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Abstract
The tendency to foreshorten time units as we peer further into the fu-
ture provides an explanation for hyperbolic discounting at an intergen-
erational time scale. We study implications of hyperbolic discounting
for climate change policy, when the probability of a climate-induced
catastrophe depends on the stock of greenhouse gasses. We provide
a positive analysis by characterizing the set of Markov perfect equi-
libria (MPE) of the intergenerational game amongst a succession of
policymakers. Each policymaker reflects her generation’s preferences,
including its hyperbolic discounting. For a binary action game, we
compare the MPE set to a “restricted commitment” benchmark. We
compare the associated “constant equivalent discount rates” and the
willingness to pay to control climate change with assumptions and
recommendations in the Stern Review on Climate Change.
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1 Introduction

Global warming is arguably the most pressing environmental problem we

currently face. The long time-span of climate policies and the uncertain-

ties of climate change and related damages complicate policy negotiations.

Cost-benefit evaluations are sensitive to discounting due to the long delay be-

tween paying the cost of a climate policy and reaping the benefits of reduced

damages. The Stern Review on Climate Change (Stern 2007) gave rise to

a controversy that turns largely on the choice of parameters underlying the

social discount rate (Dasgupta 2007a,b, Nordhaus 2007, Weitzman 2007). A

constant social discount rate that reflects market rates, and thus accounts

for the opportunity costs of public funds, gives little weight to the welfare of

generations in the distant future. The Stern Review’s defense of a low pure

rate of time preference rests on concern for inter-generational equity.

We construct a positive model based on preferences that are consistent

with both observed market behavior and a measure of intergenerational eq-

uity. Individual agents in this model view their world in the manner de-

scribed by Ramsey (1931, p.291) “. . . [their] picture of the world is drawn

in perspective. . . . [applied] not merely to space but also to time.” This

perspective gives rise to hyperbolic discounting at the level of the individ-

ual agent. These agents care less about future generations’ utility than

about their own, so their pure rate of time preference (at the generational

time scale) is positive and over some interval may be large. However, they

make smaller distinctions between successive generations in the distant fu-

ture, compared to successive generations in the near future, so their pure

rate of time preference falls. Arrow (1999) describes this attitude as “agent-

relative ethics”. Cropper et al. (1994) and Section 8 of Heal (2005) provide

empirical evidence that individuals discount utility in this manner. Hyper-

bolic discounting leads to a model that is flexible enough to produce short

and medium run social discount rates equal to market discount rates, and

which also gives non-negligible weight to the wellbeing of distant generations.
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The optimal program for any generation is time-inconsistent under hy-

perbolic discounting (Strotz 1956, Phelps and Pollak 1968). This time-

inconsistency is a plausible feature of the policy problem: politicians, like

other mortals, tend to procrastinate in solving difficult problems. Because

of the long time scale over which policies must be implemented, we focus on

Markov Perfect equilibria (MPE). In a MPE the current generation cannot

commit to future actions.1

In each generation, a policymaker aggregates the preferences of agents in

her generation and chooses an action that is optimal with respect to that

generation’s preferences. We model the policy problem as a sequential game

amongst a succession of these policymakers. Because we study the equi-

librium of an intergenerational game, rather than the outcome of a global

optimizer, our analysis is positive rather than normative.

There are many political-economy processes (intra-generational games)

that could explain how the social planner in a generation aggregates her

generation’s preferences. For example, the social planner may adopt the

preferences of the median voter in her generation, or use a convex combi-

nation of individuals’ preferences. The precise intra-generational game is

unimportant for our purposes and we do not model that game.

We imbed the sequential game in a transparent climate change model

that captures the risk of abrupt climate change (Clarke and Reed 1994, Tsur

and Zemel 1996, Alley et al. 2003, Stern 2007, Intergovernmental Panel on

Climate Change 2007) and the inertia in the climate system. That inertia

leads to a delayed relation between current actions and future reductions in

risk.

There are multiple MPE, because the optimal policy today depends on

1Nordhaus (1999) and Mastrandrea and Schneider (2001) imbed hyperbolic discount-
ing in integrated assessment models (numerical models that integrate climate and eco-
nomic modules) of climate change. These authors assume that the decision-maker in
the current period can choose the entire policy trajectory, thus solving by assumption the
time-inconsistency problem.
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beliefs about the policies that future regulators will choose. We obtain a

closed form characterization for a binary action model in which the feasible

actions are either to stabilize atmospheric greenhouse gas concentration or to

follow business-as-usual (BAU). The MPE set to this game can be bounded

in a simple manner. We compare it to a benchmark (called “restricted com-

mitment”) in which the policymaker’s feasible policies are further restricted

in order to cause the resulting optimal choice to be time consistent. This

outcome is not plausible but it has an obvious welfare interpretation and

therefore provides a useful comparison to the MPE set. A MPE may result

in either too much or too little stabilization, relative to the (commitment)

benchmark.

For the binary action model we calculate a “constant equivalent" (or

“observationally equivalent” Barro (1999)) discount rate, i.e. a constant

rate that, if used as the pure rate of time preference, would lead to policy

prescriptions (in an optimal control problem) identical to a particular MPE in

the sequential game. This constant-equivalent discount rate depends on the

individual agents’ time-varying pure rate of time preference, which should be

the same function for all public projects. The constant-equivalent discount

rate also depends on the specifics of the problem, in particular the longevity

of the public project. For example, decisions about climate policy affect

welfare over centuries, while a decision about a bridge affects welfare over

decades. The differing time scale of these two types of public projects means

that the constant-equivalent discount rates corresponding to them may be

very different, even though both are based on the same time-varying pure

rate of time preference.

The next section derives hyperbolic discounting as an outcome of time

perspective. Section 3 discusses damages associated with abrupt climate

change, and Section 4 explains how we model the relation between risk and

climate policy. Section 5 describes the payoff. We characterize the MPE

and a benchmark equilibrium with restricted commitment in Section 6. We
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compare the equilibria under constant and hyperbolic discounting in Section

7. Section 8 illustrates numerically the importance of risk, commitment,

and discounting, providing a different perspective on the Stern Review.

2 Time perspective and discounting

Heal (1998, 2005) proposes “logarithmic discounting”, based on the Weber-

Fechner “Law”, a statement that human response to a change in a stimulus

(e.g. vocal or visual) is inversely related to the pre-existing stimulus. Our

explanation of hyperbolic discounting is based on time perspective - the ten-

dency to foreshorten time periods as we peer further into the future.

A function s(n) captures time perspective by assigning a perceived length

to a year that begins n years from now. This function satisfies s(0) = 1,

s0(·) ≤ 0 and s(∞) ≥ 0; undistorted time corresponds to s(·) ≡ 1. The

relation between real time (t) and perceived (foreshortened) time is

S(t) =

Z t

0

s(ζ)dζ.

From the standpoint of today, the time period from now until t “looks like”

a period from now until S(t).

The constant pure rate ρ0 represents impatience as applied to the per-

ceived time S. From today’s perspective, the present value of a utility stream

U(c(S)), S ≥ 0, is Z ∞

0

U(c(S))e−ρ0SdS.

Making a change of variables from S to t (i.e. from foreshortened time to

real time), the payoff expressed in real time isZ ∞

0

exp

µ
−ρ0

Z t

0

s(ζ)dζ

¶
U(c(t))s (t) dt.

The utility discount factor is therefore

θ (t) = exp

µ
−ρ0

Z t

0

s (ζ) dζ

¶
s (t)
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and the corresponding pure rate of time preference is

ρ(t) ≡ − θ̇(t)
θ(t)

= ρ0s(t)−
ṡ(t)

s(t)
. (1)

Equation (1) shows how the pure rate of time preference originates from

impatience ρ0 and from “time perspective” s(·). A constant pure rate of

preference occurs in the following special cases: when s(t) = 1 identically for

all t (undistorted time perspective), in which case ρ(t) = ρ0; or when

s(t) =
α

ρ0 + (α− ρ0)e
αt

, α > ρ0,

in which case ρ(t) = α.

In order to focus on the time-perspective motive of discounting we set

ρ0 = 0, so s(t) = θ(t). We choose a functional form for s(t) to accommodate

the situation where the pure rate changes little during the near future (e.g.

the next 20 - 30 years) then decreases rapidly for a while and finally tapers off

towards a limiting (vanishing or positive) rate. The following specification

exhibits this pattern:

s(t) = θ(t) = βe−γt + (1− β) e−δt, δ > γ. (2)

The corresponding pure rate of discount is

ρ(t) ≡ −θ̇(t)
θ(t)

=
γβe−γt + δ(1− β)e−δt

βe−γt + (1− β)e−δt
, (3)

which decreases from ρ(0) = γβ + δ(1 − β) to ρ(∞) = γ when β ∈ (0, 1).
An increase in β lowers the discount rate, i.e., increases the concern for the

future. The constant rates ρ = δ or ρ = γ correspond to the special cases

where β = 0 or β = 1, respectively.

Other functional forms for hyperbolic discounting are consistent with the

time perspective explanation. For example, logarithmic discounting is ob-

tained by setting s(t) = 1
1+kt

, k > 0, with the resulting pure rate ρ(t) = ρ0+k
1+kt

.

Barro (1999) uses the discount factor exp− (ρ (t− τ) + φ (t− τ)), with ρ a
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constant; for (our parameter) ρ0 = 0, Barro’s formulation corresponds to

s (t− τ) = exp− (ρ (t− τ) + φ (t− τ)) .

3 Catastrophic climate change

Recent evaluations of likely outcomes of global warming are alarming (Stern

2007, Intergovernmental Panel on Climate Change 2007). The current at-

mospheric GHG concentration is estimated at 380 ppm CO2 (430 ppm of

CO2e), compared with 280 ppm CO2 at the onset of the Industrial Rev-

olution. Under BAU, the concentration could double the pre-Industrial

level by 2035 and treble this level by the end of the century. The recent

IPCC report gives 2− 4.5oC as a likely range for the increase in equilibrium
global mean surface air temperature due to doubling of atmospheric GHG

concentration with a non-negligible chance of exceeding this range (Inter-

governmental Panel on Climate Change 2007, p. 749). The Stern Review

gives 2 − 5oC and 3 − 10oC as likely ranges for equilibrium global mean

warming due to doubling and trebling of GHG concentration, respectively

(Stern 2007). Even more disturbing is the observation that the probability

of outcomes that significantly exceed the most likely estimates is far from

negligible: under doubling of GHG concentration, there is a 50% chance that

the global mean warming will exceed 5oC (close to the warming since the

last ice age) in the long term (Stern 2007, Summary and Conclusion, p. vi).

Global warming can therefore give rise to truly catastrophic events; the usual

list includes the reversal of the thermohaline circulation, a sharp rise in sea

level, the spread of lethal diseases and massive species extinction.

Each link in this chain, leading from changing GHG concentration to

the ensuing damage, involves uncertain elements (Schelling 2007). Follow-

ing Clarke and Reed (1994) and Tsur and Zemel (1996), we account for

this uncertainty by assuming that a catastrophic climate event occurs at

random time T with a distribution that depends on the GHG concentra-
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tion, Q(t). Denote the distribution and density functions of T by F (t)

and f(t), respectively. This distribution induces a hazard rate function

h(Q(t)) = −d[ln(1− F (t)]/dt, the conditional probability that the catastro-

phe will occur during [t, t+dt] given that it has not occurred by time t when

atmospheric GHG concentration isQ(t). When h(·) is an increasing function,
there is one-to-one relation between the hazard and the atmospheric GHG

concentration and we can use the hazard as the state variable.

A common modeling practice uses post-event scenarios that are easy to

understand, e.g., a reduction in GDP or in the growth rate. These scenarios

provide a basis for evaluating a policy that spends a certain amount today

to decrease the expected damage. In our model, the event reduces income

by a constant known share, ∆, from the occurrence date onward. Most

climate change models assume a continuous relation between GHG stocks

and damages. In our setting, which includes only abrupt changes, there is a

continuous relation between GHG stocks and expected damages.

4 Risk and climate policy

A climate policy that begins at time t consists of an abatement process

w(t + τ) ∈ [0, 1], τ ≥ 0; w(·) = 0 corresponds to no abatement (BAU),

and w(·) = 1 corresponds to abatement that stabilizes the hazard (the GHG
concentration). We let X measure the cost of stabilization as a fraction of

the income at risk, ∆. An abatement effort w costs wX∆.

The abatement process {w(t+ τ), τ ≥ 0} induces both the cost process
{w(t+ τ)X∆, τ ≥ 0} and the hazard process

ḣ(t+ τ) = μ(a− h(t+ τ))(1− w(t+ τ)), h(t) given. (4)

This specification is a simplified representation of the following situation.

The actions that we take at a point in time (e.g. abatement, levels of con-

sumption) determine greenhouse gas (GHG) emissions at that time. These

flows, and existing GHG stocks, determine the evolution of the stock of GHG.
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The risk of a climate-related catastrophe, given by h, is a monotonic function

of the stock of GHG. We can invert this function to write the time derivative

of h as a function of h and w, as in equation (4).

In equation (4), a represents the maximal hazard rate that h(·) approaches
under BAU (as τ increases) and μ measures the rate of convergence to a.

The hazard grows most quickly when h is small. This feature means that

abatement is more cost-effective (in terms of expected damage reduction per

dollar spent on abatement) when h is small. For hazards close to the steady

state a, there is little benefit in incurring the abatement costs in order to

prevent the hazard from growing.2

The hazard evolution specification implies that the level of the hazard, not

simply the occurrence of the catastrophe, is irreversible. This assumption

reflects the considerable inertia in the climate system, and it simplifies the

equilibria characterization by preventing non-monotonic hazard processes.

The simplicity of equation (4) is important. There are conjectures on the

level of risk for different types of events (such as a reversal of the thermoha-

line circuit or a rapid increase in sea level) corresponding to different policy

trajectories (e.g. BAU or specific abatement trajectories). We can use these

kinds of conjectures to suggest reasonable magnitudes for the parameters of

equation (4) (the initial value of h, and the constants a and μ). There is

little empirical basis for calibrating a more complicated model.

5 The payoff

The payoff of the generation alive at time t, “generation t” is the expec-

tation of the present discounted value of current and future generations’

utility, using the discount factor θ (t). Consumption grows at an exoge-

nous constant rate g and the utility of consumption is iso-elastic, with the

2The results in a model in which ḣ is non-monotonic in h would change in fairly obvious
ways. For example, if ḣ is small when h is close to both 0 and the steady state level,
stabilization would not be worthwhile either for very small or for very large levels of h.
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constant elasticity η.3 With initial (time 0) consumption normalized to 1,

the flow of consumption from time t onward prior to the event occurrence

is eg(t+τ)(1 − ∆Xw(t + τ)). After the occurrence date there is no role for

abatement, and consumption equals eg(t+τ)(1−∆). The corresponding pre-

and post-event utility flows are, respectively,

(eg(t+τ)(1−∆Xw(t+ τ)))1−η − 1
1− η

and
(eg(t+τ)(1−∆))1−η − 1

1− η
.

Conditional on the event occurring T periods from now, i.e., at time t+T ,

the present (time t) value under policy w(t+ τ) isR T
0
θ(τ) (e

g(t+τ)(1−∆Xw(t+τ)))1−η−1
1−η dτ +

R∞
T

θ(τ) (e
g(t+τ)(1−∆))1−η−1

1−η dτ =R T
0
θ(τ)e−g(η−1)(t+τ) (1−∆Xw(t+τ))1−η−(1−∆)1−η

1−η dτ + constant

where

constant =
Z ∞

0

θ(τ)
(eg(t+τ)(1−∆))1−η − 1

1− η
dτ. (5)

Ignoring the constant term, the present value at time t can be written as

e−g(η−1)t
Z T

0

θ(τ)e−g(η−1)τU(w(t+ τ))dτ (6)

where

U(w) ≡ (1−∆Xw)1−η − (1−∆)1−η

1− η
. (7)

Let

y(t, τ) =

Z t+τ

t

h(ζ)dζ =

Z τ

0

h(t+ ζ)dζ, (8)

and note that Pr{T > t} = 1− Pr{T ≤ t} = e−y(0,t). Taking expectations

of (6), conditional on T > t, gives the expected payoff at time t:

e−g(η−1)t
Z ∞

0

θ(τ)e−g(η−1)τ−y(t,τ)U(w(t+ τ))dτ.

3This model does not contain capital, so it does not distinguish between income and
consumption. The model is consistent with a neoclassical growth model in which capital
and income grow at a constant rate, and the savings rate is constant. It is also consistent
with a model in which all expenditures for climate control are deducted from consumption,
so that climate policy does not affect aggregate savings or the trajectory of income.
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Multiplying by eg(η−1)t (to re-scale time-t BAU consumption to unity) gives

the payoff to generation t, conditional on h(t) and the sequence of current

and future policies:

J(h(t), w(·)) =
Z ∞

0

θ(τ)e−g(η−1)τ−y(t,τ)U(w(t+ τ))dτ. (9)

In view of equations (2) and (9), we define the “effective discount factor”,

a function that incorporates both the pure rate of time preference and the

effect of η and g:

θ̃(τ) ≡ θ(τ)eg(1−η)τ = βe−γ̃τ + (1− β)e−δ̃τ , (10)

where

γ̃ ≡ γ + g (η − 1) and δ̃ ≡ δ + g (η − 1) . (11)

The “effective discount rate” is the rate of decrease of θ̃(τ).

6 Equilibria

Different assumptions about commitment ability and about the set of fea-

sible policies lead to different equilibrium sets. If the decisionmaker at

time 0 can commit to an arbitrary function w(t) (conditional on the event

not having occurred before t), the solution is obtained by solving a stan-

dard non-stationary optimal control problem. This “full commitment” solu-

tion is time-inconsistent (unless it happens to involve the boundary solution

w(t) ≡ 0 or w(t) ≡ 1, i.e. never begin stabilization, or begin full stabilization
immediately). Since “full commitment” over a long period of time is im-

plausible, we do not consider it further and focus instead on Markov Perfect

Equilibria (MPE) to a sequential game. The agents in this game consist of a

sequence of policymakers. We study the limiting game where each agent acts

for an arbitrarily short period of time, leading to a continuous time model

(Karp 2007).
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In a MPE, the current regulator cannot commit future generations to a

specific course of action but she can influence successors’ actions by affecting

the world they inherit, i.e. by changing the payoff-relevant state variable.

The MPE recognizes the difference between influencing future policies and

choosing those policies. In a MPE agents condition their actions on (only)

the payoff-relevant state variable, and they understand that their successors

do likewise. Therefore, an agent’s beliefs about future policies depend on her

beliefs about the future trajectory of the state variable. An agent’s action

has an immediate effect on her current flow payoff and it also affects the

continuation value via its influence on the state variable. We provide the

necessary condition for a MPE for the general case and then analyze a binary

action specialization. In order to provide a benchmark for the set of MPE

in this binary case, we then consider an equilibrium involving “restricted

commitment”.

6.1 MPE in the general model

The state variable is the vector z ≡ (h, y). A policy function maps the

state z into the control w. The decision-maker at time t chooses the current

policy w(t) but not future policies. She understands how the current choice

affects the evolution of the state variable and forms beliefs about how future

regulators’ decisions depend on the future level of the state variable. Each

regulator chooses the current decision and wants to maximize the present

discounted value of the stream of future payoffs, given by expression (9). A

MPE policy function χ̂ (z) satisfies the Nash property: w(t) = χ̂ (z(t)) is

the optimal policy for the regulator at time t given the state z(t) and given

the belief that regulators at τ > t will choose their actions according to

w(τ) = χ̂ (z(τ)).

The state variable h is standard: at a future time t+ τ ,τ > 0, the value

of h(t+ τ) depends on the current hazard h(t) and the intervening decisions

w(t+ξ), 0 ≤ ξ ≤ τ . The probability of survival until time t+ τ , conditional
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on T > t, is Pr{T > t+ τ |T > t} = e−y(t,τ), which also depends on h(t) and

the intervening decisions. However, if the regulator at time t is in a position

to make a decision, the event has not yet occurred: y(t, t) = 0. Therefore,

a stationary equilibrium depends only on the current hazard, h(t). Condi-

tional on survival at time t, h(t) is the only payoff-relevant state variable.

We restrict attention to stationary pure strategies.

Let q(h(t+ τ), w(t+ τ)) denote the right-hand side of (4) and let h and

w stand for h(t) and w(t), respectively. The following Lemma gives the

necessary condition for a MPE; proofs are in the appendix:

Lemma 1. Consider the game in which the payoff at time t equals expression
(9); the regulator at time t chooses w(t) ∈ Ω ⊂ R, taking as given her

successors’ control rule χ̂(z); and the state variables h and y obey equations

(4) and (8). Let V (h) equal the value of expression (9) in a MPE (the

value function). A MPE control rule χ(h) ≡ χ̂(z) satisfies the (generalized)

dynamic programming equation (DPE):

K(h) + (γ̃ + h)V (h) = max
w∈Ω

{U(w) + q(h,w)V 0(h)} , (12)

with the “side condition”

K(h) ≡ (δ − γ) (1− β)

Z ∞

0

e−(δ̃τ+y(t,τ))U (χ(h(t+ τ))) dτ. (13)

Remark 1. The control rule that maximizes the right-hand side of equation
(12) depends on the payoff relevant state h, but not on y. This control rule

also depends on the current regulator’s beliefs about her successors’ policies.

Those policies affect the shadow value of the hazard, V 0(h).

Remark 2. The DPE is “generalized” in the sense that it collapses to the
standard model with constant discounting in the two limiting cases β = 1 and

β = 0. The former case is obvious from equation (13). To demonstrate the

latter case, note that for β = 0,

K(h) = (δ − γ)

Z ∞

0

e−(δ̃τ+y(t,τ))U(χ(h(t+ τ)))dτ = (δ − γ)V (h).
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Substituting this equation into (12) produces the DPE corresponding to the

constant discount rate δ̃.

6.2 A binary action specialization

We focus on the situation where w(t) is limited to either full stabilization

(w = 1) or BAU (w = 0). There are in general multiple MPE because

the optimal decision for the current regulator depends on her beliefs about

the actions of subsequent regulators. The equilibrium beliefs of the current

regulator (i.e. those that turn out to be correct) depend on her beliefs about

the beliefs (and thus the actions) of successors. There is an infinite sequence

of these higher order beliefs, leading to generic multiplicity of equilibria.

However, the equilibrium set has a simple characterization.

We now develop some notation needed for this characterization. Recall

that∆ is the fractional reduction in income due to the climate event, andX∆

is the fractional reduction income due to complete stabilization (w = 1); X

is a measure of the income cost of stabilization. It is convenient to describe

the equilibrium set using the “utility cost of stabilization”, denoted x. To

derive the relation between x and X, we use equation (7) to define

U(1) =
(1−∆X)1−η − (1−∆)1−η

1− η
and U(0) =

1− (1−∆)1−η

1− η
. (14)

Recall that U(0) is (proportional to) the difference in the flow of utility

under BAU before and after the climate event, so U(0) is a measure of the

utility at risk. The utility cost of stabilization, x, equals the fraction of

utility at risk sacrificed to achieve full stabilization:

x ≡ 1− U(1)

U(0)
= 1− (1−∆X)1−η − (1−∆)1−η

1− (1−∆)1−η
. (15)

The relation between the income cost of stabilization, X, and the utility cost

of stabilization, x, is

X =
1

∆

h
1−

©
1− x

£
1− (1−∆)1−η

¤ª 1
1−η
i
. (16)
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Figure 1: Graph of X(x) for ∆ = 0.2 and η = 4 (solid) and η = 1 (dotted).

Figure 1 shows the graphs of X(x) for η = 1 and η = 4 when ∆ = 0.2.

Characterization of the equilibrium set uses two functions of the state

variable, h, and model parameters; we denote these functions as xU(h) and

xL(h). These functions divide the (h, x) plane into three regions, which

have the following properties: (i) if x ≤ xL(h) (so that the utility cost

of stabilization is small) the unique MPE is perpetual stabilization; (ii) if

x ≥ xU (h) (so that the utility cost of stabilization is large) the unique MPE

is perpetual BAU; and (iii) if xL(h) < x < xU(h) there are MPE with either

perpetual stabilization or perpetual BAU. For a subset of
¡
xL(h), xU(h)

¢
there are additional MPE that involve delayed stabilization, i.e., a BAU

policy (w(t) = 0) for a while, followed by a perpetual stabilization.

Once we obtain the critical “utility cost of stabilization” values (xL(h)

and xU(h)), we can use equation (16) to obtain the critical income cost

of stabilization values, denoted XL(h) and XU(h). The latter values are

important for our simulations in section 8.

This model shows the potentially offsetting effects of an increase in the

elasticity of marginal utility, η. This parameter affects the equilibrium by

altering the “effective discount rate” ρ(t) + g(η − 1) and it also enters the
function X(x) defined in equation (16). For g > 0, an increase in η increases
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the “effective discount rate” ρ(t) + g(η − 1), which in turn decreases the
critical values xU(h) , xL (h); that is, the change makes the decision-maker

less willing to sacrifice current utility for future reduction in risk. However,

the larger value of η makes the decision-maker more risk averse; it shifts up

the graph of X(x), as shown in Figure 1, so the smaller value of the critical

x (resulting from the increase in η) might correspond to a larger value of

the critical X. Thus, in general the effect of η on critical values of X

is ambiguous. For our calibration, an increase in η reduces these critical

values.

The following functions are used in the analysis below; superscripts B

and S denote functions under perpetual BAU or stabilization, respectively.

Under BAU, using equation (4), the probability of disaster by time t is

FB(t) = 1− exp
µ
−atμ+ (a− h0) (1− e−μt)

μ

¶
. (17)

Substituting FB(t) into equation (9) gives the expected payoff under perpet-

ual BAU:

V B(h0) ≡ U(0)

Z ∞

0

¡
1− FB(t)

¢
θ̃(t)dt = U(0)ν(h0), (18)

where

ν (h) ≡
Z ∞

0

exp

µ
−aμt+ (a− h) (1− e−μt)

μ

¶
θ̃(t)dt. (19)

Under perpetual stabilization, the probability of disaster by time t is

1− e−h0t and the expected payoff is

V S(h0) ≡ U(1)

Z ∞

0

e−h0tθ̃(t)dt = U (1) ξ (h0) (20)

where

ξ (h) ≡
Z ∞

0

e−htθ̃(t)dt =
(1− β) (γ + g(η − 1)) + h+ β(δ + g(η − 1))

(δ + g(η − 1) + h) (h+ γ + g(η − 1)) .

(21)
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6.2.1 Markov Perfect Equilibria

The control space is w(t) ∈ {0, 1}, the flow payoffs are given in equation

(14) and the hazard evolves according to equation (4). Let χ (h) be a MPE

decision rule. Using the equilibrium condition (12) and the convention that

in the event of a tie the regulator chooses stabilization, in the binary setting

χ satisfies

χ(h) =

(
1 if U(1) ≥ U(0) + μ(a− h)V 0(h)

0 if U(1) < U(0) + μ(a− h)V 0(h)
. (22)

A particular control rule corresponds to a division of the state space [0, a]

into a “stabilization region” (where χ (h) = 1) and a “BAU region”(where

χ (h) = 0).

For perpetual stabilization to be a MPE, the current regulator must want

to stabilize when she believes that all future regulators will stabilize. Under

this belief, V (h) = V S(h) and V 0(h) = V S0(h) = U(1)ξ0(h), where V S(h)

and ξ(h) are defined in equations (20) and (21), respectively. Thus, using

the equilibrium rule (22), U(1) ≥ U(0) + μ(a − h)U(1)ξ0(h) must hold for

stabilization to be a MPE. Defining

π(h) ≡ 1

1− μ(a− h)ξ0(h)
, (23)

the condition under which perpetual stabilization is a MPE can be stated as

U(1)

U(0)
≥ π(h).

Similarly, for perpetual BAU to be a MPE, it must be the case that

U(1) < U(0) + μ(a− h)V B0(h) = U(0) + μ(a− h)U(0)ν 0(h). Defining

σ(h) ≡ 1 + μ(a− h)ν 0(h), (24)

with ν(h) given by equation (19), the condition under which perpetual BAU

is a MPE can be written as
U(1)

U(0)
< σ(h).

We summarize properties of π(h) and σ(h) in
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Lemma 2. The functions π (h) and σ (h) are increasing over (0, a) with

π (a) = σ (a) = 1, and σ (h) is concave.

The following proposition provides a condition for existence of MPE and

characterizes the class of MPE in which regulators never switch from one

type of policy to another:

Proposition 1. There exists a pure strategy stationary MPE for all 0 < x < 1

and all initial conditions h = h0 ∈ (0, a) if and only if

π (h) < σ (h) , h ∈ (0, a). (25)

Under inequality (25), there exists a MPE with perpetual stabilization (w ≡ 1)
if and only if at the initial hazard h the cost of stabilization satisfies

x < xU (h) ≡ 1− π (h) ; (26)

there exists a MPE with perpetual BAU (w ≡ 0) if and only if at the initial
hazard h the cost of stabilization satisfies

x > xL (h) ≡ 1− σ(h). (27)

Figure 2 illustrates Proposition 1. The figure shows 1− σ(h) and 1− π(h)

with π(h) < σ(h) for h ∈ (0, a). The curves divide the rectangle {0 ≤ h ≤ a, 0 ≤ x ≤ 1}
into three regions. For points above the curve 1− σ (h) there is a MPE tra-

jectory with perpetual BAU, and for points beneath the curve 1−π (h) there
is a MPE trajectory with perpetual stabilization. For points between the

curves, both perpetual stabilization and perpetual BAU are MPE.

Because the region between these two curves has positive measure (when

inequality (25) is satisfied), the existence of multiple equilibria is generic in

this model.4 The multiplicity of equilibria stems from the fact that the

4Laibson (1994) shows that there are multiple equilibria to this kind of sequential game
under non-Markov policies. Krusell and Smith (2003) show the existence of a continuum of
MPE when agents use step functions. Elements of this equilibrium set involves an infinite
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Figure 2: There is a MPE with perpetual stabilization for parameters below
the graph of 1 − π. There is a MPE with perpetual BAU for parameters
above the graph of 1− σ. Both types of MPE exist for parameters between
the graphs.

optimal action today depends on the shadow value V 0(h), which depends on

future actions that the current regulator does not choose. If future regulators

will stabilize, the shadow cost of the state (−V 0(h)) is high, relative to the

shadow cost when future regulators follow BAU. The current regulator has

more incentive to stabilize if she believes that future regulators will also

stabilize. Actions are “strategic complements”, a circumstance common

to coordination games. Our problem resembles the dynamic coordination

game familiar from the “history versus expectations” literature (Matsuyama

1991, Krugman 1991). In those coordination games, the optimal decision

for (non-atomic) agents in the current period depends on actions that will

sequence of steps, and the step sizes are endogenous. Our setting contains a single,
exogenously determined step size. Karp (2005, 2007) shows the existence of multiple
candidates solving the necessary conditions for MPE, due to an indeterminacy in the
steady state conditions. In our setting, the multiplicity arises because of a non-convexity
in the game. Section 7 elaborates on this observation, showing the resemblance between
the problem under constant discounting and the familiar “Skiba problem” in optimal
control.
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be taken by agents in the future. The non-convexity in the payoffs in these

problems typically leads to multiple rational expectations equilibria for a set

of initial conditions of the state variable. These equilibria are in general not

Pareto efficient. We show that inter-generational coordination problems in

our game can lead to either too little or too much stabilization, relative to a

benchmark under restricted commitment.

Proposition 1 characterizes only equilibrium trajectories in which the ac-

tion never changes. It is clear that a switch from stabilization to BAU is

impossible, since the hazard remains constant under stabilization and the

decisionmaker uses a pure strategy. However, the proposition does not rule

out the possibility of a MPE with delayed stabilization, i.e. an equilibrium

beginning with BAU and switching to stabilization once the hazard reaches

a threshold. The next proposition shows that such equilibria exist.5 We

use the following definition

Θ(h) ≡
μ(a− h)

³
β

γ̃+h
+ 1−β

δ̃+h

´
h+ βγ̃ + δ̃(1− β) + μ(a− h)

³
β

γ̃+h
+ 1−β

δ̃+h

´ . (28)

Proposition 2. Suppose that Condition (25) is satisfied. (i) For x > 1− π(h)

the unique (pure strategy) MPE is perpetual BAU. (ii) There are no equilib-

ria with “delayed BAU”. (iii) A necessary and sufficient condition for the

existence of equilibria with delayed stabilization is

Θ(h) < x < 1− π(h). (29)

(iv) For all parameters satisfying 0 ≤ h ≤ a, 0 < β < 1, δ 6= γ, and μ > 0,

a MPE with delayed stabilization exists for some x ∈ (0, 1).

Recall that x equals the utility cost of stabilizing the hazard (or the at-

mospheric GHG concentration) as a fraction of the value-at-risk U(0). Rela-

tion (29) defines the lower and upper bounds of x for a delayed stabilization
5>From the proof of the proposition it is evident that for initial conditions such that

delayed stabilization equilibria exist, there are a continuum of such equilibria, indexed by
the threshold at which the decisionmaker begins to stabilize.
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MPE to exist. We verify in the appendix that

1− π(h)−Θ(h) =
(δ̃ − γ̃)2(2h+ γ̃ + δ̃)

(h+ γ̃)2(h+ δ̃)2
β(1− β). (30)

Thus, these bounds form a non-empty interval when 0 < β < 1 and γ 6= δ,

i.e., when the discount rate is non-constant.

6.2.2 Restricted commitment: a benchmark

We saw in the previous section that a class of MPE decision rules leads

to either perpetual BAU or perpetual stabilization. Here we consider a

“restricted commitment” benchmark in which the decision-maker at time 0

behaves as if she could commit future generations to either perpetual stabi-

lization or perpetual BAU. In contrast, “full commitment” permits switches

between BAU and stabilization — or vice-versa.

Restricted commitment is not a plausible equilibrium concept, but it pro-

vides a useful benchmark for welfare comparisons.6 The restricted com-

mitment outcome requires solving a standard optimization problem, leading

(generically) to a unique solution. Suppose, for example, we find that for

some initial value of h all MPE involve BAU, but the restricted commitment

involves perpetual stabilization. In that case, there is an obvious sense in

which there is “too little” stabilization in the MPE. Alternatively, if we find

that there exist MPE involving perpetual stabilization, and the restricted

commitment outcome involves perpetual BAU, then there is a sense in which

there can be “too much” stabilization in a MPE. We show that both of these

outcomes are possible.
6Since we are interested in a situation that unfolds over many decades or centuries, it

is not reasonable for the current regulator to act as if she can commit future generations
to follow the plan that she announces. The problem with such a policy as an equilibrium
concept (in our setting) is not that it requires commitments that subsequent generations
would want to break. When policies are time consistent, future generations are happy
to abide by the choice made by a previous generation, provided that they can make the
same choice for their successors. Instead, commitment is an unsatisfactory equilibrium
concept because it is based on an assumption that is patently false, namely that the current
generation can commit future generations to a specific course of action.
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Under restricted commitment there exists a critical function xC(h) such

that initial decision-maker chooses perpetual stabilization if x ≤ xC(h) and

she chooses perpetual BAU if x > xC(h). To determine the critical function,

we note that the regulator chooses to stabilize if and only if V S ≥ V B. This

inequality is equivalent to U(1)
U(0)
≥ λ(h0), where

λ (h) ≡ ν (h)

ξ (h)
. (31)

Noting that U(1)
U(0)

= 1 − x, the condition V S ≥ V B holds if and only if

x ≤ xC(h0), where

xC(h) ≡ 1− λ(h). (32)

Thus, when future regulators will follow her policy in perpetuity, the cur-

rent regulator wants to stabilize if and only if, at the current hazard h, the

utility cost of stabilization does not exceed xC(h) = 1− λ(h). If x > xC(h),

she chooses BAU, in which case the hazard h increases. A restricted com-

mitment policy that involves stabilization is obviously time consistent, since

under stabilization the hazard does not change. The restricted commitment

policy that involves BAU is also time consistent under fairly general cir-

cumstances, because stabilization is more valuable when the hazard is lower.

(Obviously, there is no point in incurring a cost to stabilize when the hazard

is near its steady state.) If the regulator (under restricted commitment)

wants to follow BAU for a given initial value of h, all of her successors would

make the same choice at the larger values of h that result from earlier BAU.

We summarize this discussion in7

Proposition 3. Given the initial hazard h ∈ [0, a], the optimal restricted-
commitment policy is to stabilize if and only if x ≤ xC(h). This policy is

7The proof of this proposition shows that the shadow value of h is negative and de-
creasing (in absolute value) under either policy, and λ (h) ≤ 1, with equality holding only
when h = a. Since U(1) < U(0), the regulator does not want to stabilize for h sufficiently
close to the steady state value a.
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time consistent for all h ∈ [0, a] and x ∈ [0, 1] if and only if λ0(h) ≥ 0. A
sufficient condition for this inequality is μ ≥ a+ δ + g(η − 1).

The last part of the proposition provides a condition under which the

policy is time consistent. When this condition is satisfied, a larger value

of h decreases the range of x for which the policy-maker wants to stabilize.

Here, stabilization is “more likely” at lower values of h, as noted above. In

exploring numerical examples, we found no parameter values that violate

the time-consistency condition λ0(h) ≥ 0, suggesting that time consistency
is “typical” for this model. As noted above, the optimal plan under full

commitment is, in general, time inconsistent. By reducing the set of pos-

sible plans that a regulator can announce, we also reduce the temptation

for subsequent regulators to deviate from the plan announced by the initial

regulator.

7 Constant discounting

Even with constant discounting, the binary action model is not entirely stan-

dard. Understanding this model is useful for interpreting numerical results

in the next section, and more generally for understanding the MPE when β

is near one of its boundaries.

Since our empirical application involves a small value of β, we consider

the case where β = 0. (Analysis of the case β = 1 requires only replacing

δ̃ with γ̃.) The constant discount rate is δ̃, so the distant future is “heav-

ily discounted”. Following the standard procedure to obtain the DPE, or

invoking Remark 2, we have the following DPE:³
δ̃ + h

´
V (h) = max

w∈{0,1}
{U(w) + μ (a− h) (1− w)V 0(h)} . (33)

Let π0 (h) and σ0 (h) denote the functions π (h) and σ (h) (defined in

equations (23) and (24)) evaluated at β = 0. The following proposition

describes the optimal solution to the control problem with β = 0.
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Proposition 4. Under constant discounting (with β = 0), it is optimal to

stabilize in perpetuity when x ≤ 1−σ0 (h) and it is optimal to follow BAU in
perpetuity when x > 1−σ0 (h). The function σ0 (h) determines the boundary
between the BAU and stabilization regions and π0 (h) is irrelevant.

The proposition has two implications. First, there can be MPE involving

“excessive stabilization”. The functions π (h) and σ (h) are continuous in β,

so π0 (h) and σ0 (h) are the limits of these functions as β → 0. Consider a

value of β that is positive but close to 0 and values of h and x that satisfy

1 − π (h) > x > 1 − σ (h). (Such values exist because π (h) and σ (h) are

continuous in β, and there exists h, x that satisfy 1−π0 (h) > x > 1−σ0 (h),
as shown in the proof of Proposition 4.) For this combination of parameters

and state variable, there are two MPE, involving either perpetual stabiliza-

tion or perpetual BAU (by Proposition 1), but the payoff under perpetual

BAU is higher than under stabilization (by continuity and Proposition 4).

That is, there are MPE that involve excessive stabilization relative to the

benchmark under restricted commitment.

The second implication is that λ(h) = σ(h) under constant discounting.

This equality means that the optimal solution when the regulator is restricted

to making a commitment (in perpetuity) at time 0, is equal to the solution

when the regulator has the opportunity to switch between BAU and stabi-

lization. For abrupt events, the regulator is tempted to delay stabilization

(i.e. the “restriction” in restricted commitment binds) only under hyperbolic

discounting. The ability to switch between policies is of no value for abrupt

events under constant discounting. The economic explanation for this result

is simply that BAU is the optimal policy only if the hazard is sufficiently

large; under BAU the hazard increases, whereas it remains constant under

stabilization.

23



8 Policy bounds and constant equivalent rates

When η 6= 1 and g 6= 0 this model has one degree of freedom: for given β, the
“effective discount rate” depends on γ̃ and δ̃, determined by two equations

in three unknowns, δ, γ, and g. These parameters, unlike η, do not enter

the function U , defined in equation (7). We normalize by setting γ = 0.8

This normalization implies that the long run pure rate of time preference is

0, i.e. it means that we are unwilling to transfer utility between two agents

living in the infinitely distant future at a rate other than one-to-one. It also

implies that the long run effective discount rate is g (η − 1).
We discuss the calibration of the model and then present the three critical

values of X that characterize the MPE and the restricted commitment equi-

librium. We also present, for each critical X value, the constant equivalent

(“observationally equivalent”) pure rate of time preference; each of these is

the rate that would yield the same policy bound if ρ were constant. We

obtain an exact constant equivalent discount rate (one for each critical level

of X) because (for a given initial value of h) each bound is a single number.9

8When η = 1 the equilibrium is always independent of g. For η = 1 or g = 0, γ and δ
equal γ̃ and δ̃. In this case, setting γ = 0 is an assumption, not a normalization.
When g > 0, the constant defined in equation (5) is finite if and only if η > 1. In

contrast, the maximand in expression (9) is defined even for some values of η < 1, because
the hazard has an effect similar to discounting. For η ≤ 1 we can adopt the “overtaking
criterion” to evaluate welfare.

9The exact equivalence occurs if the decision rules under both hyperbolic and constant
discounting can be characterized by a single parameter. Barro (1999) also obtains a
constant equivalent discount rate, because the single parameter in his logarithmic model
is the slope of the decision rule. When the decision rules cannot be described by a single
parameter, it is possible only to obtain an approximate constant equivalent discount rate.
For example, in the linear-quadratic model there exists a linear equilibrium control rule
under both constant and hyperbolic discounting. Because this control rule involves two
parameters — the slope and the intercept — it is in general not possible to find an exact
constant equivalent discount rate for the hyperbolic model (Karp 2005).
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8.1 Calibration

We choose the hazard parameters h(0), μ and a in order to satisfy: (i) under

stabilization the probability of occurrence within a century is 0.5%; (ii) in

the BAU steady state, where h = a, the probability of occurrence within a

century is 50%; and (iii) under BAU it takes 120 years to travel half way

between the initial and the steady state hazard levels. These assumptions

imply a = 0.00693147, h0 = 0.000100503 and μ = 0.00544875. (The unit

of time is one year.) With these values, the probability of occurrence within

a century is 15.3% under BAU, compared to 0.5% under stabilization.

In order to be able to compare the damage estimates under our calibra-

tion with those used by other models, we define PB (t) ≡ Pr{T ≤ t|BAU}
as the probability that the catastrophe occurs by time t under BAU, and

PS (t) ≡ Pr{T ≤ t|Stabilization} as the corresponding probability under
stabilization. The future (time t) expected increase in damages from fol-

lowing BAU rather than stabilization, as a percentage of future income,

is D (t) =
¡
PB (t)− P S (t)

¢
100∆%. For all calibrations where h(0) > 0,

limt→∞D(t) = 0, because both probabilities converge to 1.10 Figure 3 shows

the graphs of D(t) over the next millennium for ∆ = 0.05, 0.1 and 0.2. The

corresponding damages after 100 and 200 years areD(100) = {0.72, 1.43, 2.88}
and D(200) = {2.03, 4.01, 8.11}.
The Stern Review provides a range of damage estimates. Their second-

lowest damage scenario (“market impacts + risk of catastrophe”) assumes

that climate-related damages equal about 1% in one century, and 5% after

two centuries. Our calibration with ∆ = 0.05 implies significantly lower

damages over the next two centuries. The Stern Review also describes

scenarios in which damages might be as high as 15-20% of income, a level

considerably above our scenario with ∆ = 0.2 (for the next two centuries).

The Stern Review assumes that climate-related damages are zero after

10Using equation (4), PB(t) = 1− e−at+(a−h(0))(1−e
−μt)/μ and PS(t) = 1− e−h(0)t. For

h0 = 0, D(t) = PB (t) 100∆, which converges to 100∆%.
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Figure 3: Percentage expected increased loss of income under BAU: ∆ =
0.05 = dashed; ∆ = 0.1 = solid;∆ = 0.2 = dotted.

200 years, whereas in our calibration damages continue to rise for 800 years

and then decrease asymptotically to 0. The maximum level of D(t) equals

91∆%, i.e. 4.5%, 9.1% and 18.2% for the three values of ∆. In view of the

different profiles of damages in the Stern Review and in our calibration, exact

matching is not possible. However, our case ∆ = 0.2 approximates one of

the high (but not the highest) Stern damage scenarios; the value ∆ = 0.1

approximates the Stern “market impacts + risk of catastrophe” scenario, and

the value ∆ = 0.05 corresponds to a much lower damage scenario.

We set γ = 0, so that the long-run pure rate of time preference is 0, and

use equation (3) to choose β and δ in order to satisfy

ρ (0) = 0.03 and ρ(30) = 0.01.

This parameterization implies that the pure rate of time preference begins

at 3% and falls to 1% by 30 years, eventually declining to 0. Our value of

ρ (30) is ten times greater than the Stern Review’s constant pure rate of time

preference. An ethical concern for generations in the distant future requires

a small pure rate of time preference only in the case of a constant pure rate

of time preference. A declining pure rate of time preference is consistent with
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both ethical considerations and a large pure rate of time preference in the

near and medium term. This flexibility means that the model is compatible

with both a reasonable ethical view and also with market discount rates.

8.2 Results

For a variety of parametric and equilibrium assumptions, we calculated upper

and lower bounds onX — the fraction of income-at-risk that society spends to

stabilize risk. These values were insensitive to choices of ∆ over the interval

(0.1, 0.2), so the tables below report only results for ∆ = 0.2. We also report

the corresponding constant equivalent pure rate of time preference (ρ). We

discuss results for g ∈ [1%, 2%] and η ∈ [1.1, 4]. An appendix, available

on request, shows that our results are sensitive to parameter changes in the

neighborhood of η = 1, and also to values of our calibration parameter ρ (30).

Tables 1 — 3 show the (X) policy bounds and constant-equivalent ρ values

for the 6 cases corresponding to η ∈ {1.1, 2, 4} and g ∈ {0.01, 0.02}. In
each case the constant equivalent social discount rate (not shown) equals

the constant equivalent value of ρ plus ηg. We emphasize the case where

η = 2 and compare the results for g = 1% and g = 2% across the different

equilibria.

Table 1: Restricted commitment upper bounds XC and constant-equivalent
ρ values for η × g = {1.1, 2, 4} × {0.01, 0.02}.

g = 1% g = 2%
η XC (%) Cons-equiv ρ (%) XC (%) Cons-equiv ρ (%)
1.1 76.22 0.01 60.71 0.02
2 17.1 0.13 6.07 0.32
4 3.78 0.53 1.06 1.09

We begin with the restricted commitment equilibrium, which is both time

consistent and constrained optimal. For η = 2, the maximum fraction of the
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income at risk that society would forgo in order to stabilize ranges between

6% and 17% as g changes from 2% to 1%. For these experiments, where

∆ = 0.2, these bounds imply expenditures of between 1.2% and 3.4% of

GWP. If ∆ = 0.1, the corresponding values of XC are 5.4% and 15.5%,

implying an expenditure of between 0.54% and 1.5% of GWP. These values

bracket the Stern recommendation to spend 1% of GWP annually on climate

change policy. For ∆ = 0.2 and η = 2, the constant equivalent values of ρ

range from 0.13% and 0.32%, so the constant equivalent social discount rate

ranges between 2.13% and 4.32%.

Table 2: MPE upper bounds XU and constant-equivalent ρ values for
η × g = {1.1, 2, 4} × {0.01, 0.02}.

g = 1% g = 2%
η XU (%) Cons-equiv ρ (%) XU (%) Cons-equiv ρ (%)
1.1 94.15 -0.08 81.55 -0.12
2 17.80 0.1 5.44 0.49
4 3.33 0.8 0.98 1.4

For g = 1% and η = 2 the upper and lower bounds of X in a MPE

are 17.8% and 9.9%, with corresponding constant equivalent values of ρ of

0.1% and 0.7% (Tables 2 and 3). In this case, for 17% < X < 17.8% of

the value at risk, the optimal policy is to follow BAU, but there are MPE

that result in stabilization. For 9.9% < X < 17% the optimal policy is to

stabilize, but there are MPE that result in BAU. Thus, a MPE may result in

either excessive or insufficient stabilization (although, in a sense, the latter

is more likely). The broad range of values for which there are multiple MPE

indicates the importance of establishing commitment devices that enable the

current generation to lock in the desired policy trajectory.

For g = 2% and η = 2, the upper and lower bounds (5.4% and 4%) are

much closer (compared to when g = 1%), and both lie below the upper bound
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Table 3: MPE lower bounds XL and constant-equivalent ρ values for
η × g = {1.1, 2, 4} × {0.01, 0.02}.

g = 1% g = 2%
η XL (%) Cons-equiv ρ (%) XL (%) Cons-equiv ρ (%)
1.1 38.3 0.37 30.86 0.41
2 9.89 0.69 3.98 1.00
4 2.73 1.25 0.9 1.76

under restricted commitment. In this case, for any X such that stabilization

is a MPE, stabilization also maximizes welfare. For 5.4% < X < 6.1% all

MPE involve BAU even though stabilization is optimal. With g = 2% and

η = 2, the constant equivalent ρ in a MPE ranges between 0.5% to 1% (the

upper and lower bounds that correspond to the MPE set). As expected,

higher growth rates make the current generation less willing to sacrifice for

the sake of wealthier future generations, decreasing the X bounds

9 Conclusion

Individuals may care less about the utility of future generations than about

their own, but make smaller distinctions between the utility of successive dis-

tant generations, compared to the utility of the current and next generation.

“Time perspective” is consistent with this kind of agent-relative ethics, and

it leads to hyperbolic discounting across generations. In a sequential game,

each of a succession of policymakers aggregates the preferences of her genera-

tion and chooses the policy for that generation. In a MPE to this sequential

game, each policymaker takes as given her successors’ (stationary) decision

rule, a function of the current economic fundamental (the GHG concentra-

tion).

In our binary action model, a reduction in current consumption (“sta-
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bilization”) reduces the future hazard rate of a random event that causes

permanent loss of utility. There are multiple MPE for an interval of sta-

bilization costs. The upper bound of this interval is the maximum cost

consistent with a MPE involving stabilization; the lower bound is the mini-

mum cost consistent with a MPE involving BAU. For each of these bounds

we calculated a constant equivalent pure rate of time preference, i.e. a con-

stant rate that leads (in the optimal control problem) to the same decision

rule as does the time-varying pure rate of time preference (in the sequential

game). We compared the set of MPE to a time-consistent (constrained op-

timal) reference equilibrium. The MPE equilibrium set indicates how much

society would be willing to spend to stabilize the risk if it managed to solve

the intragenerational but not the intergenerational collective action prob-

lem; the reference equilibrium indicates how much society should be willing

to spend, if it solves both the intra- and the inter-generational problems.

Our risk and damage calibration includes the moderate and the high

damage estimates in the Stern Review. If the catastrophe reduces income

by 10-20%, the calibration implies a range of expected damages (under BAU)

of 1.4 - 2.9% after 100 years and 4 - 8% after 200 years. Our discounting

calibration assumes that the pure rate of time preference begins at 3%, falls

to 1% over the first 30 years, and then asymptotically declines to 0. As η

(the elasticity of marginal utility) ranges between 2 and 4 and g (the growth

rate) ranges between 1% and 2%, the constant equivalent pure rate of time

preference ranges between 0.1% and 1.8% (depending on the equilibrium

assumption). For η = 2 and g = 2%, society is willing to spend between

0.5%− 1% of GWP per year to reduce the risk in a MPE; society is willing

to spend between 0.6%− 1.2% under limited commitment.

Across most dimensions, our model is vastly simpler than the integrated

assessment models typically used for policy recommendations. However,

catastrophic risk is central to our model, and we take seriously the fact

that future policies are not chosen at the current time, but will instead be
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conditioned on future fundamentals. In addition, our model of the pure

rate of time preference provides a reasonable description of ethics while also

being consistent with observed market rates. Ethical concern does not require

a small pure rate of time preference in the near and medium run; it requires

that the pure rate of time preference eventually become small. Our numerical

results are broadly consistent with the recommendations in the Stern Review.

The simplicity and parsimony of the model make it easy for other researchers

to examine the sensitivity of those results.
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Appendix: Proofs

To simplify notation we assume that g(η−1) = 0. The proofs extend to the
general case by substituting δ̃ ≡ δ+ g(η− 1) and γ̃ ≡ γ + g(η− 1) for δ and
γ, respectively.

Proof of Lemma 1: We use Proposition 1 and Remark 2 in Karp (2007).
In that paper the state variable is a scalar, but the same results hold (making

obvious changes in notation) when the state is a vector, as in the present case.

Our state variable is z ≡ (h, y) and the flow of utility (prior to the event) is
e−y(t)U(w(t)). Specializing equation (5) of Karp (2007) to our setting, and

using the hyperbolic discount factor in equation (2), yields the generalized

DPE

K̂ (z) + γW (z) = max
w∈Ω

¡
e−y(t)U(w(t)) +Whg +Wyh

¢
, (34)
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where W (z) is the value function (with subscripts denoting partial differen-

tiation) and

K̂ (z) = (δ − γ) (1− β)

Z ∞

0

e−(δt+y(t))U (χ̂ (z)) dt (35)

is implied by equation (4) and Remark 2 of Karp (2007)

Use the “trial solution” W (z) = e−yV (h) and K̂ (z) = e−yK(h), so Wy =

−e−yV (h) andWh = e−yV 0(h). Substituting these expressions into equation

(34), cancelling e−y and rearranging, yields equation (12). Conclude that

χ̂ (z) = χ (h): the equilibrium control depends only on the hazard rate.

Conditional on survival up to time t, the probability of survival until time

s > t equals exp
¡
−
R s
t
h(τ)dτ

¢
= exp (−y(s) + y(t)). Use this fact and the

trial solution to rewrite equation (35) as

K(h(t)) = (δ − γ) (1− β) ey(t)
R∞
t

e−δ(s−t) exp
¡
−
R s
t
h(τ)dτ

¢
e−y(t)U (χ (h (s))) ds

= (δ − γ) (1− β)
R∞
t

e−δ(s−t) exp
¡
−
R s
t
h(τ)dτ

¢
U (χ (h (s))) ds

(36)

Setting t = 0 in equation (36) produces equation (13). ¤

Proof of Lemma 2 Define

'(h) ≡ π(h)−1 = 1− ρ (a− h) ξ0(h). (37)

Differentiating, using equation (21), we obtain

'0(h) = ρξ0(h)− ρ (a− h) ξ00(h) < 0. (38)

Thus,

π0(h) = −'0(h)/'(h)2 > 0. (39)

Differentiating (24), using equation (19), gives

σ0 (h) = −ρν 0(h) + ρ (a− h) ν 00 (h) > 0. (40)
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To establish σ00(h) < 0, use equation (19) and differentiate three times to

obtain ν 000(h) < 0. Differentiating equation (40) gives

σ00(h) = −2ρν 00(h) + ρ (a− h) ν 000 (h) < 0.

By inspection π (a) = σ (a) = 1. ¤
Proof of Proposition 1 We first establish sufficiency of inequality (25)

using a constructive proof, which also establishes the claims associated with

inequalities (26) and (27). We then show necessity of inequality (25) using

a proof by contradiction.

Sufficiency Suppose that σ > π for h ∈ (0, a). We show that there

exists a MPE that satisfies w ≡ 1 (perpetual stabilization) if and only if the
initial condition h0 = h satisfies equation (26). In a MPE with perpetual

stabilization, it is optimal for the current regulator to stabilize given that she

believes that future values of h lie in the stabilization region (so she believes

that all subsequent regulators will stabilize). The belief that future values

of h lie in the stabilization region (a belief we test below) means that for

initial conditions in the interior of the stabilization region the value function

is given by V S (h), defined in equation (20), and

V S0(h) = U(1)ξ0 (h) (41)

with ξ0 (h) obtained using equation (21).

Using equation (12) (and the belief that future values of h lie in the

stabilization region), it is optimal for the current regulator to stabilize if and

only if

U(1) ≥ U(0) + ρ (a− h)U(1)ξ0 (h) (42)

or
U (1)

U (0)
≥ π (h) . (43)

If inequality (43) is satisfied with strict inequality (as the Proposition re-

quires) at the current time, then regardless of whether the current regulator
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uses stabilization or BAU, the inequality is satisfied at neighboring times (the

near future). Thus, the current regulator’s beliefs that future regulators will

stabilize are consistent with equilibrium, regardless of the actions taken by

the current regulator. If inequality (43) is not satisfied, then clearly perpet-

ual stabilization is not an equilibrium. We consider below the case where

the weak inequality (43) holds with equality.

We turn now to the equilibrium with perpetual BAU. In a MPE with

perpetual BAU, it is optimal for the current regulator to follow BAU given

that she believes all subsequent regulators will follow BAU. This belief im-

plies that the value function is given by V B (h), defined in equation (18).

It is optimal for the current regulator to pursue BAU if and only if U(0) +

ρ (a− h)U(0)ν 0 (h) > U (1) or, equivalently, if and only if

U (1)

U(0)
< σ (h) ≡ 1 + ρ (a− h) ν 0 (h) , (44)

establishing condition (27).

To complete the demonstration that perpetual stabilization is an equi-

librium, it is necessary to confirm that if equation (27) is satisfied at time t

when the hazard is h, then it is also satisfied at all subsequent times, so that

the regulator’s beliefs are confirmed. The hazard is increasing on the BAU

equilibrium path (and non-decreasing on any feasible path), so it is sufficient

to show that σ0 (h) > 0. This inequality was established in Lemma 2.

Now we return to the case where inequality (43) is satisfied with equality.

We want to show that in this case, stabilization is not an equilibrium action.

Suppose to the contrary that it is optimal to stabilize when inequality (43) is

satisfied with equality. From equation (22), the current regulator wants to

use BAU if and only if U (1) < U (0) + ρ (a− h)V 0(h). In order to evaluate

the right side of this inequality, we need to know the value of V 0 (h); this

(shadow) value of course depends on the behavior of future regulators.

Because π0(h) > 0 from Lemma 2, if the current regulator uses BAU, h

increases and the state is driven out of the stabilization region. Therefore,
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the current regulator can discard the possibility that (if she were to use BAU)

all future regulators would stabilize. Future actions could lead to only one

of two possible equilibrium trajectories: (i) All future regulators will follow

BAU; or (ii) future regulators will follow BAU until the state h reaches a

threshold, say h0 < h̃ < a, after which all regulators stabilize. There are no

other possibilities, because once the state enters a stabilization region it does

not leave it. This fact is a consequence of our restriction to pure strategy

equilibria. However, alternative (ii) cannot occur, because h̃ lies to the right

of the curve π (h), and therefore is not an element of the stabilization region.

Thus, the only equilibrium belief for the current regulator is that the use of

BAU (and the subsequent increase in h) will cause all future regulators to

use BAU. Consequently, where inequality (43) is satisfied with equality, it

must be the case that V 0(h) = V B0(h) = U(0)ν 0 (h). The assumption that

σ(h) > π(h) implies that π(h) lies in the region where perpetual BAU is an

equilibrium strategy. Thus, π(h) does not lie in the stabilization region, as

asserted by the proposition.

Necessity: We use a proof by contradiction, consisting of two parts, to

establish necessity. The first part shows that σ (h) < π (h) cannot hold, and

the second part shows that it cannot be the case that σ (h) = π (h) at any

points in (0, a).

For the first part, suppose that for some interval σ (h) < π (h). Figure 4

helps to simplify the proof. This figure shows a situation where σ (h) < π (h)

for small h, but it is clear from the following argument that the region over

which σ (h) < π (h) is irrelevant. (An obvious variation of the following

argument can be used regardless of the region over which σ < π, because both

of these curves are monotonic.) Suppose that the value of U(1)
U(0)

lies between

the vertical intercepts of the curves, as shown in the figure; e.g. U(1)
U(0)

=

d. Define h1 implicitly by σ (h1) = d. we want to establish that for any

initial condition h0 = h < h1 there are no pure stationary MPE. Perpetual

stabilization is not an equilibrium because d < π (h1), and perpetual BAU is
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Figure 4: Graphs of σ (h) and π (h) that do not satisfy inequality (25).

not an equilibrium because d > σ (h1). The only remaining possibility is to

follow BAU until the hazard reaches a level h̄ < h1 and then begin perpetual

stabilization. (Recall that once the state enters the stabilization set it cannot

leave that set.) However, this trajectory cannot be an equilibrium because

the subgame beginning at h̄ cannot lead to perpetual stabilization (because

the point (h1, d) lies below the curve π).

For the second part, suppose that σ (h) ≥ π (h) with equality holding at

one or more points in (0, a) (that is, the graphs are tangent at one or more

points). Let ĥ be such a point. The argument above under “sufficiency”

establishes that if U(1)
U(0)

= π
³
ĥ
´
, then at h = ĥ (where equation (43) holds

with equality) neither perpetual stabilization not perpetual BAU are MPE.

The only remaining possibility would be to follow BAU for a time and then

switch to stabilization in perpetuity. However, that cannot be an equilibrium

trajectory, because the initial period of BAU drives the h above ĥ, where
U(1)
U(0)

< π (h), so the subsequent stabilization period cannot be part of a

MPE. Therefore, at h = ĥ there is no MPE if U(1)
U(0)

= π
³
ĥ
´
. ¤

Proof of Proposition 2 We use the following definition

hπ(x) ≡
(
π−1(1− x) for x ∈ [0, 1− π(0))

0 for x ∈ [1− π(0), 1]
(45)

Hazard rates that satisfy h > hπ(x) lie above the curve 1− π in Figure 2.
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(i) The stabilization set is absorbing, because if a (pure strategy) MPE

calls for a regulator to stabilize, the hazard never changes. By Proposition

1, there are no equilibria with perpetual stabilization when h(0) ≥ hπ, and

there is an equilibrium with perpetual BAU. The latter is therefore the

unique equilibrium. Claim (ii) follows immediately from the fact that the

stabilization set is absorbing

(iii)We now consider the case where h(0) < hπ; equivalently, x < 1−π (h).
From Proposition 1 we know that there is an equilibrium with perpetual sta-

bilization for these initial conditions; and we know that there is an equilib-

rium with perpetual BAU if x lies between the curves 1−π and 1−σ. Since

the stabilization set is absorbing, we do not need to consider the possibility

of equilibria that begin with stabilization and then switch to BAU. Thus,

we need only find a necessary and sufficient condition under which there is

a “delayed stabilization” equilibrium, i.e. one that begins with BAU and

switches to stabilization when the state reaches a threshold h̃ > h (0). To

conserve notation, throughout the remainder of this proof we use h to denote

an initial condition, and use h (τ), with τ ≥ 0, to denote a subsequent value
of the hazard when regulators use a MPE.

Define two sets, A =
n
h | ha ≤ h < h̃

o
and B =

n
h | h̃ ≤ h < hb

o
, where

ha < h̃ < hb < hπ. The MPE for initial conditions in set B is to stabilize,

and the MPE for initial conditions in set A is to follow BAU. The existence

of B follows from the fact that it is an equilibrium to stabilize for any initial

conditions in [0, hπ) (in view of Proposition 1). In addition, h remains

constant when the regulator stabilizes. Therefore, any subset of the interval

[0, hπ) qualifies as the set B.

The existence of A is not obvious. We cannot rely on the proof of

Proposition 1, since that proof applies to the case where the regulator follows

BAU in perpetuity. Here we are interested in the case where the regulator

switches from BAU to stabilization at a finite time. We obtain the necessary

and sufficient condition for the existence of a set A with positive measure.
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Suppose (provisionally) that the set A exists. We define the value func-

tion for initial conditions in A ∪ B as V (h; h̃). We include the second

argument in order to emphasize the dependence of the payoff on the switch-

ing value h̃. For convenience, we repeat the definition of the value function,

given the initial condition h ∈ A ∪B.

V
³
h; h̃

´
=

Z ∞

0

e−y(τ)θ (τ)U(χ (h(τ)) dτ with χ (h) =

½
0 for h ∈ A
1 for h ∈ B

¾
,

y(τ) =

Z τ

0

h(s)ds, h (s) =

(
min

³
a− (a− h) e−ρs, h̃

´
for h ∈ A

h for h ∈ B

)
.

Note that for h (τ) ∈ A, h (τ) is a function of the initial condition, h.

For h ∈ A the regulator chooses BAU (under the candidate program).

Using equation (22), this action is part of an equilibrium if and only if

U (0)− U (1) > −ρ (a− h)Vh(h; h̃). (46)

In order to determine when this inequality holds, we need to evaluate Vh(h; h̃).

For h ∈ A the value function can be split into two parts: the payoff that arises

from following BAU until reaching the threshold h̃, and the subsequent payoff

under stabilization. We state some intermediate results before discussing this

two-part value function.

Define T (h; h̃) as the amount of time it takes to reach the stabilization

threshold (the “time-to-go”), given the current state h ∈ A; T is the solution

to

h̃ = a− (a− h) e−ρT ⇒ (47)

T
³
h̃; h̃

´
= 0 and

dT

dh
=

−1
ρ (a− h)

. (48)

For h ∈ A and for τ ≤ T

dy (τ)

dh
=

d
R τ
0
h(s)ds

dh
=

Z τ

0

dh(s)

dh
ds =

Z τ

0

e−ρsds =
1− e−ρτ

ρ
. (49)
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In addition, for h ∈ A and for τ > T

dy(τ)
dh

=
d( T

0 h(s)ds+h̃(τ−T ))
dh

=R T
0

dh(s)
dh

ds+
³
h(T )− h̃

´
dT
dh
=
R T
0
e−ρsds

(50)

The last equality uses the fact that h(T ) = h̃, from the definition of T . Using

equation (47) and (48), we can invert the function T (h; h̃) to write the initial

condition h as a function of the time-to-go T and the threshold h̃. Using

this fact, equation (49) and the definition of y(τ), we have

y(T ) =

Z T

0

h(s)ds⇒

dy(T )

dT
= h (T ) +

Z T

0

dh(s)

dh

dh

dT
ds (51)

We now discuss the value function for h ∈ A. Splitting the payoff into

the parts before and after the threshold is reached, this function equals

V
³
h; h̃

´
=

Z T

0

e−y(τ)θ (τ)U(0)dt+

Z ∞

T

e−y(τ)θ (τ)U(1)dt

and its derivative with respect to h (using equation (49)) is

Vh
³
h; h̃

´
= (U (0)− U (1)) e−y(T )θ (T ) dT

dh
+

R T
0

d(e−y(τ))
dh

θ (τ)U(0)dt+
R∞
T

d(e−y(τ))
dh

θ (τ)U(1)dt

= −(U(0)−U(1))
ρ(a−h) e−y(T )θ (T )−³R T

0

³
1−e−ρτ

ρ

´
e−y(τ)θ (τ)U(0)dt+

R∞
T

³
1−e−ρT

ρ

´
e−y(τ)θ (τ)U(0)dt

´
.

(52)

Using this expression, we can write the optimality condition (46) as

U (0)− U (1) > (U (0)− U (1)) e−y(T )θ (T )+

ρ (a− h)
³R T

0

³
1−e−ρτ

ρ

´
e−y(τ)θ (τ)U(0)dt+

R∞
T

³
1−e−ρT

ρ

´
e−y(τ)θ (τ)U(0)dt

´
.

(53)
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It is convenient to treat T as the independent variable, recognizing that the

initial condition h is a function of T (from equation (47)): h = h(T ). The

existence of a set A with positive measure requires that inequality (53) holds

for small positive values of T , i.e. for initial conditions h close to but smaller

than h̃.

The first order Taylor expansion of the first term on the right side of

inequality (53) is

(U (0)− U (1))− (U (0)− U (1))
³
h̃+ r(0)

´
T + o (T ) . (54)

This expansion uses equations (3) and (51) and the fact that θ (0) = 1. Using

the fact that 1− e−ρT = 0 at T = 0, the first order Taylor expansion of the

second term on the right side of inequality (53) is

ρ
³
a− h̃

´
T
R∞
0

e−y(τ)θ (τ)U(1)dt+ o (T ) =

ρ
³
a− h̃

´
T
R∞
0

e−h̃τθ (τ)U(1)dt+ o (T ) =

ρ
³
a− h̃

´
T (1−β)γ+βδ+h̃
(h̃+γ)(h̃+δ)

U(1) + o (T ) .

(55)

Substituting expressions (54) and (55) into inequality (53), dividing by T

and letting T → 0 (from above) produces the inequality

(U (0)− U (1))
³
h̃+ r(0)

´
> ρ

³
a− h̃

´ (1− β) γ + βδ + h̃³
h̃+ γ

´³
h̃+ δ

´ U(1). (56)

Using x ≡ 1−U(1)
U(0)

and r(0) = βγ+δ(1−β) (from equation (3)), and replacing
h̃ with h, inequality (56) can be expressed as

x

1− x
(h+ βγ + δ(1− β)) > ρ(a− h)

µ
β

h+ γ
+
1− β

h+ δ

¶
(57)

or, equivalently,

x > Θ(h), (58)
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where Θ(h) is defined in equation (28), establishing part (iii).

(iv) Using

−ξ0(h) =
Z ∞

0

te−htθ(t)dt =
β

(h+ γ)2
+

1− β

(h+ δ)2
,

we express π(h), defined in (23), as

π(h) =
1

1 + ρ(a− h)
³

β
(h+γ)2

+ 1−β
(h+δ)2

´ .
Expanding 1− π(h)−Θ(h) as a polynomial in β and collecting terms gives

(after some algebraic manipulations) equation (30). ¤

Proof of Proposition 3: (i) This claim follows from differentiating the

functions ν(h) and ξ(h) and by inspection. (ii) We begin with

yB(t, h) ≡
Z t

0

(a− (a− h)e−ρτ )dτ = at− (a− h)
1− e−ρt

ρ
, (59)

where yB(t, h) is a specialization of y(0, t), defined in (8), when the hazard

process under BAU evolves (following equation (4)) according to

h(t) = a− (a− h0)e
−μt. From equations (19), (21) and (59),

ν(h)− ξ(h) =

Z ∞

0

θ(t)
³
e−y

B(t,h) − e−ht
´
dt. (60)

It is easy to verify that 1−e
−ρt

ρ
is strictly decreasing in ρ for ρ > 0 and equals t

at ρ = 0. Therefore, yB(t, h) > ht when h < a and ρ > 0, and the right-hand

side of equation (60) is negative. (iii) This claim is merely a summary of the

derivation in the text above equation (32).

(iv) (Sufficiency) Suppose that λ (h) is non-decreasing. Then for any

1 − x ≥ λ (h) it is optimal to stabilize. Since h does not change under

stabilization, it is also optimal to stabilize at any point in the future. For

any 1 − x < λ (h) it is optimal to follow BAU. Since h increases along

the BAU trajectory, the inequality 1−x < λ (h) continues to hold along this
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trajectory and BAU remains optimal. (Necessity). Suppose that λ is strictly

decreasing over some interval 0 ≤ h1 < h < h2 ≤ a. Choose a value of h

in this interval (the initial condition h (0)), and choose 1− x = λ (h (0))− �,

where � is small and positive. At this initial condition and for this value

of 1 − x, it is optimal to follow BAU, causing h to increase. Because λ

is decreasing in this neighborhood, there is a future time t > 0 at which

1−x = λ (h (t)). At this time, it becomes optimal to stabilize, so the initial

decision to pursue BAU in perpetuity is not time consistent.

(v) Using (18) and (20), we express λ(h) as

λ(h) =

R∞
0

e−y
B(t,h)θ(t)dtR∞

0
e−htθ(t)dt

. (61)

Using equation (59) we have

yBh (t, h) ≡ ∂yB(t, h)/∂h =
1− e−ρt

ρ
. (62)

The argument h in yB(t, h) is the initial hazard. Differentiating (61) with

respect to h, we see that λ0(h) > 0 if and only ifZ ∞

0

e−y
B(t,h)θ(t)dt

Z ∞

0

e−httθ(t)dt >

Z ∞

0

e−htθ(t)dt

Z ∞

0

e−y
B(t,h)yBh (t, h)θ(t)dt.

(63)

Noting
R∞
0

e−htθ(t)dt = β
h+γ

+ 1−β
h+δ

and
R∞
0

e−httθ(t)dt = β
(h+γ)2

+ 1−β
(h+δ)2

and

using (62), we express (63) as³
β

(h+γ)2
+ 1−β

(h+δ)2

´R∞
0

e−y
B(t,h)θ(t)dt >³

β
h+γ

+ 1−β
h+δ

´R∞
0

e−y
B(t,h)θ(t)1−e

−ρt

ρ
dt.

(64)

Since δ > γ, the right-hand side of inequality (64) is smaller thanµ
β

(h+ γ)2
+

1− β

(h+ δ)2

¶Z ∞

0

e−y
B(t,h)θ(t)

(h+ δ)(1− e−ρt)

ρ
dt. (65)

Thus, it suffices to show that the left-hand side of (64) exceeds (65), i.e., thatZ ∞

0

e−y
B(t,h)θ(t)

µ
1− (h+ δ)(1− e−ρt)

ρ

¶
dt > 0,
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which is guaranteed to hold if ρ > h + δ. Since h ≤ a and h approaches a

under BAU, the inequality holds at all h ∈ [0, a] if ρ > a+ δ. ¤

Proof of Proposition 4 We first point out that existence of a solution

to the optimal control problem requires that σ0 (h) ≥ π0 (h) over h ∈ [0, a].
We then show that there is no solution to the regulator’s optimization prob-

lem that involves delayed stabilization. We then show that stabilization is

optimal if and only if x ≤ 1− σ0 (h).

If σ0 (h) ≥ π0 (h) over h ∈ [0, a] were not satisfied, then (using the argu-
ment in the proof of Proposition 1) there would be some initial h and values

0 < U(1)
U(0)

< 1 for which there is no Markov perfect solution. However, the

objective function under constant discounting is bounded and a solution to

the optimal control problem exists. Therefore, σ0(h) ≥ π0(h).

Constant discounting occurs when β = 0 or β = 1 or γ = δ. It is clear

from equation (30) that condition (29) is not satisfied in any of these cases,

implying, in view of Proposition 2 Part (iii), that there can be no equilibrium

with delayed stabilization.

We now turn to the main part of the proof. For h close to but smaller

than a, σ0 (h) > π0 (h). (We established the weak inequality above; here

we need the strict inequality.) This claim uses a Taylor expansion. The

Taylor expansion uses the facts that σ0 (a) = π0 (a) = 1 and the derivatives

evaluated at h = a:

σ0h (a) =
ρ

(a+ ρ+ δ) (δ + a)
<

ρ

(δ + a)2
= π0h (a) .

Thus, for some parameter values and initial conditions, π0 (h) < U(1)
U(0)

< σ0 (h)

holds. For parameters that satisfy this inequality, in view of Proposition 1,

the DPE (33) admits two solutions. With constant discounting, however, the

solution to the optimization problem is unique. The possibility that there

are multiple solutions to the necessary condition (the DPE), even though

there is a unique optimal policy, also occurs in other control problems (e.g.,
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Skiba 1978). We use the same line of reasoning as in the “Skiba problem”

to identify the optimal policy.

Consider the situation where π0(h) < U(1)
U(0)

< σ0(h). Denote V S (h) and

V B (h) as the value functions that satisfy the DPE (33) under stabilization

and BAU, respectively, and let V (h) = max
©
V S (h) , V B (h)

ª
denote payoff

under the optimal decision. The arguments used in the proof of Proposition

1 imply that for U(1)
U(0)

< σ0(h), V B (h) satisfies

V B (h) = 1
δ+h

max
©
U(1), U (0) + ρ (a− h)V B

h (h)
ª

= 1
δ+h

¡
U (0) + ρ (a− h)V B

h (h)
¢
> 1

δ+h
U(1).

(66)

Similarly, for U(1)
U(0)

> π0(h), V S (h) satisfies

V S (h) = 1
δ+h

max
©
U(1), U (0) + ρ (a− h)V S

h (h)
ª

= 1
δ+h

U (1) ≥ 1
δ+h

¡
U (0) + ρ (a− h)V S

h (h)
¢
.

(67)

>From (66) and (67) we see that V B(h) > V S(h) when π0 (h) < U(1)
U(0)

<

σ0 (h). Therefore, when π0 (h) < U(1)
U(0)

< σ0 (h) the (unique) optimal policy

is BAU.

Again using the arguments in Proposition 1, V S (h) is the only solution

to the DPE when U(1)
U(0)

> σ0 (h); when this inequality is satisfied, the optimal

solution is to stabilize. V B (h) is the only solution when U(1)
U(0)

< π0 (h); when

this inequality is satisfied, BAU is the optimal solution. By convention, we

break the tie, which occurs when U(1)
U(0)

= σ0 (h), by choosing stabilization. ¤
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