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Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial
for Nuclear Actin Polymerization and Nucleocapsid
Morphogenesis

Susan E. Hepp,b Gina M. Borgo,c Simina Ticau,a* Taro Ohkawa,a Matthew D. Welcha,b,c

aDepartment of Molecular and Cell Biology, University of California, Berkeley, California, USA
bGraduate Group in Microbiology, University of California, Berkeley, California, USA
cGraduate Group in Infectious Diseases and Immunity, University of California, Berkeley, California, USA

ABSTRACT The baculovirus Autographa californica multiple nucleopolyhedrovirus
(AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that
infects lepidopteran insects and is commonly known as a vector for protein expres-
sion and cell transduction. AcMNPV belongs to a diverse group of viral and bac-
terial pathogens that target the host cell actin cytoskeleton during infection. Ac-
MNPV is unusual, however, in that it absolutely requires actin translocation into
the nucleus early in infection and actin polymerization within the nucleus late in
infection coincident with viral replication. Of the six viral factors that are suffi-
cient, when coexpressed, to induce the nuclear localization of actin, only AC102
is essential for viral replication and the nuclear accumulation of actin. We there-
fore sought to better understand the role of AC102 in actin mobilization in the
nucleus early and late in infection. Although AC102 was proposed to function
early in infection, we found that AC102 is predominantly expressed as a late pro-
tein. In addition, we observed that AC102 is required for F-actin assembly in the
nucleus during late infection, as well as for proper formation of viral replication
structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a
nucleocapsid protein and a newly recognized member of a complex consisting
of the viral proteins EC27, C42, and the actin polymerization protein P78/83.
Taken together, our findings suggest that AC102 is necessary for nucleocapsid
morphogenesis and actin assembly during late infection through its role as a
component of the P78/83-C42-EC27-AC102 protein complex.

IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovi-
rus (AcMNPV) is an important biotechnological tool for protein expression and
cell transduction, and related nucleopolyhedroviruses are also used as environ-
mentally benign insecticides. One impact of our work is to better understand the
fundamental mechanisms through which AcMNPV exploits the cellular machinery
of the host for replication, which may aid in the development of improved
baculovirus-based research and industrial tools. Moreover, AcMNPV’s ability to
mobilize the host actin cytoskeleton within the cell’s nucleus during infection
makes it a powerful cell biological tool. It is becoming increasingly clear that ac-
tin plays important roles in the cell’s nucleus, and yet the regulation and func-
tion of nuclear actin is poorly understood. Our work to better understand how
AcMNPV relocalizes and polymerizes actin within the nucleus may reveal funda-
mental mechanisms that govern nuclear actin regulation and function, even in
the absence of viral infection.
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Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of
alphabaculoviruses, is an enveloped DNA virus that infects the larvae of lepi-

dopteran insects (1). Like other NPVs, it has a circular genome (of 134 kb), replicates in
the cell’s nucleus, and produces two different viral forms, a budded virus (BV) that buds
from the plasma membrane and an occlusion-derived virus (ODV) that is enveloped in
the nucleus and enclosed in large crystalline bodies called polyhedra. AcMNPV is most
commonly used as a vector for protein expression and cell transduction (2). It also
belongs to a diverse group of viral and bacterial pathogens that target the host cell
actin cytoskeleton during infection by inducing the polymerization of actin monomers
(G-actin) into actin filaments (F-actin) to enable intracellular actin-based motility (3, 4).
AcMNPV is unusual, however, in that it uses host actin in both the cytoplasm and the
nucleus (5, 6) and that it absolutely requires actin polymerization for progeny virus
production (7–11).

AcMNPV mobilization of host actin begins immediately after enveloped virions fuse
with the plasma membrane or endosomal membrane and viral nucleocapsids are
released into the host cell cytoplasm. Nucleocapsids then initiate actin-based motility
(12) and form actin comet tails (5, 6), which speeds transit to the nucleus (12).
Expression of early viral genes induces the translocation of G-actin into the nucleus, a
phenomenon referred to as nuclear localization of actin (NLA) (13). Interestingly, NLA
can also be induced in uninfected cells by expressing combinations of six viral genes,
including the immediate-early transcriptional transactivator ie-1, as well as pe38, ac004,
ac152, and either ac102 or he65 (13). Of the latter five genes, only ac102 is essential for
viral replication in AcMNPV (14) (as is its ortholog bm86 in Bombyx mori nucleopoly-
hedrovirus [15]) and for the nuclear accumulation of G-actin, indicating that it plays a
key role in NLA (14).

AcMNPV also mobilizes actin during the late stage of infection (5), when the G-actin
that is imported into the nucleus during early infection is polymerized into F-actin in
the nuclear ring zone (RZ) (14) surrounding the central virogenic stroma (VS), where
DNA replication and nucleocapsid assembly occur. Nuclear F-actin polymerization
requires the activity of the viral minor capsid protein P78/83 (encoded by ac009), a
mimic of host Wiskott-Aldrich Syndrome protein (WASP) family proteins (16) that
activates the host Arp2/3 complex to promote actin assembly (9). P78/83 also forms a
complex with the viral proteins BV/ODV-C42 (C42; encoded by ac101) and ODV-EC27
(EC27; encoded by ac144) (17) and associates with one end of the nucleocapsid (18).
The genes encoding all three of these proteins are essential for nucleocapsid morpho-
genesis and the production of BV progeny (9, 19, 20).

To better understand how AcMNPV coordinates actin mobilization early and late in
infection, we further investigated the role of NLA factor AC102. We observed that
AC102 is predominantly expressed as a late protein. In addition, we observed that
AC102 is required for F-actin assembly in the nucleus during late infection, as well as
for normal VS formation and nucleocapsid morphogenesis. Finally, we found that
AC102 is a nucleocapsid protein and that it copurifies with EC27, C42, and P78/83.
Taken together, our findings suggest that AC102 is necessary for nucleocapsid mor-
phogenesis and P78/83-dependent F-actin assembly during late infection through its
role as a component of the P78/83-C42-EC27-AC102 protein complex.

RESULTS
AC102 is predominantly expressed late in infection. Although ac102 was pro-

posed to be expressed as an early gene based on its activity in promoting the NLA
phenotype, the ac102 promoter has both conserved early- and late-sequence features,
and ac102 mRNA is expressed primarily late in infection (21). Nevertheless, the timing
of AC102 protein expression had not previously been investigated. We therefore began
by determining the temporal expression profile of AC102 by Western blotting using a
polyclonal antibody we generated that specifically recognizes AC102 (Fig. 1A). Sf9 cells
were infected with AcMNPV strain WOBpos (9), a virus derived from the E2 strain of
AcMNPV with a genome that can be replicated and modified as a bacmid in Escherichia
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coli, and AC102 expression was assessed over a range of times postinfection. At 0, 8,
and 10 h postinfection (hpi), no detectable AC102 was present. Expression of AC102
was first detected at 12 hpi, and protein continued to accumulate through 36 hpi. The
timing of AC102 expression matched that of VP39, the major capsid protein and a
tightly regulated late factor (22).

To confirm the lack of detectable AC102 expression during the early phase of
infection, prior to the initiation of DNA replication, infected cells were treated with
aphidicolin, a drug that inhibits DNA synthesis and thus prevents the early-to-late
transition. No AC102 was detected by Western blotting after aphidicolin treatment (Fig.
1B). These data indicate that ac102 is predominantly expressed as a late gene.

The AC102-K66A mutation results in 10-fold-reduced viral titers and small
plaques. Given that AC102 is predominantly expressed late in infection, we next
sought to investigate the late function(s) of AC102. Because ac102 is an essential gene
(14, 23), cells transfected with the WOBpos-Ac�102 bacmid do not produce progeny BV,
precluding analysis of the roles of AC102 throughout viral replication. Therefore, we
generated 10 mutant viruses carrying one of the following point mutations in AC102:
N47A, T53A, A55V, D61A, K66A, S77A, A80V, L96A, L105A, or N114A. These amino acid
residues were chosen because they are highly conserved between orthologs of AC102
in diverse alphabaculoviruses (Fig. 2). Growth of the mutants was initially assessed by
infecting cells at an MOI of 10 and then measuring viral titer at 18 or 48 hpi (Table 1).
One virus, containing the AC102-D61A mutation, did not produce any detectable
progeny, suggesting this mutation causes inviability. Most other mutants exhibited
modest 2- to 5-fold reductions in viral titer compared to WOBpos at one or both time
points. The AC102-K66A mutant virus, in contrast, produced 10-fold-fewer BV progeny
than WOBpos at both time points and was chosen for further analysis. In a more
comprehensive one-step growth curve, the AC102-K66A mutant produced 10-fold-
fewer progeny at 18, 24, 36, and 48 hpi (Fig. 3A, left). To assess whether the AC102-
K66A mutation was the cause of the growth defect, an AC102-K66A-rescue virus was
generated by inserting a wild-type copy of ac102 into the bacterial replication cassette
in the AC102-K66A bacmid (9). The growth kinetics of the AC102-K66A-rescue virus
were indistinguishable from those of WOBpos (Fig. 3A, right). Thus, the AC102-K66A
mutation causes a 10-fold reduction in BV progeny production throughout the late
phase of infection.

In addition to the replication defect, the AC102-K66A mutant virus produced
plaques that were 6-fold smaller than those produced by WOBpos or AC102-K66A-
rescue (Fig. 3B). These small plaques typically consisted of only one or a few infected
cells (Fig. 3C). The small plaques suggest that the AC102-K66A mutation results in a
reduced capacity to spread from cell to cell.

The AC102-K66A mutation results in lower AC102 expression. To further inves-
tigate the nature of the defect caused by the AC102-K66A mutation, we compared the
relative levels of wild-type AC102 and mutant AC102-K66A protein over the course of
infection using Western blotting (Fig. 4A and B). For both, initial expression was

0 8 10 12 14 16 36 hpi
A. B.

AC102

VP39

cofilin

AC102

aphidicolin

cofilin

+ -U

FIG 1 AC102 is predominantly expressed late in infection. (A) Western blots of lysates from uninfected
Sf9 cells (U) and cells at various times postinfection with WOBpos at an MOI of 10, probed for AC102,
VP39 (a late protein), and cofilin (loading control). (B) Western blots of lysates from WOBpos-infected cells
treated with 5 �g/ml aphidicolin (�) or DMSO control (�) at 0 hpi and then processed at 24 hpi and
probed for AC102 and cofilin (a loading control).
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observed at 12 hpi. However, at all time points tested, the levels of AC102-K66A were
significantly reduced compared to wild-type AC102 (Fig. 4B). These results indicate that
the AC102-K66A mutation does not affect the onset of AC102 expression but results in
lower protein levels, probably by impacting the translation or stability of AC102.

We also observed the effect of the AC102-K66A mutation on the abundance and
localization of AC102 in infected cells by immunofluorescence microscopy. At 12 hpi,
AC102 was not visible in WOBpos-infected or AC102-K66A-infected cells (Fig. 4C and D).
At 24 and 36 hpi, WOBpos-infected cells showed strong a AC102 signal in the nucleus,
particularly in and around the VS (identified by a region of intense staining of viral
DNA). In contrast, most AC102-K66A-infected cells showed reduced levels of AC102 in
the nucleus with staining that was often limited to a thin outline of the VS at 24 and
36 hpi (Fig. 4C and D). Thus, the AC102-K66A mutation causes a reduction of AC102 and
a redistribution to the periphery of the VS.

AC102 promotes a condensed virogenic stroma and is important for nucleo-
capsid assembly. To further elucidate the roles of AC102 in the nucleus, we examined
the effect of the AC102-K66A mutation on nuclear organization and nucleocapsid

N47 T53 A55 S77 A80 L96 L105 N114D61 K66

---------------MIASIN---------------------DTDMDTDDNMSQARRNRRNRPPARPSAQTQMAAVDMLQTINTAASQTAASLLINDITPNKTESLKILSTQSVGARSLLEPMQANASTIKLN-RIETVNVLDFLGSVYDNTIQVIVTE
---------------MIASIN---------------------DIDMDTDDNMSQARRNRRNRPPARPSAQTQMAAVDMLQTINTAASQTAASLLINDITPNKTESLKILSTQSVGARSLLEPMQANASTIKLN-RIETVNVLDFLGSVYDNTIQVIVTE
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MS---------------------------------------SANLIGTARSSNRRRRRRSSNEDDENDGDMIMNSAEFLQNLNQT--NTVADVILNDTNPHRRNAIRVISKQSAIAKTILEAVSNKEQSIRLN-TVKTINVLQLMSDIYDNKFVIVNQ
MS-----------------------------------------------TRRHGRFRGDDDDDDDYDGGGGNINTNQLLESLNET--HTVADLILNDTDEQKRLAIGVIGRHSAIAKTILDNIDED-ESLRLG-TVNTINVLKLMSDIYDNKIPVVQ
MA----------------------------------------------------SRDGPRPPRQRRESNEPSIYADDLLHSLNSN--NTVADLILNDESAKKRYSLEKISHHSGIAKTILDAIEDD-DSFQLG-TITSINALKLMSDIYDNKIVIFNQ
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MS------------------------------------------------------TRRRYNRSDDTDDDEDINANQLLQNLNET--HTVADLILNDTDHQKRVAIGAMSRHSAIAKTILDNIDED-ESLRLG-TVNTINVLKLMSDIYDNKIPIVNNQ
MS------------------------------------------------TRRRPNRPPRDDTDDSDDDGRGAHAGQLLQSLNET--TTVADLILNDSDDQKRIAMGVIGRHSAIAKTILDSIDED-ESLRLG-TVNTINVLKLMSDIYDNKIPVVNQ
MS-----------------------------------------TNDDDDTPGPRNQRRPNRPPRANAAPDDGMWADQLLNSLNET--TTVADLILNDTDEHKRISMGVIGQHSAIAKTILDYIDEE-ESLRLG-TVNTINVLKLMSDIYDNKIPVVNQ
------------------------------------------------------------------------MYAQDLLDSLNST--QTVADLILNDEDALKRNAIGAISRQSAIAKKILDAIDED-DSLRLG-TVSSINVLRLMSDIFDNKVGVVNQ
MS-------------IIVTPD-------------------DILSGGGGGRGGRNRSRRRREEDGADDDAANNIDPSQIINELNDV--NTSAHAILADRSDNRLETLQLLANQSNIAKKIVTSVNNRDDRVKFN-VVETMELLRLMTDLYDNKFLVTE
MS-------------IIVTPD--------------------DILSGGGGGRNRSRRRRGDAGGNDDFDVANNIDPSQIINELNDV--NTSAHAVLTDRSDNRLETLQVLSNQSNIAKKIVTAANNRDDRVKFN-VVETMELLRLMTDLYDNKFLIVE
MSNI-----------FINTAQ------------------------------------------DTAEQQNLEINAEDLHTQLTEF--NTSAKRFLNDTSKNKELYFRDLSKRSATAKKILKCIEDDQSAVQFN-LISTVNFLKLLSDIHDNNVNE
MSNI-----------FINTAQ-----------------------------------------DTAEQLENLETNAEDLHTQLTEF--NTSAKRFLNDTSKNKELYFRDLAKRSATAKKILKCIEDDQSAVQFN-LISTVNFLKLLSDIHDNNVNE
MSSSGN---------LIDTAS---------------------------------IRPQKRNKRFDPPPVDNSINPAVLINALNDS-DNTVASVIMRDQSVNKVNSFKILSPGSAVAKQILKDIEDDTENIRLN-TMRATNILRFLSNIYDDTLQIVV
MD-------------LIETID---------------------SVEARQRRQQSSRRQNRRRHSSIEEENVSEVPIAEFVQSLNEL--DTLASTILKDPTPHKRNVLSILAKQSAVAKRLLDVIENGNDKIKLNGSMQAIETLRLFSDIFDNKFVGNAA
MD-------------LIETID---------------------SVEARQRRQQSSRRQNRRRHSSIEEENVSEVPIAEFVQSLNEL--DTLASTILKDPTPHKRNVLSILAKQSAVAKRLLDVIENGNDKIKLNGSMQAIETLRLFSDIFDNKFVGNAA
MPNR-----------LIDTVV---------------------DSDDDNNTATGVRIKRQKRHQNTFATPPDQIYASDLLELADKN--STTAKIIISDDSVNKIDSFKMLSKTSAVAKSVLRDIENDKNDVRLD-TLRATNVLRFFSNLYDNQL
MYDSSDDG-------IISSID--------------------------RSGRPARSPQPDRDVNFDAVLAAHALNPAPLINALNDN-MSSVALHILNDTSENKADTFGKLSRTSAVAKSILADIQDNQETMRLD-AAKGVAVLQLLNNIYDNTIRLI
MYDSSDDN-------IISSID--------------------------RSERPARSPQPNRDVNFDAVLAAHALNPAPLINALNDN-MSSVALHILNDTSENKADTFEKLSRTSAAAKSILADIQDNQETMRLD-ATKGVAVLQLLNNIYDNTIRLI
MSDAG----------LIETIN---------------------ATLNIDEDRRGRKRKRSRTRDVSFDPVTNINEPATMVNTLNEY-TNSLATLILNDESAKKRVSFEVLSKSSAAAKNIFKDIVDDRDAVRLN-TLRAVSVLRLLSNIYDNNF
MSDE-----------LIETLN-----------------------STQQQQRRRQKHSSDRDKRFDPVEENDIINPATLINLLNDN-DSSVAMLVLQDESDKKLESFKILSKTSATAKTILNDIQNDQDSIRLN-TLRATNVLRFLKNIYDNQLTLN
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MYNDEDSDGNSINNGLIETPM-----------------------------PKSSRIKRNTNKNRDIRFDVPETNPADLINTLNDN-DGSVAGIILKDRTKRKIHSFKLLSKNSAVAKAILKDIESDQNYLKIN-TLKGTNVLRFLSNIYDNQI
MSSDDLND-------FIDTID--------------------PIIKKPTKKIKRNARFDPIVDRRDGGGMYASPVDLINVLSESDD-NRTV-SIVLKDESKHKMESFKMLSGKSAVAKEILKDIQENRDALPMN-TLRATNVLRFLSNLYDNQF
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Peridroma sp. NPV GR_167

FIG 2 Alignment of AC102 protein sequences from alphabaculoviruses. AC102 amino acid sequences were aligned using MAFFT (56) and then manually edited
for quality. Residues with at least 85% identity across all alphabaculoviruses are highlighted in purple.

TABLE 1 Titers of the WOBpos wild-type virus and 9 ac102 mutant viruses at 18 and 48 hpia

Virus

Mean titer � SD at:

18 hpi 48 hpi

WOBpos 3.5 � 105 � 0.4 � 105 7.7 � 107 � 0.3 � 107

AC102-N47A 1.5 � 105 � 0.4 � 105 4.8 � 107 � 0.5 � 107

AC102-T53A 3.2 � 105 � 0.3 � 105 6.3 � 107 � 1.3 � 107

AC102-A55V 1.5 � 105 � 0.1 � 105 3.9 � 107 � 0.2 � 107

AC102-K66A 3.6 � 104 � 0.7 � 104 7.7 � 106 � 1.0 � 106

AC102-S77A 1.8 � 105 � 0.1 � 105 7.7 � 107 � 0.4 � 107

AC102-A80V 4.4 � 105 � 0.6 � 105 1.5 � 107 � 0.2 � 107

AC102-L96A 5.5 � 104 � 1.0 � 104 6.3 � 107 � 0.3 � 107

AC102-L105A 3.8 � 105 � 0.5 � 105 3.6 � 107 � 0.1 � 107

AC102-N114A 1.1 � 105 � 0.3 � 105 2.6 � 107 � 0.2 � 107

aCells were infected at an MOI of 10, and progeny virus released into the growth media 18 and 48 h
postinfection (hpi) was enumerated by titer determinations. Experiments were performed in triplicate.
AC102-D61A produced no viral progeny and thus could not be amplified for determination of titers.
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assembly. We initially noted that in AC102-K66A-infected cells, the VS appeared to be
less condensed than that of WOBpos-infected cells, with the structure taking up almost
the entire nucleus (Fig. 4D). To confirm the effect of AC102-K66A on the VS, we
performed immunofluorescence microscopy using an antibody against PP31, a delayed
early protein and VS marker (24). The timing of PP31 expression appeared to be similar
in WOBpos-infected and AC102-K66A-infected cells (Fig. 5A and C). At 12 hpi, only dim
PP31 signal could be detected in the nuclei of both AC102-K66A-infected and WOBpos-
infected cells (Fig. 5A). At 24 and 36 hpi, PP31 was localized to the condensed VS in
WOBpos-infected cells and to a less condensed VS in AC102-K66A-infected cells. At
both time points, PP31 was also less abundant in the VS in AC102-K66A-infected cells
compared to WOBpos-infected cells. These results confirm that the AC102-K66A mu-
tation results in an aberrant and decondensed VS structure.

We also investigated the effect of AC102-K66A on the expression and localization of
the major capsid protein VP39. As with PP31, the timing of VP39 expression appeared
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unaffected in the AC102-K66A mutant (Fig. 5B and D). At 12 hpi, VP39 showed punctate
localization to the VS both in WOBpos-infected and AC102-K66A-infected cells (Fig. 5B).
At 24 hpi, however, when WOBpos-infected cells continued to show punctate or diffuse
VP39 localization in the VS, the majority of AC102-K66A-infected cells had VP39 in the
RZ, where it often assembled into long filaments. At 36 hpi, VP39 redistributed to a
punctate localization in the RZ in WOBpos-infected cells, whereas it remained filamen-
tous in the ring zones of most AC102-K66A-infected cells. We quantified VP39 distri-
butions in WOBpos-infected and AC102-K66A-infected cells by dividing cells into three
phenotypic classes: (i) wild type with punctate distribution in the VS or RZ, (ii)
“filamentous” with long thin filaments in the RZ, and (iii) “cable-like” with thick VP39
cables in the RZ (Fig. 5E). At 24 and 36 hpi, the majority of WOBpos-infected cells had
wild-type VP39 distribution, whereas the majority of AC102-K66A-infected cells had a
filamentous phenotype, and only AC102-K66A-infected cells contained cable-like VP39
structures. Thus, the AC102-K66A mutation causes aberrant assembly of VP39 into
filamentous structures late in infection.

We used transmission electron microscopy (TEM) to further compare intranuclear
structures in WOBpos-infected and AC102-K66A-infected cells. At 24 hpi, WOBpos-
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infected cells showed a condensed VS, composed of electron-dense lobes, and a
peripheral RZ, both of which contained nucleocapsids (Fig. 6A and B). In contrast,
AC102-K66A-infected cells lacked a well-defined VS, instead containing a more amor-
phous region that occupied most of the nucleus and did not contain electron-dense
lobes or visible nucleocapsids (Fig. 6C). Moreover, in AC102-K66A-infected cells, the
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peripheral RZ was densely packed with long tubular structures that were variable in
length and were often bundled or clustered (Fig. 6D to F). The tubules also varied in
electron density, with some being nearly electron-lucent and others having electron-
dense areas indicating the packaging of viral DNA (Fig. 6E and F). Taken together with
the VP39 localization studies, these results suggest that the tubular structures are
aberrant assemblies of VP39 that are not properly formed into unit-length nucleocap-
sids and are instead assembled into long tubular structures that sometimes contain
viral DNA.

AC102 is crucial for nuclear actin polymerization in the ring zone late in
infection. Our previous work suggested that AC102 is required for nuclear actin
polymerization, since the transfection of cells with a WOBpos bacmid carrying a
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deletion of ac102 (Ac�102) caused a failure in nuclear F-actin accumulation (14).
However, the Ac�102 virus does not complete a replication cycle and thus does not
necessarily capture the roles of AC102 during the course of a viral infection. To further
investigate the role of AC102 in nuclear actin polymerization, we tested the ability of
the AC102-K66A virus to cause nuclear accumulation of F-actin late in infection by
fluorescence microscopy (Fig. 7A). A considerable fraction of WOBpos-infected cells
contained nuclear F-actin (defined as a nuclear/cytoplasmic actin intensity ratio of 2 or
greater) at 24 and 36 hpi, whereas substantially fewer AC102-K66A-infected cells
exhibited nuclear F-actin accumulation at these time points (Fig. 7B). These results
confirm that AC102 is important for nuclear actin polymerization late in infection.

The AC102-K66A mutation results in a defect in polyhedrin expression and
polyhedra formation. We also investigated a possible function for AC102 very late in
infection by assessing the timing and expression of the very late protein polyhedrin in
WOBpos-infected and AC102-K66A-infected cells by Western blotting (Fig. 8A and B). At
18 hpi, there was no detectable expression of polyhedrin, as expected for a very late
protein. At 24 hpi, WOBpos-infected cells showed strong expression of polyhedrin,
whereas AC102-K66A-infected cells showed very little expression. At 36 hpi, polyhedrin
expression was significantly higher in WOBpos-infected cells than in AC102-K66A-
infected cells. To assess whether lower polyhedrin expression also correlated with fewer
polyhedra, we imaged infected cells at 36 hpi using TEM and counted the fraction with
at least one polyhedron (Fig. 8C and D). Compared to WOBpos-infected cells, signifi-
cantly fewer AC102-K66A-infected cells contained polyhedra. Together, these data
indicate that perturbing AC102 function impacts the proper timing of polyhedrin
expression and the formation of polyhedra during the transition to very-late-stage
infection.

AC102 is a nucleocapsid protein that interacts with P78/83, C42, and EC27. The
timing of AC102 expression as a late gene and the effect of the AC102-K66A mutation
on nucleocapsid morphogenesis suggested that AC102 may be a structural component
of the nucleocapsid. To test whether AC102 is a virion-associated protein, BV particles
were isolated via ultracentrifugation over a sucrose cushion and then fractionated into
their envelope and nucleocapsid components. Western blotting revealed that AC102 is
associated with the nucleocapsid fraction, but not with the envelope fraction (Fig. 9A).
These results indicate that AC102 is a structural component of nucleocapsids.

As a nucleocapsid structural component, AC102 would be predicted to interact with
other capsid proteins. To identify the specific viral proteins with which AC102 interacts,
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a virus was constructed that expresses AC102 fused to a Twin-Strep-tag (25) in the
native ac102 locus of the viral genome. The AC102-Strep virus grows at a rate that is
indistinguishable from WOBpos (Fig. 9B), indicating that the AC102-Strep protein is fully
functional. To purify AC102 with interacting proteins, Sf9 cells were infected with
AC102-Strep or WOBpos as a control, and at 24 hpi cells were lysed and AC102-Strep
protein was isolated by Strep-Tactin affinity chromatography. Interestingly, AC102-
Strep copurified with three prominent viral proteins that were identified by SDS-PAGE
and mass spectrometry of isolated gel bands as EC27, C42, and P78/83 (Fig. 9C), which
were previously found to interact with one another in a complex (17). Furthermore,
comparative mass spectrometry of AC102-Strep elution samples revealed that AC102,
and these three proteins were the most abundant viral proteins in the pulldown (Table
2). Other less abundant proteins identified in the pulldown (E25, E18, VP39, and VP80)
were also identified as virion-associated proteins by mass spectrometry (26–28). Taken
together, these results indicate that AC102 is a nucleocapsid protein that interacts in a
complex with the other nucleocapsid proteins P78/83, C42, and EC27.

DISCUSSION

AcMNPV protein AC102 was previously shown to be essential for viral replication
(14, 23), sufficient to induce nuclear localization of actin (NLA) when expressed with five
other viral NLA genes (13), and necessary for NLA (14). Although AC102 was proposed
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to be expressed early in infection based on its role in NLA (13), we reveal here a role
for AC102 as a late-expressed nucleocapsid protein that is a component of the
P78/83-C42-EC27-AC102 complex and is crucial for VS organization, nucleocapsid
morphogenesis, and nuclear F-actin assembly.

Our findings demonstrate that AC102 is expressed predominantly late in infection,
with detectable protein first observed at 12 hpi. The onset of AC102 expression is
consistent with the onset of ac102 mRNA accumulation, which begins at 12 hpi and
peaks at 18 hpi based on transcriptomics studies (21). AC102 protein levels continue to
accumulate through at least 36 hpi, suggesting that mRNA and protein levels may not
be directly correlated at later time points. The onset of AC102 expression is similar to
that of VP39, which is strictly expressed late in infection (22). Furthermore, AC102
expression is undetectable after treating cells with aphidicolin, which prevents late
gene expression. Thus, ac102 is predominantly expressed as a late gene.

Many late viral proteins are structural components of virions, and our data indicate
that AC102 associates with BV nucleocapsids but not with their envelopes. Further-
more, we find that AC102 interacts in a complex with the nucleocapsid proteins P78/83,
C42, and EC27, which were previously shown to interact with one another (17). AC102
had not, however, been recognized as a member of this complex. The associations
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TABLE 2 Mass spectrometry results from Strept-Tactin-affinity chromatography eluates

Protein Accession no.

Normalized
abundancea

Pb HGSCorec

Protein spectral counts/total spectral countsd

AC102-Strep Control AC102-Strep 1 AC102-Strep 2 Control 1 Control 2

C42 P25695 3.64 0.03 0.0002 7.417 2,010/26,093 3,058/30,523 21/6,511 26/6,785
EC27 P41702 1.94 0.03 0.0002 7.722 1,019/26,093 1,152/30,523 15/6,511 18/6,785
P78/83 Q03209 1.10 0.03 0.0001 7.868 1,227/26,093 1,074/30,523 28/6,511 33/6,785
AC102 P41482 1.00 0.02 * N/A 227/26,093 244/30,523 6/6,511 4/6,785
E25 P41483 0.98 0.52 0.0008 5.583 345/26,093 514/30,523 237/6,511 225/6,785
E18 P41701 0.90 0.17 0.002 4.631 78/26,093 233/30,523 34/6,511 24/6,785
VP39 P17499 0.55 0.09 0.006 1.888 309/26,093 434/30,523 65/6,511 56/6,785
VP80 Q00733 0.27 0.02 0.020 0.354 334/26,093 398/30,523 18/6,511 26/6,785
aNormalized abundance was calculated by dividing the number of spectral counts by the protein amino acid length to determine the relative abundance and then
dividing the relative abundance of each protein by the relative abundance of AC102. Positive protein hits are ranked by normalized abundance.

bP values were calculated using the Spotlite web application with the HGSCore scoring algorithm. The asterisk indicates a value of 1, since protein abundance was
normalized to AC102.

cA higher HGSCore means a higher probability of protein-protein interactions.
dNumbers are given for two independent replicates from Strep-Tactin affinity eluates from both AC102-Step and control lysates.
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between P78/83, C42, and EC27 were discovered through yeast two-hybrid studies,
which rely on the interaction of bait and prey proteins fused with domains from a
transcription factor. We have found that AC102 is not functional when fused at its N or
C terminus with larger proteins (unpublished observations), offering a possible expla-
nation as to why interactions with AC102 may have been missed in two-hybrid assays.

A previous analysis of AC102 function relied on the characterization of an Ac�102
mutant following bacmid transfection, which does not result in the production of viral
progeny (14), thus precluding a thorough assessment of the role of AC102 throughout
infection. Our characterization of the AC102-K66A partial loss-of-function mutant virus
alleviates this issue and has revealed new roles of AC102 during late infection. We
found that AC102 is important for establishing and/or maintaining a condensed VS, as
this structure was expanded and amorphous in AC102-K66A-infected cells. This is
similar to what has been seen in cells treated with cytochalasin D (10), a drug that
inhibits actin polymerization and also induces proteolysis of the genome packaging
protein p6.9 (29). AC102 is also important for nucleocapsid morphogenesis, as aberrant
capsid-like tubular structures accumulated in the RZ of AC102-K66A-infected cells as
visualized by TEM. Similar tubular structures have been observed in cells treated with
cytochalasin D (10, 30), as well as in cells transfected/infected with mutant bacmids/
viruses carrying deletions of ac101/c42 and ac144/ec27 (20), and other genes important
for nucleocapsid assembly, including vlf-1/ac77 (31), 49K/ac142 (20), 38K/ac98 (32), ac54
(33, 34), ac53 (35), and pk-1/ac10 (36). These aberrant tubular structures contain the
major capsid protein VP39 (20, 30, 32) and are thought to result from perturbed
nucleocapsid assembly. The presence of these structures is consistent with our immu-
nofluorescence microscopy images showing VP39 mislocalized into filaments and
cables in the RZ of AC102-K66A-infected cells. Taken together, these data confirm that
AC102 is important for the proper organization of viral replication structures and
nucleocapsid morphogenesis, most likely due to its role as a structural component of
nucleocapsids.

Our observations indicate that, in cells infected with the AC102-K66A mutant,
expression of the very late protein polyhedrin is also delayed and reduced, and fewer
infected cells contain polyhedra compared to WOBpos-infected cells. This phenotype is
similar to that recently observed for a virus carrying a point mutation in VP39 (VP39-
G276S), which exhibits reduced expression of polyhedrin and fewer polyhedra (37). It
was suggested that lower polyhedrin expression in the VP39-G276S mutant might
result from the sequestration of viral DNA in aberrant tubular nucleocapsid-like struc-
tures, reducing transcription of viral genes, and a similar phenomenon may account for
the phenotype of the AC102-K66A mutant.

Consistent with observations from cells transfected with an Ac�102 mutant bacmid
(14), we also observed decreased levels of nuclear F-actin in late-stage AC102-K66A-
infected cells. AC102’s association with the P78/83-containing complex suggests a
mechanism through which AC102 may impact actin polymerization in the nucleus.
P78/83 is a viral protein that mimics host WASP family proteins (16) and activates the
host Arp2/3 complex to promote actin polymerization (9). It is required for both
actin-based motility during early infection (12) and nuclear F-actin polymerization
during late infection (9). The defect in nuclear actin polymerization seen for the
AC102-K66A mutant virus could therefore be caused by perturbed stability, localization
or actin polymerization activity of the P78/83-C42-EC27-AC102 complex. Consistent
with this notion, deletion of c42/ac101 also causes a reduction in nuclear F-actin (38).
Furthermore, because nuclear F-actin is required for progeny production (7–11), the
reduced nuclear F-actin accumulation caused by the AC102-K66A mutation may in part
account for reduced production of BV.

Interestingly, apart from their late functions, components of the P78/83-C42-EC27-
AC102 complex have also been suggested to have functions early in infection. For
example, AC102 activity in NLA can occur in the absence of late gene expression and
requires prior expression of the viral early transcriptional activator IE1, as well as PE38
and AC152 (13), suggesting that these other NLA factors might regulate AC102 expres-
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sion or activity early in infection to promote the nuclear localization of G-actin prior to
its polymerization into F-actin. Moreover, C42 is reported to have other functions,
including a role in the nuclear import of P78/83 (39). How early activity might occur
remains unclear, since p78/83, c42/ac101, ec27/ac144, and ac102 are predominantly late
genes based on transcriptomics data (21). Nevertheless, these same data indicate that
low levels of mRNA of all four genes are present 1 h after a viral inoculum was added
to the cells (21), suggesting the possibility of early expression at low levels. Alterna-
tively, the dose of these structural proteins delivered with the initial viral inoculum may
be sufficient to carry out early functions.

In closing, our work reveals that AC102 is a central player that links the early nuclear
accumulation of G-actin with later nuclear F-actin assembly and nucleocapsid morphogen-
esis. Future studies into the mechanistic roles of AC102 will reveal how it contributes to the
regulation and activity of the P78/83-C42-EC27-AC102 complex and how it acts in nucleo-
capsid morphogenesis and the dramatic relocalization and polymerization of actin into the
nucleus during baculovirus infection. Given our relatively limited understanding of the
normal regulation and function of nuclear actin in uninfected cells, future studies of AC102
will also enhance our understanding of the diverse cellular functions of actin.

MATERIALS AND METHODS
Cell lines and viruses. Sf9 cells were maintained in ESF921 media (Expression Systems) at 28°C in

shaker flasks. Sf21 cells were maintained in Grace’s insect media (Gemini Bio-Products) with 10% fetal
bovine serum and 0.1% Pluronic F-68 (Invitrogen) at 28°C in shaker flasks. AcMNPV WOBpos (9) was used
as the wild-type virus in this study.

Generation of recombinant viruses. To generate viruses with point mutations in ac102, we first
generated transfer vectors carrying the AcMNPV viral fragment KpnI-E (2.0 kb KpnI fragment of PstI-C
containing ac102 [13]) and a downstream chloramphenicol resistance (cat) cassette for later use in
recombinant bacmid selection. These were cloned into the KpnI site of pBSKS� (Agilent Technologies).
A QuikChange II site-directed mutagenesis kit (Agilent Technologies) was used according to the
manufacturer’s protocol to produce 10 mutant transfer vectors encoding AC102 with one of the
following point mutations: N47A, T53A, A55V, D61A, K66A, S77A, A80V, L96A, L105A, and N114A. To
generate mutant viruses, E. coli strain GS1783 (40) (provided by Laurent Coscoy, University of California,
Berkeley) was transformed with WOBpos viral DNA carrying a deletion of ac102 (AcΔ102) (14). Trans-
formed cells were shifted to 42°C for 15 min to express recombinase proteins and then electroporated
with linearized mutant transfer vectors. Recombinant bacmids were selected by plating transformed cells
on Luria-Bertani (LB) medium containing chloramphenicol and kanamycin. To generate the AC102-K66A-
rescue virus, the transfer vector pAC102-rescue was engineered by amplifying ac102 and its native
promoter from viral DNA using PCR and then subcloning it into pWOBGent3 (12). E. coli strain GS1783
containing the AC102-K66A mutant bacmid was shifted to 42°C as described above and then electro-
porated with linearized pAC102-rescue DNA. Recombinant bacmids were selected by plating trans-
formed cells on LB medium containing gentamicin. This resulted in one copy of ac102 under the control
of its native promoter being inserted into the AC102-K66A bacmid just upstream of the kanamycin
resistance cassette. To generate the AC102-Strep virus, the transfer vector pAC102-StrepII was engi-
neered by amplifying a gene encoding AC102 tagged with a Twin-Strep-tag (25). E. coli strain GS1783
containing the AcΔ102 bacmid (14) was shifted to 42°C as described above and then electroporated with
linearized pAC102-StrepII DNA. This resulted in the insertion of the ac102-Strep gene into the native
ac102 locus. Recombinant bacmids were selected for by plating transformed E. coli onto LB plates
containing chloramphenicol. In all cases, isolated bacmid DNA was transfected into Sf9 cells using
TransIT-Insect transfection reagent (Mirus Bio LLC), and virus was recovered from transfected cell
supernatants. For all recombinant viruses, we confirmed proper homologous recombination and the
presence of ac102 point mutations by restriction endonuclease digestion analysis of viral DNA, as well as
by PCR and DNA sequencing.

Viral growth curves and plaque size measurements. To compare the kinetics of progeny BV
production for WOBpos, AC102-K66A, AC102-K66A-rescue, and AC102-Strep viruses, one-step growth
curves were performed in triplicate using an immunoplaque assay (41). To measure plaque size, images
of plaques were captured on an Olympus IX71 microscope with a �20 objective lens (Olympus
LUCPlanFL, 0.45 NA), a CoolSNAP HQ camera (Photometrics), and �Manager software (42). The Fiji
distribution of ImageJ (43) was used to measure the area of individual plaques.

BV purification and fractionation. To obtain purified BV, Sf9 cells were infected with WOBpos at a
multiplicity of infection (MOI) of 10, and cell culture supernatant containing BV was collected at 2 days
postinfection. The supernatant was then overlaid onto a 40% sucrose cushion and centrifuged at 100,000 �
g for 1 h at 15°C using a Beckman SW-28 rotor in a Beckman L8-M ultracentrifuge to pellet BV particles.
BV was then resuspended in 10 mM Tris buffer (pH 8.5). To further fractionate BV into envelope and
nucleocapsid components, NP-40 was added to 100 �g of BV at a final concentration of 1%, incubated
for 1 h at 4°C, and the sample was centrifuged at 80,000 � g for 1 h at 15°C using a Beckman TLA-100
rotor in a Beckman TL-100 ultracentrifuge to separate the supernatant fraction containing viral envelope
proteins from the pellet fraction containing nucleocapsid-associated proteins. The nucleocapsid fraction
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was then washed and centrifuged a second time under identical conditions to ensure that there was no
contamination from the envelope fraction.

Purification and identification of AC102 interacting proteins. To purify AC102-Strep together
with interacting proteins, Sf9 cells were infected with AC102-Strep or control WOBpos viruses at an MOI
of 10, and infected cells were harvested at 24 hpi. Cells were lysed on ice for 10 min in lysis buffer (50
mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 �g/ml each leupeptin, pepstatin, and
chymostatin (LPC), 1 �g/ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride [PMSF]) and centrifuged
in a microcentrifuge at 16,000 � g for 2 min at room temperature to separate nuclei and cellular debris
from the cytoplasmic supernatant. The clarified cell lysate was incubated with 50 �l (packed volume) of
Strep-Tactin Sepharose resin (IBA Lifesciences) for 2 h at 4°C with rotation. Beads were washed with lysis
buffer containing 300 mM NaCl, and protein was eluted with lysis buffer containing 6 �M D-desthiobiotin
(IBA Lifesciences). The protein concentration was assessed using a Bradford assay. Samples containing
equal amounts of protein were separated by SDS-PAGE, and gels were stained with SimplyBlue SafeStain
(Thermo Fisher Scientific) according to the manufacturer’s maximum-sensitivity protocol.

For identification of individual proteins visualized by SDS-PAGE, bands that were unique to the
AC102-Strep pulldown were cut out, in-gel digested with trypsin (44), and subjected to mass spectrom-
etry as described below. In addition, for the bulk identification of eluted proteins, whole elution samples
from three independent affinity chromatography experiments for both AC102-Strep and control WOBpos
were trypsin digested and subjected to mass spectrometry as described below.

Mass spectrometry was performed by the Vincent J. Coates Proteomics/Mass Spectrometry Labora-
tory at the University of California, Berkeley. For whole elution samples, a nano-LC column consisting of
10 cm of Polaris C18 (5 �m; Agilent Technologies), followed by 4 cm of Partisphere 5 SCX (GE Healthcare
Life Sciences), was washed extensively with buffer A (5% acetonitrile, 0.02% heptafluorobutyric acid
[HBFA]). The column was then directly coupled to an electrospray ionization source mounted on a
Thermo-Fisher LTQ XL linear ion trap mass spectrometer. An Agilent 1200 HPLC delivering a flow rate of
300 nl/min was used for chromatography. Peptides were eluted using an eight-step MudPIT procedure
(45). The following buffers were used: buffer A (see above), buffer B (80% acetonitrile, 0.02% HBFA),
buffer C (250 mM ammonium acetate, 5% acetonitrile, 0.02% HBFA), and buffer D (500 mM ammonium
acetate, 5% acetonitrile, 0.02% HBFA). This protocol was also followed for proteins originating from gel
bands, except that the nano-LC column was packed with 10 cm of Polaris C18 (5 �m) only, and the
chromatography consisted of a simple gradient from 100% buffer A to 40% buffer A and 60% buffer B.

Protein identification and quantification were done with Integrated Proteomics Pipeline IP2 software
(Integrated Proteomics Applications) using ProLuCID/Sequest (46), DTASelect (47, 48), and Census (49).
Tandem mass spectra were extracted into ms1 and ms2 files from raw files using RawExtractor (50). Data
were searched against the AcMNPV (NC_001623.1) translated protein database, supplemented with
sequences of common contaminants, and concatenated to a decoy database in which the sequence for
each entry in the original database was reversed (51). Linear trap quadropole (LTQ) data were searched
with a 3,000.0-milli-amu precursor tolerance, and the fragment ions were restricted to a 600.0-ppm
tolerance. All searches were parallelized and searched on the VJC proteomics cluster. Search space
included all fully tryptic peptide candidates with no missed cleavage restrictions. Carbamidomethylation
(�57.02146) of cysteine was considered a static modification. We required one peptide per protein and
both tryptic termini for each peptide identification. The ProLuCID search results were assembled and
filtered using the DTASelect program with a peptide false discovery rate (FDR) of 0.001 for single
peptides and an FDR of 0.005 for additional peptides for the same protein. The estimated FDR was about
1% for the data sets used. To better distinguish direct from indirect interactions in whole elution samples,
we used Spotlite (52), a web-based platform designed to identify specific protein-protein interactions
from affinity purified samples subjected to mass spectrometry. We used the HGSCore scoring algorithm
(53) within Spotlite to identify high-confidence interactions with a P value of �0.05.

AC102 purification and anti-AC102 antibody generation. To express recombinant AC102 protein,
ac102 was amplified by PCR and subcloned into the SspI site of pET-1M (provided by the University of
California, Berkeley, QB3 MacroLab) to generate plasmid pET-1M-AC102 that encodes a fusion protein of
AC102 with an N-terminal 6�His tag, maltose-binding protein (MBP), and tobacco-etch virus protease
cleavage site (His-MBP-TEV-AC102). E. coli strain BL21(DE3) (New England BioLabs) was transformed with
pET-1M-AC102, grown at 37°C to an optical density of 0.6 to 0.8, induced with 250 �M IPTG (isopropyl-
�-D-thiogalactopyranoside) for 2 h, and then harvested. E. coli were resuspended in lysis buffer (100 mM
Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM EDTA, 1 �g/ml LPC, 1 �g/ml aprotinin, and 1 mM PMSF) and lysed
by sonication, and lysates were centrifuged at 20,000 � g for 20 min at 4°C using an SS34 rotor in a Sorval
RC5C Plus centrifuge. Clarified lysates were incubated with 10 ml (packed volume) of amylose resin (New
England BioLabs) for 2 h at 4°C with rotation, washed with 10 volumes of column buffer (100 mM Tris-HCl
[pH 8.0], 300 mM NaCl, 1 mM EDTA), and then eluted with column buffer containing 10 mM maltose.
Protein-containing fractions were pooled, and MBP was cleaved from AC102 using 1 mg/ml TEV protease.
Released His-MBP and uncleaved His-MBP-TEV-AC102 were removed by binding to HisPur Ni-NTA resin
(Thermo Fisher Scientific). Purified AC102 was concentrated to 1 mg/ml with a 3-kDa-molecular-mass
cutoff protein concentrator (Thermo Fisher Scientific).

To generate custom antibodies that recognize AC102, rabbits were immunized with the purified
AC102 protein by Pocono Rabbit Farm and Laboratory, using their standard 91-day protocol. For
antibody affinity purification, purified and concentrated AC102 was further purified via ion-exchange
chromatography, using a HiTrap SP HP 1-ml column (GE Healthcare Life Sciences) and coupled to
NHS-activated Sepharose 4 Fast Flow resin (GE Healthcare Life Sciences). Anti-AC102 serum was passed
over the AC102 affinity resin, and antibodies were eluted with 100 mM glycine (pH 2.5). Antibodies were
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immediately neutralized to pH 7.5 by adding 1 M Tris (pH 8.8) and stored at �20°C or �80°C in 50%
glycerol.

Analysis of AC102 and AC102-K66A expression by Western blotting. To observe AC102 protein
expression over the course of infection, Sf9 cells were infected in triplicate with WOBpos at an MOI of 10,
and infected cells were harvested at 0, 8, 10, 12, 14, 16, and 36 hpi. Cells were lysed on ice for 10 min
in lysis buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 �g/ml LPC, 1 �g/ml
aprotinin, and 1 mM PMSF) and centrifuged in a microcentrifuge at 16,000 � g for 2 min at room
temperature to separate nuclei and cellular debris from the cytoplasmic supernatant. Cell lysates were
subjected to SDS-PAGE, with equal loading of total protein in all lanes (as determined by a Bradford
assay). Proteins were transferred to nitrocellulose membranes and probed by Western blotting with
rabbit anti-AC102, mouse anti-VP39 antibody P10C6 (54) (kindly provided by JaRue Manning) and rabbit
anti-cofilin antibody GA15 as a loading control (kindly provided by Michael Goldberg and Kris Gunsalus).
To assess whether AC102 is expressed late in infection after the onset of DNA replication, cells were
infected as described above in the presence of either 5 �g/ml aphidicolin or dimethyl sulfoxide (DMSO;
as a control). At 24 hpi, cells were lysed and subjected to SDS-PAGE and Western blotting as described
above using rabbit anti-AC102 and rabbit anti-cofilin antibodies.

To compare expression levels of AC102 and other proteins in WOBpos-infected and AC102-K66A-
infected cells, Sf9 cells were infected in triplicate as described above and lysed at 0, 6, 12, 18, 24, and 36
hpi. Cell lysates were prepared and subjected to SDS-PAGE and Western blotting as described above
using rabbit anti-AC102 antibody, rabbit anti-polyhedrin antibody (55) (generously provided by Loy
Volkman), and rabbit anti-cofilin antibody.

Immunofluorescence microscopy. For immunofluorescence microscopy, Sf21 cells were seeded
onto CELLSTAR black-walled 96-well plates with microclear bottoms (Grenier Bio-One) to 	75% conflu-
ence and infected in triplicate with WOBpos or AC102-K66A virus at an MOI of 10. At 12, 24, or 36 hpi,
cells were fixed with 4% paraformaldehyde in PHEM buffer (60 mM PIPES [pH 6.9], 25 mM HEPES, 10 mM
EGTA, 2 mM MgCl2), permeabilized in PHEM with 0.15% Triton X-100, blocked in PHEM with 5% normal
goat serum (MP Biomedicals) plus 1% bovine serum albumin, and processed for immunofluorescence
staining as described previously (14). Primary antibodies used were: anti-AC102 at a 1:500 dilution in
PHEM buffer, anti-VP39 P10C6 at a 1:200 dilution, or rabbit-anti-PP31 at a 1:200 dilution (24) (kindly
provided by Linda Guarino). Phalloidin conjugated to Alexa Fluor 488 or Alexa Fluor 568 at a 1:400
dilution in PHEM buffer (Molecular Probes) was used to visualize F-actin, and 500 �g/ml Hoechst
(Sigma-Aldrich) was used to visualize DNA.

Cells were imaged with an Opera Phenix high-content screening system (Perkin-Elmer) using its
confocal spinning disk mode with either a �20 water immersion objective lens (Perkin-Elmer, NA 1.0, WD
1.7 mm) or a �63 water immersion objective lens (Perkin-Elmer, NA 1.15, WD 0.6 mm) and the system’s
two sCMOS cameras (4.4-megapixel 2,100 � 2,100, 16-bit resolution, 6.5-�m pixel size). Image analysis
was carried out using Harmony high-content imaging and analysis software (Perkin-Elmer) on 16-bit
images. All analysis was done using maximum-intensity projections except for nuclear and cytoplasmic
actin quantification, which was done on single z-plane images through the center of cell nuclei.

Electron microscopy. Sf9 cells were infected in triplicate with WOBpos or AC102-K66A virus at an
MOI of 10, and infected cells were fixed at 18 and 36 hpi for 45 min with 1.5% paraformaldehyde and
2.0% glutaraldehyde in 0.05 M sodium cacodylate buffer (pH 7.3). Cell pellets were embedded in 2%
agarose, rinsed three times in 0.05 M sodium cacodylate buffer (pH 7.3), and postfixed in a solution of
1% osmium tetroxide, 1.6% potassium ferricyanide, and 0.1 M sodium cacodylate buffer (pH 7.2).
Postfixed samples were then embedded in resin, sectioned, stained with 2% uranyl acetate in 70%
methanol, rinsed in decreasing concentrations of methanol, and stained with Reynolds lead citrate.
Samples were imaged with a FEI Tecnai 12 transmission electron microscope (Thermo Fisher Scientific)
equipped with a 3,072 � 3,072 pixel Rio 9 CMOS camera (Gatan).
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