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Abstract 

For more effective early-stage cancer diagnostics, there is a need to develop sensitive and 

specific, non- or minimally invasive, and cost-effective methods for identifying circulating tumor-

associated biomolecules, including extracellular vesicles (EVs). As a rapid, label-free, non-destructive 

analytical measurement requiring little to no sample preparation, Raman spectroscopy shows great 

promise for liquid biopsy cancer detection and diagnosis. While many studies have demonstrated the 

promise of Raman spectroscopy to provide value for clinical diagnostics, the sensitivity and specificity 

of such platforms typically drops when applied to larger patient cohorts. Additionally, Raman can 

suffer from low signal due to the number of inelastically scattered photons (~1 in a million) produced 

after a sample is interrogated with a laser. Surface enhanced Raman scattering (SERS) is a powerful 

extension of this technique, providing orders of magnitude increase in chemical sensitivity compared 

to spontaneous Raman scattering. Yet it remains a challenge to synthesize robust, uniform SERS 

substrates quickly and easily. Raman technology has not been successfully moved into the clinic and 

is hindered by the need to develop more miniaturized and automated systems that are integrated with 

inexpensive and useful SERS materials. Thus, the objective of this dissertation work is three-fold: 1) 

to carry out experiments on large clinical datasets to validate Raman and SERS diagnostics; 2) to 

examine the value of spectroscopic analysis of EVs; and 3) to develop novel SERS materials that are 

robust, biocompatible, and inexpensive. 

 To address these objectives, we carried out Raman analysis of plasma, serum, and saliva from 

hundreds of cancer patients and benign controls (from patients undergoing similar procedures or 

screenings without cancer), including patients diagnosed with head and neck, ovarian, and endometrial 

cancers. Several notable findings were reported arising from this analysis, ranging from optimization 

of Raman data collection and data analysis, discovery and application of new plasmonic materials, and 

applied clinical testing of EVs.  



 ix 

First, we showed that a simple data augmentation routine of fusing plasma and saliva spectra 

provided significantly higher clinical value than either biofluid alone, pushing forward the potential of 

clinical translation of Raman spectroscopy for liquid biopsy cancer diagnostics.  

Next, we reported the utilization of a simple plasmonic scaffold composed of a microscale 

biosilicate substrate embedded with silver nanoparticles for SERS analysis of ovarian and endometrial 

cancer EVs. We observed a major loss of sensitivity for ovarian and endometrial cancer following 

enzymatic cleavage of EVs’ extraluminal domain, suggesting its critical significance for diagnostic 

platforms. Using SERS, we also confirmed that three common EV isolation methods (differential 

ultracentrifugation, density gradient ultracentrifugation, and size exclusion chromatography) yield 

variable lipoprotein content. However, in combining SERS analysis with machine learning assisted 

classification, we showed that the disease state is the main driver of distinction between EV samples, 

and largely unaffected by choice of isolation. 

Finally, we demonstrated the synthesis and characterization of a new homogeneous gold 

nanofoam (AuNF) substrate produced by a rapid, one-pot, four-ingredient synthetic approach. These 

novel AuNFs were rapidly nucleated with macroscale porosity and then chemically roughened to 

produce nanoscale features that confer homogeneous and high signal enhancement (~109) across large 

areas, a comparable performance to lithographically produced substrates, with high utility for 

application in low-resource settings 

The work presented below comprehensively shows the promise of Raman as a clinical 

diagnostic tool and takes measured steps toward validating the technology in the context of cancer 

disease states. The technique has high disease discrimination in whole biofluids and isolated EV 

populations, and the addition of novel nanomaterials increases the sensitivity and specificity to reach 

clinically necessary levels. This work is foundational in promoting the continued emphasis on 

translating Raman to be a clinically relevant diagnostic tool. 
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Chapter 1: Background and Significance 

1.1 Current methods of cancer diagnostics are lagging and could be significantly improved 

There is a strong correlation between the stage at diagnosis and patient outcomes. For 

example, in head and neck cancers (HNC) 60-70% of cases are diagnosed in stage III or IV with 5-

year overall survival rates of <50%.[1] Further, these late-stage diagnoses are associated with distant 

metastasis and a high risk of recurrence.[2] Cases caught in stage I and II are typically treatable with 

surgery or radiotherapy alone, increasing survival rates to 70-90%.[1] Typical HNC diagnostic 

methods rely on presentation of physical symptoms such as lumps in the neck, sores in the mouth and 

throat that are slow to heal, and difficulty swallowing which hinders the ability to catch the cancer in 

the early stages.[3]  

An even more urgent case for development of early-stage cancer diagnostic techniques is 

ovarian cancer (OvCa). Early-stage diagnosis of OvCa amounts to a 5-year survival rate of over 90%; 

however this rate decreases dramatically to 29% for those with a late stage diagnosis.[4,5] Typical signs 

of the disease include symptoms of pelvic or abdominal pain, frequent urination, indigestion, and 

vaginal bleeding,[5] all of which are symptoms associated with less severe female ailments as well, 

making them easier to overlook. The lack of specific indicators leads to poor early-stage detection and 

subsequent poor prognosis outlooks. These two cancer groups highlight the urgent need to develop 

a highly sensitive method of detecting the presence of cancer at an early stage, leading to better patient 

outcomes and reduced financial burden. 

Typical diagnostic methods include a multitude of approaches employed by physicians. The 

first and most straightforward of these is a physical examination in which a doctor would look for 

lumps or visual abnormalities. Some cancers, such as leukemia or prostate cancer, have a common 

blood test that patients can submit to for confirmation of the disease presence.[6] Imaging methods 
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such as computerized tomography (CT), magnetic resonance imaging (MRI) and positron emission 

tomography (PET) are commonly used tools but have their own disadvantages. The equipment 

requires a large physical footprint, the tests and equipment are expensive, and the patient often must 

remain in a confined area for a long amount of time. Further, specialized training on the instruments 

is necessary for proper diagnostic readout. Lastly, a biopsy or fine needle aspirate combined with 

histopathological staining is perhaps the most common and conclusive way to diagnosis cancer.[7] 

These methods are time consuming, invasive, often suffer inter-reader error, and require a high level 

of specialized training to determine the disease presence and staging. To overcome these issues, an 

ideal diagnostic test would be fast, non-invasive, highly sensitive, minimally or wholly non-invasive, 

and easy to readout.  

Of particular interest is the development of a liquid biopsy diagnostic test that can be 

performed using patient biofluids such as plasma or saliva. This would immensely reduce the 

invasiveness of the procedure and lessen the associated complications. Much work has been done in 

the realm of biomarker discovery and diagnostic association using patient biofluids. For example, 

enzyme-linked immunosorbent assays (ELISAs) have been developed to test for specific cancer 

markers, even in the context of OvCa in which clinicians can order an ELISA to analyze the level of 

carbohydrate antigen 125 (CA125) present in the bloodstream.[8] Although ELISA methods can be 

highly sensitive, they require a long run time, need specific antibodies for accurate result readout, and 

have a high possibility of false positives or negatives.[9] Other options for biomarker testing include 

Western Blot (WB) and mass spectrometry (MS), but these approaches are expensive, slow, complex, 

and low throughput making them hard to scale for clinically relevant cancer detection. Genomic cell 

free DNA testing can also be utilized for multi-cancer testing abilities and although it produces 

promising results, the DNA is found in very low levels and degrades quickly, meaning tests must be 

performed within hours of isolation.[10] 
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Optical techniques show great promise to address some of these weaknesses. They are fast, 

non-destructive, can probe a wide variety of biomolecules, and do not require physical contact with 

the sample. They are also highly compatible to use in the context of liquid biopsies. Optical equipment 

can be integrated to form and develop probing platforms to aid in the identification and subsequent 

readout of chemical signatures. These signatures can be used to inform physicians of the disease state, 

providing useful information while remaining non-invasive and requiring only small amount of patient 

biofluid. 

1.2 Raman spectroscopy is an attractive option as a liquid biopsy tool 

Vibrational spectroscopy is a group of optical techniques that non-specifically interrogate 

complex molecular systems, providing a chemical fingerprint related to the rotational and vibrational 

modes of the probed molecules. There are two main vibrational spectroscopy techniques, infrared 

(IR) spectroscopy and Raman spectroscopy. While IR spectroscopy is much more common, and yields 

robust chemical fingerprinting, it is largely not amenable to biological systems, due to the strong 

absorption in the IR by water. Instead, Raman spectroscopy provides strong value to chemically 

fingerprint biological systems.  

This inelastic scattering  phenomenon was discovered in 1928 by Indian scientist C.V. Raman 

and labelled as a type of secondary radiation.[11] While the majority of photons that interact with a 

sample are Rayleigh or elastically scattered, there is occasionally (~1 in 106 or fewer) photons that are 

Raman, or inelastically, scattered, meaning it has a net gain or net loss of energy compared to incident 

frequency. This energy change occurs in the vibrational levels of a molecule and produces a Stokes 

(lower energy) or anti-Stokes (higher energy) shift that can be translated and read as a Raman spectrum 

with discrete peaks (Figure 1.1). In each case, one quantum of energy is gained or lost, and the Stokes 

and anti-Stokes lines are equally shifted from the Rayleigh line (i.e. the wavelength of the interrogation 

laser).[12] However, the Stokes lines have higher intensity due to more molecules residing in the 
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ground state than in excited vibrational states and thus the majority of Raman measurements 

specifically examine the Stoke shifts.[12] 

 Molecules are determined to be Raman active based on their polarizability that in turn is 

dependent on the molecular geometry. When molecules undergo an electron cloud deformation, 

electrons are pulled away from nuclei, inducing a dipole moment and producing a Raman scattered 

photon. Not all vibrational modes within a molecule are Raman active; for example, the symmetric 

stretching mode in carbon dioxide (CO2) results in a polarization, as the molecule stretches and 

compresses, making it Raman active. Conversely, the asymmetric stretching and bending modes result 

in no net polarizability change during the stretch/bend and are thus not Raman active (Figure 1.2). 

Capture and detection of the inelastically scattered Raman photons can provide a spectral readout of 

functional groups and a compositional overview of the sample being probed. The distinct peaks in the 

Raman spectrum are ubiquitous (i.e. a peak at 1450 cm-1 always corresponds to the same thing) and 

 
Figure 1.1: Jablonski diagram for elastic (Rayleigh) and inelastic (Raman) photons after they interact with a sample. 
Both Stokes scattering and anti-Stokes processes are highlighted in the Raman section, showing the two distinct 
vibrational shifts that can occur. 
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can be analyzed to determine different macromolecules including proteins, lipids, nucleic acids, and 

carbohydrates present.  

 Raman spectroscopy is high in specificity and sensitivity, non-destructive, label free, suitable 

for aqueous measurements, and requires minimal sample preparation and volumes.[13] These 

advantages highlight the potential for Raman in clinical use, replacing the time consuming, expensive, 

and low-throughput technologies currently used. The biggest disadvantage of Raman stems from the 

inherent low volume of inelastically scattered photons. This can be mitigated via longer optical 

acquisition times but this in turn can reduce the viability of the technique for clinical translation. 

Another way of overcoming this inherent weakness is by integrating nanosized metallic components, 

an extension of the technique that is called surface-enhanced Raman scattering. 

 
Figure 2.2: Changes in the polarizability of carbon dioxide during its vibrations. a) The symmetric stretching mode 
produces a net polarizability change, making it Raman active. b) The asymmetric stretching mode results in the same 
shape and both ends of the movement, making it not Raman active. c) The bending mode results in the same shape 
and both ends of the movement, making it not Raman active.  
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1.3 Surface-enhanced Raman scattering can overcome associated technique weakness 

 Surface-enhanced Raman scattering (SERS) is a powerful phenomenon discovered by M. 

Fleischmann in 1974 while he was conducting experiments of pyridine adsorption on a silver 

electrode.[14] They reported an incredible million-fold enhancement of the Raman signal which they 

attributed to the increase in surface area from roughing the silver electrode.[14] A study produced by 

Jeanmaire and Van Duyne in 1977 realized that the increased surface area was not the key reason for 

the intense signal enhancement.[15] Both groups continued to independently work on the topic and 

SERS is now universally accepted as a surface analytical technique that can reach even single molecule 

sensitivity. 

 The mechanism by which SERS produces this highly enhanced signal is still under debate, but 

there are two well-accepted theories that may both play a part. The dominant contributor to this 

process comes from electromagnetic enhancement resulting from localized surface plasmon 

resonances (LSPRs) as the light interacting with the molecules is amplified.[16] In this theory, as the 

 
Figure 3.3: Schematic of the electromagnetic enhancement effect giving rise to SERS enhancement. As light hits the 
metal nanoparticles, the conduction electrons oscillate and create a strong local electronic field. Analytes within a 
short distance (~10nm) of the metal surface are enhanced and their chemical fingerprint can be collected and 
readout.  
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light propagates along the surface of the metal, the conduction electrons start to oscillate and in turn 

generate a surface plasmon that amplifies the incident laser field and enhances the Raman signal 

(Figure 1.3).[17] A high concentration of this enhancement happens in small distances between 

nanoscale plasmonic materials, typically in the location of gaps or sharp features.  

Coinage metals including gold, silver, and copper are commonly used as plasmonic materials 

and are outfitted with a wide range of nanoscale features where the electromagnetic enhancement can 

occur.[18] These types of noble metals are ideal to use as SERS materials due to their optical and 

electronic properties as well as their ability to produce LSPR bands in both the ultraviolet and visible 

region of the electromagnetic spectrum.[16] Of the coinage metals, both silver (Ag) and gold (Au) 

have been applied widely to SERS-based biological studies.[19–23] Typical lab setups employ laser 

wavelengths that fall within the near infrared (NIR) region, making the metals essentially 

interchangeable as they exhibit similar behavior, which can be shown by assessing their dielectric 

functions.[16] Ag and Au have similar electronic densities as visualized by the real parts of their 

dielectric functions in Figure 1.4. Although the behavior of these two metals is highly comparable, 

there are some advantages of using Au over Ag for biological applications. Au surfaces tend to have 

greater chemical stability as well as increased biocompatibility with many molecules of interest.[16] In 

 
Figure 4.4: Dielectric functions of gold (Au) and silver (Ag) for both the real (left graph) and imaginary (right graph) 
parts. Both metals behave similarly in the NIR region, making them attractive materials for SERS applications.  
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addition, oxidation occurs faster at Ag surfaces, hindering their shelf life and usefulness in clinical 

settings.[23]  

  The size and shape of the nanoscale metallic components play a large role in the level of 

enhancement generated. Ideal features fall in the range of 30-100 nm (i.e., about 10-fold smaller than 

the wavelength of interrogating light); anything larger creates resonance issues and strong dampening 

of LSP resonances as the result of increased radiation losses.[24] Many studies have conducted detailed 

testing of various shapes, geometries, and layouts of SERS-active materials, showing the various 

influences this parameter has on overall enhancement.[25–27] In general, nanoparticles assembled 

within a few nanometers of each other, or ones that exhibit sharp points, can create a stronger SERS 

effect compared to single free-floating particles.[24] The generation of these electromagnetic “hot 

spots” arise from coupled resonances in the gaps between the metallic nanostructures. An example of 

the spatial distribution of the enhancement zone between different nanoparticle shapes can be seen 

in Figure 1.5.  

 Besides the electromagnetic enhancement discussed above, an additional SERS mechanism 

can be noted by the chemical enhancement theory. This theory includes several different processes 

but, in this case, it is best to consider what happens specifically with a metal substrate. In this situation, 

there is a charge transfer between the highest occupied molecular orbital (HOMO) of the molecule 

and the Fermi level of the metal onto which it is adsorbed.[24,28] The light-induced charge transfer 

 
Figure 5.5: Local enhancement zones for metal nanoparticles vary based on their shape. Edges and sharp peaks 
tend to have a higher level of enhancement that decrease exponentially with the distance away from the surface.  
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could affect the electronic or geometrical structure of these adsorbed molecules, which leads to 

intensity changes and some observable spectral shifts.[29] Although this is important to consider for 

the detailed nuances of the SERS mechanism, it only results in modest an order of magnitude signal 

increase, therefore is much less significant than the electromagnetic enhancement, which can increase 

the Raman readout by up to 1012  in some cases, and more commonly by 106-108.[24] 

 The development of robust and effective SERS materials is a highly active area of 

research.[30–32] There are essentially two types of materials: synthesized nanoparticles in solution and 

planar substrates of micropatterned nanostructures. Several commercially available SERS substrates 

exist and can be purchased from companies such as Hamamatsu, Silmeco, and Ocean Insight. They 

are highly uniform and provide robust SERS signal, but these substrates are often single-use and more 

expensive than developing materials in-house. Alternatively, SERS materials can be synthesized or 

fabricated in house although each comes with challenges. For planar or micropatterned substrates 

there is a need for strict nanofeature spacing that often requires expensive electron beam lithography 

equipment and specialized training, but these materials tend to be more consistent with their SERS 

signal and provide high enhancement factors.[33–35] Another popular option is nanoparticle synthesis 

methods that allow for nanofeature tuning, such as sharpening, templating, or and size selection. 

Although these methods tend to be faster and less expensive, they are harder to accurately control and 

often involve dangerous precursors such as concentrated nitric acid and  dimethylformamide.[36,37] 

Regardless of the method employed, the goal is to develop a highly sensitive SERS material that 

produces robust signal with a high enhancement factor. 

1.4 Application of Raman/SERS for biological applications 

 To date, Raman and SERS have been applied to a wide range of biological and medical 

applications as both a diagnostic and analytical tool. Raman analysis of biological materials can give 

insight into information about structure, composition, interactions, and dynamics.[38] Similarly, 
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pathological conditions are often connected to molecular composition and structural changes in the 

affected tissues or cells which can be reflected in the Raman spectra of the samples, making it a useful 

tool to gain detailed insight into multiple simultaneous changes.[39] Although detailed and highly 

sensitive information can be extracted from Raman measurements, there has been no true clinical 

adaption of the technique (i.e., no FDA-approved platform is based on Raman). This is partly due to 

lagging of more usable instrumentation and the need for easy-to-make and inexpensive SERS 

materials. Nonetheless, Raman and SERS remain a viable and attractive option for biomedical 

applications.  

 Common applications of Raman and SERS include drug identification and detection,[40,41] 

in-line monitoring of wastewater,[42,43] environmental toxin and pollutant testing,[44,45] as well as 

preclinical diagnostic applications to diabetes,[46,47] cardiovascular diseases,[48,49] 

neurodegenerative diseases,[50–52] and cancer.[53–58] Of all the categories listed, diagnostic 

applications (specifically in cancers) are one of the most common to utilize the power of Raman. 

Cancers that lack robust early-stage biomarkers (such as HNC and OvCa) could stand to immensely 

benefit from Raman and SERS. It is highly unlikely that a single biomarker will be found that reports 

on the disease presence and staging of these cancers. Instead, a comprehensive spectral fingerprint—

such as those provided by Raman and SERS—can provide more detailed chemical analysis of a sample 

and allow for robust data analysis to show trends or relevant ratios that may provide a better diagnostic 

measure. 

1.5 History of liquid biopsy as a diagnostic method 

 Replacement of current invasive biopsy techniques with liquid biopsy tests would be a highly 

impactful clinical goal. Use of liquid biopsy-based methods are currently being studied with Raman 

and SERS as an interrogation tool[59–61] and there are many different possible levels of testing that 

can be done. Analysis of whole blood may provide the most comprehensive information but also 
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might be overwhelming in terms of sample complexity and correlating the chemical readout to specific 

factors. Use of plasma and serum reduces this complexity by a measure while still maintaining 

biomolecules from many different systems, but also has the potential to be too complex to make 

meaningful parallels. Other biofluids that are of interest include saliva, especially in the context of 

HNC where the tumors occur in the mouth and throat, because it may be enriched in cancer-specific 

metabolites and factors that can give important details.  

 Within these biofluids are molecules of potential interest. Liquid biopsy was first developed 

around 2013 and was initially used to assess circulating tumor cells (CTCs) that have dethatched from 

the metastatic lesion and traveled through the bloodstream to other parts of the body.[62] Since the 

advent of this detection method additional cell-free tumor related components such as DNA, mRNA, 

micro-RNA, and tumor-educated platelets (TEPs) have also been analyzed to give insight into the 

 
Figure 6.6: Overview of liquid biopsy methods. A blood draw taken from a patient contains many biomolecules of 
interest. Circulating Tumor Cells (CTCs) can be found in the red blood cell fraction. Cell free components such as 
extracellular vesicles (EVs), ctDNA, mRNA, and tumor-educated platelets (TEPs) can be found in the plasma or 
serum fraction.  

 



 12 

disease state of a patient (Figure 1.6).[63] Unfortunately, these factors occur at very low 

concentrations in the peripheral blood (<10 molecules/mL)[63] which poses a significant challenge 

for adequate detection and analysis.   

 Another interesting source for promising liquid biopsy material are extracellular vesicles (EVs). 

EVs are nanoscale particles made of a lipid bilayer that are released from all cell types and typically 

range in size from 30-150 nm.[64] The field’s understanding of EVs is continuously evolving but it is 

well-accepted that they are a highly diverse and complex group of nanoparticles that contribute to 

many biological functions in both local and distant body environments.[65] Associations between EVs 

and many pathophysiological processes have been identified, including cell proliferation and viability, 

bone formation, promotion and suppression of angiogenesis, and immunosuppression.[66]   

1.6 Extracellular Vesicles as disease mediators and their diagnostic potential 

 EVs have been implicated as mediators of a host of different diseases, ranging from 

cardiovascular and metabolic diseases,[67–69] neurological disorders,[70,71] inflammatory 

diseases,[72,73] and cancer.[74–80] Specifically in the context of cancer, EVs play an active role in pre-

metastatic niche formation by organotrophic targeting through integrin-mediated processes.[81] 

Cancer cells will release their own EVs to travel to initiate metastatic locations, clear populations of 

immune cells,[82] stimulate angiogenesis,[83] remodel the matrix,[84] and promote tumorigenesis.[85] 

EVs are an attractive option as diagnostic material because they are highly abundant, can be readily 

isolated from biofluid sources (blood, saliva, urine, etc.)[86], and exhibit surface expression reflective 

of their parent cell[65], meaning they are likely to house characteristics specific to the cancer host cells. 

However, EVs are inherently heterogeneous with size being a major driver of this diversity, a factor 

that can complicate the analysis of specific populations.[87]  



 13 

  Assessment of EVs follows isolation from a biofluid source. There are three commonly 

applied isolation techniques: ultracentrifugation (UC), density gradient (DG), and size exclusion 

chromatography (SEC). UC and DG are density-based methods that utilize centrifugation steps to 

concentrate EVs in a specific location within the tube.[88,89] SEC is a size-based method that sends 

samples through a gel matrix with larger molecules eluting faster as smaller molecules get trapped in 

pores within the columns.[90] For EV detection and characterization there are standard techniques 

recommended for use to ensure proper isolation has taken place.[86] Western Blot and BCA assays 

are used to quantify average composition and levels of proteins in bulk EV preps. Concentration and 

size distribution can be attained from Nanoparticle tracking analysis (NTA) that analyzes the Brownian 

motion of the particles as they move through a microfluidic device. More recently developed 

instruments like Exoview can also provide size and concentration measurements with additional 

surface protein characterization through fluorescently labeled sandwich antibody spots. 

 
Figure 7.7: To-scale schematic of biomolecular makeup of EVs across heterogenous length scales. The 
characteristic double lipid bilayer is present in all sizes of vesicles, with soluble cargo located internally. Surface 
expression of different molecules include functional lipids, glycans, and transmembrane proteins. An immense 
difference in intraluminal volume, surface area, and thus biomolecular content is found across the sizes of 30 – 150 
nm. 
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 EVs consist of distinct biomolecular classes including lipids, nucleic acids, proteins and other 

peptides, carbohydrates, growth factors, structural components like actin and fibronectin, and even 

hormones (Figure 1.7).[65] The rich diversity of these biomolecules make them an attractive source 

for diagnostic information specifically in the context of Raman and SERS analysis. There have been 

numerous studies using both Raman and SERS as sensitive readouts for isolated EV samples. This 

work has been applied to cancer in the way of detection and diagnostics,[91–97] response to 

treatment,[98–100] and recurrence.[101–103] The unique characteristics of EVs mentioned above 

support the notion that they are an attractive source of biomaterials that can give unique snapshots 

into a patient’s disease state. This, coupled with the high sensitivity and speed of Raman, could help 

develop a highly impactful liquid biopsy diagnostic platform to be implemented in clinical cancer 

detection pipelines. Despite this initial promising work, there is still much to uncover and optimize 

regarding spectroscopic readout of the heterogenous EVs present in patient biofluids in the context 

of translational diagnostic platforms.  

1.7 Dissertation Objectives 

 To accomplish clinical implementation, liquid biopsy methods must be quick, reliable, highly 

sensitive, and economical. Neither Raman nor the extension of SERS is currently used in an impactful 

clinical capacity, but the advantages of the technique make it attractive to develop into such a tool. 

Furthermore, there are multiple biofluid sources ranging from blood plasma to EVs that can provide 

important chemical spectral fingerprints to aid in cancer detection and monitoring. With these various 

levels of materials and information, it is vital to try and find some cohesiveness to develop a robust 

liquid biopsy pipeline. Success of such an accomplishment would easily fit into the standard clinical 

care routine of cancer patients but improve health outcomes and reduce the financial burden of the 

individual. There is high merit in placing emphasis on the development of a Raman/SERS based 

platform that can detect cancerous signals from various biofluid sources. Therefore, the objectives of 
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this dissertation are three-fold. 1) To assess the viability and validity of Raman to uncover chemical 

signals correlated to a disease state. 2) To understand the applicability of EVs as diagnostic materials. 

3) To develop new SERS materials that are inexpensive, robust, and compatible for clinical use in 

order to produce a more sensitive diagnostic readout. 
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Chapter 2: Materials and Methods 

2.1 Antibodies, reagents, and chemicals 

 Analytical standards of chylomicrons, very low-density lipoprotein (VLDL), low-density 

lipoprotein (LDL), and high-density lipoprotein (HDL) isolated from human plasma were obtained as 

lyophilized powders from Millipore Sigma. Gold (III) chloride trihydrate (HAuCl4), trisodium citrate 

dihydrate, adenine, 4-mercaptobenzoic acid (4-MBA), poly (vinylpyrrolidone), MW = 10,000, (PVP-

10), melamine, ethanol (EtOH), N,N-dimethylformamide (DMF), cysteamine, and phosphate 

buffered solution (PBS) were purchased from Sigma Aldrich (St. Louis, MO) and used without any 

further modifications. Pierce BCA Protein Assay Kit was purchased from ThermoFisher Scientific 

(Waltham, MA) and used according to the manufacturer’s instructions. Glutaraldehyde and osmium 

tetroxide were provided by the Biological Electron Microscopy Facility for electron microscopy 

sample preparation. Silicon wafer chips for nanoparticle deposition were purchased from Ted Pella, 

INC. (Redding, CA). Paraformaldehyde, glutaraldehyde, uranyl-oxalate, and methyl cellulose were 

purchased from Electron Microscopy Sciences (Hatfield, PA). Transmission electron microscopy 

formvar carbon grids were purchased from VWR (Radnor, PA). SKOV-3 and HEC-A-1 cells were 

bought from ATCC (Manassas, VA). T-75 flasks, Gibco McCoy’s 5A medium, fetal bovine serum 

(FBS), Gibco Exosome-Depleted FBS, and penicillin−streptomycin were acquired from 

ThermoFisher Scientific (Waltham, MA). CELLine 1000 AD bioreactor flasks were purchased from 

DWK Life Sciences (Millville, NJ). Size exclusion chromatography columns of 35 and 70 nm size were 

obtained from Izon Science (Medord, MA). Eppendorf tubes for EV collection were purchased from 

Eppendorf (Enfield, CT). Commercial SERS substrates were bought from Ocean Insight (Orlando, 

FL), Hamamatsu (Japan), and Silmeco (Copenhagen, Denmark). The biosilica/AgNP composite 

substrates used in this study were prepared and provided by Dr. Wachsmann-Hogiu at McGill 

University. 
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2.2 Cell Culture 

Two cell lines were cultured to model OvCa and EnCa: SKOV-3 and HEC-A-1 cells, 

respectively. Cells were first cultured in T-75 flasks with Gibco McCoy’s 5A medium and 10% (v/v) 

FBS and 100 units/mL penicillin−streptomycin. From here, 25 × 106 cells were used to seed high-

yield EV collection CELLine 1000 AD bioreactor flasks.34 The bioreactor’s upper compartment was 

supplied with 950 mL of Gibco McCoy’s 5A medium complemented with 10% (v/v) FBS and 100 

units/mL penicillin−streptomycin. The bioreactor’s cell compartment was supplied with 15 mL of 

Gibco McCoy’s 5A medium with 10% (v/v) Gibco Exosome-Depleted FBS and 100 units/mL 

penicillin−streptomycin. The T-75 flask and bioreactor cell cultures were propagated and cultured at 

37 °C, 95% relative humidity, and 5% CO2 atmosphere. For EV isolation, the cell compartment 

medium (15 mL) was collected once a week from the bioreactor, and 15 mL of fresh medium was 

added. Concurrently, the upper compartment medium (950 mL) was discarded and replaced with the 

same amount of fresh medium. 

2.3 Clinical biofluid collection and processing 

2.3.1 OvCa samples 

 The EVs studied in this work were isolated from clinical serum samples provided by the UC 

Davis Comprehensive Cancer Center (UCDCCC) Pathology Biorepository Resource (IRB ID: 

1314848-1). Patient serum samples were obtained as deidentified remnants following a clinician 

ordered CA125 assay. Histopathology analysis by trained clinicians identified sample types as either 

endometrial cancer (EnCa), ovarian cancer (OvCa), or benign (control). Therefore, some patients are 

not diagnosed with cancer even after the CA125 assay; thus, negative control samples can be obtained. 

Approximately 1 mL of serum was obtained per patient, from which EVs were isolated. 
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2.3.2 HNC samples 

 Patients were consented to blood draws and saliva collection during scheduled head and neck 

cancer surgeries in the University of California, Davis Department of Otolaryngology and all methods 

were performed in accordance with the relevant guidelines and regulations. Saliva was aliquoted into 

Eppendorf tubes with a volume ranging from 200-1000 μL and frozen at -80ºC until retrieval. Blood 

draws were isolated to plasma and serum and aliquoted into four tubes each with volumes ranging 

from 200-500 μL and frozen at -80ºC until retrieval. Saliva was thawed in an ice bath and further 

aliquoted into smaller storage volumes if the original sample volume allowed.  

2.4 Gas chromatography and mass spectrometry conditions 

 Metabolomics data was collected for primary and polar metabolites using gas 

chromatography–time of flight mass spectrometry.[104] Briefly, 30 μL of either plasma or saliva was 

extracted at -20ºC with 1 mL degassed isopropanol/acetonitrile/water (3/3/2). Extracts were dried 

down, cleaned from triacylglycerides using acetonitrile/water (1/1), and derivatized with 

methoxyamine and trimethylsilylation. Samples (0.5 μL) were injected at 250ºC to a 30m rtx5-SilMS 

column, ramped from 50-300ºC at 15ºC/min, and analyzed by -70 eV electron ionization at 17 

spectra/s. Raw data were deconvoluted and processed using ChromaTOF vs. 4.1 and uploaded to the 

UC Davis BinBase database[105] for data curation and compound identification.[106] Resultant data 

were normalized by to their respective average MTIC for each sample type. 

2.5 Raman acquisition and processing 

2.5.1 General acquisition parameters 

All spectra were acquired using a custom-built inverted Raman scanning confocal microscope 

with excitation wavelength of 785 nm and a 60x, 1.2 NA water immersion objective on an inverted 

IX73 Olympus microscope. An Andor Kymera-3281-C spectrophotometer and Newton DU920PBR-

DD CCD camera were used for Raman spectra capture and Solis v4.31.30005.0 software was used for 
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initial processing. Analysis of the spectral data was performed using MATLAB v2021a (Math-Works, 

MA, USA) via a custom script. Cropping, penalized least-squares (PLS) background correction,[107] 

smoothing,[108] and unit normalization were applied for spectral pre-processing. Spectra were 

subjected to PCA and LDA/QDA based on the corresponding MATLAB built-in functions applied 

to a custom script. 

2.5.2 Spontaneous Raman of HNC samples 

 Plasma and saliva were analyzed in both a native and dried state. Biofluid samples were thawed 

on ice and 2 μL was pipetted onto a quartz coverslip. For native measurements, the quartz coverslip 

was immediately placed on our Raman microscope and spectra were collected. For dried 

measurements, the native spots were allowed to dry for 15 min under ambient conditions prior to 

measurement. For measurements, exposure time was 30 sec per scan with laser power of 65 mW. 

Substrates were randomly sampled at 5 regions with 100 spectra collected and averaged at each region. 

Spectra containing cosmic rays were removed from analysis. For each of the patients with both 

biofluid samples present, the average plasma spectra and average saliva spectra intensity values were 

exported into a.txt file. Arbitrary values were assigned to the x-axis starting with 1 and ending with 

1694. New files (with plasma first, followed by saliva) were analyzed with the same processing 

parameters outlined above. 

2.5.3 SERS of HNC samples 

 SERS nanogold substrates (Ocean Insight) were first prepared by pipetting 10 μL of 20 mM 

cysteamine in 95% ethanol onto the surface. After 1 h incubation, substrates were washed by dipping 

into an Eppendorf tube containing ultrapure water and 100-fold dilutions of EV samples in ultrapure 

water were prepared. 40 μL of this solution were pipetted onto the substrates and incubated at room 

temperature for 2 h. The substrates were then washed three times by briefly dipping into Eppendorf 

tubes containing ultrapure water. Washed substrates were inverted onto #1.5 glass coverslips for 
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SERS measurements.  For measurements, exposure time was 1 s per scan with laser power of 5 mW. 

Substrates were randomly sampled across 5–10 SERS-active regions, with at least 100 spectra collected 

at each spot.  

2.5.4 SERS of OvCa samples 

Small sensor pieces (∼2 mm by 5 mm) were cut out from the prepared parallel (0.2 × 5 cm) 

stripe-shaped plasmonic sensor substrates. One 2 × 5 mm piece was used per measured sample. 

Before EV incubation, the sensors were pretreated at pH 6.5 with 10 μL of 20 mM (in 95% EtOH) 

cysteamine. After 1 h, the substrates were washed 2−3 times by dipping into Eppendorf tubes of pH 

6.4 buffer. EV samples were diluted 1:100 in the same buffer, and 30 μL drops were pipetted onto the 

substrates, covered, and incubated at room temperature for 2 h. The substrates were then washed 

again and inverted onto a #1.5 glass coverslip for SERS measurements. All steps were performed in 

liquid conditions, including the EV measurements. Exposure time was set to 1 s per scan with a laser 

power of ∼1−5 mW unless otherwise specified. Across all samples, SERS spectra were sampled 

randomly in 5−10 different spatial locations with a 20-spectra kinetic series collected. Representative 

spots were chosen for data collection when noticeable SERS peaks became visible and stable during 

randomly traversing across the substrate, so there is a positive bias in each spot for containing EV 

materials. Tests were performed to choose an adequate number of PCs for the LDA, simultaneously 

avoiding overfitting. Thus, an LDA analysis using the two first PCs (PC1 and PC2) was determined 

to be the most suitable for the analysis, consistent with the data presented throughout this study. 

2.5.5 SERS of Nanofoams 

 Careful focusing was carried out for each sample to ensure the bulk of the substrate is centrally 

located in the focal volume. For measurements, raster scans were performed as 20 × 20 pixels with a 

400 nm step size equaling an 8 μm by 8 μm area. Heat maps were generated by selecting a pronounced 
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spectral feature with a normalized color scale. Five scans of 400 spectra (i.e., 20 × 20 pixels) were 

performed on each substrate and averaged.  

2.6.6 Theoretical Calculations of SERS surface coverage 

To theoretically estimate the surface coverage of EVs on an average SERS scaffold substrate used 

in this study, we calculate two different exemplary situations making the following premises: 

▪ A 2 mm x 2 mm piece of substrate is used 

▪ A 1:100 dilution of 5 × 1010 EVs/mL stock solution is used 

▪ An average EV diameter ~100 nm 

▪ 30 μL of (1:100) diluted EV sample is used 

Thus, the particle concentration of EVs in the 30 μL (1:100 diluted) droplet pipetted onto the SERS 

substrate is 5 × 108 EVs/mL. By this, the total amount of EVs in the 30 μL droplet is 1.5 × 107 EVs. 

Hence, with the assumed size of the substrate and the average EV diameter, it is theoretically possible 

to ‘fit’ 4 × 108 EVs as a ‘monolayer’ on the substrate area given that the piece of substrate is fully 

covered in EVs. Finally, these result in the total experimental EV coverage of  

(
1.5 ×  107 EVs

4 × 108 EVs
) × 100% ~ 3.75%  

Thus, with the given EV stock concentration and (1:100) dilution we only cover significantly less than 

4% of the substrate area.  

If 100x higher particle concentration is used (i.e., stock of 5 × 1012 EVs/mL), these results in the total 

experimental EV coverage of  

(
1.5 ×  109 EVs

4 × 108 EVs
) × 100% ~ 375%  
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2.6 EV isolation and characterization 

2.6.1 Isolation by Ultracentrifugation 

 First, 1 mL of serum was centrifuged at 300g for 10 min at 4 °C to clear any remaining whole 

cells. The resulting supernatant was then centrifuged at 2000g for 15 min at 4 °C followed by a 10,000g 

spin for 30 min at 4 °C to pellet any dead cells and cell debris/larger microvesicles, respectively. All 

low-speed spins were performed using a Beckman Coulter Microfuge 20R centrifuge with an FA361.5 

Biosafe rotor. Finally, the samples were ultracentrifuged twice at 120,000g for 70 min at 4 °C to pellet 

EVs, dispersing in ultrapure water between spins. Ultracentrifugation was carried out using a Beckman 

Optima TLX Ultracentrifuge with a TLA 100.1 fixed angle rotor. Resulting pellets were resuspended 

in up to 100 μL of ultrapure water and stored at −80 °C for up to a few weeks until use. Samples were 

aliquoted to reduce freeze−thaw cycling. 

2.6.2 Isolation by density gradient 

 200 μL of pre-cleared plasma was layered on to a 5%–40% discontinuous iodixanol (OptiPrep, 

or OP) gradient. The OP layers were prepared by diluting 60% OP in varying volumes of a stock 

solution containing 850 g of 0.25 M Sucrose, 200 μL of 1 mM EDTA, and 500 μL of 10 mM Tris-

HCL (pH-7.4). Gradients were prepared in layers in Thinwall Polypropylene Tubes (Beckman Coulter) 

using 3 mL syringes with 26-gauge stainless steel needles. Each layer was filled from the bottom of 

the tube, starting from light to heavy, 3 mL of 5% OP, 3 mL of 10% OP, 3 mL of 20% OP, 3 mL of 

40% OP, and 1 mL of sample for a total of 13 mL. Following sample loading, gradients were spun at 

100 000g at 4 °C for 24 h using an SW 41 Ti Swinging-Bucket Rotor and an Optima LE-80 K 

ultracentrifuge (Beckman Coulter). The samples were manually fractionated from the bottom, with a 

total of thirteen 1 mL fractions collected per tube. Each fraction was additionally centrifuged to 

remove the remaining iodixanol. For this, 500 μL of each fraction was pipetted into an Amicon Ultra-

0.5 mL centrifugal filter with 100 K MWCO and spun at 14 000g at 4 °C for 5 min using a Microfuge 
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20R (Beckman Coulter). 400 μL of PBS was added to each filter and then spun again for 5 min (this 

washing repeated 3 times in total). The filters were then inverted inside fresh tubes and spun 1000g at 

4 °C for 2 min. Collected solutions of ∼60 μL were stored at −80 °C. 

2.6.3 Isolation by size exclusion chromatography 

 EVs were collected with an Automatic Fraction Collector (AFC) and pre-formed size 

exclusion columns (qEV70, Izon Science). Thirteen 1.5 mL Eppendorf tubes were loaded into the 

AFC carousel and a single qEV70 column was inserted into the mount. The column was flushed with 

4 mL of filtered PBS buffer at room temperature. After the column was flushed, excess buffer was 

removed from the top of the column using a 10 μL pipette. 150 μL of the pre-cleared plasma was 

loaded on the column and fraction collection started. Once the sample reached the upper frit of the 

column, it was topped off with 4 mL of PBS buffer. After the void collection was complete, the 

machine collected 200 μL of each fraction. Fractions 1–3 were pooled, and the resulting solution was 

concentrated using Amicon Ultra 0.5 mL centrifugal filters to a final volume of 100 μL and stored at 

−80 °C for maximally 5 days before following experiments were run. 

2.6.4 Nanoparticle tracking analysis 

Sample particle concentrations and size distributions were measured using a NanoSight LM10 

(Malvern Panalytical) equipped with a 405 nm blue laser and sCMOS camera. 1000-fold dilutions of 

EV isolates prepared as described above where thawed. Ultrapure water used to prepare dilutions was 

filtered through pre-wet 0.1 μm Nylon syringe filters (Whatman) immediately prior to measurement. 

Filtered ultrapure water was also used to flush the NTA chamber and tubing before sample addition 

to ensure contamination was minimized during measurement. 1 mL of each diluted sample was loaded 

into a syringe and placed on an automatic syringe pump for injection. Data was recorded as three 30 

s videos containing a minimum of 200 particle tracks per video, recorded at camera level 12. NTA 3.1 

software was used to analyze the data and track the Brownian motion of the individual particles 
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recorded. Subsequently the software calculated hydrodynamic diameters (nm) of the tracked particles 

using the Einstein-Stokes relation, and the count-based concentrations (particles per mL) are 

simultaneously obtained as the number of particles and volume of the sample chamber are known. 

2.6.5 Protein concentration measurement 

 Total protein concentration for each sample was measured with a BCA assay (Pierce BCA 

Protein Assay Kit, ThermoFisher Scientific) following the manufacturer’s instructions. 15 μL of EV 

stock was mixed with 8 μL of RIPA buffer and 57 μL ultrapure water then vortexed briefly and 

incubated on ice for 30 min prior to starting on the assay instructions. 

2.6.6 Trypsinization of EV glycocalyx 

 For EV treatment with trypsin, prior to measurement, 5 μL of EV sample was mixed with 500 

μL of 0.25% w/v trypsin, pipetted rapidly up and down, and then incubated at 37 °C for 1 h to allow 

for cleavage of extraluminal surface moieties. Samples were washed thrice with ultrapure water in 10 

kDa Amicon Ultra (0.5 mL) regenerated cellulose centrifugal filters according to the manufacturer’s 

instructions. 

2.7 Electron microscopy of EVs and substrates 

 For transmission electron microscopy (TEM) of EV isolates, negative staining was carried out 

as previously described without modification.[109] TEM images were obtained on a Talos L120C 

(ThermoFisher Scientific, MA, USA). 2 μL of nanofoam solution was dropped onto copper formvar 

carbon support grids and allowed to dry before imaging. 

Scanning electron microscopy (SEM) micrographs of SERS substrates before and after 

incubation with EVs were acquired using a ThermoFisher Quattro S (ThermoFisher Scientific, 

Waltham, MA). Secondary electron scattering from the surface was detected using an Everhart–

Thornley detector (ETD), and the backscattered electrons were detected with an annular backscattered 

(ABS) detector. For the SEM sample preparation, the pretreated substrates were first placed in a 12-
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well plate the SERS active surface facing up, simultaneously avoiding drying. The substrates were then 

washed thoroughly 2 times with sodium phosphate buffered solution (PBS), sequentially submerged 

for 15 min in glutaraldehyde, and finally in osmium tetroxide for in 15 min (no washing between the 

steps). Consequently, a graded series of ethanol (EtOH) solutions were used to dehydrate the samples 

as follows: 30% (5 min), 50% (5 min), 70% (5 min), 95% (2 Å~ 5 min), and 100% (2 Å~ 5 min). As 

the last step of sample preparation, the substrates were allowed to dry overnight in a fume hood. For 

imaging, the substrates were mounted on metal studs using two-sided carbon tape. The typical imaging 

parameters were working distance 10.0–13.5 mm, spot size 3.0, accelerating voltage 10.00 kV, chamber 

pressure 100 Pa. 

2.8 Nanofoam synthesis and characterization 

2.8.1 Nanofoam synthesis 

 Gold nanofoams (AuNFs) were fabricated by mixing trisodium citrate dihydrate and HAuCl4 

reactants at differing molar ratios of (R = Ccitrate/Cgold). Initial experiments were carried out with R = 

12 on a stir plate following rinsing with EtOH and drying under air. 31 mg of HAuCl4 was added to 

32 mL of ultrapure water in a 50-mL round bottom flask with consistent magnetic stirring maintained 

at 550 rpm. 367.5mg of trisodium citrate dihydrate was added directly to the flask while stirring. The 

reaction proceeded at room temperature under constant stirring. The yellow solution quickly turned 

clear followed by darkening to a purple/black within an hour of the reaction start. Aliquots were taken 

from the solution at 2 h and 5 h, and the reaction was stopped at 8 h. By this point, AuNFs had 

precipitated out of solution to form visible black masses at the bottom of the flask, and the solution 

became clearer. Foams were collected by gentle decantation or left in the flask for subsequent 

roughening procedure. 
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2.8.2 Nanofoam roughening 

 For roughening, the AuNFs were produced as above, except at the 6 h mark, excess volume 

was removed until 5 mL of the original solution (containing dispersed AuNFs) remained in the flask. 

A separate solution of 7 mL DMF, 0.1875 g PVP-10, and 40 μL of 50 nM HAuCl4 (in MQ water) was 

made and added to the original nanofoam mixture. The flask was clamped and an ultrasonication 

probe (Sonics & Materials INC., CT, USA) inserted into the solution while avoiding touching any of 

the glass. The mixture was sonicated for 15 min at 30% power (power = 130 W, frequency = 20 kHz) 

at which point a noticeable blue color shift occurred in the solution. Resulting roughened nanofoams 

(RNFs) were used in downstream assays as is with no further purification. 

2.8.3 Nanofoam deposition onto filters 

 Nanofoams were dropped using a Pasteur pipette onto 13 mm, 0.22 μm pore size, hydrophilic 

PVDF Durapore filter paper (MilliporeSigma) placed in a ceramic Büchner funnel under vacuum. 

Build-up of nanofoams was achieved by continuous dropping before allowing to completely dry. 

Adequate surface coverage was achieved after 75 drops of AuNF solution, determined by creating 

filters with increasing numbers of drops (in increments of 25 up to 100 drops) and then measuring 

SERS signal at random spots throughout the substrate. SEM images of the surface coverage with 

corresponding pictures of the filters can be seen in Fig. S1. The Raman standard melamine was used 

as a test molecule due to SERS specific peaks that are only visible when the plasmon resonance is high 

enough. The emergence of enhanced signal across large areas of the substrate, as suggested by a 

measurable increase in reporter analyte signal, indicated sufficient AuNFs structure to generate SERS. 

Subsequent filters were made with at least 75 drops of our reaction. 

2.8.4 EM of Nanofoams 

 Scanning electron microscopy (SEM) images were obtained using a Thermo-Fisher Quattro S 

(ThermoFisher Scientific, Waltham, MA) to visualize AuNF surface morphology. The instrument is 
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equipped with an Everhart-Thornley detector (ETD) for secondary electron imaging. Prior to imaging, 

filters were sputtered with 5 nm gold to reduce substrate charging from the electron beam. Substrates 

were then mounted on metal studs using two-sided black carbon tape, and the following typical 

imaging parameters were applied: working distance 10.0 mm, spot size 3.0, accelerating voltage 10.0 

or 15.0 kV. Transmission electron microscopy (TEM) images were obtained on a Talos L120C 

(Thermo Fisher Scientific, MA). 2 μL of nanofoam solution was dropped onto copper formvar carbon 

support grids and allowed to dry before imaging. 

2.8.5 SERS surface area modeling and nanostructure analysis 

The analysis procedure is as follow: 

1. Open the image with ImageJ/FIJI. 

2. Convert to 8-bit greyscale (Image –> Type --> 8-bit). 

3. Analyze --> Set Scale --> Remove Scale 

4. Use ‘Line’ tool + Hold down shift to draw a line on the scale bar in the (SEM/TEM/etc.) image 

5. Analyze --> Set Scale --> Add scale using the correct dimensions and units (e.g., 1000 nm) --> If 

you want the scale to apply to apply to other images in the session as well, tick also ‘Global’ box (Note: 

Tound the ‘Distance in Pixels’ number if it is e.g. 368.7 --> Write 369 in the box). 

6. Select rectangle tool from the toolbar --> Draw a rectangle around the area you want to analyze. 

7. Image --> Duplicate (Produces a copy of the demarcated area) 

8. Using the image obtained at step 6.: Process --> FFT --> Bandpass Filter to remove excess noise 

from the image (Filter large structures e.g., down to 20 pixels + Small structures up to 3 pixels; note 

that these settings need to be tested and iterated for each case for optimal results + Suppress no stripes 

+ Tolerance of direction 5% + Autoscale after filtering on + Saturate image when autoscaling on --> 

OK). 
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9. Activate the filtered image --> Image --> Adjust --> Threshold --> Select the desired color for the 

background and the particles --> Adjust the threshold bars so that at the end the particles are 

highlighted in the desired particle color and the background correspondingly in the background color 

--> Click Apply. 

10. It is advisable to clean up the known artefacts manually by hand using the ‘Eraser’ tool (Red double 

arrow on the upper right corner of the control panel --> Drawing Tools to reveal the drawing tools) 

--> If needed, change the color of the eraser --> Edit --> Options --> Colors --> Background (select 

e.g. black/white). Note also that switching between the B&W and red themes in the ‘Threshold’ view 

(by default the ‘Dark Background’ box is ticked) can help to spot the areas that need to be erased. In 

a typical situation either set a very stringent threshold is set such that a lot of the relevant structures 

become excluded, which biases the results, or a less restrictive threshold is set but then the image need 

to be cleaned up more thoroughly, which takes more time. As a rule of thumb, a better practice is to 

spend more time during the manual clean up rather than cut off most of the relevant structures by 

thresholding too rigorously. 

11. Keep the processed image active --> Analyze --> Analyze Particles --> Size (Set 0-infinity if the 

particles/features to be analyzed are very unevenly sized; if not, this option can be used to delimit the 

analysis to certain max size particles) + Circularity (Set 0.00-1.00 if the morphology of the particles is 

uneven as seen in the exemplary images above; if not, the lower boundary can be increased to e.g., 

0.50, such that only more circular shaped particles are counted and analyzed) + Show outlines + 

Display Results on + Summarize on + Add to Manager (this will add the results in ROI manager, 

which is very useful) --> OK. The ‘Summary’ and ‘Results’ logs enable quantitative nanostructure 

analysis as desired. 

12. If you want to have an overlay and see how well the particles (or features of interest) have been 

fitted, duplicate the selected area again (originally selected using rectangle tool above at step 6.), and 
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select “Show All” in the ROI manager (it is typically useful to untick the box “Labels” as the overlay 

becomes otherwise quite unclear), and finally click “Flatten [F]” that will ‘burn’ the overlay onto the 

image. If the “Flatten [F]” is not selected, the overlay will not be saved if you try to save the image 

e.g., as .tiff. 

13. Save the desired files (e.g., particle analysis results, overlay image etc.). 

2.8.6 Simulation of optical properties for the nanofoams 

AuNF and RF Construction via SEM image interpolation 

A 500 nm x 500 nm 3D nanofoam structure is reconstructed using cropped SEM image via MATLAB. 

Native SEM image is smoothened with Gaussian filter to remove noise. For RNFs specifically, feature 

height was scaled assuming the feature surface height is isotropic with the surface area; Similarly, for 

AuNFs, the 3D structure is scaled accordingly assuming the layer height is 45 nm – the modal diameter 

of the nanofoam determined by TEM imaging. The final 3D surface structure is exported as an STL 

solid via surf2solid open-source package. 

Alternative approach to AuNF Construction 

The topological structure of the AuNFs is inferred from the SEM image and the top layer of the 

AuNF is used as the motif for simulation. Nanofoam structure is assumed to be a single 45-nm thick 

layer and constructed in Solidworks and exported as an STL file. The STL file is then directly imported 

into Lumerical FDTD 3D electromagnetic simulation for further analysis. 

Alternative approach to RF Construction  

RNF is modeled as a collection of gold nanospheres that range from 15 nm to 45 nm in diameters in 

Lumerical FDTD 3D Electromagnetic Simulator. 200 particles are randomly distributed within a 700 

nm by 700 XY space while the particles are allowed to overlap to emulate the aggregate structure seen 

from the SEM images. X, Y, Z standard deviation, which stands for the number of standard deviation 

half the sphere covers, is set to 3.   
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FDTD Simulation 

The electric field around the structure is determined using Lumerical FDTD 3D electromagnetic 

Simulation. Mesh size is chosen to be 1.5 nm uniformly in X, Y, Z directions to ensure mesh symmetry 

while providing the capability to resolve near field (<10 nm) surface enhancement. A total-field 

scattered-field propagating at 785 nm is injected directly normal to the surface of the 3D structure. A 

3D frequency-domain field and power monitor are used to collect the local electric field of the 

nanofoam structure. The material property of the structure is defined by Au (Gold)-CRC. The 

structure is enveloped by planar solid defined by water’s optical property. Stabilized PML conditions 

are used as the boundary conditions to ensure convergence. The enhancement factor for surface-

enhanced Raman scattering can be described as (E/E0)
4 where E is the local electric field and E0 is the 

input source electric field. Maximum EF at individual mesh cells defined by the XY view is then 

plotted to visualize the hotspot distribution. 
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Chapter 3: Fused Raman spectroscopy analysis of blood and saliva delivers high 

accuracy for head and neck cancer diagnostics 

Context: Here we focus on using conventional Raman applied to whole biofluid analysis prior 

to using more complex biomolecule subpopulations or the extension of SERS. We show 

strong ability to distinguish cancer from non-cancer from a simple data augmentation, 

providing support of the diagnostic potential Raman has as a clinical tool. 

3.1 Introduction 

When cancer is detected early, treatments are more effective, and survival improves.  Current 

diagnostic modalities of imaging (e.g., ultrasound, CT, MRI, PET) and solid biopsy with pathology 

and immunohistochemistry are either invasive, time-consuming, or frequently inaccurate, therefore 

not ideal for routine screening of at-risk patients.[110] There is a critical need to develop rapid, 

inexpensive, and accurate new platforms that identify tumor associated features in circulating biofluids 

in the earliest stages. Liquid biomarkers—chemical analytes of interest present within a patient 

biofluid—could provide significant clinical and economic benefits, paving the way towards precision 

medicine and patient-centered care.[111]  

It is unlikely that a single biomarker will detect all types of cancer or reliably inform clinical 

care throughout diagnosis and treatment; therefore, techniques capable of analyzing signatures 

representing a broad range of molecules are needed. Omics platforms based on mass spectrometry 

(MS), encompassing genomics, transcriptomics, proteomics, lipidomics, and metabolomics, have 

transformed our understanding of cancer molecular biology.[112–114] Yet such approaches are 

relatively slow, high in cost and complexity, low throughput, and require large sample volumes, thus 

are impractical for many stages of clinical care. These limitations are especially prohibitive for large 

scale routine cancer screening, thus there are huge advantages to moving towards diagnostic platforms 

that do not rely on MS. 
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Instead, an ideal diagnostic test would be rapid, real-time, reagent-free, non-destructive, 

inexpensive, highly accurate, and require minimal background training and minute amounts of 

minimally- or non-invasively collected sample (e.g., plasma, urine, or saliva). Raman spectroscopy (RS) 

addresses many of these needs: it requires little to no sample preparation, is non-destructive, does not 

need exogenous dyes or labelling agents, and can be performed directly in aqueous solutions.[115] RS 

has been applied to diagnose many cancers to date, including breast,[116] pancreatic,[117] skin,[118] 

colon,[119] gastric,[120] and lung cancer.[121] In head and neck cancer (HNC), prior applications 

mainly focused on tissue, either as a screening tool,[122,123] for identification of potential 

recurrence,[124] or general discrimination between normal and cancerous tissues.[125–132] But there 

is little work done using RS to identify and validate early-stage HNC liquid biomarkers, particularly 

comparing against benign disease or diagnostic staging. In addition, typical Raman research is carried 

out on smaller datasets which leads to over-fitting of data and misinterpretation.[133] When applied 

to larger cohorts, the sensitivity and specificity of such platforms typically drops due to increased 

complexity and inter-patient variation. These limitations have hindered the clinical adoption of 

Raman-based platforms.[134] 

Of importance to note is that many studies related to cancer detection are carried out using 

surface-enhanced Raman scattering (SERS), a highly sensitive extension of Raman that uses nanoscale 

metallic features to induce a strong electromagnetic enhancement.[31,54,55,97,135] SERS has many 

of the same features mentioned above but measurements can be done more quickly with a stronger 

signal. However, SERS struggles with reproducibility due to inherent signal heterogeneity, making it 

difficult to validate the results obtained.[30] For this reason, we decided to utilize conventional Raman 

in this study. 

RS is an attractive diagnostic tool, but there remain some obstacles that need to be addressed 

to maximize clinical translation potential. Typical Raman instruments tend to have a large physical 
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footprint. Efforts in producing miniaturized, portable systems are advancing, but it is not clear that 

their resolution would permit the diagnostic performance achieved in this study. Another drawback 

currently is the lack of automation for fast and easy measurements. Currently, RS requires highly 

trained users for sample measurement and data analysis. Furthermore, an accounting for the range of 

preanalytical variables that may affect measurement was not carried out in this work. It is not clear 

how diagnostic model performance would be affected by sample storage conditions, time of day for 

liquid biopsy collection, or total volumes collected (to name a few). Future work to address these 

pitfalls could increase the translational potential of RS as an indispensable clinical tool. 

As of 2018, head and neck cancer (HNC) was the seventh most prevalent cancer worldwide 

with 890,000 new cases and 450,000 deaths.[3] Although cases linked with tobacco and alcohol use 

have been on the decline, cases of human papillomavirus (HPV)-associated HNC cancer are 

increasing, mainly induced by HPV.[136] Approximately 30-40% of patients are diagnosed with stage 

I or II HNC, which is typically curable with surgery or radiotherapy alone and increases long-term 

survival rates to 70-90% for those individuals.[137] However, this leaves more than 60% of patients 

with HNC presenting in stage III or IV, which carries a high risk of distant metastasis, local recurrence, 

and a 5-year overall survival of 50%.[104] It is evident from these reported numbers that HNC 

diagnosis could benefit from finding and validating early-stage biomarkers that can be correlated with 

the disease progression and further monitored to assess patient reaction to treatment. 

Another interesting angle of this research involves the augmentation of data, in this case by 

combining the Raman spectra of multiple biofluids. More diagnostic information may be uncovered 

by creating these stitched biofluid datasets, leading to a potential increase in diagnostic ability of our 

platform. This type of low-level data combination has been utilized before in the context of assessing 

pollutants in oils,[138]  clay minerals,[139] or analyzing the purity of red meats to uncover food 

fraud.[140,141] Some initial work applying Raman spectra concatenation has been applied to biological 
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samples, but this work was done by combining different types of data (in this case Raman and MALDI 

spectrometric imaging).[142] We believe this is the first time Raman data augmentation has been 

performed using multiple biofluid sources rather than analytical techniques. 

In this study we carried out RS measurements of paired blood and saliva for a 53-person 

cohort. Using chemical standards of metabolites identified by MS on a subset of those patients, we 

confirmed that the spectral features upon which discrimination is based in RS are associated with the 

same biomolecules identified by MS. We determined optimal pre-analytical variables (e.g., native vs. 

dried biofluid) that maximized model performance. Our major finding is that accuracy, sensitivity, and 

specificity approaching, and even surpassing MS, could be achieved by RS using an innovative 

approach to stitch together spectra from plasma and saliva for each patient. To the best of our 

knowledge, this is the first study that uses RS to directly validate metabolites from patient biofluids, 

as well as to analyze combination biofluid spectra to achieve highly accurate diagnostic performance. 

3.2 Mass spectrometry analysis 

For the initial subset of 28 patients (19 SSC and 9 control cases) collected for this study, plasma 

and saliva biofluids for each patient were measured by gas chromatography – time of flight mass 

spectrometry (GC-TOF-MS) for primary and polar metabolite identification.[105] Metabolites 

grouped by structural class were ranked based on their fold-change in SSC vs. control samples (Figure 

3.1a). The highest fold changes occur within distinct classes and differ widely between the two biofluid 

types. Saliva yielded more polarized data compared to plasma, with a higher number of metabolites 

featuring a significant fold change between cancer vs. benign controls. Nevertheless, both plasma and 

saliva each provided high diagnostic value when subjected to partial least-squares discriminant analysis 

(PLS-DA). The first two X-variates in the model yielded the best model performance. For plasma or 

saliva, this represented 20% of the total variance in each case. For each biofluid, only one sample was 

misclassified (Figure 3.1b). Receiver operating characteristic (ROC) curves were generated by plotting 



 35 

the true positive rate against the false positive rate for plasma and saliva (Figure 3.1c). The area under 

curve (AUC) values were 95.9% for plasma and 92.4% for saliva. This was the highest reported AUC 

for GC-MS measurements of HNC plasma and saliva in the literature that we are aware of, with the 

next highest being 90.4%.[143,144] 

To understand the main metabolic drivers of this diagnostic modeling, we generated similar 

AUC plots upon systematically removing the metabolites with lowest variable importance score in the 

PLS-DA model. We found that even using just the top five metabolites for each biofluid achieved 

AUC scores of 93.0% and 91.2% for plasma and saliva, respectively Supplemental Table S1. The 

identity and structure of these top five metabolites driving the diagnostic model performance are 

shown in Table S3.2. 

 
Figure 3.1: GS-TOF-MS analysis of plasma and saliva collected from SSC vs benign control cases. a) Metabolites 
grouped by chemical class were identified from either plasma (top) or saliva (bottom). Color scale represents fold 
change for cancer/benign, with red representing a higher prevalence in cancer biofluids and blue a higher prevalence 
in the controls. b) PLS-DA of the pre-labeled cancer and control samples for plasma and saliva reveals excellent 
discrimination with only a single sample misclassified in each biofluid. c) ROC curves enable calculation of AUC to 
be 95.9% and 92.4% for plasma and saliva, respectively. 
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3.3 Raman spectroscopic analysis 

The full cohort of 53 subject samples was measured using a custom-built inverted Raman 

confocal microscope. Spectral averages for cancer vs benign control are shown in Figure 3.2. Spots 

were plotted together in a two-dimensional PC space for initial visual assessment. Measurements were 

taken in both a native (i.e., wet) and dried state, since it is not clear which would be most accurate for 

downstream diagnostic modeling. Native state measurements are quicker to prepare, yet the weak 

nature of spontaneous Raman scattering necessitates a moderately long acquisition time of 30 seconds 

in unconcentrated samples. During this time, metabolites are diffusing in and out of the focal volume, 

increasing sampling but also heterogeneity of the signal. On the other hand, drying out the samples 

under ambient conditions increased sample measurement time by 15 minutes to allow for drying, but 

concentrates the sample and results in a more stable spectra in the same 30 seconds. Figure 3.2 plots 

the average and standard deviation of the Raman measurements for the two biofluids in both native 

and dried state. 

 
Figure 3.2: Global averages and standard deviations for cancerous samples (purple) and control samples (green) of 

plasma (left) and saliva (right) in both a native (top) and dried (bottom) state. The native samples had a higher degree 
of standard deviation from the dried samples, indicating there was more heterogeneity across sample measurements. 

 



 37 

 The dried measurements exhibit less intra- and inter-sample variation compared to the native 

samples, a trend that is particularly evident for saliva. Comparing dried and native saliva samples, we 

observed a large discrepancy in the peaks represented by the cancer versus the control group. Raman 

shifts in the vicinity of 1000 cm-1, 1300 cm-1, and 1650 cm-1 that correspond to key biological materials 

(Table 3.1) have higher intensity differences between cancer and control in the dried spectra. This 

indicates that some signals may be more prevalent in the dried state than the native, suggesting that 

the two methods are probing different chemical aspects of the samples. 

3.4 Fitting Raman spectra with metabolite standards 

 Considering that Raman and metabolomics in principle evaluate similar chemical analytes 

comprising a given sample, we were interested to assess whether the same metabolites driving 

 
Figure 3.3: Raman spectra of cancer biofluids contain distinct features that can be attributed to the metabolites 
identified by GC-MS to drive diagnostic model performance. For each biofluid, average spectra of the cancer 
samples were fit with their respective metabolites. The average plasma cluster for cancer patients (blue) was fit 
with the reference spectra below for valine (green), histidine (magenta), tryptophan (yellow), 9-myristoleate 
(orange), and malonic acid (rose). The average saliva cluster for cancer patients (blue) was fit with the reference 

spectra below for trans-4-hydroxyproline (green), propane-1,3-diol (magenta), 3-phosphoglycerate (yellow), 1-

monopalmitin (orange), and azelaic acid (rose). 
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metabolomics model performance could also be measured in RS. For the ten metabolites shown in 

Table S3.2, analytical standards were obtained and measured by RS. Each metabolite was strongly 

Raman active and showed a distinct spectral signature (representative spectra are shown in Figure 

S3.2.)  

To assess their relevance in relation to the Raman data of saliva and plasma, cluster fitting was 

performed. Principle component analysis (PCA) of all cancer samples for plasma and saliva was carried 

out. Hierarchical clustering was applied using Euclidean distance metrics considering the top five 

principal components. The spectra average for the cancer samples was fit (using asymmetric least 

squares) to combinations of the metabolite standard spectra to assess the extent of which each 

metabolite contributed to the complex spectra measured for each whole biofluid (Figure 3.3). The 

average spectra for non-cancer samples were also analyzed using the same method but showed a much 

poorer fit with the metabolite standards, as shown by Figure S3.3. A significant number of features 

could be attributed to the metabolites driving the MS model performance, as observed in the Raman 

average spectra. More specifically, certain spectral features from the metabolite standards had strong 

fittings with peaks seen in the biofluid spectra. For plasma, the main peaks seen at 1450 cm-1 and 1650 

cm-1 correlate well with the main spectral features of 9-myristoleate. The prominent peak at 1005 cm-

1 can be attributed to tryptophan. Finally, the spectral feature at 1360 cm-1 in valine is also apparent in 

the cancer spectra. For saliva, the 1450 cm-1 shift can be attributed to propane-1,3-diol. The peaks 

seen at 1045 cm-1 and 1091 cm-1 fit strongly with features present in azelaic acid, 3-phosphoglycerate, 

and 1-monopalmitin. Finally, there is good agreement between the peak and the spectral feature seen 

at 491 cm-1 in 1-monopalmitin. Prominent distinct features can be therefore attributed to the various 

metabolite standards. 

In other words, the top five metabolites for each biofluid are more prevalent in the cancer 

samples than the control samples, indicating that there is good correlation of diagnostic information 
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between the metabolomics and Raman data. It is important to note that the fitting of these metabolites 

did not account for all spectral variability in either biofluid measurement. For example, in the plasma 

spectra there was poor fitting at 500 cm-1 and 1250 cm-1. For saliva, we can see peaks at 615 cm-1, 1001 

cm-1, 1332 cm-1, and 1660 cm-1 that do not obviously match with the top metabolite standards. While 

it is apparent that the complex RS spectra contains signatures of the targeted metabolites, much more 

information is additionally present. 

3.4 Diagnostic model performance using Raman Spectroscopy 

 We aimed to assess the ability of spontaneous RS platform to distinguish cancer from control 

samples in either plasma or saliva samples collected from each subject. Data stacks were generated 

with all collected spectra (i.e., 5 spots averaged across native and dried saliva or plasma for all 53 study 

subjects). A representative average plus standard deviation for the dried plasma and saliva samples are 

shown in Figure 3.4a and Figure 3.4e respectively. Unsupervised PCA was carried out for each 

sample typed (e.g., native plasma, dried saliva). Each PC spectrum represents a spectral loading that 

encompasses a certain amount of the total variation across samples; PC1 has the features responsible 

for the highest level of variation and each subsequent PC has fewer weight than the previous. The 

spectral loadings for the first three PCs for the dried plasma and saliva RS measurements are plotted 

in Figure 3.4b and Figure 3.4f respectively. Individual patient spectral averages can be re-plotted in 

PC space (Figure 3.4c and Figure 3.4g), enabling visualization of supervised data modeling via linear 

or quadratic discriminant analysis (LDA/QDA). Supervision (i.e., cancer vs benign control) labels 

were applied based on clinical diagnosis using histopathology analysis. For each sample type, a custom 

algorithm was run to find the specific flavor of LDA/QDA classifier (using built-in MATLAB classes 

without hyperparameter optimization) over every combination of the first five PCs (PC1-PC5), which 

represented 82.5% and 89.7% of the total sample’s variance for plasma and saliva, respectively. For 

dried plasma, for example, the “linear” discriminant type over PCs 1-3 yielded the highest accuracy, 
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sensitivity, and specificity. The shape of that classifier (reduced to dimensions 1,2, and 3) is shown in 

Figure 3.4c. Misclassified patients are labeled in yellow. The true (clinician labeled) class vs the RS 

predicted class in 2x2 boxes were used to calculate sensitivity, specificity, and accuracy of the model 

(Figure 3.4d and Figure 3.4h). The sensitivities, specificities, and accuracies for dry plasma and saliva 

were found to be 78.1%, 81.8%, and 78.8%, and 72.1%, 70%, and 71.7% respectively. For native saliva 

and plasma, the sensitivities, specificities, and accuracies were 82.8%, 58.3%, and 71.7%, and 78.6%, 

 
Figure 3.4: Representative spontaneous Raman data for dried plasma and saliva samples. a) Average spectra 
and standard deviation for all plasma measurements are plotted. b) Principal component (PC) loadings for PCs 
1, 2, and 3 show the major spectral variations amongst the samples. c) The plane of best separation following 
LDA/QDA algorithm optimization, with cancer (magenta dots) moderately separated from control (green 
dots) and several misclassified samples (yellow dots). d) 2x2 table generated from the best classifier and their 
associated sensitivity, specificity, and accuracy. e) Average spectra and standard deviation for all saliva measurements 
are plotted. f) Principal component (PC) loadings for PCs 1, 2, and 3 show the major spectral variations amongst the 
samples. g) The plane of best separation following LDA/QDA algorithm optimization, with cancer (magenta dots) 
moderately separated from control (green dots) and several misclassified samples (yellow dots). h) 2x2 table 
generated from the best classifier and their associated sensitivity, specificity, and accuracy. Plasma analysis yielded 

higher diagnostic capabilities but overall the technical performance was only moderate. 
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90.1%, and 81.1% respectively. More detailed information about the groups and the classifiers used 

for each can be found in supplementary Table S3. 

 Although plasma outperformed saliva in separating cancer from non-cancer, both biofluid 

groupings had lower diagnostic capability than the metabolomics results showed. We were then 

curious to see if simple data augmentation methods could improve performance. Therefore, we 

stitched average spectra across both biofluids together for each patient to create a single unified 

spectrum. The intensity values from the saliva samples were copied and added to the backend of the 

plasma samples to create these new combined biofluid spectra. X-axis values were reassigned as 

arbitrary numbers from 1 to 1694 (the horizontal CCD pixels doubled after merging the data together). 

For each of the 53-subject cohort (34 HNC cancer patients and 19 benign controls), the same 

procedure of averaging each spot to produce one spectrum per patient was followed and the samples 

were once again projected into the PC space to create a stack with the PC1-5 associated values. The 

global averages and standard deviations of this new group for all dried samples is shown in Figure 

3.5a with the first three PC loadings shown in Figure 3.5b. With the best classifier (quadratic with 

PC 1-5), we achieved a remarkable sensitivity, specificity, and accuracy of 96.3%, 85.7%, and 91.7% 

(Figure 3.5c). The sensitivity vs. 1-specificity for all groups (both native and dried, single biofluid and 

combined biofluid) are presented in Figure 3.5e. As evidenced by this graph, the saliva alone tends 

to have better performance than the plasma when analyzed individually, but the performance of the 

plasma and saliva combined is superior to the individual biofluid groups. These combined biofluids 

give diagnostic ability on par with the metabolomics results, supporting our Raman system, combined 

with simple data augmentation, as a strong diagnostic approach. 

 Identification of the spectral features driving model performance is a powerful way to glean 

deeper chemical information from samples. To investigate what chemical entities were the highest 

drivers of spectral importance, we created a representative composite spectrum of the combined 
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plasma and saliva specimens by averaging all the cancer and control samples and then calculating the 

difference. The resulting spectrum is shown in Figure 3.5d with the most influential peaks labelled. 

The saliva section of the combined spectrum contained far more meaningful peaks than the plasma 

section. We further analyzed the chemical signatures associated with each peak using the tentative 

assignments shown in Table 3.1. Although efforts to assign the vibrational peaks prominent in the 

spectrum have been made, we caution against overinterpretation of single spectral peaks. Instead, we 

consider the significance of major groupings of distinct feature types such as carbohydrates, proteins, 

lipids, or nucleic acids. 

 The majority of the peaks identified in the plasma portion (e.g. 492 cm-1, 608 cm-1, 1437 cm-1, 

and 1526 cm-1) correspond to protein vibrational modes. Further, all besides one are negative which 

indicates these protein signatures are more commonly seen in the non-cancerous samples than the 

cancerous ones. This indicates that important distinct differences between the two sample types are 

reflected in protein composition. This notion is further supported when reflecting back to the top five 

metabolites identified for plasma from the GC-MS measurements. Of the five, three are amino acids, 

 
Figure 3.5: Representative spontaneous Raman data for combined plasma and saliva dried samples. a) Global 
average and standard deviation of the plasma and saliva combined spectra. The blue overlay represents the portion 
of the spectra that is plasma, and the gold overlay represents the portion that is saliva. b) Principal component (PC) 
loadings for the first three PCs showing the different areas of variation between the plotted samples. c) 2x2 table 
created using the Quadratic PC1-5 classifier to assess sensitivity, specificity, and accuracy, of which were 96.3%, 
85.7%, and 91.7% in this group. d) Spectrum representing the peaks obtained from subtracting the average control 
spectrum from the average cancer spectrum for combined plasma and saliva. Important spectral features were 
identified and labelled. e) Plot of all combinations (native and dried, combined and individual) sensitives vs. 1-
specificity. The combined biofluids outperformed the single biofluids for most of the categories. 
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the building blocks of proteins and only one comes from a class associated with lipids, strengthening 

the idea that protein content is generally driving the differences between the cancer and control 

samples. We also identified the peaks that can be attributed to the metabolites themselves. For 

example, the best fit to the average line shown in Figure 3.3 (which contains all five metabolites 

together) reflects key protein peaks at 492 cm-1, 1437 cm-1, and cm-1. Two distinct peaks from 

tryptophan (877 cm-1 [93], and 1556 cm-1 [145]) are present in the fitting spectra but not in the plasma 

section of the stitched data. There were also peaks at 602 cm-1 [97], 1060 cm-1 [146], 1090 cm-1 [145], 

and 1179 cm-1 [147] that are contributing to C-C stretches in lipids and proteins. These absence of 

these peaks in Figure 3.5d indicates they did not play a strong diagnostic role after the biofluid 

stitching procedure was complete. 

Table 3.1: Raman peaks of interest with characteristics in cancer samples (increased or decreased), with assigned functional 
groups 

Peak/band (cm-1) Cancer Chemical Assignment 

492 - S-S stretch[148] 
608 - CH2 twist[149] 
1437 - CH2 bending in proteins and lipids[93,150] 
1526 - C-N stretching, Amide II[151] 
1639 + Amide I C=O stretching vibrations in proteins[93,97] 

488 - Glycogen[146] 
543 + S-S disulfide bridges in cysteine[151] 
679 + Guanine ring breathing[148] 
746 - C-S aliphatic stretching, Thymine[152] 
814 + Phosphodiester bands[153] 
837 - Amino acids, sugars, and nucleic acids[154] 
915 - Carbohydrate-related SERS vibrations[155] 
948 + C-C, alpha-helix[152] 
1000 + Symmetric ring breathing mode of phenylalanine[153] 
1053 - C-C stretch lipids[146] 
1328 + Amide III—collagen[146] 
1445 + CH2 and CH3 deformations in proteins and lipids[93,150] 
1658 + Amide I (C=O stretching of proteins)/C=C lipid stretch[93,150] 
1704 - Amide I[151] 

 

In the saliva section of the composite spectrum, we also observed notable chemical groupings. 

Strong signals at 543 cm-1 (S-S disulfide bridges in cysteine), 679 cm-1 (guanine ring breathing), 1000 

cm-1 (symmetric ring breathing in phenylalanine) and 1445 cm-1 (CH2 and CH3 deformations in 
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proteins) are seen with positive values, once again aligned with the idea that the protein profile of 

cancer and control samples differ widely. Peaks are 746 cm-1 (C-S aliphatic stretching) and 1053 cm-1 

(C-C stretch in lipids) speak to the general lipid profile and are negative, indicating their commonality 

in the non-cancerous spectra. Taken together the positive protein and negative lipid peaks may 

demonstrate the necessity to analyze general ratios of these components present in future samples. 

Once again there were analogous peaks between those identified above and the average fitting spectra 

from the saliva metabolites shown in Figure 3.3, including 543 cm-1, 837 cm-1, 1053 cm-1, and 1445 

cm-1. However, we similarly observe a rise of peaks specific to the fitting spectra that did not appear 

in the stitched data. These were 774 cm-1 (nucleic acids)[145] , 845 cm-1 (polysaccharides)[145], 908 

cm-1 (skeletal C-C in lipids)[149], 1100 cm-1 (C-C stretch in lipids)[151], and 1296 cm-1 (fatty 

acids)[145]. These results indicate that specific features of the metabolites are helping identify the 

cancerous samples more directly than others and serve as the potential chemical drivers contained 

within the diagnostic information. 

Perhaps the most interesting thing to note is the exceptionally negative peak at 488 cm-1. This 

peak is associated with glycogen, a polysaccharide that serves as a main form of energy storage. The 

negative value here argues that this peak is very prominent in non-cancerous samples but not 

cancerous ones. This is interesting to see considering cancer cells undergo aerobic glycolysis (referred 

to as the Warburg effect) to promote rapid and continuous growth. Human Papilloma Virus (HPV) 

is a large mediator of new HNC cancers, and there are many associated HPV proteins that activate 

specific proteins or pathways within the body to assist in the switch to aerobic glycolysis. These include 

epidermal growth factor receptor (EGFR), protein complex mTORC2, and the retinoblastoma 

protein (Rb).[156] Interestingly, it has been shown that when HPV viral proteins interact with these 

groups, the level of glycogen present drastically decreases.[156] This in combination with the fact that 
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the glycogen peak presents as negative in the composite spectrum support the notion that glycogen 

signal could be a strong diagnostic indicator. 

Within the cohort of cancer patient samples, we attempted to carry out discrimination of 

cancer staging, i.e., split into two groups of early (stage I/II) vs late (stage III/IV), as assessed by the 

clinician. But the performance of our models was poor. In future work with a higher number of 

samples in each category, we will apply more sophisticated data models to try to elucidate stage-based 

discrimination. While we did not perform SERS in this study, this may be a future area of interest 

where stitching data across biofluids could improve performance metrics. 

3.5 Discussion 

 The accuracy of HNC diagnostics using Raman spectroscopy is highlighted in several recent 

works. In direct analysis of whole tissues, Jeng, et. al reported an accuracy of 81.25%, sensitivity of 

77.27%, and specificity of 86.11% for discrimination of cancerous versus healthy samples on a cohort 

of 80 total patients.[126] Yan, et al was able to increase these numbers to the high 90s through 

implementation of a machine learning algorithm, albeit on a small dataset of only 12 patient 

samples.[132] A systematic review of using Raman for oral cancer diagnostics by Zhan, et al also 

describes a meta-analysis of 41 articles, citing that the accuracy of RS in oral cancer diagnostics on in 

vitro frozen tissues as 99.68%.[131] Although these are impressive numbers, the clinical relevance for 

diagnostics is lacking, as these studies do not address the need to create fast, non-invasive liquid biopsy 

approaches for rapid diagnostics. Another group performed RS measurements on HNC saliva samples 

from a cohort of 32 patients with accuracy of 90%, which was lower than the numbers reported from 

the groups analyzing tissue but still clinically useful.[130] Our stitched biofluid accuracy, sensitivity, 

and specificity slightly outperforms that study across a much large patient cohort.  

Recent reviews have investigated the application of metabolomics to HNC diagnostics and 

provide a thoughtful summary of where the field stands.[157,158] Metabolomics analysis of HNC has 
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been carried out in many different biofluids ranging between urine[159] to serum[160–163] to 

saliva.[164–167] Saliva as a biofluid source is of interest for many reasons: first, it is non-invasive and 

easily obtained from patients; second, low volumes are needed for metabolomic analysis, and third, 

the close proximity saliva has to the HNC tumors may provide additional biomarker information and 

contain a higher level of cancer metabolites of interest. Although a few studies have been carried out 

that show saliva contains important features that can distinguish cancer from non-cancer, there is little 

agreement of which metabolites are important when comparing the results across studies. 

Furthermore, the dynamic nature of saliva and contamination from recent diet may pose issues for 

accurate detection of tumor biomarkers. Few studies have been carried out using RS directly on saliva 

from HNC samples.[130,168,169] The studies that have been conducted are diverse in their 

methodologies and results, making it hard to provide concrete evidence that RS analysis of saliva is a 

viable diagnostic tool. Further, there are many variables that influence the profile of saliva collected 

from patients, including age,[170] smoking habits,[171] time of day,[172,173] fasting regimen,[173] 

and gender.[170] Controlling for all of these factors is necessary for clinical adaptation. 

Bringing RS into the clinic is attractive for many reasons. RS can be performed in aqueous 

solutions without the interference of a water signal that can hinder other spectroscopic techniques 

such as infrared spectroscopy. Collection and separation of biofluids from patients undergoing 

treatment is common and being able to perform point-of-care measurements directly on those 

biofluids in near real time creates an obvious advantage for RS systems. Metabolomics remains the 

gold standard for biomarker discovery due to its ability to develop rich chemical data libraries.[114] 

However, there are drawbacks to using this technology as the main tool for such investigation. Perhaps 

the most vital drawback is the challenge of validating the identified metabolites robustly across many 

datasets. The analysis of samples and production of results may be relatively straightforward, but the 

potential biomarkers cannot be used unless they are rigorously validated to report on the disease state.  
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By combining each patient’s Raman data from their plasma and saliva samples into a single 

spectrum, we dramatically improved the diagnostic value of spontaneous RS, a key finding of this 

study. These data indicate that future work should focus on the development of methods that can 

provide a more comprehensive view of the physiological state of an individual’s health. Further, we 

showed that the same metabolites identified as driving diagnostic model performance in GC-MS could 

be correlated by RS performed in the very same samples, providing a level of validation that many 

other technologies lack. Our findings validate that RS is inherently measuring a similar subset of 

metabolites compared to GC-MS, confirming them as promising biomarkers for HNC. Yet is also 

establishes that the spectral features themselves, divorced of assignment to any particular metabolite 

species (and their concentrations) are highly capable of driving accurate diagnostics. Although RS, 

even for the combined biofluid data augmentation, performed slightly worse in terms of accuracy 

compared to GC-MS, RS is comparatively easier, quicker, uses less sample volume, is non-destructive, 

requires minimal sample prep, and is more inexpensive to carry out.  
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3.6 Supplemental Information 

Table S3.1: Clinical biofluid information with demographics data for each patient 

Patient ID Plasma Saliva Diagnosis Gender Age 

OD-0272 X X Cancer Male 73 
OD-0275 X X Cancer Male 86 
OD-0276 X X Cancer Male 63 
OD-0277 X X Non-cancer Male 30 
OD-0278 X X Non-cancer Male 27 
OD-0279 X X Cancer Male 28 
OD-0280 X X Cancer Male 66 
OD-0281 X X Non-cancer Female 43 
OD-0284 X X Cancer Male 53 
OD-0286 X X Non-cancer Male 63 
OD-0287 X X Cancer Male 72 
OD-0288 X X Non-cancer Female 31 
OD-0289 X X Cancer Female 74 
OD-0291 X X Non-cancer Male 72 
OD-0292 X X Cancer Male 51 
OD-0293 X X Non-cancer Male 50 
OD-0294 X X Non-cancer Female 44 
OD-0295 X X Cancer Female 71 
OD-0296 X X Cancer Male 66 
OD-0297 X X Cancer Male 77 
OD-0298 X X Cancer Male 81 
OD-0300 X X Cancer Male 79 
OD-0301 X X Cancer Male 57 
OD-0302 X X Non-cancer Female 70 
OD-0304 X X Cancer Male 67 
OD-0305 X X Cancer Male 58 
OD-0306 X X Cancer Male 56 
OD-0310 X X Cancer Male 65 
OD-0312 X X Cancer Male 63 
OD-0313 X X Cancer Male 64 
OD-0314 X X Cancer Male 57 
OD-0315 X X Cancer Female 72 
OD-0316 X X Cancer Male 65 
OD-0318 X X Cancer Female 78 
OD-0319 X X Cancer Female 62 
OD-0320 X X Cancer Male 54 
OD-0321 X X Non-cancer Female 47 
OD-0322 X X Cancer Male 69 
OD-0323 X X Cancer Female 78 
OD-0324 X X Cancer Male 57 
OD-0326 X X Non-cancer Female 58 
OD-0327 X X Cancer Male 61 
OD-0328 X X Cancer Female 71 
OD-0329 X X Cancer Female 72 
OD-0330 X X Cancer Female 30 
OD-0331 X X Cancer Male 76 
OD-0334 X X Cancer Male 67 
OD-0336 X X Non-cancer Female 66 
OD-0337 X X Non-cancer Female 58 
OD-0339 X X Non-cancer Male 65 
OD-0340 X X Non-cancer Male 29 
OD-0341 X X Non-cancer Female  57 
OD-0342 X X Non-cancer Male 37 
OD-0345 X X Non-cancer Male 34 
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Figure S3.1: Area under curve (AUC) values with increasing number of metabolites as detected by GC-TOF-MS 
included in the PLS-DA model according to variable importance score for plasma (purple line) and saliva (blue line). 
The dotted black line indicates the AUC values for the PLS-DA model incorporating the top 5 metabolites for each 
biofluid, with their corresponding AUC values labeled.  
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Table S3.2: Top five metabolites identified by variable importance score in the PLS-DA model for cancer vs control in 
both plasma and saliva 

Biofluid Metabolite Class Structure 

Saliva 

trans-4-hydroxyproline Organic acids and derivatives 

 

propane-1,3-diol Organic oxygen compounds 

 

3-phosphoglycerate Organic oxygen compounds 

 

1-monopalmitin Lipids and lipid-like molecules 

 

azelaic acid Lipids and lipid-like molecules 

 

Plasma 

valine Organic acids and derivatives 

 

histidine Organic acids and derivatives 

 

tryptophan Organoheterocyclic compounds 

 

9-myristoleate Lipids and lipid-like molecules 

 

malonic acid Organic acids and derivatives 
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Table S3.3: The biofluid group along with the best identified classifier, and the accompanying accuracy, sensitivity, and 
specificity achieved with it. 

Group Best Classifier 
Accuracy, Sensitivity, and 
Specificity 

Dry Plasma 1,2,3 Linear 78.8%, 78.1%, 81.8% 

Native Plasma 1,2,3,5 Quadratic 81.1%, 78.6%, 90.1% 

Dry Saliva 2,5 Diagquadratic 71.7%, 72.1%, 70% 

Native Saliva 1,3,4 Quadratic 71.7%, 82.8%, 58.3% 

Dry Combined 1,3,4,5 Quadratic 86.3%, 90.3%, 80% 

Native Combined 1,2,3,4,5 Quadratic 91.7%, 96.3%, 85.7% 

 

3.7 Conclusions 

 In this study, we analyzed a robust clinical dataset of 51 HNC patient and benign control liquid 

biopsy samples to classify disease. Metabolomics measurements were performed using GC-MS as a 

 
Figure S3.2: Raman spectra of the ten metabolites identified from GS-TOF-MS measurements grouped by their 
identification in PLS-DA models from either plasma (top five) or saliva (bottom five). Within each group, they are 
listed in order from most prevalent to least with respect to their variable importance score in the PLS-DA model. 
Valine, histidine, tryptophan, 9-myristoleate, and malonic acid were identified from plasma and trans-4-
hydroxyproline, propane-1,3-diol, 3-phsophoglycerate, 1-monopalmitin, and azelaic acid were identified from saliva. 
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gold standard of comparison. GC-MS results yielded a 95.9% and 92.4% cancer vs. control 

discrimination using PLS-DA. The top five metabolites identified for each biofluid were further 

studied using our custom Raman scope. We found that the prevalence of these metabolites was higher 

in all cancer samples versus the control, validating that RS is inherently sensitive to the same 

metabolites driving excellent GC-MS model performance. We further tested the ability of our Raman 

platform to separate cancer from control within the individual biofluids. With a pseudoquadratic 

classifier we achieved sensitivities and specificities in the 70-90% range. Instead, with simple data 

augmentation to stitch plasma and saliva datasets together to create a single, integrated spectrum, 

sensitivity, specificity, and accuracy increased to 96.3%, 85.7%, and 91.7%. The results of this study 

indicate an exciting step in validating Raman spectroscopy as a robust diagnostic tool, as well as 

introducing a new finding that a holistic view of an individual’s sample (in this case, a combination of 

their plasma and saliva) can provide a greater level of information indicative of specific disease states. 
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Chapter 4: Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid 

Biopsy Diagnostics Using Extracellular Vesicles 

Context: Here we use SERS to investigate a more targeted biomolecule population of EVs to 

research their ability to reflect the disease state and provide a snapshot of the patient’s health. 

We were able to decipher important chemical features present specifically in the glycocalyx 

that allow for good separation of cancerous and non-cancerous samples in the context of 

ovarian cancer. 

4.1 Introduction 

 It is estimated that by 2025, over 20 million new cancer cases will be annually 

diagnosed.[174,175] While early-stage diagnosis leads to measurably improved patient outcomes, 

tumor heterogeneity and transformability are large obstacles. Tissue biopsies are the current gold 

standard for cancer diagnosis yet are invasive, often fail to capture tumor heterogeneity, are incapable 

of assessing small and hard-to-reach tumors or ones that have metastatically spread, and risk 

propagating the tumor to adjacent tissues.[176,177] Liquid biopsy entails the detection of tumor-

associated biological material in circulating biofluids, including circulating tumor cells (CTCs), 

circulating tumor nucleic acids (ctDNA/ctRNA), tumor-educated platelets (TEPs), small molecular 

products of tumor metabolism, circulating tumor-derived proteins, and more recently, extracellular 

vesicles (EVs).[178–182] 

EVs are lipid-bilayer enveloped nanoscale assemblies (from ~30 - hundreds of nanometer in 

diameter) that traffic bioactive molecules including nucleic acids, proteins, lipids, carbohydrates, and 

metabolites and related small molecules.[65,183] They are heavily implicated as mediators of  

cardiovascular and metabolic diseases, inflammatory diseases, neurological disorders (e.g. Alzheimer’s 

disease), and cancer.[184,185] While EVs are released from cells in both normal and diseased states, 

it is clear that cancer cells exploit these signaling routes to dispatch EVs that promote tumor 
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progression in the local microenvironment as well as for metastatic purposes, including via the 

formation of a pre-metastatic niche.[81,186,187] Tracking tumor associated EVs aberrations in the 

biochemical landscape of body fluids can unveil the presence of cancer, recurrence, relapse and drug 

resistance.[188] In ovarian cancer (OvCa), a significant number of EV-trafficked proteins have been 

reported to correlate with cancer type and staging.[95,189,190]  

Despite this limited success, liquid biopsy-based EV diagnostics are largely impeded by the 

high number of off-target healthy EVs present in all biofluids. Many analytical tools have been applied 

to EV-based liquid biopsies including Western blots, nanoparticle tracking analysis (NTA), flow 

cytometry, and direct fluorescence imaging techniques via antibody or aptamer labeling. However, 

these approaches often require tedious preanalytical isolation and large sample volumes, are lacking in 

throughput and multiplexibility, and are not cost-effective. An attractive solution to overcome these 

limitations is label-free analysis using chemical spectroscopy, such as Raman scattering. This technique 

provides global chemical composition of EVs and has been recently used to elucidate key differences 

between cancerous and non-cancerous EVs.[93,95,145,191–194] To address the weak nature of 

Raman scattering, surface-enhanced Raman scattering (SERS) can be employed via the use of 

plasmonic substrates or particles.[195–197] We have recently reviewed the application of 

nanoplasmonics to detect and analyze EVs.[87] SERS in particular is very attractive for liquid biopsies, 

given that it is label-free, exhibits unprecedented and highly tunable sensitivity and specificity, and has 

the potential for automation, miniaturization, and integration with microfluidics and machine 

learning.[61,87,198] 

In this report we employ a new type of inexpensive, biocompatible plasmonic substrate 

integrating the benefits of a novel biosilicate material embedded with silver NPs (AgNPs) for use in 

label-free liquid biopsy of OvCa EVs (schematized in Figure 4.1). We use multivariate data analysis 

to extract relevant features among spectral sets that distinguish tumor samples from controls in in vitro 
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cell derived EVs and also clinical human serum samples from patients suspected of OvCa. We further 

explore cysteamine functionalization of AgNPs for non-specific recruitment of EVs to the substrate 

and chemical treatment of EVs to modulate their localization at the plasmonic AgNPs. 

 

Figure 4.1: Overview of the nanoplasmonic substrate and SERS imaging process. a) Schematic of the SERS optical 
setup, where the substrate is sandwiched between quartz windows for analysis using an inverted confocal Raman 
scanning instrument. b) The biosilicate SERS substrate is irradiated by laser light to instigate Raman scattering. The 
insets show the heterogenous surface structure of the compacted diatom mesh at 100x and then under SEM at 10kx, 
where single diatoms are visible. c) The substrate allows for transport of EVs from solution to the proximity of AgNP 
clusters adsorbed to the compacted silicate scaffold. When functionalized with cysteamine, thiol bonds anchor to the 
AgNPs, enabling anionic EVs to adhere electrostatically to cysteamine’s terminal amine groups. Spectral SERS 
fingerprints can be acquired from EVs adjacent to AgNPs. d) SEM micrographs of hybrid biosilicate mesh with AgNP 
clusters. An Everhart-Thornley detector (ETD) records the secondary electrons scattering from the surface whereas the 
annular backscattering detector (ABS) collects electrons more sensitive to atomic weight, highlighting the AgNP clusters. 
The images on the right show likely EV candidates localized in the vicinity of AgNP clusters throughout the hybrid 
material. The approximate starting concentration of EVs was ~5 × 108 EV/mL. All scale bars are 1 μm. 
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4.2 AgNP-embedded plasmonic biosilicate scaffold for SERS-based diagnostics can filter and 

trap EVs from solution 

At the core of plasmonic sensing are nanostructured metal materials, and cost-effective, highly 

sensitive, and flexible nanomaterials are of great interest,[199] particularly for low-resource settings. 

The main function of plasmonic SERS scaffolds is to boost weak spontaneous Raman scattering upon 

irradiation with light. We recently introduced the fabrication of a simple, robust, and flexible SERS 

substrate that has an increased enhancement factor (EF) of ~1.0×105 with a high level of 

reproducibility for the development of inexpensive label-free biosensors.[200] In these substrates, 

enhancement is achieved via decoration of AgNPs throughout compacted biosilicate diatoms (Figure 

4.1). Diatoms are unicellular photosynthetic biomineralized marine microalgae that excrete an 

amorphous silica cell wall, or frustule. These frustules serve as inexpensive photonic crystals[201,202] 

without the need for labor-intensive and costly lithography or etching techniques. When AgNPs are 

embedded within the diatom frustules, a dual plasmonics effect can be accomplished stemming from 

the coupling between LSPRs of metal NPs and guided-mode resonances of the frustules.[203,204] 

There are a few examples of utilizing gold or silver NPs as diatom-based hybrid plasmonic biosilicate 

SERS substrates, wherein the diatom-metal composites are typically achieved via in-situ growth or 

self-assembly of metal NPs.[205–207] These novel materials represent an inexpensive, easily fabricated 

SERS sensing alternative for a broad range of applications in life and materials sciences. Here we 

demonstrate the proof-of-concept use of these substrates for EV-based cancer diagnostic application. 

Prior to incubation with biological materials, we used SEM to microscopically evaluate the 

surface of the substrate and the adherence of AgNPs to the diatom surfaces (Figure 4.1d). The ETD 

provides micrographs with contrast stemming from surface features, whereas the ABS detector is well-

suited for establishing contrast sensitive to atomic weight. Hence, in the ABS images, AgNP clusters 
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are clearly separable as bright structures compared to the biosilica material. We also point out several 

candidates of EVs are adsorbed to the frustules at the vicinity of the AgNPs. Although the isolation 

procedure yields predominantly EVs in the size range of 50-200 nm as seen in Figure 4.1d in the 

upper right corner SEM image, it inevitably co-isolates proportions of bigger (>200 nm) EV 

subpopulations, some of which may be readily apparent in the lower right corner image. These EV 

populations are traditionally called e.g. “microvesicles”, but due to the manifold nomenclature in the 

EV field, we chose to use a collective term “EVs”. Comparably similar EV structures as visualized by 

SEM have been demonstrated previously.[208]  

Recently we showed that the porous nature of the diatoms allows smaller molecules and 

nanostructures to disperse within the substrate, filtering through the biosilicate material.[200] The 

small average hydrodynamic diameter of EVs allows them to enter and distribute throughout the 

three-dimensional biosilica mesh, with smaller contaminants exiting through bottom of the substrate 

(theoretical calculations for this approximation can be found in the methods). To utilize these 

capabilities and immense surface area of the biosilica microstructure, we analyzed EVs isolated from 

SKOV-3 cells, a common in vitro human ovarian cancer cell line, as well as EVs isolated from various 

clinical serum samples. We chose to call 120,000 × g pelleted materials as EVs for the purpose of this 

study unless otherwise explicitly noted.[86] 

To better localize the anionic EVs close to the AgNP clusters throughout the heterogenous 

biosilica substrates, we pretreated with cysteamine (H2NCH2CH2SH, CA), a practical functionalizing 

agent to couple anionic species to metal surfaces.[209–211] The sulfhydryl group (-SH) of cysteamine 

binds to Ag/Au while the opposite terminal amine group (-NH2) is freely exposed. Even after 

thorough washing, cysteamine remains present throughout the material. The strong peak at 650 cm-1 

and the moderately fainter peak at 735 cm-1 both reporting on C-S stretching are practically absent in 

the spontaneous Raman spectrum of cysteamine (full detailed peak assignments are displayed in Table 
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4.1). This highlights that cysteamine forms thiol bonds with the AgNPs, such that these bonds undergo 

significant enhancements due to their proximity to the strong electromagnetic SERS fields. 

Table 4.1: Chemical assignments for the relevant spectral peaks or bands identified in the work 

Peak/band (cm-1) Chemical assignment 

643 Amino acids in proteins, e.g. tyrosine[212] 

650 C-S stretching[209] 

735 C-S stretching[209] 

789-795 Vibrations in nucleic acids[93,97,193] 

805 Si-O stretching; predominantly silicon motion e.g. within Si-O-Si units[185] 

903 Carbohydrate-related SERS vibrations[155] 

931 C-C ring stretching in e.g. proline[213] 

940 C-C stretching vibration possibly coupled to C-N stretching vibration[209] 

960 Protein vibrational modes, e.g. C=C deformation or C-N stretching[212,214,215] 

1010, 1050, 1090 Si-O stretching; oxygen vibrating between silicon in the Si-O-Si bond[185] 

1015 C-C stretching vibration possibly coupled to C-N stretching vibration[209] 

1095 PO2- stretching, C-C stretching, C-O-C stretching, glycosidic link in DNA/RNA[213] 

1110 Cα-N, Cα-C, C-N stretching in protein backbone, C-C stretching in acyl chains of 
lipids[93,213] 

1160-1170 Carbohydrate-related SERS vibrations[216] 

1175 Nucleic acid vibrations in DNA/RNA, phenylalanine or tyrosine vibrations in 
proteins[93,213] 

1240 C-N stretching + N-H deformation; amide III in proteins[92] 

1287 CH2, CH3 deformation / C-N stretching + N-H deformation; amide III in 
proteins[93,213] 

1290 CH2 deformation in acyl chains of lipids[93,213] 

1310-1340 Carbohydrate-related SERS vibrations[155] 

1336 Backbone deformation Cα-H / Cα-C stretching / CH2, CH3 twisting or wagging in 
proteins[93,213] 

1360 CH2, CH3 wagging in proteins[213] 

1386-1390 Symmetrical CH3 deformation in DNA/RNA, proteins, or lipids[92,213] 

1400 Protein vibrational modes, e.g. CH2 deformations[212] 

1445-1460 CH2 and CH3 deformations in proteins and lipids[93,145] 

1500 Conjugated -C=C- vibrations in nucleic acids[92–94] 

1545 Protein vibrational modes, e.g. amide II vibrations[92,213] 

1590 C-C ring vibration in aromatic groups[217] 

1595 Vibrations in nucleic acids[93,213] 

1620 C=C vibration in e.g. proteins[92] 

1630 Amide I C=O stretching vibrations in proteins[93,97] 

1650 Amide I vibrations in proteins or C=C stretching in lipids[93,145] 

 

Following substrate treatment with cysteamine to functionalize AgNP clusters, we used a 

slightly acidic (pH = 6.4) buffer to wash the cysteamine-treated substrates in order to facilitate EV 

adsorption, since at this pH the amine groups are pushed towards cationicity (NH3
+). On the basis of 
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the preliminary testing with various types of EVs and concentrations, it was significantly more difficult 

to find SERS hotspots with EV signatures when the surface was not pre-treated with cysteamine. To 

highlight the effectiveness of cysteamine modification, in vitro SKOV-3 EVs were incubated on non-

cysteamine treated and cysteamine-functionalized substrates. An area of 64 μm2 with a step size of 

400 nm (i.e., 20 x 20 pixels) was raster scanned (Figure 4.2). A section of the fingerprint region (1400-

1900 cm-1) was integrated over, given that this region contains many peaks arising from biomolecules 

(Table 4.1) and is a quiet region for the blank substrates. Heatmaps were generated from the scans, 

and it is apparent that the cysteamine-functionalized surfaces exhibit more ‘hot’ areas than the 

substrates without cysteamine. We concluded that without cysteamine the EVs do not strongly adhere 

to the surface easily and are mostly rinsed away during subsequent washing steps. Cysteamine 

functionalization allows us to achieve reasonable measurement reproducibility via non-specific 

binding of EVs. 
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4.3 EVs treated with and without trypsin provide complementary biomolecular analysis  

Method development for EV characterization and identification was initiated using in vitro 

SKOV-3 EVs produced in bioreactor flasks, which allow for cost-effective high yield EV 

production.[218,219] Particle concentrations as measured by NTA were used to normalize EV 

additions. In early experiments, we noticed that the majority of chemical components in SERS spectra 

of EVs could be attributed mainly to sugars with some small extent of protein features, but no nucleic 

acids, in contrast to our previous report of spontaneous Raman scattering from optically trapped 

whole EVs.[93] We suspected this was due the distance dependence of SERS, thus used enyzmatic 

 

Figure 4.2: Spectral maps show increased signal of biosilicate SERS substrates upon cysteamine treatment. Maps of 
dimension 8 x 8 μm with 400 nm spacing between spectra were collected from (a) control substrate (b), substrate with 
SKOV-3 EVs, and (c) cysteamine pre-treated substrate with SKOV-3 EVs. Representative spectra for the maps are 
shown in (d). The red highlighted portion of each spectra in (d) represents the portion integrated under to generate the 
maps, chosen due to its coverage of protein and lipid peaks (Table 1), thus used as a surrogate for biomaterial. It is 
apparent that cysteamine pre-treatment enabled increased coverage of biomaterial in the substrate.  
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treatment of EVs to modulate the portion in contact with the plasmonic substrate. We previously 

demonstrated that EV surface proteins residing on a hydration layer can be modified by trypsin 

treatment.[93] Trypsin non-specifically cleaves extraluminal domains of surface proteins and a thick 

layer of carbohydrates (i.e., the glycocalyx),[220] which has been demonstrated to be a part of EV 

structure.[221] Our assumption was that this corona prevents EVs from getting close enough to the 

plasmonically active AgNPs (Figure 4.3). In turn, removing this layer may help to (i) expose 

complementary biomolecules for plasmonic signal amplification that takes place approximately within 

5-10 nm distance[212,222] from the AgNPs and (ii) eliminate a major source of heterogeneity of EVs 

present in the glycocalyx. It is worthwhile stressing that the SERS distance is an estimate. It can slightly 

vary depending on the plasmonically active metal used (i.e. whether the metal is for example Ag, Au, 

Pt, or Al), and whether the measurements are performed on a film or planar nano-roughened surface 

or a colloidal metal nanoparticle solution.[212,222] The size and shape of nanostructures also 

contribute; in the case of films or planar surfaces the dimensions of nano-roughened surfaces 

dominate, while when using colloidal metal nanoparticles solutions, the size of nanoparticles is 

essential. 

Furthermore, we acknowledge the potential of the glycocalyx for diagnostic purposes, 

therefore we hypothesized that a portion of the EVs’ diagnostic value may be lost by enzymatic 

treatment. As meticulously demonstrated by Shurer et al., the overall composition and physical nature 

of glycocalyx appears to possess a remarkable role in cell membrane shape regulation, EV biogenesis, 

and thus on the surface composition of secreted EVs – including their glycocalyx corona.[223] The 

level of glycosylation of EVs is reported to affect their in vivo biodistribution,[216] and simultaneously 

EVs can carry enzymes on their shell that shape their own glycocalyx as well as similar glycocalyx 

structures in the extracellular matrix and surrounding cells.[224] Furthermore, given that tumor cells 

typically secrete high numbers of EVs[225] and their cell surfaces are abundantly crowded by mucins 
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and hyaluronan, we have a good reason to believe that (i) the EVs secreted by tumor cells reflect 

similar glycocalyx membrane composition with their parent cells, and therefore (ii) investigating the 

different constituents of the EV-associated glycocalyx corona indeed holds a great uncharted potential 

in the context of liquid biopsies and cancer diagnostics. 

To test that trypsin did not affect the cysteamine pretreatment, we incubated substrates with 

trypsin prior to any addition of EVs and rinsed thoroughly. We also measured the SERS spectrum of 

a non-treated empty substrate in order to demonstrate that the weak spectral features stemming from 

the substrate have none to minimal interference with the measured biological specimens. Figure 

S4.1a-c shows representative spectra of these controls, including solid cysteamine and cysteamine-

functionalized substrates treated without and with 0.25% w/v trypsin solution, respectively. 

Characteristic cysteamine SERS peaks remained, suggesting that even harsh trypsin treatment did not 

significantly remove cysteamine, or blocks its ability for EV enrichment. Figure S4.1d shows 

representative spectra of a blank substrate, with discernible peaks/bands that are well-characterized 

and known to relate to various vibrational modes of Si compositions.[185] In particular, features at 

 

Figure 4.3: The potential effect of trypsin treatment on the glycocalyx and protein corona of EVs. Prior to 
trypsinization, the chemical components comprising the corona and near the outer shell of the EV are mainly exposed 
to the electromagnetic SERS amplification field (red). Trypsin cleaves off extraluminal domains of surface proteins and 
sugars that extend outside the vesicle’s phospholipid shell, placing the EVs in closer contact with the AgNP with 
different parts, including some intraluminal components, experiencing stronger signal amplification. 
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805 cm-1 (Si-O stretching; predominantly silicon motion e.g. within Si-O-Si units), 1010 cm-1, 1050 cm-

1, and 1090 cm-1 (Si-O stretching; oxygen vibrating between silicon in the Si-O-Si bond) are prevalent 

in the measured spectrum (Table 4.1). On this note, these spectra regions do not overlap and therefore 

interfere with our analyses distinguishing non-cancerous and cancerous EVs. 

Subsequent analyses comprised stages where the EVs were treated with trypsin followed by 

thorough washing. As shown in Figure 4.4a, a clear separation between native non-treated (triangle 

markers) and trypsin-treated (circular markers) SKOV-3 in vitro EVs was observed in the 1-

dimensional principal component (PC) space, where each marker represents one individual spectrum. 

The PC loadings report on the variables, i.e., wavenumber regions, in the spectra that are pertinent 

for the group separation and thus provide information on the chemical differences between the 

measured groups. Figure 4.4b displays a PC1 loading spectrum that captures ~20.8% of the total 

variation between the SERS spectra acquired from native and trypsin treated EVs. Although the other 

PCs also have their contribution to the observed differences throughout the analyses, for ease of 

interpretation we display these results on the basis of PC1 since that dimension adequately and 

 

Figure 4.4: Trypsin treatment removes carbohydrates from EVs. a) PC1 score plot of native SKOV-3 EVs (triangle 
markers) and trypsin-treated SKOV-3 EVs (circular markers) measured on the substrate. b) PC1 loading spectrum 
with six spectral regions identified, three assigned to protein vibrational modes (643, 960, and 1400 cm -1) and three 
assigned to carbohydrates (903, 1160, and 1310-1340 cm-1). The negative scores on PC1 for trypsin treated EVs 
correspond to carbohydrates, indicating that the treatment effectively cleaves the extraluminal domain of EVs, 
exposing complementary biomolecules. 
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consistently identifies the relevant biochemical contributors that differentiate these analyzed 

specimens from each other. In any case, all raw SERS spectra data is available for viewing or 

independent analysis.  

As the PC score values (Figure 4.4a) are primarily negative for the native SKOV-3 EVs and 

positive for the trypsin-treated SKOV-3 EVs, this indicates that in the SERS data the wavenumber 

regions 643 cm-1 (amino acids in proteins, e.g. tyrosine), 960 cm-1 (protein vibrational modes, e.g. C=C 

deformation or C-N stretching) and 1400 cm-1 (protein vibrational modes, e.g. CH2 deformations)62 

are pronouncedly present in the trypsinized EVs. Simultaneously the regions at around 903 cm-1, 1160 

cm-1 and 1310-1340 cm-1 are less represented. Intriguingly these three bands potentially report on 

carbohydrate-related SERS vibrations61 (Table 4.1). Trypsinized EVs had clearly reduced protein 

contents in comparison to native EVs, while particle count by NTA remained in a similar range. Taken 

together, these findings imply that the EV glycocalyx/corona is indeed affected by trypsin treatment 

and as hypothesized, complementary EV surface structures are exposed to SERS amplification. This 

may be a generalizable treatment that can be applied to a variety of SERS substrates. 

4.4 Limit of detection (LOD) for the biosilicate SERS scaffold 

We determined the limit of detection (LOD) for sample concentration and laser power. 

SKOV-3 EVs were chosen for both of these experiments to promote consistency over the course of 

the testing. For the concentration LOD, SKOV-3 EVs were tested starting with an initial 

concentration of ~5 x 1012 particles/mL. After diluting 106-fold, the signal was still easily located in 

different areas on the substrate. After another 104-fold dilution (bringing the total dilution to 1010-

fold), we were still able to locate a few spots that produced signal, indicating the LOD for EV 

concentration is less than 600 particles/mL. Many plasmonic studies demonstrate LODs down to 

hundreds or a few thousand EVs.[208,226] Thus, the performance of our substrate resides in similar 

range demonstrating its comparability and feasibility for EV characterization. We additionally 
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determined the LOD for our laser power, an appropriate measure, since it would be useful for point-

of-care diagnostics, particularly in low resource settings, to minimize the laser power. A lower laser 

power may also help preserve the sample condition to ensure platform reliability and repeatability. 

The substrates were prepared once again with SKOV-3 in a typical 100-fold dilution. Spots were 

interrogated across the substrate at decreasing levels of laser power. Spots were fairly easy to locate 

down to 800 μW, with even an occasional signal being seen as low as ~500 μW. The testing was 

eventually stopped because the laser power could not be decreased any further. We have previously 

established the SERS enhancement factor for these novel substrates.[200] 

4.5 High inherent chemical heterogeneity of EVs isolated from a single patient sample 

Before analyzing EV samples across a panel of clinical patients, we endeavored to evaluate the 

inherent heterogeneity within one clinical EV isolate derived from an ovarian cancer patient. Even 

one patient’s EV sample can reflect various physiological states depending on the individual’s physical 

activity, nutrition, etc. before the sample was drawn.[227,228] Furthermore, even the most subtle 

sample preparation and transfer practices can alter their internal composition and induce measurable 

variation between the EV subtypes present.[229] As expected, EVs exhibited internal variation even 

amongst a single analyzed clinical sample, as visualized by the three clearly separate clusters (blue, red, 

green) in Figure 4.5a, with hierarchal clustering analyses determined using the first 5 PCs. In the 

cluster-specific spectral loadings (Figure 4.5b-d) a positive peak indicates the existence of a certain 

chemical feature whereas a negative peak reports on the absence of a proposed chemical entity, 

compared to the global mean (shown in gray behind the cluster average spectra). The conceptual 

mathematical processing for obtaining these spectra can be found in the methods. We identified six 

regions of interest: 931 cm-1 (C-C ring stretching in e.g. proline), 1095 cm-1 (PO2- stretching, C-C 

stretching, C-O-C stretching, glycosidic link in DNA/RNA), 1360 cm-1 (CH2, CH3 wagging in 

proteins), 1445 cm-1 (CH2 and CH3 deformations in proteins and lipids), 1590 cm-1 (C-C ring vibration 
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in aromatic groups), and 1620 cm-1 (C=C vibration in e.g. proteins) (Table 4.1). Based on these peak 

assignments, the measured EVs forming the blue cluster are seemingly enriched in nucleic acid 

(DNA/RNA) related vibrations whereas the red cluster represents the majority of the EVs, which are 

relatively consistent with the overall global average spectrum with the exception of fewer CH2/CH3 

wagging vibrations from proteins. On the contrary, the green cluster EVs are enriched in those 

vibrations. It is not clear if this clustering represents an inherent chemically defined subpopulation 

spread of EVs, or rather the relative positioning of EVs towards the plasmonically enhanced 

electromagnetic fields propagated by the AgNPs throughout the substrate. Based on several scanning 

results as shown by way of example in Figure 4.2, we cautiously suggest that the inherent 

heterogeneity of EVs and their binding via cysteamine dominate variation, rather than the substrates 

themselves.  
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4.6 Evaluation of native clinical samples 

8 clinical serum samples were obtained from the UCDCCC Pathology Biorepository resource 

as “remnants” – samples to be discarded following doctor-ordered CA125 ELISA assays as part of 

the patients’ standard clinical care. These deidentified samples were annotated with clinical diagnosis 

of cancer type and staging, allowing us to bin samples accordingly. One of these patients turned out 

to not have malignant lesions, thus serves as a negative control. The other 6 samples represented 

 

Figure 4.5: Distinguishable heterogeneity within EVs isolated by UC from a single patient diagnosed with ovarian 
cancer. (a) Two-dimensional PC score plot revealed three distinguishable clusters (blue, red, and green - defined using 
the first 5 PCs). Each point represents a single measurement taken within the substrate, with circles, stars, triangles, 
squares, and diamonds representing groups of repeated measurements sampled throughout the substrate (20 1-s 
spectra per spot). The chemical heterogeneity (as evaluated by the Euclidean distance in PC space) is more consistent 
within a sampled region (e.g., triangles) compared to spectra samples in different regions (e.g., triangles vs. circles). (b-
d) The cluster-specific SERS spectra color coded according to the outlined regions in (a). 
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different cancer subtypes. Here we used this initial dataset to explore the utility of the SERS substrate 

and evaluate the inherent chemical heterogeneity across samples. Fig. S4.2 shows representative SERS 

spectra of in vitro SKOV-3, endometrial cancer, ovarian cancer, and benign ovarian neoplasm EV 

samples used for subsequent multivariate analyses. 

Figure 4.7 represents the PCA for the acquired SERS spectra data from EVs of eight different 

individuals. Figure 4.6a displays the two-dimensional PC score plot (PC1 and PC2 capture ~40.5% 

of the total variation within this data set) while Figure 4.6b-d shows the cluster-specific SERS spectra 

(blue, red, green). Three of the samples represent different types and stages of endometrioid 

 

Figure 4.6: SERS analysis of native EVs isolated from endometrial (EnCa) and ovarian cancer (OvCa) clinical 
samples. (a) The PCA score plot and (b-d) three cluster-specific spectra derived from hierarchical cluster analysis 
(blue, red, and green dotted lines - defined using the first 5 PCs). Given the separation of EVs isolated from clinical 
samples, it appears that PC1 reports on the cancer type while PC2 informs on extent of cancer burden (the EnCa I 
patient, blue circles, was lower grade than the rest of the EnCa/OvCa samples). 
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malignancies (blue), three different types and stages of ovarian malignancies (red), and two controls 

that were not staged (black). A total of 8 spectral regions were selected for the subsequent analysis in 

order to infer the pertinent chemical differences between these clinical test samples: 960 cm-1 (protein 

vibrational modes, e.g. C=C deformation or C-N stretching in amino acids), 1110 cm-1 (Cα-N, Cα-C, 

C-N stretching in protein backbone, C-C stretching in acyl chains of lipids), 1175 cm-1 (nucleic acid 

vibrations in DNA/RNA, phenylalanine or tyrosine vibrations in proteins), 1290 cm-1 (CH2 

deformation in acyl chains of lipids), 1386 cm-1 (symmetrical CH3 deformation in DNA/RNA, 

proteins, or lipids), 1450 cm-1 (CH2 and CH3 deformations in proteins and lipids), 1500 cm-1 

(conjugated -C=C- vibrations in nucleic acids), and 1630 cm-1 (amide I C=O stretching vibrations in 

proteins) (Table 4.1). In addition to PCA and hierarchical clustering analysis, we also performed PCA 

followed by linear discriminant analysis (LDA). The control and cancerous samples can be distinctly 

classified, which is consistent with the obtained results using PCA-hierarchical clustering. An accuracy, 

sensitivity and specificity of 99.4%%, 100%, and 99.2% were calculated, respectively. Despite the 

model misclassifying only very few spectra, these numbers must be interpreted with caution given the 

limited sample size, inevitably yielding biased results and necessitating larger clinical cohorts in future 

studies. PCA-hierarchical clustering is largely used for our analyses since it enables determination of 

cluster-specific spectra that forecast the chemical differences more explicitly between the investigated 

sample groups. 

By interpreting the cluster-specific spectra in Figure 4.6 on the basis of the 8 assigned spectral 

regions, we can deduce tentative chemical contributors responsible for the observed differences. First, 

the EVs in the blue cluster exhibit distinctly enriched contents of proteins, lipids, and nucleic acids in 

comparison with the EVs in red and green cluster (positive bands on the blue cluster-specific spectrum 

at 1110 cm-1, 1175 cm-1, 1386 cm-1, 1450 cm-1, and 1500 cm-1). Second, EVs from ovarian malignancies 

(OvCa I-III) have a pronouncedly different lipid composition compared to the EVs in blue and green 
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clusters (negative bands on the red cluster-specific spectrum at 1110 cm-1 and 1386 cm-1). Third, the 

EVs in the green cluster demonstrate certain protein and lipid components being profoundly more 

represented than the same components in EVs forming the blue and red clusters (positive bands on 

the green cluster-specific spectrum at 960 cm-1 and 1290 cm-1). However, simultaneously many of the 

nucleic acid and protein related vibrations are nearly absent in the green cluster (negative or negligible 

bands on the green cluster-specific spectrum at 1175 cm-1, 1450 cm-1, 1500 cm-1, and 1630 cm-1). PC1 

clearly separated EVs from endometrioid type malignancies (EnCa I-III) from ovarian type 

malignancies (OvCa I-III). Also, EVs from ovarian malignancies cluster discernibly (red cluster and 

the associated cluster-specific spectrum). Lastly, the green cluster is formed by EVs from grade I 

endometrioid adenocarcinoma (blue markers, EnCa I) and two control samples (black markers): a 

benign ovarian neoplasm (Control I) and an unspecified gynecologic neoplasm (Control II). 

Interestingly, while the unspecified control was marked as low CA125 in the clinical testing, it was not 

able to be explicitly graded. Our analysis may provide a unique angle to better grade such samples 

where histological analysis is unclear. This green cluster resides on the positive side of PC2 axis, and 

the red and blue clusters are located on the negative side along PC2 axis. Taken all these considerations 

into account, we posit that PC1 fundamentally reports on the disease type while PC2 informs on the 

disease state. To further investigate, whether the hypothesis regarding PC2 interpretation (i.e. 

containing information about the disease state) was plausible, we cultured an EnCa in vitro cell line and 

isolated the EVs. We then used the in vitro EnCa and OvCa EVs for validation representing cancerous 

chemical features, the clinical control samples (Control I and II) were harnessed as representatives of 

non-cancerous characteristics, and the clinical “early stage” and “late stage” EnCa and OvCa EVs 

were subjected to the analysis. Along the lines with the results displayed in Figure 4.6, this initial 

validation emphasizes that cautious interpretation of the disease state can potentially be made, 

especially for EnCa samples. However, we acknowledge that the sample size in the current study is 
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limited, that the explicit chemical differences remain to be resolved, and the main emphasis of this 

study was to discern different cancer types from each other using a novel SERS approach. On this 

note, however, this demonstrated separation capability might suffice as a practical pre-diagnostic 

SERS application in a clinical setting complementing conventional screening methods. 

4.7 Trypsinization of clinical EVs greatly reduces diagnostic specificity 

In the final stage of this study our intention was to subject the analyzed clinical EV samples 

to trypsin treatment. Such enzymatic treatment would result in (i) cleavage of non-specific 

glycocalyx/corona components (wholly or partially) to expose EV inner core structures for plasmonic 

amplification, and (ii) reduction of the inherent chemical heterogeneity. The native EV samples not 

subjected to trypsin treatment are shown in the Figure 4.7a PCA score plot as filled markers and the 

trypsin-treated samples are represented as empty markers. In Figure 4.7b-d eight spectral regions 

were pinpointed in the three cluster-specific spectra (blue, red, green) for further analyses: 789 cm-1 

(vibrations in nucleic acids), 904 cm-1 (carbohydrate-originating vibrations), 1287 cm-1 (CH2, CH3 

deformation / C-N stretching + N-H deformation; amide III in proteins), 1336 cm-1 (backbone 

deformation Cα-H / Cα-C stretching / CH2, CH3 twisting or wagging in proteins), 1390 cm-1 (CH3 

deformation in nucleic acids, proteins or lipids), 1450 cm-1 (CH2 and CH3 deformations in proteins 

and lipids), 1595 cm-1 (vibrations in nucleic acids), and 1650 cm-1 (amide I vibrations in proteins or 

C=C stretching in lipids) (Table 4.1). The experiments and analysis were carried out using the same 

clinical EV samples with the exception of excluding the unspecified gynecologic neoplasm group 

(Control II) due to the lack of adequate amount of sample material. Notwithstanding the sample 

groups and experimental parameters were kept consistent. 
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Intriguingly, the band regions at around 789 cm-1 and 1595 cm-1 (arising from vibrations in 

nucleic acids) are distinctly positive for the majority of trypsin-treated EVs (blue cluster-specific 

spectrum) while the same region is clearly negative for non-treated EVs (red and green cluster-specific 

spectra) implying that trypsinization indeed facilitates exposing more of the intraluminal EV contents 

(e.g., DNA/RNA) to SERS amplification. Concurrently, large part of the other bands describing 

mainly protein and carbohydrate features of the EVs are negative for the trypsin treated EVs 

compared to the non-trypsinized EVs further indicating that at least partially these constituents may 

have been cleaved off by trypsin. The red cluster containing all the non-trypsinized EVs from ovarian 

malignancy type patients (OvCa I-III) and the trypsinized EVs from a serous endometrial cancer 

 

Figure 4.7: SERS of EVs isolated from seven clinical samples without and with trypsin treatment. (a) The PCA score 
plot and (b-d) the three cluster-specific SERS spectra (blue, red, green - defined using the first 5 PCs). The native EV 
samples are shown as filled in markers while the trypsin-treated measurements are shown as empty markers. As visible 
by their tighter spacing in this PC space, the trypsinized samples were markedly reduced in overall chemical content, 
indicating the glycocalyx/corona may also indicate disease-relevant chemical information. 
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patient (EnCa II, empty blue diamond markers) is highly positive for bands at 904 cm-1, 1287 cm-1, 

1336 cm-1, and 1450 cm-1 compared to the global average. This observation may indicate a specific 

protein and carbohydrate composition in these EVs. Even though some trypsinized serous EnCa EVs 

(from EnCa II) cluster with the untreated OvCa samples, they are closer in PC space to the trypsin 

treated EVs (blue cluster), and therefore explicit conclusions about their chemical composition 

following trypsin treatment remain unclear. Similarly, the green cluster comprises untreated EVs 

isolated from endometrioid malignancy type patients (EnCa I-III, filled markers) and the benign 

ovarian neoplasm control sample (Control I, filled black circle markers). These samples potentially 

have a unique – highly likely protein and/or lipid related – chemical fingerprint as the band at around 

1390 cm-1 discernibly stands out compared to the EVs in blue and red clusters. Importantly, as 

evidenced by these results, our initial hypothesis of losing some of the diagnostic relevance through 

the trypsin treatment of EVs is evident. Although we were potentially able to better expose the 

intraluminal components of EVs for SERS amplification, the separability between samples decreased 

(Figure 4.7, non-trypsinized vs. trypsinized EVs). LDA analysis of the native EVs and trypsin treated 

EVs allow for computing a confusion matrix (Figure S4.3b,d). We utilized the data from the 

confusion matrix to assess the accuracy, sensitivity, and specificity of detecting cancer using our SERS 

substrate and clinical EVs. For native EVs our sensitivity and specificity are 100% and 99.2%, 

respectively, and the accuracy is 99.4%. But after trypsinization of those samples, the sensitivity drops 

to 45%, specificity to 99.1%, and accuracy to 86.4%.  

These results strongly imply that the extraluminal domain, including membrane proteins and 

glycosylated moieties of lipids and membrane proteins, are critical to indicating cancer presence. While 

we acknowledge that the sample size of this clinical dataset is small, this is a key finding of this work 

that warrants further investigation. It is known that variations in cell surface glycoproteins significantly 

impact the progression of cancer, including the patients’ prognosis.[230] Functional and analytical 
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studies will be needed to elucidate the particular glycoproteins that are involved in distinguishing 

clinical samples from one another, and to discern their potential role in EV signaling in cancer.  
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4.8 Supplementary Information 

 

 

Figure S4.1: a) Spontaneous Raman spectrum of solid cysteamine, b) SERS spectrum (± 1 standard deviation) of 20 
mM cysteamine solution measured from the biosilicate substrate before and c) after 0.25 % w/v trypsin treatment. 
The pretreatment testing demonstrated discernible existence of characteristic cysteamine SERS peaks/bands at 650 
cm-1, 735 cm-1, 940 cm-1 and 1015 cm-1 before and after the surface was incubated in trypsin. Therefore, it is 
conceivable that trypsin does not quench or block cysteamine functionality, hence providing a suitable platform for 
EV enrichment. d) Spectrum of a blank biosilicate substrate without any trypsin or cysteamine treatment nor EVs 
added. The peaks/bands at 805 cm-1, 1010 cm-1, 1050 cm-1 and 1090 cm-1 can predominantly be assigned to different 
modes of Si-O stretching vibrations. It is noteworthy that these features do not overlap with the spectral regions of 
interest used for the EV analyses. 
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Figure S4.2: Representative examples of non-trypsinized and trypsinized SERS spectra. The upper panel for each 
group represents non-trypsinized sample and the lower panel displays trypsinized sample. a) In vitro SKOV-3, b) 
endometrial cancer, c) ovarian cancer, and d) benign ovarian neoplasm EVs measured on the biosilicate SERS 
substrate. Spectra were processed via normalization (total area to 1), smoothing, and background fitting using 
penalized least squares (PLS). 
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Figure S4.3: A PCA-LDA analysis performed for the tested clinical EV samples. (a) The LDA determined for native 
EVs after data dimensionality reduction by the PCA. The control samples are marked with black downward pointing 
triangles, OvCa samples with upward pointing red triangles and EnCa samples with blue asterisks. The blue and red  
boundaries differentiate the control, EnCa, and OvCa samples, respectively. The green boundary separates the EnCa 
and OvCa samples. The yellow circles around the data points indicate the misclassified spectra. (b) The confusion 
matrix for the native EVs. An accuracy of 99.4% was calculated for the assays. The sensitivity (TP/TP+FN) was 
determined 100%, and the specificity (TN/TN+FP) 99.2% regarding its capability to distinguish between non-
cancerous and cancerous samples. (c) The LDA determined for trypsinized EVs, and (d) the corresponding 
confusion matrix. An accuracy of 86.4%, sensitivity of 45% and specificity of 99.1% were calculated for the assay 
when trypsinized EVs were analyzed instead of EVs in their native state. However, due to the limited sample size 
utmost caution need to be exercised while interpreting these numbers, and a more thorough patient cohort study 
carried out to evaluate the true performance of the method. 
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4.9 Conclusions 

This report outlined the preparation of a new type of porous, nanoplasmonic substrate for 

EV analysis. We detailed a methodology for tackling the inherent heterogenous structure of the 

scaffolds and rigorous multivariate data analysis steps in order to reproducibly reveal the cancerous 

SERS spectra features in the measured data sets. As the spectral analyses demonstrate, we have 

successfully investigated and characterized EVs from in vitro cell cultures and clinical samples with an 

estimated LOD of ~600 EVs/mL with low laser powers. We demonstrate both a chemical treatment 

using cysteamine to non-specifically bind EVs, and also the large effects of extraluminal cleavage to 

provide complementary chemical information using a SERS approach. Both chemical treatments are 

generalizable to SERS analysis platforms, but especially useful for our substrate, which is easily washed 

due to its porous structure. Of note, we report that enzymatic cleavage of the EVs’ extraluminal 

domain resulted in loss of sensitivity to detect clinical patient samples of endometrial and ovarian 

cancer, indicating that those components may be of clinical significance. To implement liquid biopsy 

methodology based on this platform to the clinic, standardization/automation of isolation and sample 

handling techniques, evaluation of reproducibility and cost-effectiveness, and validation by clinical 

trials are required. We envision that this work can act as a step towards a modern, minimally invasive 

plasmonic liquid biopsy platform with adequate sensitivity, specificity, and economical aspects for 

future implementation. 
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Chapter 5: Surface enhanced Raman scattering of extracellular vesicles for 

cancer diagnostics despite isolation dependent lipoprotein contamination 

Context: Here we expand on the ability of SERS to uncover diagnostic information from 

competing signals stemming from co-isolated biomolecules. Lipoprotein particles are 

isolated in the same fractions as EVs, meaning they are present in the samples being studied. 

We show our technique is sensitive enough to ignore the spectral features from these co-

isolates and still uncover important information from EVs that correlate to the patient’s 

disease state. 

5.1 Introduction 

 Extracellular vesicles (EVs) are nanoscale biomolecular packages of variable size and 

composition readily found in all biofluids and shed by every cell type measured to date.[230] EVs play 

important roles in cellular communication via the directed shuttling of functional proteins, lipids, small 

molecules, and small non-coding nucleic acids.[64],[86] EVs are generally subdivided into categories, 

including exosomes, microvesicles, ectosomes, oncosomes, apoptotic bodies, and more, typically 

based on molecular features (i.e., size, morphology, composition) or biogenesis pathway.[231] There 

has yet to be unanimous agreement on the appropriate terminology for a given subpopulation, so in 

this study we refer to the isolated vesicular particles across all methods using the more generic term 

of EVs,[86] though it is clear that these isolates also contain contaminating non-vesicular species as 

demonstrated in this study.  

Given that released EVs exhibit composition reflective of their parent cells in response to local 

external stimuli, they represent a rich source of potential biomarkers with great potential for clinical 

application.[64,74–79,232,233]  Yet many challenges remain before that potential can be reached, 

especially in the choice of EV isolation methodology, which has a known effect on the quality and 

content of the isolated product.[86] In addition to vesicles, isolates may contain a variety of additional 
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nanoscale biomolecular assemblies, including ribonucleoparticles,[234] protein aggregates, small 

cellular debris, viruses,[235] and many types of lipoprotein.[218,236–240] There is no consensus on 

the expected concentration range of each particle type present in a given biofluid, since abundance is 

not predictable and influenced by a number of parameters, such as age,[241] sleep,[242] exercise,[243] 

diet,[244] and disease burden.  

This study focuses on quantifying extent of contamination in EV isolates by lipoprotein, which 

represent a major fluctuating source of nanoscale particles in human biofluids. In plasma isolates, 

lipoprotein particles can be present up to 100-fold more than EVs.[239] Lipoprotein manifest in many 

classes that vary in size and density. Chylomicrons serve as lipid and cholesterol transporters abundant 

in the blood with wide variation in size, ranging from ~75 to 1,200 nm.[245] Smaller very low-density 

lipoprotein (VLDL), with nominal dimensions between 30-80 nm,26 can further be converted into 

 

Figure 5.1: EVs and lipoprotein subtypes overlap depending on isolation method. Lipoproteins (blue) and EVs 
(orange) plotted according to respective size and densities, with various methods of isolation overlaid to show the 
relevant populations isolated by a given technique. EVs represent a heterogenous grouping of vesicular particles, 
including nanoscale exosomes, ectosomes, and other small EVs, but also larger microvesicles. EVs are thus spread 
over a large continuous range of sizes and densities. While more discrete in size and density per subtype, certain 
lipoproteins (HDL, LDL, VLDL, or chylomicrons) share significant overlap with EVs in size and/or density, thus are 
co-isolated to various extent depending on the particular isolation method. 
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even smaller types of lipoprotein, including intermediate-density lipoprotein (IDL, 25-35 nm) and low-

density lipoprotein (LDL, 18-25 nm), though IDL is a transient species not readily isolated on its 

own.[245] Chylomicrons, VLDL, and some LDL share nominal size overlap with EVs (~30-150 nm). 

High-density lipoprotein (HDL, 5-15 nm) is the smallest in nominal size and below the lower 

threshold for EVs, yet does overlap with EVs in density (~1.05-1.20 g mL-1).[245] Because of these 

features, isolation methods based on separation according to size or density can co-purify lipoprotein 

to various extent (Figure 5.1). 

The most appropriate EV isolation method depends on the biofluid source and desired purity 

or downstream application, since isolation methods greatly influence yield and purity of EVs.[88,246] 

Differential ultracentrifugation (UC) remains the most commonly used gold standard 

method.[88,246–248] UC separates components according to relative density with additional influence 

from the size of the particles present. For a given rotor type and speed[249] sedimentation rate is 

proportional to (i) the difference between the density of the medium and the density of the particle 

and (ii) the square root of the particle radius.[237] HDL particles co-isolate with EVs when employing 

UC.[240] Although EVs are larger than HDL particles and thus sediment faster, prolonged UC spins 

typical for EV isolation permit a significant amount of HDL lipoprotein to pellet as well.[237] Still, 

the percentage of EV to HDL vesicles remains unclear, as current methods struggle to efficiently 

distinguish them post isolation.[240] 

Related to UC is density gradient (DG) (or density cushion) ultracentrifugation. Also based on 

density, DG relies on chemical gradients to separate particles during an extended (~18 hr) spin.[247] 

In DG, plasma components move through the gradient until they reach their respective isopycnic 

point (equilibrium condition). Banded fractions can be collected, and the gradient material removed 

to enrich EVs. Given their similar density ranges, EVs and HDL elute to the same locations and are 

co-isolated.[240] Thus, for both UC and DG, HDL is the primary lipoprotein contaminant.  
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Size exclusion chromatography (SEC) is an emerging alternative to high-speed centrifugation 

techniques.[246],[90,250,251] In SEC, gel matrices with defined pore sizes provide a mechanism for 

smaller contaminants to travel through, while larger particles cannot enter the pores and elute more 

quickly. Eluted fractions can be pooled and concentrated to enrich EVs from biofluids. Yet, since 

chylomicrons, LDL, and VLDL all overlap in size with EVs, they each are co-isolated in the EV-rich 

fractions. 

Some work has been performed to assess the purity of different bulk isolation methods using 

biochemical techniques of Western blotting or ELISA, yet they are either not quantitative or require 

high volumes of sample input or expensive reagents, and neither are amenable for rapid analysis.[239] 

A promising approach to improve on these limitations is surface-enhanced Raman scattering (SERS). 

SERS is a spectroscopic technique that provides valuable chemical information through the plasmonic 

amplification of inelastically-scattered photons following sample irradiation. It is an appealing 

technique for bio-analysis given that it is inherently label-free, non-destructive, and ultrasensitive, and 

can provide multiplexed chemical fingerprinting at the nanoscale with a single laser.[54–

56,58,96,135,252] The application of SERS to identify EVs in a label-free manner has been recently 

reviewed.[253] Besides diagnostic evaluation of EVs, spontaneous Raman spectroscopy has been 

reported to be able to assess purity, yet that study did not consider the effects of lipoprotein 

contamination, analyze combinations of methods, nor evaluate clinically significant samples acquired 

from patients.[150]  

In this study we utilized SERS to quantify the extent of lipoprotein contamination (accounting 

for each of the major subtypes) in a representative clinical dataset of EV isolates purified from plasma 

of head and neck cancer patients and healthy controls. We varied isolation methods between UC, DG, 

SEC, and a combination of UC+SEC to assess the effect on lipoprotein vs. EV content. By fitting 

resulting spectra of purified isolates to spectra of analytical standards of chylomicrons, VLDL, LDL, 
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and HDL, we could accurately recapitulate the type and extent of lipoprotein co-isolated across each 

method. Notably, due to the multiplexed nature of SERS chemical analysis (spectra also contain 

molecular differences between samples not due to lipoprotein contamination), we found that cancer 

patient samples could be readily distinguished from non-cancer controls regardless of chosen isolation 

methodology and extent of lipoprotein contamination. This renders SERS a powerful tool, capable of 

both assessing lipoprotein content and concentration, but also seeing through such chemical 

contamination to reveal underlying disease-associated features relevant to diagnostic application.  

5.2 EV and lipoprotein isolation and characterization 

We analyzed a focused dataset of whole blood samples isolated from patients undergoing head 

and neck surgery at UC Davis Health. Patients were consented prior to surgical tumor resection using 

an IRB-approved protocol and samples were provided to our lab stripped of identifying information. 

Our sample cohort contained nine patients with squamous cell carcinoma and four non-malignant 

controls, according to histopathological analysis. 

After pre-clearing large aggregates up to 10,000 x g, samples were evenly divided by volume 

and subject to either UC, DG, or SEC isolation protocols. In later experiments, sequential isolation 

methods were employed (i.e., UC followed by SEC on the same sample). Following a particular 

isolation method, EV-enriched isolates were analyzed for size and number concentration by 

nanoparticle tracking analysis (NTA). Across isolation techniques, samples consistently contained 

from 1x1011 to 2.5x1012 particles mL-1 with diameters apparently ranging from ~50 – 300 nm and 

modes between 65 – 165 nm (Figure 5.2a). There are some caveats to NTA, given its practical lower 

detection limit of ~70 nm for typical refractive index measures of organic material[254,255], though 

it is known large numbers of EVs are present down to 30 nm[256,257]. Transmission electron 

microscopy (TEM), for example, reveals a large number of sub-70nm particles (Figure 5.2b). For 

both NTA and TEM, due to the overlapping sizes of EVs with chylomicrons, VLDL, and LDL, 
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particle count interpretation is difficult, thus we are careful not to overinterpret any slight differences 

between EVs from various preps across these methods. Isolates were further characterized by single 

particle interferometric reflectance imaging sensing (SP-IRIS) using the ExoView R100 (NanoView 

Biosciences, Boston) platform and antibody coated spots of anti-CD9, anti-CD63, anti-CD81, and 

control mouse anti-IgG, and the same antibody types for sandwich detection.[258] While TEM and 

NTA cannot easily determine if particles are lipoprotein or EV in nature, SP-IRIS helps confirm the 

presence of common EV sequestered tetraspanins (Figure 5.2c,d). When expression levels for 

capture/detection pairs are normalized to each sample’s total particle count, (Figure 5.2d) it is clear 
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that trends in expression of those three tetraspanins are relatively consistent across several clinical 

samples over a mix of isolation methods. 

 
Figure 5.2: Characterization of EVs. (a) NTA is used to measure size distribution and particle concentration for the 
isolation methods UC, DG, SEC, and UC+SEC performed on a representative clinical sample. (b) A negative-stained 
TEM micrograph illustrates the size and morphology of particles isolated by SEC. (c) Representative data of an 
antibody sandwich assay using SP-IRIS, which demonstrates the presence of EVs captured against tetraspanins CD9, 
CD63, and CD81, alongside control mouse-IgG (MIgG). Particle counts from fluorescently labeled detection 
antibodies are displayed, e.g., the first orange column from the left represents detected particles both captured by anti-
CD9 and also labeled with anti-CD81. (d) Column scatter plot of SP-IRIS data from 7 representative clinical samples, 
each sample normalized to its total particle count for ease of comparison. Each circle represents the average expression 
value for a given clinical sample, with horizontal dashes representing the group mean and vertical lines one standard 
deviation from the mean. 
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5.3 Functionalization of SERS substrates to non-specifically capture anionic EVs and 

lipoprotein  

For SERS measurement, we employed a commercially available substrate comprised of a silica 

nanowire matrix embedded with gold nanoparticle clusters, grafted to a conventional glass microscope 

slide (Ocean Insight). EVs distributed throughout this matrix (schematized in Figure 5.3) and 

localized in close proximity to the plasmonic gold experience the high electromagnetic fields generated 

by coupling between the excitation laser and localized surface plasmons on the matrix. This surface 

enhancement gives rise to immense amplification of otherwise weak Raman scattering signals, which 

can be detected via our custom-built confocal scanning Raman microscope. In preliminary testing,[91] 

we dried out a concentrated drop of EV-rich isolate onto the SERS substrate, but noted that this 

resulted in a dense impenetrable monolayer of dried biomass that masked any detectable EV-specific 

signal and largely prevented EV diffusion into the 3D nanowire mesh. On the other hand, simply 

dropping a small volume of EVs onto the SERS substrate, followed by washing, only resulted in 

modest EV retention in the mesh. To improve this, we developed a method of surface 

functionalization by cysteamine prior to EV sample addition. Cysteamine is a useful 

biofunctionalization linker,[209,259] with a terminal thiol group on one end that binds to the gold 

substrate and a free amine on the other end, effectively priming the surface with positive charge for 

non-specific capture of inherently anionic EVs and lipoprotein. We recently showed that cysteamine 

functionalization allows for excellent retention of EV-rich material even after several rounds of 

washing.[91] Following cysteamine-mediated EV adsorption, we imaged the substrate morphology 

with SEM  (Figure 5.3b), which shows EVs localized to the surface of the nanowires, demonstrating 

their effective retention and proximity to plasmonic substructures for subsequent SERS measurement. 

Notably, anionic lipoprotein co-isolated with EVs from clinical biofluids would also be pulled down 
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to the cysteamine-functionalized surface and potentially subjected to plasmonic enhancement as 

well.[260,261] 

During typical SERS analysis, the laser was swept across the substrate to randomly sample 

plasmonically active spots throughout. Across many randomly selected spots in the substrate, several 

subsequent sets consisting of twenty consecutive 1-second spectra were captured at each selected spot. 

Therefore, for a given sample condition across a single substrate, dozens of spectra were captured and 

analyzed.  

Prior to EV analysis, lipoprotein analytical standards were measured from stock solutions, 

without SERS and substrates and then following incubation with SERS substrates (Figure 5.4a-b). 

Raman spectroscopy has been previously used to sensitively distinguish lipoprotein variants.[262] 

Here, samples are compared throughout using principal component analysis (PCA), which we have 

previously reported for reducing dimensionality of Raman spectral datasets.[93,95]  PCA generates an 

intuitive visualization of multivariate data, capturing as much variability as possible and conserving the 

 
Figure 5.3: Porous plasmonic SERS substrates are used for label-free analysis of EVs and lipoprotein. We utilized a 
commercial SERS substrate based on plasmonic nanogold clusters embedded throughout a polymer microfiber matrix. 
As schematized by cartoon in (a) with corresponding images captured by SEM in (b), EVs and lipoprotein particles 
can traverse the polymer network structure and localize to the plasmonic nanogold for subsequent enhancement. The 
substrate is pre-treated with cysteamine to increase efficiency of pull down of anionic EVs and lipoprotein to the 
surface. The red circle and arrow annotate bioparticles adsorbed to the nanogold surface. 



 88 

pertinent information responsible for the major sources of data variability.[263] The analysis yields 

two commonly interpreted outputs; a principal component (PC) score plot and PC loading spectra. 

The PC score plots aid visual comprehension of the variance and groupings within the analyzed data, 

and the magnitude of differences (Figure 5.4c). The PC loading spectra (Figure 5.4d) report on the 

contribution of each independent variable (i.e., spectral region) to the observed differences, and thus 

can be used to pinpoint the prominent spectral features that can further be assigned to encompass 

different chemical bonds, structures, and functional groups. Notably, each of the four classes of 

 
Figure 5.4: Lipoprotein analytical standards are readily distinguished by Raman scattering. (a) Spontaneous 
Raman and (b) surface enhanced Raman spectra for lipoprotein analytical standards. While SERS related peaks are 
different than their spontaneous counterparts, they are readily distinguished from each other. (c) Principal 
component analysis using PC1 and PC2 (together representing more than 56% of the total variability in the 
dataset), with loadings (d), shows distinct separation of the lipoprotein subtypes according to spectral differences.  
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lipoprotein (chylomicrons, VLDL, LDL, and HDL) could be distinguished from one another in PC 

space following their interrogation by SERS substrate, as observed by the distinct clustering in Figure 

5.4c along the PC axes represented by the spectral loadings in Figure 5.4d. 

We have made efforts to fully assign the vibrational peaks driving variability across the datasets 

(annotated throughout this study’s figures, e.g., in Figure 5.4d), but caution against overinterpretation 

of single spectral peaks, particularly for SERS spectra which are often very dynamic in time during 

even a short measurement. While our full assignments for each peak of interest, according to literature 

references,33,54–63 can be found in Supplementary Table 5.1, we comment throughout in the main 

text on the possible significance of certain major groupings of feature types (e.g., when multiple peaks 

are indicative of lipids, nucleic acids, proteins, etc. for a given spectral loading).  

For example, in the lipoprotein dataset, 43% of the sample variability is accounted for in PC1, 

which splits LDL from the other lipoprotein variants. The main peaks responsible for the variation in 

PC1 are an increase in 1048 cm-1, 1148 cm-1, 1270 cm-1, and 1454 cm-1, previously noted to correspond 

to carotenoid compounds that can associate with LDL (but to a lesser degree with HDL), as well as 

aliphatic chains of LDL-contained lipid species.[265,267] PC2 further stratified the remaining 

lipoprotein types, driven primarily by phospholipid type features. VLDL and chylomicrons displayed 

the most similarities to each other, as indicated by their proximity and slight overlap. This is somewhat 

anticipated, as VLDL is the first type of lipoprotein produced as chylomicrons get broken down by 

the liver.[245] Although these lipoproteins are all derivative of each other and chemically similar, it is 

clear that they each maintain unique differences and are distinguishable according to their SERS 

spectra.  

5.4 EVs isolated from clinical biofluids using various methods show key compositional 

differences 
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We next analyzed EV isolates using the SERS assay. EVs were isolated from each patient 

sample using either UC, DG, or SEC techniques and analyzed by PCA. As evident in Fig. 5.5a using 

a representative PC score plot for patient C-1, diagnosed with nasal cavity squamous cell carcinoma, 

the various isolation methods are primarily responsible for driving the chemical differences across 

samples, as evident by their clear separation in PC space. For example, the band regions 926 cm-1, 

1005 cm-1, 1323 cm-1, and 1521 cm-1 seen in PC1 are related to nucleic acids signatures and are positive 

for all of the DG spectra (red) while the same regions are negative for SEC (pink) and UC (blue), 

implying that additional nucleic acid material is traveling to the same isopycnic spot as our EV preps. 

The accompanying negative PC1 loading regions of 1144 cm-1, 1275 cm-1, and 1485 cm-1 all relate to 

various lipid and protein signatures. This analysis implies that these lipid and protein signatures are 

more present in UC and SEC samples than in DG samples. This is a clear indication that each method 

co-isolates specific patterns of nucleic acids, lipids, and proteins in various amounts, and the chemical 

composition of these patterns differs depending on some extent to the isolation method. 
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Stratification along PC2 represents an increase in peaks 1151 cm-1, 1275 cm-1, 1450 cm-1, and 

1500 cm-1, notable lipid and protein signatures. It is not clear whether these differences are due to 

varying extent of contamination by lipoprotein, so as an initial negative control we compared EVs 

isolated from an ovarian cancer cell line (SKOV-3). We measured the SERS spectra for SKOV-3 EVs 

isolated by both UC and SEC and plotted them against each other. Given that the cell lines are grown 

in culture media without lipoprotein, their released EVs should be free of the chemical signatures we 

gathered from the standards which makes them an appealing negative control. In fact, there was no 

separation from these two populations (Supplementary Figure 5.1a), indicating that no major 

differential accumulation of contaminants is taking place depending on the technique used. When 

plotted with the lipoprotein standards, the SKOV-3 EV SERS measurements revealed clear separation 

from all the different types of lipoproteins (Supplementary Figure 5.1b). The lack of overlap with 

 
Figure 5.5: PCA of SERS spectra from EVs isolated by various methods are chemically distinct. Principal 
component analysis of SERS spectra from EVs isolated from patient C-1 (diagnosed with nasal cavity squamous cell 
carcinoma). Isolation methods of the same sample produce chemically different clusters (a) 2D principal component 
score plot (PC1-PC2) containing measurements from EVs isolated by either SEC (pink), UC (blue), or DG (red). 
Each marker represents a single measurement sampled across the SERS substrate after incubation with EV isolates. 
(b) PC1 and PC2 loading spectra reveal the chemical attributes responsible for the driving variation between 
populations. 
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the signals indicates that there is no lipoprotein co-isolated with the in vitro derived SKOV-3 EVs, 

regardless of isolation method. 

5.5 EV preparations spectrally cluster with lipoprotein standards based on isolation method  

To assess the extent and type of lipoprotein signatures conceivably present in our clinical EV 

isolations, we analyzed the lipoprotein standards and EV isolations together. Figure 5.6a shows a 

representative figure for the patient sample C-1. In fact, the spectral features identified in PC1 (1270 

cm-1, 1454 cm-1, 1497 cm-1) are highly reflective of the overall chemical content of VLDL and LDL. 

EVs isolated by SEC (pink diamonds) shared similar protein and lipid signatures that were seen in the 

VLDL and chylomicron spectra (magenta triangles and red stars, respectively). VLDL and 

chylomicrons exhibit a high degree of overlap with EVs in the size range of particles purified by SEC, 

supporting our finding of similar spectra and interpretation that this means SEC-isolated EV preps 

co-isolate those particular lipoproteins. EVs isolated using either UC or DG (blue squares and orange 

circles in Figure 5.6a, respectively) have a much greater association with the HDL spectra (green 

stars). The position of the UC and DG in combination with the PC2 axis shows that they still have a 

higher enrichment of distinguishable lipid features (1180 cm-1, 1376 cm-1, and 1436 cm-1; all report on 

lipid vibrations as shown in Supplementary Table 5.1) as compared to the HDL standard. Taken 

together we can determine that there is a correlation with the co-isolation of HDL when employing 

DG, a density-based isolation method, i.e., specimen that have resembling densities co-locate in the 

same fraction(s) of the gradient solution. In all of the clinical EV samples we tested, similar trends for 

grouping were followed. We expected to see lipoproteins in the same size range as the EVs 

(chylomicrons, VLDL, and LDL) to group more consistently with EVs from SEC while those with 

the same density (HDL) would share higher proximity to the density-based EV isolation methods of 

UC and DG. The PC analysis supported this hypothesis and showed a strong correlation of the 
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grouping based on both size and density. Taken together, these findings indicate that different types 

of lipoproteins are present in varying amounts depending on which EV isolation technique is used. 

5.6 Combination of isolation techniques leads to less lipoprotein contamination of the 

samples 

To examine whether a multi-step isolation approach could remove all types of lipoprotein, EV 

samples that were first isolated by UC were further purified by subsequent SEC. Samples were 

concentrated and measured using the SERS assay, then mapped with the same lipoprotein standards 

in PC space for evaluation. The resulting plot showed a clean separation of the dually isolated sample 

from all of the lipoprotein present (Figure 5.6c-d). From the positive spectral features of PC2 we can 

note that the VLDL, chylomicrons, and LDL exhibit a very different lipid and protein chemical profile 

from both HDL (as previously noted) and the dually isolated EV sample. The PC2 loading peaks at 

1005 cm-1 (phenylalanine), 1280 (CH2, CH3 deformation/C-N stretching), 1560 cm-1 (tryptophan), and 

1636 (amide I) are pronouncedly present in HDL and UC+SEC compared to VLDL, chylomicrons, 

and LDL, which points to the protein-enriched chemical contents in HDL and UC+SEC samples. 

On the other hand, the peaks at 1124 cm-1 (C-C and C-N stretching of proteins and lipids), 1188 (C-

C or C-O e.g., phospholipids), 1415 cm-1 (CH rocking in lipids), and 1493 cm-1 (conjugated C=C 

vibrations) could evidence the abundance of lipid-related components in VLDL, chylomicrons, and 

LDL, simultaneously less represented in HDL and UC+SEC samples. Of note, even though the PC1 

analysis first implied that there might had been VLDL/LDL signatures in the UC+SEC EV isolate, 

the PC2 analysis showed that the EV isolate can be distinguished from these lipoproteins. Hence, the 

observed SERS peak similarities in PC1 analysis highly likely stem from the fact that the peaks can 

represent multiple chemical entities (e.g., the peak at 1271 cm-1 can be assigned to amide III bond 

vibrations in EV proteins in the UC+SEC sample, in unison representing C=C bonds in fatty acids 
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and aliphatic chains of LDL-contained lipid species). The capability to project the data in PC space 

containing multiple directions is the strength of our multivariate analysis approach. Thus, SERS 

analysis is a viable tool to validate the purity of the isolate. To our knowledge, this is the first direct 

 
Figure 5.6: PCA of SERS spectra from clinical EVs isolated across various methods compared to lipoprotein 
standards reveals extent of contamination. PCA score plots and loading spectra for EVs isolated by different 
methods and lipoprotein standards. EVs group with lipoprotein populations to which they are more chemically 
similar. (a) Single isolation methods for EVs using either SEC (pink diamonds), UC (blue squares), or DG (orange 
circles) group differently with chylomicrons (blue circles), VLDL (magenta triangles), LDL (red stars), and HDL 
(green stars). (b) PC1 and PC2 loadings indicate the chemical peaks responsible for the greatest amount of variation 
between samples in panel (a). (c) Dual isolation strategy of EVs using UC followed by SEC (brown squares) has no 
overlap with the lipoprotein standards. (d) PC1 and PC2 loadings representing the spectral areas responsible for the 
majority of variation between samples in panel (c). 
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indication that dual isolation using UC and SEC in tandem is more capable of purifying EVs from 

lipoprotein. 

5.7 Cancer diagnostic performance of the SERS platform is largely unaffected by EV isolation 

method  

Although we saw evidence that the type of isolation method used changes the chemical 

signature of the EV samples, we were interested in evaluating and quantifying the capabilities of our 

SERS platform to distinguish cancer from non-cancer, regardless of the technique used. Following 

variable reduction by PCA we applied a straightforward machine learning (ML) approach using either 

supervised linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA), which have 

attained notable interest in vibrational spectroscopy applications.[126,268,269] We refer to the 

methods as PCA-LDA and PCA-QDA, respectively. In essence, LDA and QDA are relatively simple 

boundary discriminant methods that separate sample classes or groups. LDA presumes a single 

variance-covariance matrix across classes, resulting in linear boundaries that are straight lines or 

hyperplanes dividing the variable space into categorized regions. QDA, in turn, assumes that the 

variance-covariance matrices are different for each class, yielding quadratic boundaries that are 

quadratic curves or hyperplanes dividing the variable space. Thus, QDA represents a potentially more 

flexible modeling approach since it allows for discriminating classes wherein the class-specific 

covariance matrices are significantly different. Although QDA is considered to perform well for 

normally or multi-normally distributed data, requiring minimal optimization, and being comparably 

immune to overfitting,[269] the superiority of LDA versus QDA is rarely known a priori.  

Therefore, we tested PCA-LDA and PCA-QDA for UC, DG, SEC, and UC+SEC isolated 

samples in the context of cancer detection and diagnostics (Figure 5.7). The PC scores were used as 

input data for LDA/QDA, and to avoid overfitting,[270] we chose to use either the first two or three 

PCs (PC1-PC2 or PC1-PC3, respectively) as input features for the classifiers. In order to effectively 
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compare these models, we established quality performance metrics consisting of accuracy (i.e., error 

rate), sensitivity, and specificity to discriminate cancerous samples from non-cancerous controls. The 

full metrics for each approach is shown in Supplementary Table 5.2. The best performing model 

(i.e., most accurate) for each isolation method is plotted in Figure 5.7. Panels a, d, g, and j show the 

2D or 3D PC space with the linear or hyperplane decision boundary drawn in dark grey, cancerous 

samples in red, non-cancerous control samples in blue, and misclassified data points as yellow circles. 

Corresponding PC loadings for the first two PCs are shown in panels b, e, h, and k, along with 

annotated peaks color coded according to their presence in the raw cancer or non-cancer spectra. 

Supplementary Figure 5.2 displays the global mean and standard deviation for the processed SERS 

spectra for each isolation methodology, along with annotated wavenumber regions corresponding to 

the numbers shown in the Figure 5.7 loadings. The panels c, f, I, and l display the confusion matrix 

accompanied with the performance metrics table for sensitivity and specificity.    

DG, SEC, and UC single isolations all resulted in practically equivalent accuracies of 98.3%, 

97.8%, and 98.0%, respectively. Yet the same model was not used for each. DG and UC were most 

successful with a QDA model, while SEC performed better with an LDA model. In each of the 

isolation methods, the inclusion of a third PC made only a slight difference (Supplementary Table 

5.2). Notably, the combination of UC+SEC, which in principle would result in a more highly purified 

sample, performed much worse than either of the individual methods, with accuracies ranging from 

85%-86.5% across the model classifiers. For the three individual isolation methods, each of the tested 

four models (PCA-LDA with PC1-PC2, PC-LDA with PC1-PC3, PCA-QDA with PC1-PC2, and 

PCA-QDA with PC1-PC3) demonstrated robustness to detect cancer and diagnose various types of 

head and neck cancers adequately. According to our analyses, the DG method using PCA-QDA with 

PC1-PC3 stood out as the most accurate (98.3%) and sensitive (98.3%) isolation procedure. DGA 
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with PCA-LDA using either the first two or three PCs had 100% specificity (Supplementary Table 

2).  

Supplementary Figure 5.2 provides additional insight into the chemical groups driving the 

separation of cancer and non-cancer samples. In those spectra, particular chemical features are 

annotated that distinguish between the two cohorts, while virtually equal peaks/band regions between 

cancer and non-cancer samples were excluded. The band in the 1000-1040 cm-1 area is very active 

across all the isolation methods; this specifically stands out among the non-cancer control samples. 

As this region can be associated to e.g., symmetric ring breathing in phenylalanine and/or CH2CH3 

bending in lipids, it is conceivable that these chemical features are diminished in EVs originating from 

cancerous cells. Another possibility is that the total vesiculome in a cancer burdened system may 

undergo metabolic changes resulting in discernible EV representation. In UC+SEC isolation 

approach, however, the control samples have less of the 1000-1040 cm-1 properties and are 

correspondingly weaker at discerning  
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d

 
Figure 5.7: ML classification of SERS spectra shows accuracy is largely unaffected by EV isolation methodology. EVs 
isolated from head and neck cancer patients (red circles) and non-cancerous control patients (blue circles) either by DG (a-
c), SEC (d-f), UC (g-i), or UC+SEC (j-l) were measured using the developed SERS assay. (a,d,g,j) Following PC analysis, 
various machine learning classification approaches were tested; shown is the best performing classifier for each isolation 
type in terms of overall accuracy, either using LDA or QDA, and testing over the first two or three PCs. Decision 
boundaries are shown as lines (a,b) or as a hyperplane (c,d) depending on the dimensions of best fit. (b,e,h,k) Loadings for 
the first two PCs, including annotated peaks corresponding to Supplementary Figure 2, highlighting the driving factors 
for discriminating cancer features. (c,f,I,l) Confusion matrices and performance metrics derived from the ML analysis, 
including sensitivity and specificity. 
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between cancer and non-cancer samples. While the explicit interpretation for this observation remains 

unclear, this example highlights the benefits of the developed SERS method being relatively immune 

to the effect of isolation-dependent contaminants in cancer detection procedures. 

The 1500-1515 cm-1 region is also prominent in all control samples isolated by DG, SEC and 

UC, but absent in both control and cancerous UC+SEC samples. Predominantly attributed to the 

vibrational modes from C=C conjugations, we foresee similar tendency to the aforementioned 1000-

1040 cm-1 region; the chemical composition of EVs experiences changes in the diseased state. This 

may suggest that the unsaturated double bonds in various chemical structures become decimated by 

the acidic and hypoxic microenvironments of tumor cells. On the other hand, cancerous samples 

isolated by DG, SEC and UC share chemical features reported by the region 1540-1580 cm-1. Within 

this region, there exists majorly protein-related signatures such as tryptophan and amide II vibrations. 

Again, it is a persistent finding regardless across the single isolation methods and possibly reports on 

the altered protein content of cancerous EVs. 

DG (control) and SEC (control and cancerous) samples are mutually characterized by the 

region 1140-1160 cm-1 that can be assigned to multiple plausible structures: C-C vibrations in lipids, 

C-N amide bonds in proteins, or carotenoids. Similarly, control samples isolated by SEC and UC have 

mutual spectral features at 1445-1465 cm-1, which is an established marker area for CH rocking in 

lipids and CH2/CH3 vibrations in lipids and proteins. These represent further examples whereby 

chemical changes between cancerous and control samples can be observed over different isolation 

platforms. 

The most unique spectral feature that differentiates cancerous DG samples from the controls 

is the region at 1540-1580 cm-1 mainly reporting on proteins such as tryptophan and amide II 

vibrations. For SEC, the ranges 840-855 cm-1 (nucleic acids and e.g., ring deformation in tyrosine) and 

1550-1570 cm-1 (tryptophan, amide II) discern cancerous samples from the controls. The SEC isolated 
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samples have the most spectral areas in common as a whole. For UC, the regions 1405-1415 cm-1 (CH 

rocking in lipids) and 1580-1600 cm-1 (amide II and nucleic acids) separate cancerous samples from 

the non-cancer controls. Taken together, it is clear that overall diagnostic performance is largely very 

high across single isolation methods, the particular chemical differences driving each separation are 

not the same. 

5.8 Discussion 

Many studies employing EVs isolated from cell culture supernatant lack the additional 

biomolecules that exist within complex biofluids. The influence of these additional molecules and 

their assemblies could have important consequences in therapeutic and diagnostic EV research. 

Particularly when it comes to dosing studies, it is vital to know how many EVs are present versus 

other co-isolated biomolecules. Moreover, the diagnostic capabilities of an EV-based assay might even 

benefit from the additional information the co-isolated specimen can provide. Yet in many basic 

research settings, having a pure EV sample is the most beneficial for better understanding the 

fundamental biological functions and chemical structures of EVs. Moreover, modern drug discovery 

endeavors are increasingly aimed towards developing safe and effective EV nanoformulations for 

targeted therapies. Robustly producing highly pure EV preparations and assessing their level of purity, 

e.g., by SERS are the cornerstones of such developmental steps. We show here that lipoprotein is being 

co-isolated with EVs to various extent based on isolation methodology, which can be assess using a 

label-free spectroscopic approach. The use of a combination of both density and sized-based isolation 

techniques would logically provide a purer EV population, but we found that in that case, diagnostic 

sensitivity is decreased in this cohort of patients.  

Notably, the ML classifiers used here are minimally prone to observer-dependencies, inter- 

and intra-observer variabilities, and are operator-friendly for various types of classification schemes 

involving large spectral data sets. Overall, the performance of different ML strategies is predominantly 



 101 

dependent on the data structure. Methods such as support vector machines (SVM) or learning vector 

quantization (LVQ) can be susceptible to overfitting for normally or multi-normally distributed data 

whilst conceivably performing better for more complex data structures. Signal analysis by PCA 

followed by LDA has been successfully applied to discriminate EVs in previous work.[145,271] In 

this limited dataset, LDA and QDA each performed better in some cases, and worse in others, 

suggesting that there is not a one-size-fits-all solution. Our future emphasis will be integrating several 

ML approaches into one overarching evaluation and comparing their capabilities in real clinical 

settings.  

One notable feature of this study is the ability to carry out such an extensive comparison 

between isolation methods on reasonable volumes of clinical biofluids. The sample input volumes for 

many contemporary EV characterization methods, including proteomics and genomics analysis, 

electron microscopy, and Western blot, preclude its use in testing multiple isolation methods on a 

single clinical sample for downstream characterization. Therefore, many studies focus solely on EV 

samples derived from cell culture supernatant, limiting their clinical relevance. SERS, on the other 

hand, requires less than a few microliters of sample volume per measurement, permitting its 

applicability in such a comparison study and in clinical diagnostics platforms at large. 

However, some limitations and caveats for these results remain. We analyzed a small and 

focused dataset from a specific family of cancers (head and neck), and it is not clear how generalizable 

our finds are to other cancers and disease types. Also, there are many other types of contaminants 

besides lipoprotein in human biofluids that can pollute SERS spectra, whose influence will need to be 

investigated in future studies. We showed that a dual isolation method can successfully remove 

lipoprotein present in the clinical samples, but in some case, lipoproteins can contribute to diagnostic 

information about an individual’s disease state, thus are not always undesirable. In any case, the SERS 

platform provides enough accuracy to not be majorly influenced by contamination of differential 
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combinations of lipoprotein, indicating that clinical samples may not need to be subjected to rigorous 

isolation procedures for input into diagnostic platforms. Yet for such application, it is true that 

challenges remain, given that the SERS process itself if is inherently highly variable, with noted 

reproducibility issues and a high degree of user experience needed to analyze data. Beyond that, scaling 

up production of SERS substrates is challenging, often requiring expensive lithography equipment to 

ensure consistent signal acquisition. Future projects will focus on expanding to greater numbers of 

clinical samples and variety of cancers, examining the diagnostic influence of additional biomolecules 

beyond lipoproteins present in EV preps, and automating the SERS measurement process for 

successful implementation in a clinical setting. 
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5.9 Supplemental Information 

Table S5.1: Chemical assignments for annotated peak regions in Figures 4 – 8 in the main text, including literature 
references. When a specific peak of interest from our analysis was contained with a few (<5) inverse centimeters of a 
literature value, we replaced the specific value with a range rounded to the nearest value of “5” or “10” for ease of 
interpretation, given that our spectral resolution is within an error of 5 cm-1.  

Wavenumber region (cm-1) Chemical assignment Reference 

720 Amino acids [94] 

790-795 Nucleic acids [93,213] 

840-855 Nucleic acids and e.g., ring deformation in tyrosine [213] 

900 Carbohydrate-related; 
proline/valine/glycogen 

[155,264] 

926 C-C ring stretching e.g., proline, nucleic acids [213] 

1005-1010 Symmetric ring breathing; phenylalanine [94] 

1025 – 1050 CH2CH3 bending, e.g., lipid [92,94,96,265] 

1120 – 1190 C-C, e.g., lipid; 
C-N amide in proteins 

[92,94,96,97,265] 

1149 Carotenoids [265] 

1165 Carbohydrate-related [92] 

1235 C-N stretching + N-H deformations; amide III proteins [90] 

1265 – 1280 Amide III protein and C=C fatty acid [90,94] 

1282 CH2, CH3 deformations; 
C-N stretching 

[90] 

1320 – 1360 CH2CH3 in nucleic acids [90] 

1376 CH3 symmetric in lipid [90] 

1405 – 1440 CH rocking in lipid [92] 

1450 – 1465 CH2/CH3, lipid and protein [257] 

1480 – 1485 C-H, lipid and protein [90] 

1495 – 1515 Vibrations from C=C conjugations [92] 

1520 – 1565 Tryptophan [90] 

1545 – 1590 Amide II [218][266] 

1603 Cytosine and phenylalanine [92] 

1620 DAMP/C=C protein [90] 

1630-1650 Amide I, C=C [95,208] 
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Figure S5.1: PCA analysis of EVs isolated from cell culture supernatant compared to lipoprotein standards. (a) EVs 
isolated from SKOV-3 cell culture supernatant are chemically similar to each other regardless of which isolation method is 
used. EVs isolated by SEC (orange) and UC (gray) heavily overlap in PC space without clear separation along their major 
principal components. (b) PC1 and PC2 loadings represent the greatest amount of chemical variation between samples in 
panel (a). (c) When analyzed with the lipoprotein standards, there is clear separation between the EVs and lipoprotein 
subpopulations, indicating a lack of chemical overlap between the species. (d) PC1 and PC2 loadings for panel (c). The 
positive peaks driving this separation indicate carbon-carbon and carbon-nitrogen stretching and deformations in proteins 
and lipids (1021 cm-1, 1159 cm-1, 1282 cm-1), as well as unsaturated fatty acids (1511 cm-1). 
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Table S5.2:  Quality performance metrics for EVs isolated by various methods and tested with various machine learning 
(ML) classifiers. Each isolation method (DG, SEC, UC, or UC+SEC) was subjected to either QDA and LDA over the first 
two or three PCs. Accuracy, sensitivity, and specificity were calculated for each case, using the predicted class (cancer vs. 
non-cancer) from the SERS assay against the true class by clinical histopathological analysis. Bold black boxes highlight the 
top performing (i.e., most accurate) method for each isolation method. The boxes are shaded from green to red to 
represent the linear range from the highest metric (100%) to the lowest (82.7%). 

 
 

 
Figure S5.2: Mean and standard deviation of SERS spectra for EVs isolated from clinical samples. Spectral features for 
EVs isolated by either (a) DG, (b) SEC, (c) UC, (d) UC-SEC. Blue color denotes EVs isolated from non-cancerous control 
patients and red represents EVs from head and neck cancer patients. The prominent spectral regions identified by the PCA 
are color-coded by showing blue/red color for unique or blue-red for shared spectral features across cancer and non-cancer 
samples. As a visual guide, the PC1 versus PC2 loading intensities are displayed on the right-hand side of each panel. 
Influential spectral areas are annotated with 1-9 for each isolation method using outward-extending loops for ease of 
matching to the loadings. Peaks/bands providing negligible separation information are excluded. 
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5.10 Conclusions 

Here we have conducted a study using label-free and non-destructive SERS measurements to 

assess the level of lipoprotein contamination across clinical samples isolated in several ways. We found 

that the type of lipoproteins co-isolated with a given EV preparation varied depending upon the 

technique that was used. EVs isolated by SEC grouped more consistently at the same locations as 

chylomicrons and VLDL/LDL, while EVs isolated by UC and DG shared more overlap with each 

other and HDL, indicative of their relative extent of contamination by those lipoprotein types. A 

protocol of subsequent UC and SEC largely eliminated lipoprotein contamination as shown by PC 

analysis of SERS spectra. Therefore, if striving for purer EV samples to use in research experiments, 

a dual isolation method may be the most effective at removing these distinct contaminating 

components. We also devised four different ML approaches in order to evaluate the cancer detection 

and diagnostics capabilities of the studied SERS platform. In terms of cancer detection, neither the 

isolation method used, nor the ML model greatly affected the sensitivity and specificity to distinguish 

between cancerous and noncancerous samples, which in most cases was greater than 97%. In terms 

of cancer diagnostics, the best overall performance (accuracy = 98.3%) was achieved using the DG 

isolation method and a PCA-QDA discriminant classifier with PC1-PC3 scores as input features. 

However, SEC and UC isolations also achieved accuracies of 97.8% and 98%, respectively. Taken 

together, our SERS platform was sensitive enough to tease out cancer-specific signatures that 

remained unaffected by the presence of additional co-isolated biomolecules, showing that the label 

free diagnostic ability was effective across many different sample preparations. 
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Chapter 6: Homogenous high enhancement surface-enhanced Raman 

scattering (SERS) substrates by simple hierarchical tuning of gold nanofoams 

Context: Here we focus on the development of useful SERS materials that can be translated 

to clinical use. We developed gold nanofoams that were simple and quick to create while 

maintaining high Raman enhancement and easily integrating into simple filters. This work 

shows the promise of such in-house synthesized materials to overcome the obstacles current 

commercial SERS substrates face in their clinical translation. 

6.1 Introduction 

Anisotropic metallic nanomaterials, including nanorods, nanowires, nanostars, nanourchins, 

and nanofoams, have gained traction in a wide variety of applications due to their unique chemical 

and physical properties.[272] These versatile materials exhibit high chemical stability and 

biocompatibility and can be readily tuned for enhanced near-infrared (NIR) optical absorption with 

large extinction cross-sections.  As such, they have been broadly applied in catalysis[273], 

electrochemistry[274], and sensing of chemical warfare agents or environmental pollutants.[275] Uses 

in biomedical platforms as photothermal agents, drug delivery carriers, and biosensing materials[276–

278]  have also been shown. 

Compared to the other anisotropic nanomaterials, applications of nanofoams have lagged, in 

part due to their synthetic and structural complexity compared to particle formulations. Nanofoams 

are porous nanomaterials typically created from copper,[279] silver,[280] or gold.[281,282] They are 

most commonly fabricated by chemical etching of biphasic mixtures of metals in the presence of 

strong acids that de-alloy the sample to leave behind a porous phase.[283] Other fabrication methods 

employ biopolymers in combination with autoclave heat treatments to form networks after 

hydrothermal synthesis[284] or use halide ions to induce aggregation of gold nanoparticles (AuNPs) 

to form 3D networks.[285] More complex methods utilize electrodeposition and sintering.[286] Each 
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of these has various limitations, either relying on dangerous precursors with high environmental 

hazards (e.g., concentrated nitric acid[283]) or featuring complex procedures resulting in nanofoams 

that are difficult to structurally tune. For example, control over pore size and tortuosity are important 

for biosensing applications, such as concurrent point-of-use filtration and sensing via optical readout, 

yet current methods are unable to easily tune these parameters.[283] 

A central application of nanofoams where precise synthetic control is desired for effective 

biosensing readout, as enabled by their NIR optical activity, is surface-enhanced Raman scattering 

(SERS). SERS is an attractive biosensing tool, as it is non-destructive, label-free, highly sensitive, 

provides a detailed chemical fingerprint of the sample, and is not influenced by water, meaning it can 

be performed in aqueous solutions such as wastewater or complex human biofluids.[287] SERS is an 

ultrasensitive extension of spontaneous Raman scattering. While inherently weak, nanoscale 

anisotropic metallic architectures, including nanofoams, can dramatically enhance the Raman signal 

via the SERS effect.[287] A SERS/Raman spectra is comprised of peaks corresponding to numerous 

vibrational and rotational modes arising from a given chemical sample, providing sensitive and specific 

information about which molecules are present.[288] This information has been broadly applied in 

biosensing to detect and diagnose diseases, such as cancer,[289] diabetes,[290] cardiovascular 

diseases,[291] and neurological diseases.[292]  

One of the main obstacles to clinical translation of SERS is the nature of commonly used 

substrates, the best of which are typically created with expensive, specialized lithography equipment 

to pattern delicate nanostructures onto microscale planar surfaces.[287] It remains a grand challenge 

to rapidly and cost-effectively synthesize highly tunable hierarchically-ordered macroscale substrates 

with nanoscale SERS active features. Current tactics to generate such materials employ large-scale 

solution-phase synthesized anisotropic nanomaterials like nanorods and nanourchins deposited onto 

surfaces to form SERS active substrates.[293] Other shapes such as nanostars[294], nanocubes,[295] 
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and nanotriangles,[296] typically made from silver, have also been used. Yet these approaches are 

difficult to reproduce, often synthetically complex (necessitating several steps of inorganic chemical 

reactions and purification), and do not result in tortuous materials (e.g., foams) that could be used for 

in-line filtration. Additionally, nanoparticle deposition on planar surfaces often results in 

heterogeneous drying patterns with large spot-to-spot enhancement variation. Quantitative analysis of 

analytes using heterogeneous substrates is challenging since one cannot readily determine whether 

signal-intensity fluctuations are a result of analyte concentration or rather distribution and quality of 

“hot spots” on the substrate. There is a need to develop solution-phase synthesized macroscale 

nanofoams comprised of plasmonic metals for homogenous SERS activity and sensing.  

Here we introduce a new gold nanofoam (AuNF) material with nanoscale features endowing 

high, homogenous SERS enhancement and with a tunable porous structure for potential in-line 

filtration and sensing applications. These AuNFs are easily synthesized via a rapid, green, one-pot, 

four-ingredient mixture at room temperature. Critically, our new synthetic scheme (Fig 1) allows for 

control over the macro-, micro-, and nano-scale features. Highly tunable microscale pore sizes are 

controlled by the starting concentration of the two starting ingredients, a gold salt, and a citrate 

reducing agent. Nanoscale roughening is achieved via a subsequent gold deposition step and 

sonication. Macroscale structure is achieved by drop-drying as-synthesized AuNFs onto a paper filter. 

The resulting roughened nanofoam (RNF) assembly has high and homogenous Raman enhancement 

factors approaching and even surpassing lithographically produced commercial substrates. 

6.2 Development and synthesis of gold nanofoams 

We developed the AuNF synthesis scheme (Figure 6.1a) using a one-pot aqueous chemical 

reaction, mixing gold (III) chloride with trisodium citrate dihydrate in a round bottom flask at room 

temperature, as adapted from a recent report.[282] The effective microscale pore size and nanofeatures 

could be tuned by varying the ratios of the two reagents (R = Ccitrate/Cgold). Typical experiments used 
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an R=12 ratio of citrate to gold. Due to the slow reduction of the gold salt by the moderate citrate 

reducing agent, several intermediate structures are formed over the course of 6 h, each of which can 

be isolated by quenching the reaction via centrifugation and subsequent washing in ultra-pure water 

(Figure 6.1b). The reaction starts as a pale-yellow color that turns clear within a few seconds of 

stirring. After ~45 min the solution turned gray and an intermediate structure resembling 

nanotadpoles is obtained.[282] After 4 h, integrated nanowire networks form as tadpoles coalesce. As 

the reaction proceeds to 6 h, the gold structures continue to grow and fuse, finally creating a three-

dimensional nanofoam structure. UV-VIS spectra were obtained at each of the intermediate time 

points to track the AuNF evolution (Figure 6.1b). As the foams continue to grow, they lose the 

 
Figure 6.8. a) Overview of hierarchically tuned nanofoam synthesis and deposition onto filter paper. b) UV-vis spectra 
and corresponding TEM images of nanofoams at time points 45 min, 4 h, 6 h, and after chemical roughening. Scale bar 
is 500 nm for all images. c) TEM images of the edges of normal foams at the 6 h timepoint (top) and roughened 
nanofoams (bottom), scale bar 100 nm. 
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nanofeatures that give rise to the characteristic absorbance peak (520 nm) and gain more broad 

features indicative of elongated rods and wires. If allowed to continue reacting (~8 h) highly porous 

black foams precipitate out of the solution, which can be isolated by decanting the liquid and drying 

it under air.  

While the emergence of microscale porosity during nanofoam evolution gives rise to useful 

and desired tortuosity, the nanoscale dimensions that enable SERS enhancement coarsen and thus are 

lost. To re-roughen the AuNFs, a solution of PVP-10 and gold (III) chloride in DMF was prepared 

and added to the AuNF seed solution at the 6 h mark (when foam networks were developed but not 

yet precipitated), and then probe ultrasonicated until the solution turned blue (~15 min). This color 

change indicates the presence of urchin-like features, forming a new material we refer to as roughened 

nanofoams (RNFs) (Figure 6.1c).  

 
Figure 6.9. SEM images of (a,b) 6 h AuNFs and (c,d) RNFs at magnifications of 20kx (left panels, scale bar is 4 μm) 
and 100kx (right panels, scale bar is 500 nm). Following chemical roughening, the emergence of high density, ~20-50 
nm nanoscale features is apparent. 
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6.3 Integration of nanofoams into filters and raster scanning for surface enhancement testing 

AuNFs or RNFs were each deposited dropwise onto filter paper to form a substrate of several 

packed layers of foams. Scanning electron microscopy (SEM) images indicate the emergence of clear 

nanoscale features on the foams (Figure 6.2), showing the effectiveness of our chemical roughening 

procedure. Further, we measured the reappearance of the AuNP absorbance peak using UV-VIS 

spectroscopy (Figure 6.1b) indicating that the smaller nanofeatures that give rise to SERS 

enhancement are once again ubiquitous throughout the substrate.   

To examine this further, we compared the SERS activity of AuNFs with RNFs using the common 

reporter molecule 4-mercaptobenzoic acid (4-MBA).[297] Filters for each substrate were generated 

and incubated with a solution of 4-MBA. We chose 4-MBA as a Raman standard because of the well-

characterized interaction of its terminal thiol group with gold surfaces, which provides a 

straightforward method to approximate the surface coverage of our substrates.[297] More than 100 

SERS spectra collected across several spots on each filter were collected, averaged, and used to 

compute the SERS enhancement factor (EF) by using the equation: 

𝐸𝐹 =  
𝐼𝑆𝐸𝑅𝑆

𝑁𝑆𝐸𝑅𝑆
×

𝑁𝑅𝑆

𝐼𝑅𝑆
 

where ISERS is the SERS signal of a chosen frequency, IRS is the spontaneous Raman signal at that same 

frequency, NSERS is the number of molecules excited in SERS and NRS is the number of molecules 

excited in spontaneous Raman (i.e., 4-MBA measured under the identical optical conditions but 

without any foams).[297]  

Figure 6.3 shows representative SERS spectra (Figure 6.3a) for the AuNFs and RNFs, where it 

is apparent that the RNFs are highly homogenous from spot to spot. Fig 3b-3e plot the SEM images 

and spectral maps at the chosen ISERS frequency of 1077 cm-1 for the AuNF and RNF substrates, as 
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well as two commercially produced substrates (Ocean Optics and Hamamatsu). EFs were calculated 

by estimating NSERS according to the percentage of SERS active surface, using the topological surface 

area by SEM analysis and the molecular surface area of 4-MBA. RNFs exhibited an impressive EF of 

2.0 × 109 compared to AuNF EF of 7.3 × 108. Hamamatsu substrates had an EF of 4.0 × 109 and 

 
Figure 6.3. Raman scanning of various SERS substrates. Each raster scan represents an 8m by 8m area with a step 
size of 400 nm. a) Representative spectra of 4-MBA for AuNFs (left) and RNFs (right).  SEM image and raster scan 
intensity at 1077cm-1 for b) AuNFs, c) chemically roughened RNFs, and commercial d) Ocean Optics and e) 

Hamamatsu SERS substrates. All scale bars are 1 m. 
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Ocean Optics substrates an EF of 5.8 × 109. Hence, the RNFs show nearly an order of magnitude 

increase compared to the AuNF and comparable EF to lithographically fabricated commercial 

substrates. Rasterized Raman scanning reveals that the RNFs exhibit high spot-to-spot homogeneity 

of SERS signal across its surface (Figure 6.3c), besting commercial gold nanoparticle (Figure 6.3d) 

and lithographically fabricated substrates (Figure 6.3e).  

6.4 Simulations of nanofoams show enhancement hotspots 

Finite-difference time-domain (FDTD) simulation was performed to further evaluate the 

SERS EF provided by the AuNFs and RNFs.[298] The topological structure of the substrates as 

obtained by the SEM imaging (Figure 6.4) is used as the model for 3D construction. Local E field 

was calculated via FDTD simulation at the wavelength of 785 nm used in this work. EF was 

approximated as (
𝐸

𝐸0
)

4
 where E is the local electric field and E0 is the input source electric field.[299] 

Since standard SEM is limited in resolving 3D morphological structure, an alternative topological 

model more closely aligned with the morphological nature of the AuNFs and RNFs was generated 

Figure 6.4. FTDT simulation of electromagnetic enhancement. Topological features extracted from SEM images of 
AuNFs (a) and RNFs (b) were used to model the local EF of the substrates. RNFs feature a homogenously increased 
EF throughout the substrate (insets represent roughly the optical focal area during scanning). Scale bar = 500 nm.  
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within a 500 nm x 500 nm simulation region, approximating the focal volume of optical measurement 

(see Supplemental Information). Here, RNFs exhibit an order of magnitude higher average 

enhancement factor compared to AuNFs, which agrees with the experimental results. 
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6.5 Supplemental Information 

 

 
Figure S6.1: Nanofoam buildup on filter paper with 100 mM melamine dropped on to their surfaces. The green 
spectrum represents 30 drops of nanofoam solution, blue spectrum is 50 drops, and purple spectrum is 75 drops of 
nanofoams. After 75 drops multiple new peaks appear (noted in red text) as compared to the sub-75 drop filters (black 
text). These new peaks are indicative of melamine reporter molecule[300], demonstrating adequate buildup of the 
nanofoams on the filters.  

 

 
Figure S6.2: a. SEM image of the model AuNF structure. Scale bar = 100 nm. b. RNF structure modeled as a 
collection of 200 randomly distributed Au spheres ranging between 15 nm and 45 nm. C. EF distribution via FDTD 
simulation. Left, alternative AuNF structure. Right, alternative RNF structure. 
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6.6 Conclusions 

In this study, we generated porous AuNFs and developed a straightforward chemical 

roughening approach to further improve the nanostructure with respect to SERS enhancement. The 

resulting RNFs provided an increased EF with sensitive chemical SERS readout while increasing the 

signal homogeneity and providing a larger number of consistent hotspots throughout the material. 

These inexpensive and easily fabricated RNFs are comparable in EF to more expensive and complex 

lithographically produced commercial SERS substrates. Our results are an exciting step in the direction 

of increasing the efficacy of SERS biosensing by generating simple, robust, and reproducible SERS 

materials that may be applied to sensing applications. 
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Chapter 7: Summary and Future Directions 

 Despite its immense value in preclinical work, clinical adoption of Raman as a diagnostic tool 

has lagged. The premise of this dissertation and a theme that permeates throughout the Carney Lab is 

the validation and development of features needed for a practical, implementable Raman platform for 

the clinic. The current clinical diagnostic standards offer information that is useful for monitoring of 

disease progression and treatment recommendations from clinicians, but they are hindered by some 

potentially unfixable issues such as high levels of specialized training, invasiveness, or the need for 

large physical space. They will remain in place as the gold standard until new techniques are validated 

and proven to overcome these limitations of long wait times for results, specialized training for 

interpretation of results, and cost of testing and equipment that often falls back on the patient. 

 We have shown that metabolites related to cancer can be identified in Raman spectra and 

further show a higher prevalence in cancer samples, validating that Raman is sensitive to the same 

metabolites found in GC-MS measurements. We further were able to provide robust evidence that 

our Raman platform can separate cancer from control in a plethora of biofluid sources. As an 

extension we provided evidence that novel data augmentation of stitching multiple biofluids together 

can increase diagnostic capabilities (on par with GC-MS) and furthermore provide a more 

comprehensive view of a patient’s state of health. The results produced in this area are a powerful step 

in validating Raman as a robust diagnostic tool as well and developing a method to simultaneously 

have a more wholistic view of the disease state of an individual. 

 This dissertation also houses an immense amount of work done applying the extension of 

SERS. It is not surprising to note that chemical information provided by SERS has a high level of 

important features and reduces some of the limitations Raman currently has that have hindered its 

clinical adoption. SERS increases the sensitivity of the platform by quickly producing and analyzing 

chemical signatures and allows for ultra-fast readout of highly robust data that can be translated into 
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diagnostic information. We were able to develop a method for reducing the inherent heterogeneity 

seen with biological samples as well as reproducibly reveal chemical signals that directly correlated to 

cancer presence. We also revealed that important diagnostic features are present in the glycocalyx of 

isolated EVs, given that enzymatic cleavage of extraluminal domains yielded a significant loss of 

diagnostic sensitivity (i.e. ability to identify true positives). This will be a critical feature to examine in 

future work. 

 Another important theme found throughout this work was optimization of EV isolation and 

measurement parameters. To this end, we uncovered differences in populations of co-isolated 

biomolecules (residing in both the same size range and density range as our EVs) that changed based 

on the isolation method used. It is our recommendation to groups working on specific dosing studies 

to employ a protocol of UC followed by SEC to largely eliminate the lipoprotein contamination. 

Moreover, we devised multiple machine-learning approaches to decipher the cancer diagnostic 

potential of the SERS platform and found that regardless of the model used, our platform was 

sensitive enough to ignore the influence of these co-isolated biomolecules. This showed that we can 

tease out cancer-specific signals that are unaffected by additional co-isolates, strengthening the case to 

bring a SERS platform into the clinic. Biofluids are complex by nature and the time required to 

produce a pure population of EVs for analysis would negate the use of the technique from true clinical 

adoption. With this study specifically we showed that we can produce a high sensitivity of over 97%, 

indicating that we do not need particularly pure samples and proving again that our platform could 

have true clinical benefit. 

 One of the biggest hurdles SERS faces stems from the materials needed to produce the effect. 

Commercial substrates are too expensive for single use. SERS-active nanomaterials can be produced 

in larger quantities but are harder to control in terms of homogeneity of the readout signal. Our work 

in developing more useful SERS materials is a step in the direction of addressing the unmet need. The 
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nanofoam material provides good surface-area for biomolecule interaction and has the nanofeatures 

to assist in high SERS enhancement. They have a robust and consistent level of hotspots present 

throughout the material that match those of the microfabricated commercially available substrates, 

and they are quick and inexpensive to produce in comparison. Additionally, they have stable shelf lives 

of over 6 months and retain their high enhancement throughout that time. The results from this 

preliminary synthesis work provides an exciting step in increasing the efficacy of SERS biosensing by 

creating simple and reproducible SERS materials that can be integrated into point-of-use applications. 

7.1 Future directions for validating Raman and SERS and a clinical biosensing tool 

 To truly take Raman into the clinic, more work will need to be done to validate the chemical 

signatures and diagnostic ability of the platform, largely by examining bigger cohorts of patients, as 

well as multi-site validation and verification studies to increase statical power and reduce variation in 

the system. Other components for adoption include miniaturization of the instrument components 

(while maintaining performance), automation of scanning and signal processing, and development of 

a robust signature library that can be used to glean useful specific diagnostic information indicative of 

mechanism of disease. If these issues can be addressed in a methodical manner, Raman could feasibly 

be used as the new standard of cancer diagnostics. It could even be expanded to encompass other 

diseases, eventually being used as a general health screening tool to assist in early-stage identification 

of many different disorders before they develop to a critical point where intervention yields sub-

optimal results.  

Automation of SERS is challenging, largely due to a lack of consensus as to the spectral 

features that broadly correlate with disease state. Projects that build on my work presented here are 

already underway in the lab, including testing for specific SERS signatures is underway in the hopes 

of identifying the particular spectral regions that indicate ideal regions for measurements. Our 

measurements now currently rely on an expert user manually probing random locations, taking 
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measurements, analyzing the data, and deeming it to be “SERS-active enough” prior to collection of 

data, a process which increases the time of operation as well as introduces bias into the measurements. 

Instead, classification of specific peaks could help ease these burdens. Once specific biological and 

chemical features are identified and correlated with each other scanning can be automated with a 

machine learning algorithm that is taught to seek out the specific features. While scanning, as the 

program detects the pre-selected peaks, it can stop and take the necessary measurements before 

continuing with the scanning. Identification of these specific peaks is no small task. To ensure 

conserved peaks are being identified, both cancerous and noncancerous samples are being tested 

across the multiple SERS substrates. Large surface area scans will be compared, and similar features 

will be identified in the hopes of recognizing some sort of useable distinct peaks as markers for “good” 

SERS locations for measurements. This work will help automate the scanning parameters, reducing 

the level of training needed for the person operating the eventual clinical platform. 

In order to push Raman in the direction as a general health screening tool, work must be done 

to develop and build up a large library of robust clinical data. Resources needed to accomplish this 

goal would be access to a large number of biofluid sources (ranging from blood to saliva and other 

fluids) from multiple different hospitals from patients in different disease states (i.e., cancer, diabetes, 

cardiovascular disease, etc.) in order to test and capture inevitable heterogeneity from samples. 

Thousands of Raman measurements will be performed on the biofluid samples to produce powerful 

spectral standards correlated to the given disease. These can then be compiled into a database and 

used as reference database to further guide artificial intelligence-based methods for automation and 

screening.  

7.2 Future directions for development of SERS materials 

 Another thrust for the continuation of the work outlined in this dissertation is the synthesis 

and development of more SERS-active materials. It is critical for clinical translation to produce reliable 
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and inexpensive materials that can be easily incorporated into the diagnostic platform. In terms of the 

nanofoams specifically, more work can be done to optimize the physical parameters and tune them to 

the sample. For instance, we found that the pore size in the foams is dependent on the ratio of gold 

to citrate. Creating foams with differing pore sizes could have strong implications for filtering 

capabilities and increase detection for specific biomolecule populations. Specifically relating to EVs, 

pores could be made to trap EVs while letting smaller particles through and blocking larger particles 

on the outside. The foams could then be interrogated by the Raman system for specific EV readout. 

This type of application would cut down significantly on isolation times and allow for fast and easy 

selection based on size. 

 Another step for a higher level of specificity could come from additional surface modifications 

of the materials. EVs (and other biomolecules of interest) have distinct surface proteins that can be 

targeted for pulldown. There are chemical techniques that allow for the functionalization of antibodies 

to gold materials, meaning the nanofoams and other products can be fitted with antibodies that target 

the specific surface proteins of interest. This could have impact in areas such as cancer diagnostics for 

HNC and OvCa that lack the early-stage biomarkers. Once cancerous Raman signals are validated, 

SERS materials can be outfitted with antibodies looking for those specific signatures and used as a 

method of targeted pulldown and subsequent biosensing for the unique cancer populations. To add 

another layer of complexity, biomolecules themselves can be tagged with a linker that contains its own 

distinct Raman tag (present in higher wavenumbers outside of the fingerprint region). This would also 

increase specificity by allowing selection of spots that have a biological signature as well as the discrete 

Raman tag peak. 

7.3 Future work for extracellular vesicles 

 The results from work in this dissertation help highlight the potential diagnostic capabilities 

of EVs from clinical biofluids. However, there are some limitations of their use that need to be further 
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studied and improved upon. The high heterogeneity of the isolated population may not be an issue in 

some settings, but there is an increased acceptance that small EVs (typically around 30 nm) are more 

important in the context of cancer progression and monitoring. To that end, more work should be 

done to develop better ways of selecting very specific populations of these vesicles. Once the size 

selection becomes more specific, meticulous testing of the distinct populations will need to be done 

to address the biological and chemical differences between them. These results will then need to be 

correlated to other information such as their ability to report on the disease state.  

 Current work is being done to tag EVs with Raman-tagged antibodies. This can help with 

probing of specific populations that are selected based on surface features. For instance, HER2, 

CA125, and EPCAM are all biomarkers that have some relevance to OvCa. Developing antibodies 

with distinct Raman tags will allow us to flag the EVs expressing these proteins. While searching for 

spots to probe, the Raman tag can be used to show which spots are important for measurements and 

which can be ignored. A feature like this could also assist in the automation of scanning, reducing the 

burden on the user to locate these specific spots. The protocol for tagging the EVs with antibodies 

needs to be optimized to ensure a high enough number are successfully labelled before analysis. This 

work has further implications in multiplexing ability since each antibody can be associated with a 

different Raman tag and therefore show robust colocalization of different surface proteins once they 

are analyzed using the Raman platform. 
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