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Abstract

Selective differentiation of naïve T lymphocytes into multipotent T cells is of great interest 

clinically for the generation of cell-based cancer immunotherapies. Cellular differentiation 

depends crucially on division state and time. Here we adapt a dye-dilution assay for tracking cell 

proliferative history to mass cytometry, and uncouple division, time and regulatory protein 

expression in single naïve human T cells during their activation and expansion in a complex ex 
vivo milieu. Using 23 markers, we defined groups of proteins that are controlled predominantly by 

division state or time, and found that undivided cells account for the majority of phenotypic 

diversity. We next built a map of cell state changes during naïve T-cell expansion. By examining 

cell signaling on this map, we rationally selected ibrutinib, a BTK/ITK inhibitor administered 

before activation, to direct differentiation toward a TSCM-like phenotype. This method for tracing 

cell fate across division states and time can be broadly applied for directing cellular differentiation.
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Cellular differentiation is a continuous and coordinated process that integrates cell-intrinsic 

and extrinsic signals, leading to changes in phenotype, proliferation, and death. The linkage 

of cell division with time during differentiation, especially in human cell systems, remains 

elusive. Multiple cellular processes have been implicated in T-cell fate selection during an 

immune response, including asymmetric distribution of polarity proteins during initial 

division1 and the varying ‘built-in’ capabilities of individual antigen-specific T cells2, 3, but 

the relative contributions of these two processes to T-cell fate selection are not well defined4. 

Moreover, comparison of time-dependent and division state-dependent changes to our 

knowledge has not yet been performed in any cell context. An improved model of early T-

cell fate choices across time and divisions will help clarify the mechanistic underpinnings 

and serve as a guide in T-cell engineering efforts for clinical applications.

Mapping differentiation across time and division states in complex cellular systems requires 

simultaneous high-throughput measurements of phenotype, function and proliferative 

history in single cells across multiple timepoints. Despite advances in sequencing-based 

techniques for lineage tracing5, a compatible method for measuring proliferative history is 

unavailable, whereas spectral overlap in flow cytometry-based methods6 precludes high-

dimensional cell phenotyping across divisions. Cytometry by time-of-flight (CyTOF; mass 

cytometry)7 is a powerful technique for high-throughput proteomic monitoring of single-cell 

phenotypes, but cannot yet track proliferative history. Starting with a fluorescent dye 

dilution approach8, 9, we have created a mass cytometry assay, where the proliferative 

history of single cells across 0-7 divisions can be traced in complex cell mixtures, while 

performing highly multiplexed single-cell analyses for function and phenotype.

This approach enabled understanding of primary T-cell differentiation in the context of 

expansion for cancer immunotherapy10, and computationally uncoupling time in culture 

from cell division state. By examining cell signaling on a map of cell state transitions, we 

selected treatment with a small molecule ibrutinib prior to expansion, to skew early naïve T-

cell differentiation towards a subset resembling clinically desirable T stem cell memory 

(TSCM) cells11, 12.

Fluorescent dye dilution assays6, originally developed for T cells8, are useful for counting 

cell divisions by flow cytometry. To adapt carboxyfluorescein succinimidyl ester (CFSE) 

dilution assay8, 9 to mass cytometry, we leveraged the structural similarity between CFSE 

and fluorescein isothiocyanate (FITC) to track changes in CFSE signal via a metal-labeled 

anti-FITC antibody (Fig. 1a). Dividing cells pass ~50% of CFSE to each daughter cell, 

providing a proxy for counting cell divisions.

With optimal CFSE detection conditions for mass cytometry (Supplementary Data 1), we 

confirmed non-toxic, homogeneous labeling of primary human CD8+ T cells with 80 µM 

CFSE in the presence of serum6 (data not shown). In contrast to anti-FITC monoclonal 

antibodies, a polyclonal produced a strong and specific signal (Fig. 1b, Supplementary Figs. 

1a-e). Here, flow cytometry and mass cytometry yielded an equivalent CFSE signal (Fig. 

1c), with minimal background for mass cytometry, as is typical7. Lack of autofluorescence 
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enabled us to detect an equivalent CFSE signal in other cell types, such as monocytes and 

dendritic cells (Supplementary Fig. 1f).

To test this method in resolving division states, we followed T-cell proliferation during ex 
vivo expansion for cancer immunotherapy13. We selected the rapid expansion protocol 

(REP)10 as a model system (Fig. 1d), where we discerned the CFSE-traced T cells from the 

unlabeled accessory cells and distinguished ≥5 cell divisions (Fig. 1e). Using mathematical 

modeling based on local regression, we assigned division IDs to all cells falling into the 

≥80% confidence region. The percentage of cells assigned to each division was nearly 

identical for samples analyzed by flow and mass cytometry (Spearman’s rank correlation 

coefficient: 0.978; Fig. 1f). Correlation in CFSE signal was also high for these samples 

(Spearman’s rank correlation coefficient: 0.997; Supplementary Fig. 2a). To estimate loss of 

signal without division, we applied linear regression to cells falling into the same division 

over multiple days. If drifts were the same for flow and mass cytometry, we would expect 

the slope to be 1. We observed that this slope was consistently lower than 1 (division IDs 

0-7: mean ± s.d. = 0.496 ± 0.161; Supplementary Fig. 2b), suggesting that CFSE 

fluorescence is less stable than the CFSE epitopes detected in mass cytometry. As expected, 

CFSE signal decreased ~50% each time cells divided, irrespective of the method used (Fig. 

1g) or timepoint assessed (Supplementary Fig. 2c).

With a panel of T-cell receptors relevant to immunotherapy and T-cell fate specification11, 12 

(Supplementary Data 2-6), we reconciled early steps in naïve CD8+ T-cell differentiation in 

REP. Although expression of a few proteins across divisions has previously been analyzed 

by flow cytometry14, a high-dimensional analysis has not been performed. We tracked 

division state- and time-dependent dynamics of 23 markers after using 13 parameters for 

stringent selection of CFSE+ CD8+ T cells (DNA, size, viability, apoptotic status, lineage; 

Supplementary Data 2, Supplementary Fig. 3) and additional parameters for data quality (i.e. 
normalization, barcoding). Tracking individual protein expression in CD8+ T cells from the 

naïve resting state showed that expression of some markers changed dramatically as cells 

divided (Supplementary Fig. 4). For example, CD69Low T cells, which may be mistaken for 

poorly activated, had in fact divided the most, whereas regulatory protein expression (e.g. 

LAG3 and BTLA) remained consistent across divisions.

To computationally disentangle division state-dependent from time-dependent changes, we 

normalized average marker expression to either division 0 for each day, or the earliest 

timepoint for each division (Fig. 2a). Here, division state-dependent changes, especially 

upregulation, were more pronounced than time-dependent changes in early T-cell 

differentiation during ex vivo expansion (Fig. 2b). Moreover, time-dependent changes were 

distinct from division state-dependent changes. For example, expression of the activation 

molecule CD69 decreased with division at each timepoint, yet changed little within each 

division over time. A multivariate regression model quantified the relative effects of division 

and time on levels of each regulatory protein (Fig. 2c). The strongest division state-

dependent effect was the switch from CD45RA to CD45RO isoform, an important event in 

T-cell memory specification. In contrast, reduced phosphorylation of ribosomal protein S6 

(pRPS6), downstream of mTOR, was significantly time-dependent. Besides the expected 

connection between differentiation and time, the consistency and magnitude of division 
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state-dependent changes indicate a fundamental link between proliferation and 

differentiation of naïve CD8+ T cells in this expansion setting.

Surprisingly, analysis of division state- and time-dependent changes revealed that 

phenotypic diversity, estimated by standard deviation (s.d.) in individual protein expression, 

decreased consistently in a division-, but not time-dependent manner for the majority of 

molecules examined (Supplementary Fig. 5). This, together with the link between 

differentiation and proliferation, prompted us to leverage the high-dimensional single-cell 

data to broadly map naïve CD8+ T-cell differentiation across division states.

To visualize high-dimensional single-cell data, we built force-directed graphs15 using Vortex 
software16. The resulting maps aid visualizing continuous processes, such as cellular 

differentiation15. Here, edges hold cells together with constant spring-like forces, while 

repulsion is mediated by forces proportional to cell dissimilarity in multidimensional protein 

expression15, 16. These repulsive and attractive forces eventually converge to a balanced 

state, where similar cells are located near each other, and dissimilar cells are far apart (this is 

not always the case in tSNE plots). We modified Vortex to only allow edge connections 

either between consecutive timepoints, as in the FLOW-MAP algorithm17, or between 

subsequent divisions to take advantage of our proliferative history data. This feature is now 

publicly available in Vortex. The single-cell phenotypic maps presented here connect cells 

only within neighboring division states (−1, 0, +1).

We initially focused on day 3, when the majority of cells were in divisions 0 or 1 (Fig. 3a). 

At this early time in naïve CD8+ T-cell differentiation, undivided cells unexpectedly 

occupied the majority of phenotypic niches (dark green nodes, Fig. 3b). Partial cell 

activation is unlikely to contribute to this undivided cell diversity, since 99.2% of undivided 

cells in this culture were CD69High (Supplementary Fig. 4b). We annotated this phenotypic 

map based on all single-cell markers quantified (Supplementary Fig. 6). To understand how 

cells advanced through phenotypic space, we applied diffusion maps18. This approach 

identifies the most likely sequence of cell state transitions, a metric called diffusion pseudo-

time (DPT; Supplementary Fig. 7). Overlaying DPT onto our map exposed a continuum of 

phenotypes from the least differentiated to the two most differentiated states (Fig. 3c), which 

overlapped with 3 prominent regions in Fig. 3b. Importantly, undivided cells had the highest 

DPT diversity (estimated by s.d.) and completely covered the range of DPT values (Fig. 3d). 

Using lasso19, we found that CD25 and CD137 had the highest coefficients for predicting 

DPT1 and DPT2, respectively (Supplementary Data 7). This finding was corroborated by a 

correlation analysis (Supplementary Data 7).

As an independent metric of high-dimensional cellular diversity, we calculated angular 

distance to an average cell within each division (Fig. 3e). This metric confirmed that 

undivided cells had the highest phenotypic diversity, and phenotypic diversity significantly 

decreased with successive divisions (Fig. 3f). This observation held true on subsequent days 

(Fig. 3g and Supplementary Fig. 8).

To obtain an orthogonal view of diversity during early differentiation of naïve CD8+ T cells 

without a priori target bias, we performed droplet-based single-cell RNA-sequencing 
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(scRNA-seq) on CD8+ T cells prospectively isolated from divisions 0, 1, or 2 on day 3 of 

REP (Fig. 3h and Supplementary Fig 9). We then selected the 1,000 most variably expressed 

genes to construct a force-directed graph, which provided insight into biological identity of 

genes underlying cellular diversity (Fig. 3i and Supplementary Figs. 9-11). Undivided cells 

again occupied the majority of phenotypic niches and had a significantly higher phenotypic 

diversity than cells that divided either once or twice (Fig. 3j and Supplementary Fig. 12). 

Together, these data confirm that undivided CD8+ T cells display the largest phenotypic 

diversity in our system.

By day 7 of differentiation, naïve CD8+ T cells expanded into new phenotypic niches and 

converged onto two main subpopulations (Figs. 4a,b; Supplementary Figs. 13-15), which 

resembled TSCM and dysfunctional cells. TSCM are minimally differentiated antigen-

experienced T cells that are clinically favorable for immunotherapy due to their excellent 

engraftment, persistence, and multifunctionality11, 12. Clinically undesirable dysfunctional T 

cells express ≥2 inhibitory receptors and have poor proliferative capacity and effector 

functions11. Here, we defined TSCM-like cells as antigen-experienced (divided following 

TCR engagement) CD45RAHigh CD45ROLow CD27High CD127High CCR7High CTLA4Low 

LAG3Low PD1Low CD57Low, and dysfunctional-phenotype cells as antigen-experienced 

CD27Low PD1High LAG3High CTLA4High 11, 12, 20. Relative to TSCM-like cells, 

dysfunctional-phenotype cells were CD45RALow CD45ROHigh CD5Low CD7Low CD25High 

CD27Low CD52Low CD69High CCR7Low and contained a subpopulation expressing CD57 

senescence marker11. Since TSCM cells are similar to naïve T cells in their protein 

expression12, allowing connections only among cells in consecutive division states ensured 

that true division history defined cell locations in the final force-directed map. This map 

allowed us to devise a simple fluorescence-activated cell sorting (FACS) scheme to 

prospectively isolate and test functional properties of TSCM-like and dysfunctional-

phenotype subsets (Fig. 4a, right and Supplementary Fig. 16). Upon re-stimulation, TSCM-

like cells were superior in their proliferative potential, resistance to apoptosis, and reduced 

dysfunctional marker expression. Using intracellular staining, we confirmed that TSCM-like 

cells produced more IL-2 and less IFN-γ and TNF-α (Supplementary Fig. 17), as expected 

for TSCM-enriched cells21.

DPT analysis confirmed the minimally differentiated state of TSCM-like cells as DPTLow 

(Fig. 4b and Supplementary Fig. 13). Interestingly, DPT correlated to pRPS6 that indicates 

mTOR pathway activity (Figs. 4a,b; Supplementary Figs. 13-15; Supplementary Data 7). 

The DPT-pRPS6 correlation remained irrespective of division state (Supplementary Fig. 18, 

black box), but pRPS6 decreased the most with time (Fig. 3c). These findings, together with 

high undivided cell diversity, led us to hypothesize that blocking signaling upstream of 

pRPS6 prior to the first division would direct naïve T-cell differentiation towards the 

minimally differentiated (DPTLow) TSCM-like fate (Fig. 4a). To test this, we selected 

inhibitors of the mTOR pathway (rapamycin), or the upstream TCR signaling pathway 

(ibrutinib, a dual BTK/ITK inhibitor, which inhibits ITK downstream of TCR22) and 

administered them at a higher concentration during the initial activation (days 0-2) than the 

high proliferative phase (days 3-7). We found that ibrutinib skewed T-cell differentiation 

away from the pRPS6High path and towards the pRPS6Low path ending at the TSCM-like 

state (Figs. 4b,c; Supplementary Figs. 15,19; Supplementary Data 8). At the concentration 
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tested, rapamycin reduced overall proliferation and hindered differentiation by locking T 

cells in a naïve-like CD127++ state (Supplementary Figs. 19-20; Supplementary Data 8). 

Thus, early tuning of TCR or mTOR signaling had pronounced effects on phenotypic output.

Mechanistically, ibrutinib affected differentiation early in time and division. Namely, on day 

3 all divisions had significantly lower DPT (Supplementary Fig. 19c) and were closer to the 

TSCM-like state than vehicle-treated cells (Supplementary Fig. 21). Delaying ibrutinib 

treatment until day 3 reduced the fate skewing effect (Supplementary Fig. 22). Ibrutinib 

reduced apoptosis and cell death in both pRPS6+ and pRPS6− compartments 

(Supplementary Data 8), arguing for re-directing of naïve-derived CD8+ cells towards the 

TSCM-like differentiation endpoint and against drug-induced subset selection.

TSCM subset enrichment in chimeric antigen receptor (CAR)-engineered T cells enhances 

intracellular production of IL-2, but not of effector cytokines IFN-γ and TNF-α, when 

examined in bulk21. Similarly, ibrutinib enrichment of TSCM-like subset improved 

intracellular production of IL-2, but not of IFN-γ and TNF-α, in bulk CD8+ T cells 

(Supplementary Fig. 23). As expected21, the benefit of TSCM enrichment was the increased 

IFN-γ and TNF-α production by effector T cells generated in presence of ibrutinib 

(Supplementary Fig. 24). Adding ibrutinib only prior to day 3 was sufficient to partially 

skew cells towards TSCM-like fate, and superior to both vehicle and continuous ibrutinib 

treatment in enhancing intracellular IL-2 and IFN-γ production by bulk CD8+ T cells 

(Supplementary Figs. 23- 25).

Uncoupling the sequence of cellular transitions through phenotypic space in the context of 

time and division states is essential for creating better models of cellular differentiation. 

Here, we present a method for simultaneously tracing the proliferative history and 

phenotype of chemically labeled cells using highly multiplexed single-cell mass cytometry. 

While applied to primary human T cells here, we believe that this approach is generally 

applicable to tracing cell fate in complex mixtures for a variety of primary samples and cell 

lines23, as well as to transplantation animal models where input material or genetic tracing 

could be limited.

We found that early differentiation of naïve CD8+ T cells during expansion for 

immunotherapy is linked to division state. Using a comprehensive panel of T-cell 

specialization and exhaustion markers, we established that undivided cells had the highest 

phenotypic diversity. Unbiased scRNA-seq confirmed this observation and identified gene 

expression programs driving diversity. While we uncovered some mechanisms that linked 

division state and early cell fate choices, we did not investigate how cells acquired diverse 

phenotypes without division. Possibilities include the intrinsic predisposition of clonally-

derived naïve T cells to produce diverse proportions of effector and memory populations2, 3, 

differences in TCR signaling, and co-receptor engagement24,25. Our results do not contradict 

asymmetric division, which plays a role in T-cell fate1, 4

The origin of TSCM cells is currently of great interest12. While did not trace fate of 

individual cells over time, our data suggest that in the context of REP, TSCM-like cells arise 

from a CD45RAHigh subpopulation with low pRPS6 signaling. These cells are CD25Low, 
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indicating that our data are consistent with observations that CD25High CD8+ T cells give 

rise to terminally differentiated and short-lived effector cells, whereas CD25Low cells 

eventually give rise to functional long-lived memory cells26. True TSCM and dysfunctional 

states are more distant and not fully represented in REP10, our model system that was not 

design to mimic normal T-cell differentiation processes. Further studies on the mechanisms 

linking proliferation to differentiation in vivo could benefit from this method.

We believe that our approach of identifying optimal intervention strategies based on high-

resolution maps of normal cellular differentiation will be broadly applicable to guiding fate 

of endogenous or engineered T lymphocytes in cancer immunotherapy (Fig. 4d). Here, we 

selected ibrutinib to direct naïve T-cell fate towards the TSCM-like state. While ibrutinib 

reduced pRPS6 signaling and enhanced the expansion into our TSCM-like cell compartment, 

we cannot rule out indirect effects of the inhibitor on antigen-presenting cells. In the future, 

ibrutinib could be useful for directing tumor-infiltrating T lymphocytes or CAR T cells 

towards TSCM or other desired fate, which is an important direction in cancer 

immunotherapy research12,21. Our results may also help explain the recently observed TSCM 

expansion in patients with chronic lymphocytic leukemia (CLL) receiving ibrutinib27, as 

well as the improvement in CAR T efficacy when administered after or with ibrutinib for 

treatment of CLL in the clinic28-30.

In conclusion, this framework for tracing and directing the fate of labeled T cells should be 

broadly useful in stem cell biology and hematology and for improving clinical outcomes in 

cancer immunotherapy.

Online Methods

Cells

De-identified human blood was obtained from healthy adult donors under informed consent 

(Stanford Blood Center, Palo Alto, CA). Use of these samples was approved by Stanford’s 

Institutional Review Board. Peripheral blood mononuclear cells (PBMCs) were isolated 

from Trima Accel leukocyte reduction system (LRS) chambers (Terumo BCT, Lakewood, 

CO) using Ficoll-Paque Plus (GE Healthcare, Chicago, IL, USA) density gradient 

centrifugation according to manufacturer’s instructions. For long-term storage, PBMCs were 

resuspended in FBS with 10% DMSO and stored in liquid nitrogen at density 1-5×107 

cells/mL.

Cryopreserved PBMCs were thawed into cell culture medium (CCM; RPMI 1640 containing 

10% FBS, 1x L-glutamine, and 1x penicillin/streptomycin; Thermo Fisher Scientific 

Waltham, MA, USA) supplemented with 25 U/mL benzonase (Sigma-Aldrich, St. Louis, 

MO, USA). Cells were then pelleted for 5 min at 250 g, resuspended in 10 mL CCM, rested 

at 37°C, 5% CO2 for 60 minutes, filtered through a 40 µm strainer, and counted. Where 

indicated, naïve T cells were enriched using Naïve Pan T Cell Isolation Kit (Miltenyi Biotec 

#130-097-095, Bergisch Gladbach, Germany) according to manufacturer’s instructions.
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CFSE labeling

Unless otherwise noted, carboxyfluorescein succinimidyl ester (CFSE) labeling was 

performed as described by Quah and Parish6, 31. Briefly, 50 µg carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) was reconstituted in 18 µL DMSO (CellTrace CFSE Cell 

Proliferation Kit, Thermo Fisher Scientific #C34554) to create a 5 mM stock immediately 

prior to labeling. Cells were resuspended in 1 mL warm CCM and transferred into a new 15 

mL Falcon tube lying horizontally. A drop containing 110 µL warm PBS was placed on a 

side of the tube, and 17.6 µL of 5 mM CFDA-SE was diluted into the drop. The tube was 

then quickly capped and turned upside right while being vortexed gently, yielding a final 

concentration of 80 µM CFDA-SE. Cells were incubated for 5 minutes at room temperature, 

quenched by adding 9 mL warm CCM, and washed twice with 10 mL warm CCM. When 

only naïve T cells were labeled with CFSE, they were combined with the CFSE-negative 

PBMC fraction devoid of naïve T cells after labeling to restore original cell proportions. All 

centrifuging steps for live cells were done for 5 minutes at 250 g, room temperature. CFSE 

and labeled cells were protected from light throughout the experiment.

During protocol optimization, we tested the above labeling protocol for 0.1-10×107 cells and 

CFSE concentrations in range of 0.2 µM to 320 µM. We assessed long-term cell viability 

and proliferation. We also tested manufacturer’s labeling protocol for CFSE concentrations 

0.2 µM to 20 µM, as well as other CFSE suppliers (Biolegend #422701, San Diego, CA, 

USA).

Expansion and treatment of primary human T cells

T cells were induced to proliferate using the rapid expansion protocol (REP) for adoptive 

transfer therapies10. Briefly, ~40×106 cells were plated into a well of a 24-well plate with 2 

mL CCM and 600 ng anti-CD3ε antibody (clone OKT3, Biolegend #317304). Where 

indicated, cells were pre-treated with vehicle (DMSO), ibrutinib (PCI-32765; Cellagen 

Technology #C7327, San Diego, CA, USA; 700 ng/mL or 1.59 µM), or rapamycin (Cell 

Signaling Technology #9904S, Danvers, MA, USA; 50 ng/mL or 54.70 nM) for 30 minutes. 

Starting at 48 hours post-activation, cells were maintained at ~2×106 cells/mL in CCM 

containing 300 ng/mL anti-CD3ε antibody and 50 U/mL (5 ng/mL) recombinant human 

IL-2 (PeproTech #200-02, Rocky Hill, NJ, USA) and relevant concentrations of chemical 

inhibitors (ibrutinib: 700 ng/mL or 1.59 µM on days 0-2, and physiological 

concentrations32, 33 of 140 ng/mL or 318 nM on days 3-7; rapamycin: 50 ng/mL or 54.70 

nM on days 0-2, and physiological concentrations34, 35 of 10 ng/mL or 10.94 nM on days 

3-7). Where indicated, ibrutinib was only added on either days 0-2 or days 3-7, with vehicle 

on the remaining days. In initial experiments, we tested a lower concentration of ibrutinib 

(140 ng/mL on days 0-7; skewing effect was reduced; data not shown) and a higher 

concentration of ibrutinib (7 µg/mL on days 0-2, 1.4 µg/mL on days 3-7; we observed cell 

death and no proliferation; data not shown) prior to selecting the above ibrutinib treatment 

regimen. Samples containing 30% of cells from each condition were collected on days 0, 3, 

4, 5, and 7, then fixed and stored at −80°C for analyses by flow cytometry and mass 

cytometry.
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Analysis of TSCM-like and increased dysfunction subsets

To compare the abilities of putative TSCM-like and dysfunctional cells to proliferate, persist, 

and maintain beneficial phenotype, naïve CFSE+ T cells were cultured using REP for 7 days 

to form these subsets. Based on the observed pattern of protein expression by day 7 

(Supplementary Figs. 13-14), we defined a FACS staining panel and gating strategy 

(Supplementary Fig. 16b). Fc receptors were blocked using Human TruStain FcX 

(Biolegend #422302) following manufacturer’s instructions. Surface antibody staining was 

performed with anti-CD3ε-V500 (clone UCHT1, BD Biosciences #561416, Franklin Lakes, 

NJ, USA), anti-CD8α-PerCP (clone SK1, BD Biosciences #347314), anti-CD27-PE-Cy7 

(clone O323, Biolegend #302837), anti-CD45RA-AlexaFluor700 (clone HI100, Biolegend 

#304119), and anti-CD279-PE (PD1; clone EH12.2H7, Biolegend #329905) antibodies for 

30 minutes on ice in FACS buffer (PBS with 2% human serum and 2 mM EDTA). Cells 

were then washed once with FACS buffer and stained with 7-AAD (Biolegend #420404) to 

exclude dead cells following manufacturer’s instructions. Next, cells were resuspended in 

FACS buffer to sort out putative TSCM and dysfunctional subsets on FACS Aria II (BD 

Biosciences). The post-sort purity of each subset was >90%.

To assess the functional properties of the putative TSCM-like and dysfunctional subsets, we 

re-labeled the sorted cells with CFSE and cultured with new autologous CFSE-negative 

accessory cells using REP for 3 days (Supplementary Fig. 16a). To quantify the percentage 

of cells in S phase, the culture medium was supplemented with 100 µM 5-iodo-2’-

deoxyuridine (IdU; Sigma-Aldrich #I7125-5G) 30 minutes prior to sample collection.

Intracellular cytokine production

To assess intracellular production of IL-2, IFN-γ, and TNF-α at the indicated collection 

timepoints, cells were resuspended cells 106 per mL and stimulated with 50 ng/mL phorbol 

12-myristate 13-acetate (PMA; Sigma-Aldrich #P8139, dissolved in ethanol) and 500 ng/mL 

ionomycin (Sigma-Aldrich #I0634, dissolved in ethanol) in presence of 1x Brefeldin A 

(Biolegend #420601) for 4 hours. Cells were stained using an antibody panel in 

Supplementary Data 5 and assessed by mass cytometry.

Mass cytometry

Samples were processed as previously described7. To stain cells for viability, cisplatin36 

(Sigma-Aldrich #P4394) was reconstituted to 100 mM in DMSO and incubated at 37ºC for 3 

days to prepare a stock solution, which was then stored in aliquots at −20ºC. Cell pellets 

were resuspended in 1 mL PBS containing 0.5 µM cisplatin, gently vortexed, incubated 5 

minutes at room temperature, quenched with 3 mL CCM, pelleted, and resuspended in 1 mL 

CCM. Cells were fixed by adding 16% paraformaldehyde (PFA; Electron Microscopy 

Sciences, Hatfield, PA, USA) to a final concentration of 1.6%, gently vortexed, incubated 10 

minutes at room temperature, and washed twice with cell staining media (CSM; PBS with 

0.5% BSA, 0.02% sodium azide) to remove residual PFA. All centrifuging steps for fixed 

cells were done for 5 minutes at 600 g, 4ºC. Cell pellets were optionally stored at −80°C.

With the exception of titrations, samples were palladium-barcoded and pooled as 

described37 to improve staining consistency. Fc receptor blocking was performed with 
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Human TruStain FcX (Biolegend #422302) following manufacturer’s instructions to prevent 

non-specific antibody binding. Antibodies against surface antigens were pooled into a 

master mix in CSM yielding 50 µL (350 µL if barcoded) final reaction volumes per sample 

and filtered through a 0.1 µm filter (Millipore #UFC30VV00, Billerica, MA, USA) for 5 

minutes at 1,000 g to remove antibody aggregates. Antibody master mix was then added to 

each sample, resuspended, and cells were incubated 30 minutes at room temperature. Mass 

cytometry antibody panels are listed in Supplementary Data 1-5. With the exception of 

antibodies purchased from Fluidigm (South San Francisco, CA, USA), all mass cytometry 

antibodies that were conjugated to reporter metal isotopes in-house were titrated to 

determine optimal staining concentrations prior to incorporating that antibody into a staining 

panel. Antibodies were conjugated using MaxPar Antibody Conjugation Kit (Fluidigm) and 

titrated on cells both positive and negative for the target antigen expression to identify 

concentration yielding the best signal-to-noise ratio. Following the surface stain, cells were 

washed with CSM, permeabilized with 4°C methanol for 10 minutes on ice, washed twice 

with CSM, stained with an antibody master mix (prepared as above) against intracellular 

antigens in 50 μL (350 µL if barcoded) CSM for 30 minutes at room temperature, and 

washed once with CSM. To stain DNA, cells were incubated in PBS containing 1:5000 191Ir/
193Ir MaxPar Nucleic Acid Intercalator (Fluidigm) and 1.6% PFA for 1-3 days at 4ºC. Just 

prior to analysis, cells were washed once with CSM and twice with filtered double-distilled 

water, resuspended in normalization beads38 (EQ Beads, Fluidigm), filtered, and placed on 

ice. During event acquisition, cells were kept on ice and introduced into the CyTOF 2 

(Fluidigm) using Super Sampler (Victorian Airship and Scientific Apparatus, Alamo, CA, 

USA). In addition to reporter metal isotopes listed in antibody panels (Supplementary Data 

1-5), we recorded event length and channels 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd 

(barcoding); 140Ce, 151Eu, 153Eu, 165Ho, and 175Lu (bead normalization); 191Ir and 193Ir 

(DNA); 195Pt and 196Pt (dead cells); and 138Ba (to help define single cells). In experiments 

quantifying IdU incorporation, we also recorded 127I.

In optimization experiments for CFSE detection, we also tested alternative permeabilization 

methods (no permeabilization, 0.2% saponin, CFSE staining after permeabilization), 

multiple anti-FITC antibody clones, concentrations, and detection channels (clone FIT-22 

conjugated to 172Yb, 0.25-16 µg/mL, Biolegend #408302; pre-conjugated clone FIT-22 on 

144Nd, 0.5-8 tests, Fluidigm #3144006B; clone F4/1 conjugated to 172Yb, 0.25-16 µg/mL, 

Abcam #ab112511, Cambridge, UK; polyclonal antibody conjugated to 172Yb, 1-64 µg/mL, 

Southern Biotech #6400-01, Birmingham, AL), and extended anti-FITC incubation time (60 

instead of 30 minutes) for all clones.

Singe-cell RNA-sequencing of T-cell division states

Cells were collected as described on day 3 of REP. The lot of PBMCs was previously 

analyzed in order to obtain the exact timing to observe all 3 division states in the same 

culture. Here, ~10,000 live CFSE+ CD8+ T cells were prospectively isolated from division 0, 

1, or 2 and resuspended in 100 µL CCM. Cells were stored on ice and processed the same 

day on the Chromium platform (10X Genomics, Pleasanton, CA, USA) at the Stanford 

Functional Genomics Facility for droplet-based 3’ single-cell RNA-sequencing per the 

manufacturer’s instructions, with a target of 3,000 cells per sample and a sequencing depth 

Good et al. Page 10

Nat Biotechnol. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of >50,000 reads per cell. The sample libraries were combined and ran on a single lane of 

the HiSeq 4000 platform (Illumina, San Diego, CA, USA).

Flow cytometry

When comparing mass cytometry and flow cytometry data, viability staining was also 

performed with Fixable Violet Dead Cell Stain (Thermo Fisher Scientific #L34955). 

Samples were then fixed as described above and separated into two parts for both flow and 

mass cytometry analysis just prior to storage at −80ºC. Surface staining was performed with 

anti-CD3ε-APC (clone UCHT1, Biolegend #300412) and anti-CD8α-APC-H7 (clone SK1, 

BD Biosciences #560273) antibodies. Cells were then resuspended in 250 µL CSM and 

analyzed on LSRII flow cytometer (BD Biosciences).

Data processing

Mass cytometry data were normalized38 and debarcoded37. Data were transformed using 

inverse hyperbolic sine (arsinh) with a cofactor of 5 for DNA or protein expression7, or with 

a cofactor of 20 for CFSE. Single cells were gated using Cytobank software 

(www.cytobank.org) based on event length and 191Ir/193Ir (DNA) content as described by 

Bendall et al.7 Live non-apoptotic cells were gated based on 195Pt (viability) content36 and 

cleaved PARP (cPARP). Hematopoietic cells were selected based on CD45 expression. In 

initial experiments (antibody panel from Supplementary Data 1), CD45+ cells were further 

gated to select CD8+ T cells (CD3ε+ CD4− CD8α+ CD14− CD19− CD20−), myeloid 

dendritic cells (mDCs; CD3ε− CD11c+ CD14− CD19− CD20− HLA-DR+), or monocytes 

(CD3ε− CD14+ CD19− CD20−). In experiments focused on differentiation of CD8+ T cells 

(antibody panels from Supplementary Data 2-5), we also excluded events that were CD33+ 

(myeloid), CD61+ (platelets), CD235+ (erythrocytes), or TCRγδ+ (γδ T cells). Where 

indicated, CFSE+ cells were selected based on a CFSE− control from the same day. An 

example gating strategy is provided in Supplementary Figs. 3a,b.

Flow cytometry data were transformed using arsinh with a cofactor of 150. CD8+ T cells 

were gated as single live CD3ε+ CD8α+ events.

Single-cell RNA-sequencing reads were aligned to the Genome Reference Consortium 

Human Build 38 (GRCh38), normalized for batch effects, and filtered for cell events using 

the Cell Ranger software (10X Genomics). A total of 4,060 cells were sequenced to an 

average of 52,040 post-normalization reads per cell capturing a median of 18,770 unique 

molecular identifier (UMI) counts per cell mapping to 3,544 unique genes per cell. The cell-

gene matrix was further processed using the Cell Ranger R Kit software (10X Genomics) as 

described by Zheng et al.39 Briefly, we first selected genes with ≥1 UMI counts in any given 

cell (19,222 genes). UMI counts were then normalized to UMI sums for each cell and 

multiplied by a median UMI count across cells. Next, the data were transformed by taking a 

natural logarithm of the resulting data matrix. Where indicated, we selected 1,000 most 

variably expressed genes based on normalized dispersion39.
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Division ID assignment

Single-cell data for CFSE+ CD8+ T cells were processed using R (www.r-project.org) and 

Bioconductor (www.bioconductor.org) software. To assign division IDs to cells in a given 

sample, we identified division peaks in log2-transformed CFSE ion count or fluorescence 

data using local regression. Centroid of division 0 peak and peak s.d. were estimated based 

on non-proliferating control cells collected at the same time. Remaining division IDs were 

assigned to all cells where assignment confidence was ≥80% based on normal distribution 

modeling (or division −1 if not assigned). Top and bottom CFSE intensity cutoffs were set at 

2x s.d. above division 0 and 2x s.d. below the maximum division, respectively. A modified 

FCS file with “Division” column appended to original data was then exported for 

downstream analysis. Fig. 2b shows a summary of the division ID assignment process.

Force-directed layout

To create force-directed graphs, we used Vortex software16 that implements ForceAtlas2 
engine15, 16. Here, we extended Vortex to only allowing edge connections either between 

subsequent timepoints (as in the FLOW-MAP algorithm17), or between subsequent 

divisions. Data were sampled as indicated prior to graph construction. Cell dissimilarity, a 

basis for repulsive forces, was calculated based on angular (cosine) distance in indicated 

dimensions. Edges, a basis for spring-like attractive forces, connected each cell to its 10 

nearest neighbors in the original high-dimensional space, which also had to be within 

consecutive (−1, 0, +1) division states. See Figs. 4a and Fig. 3a for a summary of this 

process.

Diffusion maps

Diffusion maps embed single-cell data into diffusion components through a non-linear 

transformation18, 40. To perform the embedding, a matrix of diffusion distances is computed 

among all cells using mathematics of heat diffusion and random walk Markov chains. This 

matrix is then applied to calculate DPT, a metric based on the transition probability of a 

diffusion process. To embed data into diffusion components and to calculate DPT, we 

applied destiny40 implementation of diffusion maps in R, which enables identification of up 

to two endpoints of a differentiation process. Diffusion maps were constructed using angular 

distance metric and the same markers as in force-directed graphs. Diffusion components, 

DPT values, division IDs, and time (days) were appended to the data, enabling visualization 

of these parameters in force-directed graphs using Vortex. Where indicated, DPT values for 

different treatment conditions were normalized to 0-1 range for visualization purposes.

Statistical analysis

Statistical analysis was performed using R statistical software (www.r-project.org). To assess 

CFSE correlation between identical samples analyzed by flow and mass cytometry, we 

calculated Spearman’s rank correlation coefficient using log10-transformed medians for 

each division ID, or using the percentage of cells assigned the same division ID. When no 

comparison to flow cytometry was made, we calculated Spearman’s rank correlation 

coefficient using arsinh-transformed mass cytometry data. In each case, P-values were 

calculated using correlation test. We tested normality assumption using Shapiro-Wilk test. 
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As the normality assumption was not met in statistical tests on single-cell data performed 

here, we applied unpaired two-tailed Wilcoxon Mann-Whitney U test to assess statistical 

significance between two groups. When more than two groups were compared, we first used 

Kruskal-Wallis H test (one-way analysis of variance on ranks) to check whether there are 

differences among treatment groups, followed by unpaired two-tailed Wilcoxon-Mann 

Whitney test applied to each treatment pair, and Bonferroni correction to correct for multiple 

hypothesis testing. To assess evidence for a decrease in mean phenotypic diversity with 

division across experiments, we used lme441 implementation of linear mixed-effects models 

in R.

We used lasso19, 42, 43 to identify markers associated with DPT. We allocated 80% of cells 

into training set and 20% of cells into test set using random sampling. To construct a lasso 

model, we used glmnet42 implementation of lasso in R, including a built-in cross-validation 

function to tune the L1 regularization parameter lambda. We then used all training data to 

construct the final model, and applied that model to the test data to assess performance.

Data availability

Single-cell data can be accessed on GitHub (https://github.com/BendallLab/division-

history). Singe-cell RNA-sequencing data are also available on Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo; GEO accession: GSE119139).

Code availability

An extended version of the Java-based Vortex software16 and documentation can be 

accessed at https://github.com/nolanlab/vortex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: CFSE can be used to obtain proliferative history and trace cells of interest in complex 
cultures by mass cytometry.
(a) A strategy for adapting CFSE dye dilution assay to mass cytometry. Since both CFSE 

and FITC are derivatives of fluorescein, CFSE can be quantified by mass cytometry using 

intracellular staining with an anti-FITC antibody conjugated to a reporter metal isotope. 

With each division, daughter cells inherit ~50% of CFSE, providing a proxy for estimating 

the number of cell divisions (proliferative history). (b) Mass cytometry titration of a 

polyclonal anti-FITC-172Yb antibody on human CD8+ T cells, with the optimal 

concentration highlighted (red box). (c) Equivalent CFSE signal obtained from human CD8+ 

T cells analyzed in parallel by flow cytometry and mass cytometry, with the near-zero anti-

FITC-172Yb antibody background highlighted (red box). (d) Experimental outline for 

tracing proliferative history of naïve CD8+ T cells in REP as a model system. CFSE-labeled 

naïve human T lymphocytes are induced to proliferate by CFSE-negative accessory cells, 
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including monocytes (Mo), that present an anti-CD3ε antibody via Fcγ receptors (FcγRs) 

and express co-stimulatory molecules. Interleukin-2 (IL-2) is added after 48 hours. (e) 
Proliferative history of CD8+ T cells was similar when measured directly by flow cytometry, 

or indirectly using a 172Yb-labeled anti-FITC antibody by mass cytometry. A division ID 

(red arrows) was assigned to each cell falling into the ≥80% confidence region (blue), or 

division ID: −1 otherwise. Division IDs were added to the original file, enabling downstream 

analysis in software of choice, such as Cytobank. (f) Spearman correlation analysis 

comparing percentage of cells falling into each division state in samples analyzed in parallel 

by flow cytometry and mass cytometry (n = 26 time-series samples from 6 REP cultures). 

(g) CFSE signal reduction per division was calculated based on geometric means from cells 

in (f). Boxplots show quartiles with a band at median, whiskers indicating 1.5 interquartile 

range (IQR), and outliers shown separately. A red dashed line indicates the expected 50% 

reduction. The antibody was titrated once; results in (c,e-g) are from 1 experiment 

representative of 3 experiments. Results in (b-c) and (e-g) were obtained using antibody 

panels in Supplementary Data 1 and Supplementary Data 2, respectively.
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Figure 2: Uncoupling time and division state in expansion of naïve CD8+ T cells shows that early 
differentiation is linked to both time and proliferation.
(a-c) Naïve CFSE-labeled T cells were expanded using REP, collected on days 0, 3, 4, 5, and 

7 (n = 26 time-series samples from 6 cultures), analyzed by mass cytometry using an 

antibody panel in Supplementary Data 2, and gated on live non-apoptotic CFSE+ CD8+ T 

cells. (a) A normalization scheme to examine time- and division state-dependent changes as 

orthogonal dimensions. To focus on division state-dependent changes only, expression is 

divided by division 0 at the same timepoint. To focus on time-dependent changes only, 

expression is divided by the earliest timepoint with the same division ID (except day 0 to 

focus on activated cells). CD69 is shown as an example. (b) Changes in average division 
state-dependent expression (left) or time-dependent expression (right) of 23 markers (plus 

CD3ε, CD8α, CD45 that were also used for gating) in CFSE-traced CD8+ T cells. See 

Supplementary Data 6 for additional information on each marker. Bar graphs show division 

state distribution on each day as mean ± s.e.m. (c) A multivariate linear regression model to 

assess relative effects of time and division state on protein expression. Model coefficients 

and their P-values are shown as a heatmap for each marker. Results in (a-c) are from 1 
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experiment representative of 3 experiments. TN, naïve T cells; TCM, central memory T cells; 

TEM, effector memory T cells; TSCM, stem cell memory T cells.
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Figure 3: Undivided cells display the highest phenotypic diversity in early naïve T-cell 
differentiation.
(a) Force-directed graph was constructed with 10,000 CFSE+ CD8+ T cells from day 3 of 

REP analyzed by mass cytometry using an antibody panel in Supplementary Data 2. Cells 

repel based on expression of 21 surface proteins. Edges connect only cells in neighboring 

division states. (b) Division IDs overlaid onto phenotypic map from (a). Marker expression 

was scaled to 0-100% prior to calculating mean expression within each region. (c) DPT 

calculated using 21 surface proteins and overlaid onto the graph from (b). Colors were 

scaled to emphasize separation of DPT1 and DPT2. (d) DPT histograms separated by 

division. Red arrows indicate the narrowing in DPT s.d. within each division. Results in (b-

d) are from 1 donor representative of 5 donors. (e) High-dimensional phenotypic diversity 

was estimated as a cosine distance to an average cell within each division state. (f) Mean 

phenotypic diversity of CFSE+ CD8+ T cells on day 3 (n = 7 REP cultures). (g) Mean 

phenotypic diversity on days 3, 4, 5, and 7 (n = 28 time-series samples from n = 7 REP 

cultures). Phenotypic diversity in (f-g) was calculated as described in (e) using 18 common 
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proteins. Boxplots show quartiles with a band at median, whiskers indicating 1.5 IQR, and 

outliers shown separately. To assess evidence for a decrease in phenotypic diversity with 

division, we used linear mixed-effects models; slope ± s.e. and P-values are shown above 

each plot. (h-j) 10,000 CFSE+ CD8+ T cells from divisions 0, 1, and 2 were sorted for 

droplet-based scRNA-seq on day 3 of REP. Out of 19,222 genes detected in n = 4,060 cells 

(division 0: n = 522; division 1: n = 1,777; division 2: n = 1,731 sequenced in 1 experiment), 

we selected 1,000 most variably expressed genes for analysis in (i-j). (i) A force-directed 

graph constructed as in (a). (h) Phenotypic diversity calculated as in (e). Violin plots show a 

kernel density estimate with a boxplot, which contains quartiles with a band at median and 

whiskers indicating 1.5 IQR. Kruskal-Wallis H test (one-way ANOVA on ranks): P = 1.58e

−177; two-sided Wilcoxon Mann-Whitney (WMW) U test comparing division 0 vs. division 

1: P = 3.96e−174, comparing division 0 vs. division 2: P = 4.58e−135. WMW P-values were 

corrected for multiple hypotheses testing using Bonferroni correction.
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Figure 4: Ibrutinib directs naive T-cell differentiation towards TSCM-like state.
(a) Naïve CFSE+ CD8+ T-cell differentiation in REP converges onto TSCM-like cells 

(pRPS6Low path) and dysfunctional-phenotype cells (pRPS6High path) by day 7 

(Supplementary Figs. 13-14), with properties assessed in re-stimulation experiments 

(Supplementary Fig. 16) and summarized on the right. (b) REP cultures were treated with 

either vehicle (DMSO) or ibrutinib, collected on days 0, 3, 4, 5, and 7, and assessed by mass 

cytometry using an antibody panel in Supplementary Data 3. CFSE+ CD8+ T cells were 

pooled into a force-directed graph constructed using 27 surface proteins, with edges 

connecting cells only in neighboring divisions. Naïve T-cell differentiation can be observed 

across divisions (left), time (center), or DPT (right) when overlaid onto the graph. DPT was 

calculated using 27 surface proteins (separately for each treatment condition), and then 

scaled from 0 to 1 to improve visibility (i.e. DPT values for ibrutinib appear inflated on 

average 2.2x). Graph regions were defined using individual marker expression 

(Supplementary Fig. 15). Results were nearly identical when only proteins from the original 

panel (Supplementary Data 2) were used instead of the extended panel (Supplementary Data 

3). (c) pRPS6 overlaid onto the graph from (b) and colored by treatment condition. A 

signaling pathway links ibrutinib to pRPS6. Results in (b-c) are from 1 donor representative 

of 3 donors from 2 experiments. (d) A summary of potential cancer immunotherapy 

applications of the platform presented here. Tracing fate of CFSE+ TILs or CAR T cells 
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across time and divisions in complex cell mixtures may be useful for rationally selecting 

timing and interventions for guiding T-cell fate during ex vivo expansion for ACT. These 

insights may be later used for designing better drugs to improve T-cell function in situ.
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