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1Department of Psychology, Stanford University. 2Department of Linguistics, UC San Diego.

Abstract

Researchers showed the robot ten puns, hoping that one of
them would make it laugh. Unfortunately, no pun in ten did.

What makes something funny? Humor theorists posit that
incongruity—perceiving a situation from different viewpoints
and finding the resulting interpretations to be incompatible—
contributes to sensations of mirth. In this paper, we use a com-
putational model of sentence comprehension to formalize in-
congruity and test its relationship to humor in puns. By com-
bining a noisy channel model of language comprehension and
standard information theoretic measures, we derive two dimen-
sions of incongruity—ambiguity of meaning and distinctive-
ness of viewpoints—and use them to predict humans’ judg-
ments of funniness. Results showed that both ambiguity and
distinctiveness are significant predictors of humor. Addition-
ally, our model automatically identifies specific features of a
pun that make it amusing. We thus show how a probabilistic
model of sentence comprehension can help explain essential
features of the complex phenomenon of linguistic humor.
Keywords: Humor; language understanding; probabilistic
models

Introduction
Humor plays an essential role in human interactions: it has
important positive effects on children’s development (Frank
& McGhee, 1989), success in the work place (Duncan et
al., 1990), coping with illness and traumatic events (Gelkopf
& Kreitler, 1996), and marital satisfaction (Ziv & Gadish,
1989). Indeed, in a study on gender differences in desired
characteristics of relationship partners, both men and women
rated sense of humor as more important than physical attrac-
tiveness and earning potential (Stewart et al., 2000). In this
paper, we are interested in understanding how this fundamen-
tal and ubiquitous phenomenon works from the perspective of
cognitive science. What makes something funny? How might
defining characteristics of humor shed light on the ways in
which the mind processes and evaluates information?

A leading theory of humor posits that incongruity—
perceiving a situation from different viewpoints and finding
the resulting interpretations to be incompatible—contributes
to sensations of mirth (Veale, 2004; Forabosco, 1992; Mar-
tin, 2007; Hurley et al., 2011); an idea that dates to Kant’s
theories about laughter and the sublime (Veatch, 1998). Al-
though there is disagreement about whether incongruity alone
is sufficient, most theorists accept that incongruity is neces-
sary for producing humor: as Veale (2004) states, “Of the
few sweeping generalizations one can make about humor that
are neither controversial or trivially false, one is surely that
humor is a phenomenon that relies on incongruity.” However,
definitions of incongruity are often ambiguous and difficult to
operationalize in empirical research. In this paper, we use a
computational model of language understanding to formalize
a notion of incongruity and test its relationship to humor.

Language understanding in general, and particularly hu-
mor, relies on rich commonsense knowledge and discourse
understanding. To somewhat limit the scope of our task, we
focus on applying formalizations of incongruity to a subset of
linguistic humor: puns. Writer and philosopher Henri Berg-
son defined a pun as “a sentence or utterance in which two
ideas are expressed, and we are confronted with only one se-
ries of words.” This highlights the fact that one sentence must
evoke two different interpretations in order to be a pun, which
aligns with the concept of incongruity as a requisite of humor.

We develop our model on homophone puns—puns contain-
ing words that sound identical to other words in the English
language—because the space of possible interpretations of
a homophone pun is relatively constrained and well-defined.
An example helps to illustrate:

“The magician got so mad he pulled his hare out.”

This sentence allows for two interpretations:

(a) The magician got so mad he performed the trick of pulling
a rabbit out of his hat.

(b) The magician got so mad he (idiomatically) pulled out the
hair on his head.

If the comprehender interprets the word “hare” as itself, he
will arrive at interpretation (a); if he interprets the word as
its homophone “hair,” he will arrive at interpretation (b). The
sentence-level differences between interpretations (a) and (b)
can thus be approximated by the two interpretations of the
observed word “hare.” In general, distinct interpretations of a
homophone pun hinges on one phonetically ambiguous word,
allowing the two lexical forms of the homophone word to
stand in for competing interpretations of the entire sentence.

Critically, even though the example we gave was a writ-
ten pun and the reader sees the word “hare” explicitly on the
page, the “hair” interpretation is still present and even salient
in the context of the sentence. Here we explore the idea that
puns such as these arise and are funny when they are due to
noisy-channel processing. Noisy channel models of sentence
processing posit that language comprehension is a rational
process that incorporates uncertainty about surface input to
arrive at sentence-level interpretations that are globally coher-
ent (Levy, 2008; Levy et al., 2009). Comprehenders can thus
consider multiple word-level interpretations (“viewpoints”)
to arrive at more than one interpretation of a sentence, each
coherent but potentially incongruous with each other. The
notion of incongruity thus fits naturally into a noisy channel
model of sentence comprehension.

Our purposes for developing a formal model of linguistic
humor are two-fold. First, we wish to formalize the concept
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of incongruity and test assumptions adopted by leading the-
ories in humor research. Secondly, we aim to show that a
noisy channel of language processing allows for flexible con-
text selection and sentence comprehension that gives rise to
sophisticated linguistic and social meaning such as humor.

Model
Incongruity is a property of the interpretations derived from a
sentence. In order to formalize incongruity, we first describe
a probabilistic model of sentence comprehension. Our model
aims to infer the topic of a sentence (a coarse representation
of its meaning) from the observed words. Unlike previous
such models, however, we take a noisy channel approach,
assuming that the comprehender maintains uncertainty over
which words reflect the sentence topic and which are noise.
From this model we derive two quantities that may contribute
to humor: ambiguity and distinctiveness. Intuitively, if the re-
sulting interpretation is unambiguous, then no incongruity ex-
ists and the sentence is unlikely to be funny. However, since
many ambiguous sentences are not funny (e.g. “I went to the
bank”), ambiguity alone is insufficient. This is because the in-
terpretations of such sentences are not supported by distinct
topical subsets of the sentence (or “viewpoints”). In other
words, there must be a set of words in the sentence that sup-
port one interpretation and a set that supports the other, and
these two sets must be different or “distinct” from each other
in order to evoke a sense of incongruity.

Assume our sentence is composed of a vector of content
words ~w = {w1, . . . ,wi,h,wi+1, . . . ,wn}, including a phonet-
ically ambiguous word h. We will use a simple generative
model for ~w (see Figure 1): given the latent sentence topic
m, each word is generated independently by first deciding if
it reflects the topic (the indicator variable fi). If so it is sam-
pled based on semantic relevance to m; if not it is sampled
from a fixed unigram prior over words. We thus view the sen-
tence as a mixture of topical and non-topical words. Similar
approaches have been used in generative models of language
to account for words that provide non-semantic information,
such as topic models that incorporate syntax (Griffiths et al.,
2005). Our model is motivated by the important role that se-
mantic priming plays in lexical disambiguation during sen-
tence processing (Seidenberg et al., 1982; Burke & Yee,
1984); while ignoring the other non-semantic factors of in-
terpretation (which may also be important).

We make the simplifying assumption that the plausible
candidate topics m of the sentence correspond to the poten-
tial interpretations of the homophone word h, which are con-
strained by phonetic similarity to two alternatives, m1 and
m2. For example, in the magician pun described above, h
is the phonetically ambiguous target word “hare,” and m1 and
m2 are the candidate interpretations hare and hair. The two
potential topics of the sentence can be identified by the two
interpretations hare and hair. This assumption reduces the
ill-defined space of sentence meanings to the simple proxy of
alternate spellings for phonetically ambiguous words.

m

w1 w2 h wn

f1 f2 fh fn

Figure 1: Generative model of a sentence. Each word wi is
generated based on the sentence topic m if the indicator vari-
able fi puts it in semantic focus; otherwise it is generated as
noise (from a unigram distribution).

Using the above generative model, we can infer the joint
probability distribution P(m, ~f |~w) of the sentence topic m and
the indicator variables ~f that determine whether each word is
in semantic focus. This distribution can be factorized into:

P(m, ~f |~w) = P(m|~w)P(~f |m,~w) (1)

The two terms on the right-hand side are the basis for our
derivations of measures for ambiguity and distinctiveness re-
spectively. Ambiguity means the presence of two similarly
likely interpretations and can be quantified as a summary of
the distribution P(m|~w). Distinctiveness measures the degree
to which two interpretations are supported by “distinct” view-
points of the sentence, which we represent as the divergence
between sets of words that are in semantic focus given the
two values of m; it can be quantified as a summary of the dis-
tribution P(~f |m,~w). Together, these two measures constitute
our formalization of incongruity.

Ambiguity Let M denote the distribution P(m|~w), a bino-
mial distribution over the two meaning values m1 and m2
given the observed words. If the entropy of this distribution
is low, this means that the probability mass is concentrated
on only one meaning, and the alternative meaning is unlikely
given the observed words. If entropy is high, this means that
the probability mass is more evenly distributed among m1 and
m1, and the two interpretations are similarly likely given the
contexts. The entropy of P(m|~w) is thus a natural measure of
the degree of ambiguity present in a sentence. We compute
P(m|~w) as follows:

P(m|~w) = ∑
~f

P(m, ~f |~w) (2)

∝ ∑
~f

P(~w|m, ~f )P(m)P(~f ) (3)

= ∑
~f

(
P(m)P(~f )∏

i
P(wi|m, fi)

)
(4)

We approximate P(m) as the unigram frequency of the words
that represent m. For example, P(m = hare) is approximated
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as P(m = “hare”). We also assume a uniform probability that
each words is in focus—hence P(~f ) is a constant. As for
P(m|~w), note that it is driven in part by the semantic relation-
ship between m and ~w and in part by the prior probability of
m, which we approximate using the unigram probability of
the words m1 and m2. From the generative model,

P(wi|m, fi) =

{
P(wi), if f = 0
P(wi|m), if f = 1

Once we derive P(m|~w), we then compute its entropy as a
measure of ambiguity.

Distinctiveness We next turn to the distribution over focus
sets, given sentence topic. This may be computed as follows:

P(~f |m,~w) ∝ P(~w|m, ~f )P(~f |m) (5)

Since ~f and m are independent, P(~f |m) = P(~f ).
Let F1 denote the distribution P( f |m1,~w) and F2 denote the

distribution P( f |m2,~w). F1 and F2 represent the distributions
over semantic focus sets assuming the sentence topic m1 and
m2, respectively. We use a symmetrized Kullback-Leibler
divergence score DKL(F1||F2)+DKL(F2||F1) to measure the
distance between F1 and F2. This score measures how “dis-
tinct” the semantic focus sets are given m1 and m2. A low KL
score would indicate that meanings m1 and m2 are supported
by similar subsets of the sentence; a high KL score would in-
dicate that m1 and m2 are supported by distinct subsets of the
sentence.

Evaluation
By generating a large corpus of sentences involving the same
words and measuring subjective funniness of each sentence
we can evaluate the contribution of each of our quantitative
measures, ambiguity and distinctiveness, to humor. We eval-
uate our model and measures on a set of 235 sentences, con-
sisting of 65 puns, 40 “de-punned” control sentences that are
matched with a subset of the puns, and 130 non-pun control
sentences that match the puns in containing the same phonet-
ically ambiguous words.

Materials
We selected 40 pun sentences from a large collection of puns
on a website called Pun of the Day, which contains over one
thousand puns. Puns were selected such that the ambiguous
item is a single phonetically ambiguous word, and no two
puns in the collection have the same ambiguous item. To ob-
tain more homophone pun items, a research assistant gener-
ated an additional 25 pun sentences based on a separate list
of homophone words.

We constructed 40 sentences to be minimally different
from the pun sentences that we collected from “Pun of the
Day,” which we will call de-punned sentences. A second re-
search assistant who was blind to the hypothesis was asked
to replace one word in each of the pun sentences (without

changing the homophone word itself) so that the sentence is
still grammatical but is no longer a pun. This resulted in sen-
tences that differed from the pun sentences by one word each.

The 130 non-pun sentences were chosen to match each pun
sentence on its ambiguous word as well as the alternative ho-
mophone. The sentences were taken from an online version
of Heinle’s Newbury House Dictionary of American English
(http://nhd.heinle.com/). We selected sample sentences
included in the definition of the homophone word. This de-
sign ensured that puns, de-punned, and non-pun sentences all
contain the same set of phonetically ambiguous words. Ta-
ble 1 shows example sentences from each category.

Type Example
Pun The magician got so mad he pulled his hare out.
De-pun The professor got so mad he pulled his hare out.
Non-pun The hare ran rapidly across the field.
Non-pun Some people have lots of hair on their heads.

Table 1: Example sentences from each category

Human ratings of semantic relatedness
As described in the model section, computing our measures
requires the prior probabilities of meanings P(m) (approxi-
mated as the unigram probabilities of the words that denote
the meanings), the prior probabilities of words P(w), and the
conditional probabilities of each word in the sentence given
a meaning P(w|m). While we computed P(w) and P(m) di-
rectly from the Google Web unigram corpus, P(w|m) is dif-
ficult to obtain through traditional topic models trained on
corpora due to data sparsity. However, since each meaning
we consider has a single word as proxy, we may approximate
P(w|m) using an empirical measure of the semantic related-
ness between w and m, denoted R(c,m). We use R(c,m) as
a proxy for point wise mutual information between c and m,
defined as follows:

R(w,m)= log
P(w,m)

P(w)P(m)
= log

P(w|m)

P(w)
= logP(w|m)−logP(w)

We assume that human ratings of relatedness between two
words R′(w,m) approximate true relatedness up to an additive
constant z. With the proper substitutions and transformations,

P(w|m) = eR′(w,m)+zP(w) (6)

To obtain R′(w,m) for each of the words w in the stimuli
sentences, we recruited 200 subjects on Amazon’s Mechani-
cal Turk to rate distinct word pairs on their semantic related-
ness. Since it is difficult to obtain the relatedness rating of a
word with itself, we used a free parameter r and fit it to data.
Function words were removed from each of the sentences in
our dataset, and the remaining words were paired with each of
the interpretations of the homophone sequence (e.g., for the
pun in Figure 1, “magician” and “hare” is a legitimate word
pair, as well as “magician” and “hair”). This resulted in 1460
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(a) Relatedness of each word with candidate meanings (b) Average relatedness (c) Average funniness ratings

Figure 2: (a) In the example pun (top), two candidate meanings of h are each more related to a subset of the content words. In
the non-pun, only one candidate meaning is more related. (b) Content words are similarly related to both candidate meanings
in puns; more related to alternative meanings in de-puns; more related to observed meanings in non-pun. (c) Funniness varies
across the sentence types in a pattern that reflects the balance of relatedness to candidate meanings shown in (b).

distinct word pairs. Each subject saw 146 pairs of words in
random order and were asked to rate how related each word
pair is using a scale from 1 to 10. The average split-half cor-
relation of the relatedness ratings was 0.916, indicating that
semantic relatedness was a reliable measure.

Figure 2(a) shows the relatedness of each content word
with the two homophone interpretations for two example sen-
tences. In the top sentence, which is a pun, the word “magi-
cian” is rated as significantly more related to “hare” than it
is to “hair”, while the word “pulled” is rated as significantly
more related to “hair” than it is to “hare.” In the bottom sen-
tence, which is a non-pun, all words except the neutral word
“through” are more related to the word “hare” than to “hair.”

Figure 2(b) shows the average relatedness ratings of words
and the two homophone interpretations across the three types
of sentences. In pun sentences, the average relatedness of
words to the two homophone interpretations are not signif-
icantly different. In the de-punned sentences, the average
relatedness of words to the alternative meaning is signifi-
cantly higher than to the observed meaning. In the non-pun
sentences, the average relatedness of words to the observed
meaning is significantly higher than to the alternative mean-
ing. These analyses suggest that relatedness ratings for the
two candidate meanings capture the presence or absence of
multiple interpretations in a sentence. It further supports our
model’s prediction that ambiguity of meaning and the dis-
tinctiveness of supporting context words can help distinguish
among the three types of sentences.

Human Ratings of Funniness

We obtained funniness ratings of the 235 sentences from
100 subjects on Amazon’s Mechanical Turk. Each subject
read roughly 60 sentences in random order, counterbalanced

Estimate Std. Error p value
Intercept −0.699 0.180 < 0.0001
Ambiguity 1.338 0.245 < 0.0001
Distinctiveness 0.183 0.053 < 0.0001

Table 2: Regression coefficients using ambiguity and distinc-
tiveness to predict funniness ratings

for the sentence types, and rated each sentence on funni-
ness and correctness. The average split-half correlation of
funniness ratings was 0.83. Figure 2(c) shows the aver-
age funniness ratings of puns, de-punned, and non-pun sen-
tences. Pun sentences are rated as significantly funnier than
de-punned sentences, and de-punned sentences are rated as
significantly funnier than non-pun sentences (F(2,232) =
415.3, p < 0.0001). Figure 2 (b) and Figure 2 (c) together
suggest that the balance of relatedness between the two inter-
pretations is a predictor of funniness.

Results
Following the derivations described in the model section and
using the relatedness measures described above, we com-
puted an ambiguity and distinctiveness value for each of the
235 sentences. Our model has two free parameters—the ad-
ditive constant z in equation (6) and the constant r that indi-
cates the relatedness of a word with itself —which we opti-
mized using R2 in the linear regression summarized in Ta-
ble 2. As predicted, ambiguity differs significantly across
sentence types (F(2,232) = 25.42, p < 0.0001) and corre-
lates significantly with human ratings of funniness across
the 235 sentences (r = 0.33, p < 0.0001). Furthermore, dis-
tinctiveness scores differ significantly across sentence types
as well (F(2,232) = 5.76, p < 0.005) and correlates signifi-

731



m1 m2 Type Sentence and Semantic Focus Sets Amb. Disj. Funniness

hare hair

Pun The magician got so mad he pulled his hare out. 0.570 3.405 1.714
De-pun The professor got so mad he pulled his hare out. 0.575 2.698 0.328
Non-pun The hare ran rapidly through the fields. 0.055 2.791 −0.400
Non-pun Most people have lots of hair on their heads. 2.76E−5 3.920 −0.343

tiers tears

Pun It was an emotional wedding. Even the cake was in tiers. 0.333 3.424 1.541
De-pun It was an emotional wedding. Even the mother-in-law was in tiers. 0.693 2.916 0.057
Non-pun Boxes are stacked in tiers in the warehouse. 0.018 3.203 −0.560
Non-pun Tears ran down her cheeks as she watched a sad movie. 1.73E−5 4.397 −0.569

Table 3: Semantic focus sets, ambiguity/disjointedness scores, and funniness ratings for two groups of sentences. Words in
red are in semantic focus with m1; green with m2; blue with both. Semantic focus sets for all sentences can be found at
http://www.stanford.edu/˜justinek/Pun/focusSets.html

Figure 3: Standard error ellipses of ambiguity and distinctive-
ness across sentence types. Puns score higher on ambiguity
and distinctiveness; de-puns are less supported by distinct fo-
cus sets; non-puns have low ambiguity.

cantly with human ratings of funniness (r = 0.21, p < 0.005).
A linear regression showed that both ambiguity and dis-

tinctiveness are significant predictors of funniness. Together,
the two predictors capture a modest but significant amount
of the variance in funniness ratings (F(2,232) = 20.86,R2 =
0.145, p < 0.001; see Table 2). Using both ambiguity and
distinctiveness as dimensions that formalize incongruity, we
can distinguish among puns, non-puns, and de-punned sen-
tences, as shown in Figure 3. Figure 3 shows the stan-
dard error ellipses for each of the three sentence types in
the two-dimensional space of ambiguity and distinctiveness.
Although there is a fair amount of noise in the predictors
(likely due to simplifying assumptions, the need to use em-
pirical measures of relatedness, and the inherent complexity
of humor) we see that pun sentences tend to cluster at a space
with higher ambiguity and distinctiveness. While de-punned
sentences are also high on ambiguity (e.g. it is ambiguous
whether the word “hare” in “The professor got so mad he
pulled his hare out” should be interpreted as hair), they tend
to have lower distinctiveness measures. Non-puns score the

Figure 4: Funniness contours smoothed using a 2-D Loess re-
gression with ambiguity and disjointedness measures as pre-
dictors. Sentences become funnier as they move to high am-
biguity and distinctiveness space.

lowest on ambiguity with moderate distinctiveness measures.
Figure 4 shows the funniness contours in the two-

dimensional ambiguity-distinctiveness space smoothed using
a 2-D Loess regression. Not only do the three types of sen-
tences differ along the two dimensions, but sentences be-
come funnier as they increase in ambiguity and distinctive-
ness. These results suggest that our measures of incongruity
capture an important aspect of humor in pun sentences.

Beyond predicting the funniness of a sentence, our model
can also tell us which particular features of a pun make it
amusing. By finding the most likely semantic focus sets ~f
given each latent meaning variable m and the observed words,
we can identify words in a funny sentence that are critical to
producing incongruity and humor. Table 3 shows the most
likely semantic focus sets given each meaning for two groups
of sentences. Sentences in each group contain the same pair
of candidate meanings for the target word h. However, they
differ in measures of ambiguity, distinctiveness, and funni-
ness. Words in the most likely focus sets given m1 are in red;
words in the most likely focus sets given m2 are in green; and
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words in the most likely focus sets of both meanings are in
dark blue. We observe that visually, the two pun sentences
(which are significantly funnier) have more distinctive and
balanced sets of focus words for each meaning than other
sentences in their groups. De-punned sentences tend to have
fewer words in support of m1, and non-pun sentences tend to
have no words in support of the interpretation that was not
observed. Moreover, imagine if you were asked to explain
why the two pun sentences are funny. The colorful words in
each pun sentence—for example, the fact that magicians tend
to perform magic tricks with hares, and people tend to be de-
scribed as pulling out their hair when angry—are what one
might intuitively use to explain why the sentence is a pun.
Our model thus provides a natural way of not only formaliz-
ing incongruity and using it to predict when a sentence is a
pun, but also to explain what aspects of a pun make it funny.

Discussion
Researchers in artificial intelligence have argued that given
the importance of humor in human communication, comput-
ers need to generate and detect humor in order to interact with
humans more effectively (Mihalcea & Strapparava, 2006).
However, most work in computational humor has focused ei-
ther on joke-specific templates and schemata (Binsted, 1996;
Kiddon & Brun, 2011) or surface linguistic features that pre-
dict humorous intent (Mihalcea & Strapparava, 2006; Reyes
et al., 2010). Our work moves beyond these approaches and
directly utilizes a model of sentence comprehension to derive
theory-driven measures of humor.

While the measures we developed account for a signifi-
cant amount of variance in funniness ratings, there are several
ways to improve our model of language in order to more accu-
rately capture the subtleties of linguistic humor. By making
the simplifying assumption that semantic association drives
sentence comprehension, we disregarded the sequential struc-
ture of language that is often important for understanding a
pun. For example, “The actors had one great movie after an-
other. They were on a role.” scores high on funniness but low
on our measures because it leverages the idiomatic expression
“on a roll” to boost the interpretation roll. Since our bag-of-
words model does not account for word sequences, the mea-
sures we derive fail to fully capture the incongruity of many
pun sentences that contain idiomatic expressions. In future
work, we aim to incorporate information about the sequential
structure of a sentence to further improve our language model
and measures of incongruity.

In this paper, we showed how a basic model of sentence
comprehension can illuminate incongruous sentence interpre-
tations with rich social and linguistic meaning. Although our
task in this paper is limited in scope, we believe that it rep-
resents a step towards developing models of language that
can explain complex phenomena such as humor. From the
perspective of language understanding, such phenomena can
serve as probes for developing models of language that ac-
count for the subtleties of linguistic behavior. We hope that

our work contributes to research in humor theory, computa-
tional humor, and language understanding, with the aim to
one day understand what makes us laugh and build robots
that appreciate the wonders of word play.
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