically reduced the number of proximal connections. Therefore, we continued using a 7.5 Å 

cutoff to balance the need for proximal relations without overwhelming the data with noise. 
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Cysteines in Secondary Structure Motifs 

The Dictionary of Secondary Structure-238,39 (DSSP-2) algorithm was used to classify the 

secondary structure motifs of each reactive cysteine. DSSP codes H (“alpha-helix”), G (“3-helix”), 

and I (“5-helix”) were grouped as motifs pertaining to helices. DSSP codes B (“residue in isolated 

β-bridge”) and E (“extended strand, participates in β ladder”) were grouped as motifs pertaining 

to beta sheets. DSSP codes T (“hydrogen bonded turn”) and S (“bend”) were grouped as motifs 

pertaining to loops. Cysteines resolved in PDB structures that had DSSP codes in two or more of 

the three groups were categorized as “Conflict” and cysteines resolved in PDB structures that did 

not have a DSSP code were categorized as “NA.” 

Secondary Structure DSSP Code Category 

Alpha helix (4-12) H Helix 

Isolated beta-bridge residue B Beta Sheet 

Strand E Beta Sheet 

3-10 helix G Helix 

Pi helix I Helix 

Turn T Loop 

Bend S Loop 

None - NA 

 

  

https://sciwheel.com/work/citation?ids=1235896,322014&pre=&pre=&suf=&suf=&sa=0,0
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Cysteines in Zinc-Binding Motifs 

Counts of how many proteins had UniProtKB annotations for binding sites were calculated. 

Further parsing of UniProtKB binding site annotations were extracted to obtain specific residues, 

amino acid numbers, and ligands. Positions of binding sites that did not have zinc as the associated 

ligand were discarded. Exact amino acid positions of UniProtKB zinc binding sites were cross-

referenced with cysteine identifiers.  

Predicted pKa values of Cysteines Resolved in PDB Structures 

PROPKA18 v3.1 was used to compute the predicted pKa value of each reactive cysteine 

resolved in an associated crystal structure. For each UniProtKBID_C# identifier, the median 

predicted pKa was computed. 

Relative Solvent Accessibility of Cysteines Resolved in PDB Structures 

DSSP-2 was used to compute the relative solvent accessibility (RSA), based on the Kabsch 

and Sander method, of each reactive cysteine resolved in an associated crystal structure. For each 

UniProtKBID_C# identifier, the median RSA was computed. 

Pocket detection of high-reactive cysteines of Cysteines Resolved in PDB Structures 

Fpocket40 release 4.2 was used to detect ligand-binding pockets in each of the training set 

PDB structures. For each PDB, the resulting pocket folders were queried to extract all cysteine 

residues. A cysteine, based on a UniProtKBID_C# identifier, was classified as “in a predicted 

pocket” if it appeared in at least one predicted pocket. 

  

https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=106566&pre=&suf=&sa=0


 157 

Residue 1D Proximity Descriptors 

Peptides associated with high-reactive cysteines from Data S1 were mapped to their 

corresponding canonical protein sequences using the UniProtKB reference FASTA (2301-release). 

Sequences were generated by fixing the high-reactive cysteine at position 0. The distance (in 

number of amino acids) from the high-reactive cysteine at position 0 to the first occurrence of 

another cysteine, upstream in the primary sequence, was defined as the “1D_prox_left” descriptor. 

Similarly, the distance to the first occurrence of another cysteine downstream in the primary 

sequence was defined as the “1D_prox_right” descriptor. In both cases, the other cysteine had to 

be distinct from the high-reactive cysteine itself. 

Secondary Structure Motif Descriptors 

The DSSP-2 algorithm was used to classify the secondary structure motifs of each reactive 

cysteine. DSSP codes H (“alpha-helix”), G (“3-helix”), and I (“5-helix”) were grouped as motifs 

pertaining to helices. DSSP codes B (“residue in isolated β-bridge”) and E (“extended strand, 

participates in β ladder”) were grouped as motifs pertaining to beta sheets. DSSP codes T 

(“hydrogen bonded turn”) and S (“bend”) were grouped as motifs pertaining to loops. Cysteines 

resolved in PDB structures that had DSSP codes in two or more of the three groups were 

categorized as “Conflict,” and cysteines without a DSSP code were categorized as “NA.”  

The helix, beta sheet, and loop categories were one-hot encoded, converting the secondary 

structure information into a binary format with separate descriptors for helix, beta sheet, and loop. 

Residue 3D Proximity Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine’s 

SG atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine’s SG atom was 

generated, excluding atoms from the reactive cysteine itself. Atoms from non-cysteine residues 
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were discarded. The Euclidean distance between the SG atom of each neighboring cysteine and 

the SG atom of the reactive cysteine was then calculated. The shortest distance was defined as the 

“3D_prox” descriptor. 

Amino Acid Content Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. These neighboring atoms were grouped by 

their residue names and amino acid numbers, and only unique residue identifiers (PDB_Chain_C#) 

were retained to avoid overcounting the same residue. 

To determine the amino acid composition, the occurrences of each of the 20 amino acids 

were counted and divided by the total number of unique residue identifiers (PDB_Chain_C#) 

within 7.5 Å of the reactive cysteine SG atom. 

Amino Acid Type Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. These neighboring atoms were grouped by 

their residue names and amino acid numbers, and only unique residue identifiers (PDB_Chain_C#) 

were retained to avoid overcounting the same residue. 

Amino acid type descriptors were assigned based on the residue and atom properties 

described by Cheng et al.42 Each residue in the reactive cysteine neighborhood was classified into 

one of the following categories: polar (P), acidic (A), basic (B), aliphatic (ALI), and aromatic 

(ARO). The number of atoms in each category was counted and divided by the total number of 

https://sciwheel.com/work/citation?ids=16967878&pre=&suf=&sa=0
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residues within the 7.5 Å cutoff of the reactive cysteine SG atom, yielding the percentage of P (or 

other category) residues in relation to the total residues in the cysteine’s neighborhood. 

Atom Type Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. Amino acid interaction descriptors were 

assigned based on the residue and atom properties described by the Graph-based Residue 

neighborhood Strategy to Predict binding sites (GRaSP)43 method. Each atom in the reactive 

cysteine neighborhood was classified into one of the following categories: hydrophobic (HPB), 

donor (DON), acceptor (ACP), aromatic (ARO), positive (POS), negative (NEG), sulfide bridge 

(SSB), or “-”. The number of atoms in each category was counted and divided by the total number 

of atoms within the 7.5 Å cutoff of the reactive cysteine SG atom, yielding the percentage of HPB 

(or other category) atoms in relation to the total atoms in the cysteine’s neighborhood. 

  

https://sciwheel.com/work/citation?ids=10264297&pre=&suf=&sa=0
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Residue Atom Property Residue Atom Property Residue Atom Property 

ALA N DON HIS O ACP SER CB - 

ALA CA - HIS CB HPB SER OG 

DON,AC

P 

ALA C - HIS CG ARM THR N DON 

ALA O ACP HIS ND1 

ARM,PO

S,DON,A

CP THR CA - 

ALA CB HPB HIS CD2 ARM THR C - 

ARG N DON HIS CE1 ARM THR O ACP 

ARG CA - HIS NE2 

ARM,PO

S,DON,A

CP THR CB - 

ARG C - ILE N DON THR OG1 

DON,AC

P 

ARG O ACP ILE CA - THR CG2 HPB 

ARG CB HPB ILE C - TRP N DON 

ARG CG HPB ILE O ACP TRP CA - 

ARG CD - ILE CB HPB TRP C - 

ARG NE 

POS,DO

N ILE CG1 HPB TRP O ACP 
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ARG CZ POS ILE CG2 HPB TRP CB HPB 

ARG NH1 

POS,DO

N ILE CD1 HPB TRP CG 

HPB,AR

M 

ASN N DON LEU N DON TRP CD1 ARM 

ASN CA - LEU CA - TRP CD2 

HPB,AR

M 

ASN C - LEU C - TRP NE1 

ARM,DO

N 

ASN O ACP LEU O ACP TRP CE2 ARM 

ASN CB HPB LEU CB HPB TRP CE3 

HPB,AR

M 

ASN CG - LEU CG HPB TRP CZ2 

HPB,AR

M 

ASN OD1 - LEU CD1 HPB TRP CZ3 

HPB,AR

M 

ASN ND2 DON LEU CD2 HPB TRP CH2 

HPB,AR

M 

ASP N DON LYS N DON TYR N DON 

ASP CA - LYS CA - TYR CA - 

ASP C - LYS C - TYR C - 

ASP O ACP LYS O ACP TYR O ACP 
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ASP CB HPB LYS CB HPB TYR CB HPB 

ASP CG HPB LYS CG HPB TYR CG 

HPB,AR

M 

ASP OD1 

NEG,AC

P LYS CD HPB TYR CD1 

HPB,AR

M 

ASP OD2 

NEG,AC

P LYS CE - TYR CD2 

HPB,AR

M 

CYS N DON LYS NZ - TYR CE1 

HPB,AR

M 

CYS CA - MET N DON TYR CE2 

HPB,AR

M 

CYS C - MET CA - TYR CZ ARM 

CYS O ACP MET C - TYR OH 

DON,AC

P 

CYS CB HPB MET O ACP VAL N DON 

CYS SG 

DON,AC

P,SSB MET CB HPB VAL CA - 

GLN N DON MET CG HPB VAL C - 

GLN CA - MET SD ACP VAL O ACP 

GLN C - MET CE HPB VAL CB HPB 

GLN O ACP PHE N DON VAL CG1 HPB 
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GLN CB HPB PHE CA - VAL CG2 HPB 

GLN CG HPB PHE C -    

GLN CD - PHE O ACP    

GLN OE1 ACP PHE CB HPB    

GLN NE2 DON PHE CG HPB    

GLU N DON PHE CD1 

HPB,AR

M    

GLU CA - PHE CD2 

HPB,AR

M    

GLU C - PHE CE1 

HPB,AR

M    

GLU O ACP PHE CE2 

HPB,AR

M    

GLU CB HPB PHE CZ 

HPB,AR

M    

GLU CG HPB PRO N DON    

GLU CD - PRO CA -    

GLU OE1 

NEG,AC

P PRO C -    

GLU OE2 

NEG,AC

P PRO O ACP    
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GLY N DON PRO CB HPB    

GLY CA - PRO CG HPB    

GLY C - PRO CD -    

GLY O ACP SER N DON    

HIS N DON SER CA -    

HIS CA - SER C -    

HIS C - SER O ACP    
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Amino Acid Interaction Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. Amino acid interaction descriptors were 

assigned based on the residue and atom properties described by the GRaSP43 method. Each atom 

in the reactive cysteine neighborhood was classified into one of the following categories: 

hydrophobic (HPB), donor (DON), acceptor (ACP), aromatic (ARO), positive (POS), negative 

(NEG), sulfide bridge (SSB), or “-”. Pairwise comparisons of all atoms in the reactive cysteine 

neighborhood were then made to identify potential aromatic stacking, hydrogen bonding, 

hydrophobic, repulsive, and salt bridge interactions. The number of interactions in each category 

was counted and divided by the total number of interactions within the 7.5 Å cutoff of the reactive 

cysteine SG atom, yielding the percentage of interactions in each category relative to the total 

number of interactions in the cysteine’s neighborhood. 

Interaction Type Atom Types Distance Min Distance Max 

Aromatic stacking 2 aromatic atoms 1.5 3.5 

Hydrogen bond 

1 acceptor atom and 1 

donor atom 2 3 

Hydrophobic 2 hydrophobic atoms 2 3.8 

Repulsive 

2 atoms with the same 

charge 2 6 

Salt bridges 

2 atoms with opposite 

charge 2 6 

https://sciwheel.com/work/citation?ids=10264297&pre=&suf=&sa=0
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Amino Acid Steric Interaction Descriptor 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. A steric interaction was classified based on if 

the distance between the SG atom of the reactive cysteine and whether an atom in a neighboring 

residue was less than the sum of their Van Der Waals radii.45 The steric_P_7.5 descriptor is the 

total number of steric interactions between the SG atom of the reactive cysteine and any other atom 

in a neighboring residue, divided by the total number of unique PDB_Chain_C# identifiers. 

Atom Van Der Waals Radii 

H 1.2 

C 1.7 

N 1.55 

O 1.52 

Hydrophobicity Kyte-Doolittle Descriptor 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. These neighboring atoms were grouped by 

their residue names and amino acid numbers, and only unique residue identifiers (PDB_Chain_C#) 

were kept to avoid overcounting the same residue. The sum of hydrophobicity values for each 

neighboring residue according to the Kyte-Doolittle44 scale, divided by the total number of 

neighboring residues within the distance cutoff, was computed to create the “hydrophobicity_kd” 

descriptor. 

https://sciwheel.com/work/citation?ids=2282956&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=492614&pre=&suf=&sa=0
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Amino Acid Acidity Hydrophobicity 

ALA ALI 1.8 

ARG B -4.5 

ASN P -3.5 

ASP A -3.5 

CYS P 2.5 

GLN P -3.5 

GLU A -3.5 

GLY ALI -0.4 

HIS B -3.2 

ILE ALI 4.5 

LEU ALI 3.8 

LYS B -3.9 

MET ALI 1.9 

PHE ARO 2.8 

PRO P -1.6 

SER P -0.8 

THR P -0.7 

TRP ARO -0.9 
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TYR ARO -1.3 

VAL ALI 4.2 

Predicted Pocket Descriptor  

Fpocket40 release 4.2 was used to detect ligand-binding pockets in each of the training set 

PDB structures. For each PDB, the resulting pocket folders were queried to extract all cysteine 

residues. A cysteine, identified by its PDB_Chain_C# identifier, was classified as “in a predicted 

pocket” (1) if it appeared in at least one predicted pocket, or “not in a predicted pocket” (0). 

Predicted pKa Descriptor 

PROPKA v3.1 was used to compute the predicted pKa value of each reactive cysteine in 

its associated crystal structure. The “backbone hydrogen bond” energies from the pKa output files 

were summed for each unique PDB_Chain_C# identifier to create the “pKa_hb_bb” descriptor. 

The “sidechain hydrogen bond” and “backbone hydrogen bond” energies from the pKa output files 

were summed for each unique PDB_Chain_C# identifier to create the “pKa_sd” descriptor. Then, 

the values of the “pKa_hb_bb” descriptor and “pKa_hb_sd” descriptor were summed to create the 

“pKa_hb” descriptor. 

Finally, the sum of the Coulombic interaction energies and the “pKa_hb” descriptor was 

used to create the “pKa_hb_elec” descriptor. “Buriedness” and “predicted_desolvation” values 

were extracted directly from the raw PROPKA output files. 

B-factor and Disorder Descriptors  

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. The associated b-factor of the SG atom was obtained using the get_bfactor() 

function of BioPython’s41  Atom class. The disorder of the cysteine residue was obtained using the 

is_disordered() function of BioPython’s Residue class.  

https://sciwheel.com/work/citation?ids=106566&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=326540&pre=&suf=&sa=0
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Cysteines in Disulfides Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine’s 

SG atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine’s SG atom was 

generated, excluding atoms from the reactive cysteine itself. Atoms from non-cysteine residues 

were discarded. The Euclidean distance between the SG atom of each neighboring cysteine and 

the SG atom of the reactive cysteine was then calculated. A cysteine, identified by its 

PDB_Chain_C# identifier, was classified as potentially participating in a “disulfide_bridge” (1) if 

any of the Euclidean distances were less than or equal to 3 Å, or “not in a disulfide_bridge” (0). 

Hydrogen Bond Descriptors 

For each cysteine resolved in a PDB structure, the coordinates of the reactive cysteine SG 

atom were identified. A list of all atoms within 7.5 Å of the reactive cysteine SG atom was 

generated, excluding atoms from the cysteine itself. Hydrogen bond descriptors were assigned 

based on the residue and atom properties described in the table below. Each atom in the reactive 

cysteine neighborhood that was considered a donor or acceptor, either from the backbone or side 

chain, was classified into one of the following categories: hydrogen_bond_donor_backbone, 

hydrogen_bond_donor_sidechain, hydrogen_bond_acceptor_backbone, or 

hydrogen_bond_acceptor_sidechain. 

The number of atoms in each category within a 5 Å distance was computed and divided by 

the total number of atoms within the 5 Å neighborhood of the reactive cysteine. Additionally, the 

number of atoms in each category within the distance range of 5 Å to 7.5 Å was calculated and 

divided by the total number of atoms within the 7.5 Å neighborhood of the reactive cysteine. The 

hydrogen bond descriptors were calculated for both a 0 - 5 Å cutoff and a 5 - 7.5 Å cutoff to 

account for both close-range and distal hydrogen bond interactions.  
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Hydrogen Bond Donor Atoms 

Residue Atom Residue Atom 

ARG NH, NE THR OG1 

ASN ND2 TYR OH 

GLN NE2 SER OG 

HIS NE2, ND1 CYS SG 

LYS NZ   

TRP NE1   

BACKBONE (NOT 

PRO) 
N   

Hydrogen Bond Acceptor Atoms 

Residue Atom Residue Atom 

ASP OD HIS NE2, ND1 

ASN OD1 CYS SG 

GLN OE1   

GLU OE   



 171 

SER OG   

THR OG1   

TYR OH   

BACKBONE O   

Physicochemical Descriptors 

For each PDB in the training and test sets, energetic contributions of various 

physicochemical properties of each reactive cysteine resolved in an associated crystal structure 

were calculated using Rosetta.49 Energy terms collected were reported on a “per_reside” basis 

using default talaris2013 weights for each term. Each of the following terms were computed for 

each residue in the structure based on the residue type and x, y, z coordinate positions: “fa_atr”, 

“fa_rep”, “fa_sol”, “fa_intra_rep”, “fa_intra_sol_xover4”, “lk_ball_wtd”, “fa_elec”, “pro_close”, 

“hbond_sr_bb”, “hbond_lr_bb”, “hbond_bb_sc”, “dslf_fa13”, “omega”, “fa_dun”, “p_aa_pp”, and 

“rama_prepro”. 

  

https://sciwheel.com/work/citation?ids=4578685&pre=&suf=&sa=0


 172 

Energy Term Description 

fa_atr Lennard-Jones attractive forces between two 

atoms of different residues 

fa_rep Lennard-Jones repulsive forces between two 

atoms of different residues 

fa_sol Gaussian solvent-exclusion model for 

solvation free energy between atoms in 

different residues 

fa_intra_rep Lennard-Jones repulsive forces between two 

atoms in the same residue 

fa_intra_sol_xover4 Gaussian solvent-exclusion model for 

solvation free energy between atoms in the 

same residue 

lk_ball_wtd Asymmetric solvation of ions 

fa_elec Coulombic electrostatic potential between two 

non-bonded, charged atoms 

pro_close Energy associated with proline ring 

conformational stain and impact on psi angle 

of preceding residue 
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hbond_sr_bb Short-range backbone-backbone hydrogen 

bond energy 

hbond_lr_bb Long-range backbone-backbone hydrogen 

bond energy 

hbond_bb_sc Backbone-side-chain hydrogen bond energy 

dslf_fa13 Disulfide bridge energy 

omega Backbone omega dihedral 

fa_dun Internal energy of sidechain rotamer 

p_aa_pp Probability of amino acid using the Dunbrack 

library and backbone torsion phi and psi 

angles 

rama_prepro Likelihood of backbone phi and psi angles for 

amino acid 
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Environment and Tools 

All data preprocessing and machine learning tasks using Python 3.10 and the Scikit-learn 

library (v1.5.2).87 Additional libraries such as pandas (v2.2.3)88 and numpy (v2.1.3)21 were used 

for data handling, and matplotlib (v3.9.2)89 and seaborn (v0.13.2)90 were used for visualization. 

Feature interpretation was performed using the SHAP library (v1.0.3),91 which provided insights 

into the contributions of individual descriptors to the Random Forest model’s predictions. 

Data Preprocessing and Binary Classification 

A supervised machine learning approach was used to classify cysteines as low-reactive or 

high-reactive toward Iodoacetamide Alkyne (IAA). Binary classification labels were assigned as 

follows: 0 for low-reactive and 1 for high-reactive cysteines. These labels were derived from 

experimental data (Data S1), with 297 low-reactive cysteines and 306 high-reactive cysteines 

included in the dataset. The balanced distribution ensured that class imbalance was not a concern. 

Descriptors used as features were normalized to ensure consistency. For amino acid composition 

features, normalization was achieved by dividing the number of amino acids of a given type within 

a specified distance cutoff by the total number of amino acids within the same cutoff, preserving 

relative proportions without scaling to a fixed range. 

Algorithm Comparison 

Multiple supervised learning algorithms were evaluated to identify the most effective 

model for the classification task. The algorithms tested included Random Forest (RF), K-Nearest 

Neighbors (KNN), Classification and Regression Trees (CART), Linear Discriminant Analysis 

(LDA), and Support Vector Machines (SVM). These algorithms were selected to provide diverse 

modeling approaches, including ensemble-based methods, distance-based classification, and linear 

separation techniques. Each algorithm was trained on the training dataset using the descriptors as 

https://sciwheel.com/work/citation?ids=17215843&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8596935&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9508290&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1310480&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11026692&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13120251&pre=&suf=&sa=0
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input features and the binary classification labels as targets. Performance was assessed using 

accuracy and the area under the receiver operating characteristic curve (ROC AUC). 

Initial comparisons revealed that while each algorithm exhibited strengths, further 

optimization was required to balance the true positive rate (TPR) and false positive rate (FPR). 

The Random Forest classifier was selected for further development due to its ability to handle 

complex, nonlinear relationships and its robustness to overfitting. 

Cross-Validation and Test Set Sampling 

The dataset was divided into independent training and test sets to ensure unbiased 

evaluation of the model. Training and test sets were curated from distinct experimental sources, 

ensuring no overlap between cysteines in the two datasets. All cross-validation procedures were 

performed exclusively within the training dataset. 

Five-fold cross-validation was implemented using Scikit-learn’s KFold function to 

evaluate model performance during training. The training data was split into five non-overlapping 

subsets, with four subsets used for training and the remaining subset used for validation in each 

iteration. To ensure reproducibility, the shuffle parameter was set to True, and a fixed random seed 

(random_state = 42) was applied. The Random Forest classifier was trained on the training subsets, 

and validation accuracy was computed for the held-out subset during each fold. The cross-

validation accuracy averaged 0.81, indicating strong generalization performance on the training 

dataset. 

To further validate model stability, a repeated test set sampling approach was applied. The 

Random Forest classifier, trained on the full training dataset, was evaluated on the independent 

test set over five iterations. During each iteration, predictions for the test set were compared to the 
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true binary labels, and metrics such as accuracy, precision, and recall were computed. This 

approach yielded consistent test set performance, with an average accuracy of 0.66. 

Hyperparameter Optimization 

Hyperparameter tuning was conducted using a grid search with five-fold cross-validation, 

implemented through Scikit-learn’s GridSearchCV function. The following hyperparameters were 

evaluated: the number of estimators (n_estimators) with values of 5, 100, 150, and 200; the 

maximum depth of the trees (max_depth) with values of None (allowing trees to grow until leaves 

were pure or contained fewer than the minimum required samples to split), 2, 4, 6, 8, and 10; the 

number of features considered at each split (max_features) with options of None (all features), 

“sqrt” (square root of the total number of features), and “log2” (logarithm base 2 of the number of 

features); and the splitting criterion (criterion) with values of “gini” and “entropy.” Each 

combination of these parameters was evaluated on the training set (𝜒!"#$%, 𝑦!"#$%)	 using five-fold 

cross-validation, ensuring robust performance testing across multiple data partitions. The grid 

search identified the optimal configuration as n_estimators = 150, max_depth = 6, max_features = 

“log2,” and criterion = “gini.” The final model, trained with this configuration, achieved a test set 

accuracy of 64%, precision of 60%, recall of 73%, and an area under the receiver operating 

characteristic curve (AUC) score of 64%. 

Feature Selection and Model Refinement 

Recursive feature elimination with cross-validation (RFECV) was used to refine the feature 

set by systematically removing descriptors with low predictive importance. The procedure was 

implemented using Scikit-learn’s RFECV function with a Random Forest classifier as the 

estimator. Five-fold cross-validation and an accuracy scoring metric were applied. At each 

iteration, the least important features were removed based on their contribution to model 
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performance, and the model was retrained on the reduced feature set. A minimum of two features 

was specified (min_features_to_select = 2) to prevent over-reduction. The stopping criterion for 

RFECV was based on identifying the number of features that achieved the highest average cross-

validation accuracy across folds. The process identified the optimal number of features, which 

were subsequently used to train the final Random Forest model. The Random Forest classifier was 

initialized with a fixed random seed (random_state = 42) to ensure reproducibility. RFECV was 

applied to the training set (𝜒!"#$%, 𝑦!"#$%), and the optimal number of features was determined 

based on cross-validated accuracy scores. The final feature set was then used to train the optimized 

Random Forest model. 

Ablation Process 

After the initial recursive feature elimination (RFE), descriptors were grouped into 

categories, as detailed in Data S3. Ablation studies were conducted to systematically assess the 

impact of these descriptor categories on model performance. The grouped descriptor categories 

included amino acid composition (AAC), hydrogen bond statistics, relative solvent accessibility 

(RSA), and others. For each ablation step, a single descriptor category was removed from the 

feature set, and the remaining features were used to train a Random Forest classifier. 

The performance of each reduced model was evaluated using five-fold cross-validation on 

the training set, focusing on metrics such as true positive rate (TPR) and false positive rate (FPR). 

These metrics were selected to quantify the model’s ability to correctly classify high-reactive 

cysteines (TPR) while minimizing incorrect classifications of low-reactive cysteines (FPR). By 

comparing the TPR and FPR across models trained with different combinations of descriptor 

categories, the contributions of each category were quantified. 
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The combination of categories that yielded the highest TPR and lowest FPR—amino acid 

composition (AAC), hydrogen bond statistics, and RSA—was selected for further refinement. This 

optimal combination of descriptor categories was then subjected to another round of 

hyperparameter optimization and recursive feature elimination to determine the final feature set. 

During this second RFE step, all features were retained, as none were eliminated based on their 

importance scores. The resulting optimized model incorporated 29 features, which were then used 

to train the final Random Forest classifier. 
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3.5 - Supporting Information 

3.5.1 - Supplementary Figures 

 

 

 

Figure S1. Total number of cysteine shared between Weerapana et al.6 and this work, n = 915. 

Pearson correlation coefficient (R) = 0.5 and p-value < 0.001. 

https://sciwheel.com/work/citation?ids=1241563&pre=&suf=&sa=0
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Figure S2. Number of IAA-reactive cysteines annotated by UniProtKB as metal binding sites (not 

including zinc), zinc binding sites, or within zinc finger regions. Further parsing of UniProtKB 

metal binding site annotations were extracted to obtain specific residues and amino acid numbers. 

Positions of metal binding site annotations that were not cysteine residues were discarded. Exact 

amino acid positions of UniProtKB cysteine metal binding sites were cross-referenced with IAA-

reactive cysteine identifiers.   
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Figure S3. (A) Number of proteins in the entire human proteome and labeled by IAA vs number 

of proteins in the entire human proteome and labeled by IAA with associated PDB structures.  
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Figure S4. Functional classification of proteins in UniProtKB, experimentally identified, 

containing high-reactive cysteines, and containing low-reactive cysteines. Proteins associated with 

PDBs are found in the top row, while proteins without associated PDBs are found in the bottom 

row.  
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Figure S5. (A) Number of PDB structures associated with a UniProtKB protein (n = 505 proteins 

experimentally identified and have an associated PDB structure in the final training set). Average 

number of PDBs per UniProtKB protein is 2.6, with a standard deviation of 3.1. (B) Bar graph 

showing the number of unique PDB structures associated with proteins containing high- or low-

reactive cysteines in the training set after a series of filtering steps.  
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Figure S6. (A)  Bar graph showing the number of unique PDB structures associated with proteins 

containing high- or low-reactive cysteines in the training set, categorized by protein structure 

determination methods. (B) Number of training set PDBs that are classified as monomeric, 

dimeric, multimeric or NA structures. A structure was considered mono-, di-, multi- or NA based 

on the reported biological unit annotated within the associated structure. Total number of 

monomeric biological units is 204, dimeric is 177, multimeric is 199, and NA is 72 for PDBs 

associated with proteins containing high-reactive cysteines. Total number of monomeric biological 

units is 218, dimeric is 185, multimeric is 183, and NA is 78 for PDBs associated with proteins 

containing low-reactive cysteines. 
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Figure S7. (A) Ratio of neighboring amino acids within 5 Å from the SG atom of a high- or low-

reactive cysteine. (B) Ratio of neighboring amino acids within 10 Å from the SG atom of a high- 

or low-reactive cysteine. Each unique neighboring residue was counted only once. For each subset 

of PDB structures containing either high- or low-reactive cysteines, the number of each amino acid 

within the specified distance cutoff was computed. The relative frequencies of each amino acid in 

the high- or low-reactive neighborhoods were then divided by the total number of residues found 

in the respective neighborhoods across all associated PDBs. Finally, the ratio of high/low was 

calculated by dividing the relative frequency of each amino acid in the high-reactive 

neighborhoods by the relative frequency of each amino acid in the low-reactive neighborhoods. 
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Figure S8. Distribution of amino acids in the human UniProtKB proteome and training set. 

Canonical protein sequences from the Human UniProtKB Proteome92 (2301_release) were used to 

calculate the percentage (%) or abundance of each amino acid within the reference proteome. To 

calculate the amino acid percentage (%) or abundance using PDB structures in the training set, 

custom scripts collected the sequence of amino acids resolved in each PDB structure. The number 

of each amino acid was then divided by the total number of residues found within all training set 

PDB structures (n = 901,921). 

  

https://sciwheel.com/work/citation?ids=14130487&pre=&suf=&sa=0
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Figure S9. Close up view of O6-methylguanine-DNA methyltransferase, MGMT, C145 

microenvironment (PDB: 1EH6). Experimental pKa was measured at 5.3.50 Experimental isoTOP-

ABPP (R10:1) was measured at 0.87. Backbone hydrogen bond donors include I141 and H146, 

while side chain hydrogen bond donors include ASN137 and Y158.  

  

https://sciwheel.com/work/citation?ids=16967944&pre=&suf=&sa=0
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Figure S10. (A) Close up view of Thioredoxin, TXN, C32 and C35 (PDB: 1ERU). Experimental 

evidence of disulfide bond between C32 and C3552,55 was also observed in an associated crystal 

structure 1ERU. Median predicted pKa, using PROPKA18 version 3.1, for C32 was calculated to 

be 10.92 and C35 was calculated to be 14. (B) Close up view of high-reactive cysteine C317 in 

ATP-dependent RNA helicase, DDX3X (PDB: 2I4I). Median predicted pKa, using PROPKA, for 

C317 was calculated to be 14. A cysteine was detected by custom scripts to potentially form a 

disulfide bond when another cysteine sulfur atom was within 3 Å of a reactive cysteine SG atom. 

Sulfur atom of C317 is within 5.1 Å from the sulfur atom of C298. 

https://sciwheel.com/work/citation?ids=3282463,7348352&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
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Figure S11. (A) Bar graph showing the number of high-reactive cysteines with experimental 

evidence of being involved in a disulfide bond using UniProtKB annotations. Additionally, a 

cysteine was considered a structural disulfide if it was found to be in a disulfide bond in an 

associated structure or when the sulfur atom of the high-reactive cysteine was within 3 Å of another 

cysteine SG atom. (B) Bar graph showing the number of low-reactive cysteines with experimental 
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evidence of being involved in a disulfide bond using UniProtKB annotations. Additionally, a 

cysteine was considered a structural disulfide if it was found to be in a disulfide bond in an 

associated structure or when the sulfur atom of the low-reactive cysteine was within 3 Å of another 

cysteine SG atom. See Data S1 and Data S3. 
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Figure S12. Number of IAA-reactive cysteines proximal to an N-terminal helix. A cysteine was 

defined as being near the N-terminus of a helix if the nitrogen atoms of the two downstream 

residues (i+2 and i+3)16 were part of a helix and within 5 Å, even if the cysteine itself was not 

located within the helix. 

https://sciwheel.com/work/citation?ids=7348529&pre=&suf=&sa=0
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Figure S13. There is no relationship between computationally determined relative solvent 

accessibility (RSA) (DSSP-2) using predicted AlphaFold 257 structures and quantitative 

measurements of cysteine reactivity (Mann-Whitney U Test statistic: 25,515,605, p = 0.4859). 

 

https://sciwheel.com/work/citation?ids=11380218&pre=&suf=&sa=0
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Figure S14. Heatmap of Pearson Correlation Coefficients (PCC) between measures of cysteine 

reactivity (Data S1) and descriptors obtained from 3D structures. See Supplementary 

Computational Methods and Data S3.  
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Figure S15. (A) Algorithm comparison of training data after training on isoTOP-ABPP 2024 

experimental dataset and testing on aggregated dataset from the literature.26,63–65,93 All 264 

descriptors were used  (see Supplementary Computational Methods and Data S3 for full list of 

descriptors). Algorithms tested include Random Forest (RF), K-Nearest Neighbors (KNN), 

Classification and Regression Tree (CART), Linear Discriminant Analysis (LDA), and Support 

Vector Machine (SVM). (B) Recursive feature elimination (RFE) with the number of features 

https://sciwheel.com/work/citation?ids=3081773,16971383,9352844,16971382,15581805&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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selected on the x-axis and mean test accuracy on the y-axis (Accuracy = (TP + TN) / (TP + TN + 

FP + FN)). (C) Confusion matrix heatmap showing the distribution of true positive, false positive, 

true negative, and false negative cases from the random forest algorithm. The matrix provides a 

visual representation of the mode’s classification performance, where the rows represent the actual 

classes (high- or low-reactive) and the columns represent the predicted classes. (D) SHapley 

Additive exPlanations (SHAP) summary showing the impact of selected features on the predicted 

classification (high- or low-reactive cysteines).62,68 Each point represents a test case, with the 

position on the x-axis indicating the magnitude and direction of the feature’s effect on the 

prediction. The color of each point represents the feature value, with pink indicating higher feature 

values and blue indicating lower feature values. Features with larger SHAP values have a greater 

impact on the prediction. 

  

https://sciwheel.com/work/citation?ids=16970337,16311758&pre=&pre=&suf=&suf=&sa=0,0
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Figure S16. (A) Algorithm comparison of training data after training on experimental dataset and 

testing on aggregated dataset from the literature. Algorithms tested include Random Forest (RF), 

K-Nearest Neighbors (KNN), Classification and Regression Tree (CART), Linear Discriminant 

Analysis (LDA), and Support Vector Machine (SVM). (B) Recursive feature elimination (RFE) 

with the number of features selected on the x-axis and mean test accuracy on the y-axis (Accuracy 

= (TP + TN) / (TP + TN + FP + FN)). The optimum number of features chosen is 29.  
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Figure S17. (A) Bar chart comparing the average prediction accuracy for test set cysteines with 

multiple PDB structures. For each cysteine, the prediction accuracy was calculated as the number 

of correct predictions divided by the total number of predictions. Cysteines were binned into four 

groups based on the number of PDB structures used during testing (1, 2–4, 5–7, and 8–10). The 

average prediction accuracy for each group is displayed, with the red horizontal line representing 

50% accuracy. 
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Figure S18. PDB structural representations utilized during testing for experimentally determined 

high-reactive cysteine C141 of Flap Endonuclease (FEN1). PDBs 5ZOD, 5FV7, 3Q8K, and 3Q8M 

were aligned, and the structures are displayed separately for clarity. Cysteine 141 is highlighted in 

yellow, with chain A shown in green and chain B in blue. (A) correct prediction of high-reactive 

C141 using PDB 5ZOD-with only chain A resolved. (B) correct prediction of high-reactive C141 

using PDB 5FV7-with chains A and B resolved. (C) correct prediction of high-reactive C141 using 

PDB 3Q8K-with chain A resolved, and DNA bound. (D) incorrect prediction of high-reactive 

C141 using PDB 3Q8M-with chains A and B resolved, as well as having DNA bound. 
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Figure S19. PDB structural representations utilized during testing for experimentally determined 

high-reactive cysteine C2093 of DNA-dependent protein kinase (DNA-PK). Local 

microenvironments of C2093 are depicted in the inactive Apo-DNA-PKcs conformation (A) and 

active DNA-PK holoenzyme-with DNA, Ku70 and Ku80 are resolved. C2093 is labeled, as well 

as neighboring hydrogen bond partners. (A) Incorrect prediction of high-reactive C2093 using 

PDB 5LUQ-the inactive Apo-DNA-PKcs conformation. (B) Correct prediction of high-reactive 

C2093 using PDB 5Y3R-the active DNA-PK holoenzyme. 
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Figure S20. (A) Bar chart comparing the overall percentage of cases predicted correctly (blue) 

and incorrectly (red) by experimental structure determination methods. See Data S3. 
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Figure S21. Confusion matrix heat maps for six protein classes showing the distribution of true 

positive, false positive, true negative, and false negative cases from the random forest algorithm 

for each protein class. The matrix provides a visual representation of the model’s classification 

performance, where the rows represent the actual classes (high- or low-reactive) and the columns 

represent the predicted classes. The observed reactivity classes are based on quantitative cysteine 

reactivity isoTOP-ABPP ratios (R10:1).  
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Figure S22. There is a relationship between relative solvent accessibility (RSA, %) and enzymatic 

function in proteins within the test set (Mann-Whitney U Test statistic: 48,679, p = 0.0056). 
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Figure S23. (A) For training cases that were correctly predicted using PDB structures, descriptors 

were generated for the same cysteine identifiers but using their corresponding AlphaFold 2 

structures. Confusion matrix heatmap showing the distribution of true positive, false positive, true 

negative, and false negative cases from the random forest algorithm for each protein class. The 

matrix provides a visual representation of the model’s classification performance, where the rows 

represent the actual classes (high- or low-reactive) and the columns represent the predicted classes. 

The observed reactivity classes are based on quantitative cysteine reactivity isoTOP-ABPP ratios 

(R10:1). (B) For cysteines identified in our experimental dataset (Data S1) that did not have an 

associated PDB structure or did not have their cysteine resolved in an associated PDB structure. 

Descriptors were generated for these cysteine identifiers but using their corresponding AlphaFold 

2 structures. Confusion matrix heatmap showing the distribution of true positive, false positive, 

true negative, and false negative cases from the random forest algorithm for each protein class. 

The matrix provides a visual representation of the model’s classification performance, where the 

rows represent the actual classes (high- or low-reactive) and the columns represent the predicted 
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classes. The observed reactivity classes are based on quantitative cysteine reactivity isoTOP-ABPP 

ratios (R10:1). 
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3.5.2 - Supplementary Tables 

Table 3.1 Files in Proteomics Identification Database94,95 (PRIDE) datasets. PRIDE IDENTIFIER: 

PXD056064.  

1 Table 3.1 Files in Proteomics Identification Database (PRIDE) datasets. 

Figure File name Experiment 

Figure 1 2022-03-23-KB-LB-10v100-Iso-1 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-2 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-3 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-4 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-5 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-6 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-7 isoTOP 

 2022-03-23-KB-LB-10v100-Iso-8 isoTOP 

 2022-03-30-KB-LB-10v100-Iso-9 isoTOP 

 2022-03-30-KB-LB-10v100-Iso-10 isoTOP 

 2022-03-30-KB-LB-10v100-Iso-11 isoTOP 

 2022-03-30-KB-LB-10v100-Iso-12 isoTOP 

 2022-03-30-KB-LB-10v100-Iso-13 isoTOP 

  

https://sciwheel.com/work/citation?ids=3789982,11952129&pre=&pre=&suf=&suf=&sa=0,0
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Table 3.2 Experimental case studies to investigate the relationship between cysteine high-

reactivity and experimentally determined pKa. 

2 Table 3.2 Experimental case studies to investigate the relationship between cysteine high-reactivity and 
experimentally determined pKa. 

Identifier Gene Reference 
Experimental 

pKa 

isoTOP-ABPP 

Ratio 

P16455_C145 MGMT Guengerich et al. 

2003 

5.3 0.88 

P16455_C150 MGMT Guengerich et al. 

2023 

NA 1.33 

Q99497_C46 PARK7 Witt et al. 2008 NA 5.1 

Q99497_C53 PARK7 Witt et al. 2008 NA 6.3 

Q99497_C106 PARK7 Witt et al. 2008 5.4 2.13 

P10599_C32 TXN Forman-Kay et 

al. 1992 

6.3 1.37 

P10599_C35 TXN Forman-Kay et 

al. 1992 

NA 1.65 

P10599_C73 TXN Forman-Kay et 

al. 1992 

NA 5.06 

P07237_C36 TXN Conway et al. 4.5 NA 
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2015 

P07237_C53 TXN Conway et al. 

2015 

NA 1.38 

P07237_C312 TXN Conway et al. 

2015 

NA 6.39 

P07237_C343 TXN Conway et al. 

2015 

NA 4.72 

P07237_C400 TXN Conway et al. 

2015 

NA 1.15 

P63146_C88 UBE2B Tolbert et al. 

2005 

10.2 6.04 

Table 3 Table 3.2 Experimental case studies to investigate the relationship between cysteine hyper-reactivity and  
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Chapter 4: Conclusion 

This dissertation aims to advance our understanding of the therapeutic accessibility of the 

human cysteinome through the integration of experimental chemoproteomics and computational 

modeling. By addressing key limitations in coverage, data integration, and mechanistic insight, 

this work provides foundational tools for studying cysteine reactivity and druggability, enabling 

future innovations in precision medicine and covalent drug discovery. 

In Chapter 1, we introduced MS-CpDAA (Mass Spectrometry-based Chemoproteomics 

Detected Amino Acid Analysis Suite; https://github.com/lmboat/ms_cpdaa_analysis), an 

automation software designed to streamline residue-level aggregation and data analysis for high-

throughput chemoproteomics experiments. Leveraging MS-CpDAA, we quantified the 

performance of a novel workflow combining single-pot, solid-phase-enhanced sample preparation 

with high-field asymmetric waveform ion mobility spectrometry (SP3-FAIMS), enabling high-

coverage profiling of the cysteinome.1 This approach expanded coverage to 13% of the cysteinome 

(34,225 cysteines)—the highest achieved within our group—by integrating optimized workflows 

and advanced data analysis pipelines. Beyond profiling, MS-CpDAA supported applications such 

as multiplexed CuAAC Suzuki-Miyaura chemoproteomics (mCSCP)2 and the evaluation of 

Tunable Amine-Reactive Electrophiles (TARE probes),3 showcasing its versatility and scalability 

for chemoproteomic research. 

Building on these advancements, Chapter 2 established CysDB, a repository of human 

cysteine chemoproteomics data derived from nine high-coverage studies.4 CysDB is an SQL 

database accessible via an accompanying web application (https://backuslab.shinyapps.io/cysdb/). 

It features chemoproteomic measures of identification, ligandability, and hyper-reactivity for 

62,888 cysteines (24% of the cysteinome), along with structural and functional annotations from 
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resources like UniProtKB/Swiss-Prot, Cancer Gene Census, ClinVar, and the Protein Data Bank 

(PDB). 

To address the lack of standardized approaches for comparing cysteine chemoproteomic 

datasets, CysDB supports inter- and intra-dataset analyses and provides tools for prioritizing 

cysteine residues based on reactivity, ligandability, and protein-level druggability. This resource 

bridges experimental measures with functional insights, enabling both broad-scale analyses of the 

cysteinome and targeted investigations of therapeutically relevant proteins. Most importantly, 

CysDB was designed to incorporate new datasets to further support the continued growth of the 

druggable cysteinome. CysDB has been updated since its initial release. V1.5 now includes data 

for 64,681 cysteines, representing 25% of the cysteinome, along with metrics of redox sensitivity5,6 

and high-throughput screening results,7 such as the identification of a novel pan-cysteine reactive 

chemotype, phenylpropiolate (PP). These enhancements demonstrate CysDB’s adaptability and its 

value as a dynamic resource for advancing cysteine-targeted research. 

Chapter 3 leveraged the data and structural insights from CysDB to investigate cysteine 

hyper-reactivity through computational modeling and experimental expansion. To enhance the 

training dataset, we conducted 13 new experiments, identifying 640 hyper-reactive cysteines not 

previously documented in CysDB. This effort doubled the number of known hyper-reactive 

cysteines, enriching the dataset for predictive modeling and enabling a more comprehensive 

comparison with existing entries in CysDB. Initial analysis focused on primary sequence 

descriptors to identify patterns or trends in cysteine reactivity. However, not a single feature alone 

was sufficient to describe hyper-reactivity toward IAA, prompting a shift to three-dimensional 

structural analysis. 

Using CysDB's structure-mapping pipeline, we examined 3D features, including residue 

https://sciwheel.com/work/citation?ids=15853942,15251806&pre=&pre=&suf=&suf=&sa=0,0
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proximity, solvent accessibility, secondary structure, and predicted pKa, to identify characteristics 

associated with hyper-reactivity. We also analyzed features linked to ligandable cysteines, such as 

those reactive with acrylamides and chloroacetamides, but found that none of these descriptors 

alone were sufficient to predict hyper-reactivity to IAA. This highlights the distinct and 

multifactorial nature of IAA reactivity compared to ligandability.  

To address this complexity, we developed CIAA (Cysteine reactivity towards 

IodoAcetamide Alkyne), a structure-guided computational model that integrates primary sequence 

and 3D structural features into a random forest algorithm. External validation of CIAA revealed 

key structural drivers of cysteine reactivity, such as backbone hydrogen bond donor atoms, and 

highlighted gaps in current modeling approaches, including challenges with protein structure 

selection and dataset curation. These findings emphasize how artificial intelligence can provide 

mechanistic insights into cysteine reactivity, offering tools to inform the design of covalent 

inhibitors and advance cysteine-targeted drug discovery. 

MS-CpDAA expedited the identification of sites of covalent modification in high-

throughput chemoproteomics experiments, facilitating the aggregation of cysteine reactivity data 

into CysDB. CysDB, in turn, serves as a resource for integrating and prioritizing chemoproteomic 

data across datasets. CIAA leveraged CysDB’s structural annotation pipeline to uncover structural 

drivers of hyper-reactivity and provide mechanistic insights into cysteine reactivity. These tools 

collectively address challenges in data analysis, integration, and mechanistic understanding, 

significantly expanding the scope of cysteine-targeting strategies. 

While this dissertation focuses on cysteines, the methodologies developed are readily 

adaptable to other reactive residues, such as lysines and tyrosines, and can be applied to explore 

additional therapeutic spaces. Future directions include expanding structural datasets, 
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incorporating dynamic protein conformations, and refining predictive algorithms to enhance 

modeling accuracy and capture the complexity of protein-ligand interactions. By bridging 

experimental chemoproteomics with computational modeling, this work advances the therapeutic 

accessibility of cysteine residues, laying a foundation for leveraging the cysteinome to address 

unmet therapeutic needs in precision medicine and covalent drug design. 
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