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Abstract

Geographic Knowledge Graph Summarization
by

Bo Yan

Geographic knowledge graphs play a significant role in the geospatial semantics
paradigm for fulfilling the interoperability, the accessibility, and the conceptualization
demands in geographic information science. However, due to the immense quantity of
information accompanying and the enormous diversity of geographic knowledge graphs,
there are many challenges that hinder the applicability and mass adoption of such useful
structured knowledge. In order to tackle these challenges, this dissertation focuses on
devising ways in which geographic knowledge graphs can be digested and summarized.
Such a summarization task, on the one hand lifts the burden of information overload for
end users, on the other hand facilitates the reduction of data storage, speeds up queries,
and helps eliminate noise. The main contribution of this dissertation is that it introduces
the general concept of geospatial inductive bias and explains different ways this idea can
be used in the geographic knowledge graph summarization task. By decomposing the
task into separate but related components, this dissertation is based upon three peer-
reviewed articles (Chapter , Chapter , and Chapter |5|) which focus on the hierarchical
place type structure, multimedia leaf nodes, and general relation and entity components
respectively. Chapter [0] presents a spatial knowledge map interface to illustrate the ef-
fectiveness of summarizing geographic knowledge graphs. Throughout the dissertation,
top-down knowledge engineering and bottom-up knowledge learning methods are inte-
grated. We hope this dissertation would promote the awareness of this fascinating area

and motivate researchers to investigate related questions.
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Chapter 1

Introduction

This chapter provides a general introduction to the dissertation. It starts with the back-
ground and motivation for research in summarizing geographic knowledge graphs. It
first introduces the interoperability demand, the accessibility demand, and the conceptu-
alization demand that have given rise to the geospatial semantics paradigm in GIScience
research. Then it explains the practical need for summarizing geographic knowledge
graphs in this paradigm. Three concrete research questions are raised accordingly to
constructively tackle the big question step by step. A dissertation synopsis is provided

in the end to briefly outline the structure of this dissertation.



Introduction Chapter 1

1.1 Background

Recent years have witnessed an increasing number of research endeavors in geospa-
tial semantics [I, 2] as Geographic Information Science (GIScience) has entered the new
paradigm that demands efficient processing of a large amount of heterogeneous geographic
data, more accessible interfaces for the general audience, and a better conceptualization
model to mitigate the inherent vagueness in geographic phenomenon. Such demands
give rise to research studies that focus on geospatial ontologies and geographic knowl-
edge graphs as they are the embodiment of the broader idea of geospatial semantics
and semantic interoperability. In order to understand their relationship and provide a

background of this research study, let us analyze these three major demands.

Interoperability Demand As a scientific discipline to develop and utilize theories,
methods, technology, and data for understanding geographic processes, relationships, and
patterns [3], GIScience has always been at the forefront of adopting and studying different
kinds of data structures and data models. Traditionally, well-structured relational data
models are the first choice for research as well as applications in the field because such
data structures and models are well-studied and support efficient geospatial operations
(such as spatial range queries or topological queries). As the science of where permeates
almost every aspect of our daily life — from getting around the neighborhood to traveling
in distant destinations, challenges arise because the ubiquity of geographic information
demands a more flexible way of handling geographic data and the restriction of relational
data models sets up a barrier to better solve real-world geographic problems. In addition
to the well-structured data formats that researchers and practitioners alike have been
favoring for a long time, geographic data comes in a variety of flavors as different data

sources follow different protocols for capturing, storing, and transmitting data. For
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example, satellite imageries contain a lot of information about land use and land cover.
However, different remote sensing platforms (such as the Landsat series, ASTER, and
SPOT) have different spatial/temporal resolution and bands. In order to properly use
satellite imageries, preprocessing steps are essential. Another example would be the large
number of online documents that contain geographic locations, such as events in news
articles. These geographic locations may appear in these documents in different surface
forms (such as LA vs Los Angeles) and may need disambiguation steps [4] (the same
surface form may refer to different geographic entities in different contexts) in order
to find the correct association between the unstructured texts and geographic entities.
In order to analyze these live events and discover the hidden geospatial patterns as a
means to gain insights about the socioeconomic trend in our society, new methods are
needed to close the gap between the demand of efficiently consuming the unstructured
noisy geographic data and the supply of the lagging data handling ability of current
Geographic Information System (GIS) tools and infrastructures. A good candidate is
geospatial semantics because it can improve the interoperability of different geospatial
data sources and operations [I]. For instance, Kemp et al. [5] used knowledge bases (a.k.a.
knowledge graphs) as the middleware framework to accommodate semantic heterogeneity

and provide analysis services for environmental information systems.

Accessibility Demand Moreover, the general trend in research and technology is that
innovations and ideas are constantly being ported to a larger audience that are not nec-
essarily experts in the field. This trend benefits both the research community and the
general society in that it opens the dialog that facilitates the communication between
them to share research progress as well as societal needs. By making research innova-
tions more accessible, the general audience are able to appreciate the endeavors that

have been made by numerous scholars and the research society in turn is able to collect
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feedback from the general audience about potential improvements. The recent effort in
democratizing Artificial Intelligence (Al) research is a good example of this trend. By
democratizing Al research, millions of people are able to be more efficient with everyday
tasks. Realizing the potential of Al in our society, researchers have been extending the
technology in various industries, including the financial sector and the health industry.
Furthermore, new issues and challenges emerge as people start to deploy such technolo-
gies in a large scale, such as the ethical issues and the challenge of interpretability in
Al. As an interdisciplinary field, GIScience has always been on the train towards a more
democratized research agenda, i.e. a research practice that makes it more accessible to
a wider audience. While traditional GIS tools such as ArcGISY| and Quantum GIF] re-
quire advanced knowledge in geoprocessing, more accessible tools such as Google Earthf,
CART(Y], and Mapbox] have facilitated common users to create web maps and conduct
basic geospatial analysis by importing data from spreadsheets. After realizing the power
of GIS tools, people have started to embrace a variety of geospatial technologies, such as
using Google Maps to find the shortest route, using Yelp to locate new restaurants, and
geotagging photos on social media. People now have even higher expectations when they
interact with geospatial tools. For example, they want the navigation systems to under-
stand natural language commands and they want location search to be more intelligent
in order to handle complex queries in addition to the address search or Points-Of-Interest
(POI) search. In order to bridge the gap and make the interaction smoother, geospatial
semantics comes into play as a means to tackle this challenge. Studies have known that
semantics organized in (geographic) knowledge graphs can act as nexus between natural

language and GIS systems in order to facilitate the question answering process in the

"https://www.arcgis.com/
Zhttps://www.qgis.org
3https://www.google.com/earth/
“https://carto.com/
Shttps://www.mapbox.com/
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geospatial domain [0} [7, §].

Conceptualization Demand The inherent vagueness in geographic concepts has im-
posed a lot of challenges in processing, analyzing and understanding geographic phe-
nomenon. In addition to mathematical and computational challenges, Montello et al. [9]
discussed behavioral-science methods for determining the referents of vague geographic
regions. Gao et al. [10] used a data-synthesis-driven approach to detect and extract vague
cognitive regions. These attempts, though successful, only provide a temporary solution
to the challenge. The root cause lies in the fundamental conceptualization of different
geographic features or entities. Geo-ontology, as a sub-field of ontology which is a branch
of philosophy, studies the constituents of reality and their relations within the geography
domain in a systematic way [I1]. In this sense, designing the ontology for various geo-
graphic features is an ideal approach to solving the conceptualization issue in GIScience.
As a matter of fact, researchers have been working in this area from a theoretical as well
as a pragmatical perspective. By examining the bona fide (i.e. natural) and fiat (i.e. ar-
tificial) characteristics of mountains, Smith and Mark [I1] explained the implications for
modeling landforms in geographic ontology to support environmental modeling and other
GIS applications. In order to define vague geographic features, Bennett et al. [12] utilized
standpoint semantics (a refinement of supervaluation semantics) that can be grounded
in actual data by geometric analysis and segmentation of the data set. In a more applied
manner, Hu et al. [I3] designed an ontology for trajectory data. Grenon and Smith [I4]
proposed a modular ontology of the dynamic features of reality.

These three demands have given rise to the study of geo-ontologies and geographic
knowledge graphs in GIScience. While they continue to help mitigate the demands, these
areas are not without their own challenges. This dissertation is dedicated to addressing

one of these challenges, namely geographic knowledge graph summarization, amid the big
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data era and the paradigm shift brought by geospatial semantics in GIScience. By first
pointing out and clarifying the three demands, we hope to establish the background as
well as our philosophy in dealing with the challenge of summarizing geographic knowledge

graphs.

1.2 Motivation

While geospatial semantics and the semantic technology in general have been widely
adopted in GIScience [I5], 16, I3], 17], the amount of information accompanying this se-
mantic lift is immense in terms of diversity as well as quantity. As a nexus component in
geospatial semantics, geographic knowledge graph plays an important role in improving
the interoperability, accessibility, and conceptualization in geographic data. However, the
diversity of geographic knowledge graph has imposed a lot of challenges for researchers
and general users. This diversity can be analyzed from two perspectives. Geographic
knowledge graphs are linked with a diverse set of cross-domain knowledge graphs. Be-
cause of the interconnected nature of knowledge graphs, geographic knowledge graphs
usually appear as subgraphs of cross-domain knowledge graphs, such as DBpediaﬁ, Wiki-
datd] and Freebasd® These knowledge graphs interlink geographic entities with entities
from life sciences, linguistic domain, media, social networks, and various user-generated
contents. Such diversity, as a result of the linkage, has introduced a lot of possibilities as
well as challenges. This diversity on the one hand provides geographic knowledge graphs
with the ability to help solve cross-domain problems, such as question answering; on the
other hand imposes challenge on organizing and digesting such heterogeneous information

because usually different domains have different requirements and focus. For example, a

Shttps://wiki.dbpedia.org/
"https://www.wikidata.org
8https://developers.google.com/freebase/
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geographic knowledge graph might include entities regarding human settlements which
have a lot of human-centric information (e.g., demography) as well as entities regarding
biogeography which focuses on the biological aspects. These differences entail different
approaches in organizing, managing, and processing the structured data.

Another perspective for the diversity in geographic knowledge graph is about the
large number of heterogeneous types of information for each entity. Take the DBpedia
geographic entity dbr:Los,Angelesﬂ as an example. This entity is connected to other en-
tities through various relationship types, such as (dbr:Los_Angeles, rdf:type, dbo:City) and
(dbr:Leonardo_DiCaprio, dbo:birthPlace, dbr:Los_Angeles) which link dbr:Los_Angeles with
the class city and an entity (a person) Leonardo DiCaprio via a type relation and a death
place relation respectively. In addition, entities can also be linked to literals. In the
example of dbr:Los_Angeles, information such as population and elevation is expressed
through literals (e.g., numbers). In principle, entities in knowledge graphs can be any-
thing, tangible or intangible. In geographic knowledge graphs, such as the subgraph of
DBpedia or Wikidata, multimedia (e.g., images) are usually part of the graph. These
images, though represented as Uniform Resource Identifiers (URIs), encode information
that is hard to extract otherwise. For example, the image might include different objects
depicting different visual signals that can complement the graph itself.

In terms of quantity, the Linked Data Cloud'] has been growing constantly. In the
2016-04 data dump, DBpedia contain more than 6 million entities of which 1.53 million
are geographic entities. The DBpedia ontology has 754 classes and 2,711 relations/prop-
erties (including object and datatype properties). This sheer amount of information
combined with the diversity of this information has introduced challenges for GIScience

researchers to analyze and consume the powerful geographic knowledge graphs. More-

9nttp://dbpedia.org/resource/Los_Angeles
Ohttps://lod-cloud.net/
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over, although storage is not a major concern, the ability of end users to process such
immense data is limited [I8]. From a psychology perspective, the philosophy of less is
more has been studied in human decision making under the notion of the paradox of
choice [19]. Viewing the knowledge graph as an exploratory tool that users can inter-
act with by iteratively choosing nodes to expand the knowledge, too many nodes on the
graph lead to too many choices and would demotivate users from using the tool in the first
place [20]. As a result, a novel research area, namely knowledge graph summarization
has emerged. Analogous to text summarization where the summary provides a synop-
sis of the original text, knowledge graph summarization aims to identify the underlying
structure and meaning of the graph using a digest graph.

The data mining community has a strong interest in (knowledge) graph summariza-
tion because graph structure is ubiquitous, such as the communication patterns in social
networks and the molecular interactions in biochemistry, and the summarization process
facilitates the reduction of data volume and storage, the speedup of graph algorithms and
queries, the interaction and analysis of graph patterns, and the elimination of noise [21].
In the semantic web community, the summarization task is mostly focusing on the entity
level [22] 23] 24] by considering diversity [25, 26], uniqueness [20], and popularity [20]
with the optional assistance of human intervention [27], 28, 29] for knowledge graph ex-
ploration [30].

However, researchers in GIScience have yet started to explore the questions involving
geographic knowledge graph summarization despite the fact that GIScientists are among
the early adopters of knowledge graphs and semantic web related technologies due to
the three demands mentioned in Section [I.I} This dissertation is motivated by such
drastic contrast between the necessity of devising better ways to summarize geographic
knowledge graphs and a dearth of research effort in the area. Such a research area is

distinct from its siblings that spark interest in the data mining community and semantic
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web community in that spatial component is special [31] and by summarizing geographic
knowledge graphs the original three demands that brought geographic knowledge graphs

to GIScience in the first place should not be ignored.

1.3 Research Questions

In a broad sense, one could ask the research question how to summarize geographic
knowledge graphs? Such a question is too general and could be decomposed into differ-
ent aspects. Numerous methods for graph summarization have been proposed. Some of
them are based on handcrafted features paired with machine learning and data mining
algorithms [32], 33]. Others are based on top-down information such as the graph struc-
ture [34, 22]. In this dissertation, we would like to explore a hybrid approach, namely
combining the bottom-up and top-down approaches in order to reap their complemen-
tary strengths. In this case, we would like to ask the question How can we leverage both
top-down knowledge engineering and bottom-up knowledge learning approaches to help
summarize geographic knowledge graphs?

This dissertation proposes to focus on both top-down and bottom-up approaches for
three major reasons. First, the geographic system is a complex system which involves
humans, environment, and the intricate interplay between them. Geographic knowl-
edge graphs, acting as proxies to connect different components in this complex system
in a semantically-enriched manner, are thus also complex. Similar to other domains
such as vision, language, control, and decision-making where the dichotomy between
hand-engineering (top-down knowledge) and end-to-end training (bottom-up learning)
is stalling the progress of developing models and methods that can generalize, research
in geographic knowledge graph summarization should take into account the challenge of

combinatorial explosion due to the complexity of the system. Second, the combination
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of top-down and bottom-up approaches has proven to be effective for developing more
generalized models. The principle of combinatorial generalization is constructing new
inferences, predictions, and behaviors from known building blocks [35]. Such an idea has
been explored in vision where the building blocks take advantage of the spatial transla-
tion invariance [306], 37] in images, in language where the building blocks are informed by
the temporal translation invariance [38] in sentences, and in network analysis where the
building blocks are from the node and edge permutation invariance [39] in graphs. To
give a concrete example in the natural language domain, humans are able to utilize a few
sets of elements (words) and combine them in limitless ways (sentences). This ability to
make infinite use of finite means [40] marks the key component of human intelligence.
Inspired by the wisdom in biology where nature and nurture complement each other, this
dissertation acknowledges the fact that top-down and bottom-up methods are compatible
with each other and they can work together to find a solution to the geographic knowledge
graph summarization problem. Third, the spatial | component in geographic knowledge
graphs is a natural source of top-down knowledge. Unlike domain-agnostic knowledge
graphs, geographic knowledge graphs are accompanied by a number of hidden patterns
informed by the geographic components, such as spatial correlation and spatial depen-
dency. Leveraging such geospatial inductive bias (i.e. top-down knowledge) is helpful
in the context of geographic knowledge graph summarization. Analogous to the spatial
translation invariance, temporal translation invariance, and permutation invariance in
vision, language, and network analysis, geospatial contextual invariance (i.e. the com-
mon ways in which geospatial context can inform nearby spatial /non-spatial attributes)
is essential in dealing with the combinatorial generalization challenge in summarizing
geographic knowledge graphs.

After establishing the general research question, let us decompose it into several

Y Spatial, geographic, and geospatial are used interchangeably in this dissertation.
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related small questions to obtain a more tangible idea of the scope and challenge of
this research. Considering the composition and diversity of geographic knowledge graphs
explained in Section[1.2] the question of summarization can be treated from three aspects,
namely the hierarchical components, the multimedia leaf node components, and general
relation and entity components. Thus, this dissertation is aiming to tackle three research
questions regarding geographic knowledge graph summarization.

Research Question 1: How do we summarize the hierarchical place type information
in geographic knowledge graphs?

This research question focuses on the hierarchical component, namely the place types.
This is an important component in geographic knowledge graphs because the hierarchical
place type structure reflects the way humans conceptualize the relationship of different
geographic categories. In a sense, by isolating and emphasizing this hierarchical place
type component, we also aim to preserve the conceptualization power of the ontology
accompanied by the geographic knowledge graph and make sure that the summarization
process would still satisfy the conceptualization demand of semantically lifting geographic
data. While place type conceptualization and their hierarchical relationships (i.e. super-
class and subclass) are merely part of the geo-ontology, they pose more challenge than
the axioms in the summarization process because these conceptualizations are related to
philosophical human construct — an area where machine intelligence still struggles —
whereas the axioms are related to first-order logic — an area where machine traditionally
excels.

To give a concrete example, consider the place type hierarchy in Yelp dataH (shown
in Figure . On the top level there are 22 root place types (e.g., Restaurants, Shopping,
Health & Medical, etc.) and on the bottom level there are 1,030 place types. A naive

approach would be to choose a particular level and use the place types in that level as the

Zhttps://www.yelp.com/dataset
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Figure 1.1: Place type hierarchy visualization for Yelp data. These place types are

commonly used in geographic knowledge graphs and are important part of the con-

ceptualization in the ontology.
summarized place types. However, it’s hard to decide on the cutoff level because such
a method is dependent on the particular place type hierarchy. In addition, uniformly
choosing place types from the same level ignores the fact that hierarchical conceptual-
izations of different place types are not balanced. Certain place type conceptualizations
are more expressive and informative than others. For instance, as shown in Figure [1.1},
the branch for Restaurants has much more place types than the branch for Education.
As a result, by uniformly cutting off at a particular level, a lot more information is lost
for the Restaurants branch than for the FEducation branch. In this case, a bottom-up
approach appears to be more generalizable for place type summarization across different

geographic knowledge graph datasets. Instead of focusing on the hierarchical structure,
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the data-driven method could essentially take advantage of the linguistic aspects of the
place type by examining the meaning of each concept in the hierarchy (ontology).

However, the words associated with these place types are merely proxies for geographic
feature types in the knowledge graph. In order to reveal the underlying geospatial seman-
tics [16], the model also need to be ware of the geospatial context. The main challenge
of this research question then comes down to developing a model that marries the data-
driven method and the geospatial contextual knowledge. The objective would be to use
the result of the model to guide the place type summarization process, such as ranking
and selecting relevant place types for the use case.

Research Question 2: How do we summarize multimedia leaf node information, such
as images, in geographic knowledge graphs?

This research question focuses on the multimedia leaf node components. As men-
tioned in Section [1.2] geographic knowledge graphs are versatile because it can carry
multimedia information, such as images, in the leaf nodes. This special ability also cor-
responds to the accessibility demand in the geospatial semantics paradigm because this
visual information is a catalyst for a better human-machine interaction. Because of this,
in research question 2, we are dedicated to developing approaches to summarizing these
multimedia nodes using images as examples.

Images in geographic knowledge graphs only exist in leaf nodes as Uniform Resource
Locators (URLs) and they do not have labels (e.g., mountains, rivers, etc.). In order
to select a subset of relevant images and summarize the whole graph by striking the
balance between commonality and variability, we need to develop robust algorithms to
help label the numerous leaf image nodes first. Although existing image classification
models can assist in labeling the images, they usually suffer from a tendency towards
biases [41] because there is a discrepancy between the training data distribution and

the distribution of more complex real-world systems [42]. Since our task domain is
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in GIScience, we are interested in devising ways in which such bias can be mitigated
for labeling images in geographic knowledge graphs. One potential solution to such a
challenge is to incorporate geospatial signals in addition to the visual stimuli in current
state-of-the-art models. This idea corresponds to the notion of geospatial inductive bias
(which will be explained in detail in Chapter [2)) and is in line with the idea of integrating
geospatial components in Research Question 1.

As there are different ways to consider geospatial components, such as geographic
distance and topological relationship, under different granularities, such as neighborhood
level, city level, and country level, it would be worthwhile to explore different integration
strategies with the visual components on images. This exploration gives us guidance
on the extent to which different geospatial components and different integration strate-
gies can benefit the image labeling process and subsequently the summarization process
of geographic knowledge graphs. Because both the image classification model and the
geospatial inductive bias are generic methods and ideas, the resulting hybrid models can
be applied to a variety of geographic knowledge graphs.

Research Question 3: How do we summarize relations and entities in geographic
knowledge graphs in general?

While Research Question 1 and Research Question 2 aim to tackle the hierarchical
place type structure in the geo-ontology and the multimedia leaf nodes in geographic
knowledge graphs that correspond to the conceptualization demand and the accessibility
demand respectively, Research Question 3 is focusing on finding the general solution to
the summarization problem. After dealing with the place type information in the ontology
and the leaf image nodes which are important components in geographic knowledge
graphs, we would like to explore summarization approaches that can be applied to general
relations and entities (besides place type relations and leaf image node entities).

For text summarization, there are usually two major types, namely extraction-based
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and abstraction-based text summarization. Extraction-based summarization extracts
words and sentences directly from the original text based upon relevance and importance
while the abstraction-based one involves paraphrasing and provides a more condensed
summary. Similar to text summarization, knowledge graph summarization methods can
also be categorized into extraction-based and abstraction-based approaches. More specif-
ically, according to the core techniques employed, popular ones include grouping or aggre-
gation based (extraction or abstraction), bit compression based (extraction or abstrac-
tion), simplification or sparsification based (extraction), and influence based methods
(extraction or abstraction) [2I]. Since we would like to maintain the interoperability
that geographic knowledge graphs created, extracting a subset of relations and entities
from the original graph subsequently making existing connections and conceptualiza-
tions intact is preferred. In this case, it is more desirable to employ the simplification or
sparsification based approaches.

There are two major challenges in tackling this question. The first one is the subjec-
tivity issue in summarizing geographic knowledge graphs. Since the relative significance
of a relation or entity in identifying the graph is subjective to the application field, it
is hard to universally define any metrics or evaluation schemes to justify the choice.
Fortunately, studies [43] 44] have shown that Wikipedia articles are relatively unbiased.
So leveraging curated, neutral summaries in Wikipedia articles would be a good start.
Such an idea is more obvious considering that there is a clear correspondence between
Wikipedia articles and many major knowledge graph repositories [45], such as DBpedia.
The second challenge is related to the geospatial component in geographic knowledge
graphs. While the semantics of a knowledge graph is well-established, evidence [46, [47]
has shown that geospatial semantics (in a geographic knowledge graph) needs special
care. In order to better summarize geographic knowledge graphs, the proposed method

should explicitly model geographic components and make them the first-class citizens.
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1.4 Dissertation Synopsis

This introduction chapter describes the background and motivation behind the rising
interest in geographic knowledge graphs and the geospatial semantics domain in general.
It then explains in detail the challenges and discusses three open questions that this
dissertation is aiming to answer. The core content of this dissertation is based upon
three individual yet related articles. These three articles (Chapter , Chapter , and
Chapter |5|) provide answers to three research questions raised in Section . These three

chapters first appeared as various publications shown below:
e Chapter [3; Yan, Janowicz, Mai, and Gao [48].
e Chapter [} Yan, Janowicz, Mai, and Zhu [49].
e Chapter [5; Yan, Janowicz, Mai, and Zhu [45].

The remainder of this dissertation is organized as follows.

Chapter [2| presents background knowledge and foundational concepts that have been
used frequently in this dissertation. Specifically, we introduce and define the concept of
geospatial context, geospatial inductive bias, knowledge graph, and geographic knowledge
graph. By pointing out the fact that GIScience research has been implicitly using the idea
of geospatial context and geospatial inductive bias, this chapter establishes the unification
of these frequently used ideas as a foundation for the methods used in later chapters. It
then introduces the summarization task for (knowledge) graphs, classifies existing work
based on their core techniques, and reviews related methods and algorithms. Finally,
it points out the need for methods that consider geospatial inductive bias to better
summarize geographic knowledge graphs.

Chapter |3| presents a latent representation learning method for place types. Place

types are typically represented in a hierarchical structure and are widely-used as con-
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ceptualizations in the ontology for geographic knowledge graphs. Traditionally, latent
representations of place types are learned via their distributional semantics based on
their occurrences in linguistic contexts. In this chapter, we ground these place types
into the geospatial context and learn their embeddings based on geospatial distributional
semantics. Geospatial inductive bias is applied using an information-theoretic distance
lagged approach on both local and global neighborhoods. The final embeddings carry
geospatial semantics content that is otherwise ignored by other approaches. These em-
beddings can be used to determine the similarity and relatedness of different place types
and help decide the relevance scores in geographic knowledge graph summarization tasks.

Chapter [4| presents a method that utilizes geospatial contextual information as a
Bayesian prior to help improve the classification of images for different place types. The
major challenge in image classification is that the bias in training samples is likely to
affect the classification result of unseen patterns. In order to facilitate the classifica-
tion process, the model considers both the visual stimuli and the geospatial context in
which the image is located. Geospatial inductive bias is applied by using the latent
representations (Chapter [3)), spatial co-location patterns, and spatial sequence patterns.
This classification method can be used in geographic knowledge graph summarization to
help select different types of images in a neighborhood as image labels are typically not
specified in geographic knowledge graphs.

Chapter [5| presents a spatially-explicit reinforcement learning model for geographic
knowledge graph summarization. The model formulates the summarization task as a
sequential decision making process through trial and error. The learning process is pow-
ered by the theories in reinforcement learning. The geospatial inductive bias is applied
by introducing an explicit spatial action for the reinforcement learning agent. While
Chapter [2| and Chapter [3| present two special cases of summarization geographic knowl-

edge graphs based on two important components (place types and image leaf nodes), this
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chapter aims to provide a more generic approach.

Chapter [6] presents a web map interface that facilitates the exploration of geographic
knowledge as a case study for summarizing geographic knowledge. The interface takes
advantage of the proposed geocoding enrichment process as well as an entropy-based
geographic knowledge graph summarization approach. In order to provide a scalable
system, it adopts the serverless and scalable framework using Amazon S3, AWS Lambda,
and Amazon API Gateway provided by the Amazon Web Services. Linkage discovery
and spatial pattern discovery are presented as examples to illustrate the usefulness of the
web map interface as a means of discovering spatial knowledge.

Finally, Chapter [7| concludes the dissertation by providing a summary and discus-
sion of previous chapters. In addition, research contributions including theoretical and
practical implications are discussed for this research. Several limitations are listed and

possible future research directions are proposed for further investigation.
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Chapter 2

Foundational Concepts and Theories

This chapter provides two pieces of information — the background knowledge to under-
stand the ideas and methods used in the dissertation and related work for (knowledge)
graph summarization. The background knowledge includes the concept of geospatial
context and geospatial inductive bias as well as the definition of knowledge graphs and
geographic knowledge graphs. We introduce this background knowledge by means of
providing intuitive examples, comparing with other related fields, and explaining based

on existing work.
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2.1 Geospatial Context and Geospatial Inductive Bias

This section first explains the concept of geospatial context which is usually implicitly
used in a variety of GIScience research and reviews several research studies that used
this idea. Then it brings up the idea of geospatial inductive bias that is central to the
methods used in later chapters. While similar concepts have been used in research that
incorporates geospatial components, we believe it is necessary to explicitly define these

terms and clarify their implications.

2.1.1 Geospatial Context

There is a consensus among GIScientists that locations are not just two extra columns
(one for latitude and one for longitude) in your spreadsheets. Such an understanding im-
plies that location data or geospatial data should be treated differently compared with
data with no spatial attributes. Indeed, spatial is special. By studying spatial data or-
ganization, analysis and interpretation, spatial statistics has pointed out the importance
of many geospatial components, such as distance [50], direction [51], spatial autocorre-
lation [52], spatial nonstationarity [53], and spatial interaction [54]. While these interre-
lated concepts and statistics have their own emphasis on different aspects of geospatial
data, they have some commonalities. First of all, they all have a reference area. While
one can still calculate these statistics for an arbitrary number of geographic data in
an arbitrary sized area, the scale and the context [55, [56] are crucial for interpreting
these statistics meaningfully. Regardless of the scale (local or global), it is important to
maintain the consistency of the reference area in measuring these values. Second, while
these statistics are grounded in geographic locations, their values are usually from other
attribute information, such as temperature and humidity.

In the hope of unifying these different but related terminologies as well as generalizing
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the ideas behind these research efforts, we propose the concept of geospatial context. As
the name suggests, instead of defining the exact type of statistics or aspects in which
geographic component is used, geospatial context is a broad concept and focuses more on
the fundamental idea that the context in which geospatial data and their relationships

are examined is an important consideration in GIScience research.

Definition 1 (Geospatial Context) Given a geographic dataset, each entity e has a
geospatial context GC, = (R., A., fe) where R, is the reference area, A, is the set of values
associated with e, and f. is the function to encode the geospatial contextual information

fore.

The reference area R is a generic term that defines the scale of the geospatial context.
It can be measured by the absolute area surrounding the entity, such as the buffer area
or determined by the total area covered by a fixed number of nearby entities. This
flexibility allows for customizable scales in which geographic data is aggregated. In
addition, the reference area R is not uniformly defined across all entities in the dataset
and can even change depending on the choice of A and f. This dynamic nature of R
reflects the spatial homogeneity and heterogeneity of geographic data. The value set A
determines the types of attributes used in the study. It is usually a subset of all the
attributes associated with the dataset. This subset of attributes can be in the form
of nominal, ordinal, interval, or ratio data. For example, activity categories (nominal),
temporal bands (ordinal and interval), and check-in counts (ratio) are all used in a
study to encode behavior-driven temporal signatures of different place types to improve
reverse geocoding [57]. Typically, the same set of A is used across the whole dataset.
There can be exception if certain attributes are missing for individual entities or certain
attributes are related. The encoding function f takes the A values of current entity and

all geographic entities within the reference area R as inputs and outputs the embedded
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geospatial contextual information. As mentioned before, this function f can be commonly-
used spatial statistics, such as distance decay factors, Moran’s I [58], and Ripley’s K [59).
It can also be analytical patterns [60] or approximation functions learned from optimizing
the parameterizations to satisfy particular geographic patterns [61], 62, [63].

Numerous research studies have either implicitly or explicitly adopted the concept
of geospatial context and taken advantage of the patterns in the geospatial contextual
information to improve model performance and help with the decision-making process.
In criminology, distance-decay function has been used for profiling [64]. In data man-
agement, spatial signatures [65] have been used for ontology matching across different
geospatial datasets. In information retrieval, geospatial context has been used for music
recommendation and achieved better results compared with non-spatial models [66]. In
computer vision, location context has been used as Baysian priors [61] as well as features

in neural networks [62] to improve image classification accuracy.

2.1.2 Geospatial Inductive Bias

As this dissertation aims to tackle the geographic knowledge graph summarization
problem by means of a combination of top-down and bottom-up approaches, one of the
concerns is to develop an ideal learning process. Typically, the learning process gains
knowledge by observing available data and finds the solution that better explains the
underlying patterns or achieves high rewards. Since in any realistic learning process the
instance space (all possible data points) would be too large to be covered by the training
dataset, assumptions or preferences have to be made on the hypothesis space (e.g., rules
that determine the decision boundaries for a classification problem) for inductive methods
to achieve on average better results than random guessing [67]. This type of a priori

assumption or preference is called the inductive bias [67, 68, [69] in the machine learning
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and Al community in general.

The inductive bias allows the learning algorithm to prioritize one solution over the
other [67]. This bias is manifested in different forms. To overcome overfitting, regular-
ization might be incorporated in the model as an inductive bias. For Bayesian models,
an inductive bias might be a specific parameterization or the choice of prior distribution.
In graphical models, the push towards the greatest randomness and the memorylessness
assumptions are inductive biases in Maximum Entropy Markov Models. In neural net-
works, the inductive bias is represented as a preference towards a particular network
architecture, such as convolutional vs. recurrent blocks.

Many approaches in GIScience as well as other application domains which utilize
geospatial data use the idea of geospatial inductive bias. Instead of giving a formal defi-
nition, we use this term to generally refer to inductive biases which impose constraints or
assumptions based upon geospatial contextual information obtained from the geospatial
context. While linear regression has the inductive bias that the data-generating process
can be explained simply as a line process corrupted by additive Gaussian noise [35], geo-
graphically weighted regression [53] has the geospatial inductive bias that separates the
region into local subregions (geospatial contexts) to model spatially varying relationships
(spatial nonstationarity). Geospatial inductive bias can also be the choice of spatial in-
dexing, tessellation, and aggregation scale. Geospatial semantics is a source of geospatial
inductive bias and it can be used as a means to inform people’s sense of place to an extent
comparable to that of pure cognitive approaches [10]. In Chapter [3] we will introduce
an information-theoretic distance lagged approach as a means of geospatial inductive
bias to adjust the distribution of POIs and learn latent representation for place types in
local as well as global geospatial contexts. In Chapter 4] the geospatial inductive bias
is based on the sequentially-dependent geospatial contextual information and is modeled

as spatially-explicity Bayesian priors to facilitate the classification of images of differ-
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ent place types (e.g., restaurants, hotels, etc.). In Chapter , we exploit the geospatial
inductive bias by explicitly introducing a spatial action in the policy agent in order to
account for the spatial dependencies in the geographic knowledge graph summarization

process.

2.2 Geographic Knowledge Graphs

In this section, we explain the components of a knowledge graph and the commonly-
used data model to represent knowledge graphs. Then we provide the general definition
of a geographic knowledge graph and point out its distinctions from other knowledge
graphs.

While the idea behind knowledge graphs is nothing new [70, [71], [72], [73], it is experi-
encing a renaissance among a wide range of research communities (including GIScience)
after its successful debut in large scale data management systems (including Google
search engines) and becoming the common support for browsing, searching, and discov-
ering knowledge. Knowledge graphs are structured datasets that describe entities and
their relationships. The entities can be anything and the relationships can have any
type. This flexibility has enabled knowledge graphs to become an important component
of the semantic web [71]. Although knowledge graphs can be implemented using different
underlying data structures and conform to different standards, most knowledge graphs,
such as DBpedia, Wikidata, and Freebase, support the Resource Description Framework
(RDF) model.

The atomic data entity in RDF is the triple, which is composed of three parts in
the form of subject-predicate-object (s-p-0) expressiondl] (e.g. Santa_Barbara isPartOf

California). Subjects and objects can be entities (objects can also be literal strings)

IThe alternative head-relation-tail or h-r-t expressions are also used in some literature and this
dissertation uses both.
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while predicates define the relationships between subjects and objects. Every entity
or relationship is represented by an URI which uniquely identifies it. Conceptually and
equivalently, the entities in the RDF model are nodes and the predicates are edges (links)
in the graph. Here we give the definition of a knowledge graph considering the duality

that it is both a graph model and represented by the RDF' triples.

Definition 2 (Knowledge Graph) For a set of RDF triples T where each triple t; =
(si,piy0i) € T, a Knowledge Graph is a multi-relational graph G = (V,E) where V =

{sil(si,pi,0:) € T} U {0i|(5i,pi,0i) € T} and € = {pi|(s:,pi,0:) € T'}.

From the definition we can see that a knowledge graph is conceptually a graph but rep-
resented as RDF triples for computational and reasoning purposes. Unlike homogeneous
graphs, a knowledge graph usually contains hundreds of thousands of different types of
relations (such as isPartOf, headquarterOf, locatedIn relations). Homogeneous graphs,
such as the friendship network, the coauthorship network, or the molecular interaction
network, only contain one type of relation, such as the friendship relation, collabora-
tion relation, or molecular interaction. Because it models different relationships in the
graph, a knowledge graph is considered a multi-relational graph (a.k.a. heterogeneous
information network in some literature).

Because of the duality, research efforts have long been focusing on two parts, the
RDF part, such as reasoning [74], SPARQLP| queries [75, [76], and triple pattern frag-
ment [77, [78, [79], and the network part, such as entity resolution [80, B2, 81]. There
is a trend to unify these two separate yet related parts in the knowledge graph and
semantic web community. Mika [82] introduced a tripartite model that extended the bi-
partite model of ontologies with the social dimension and showed how community-based

semantics emerges from this model through a process of graph transformation. In order

2The query language for RDF data.
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to provide support for fine-grained latent coherence between entities and predicates in
graph-based authority ranking, Franz et al. [34] presented the TripleRank model to cap-
ture the additional latent semanticsby means of statistical methods in order to produce
richer descriptions of the available data. Schlichtkrull et al. [83] adopted the idea of
latent representation learning in Graph Convolutional Networks (GCN) and introduced
Relational Graph Convolutional Networks (R-GCN) to handle the highly multi-relational
data characteristic of realistic knowledge graphs.

Geographic knowledge graphs are domain specific knowledge graphs. In a broader
sense, any knowledge graph that contains geographic entities is a geographic knowledge

graph. Here we give the definition of geographic knowledge graphs.

Definition 3 (Geographic Knowledge Graph) Given a Knowledge Graph G = (V,£),
for a propositional function P(x) denoting ‘g(x) is a meaningful geographic identifier’
where function g maps an input x to a geographic identifier, if 3v € V P(v) is true then

G is a Geographic Knowledge Graph.

The mapping function g would try to map an entity/node to a geographic identifier.
For example, if the entity s is University of California Santa Barbara, g(s) would be,
for instance, the centroid point coordinates or the polygon representing the university
in Well-Known Text (WKT). Such geographic identifiers can be any geometry, such as
points, lines, and polygons, in any representation, such as WKT, geojson, and shapefile.
The most common geographic identifiers used in geographic knowledge graphs are points
represented by WKT. This definition does not restrict geographic knowledge graphs to
be knowledge graphs with only geographic entities because geographic entities are usu-
ally associated with nonspatial attributes such as names and geographic types. Ideally,

a geographic knowledge graph should contain predicates that represents topological rela-
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tionships of geographic entities. With the assistance of GeoSPARQIF] geospatial queries
can be conducted directly on RDF data and this capability accommodates systems based
on qualitative spatial reasoning and systems based on quantitative spatial computations.

As the idea of geographic knowledge graph is still in its infancy, there are only a hand-
ful of research about it. Mai et al. [84] visualized the distribution of geographic features
in a semantic space using the DBpedia geographic knowledge graph based on the idea of
semantic enhancement in spatial visualization [85]. Janowicz et al. [86] comprehensively
analyzed the systematic errors in geographic knowledge graphs and their potential causes
and discussed lessons learned and means to avoid some of the introduced pitfalls in the
future. Regalia et al. [87] used a geographic knowledge graph to showcase a proxy that
can transparently run on top of arbitrary SPARQL endpoints to enable the on-demand
computation. Kejriwal and Szekely [88] presented a dataset that embeds populated place

in the Geonamesﬂ knowledge graph using neural embeddings methods.

2.3 Graph Summarization

In this section, we talk about two related concepts, namely graph summarization and
knowledge graph summarization. Graph summarization is an area that has attracted a
lot of research efforts in the data mining and data management communities. We explain
the objectives of graph summarization, discuss its challenges, and review existing meth-
ods. Strictly speaking, for the knowledge graph summarization, we are in fact explaining
the idea of semantic graph summarization which is a superset of knowledge graph sum-
marization. Nonetheless, they have the same objective and share the same methods. The
idea of knowledge graph summarization will be discussed and existing methods reviewed.

Finally, we point out that methods specifically tailored towards geographic knowledge

Shttps://en.wikipedia.org/wiki/GeoSPARQL
“https://www.geonames.org/
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graphs are needed in order to capture the geospatial inductive bias in geospatial contexts.

The idea of graph summarization has becoming popular in the context in which an
enormous amount of graph structured data has been produced on a daily basis and hu-
man’s ability to process such a large amount of information and identify hidden patterns
in the data is limited. The objective of the graph summarization task is therefore to
facilitate the identification of structure and meaning in data [21] and assist the discovery
of hidden patterns. It helps to reduce data volume and storage, speed up graph algo-
rithms and queries, support interactive analysis, and eliminate noise. However, there
are also many challenges for this task. First of all, although graph summarization can
reduce the data volume, the summarization algorithm itself is faced with the challenging
of processing large data inputs. Efficient algorithms are thus critical in the summariza-
tion task. Second, graph data is complex. The graph structure is versatile because of
the underlying structure (e.g. homomorphism and isomorphism) and this versatility has
imposed challenges in dealing with graph data. The heterogeneity of nodes and edges in
real-world graphs makes analyzing graph patterns a complicated task. The graph can be
dynamic and evolve over time. In addition, the noise and missing information in graph
data add another layer of complexity. Third, graph summarization is subjective. De-
pending on the domain knowledge and user preference, the consideration of the trade-off
among space, time, and information preservation in the graph summary, the complex-
ity of mapping the solutions to recover the original graph from the summary, and the
optimization formulation, the summarization could be quite different. Decision for each
of the components during the process is subjective. As a result, the evaluation is also
subjective and challenging. The evaluation of a graph summarization result is heavily
dependent on the application domain. For a social network, the evaluation will be based
on whether the summary is able to preserve community information. For a visualization

task, the evaluation will be based on user studies and qualitative criteria.

28



Foundational Concepts and Theories Chapter 2

Depending on the core techniques employed, graph summarization methods include
grouping or aggregation based, bit compression based, simplification or sparsification
based, and influence based [2I]. The grouping or aggregation based approaches ag-
gregate nodes into supernodes based on application-dependent optimization functions.
Grouping-based methods are among the most popular approaches for graph summariza-
tion. For example, by clustering nodes and discovering communities [89, [90], algorithms
can help obtain a summary view of the graph. LeFevre and Terzi [91] proposed a hi-
erarchical clustering-based node grouping algorithm (GraSS) for graph summarization
that can target accurate query handling. Toivonen et al. [92] developed a method that
merges structurally equivalent nodes in a way that minimizes approximation error and
maximizes compression. The goal of bit compression-based methods is to minimize the
number of bits needed to describe the original graph. Works in this category typically
formulate summarization as a model selection task and employ the two-part Minimum
Description Length (MDL) principle [21]. Simplification-based methods summarize the
graph by removing unimportant components (nodes and edges) to produce a sparsified
graph. For instance, OntoVis [93] provides a visualization tool to help filter nodes in
order to facilitate the understanding of large heterogeneous networks. Influence-based
approaches summarize the graph by formulating the tasks as an optimization process
and understanding the patterns of influence propagation in the network. For example,
Mehmood et al. [94] adopted community-level social influence information propagation
analysis to summarize social networks.

In the context of knowledge graphs, the summarization task has a different scope.
Knowledge graph summarization is specifically focusing on labeled, directed, heteroge-
neous graphs with semantics and type information. Based upon the algorithmic ideas,
Cebiri¢ et al. [05] classified knowledge graph summarization methods into four categories,

namely structural methods, pattern-mining methods, statistical methods, and hybrid
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methods. Zhang et al. [96] proposed to summarize the ontology by extracting a set of
salient RDF sentences according to a re-ranking strategy. Khatchadourian and Con-
sens [97] developed a summarization method by combining text labels and bisimulation
contractions. Zneika et al. [08] summarized large RDF graphs using top-K approximate
graph patterns. Song et al. [99] utilized approximate graph pattern matching to sum-
marize entities in terms of their neighborhood similarity up to a certain hop. Hose and
Schenkel [I00] proposed a sketch-based query routing strategy that takes into account
source overlap in order to select sources from the knowledge graph cloud.

For geographic knowledge graphs, the geographic components add another layer of
complexity. As mentioned in Section [2.I] the hidden pattern in geospatial contexts
contain a variety of information that could potentially assist the summarization process
for geographic knowledge graphs as a large number of entities have their corresponding
geographic location. Existing methods fail to consider the rich geospatial contextual
information and cannot take into account the inherent geospatial inductive bias in the

summarization algorithms.

2.4 Summary

In this chapter, we laid out the foundational concepts and theories used in this dis-
sertation. The first concept is geospatial context which we provided the formal definition
to help unify existing work using the idea of geospatial contextual information to develop
better models for GIScience problems. Based on the notion of geospatial context and the
idea of inductive bias in Al research, we introduced the concept of geospatial inductive
bias. We gave examples showing how this fundamental idea of imposing constraints or
assumption based on geospatial contextual information is widely-adopted in GIScience

research. After establishing these foundational concepts and ideas in solving GIScience
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questions, we provided the definition of knowledge graphs, acknowledging the its duality.
The definition of geographic knowledge graphs was introduced. In the end, we pre-
sented challenges of summarizing (knowledge) graphs, reviewed existing algorithms, and
pointed out the need for new methods that are tailored towards geographic knowledge

graph summarization tasks.
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Chapter 3

Reasoning About Place Type

Similarity and Relatedness

In this chapter, a spatially-augmented latent representation learning method is proposed
to embed place types. Such a method explicitly considers geospatial contextual informa-
tion. By comparing the result with existing word embedding result using one hierarchy-
based evaluation scheme and two human judgment-based evaluation schemes, we show
that by applying the spatial context augmentation and geospatial inductive bias the
embeddings are able to capture important geospatial semantics. Such embeddings are
important for geographic knowledge graph summarization systems to select and rank the

relevance of different place types.
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Abstract Understanding, representing, and reasoning about Points Of Interest (POI)
types such as Auto Repair, Body Shop, Gas Stations, or Planetarium, is a key aspect
of geographic information retrieval, recommender systems, geographic knowledge graphs,
as well as studying urban spaces in general, e.g., for extracting functional or vague cog-
nitive regions from user-generated content. One prerequisite to these tasks is the ability
to capture the similarity and relatedness between POI types. Intuitively, a spatial search
that returns body shops or even gas stations in the absence of auto repair places is still
likely to satisfy some user needs while returning planetariums will not. Place hierarchies
are frequently used for query expansion, but most of the existing hierarchies are relatively
shallow and structured from a single perspective, thereby putting POI types that may be
closely related regarding some characteristics far apart from another. This leads to the
question of how to learn POI type representations from data. Models such as Word2Vec
that produces word embeddings from linguistic contexts are a novel and promising ap-
proach as they come with an intuitive notion of similarity. However, the structure of

geographic space, e.g., the interactions between POI types, differs substantially from
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linguistics. In this work, we present a novel method to augment the spatial contexts of
POI types using a distance-binned, information-theoretic approach to generate embed-
dings. We demonstrate that our work outperforms Word2Vec and other models using
three different evaluation tasks and strongly correlates with human assessments of POI
type similarity. We published the resulting embeddings for 570 place types as well as a

collection of human similarity assessments online for others to use.

3.1 Introduction and Motivation

Semantic similarity and relatedness measures are prominent components of a variety
of methods in geographic information retrieval, recommender systems, ontology engineer-
ing, and so forth; see [I0T] for a recent overvieWE] Given the importance of categorization
for human cognition [103], place types are one of the three components (location and name
being the other two) published by all major gazetteers and POI databases.ﬂ Place types
act as a proxy for functions that a particular place of a given type affords. Intuitively,
the presence of a nightclub (irrespective of its name or location) implies a certain ex-
posure to noise during nights, the presence of a younger demographic, singles, a higher
potential for drug related crimes, the possibility of getting a drink or snack late at night,
and so forth. While each nightclub may differ to some degree, nightclubs share many of
their characteristics with bars and the broader category of music venues, while they can
neither act as substitute for bakeries nor barbers. Consequently, in the absence of POlIs

of a certain type, e.g., Nightclub, within a search radius, a system should return a place

'Similarity and relatedness are related concepts, in fact similarity is a subproperty of relatedness but
not the other way around. To give an intuitive example, the Griffith Observatory is related to Griffith
Jenkins Griffith via a donor0f relation but the observatory and the person are not similar. Many
techniques, especially those based on linguistic aspects (including Word2Vec [102]) instead of formal
semantics, cannot effectively distinguish between similarity and relatedness. Consequently, we approach
them here together. Two of our three evaluation schemata, however, will explicitly focus on (human)
assessments of similarity.

2In the following, we will use Point of Interest (POI) and place as synonyms.
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of a similar type, e.g., Bar. This implies that semantic similarity measures should reflect
human assessments of similarity, be it about place types or another topic.

To measure similarity, one may syntactically compare type labels, compute the dis-
tance in a place type hierarchy, count common place in their extensions, and so forth.
New methods rely on comparing their linguistic meaning by learning word embeddings
for all types and then computing their Cosine Similarity. However, such approaches do
not consider any spatial information that is implicitly embedded in these place types,
such as their co-occurrence patterns. This idea resembles the distributional semantics in
linguistics and can be further summarized as: place can be categorized by their neighbors.
The original counterpart in the linguistics is: You shall know a word by the company it
keeps [104].

In this work, we embrace the idea of distributional semantics in geographic space and
explore the similarity and relatedness of place types using different latent representations
with augmented spatial contexts. Spatial contexts are augmented both intrinsically and
extrinsically. In order to consider distance in our approach, distance decay and distance
lags are used as intrinsic adjustments to augment the spatial contexts. We realize that
there is a notable difference between place and space, namely place is space infused with
human meaning [105], so we take check-in counts, i.e., popularity, as a proxy for human
activities into consideration as well. Finally, and to adjust for the fact that place types
follow a power law distribution, we also take the uniqueness of types at a certain distance
into account. We approach both aspects from an information theoretic perspective, i.e.,
by measuring nformation content.

The contributions of this paper are as follows:

e We illustrate that the commonly used linguistic models alone cannot adequately

capture the structure of geographic space such as the distinctive patterns in which
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places of different types co-occur. Instead, we propose a novel model based on
augmented spatial contexts that make geographic distance a first-class citizen and
adjust these contexts by an information theoretic perspective on the uniqueness
of place types within a certain distance as well as their popularity as a proxy for

human activities.

e We provide a comprehensive evaluation of different place type embeddings with
respect to the top-down Yelp POI category hierarchy. This evaluation essentially
brings inductive (bottom-up place type embeddings) and deductive (top-down place

hierarchy structure) approaches together.

e We establish two baselines using Amazon’s Mechanical Turk Human Intelligence
Tasks (HIT) for measuring the similarity and relatedness of place types. Our eval-
uation result shows that our method has better accuracy than purely linguistically
based embeddings, which confirms the importance of explicit spatial contexts. In
fact, we demonstrate the remarkable fact that similarity assessments derived from
embeddings created exclusively via our augmented spatial contexts, i.e., by merely
studying spatial patterns of place types and their relative popularity, correlate
strongly with human similarity judgments despite the fact that humans can rely
on their rich cultural experience, the meaning of type labels, their background

knowledge, and so forth.

e While the resulting place type embeddings can be used for a wide range of tasks that
rely on similarity assessments such as commonly used in geographic information
retrieval, co-reference resolution and ontology-alignment, as well as recommender
system, we introduce a novel perspective, namely compression, as an interesting
future area of study that deals with the question of whether place types can be

substituted or act as proxies for other POI types, e.g., to summarize neighborhoods
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by a minimal number of place types.

e Finally, we make the embeddings as well as thousands of human similarity assess-
ments from Mechanical Turk available online at http://stko.geog.ucsb.edu/

place2vec| for future use.

The remainder of this paper is organized as follows. Section summarizes existing
work on embeddings and geospatial semantics. Section presents the dataset and
provides basic concepts used throughout our work. Section explains in detail how
we model the augmented spatial contexts. Section presents three evaluation schemes
and Section [3.6]is evaluation. Finally, Section [3.7] summarizes the research and points to

future directions.

3.2 Related Work

Most research on POI embeddings originates from word embedding techniques using
neural network language models [106]. One of the most successful models in this class is
Word2Vec, which is composed of Skip-Gram and Continuous-Bag-of-Words, proposed by
Mikolov et al. [I07, [102]. It uses neural networks that take advantage of the distributional
semantics of natural languages. Skip-Gram learns the embeddings by predicting context
words given center words whereas Continuous-Bag-of-Words does it the other way around.

Previous works on embeddings related to geographic information can be grouped into
two categories. The first category considers the influence of geographic context on word
embeddings. In a first attempt to investigate the extent to which geographic context
affects the semantics of words, Cocos and Callison-Burch [46] trained word embeddings
in geolocated tweets using geographic contexts derived from Google Places and Open-

StreetMap (OSM). Their work is similar to ours in a sense that they also realize the
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importance of geospatial contexts, but the scope of their work remains limited to the
linguistic domain. In addition, their result shows that geographic context is not as se-
mantically rich as textual context. In contrast, we will demonstrate that augmented
spatial contexrts are indeed rich in semantic information. Zhang et al. [I08] also ac-
knowledges the variation in the semantics of words depending on the geographic space.
They propose a vector space transformation under different topic distributions in order
to generate a mapping between different geographic contexts. Yet again their approach
is focusing on linguistic aspects whereas geographic aspects are not directly considered
in their model.

The second category is more similar to our work which models geographic entities
directly. Yao et al. [I09] and Zhang et al. [I10] have a very different focus compared to our
study as they utilize embedding techniques in order to detect the spatial distribution of
urban land use and uncover urban dynamics. We are focusing on exploring the extent to
which different adjustment to the spatial context influences the embedding results. Feng
et al. [47] and Zhao et al. [ITI] learn embedding in order to predict future POI visits or
recommend POIs. This is a byproduct of the original prediction-based Word2Vec models.
Our work has a different focus and therefore does not require temporally sequential data,
such as check-in sequences of users. Instead, we are interested in the semantics of place
types and utilize embeddings as a means to construct representations, share them, and to
measure (semantic) similarity across types, e.g., in the context of query expansion [101]
and extraction [112].

This relates our work to research on geographic information retrieval and geospa-
tial semantics, and here more specifically to the social sensing framework of semantic
signatures [16] which characterizes place types based on thematic, temporal, and spa-
tial perspectives called bands in analogy to spectral signatures. For example, thematic

bands for Points Of Interest have been studied by Adams and Janowicz [I13] using La-
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tent Dirichlet Allocation to extract topics from unstructured texts about place types.
Quercini and Samet [114] proposes a set of graph-based similarity measures to deter-
mine the relatedness of a concept to a location in the Wikipedia link structure. These
location-related concepts, which are referred to as local lexicon in their work, can be seen
as signatures to differentiate geographic entities as well. Research on the temporal per-
spective has also shown promising results. Ye et al. [T15] studied the temporal dimensions
of places in the context of location-based social networks. McKenzie and Janowicz [57]
applied temporal signature to reverse geocoding to adjust rankings returned by a spatial
range search based on a temporal distortion model. So far, the spatial perspective, i.e.,
the question whether one can learn place (type) representations exclusively from spa-
tial patterns, has received less attention. Miilligann et al. [60] used a measure based on
combining point pattern analysis with semantic similarity, while Zhu et al. [65] proposes
27 spatial statistical features to characterize different aspects of place types in digital
gazetteers. Our work can be seen as a continuation of this line of research and a contri-
bution to the semantic signatures framework by using novel methods such as augmented
spatial contexts to overcome the limitations of previous work. In fact, we will show that
these contexts (even when taken on their own) are able to reproduce human similarity

judgments, i.e., yield strong correlations between human assessments and our model.

3.3 Preliminaries

The individual Points of Interest and their categories used in this research are from
the Yelp Dataset Challengd®] This dataset covers venues from 11 different cities from four
countries (United Kingdom, Germany, Canada, and the United States). We selected Las

Vegas as study region, but our methods can be generalized to different cities and place

3https://www.yelp.com/dataset_challenge
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type schema,; see [116] for a discussion about regional effects. The Yelp dataset groups
their 1030 POI types into 22 root categories, such as Restaurants, Shopping, Arts &
Entertainment, Professional Services, Health & Medical, and so forth. Each POI
[; in the POI set L is composed of three parts, a POl name n € N, a geographic identifier
(here, latitude and longitude of a place location modeled as centroid) g € G, and a set
of associated POI types {t1,ts,t3,....t5} CT.

After analyzing the 1030 place types and their frequencies in Las Vegas, we see a
long tail in the rank-frequency distribution (Figure . The log-log plot also shows a
linear trend. Fitting log(frequency) and log(rank) using linear regression, yields a value
of 0.8543 for R-squared which indicates that the model fits strongly to the data and a
p-value of 2.2e—16 which indicates that such a scaling effect is highly significant. Simply
put, these statistics show that the rank-frequency indeed follows a power law distribution
by which a few POI types dominate the data. This is an important motivation for
the proposed information content-based frequency adjustment in our augmented spatial

contexts discussed in the following section.

3.4 Methods

In this section, we describe the latent representation method and the augmented
spatial contexts. The latent representation originates from natural language processing
and has been used successfully in many domains. By acknowledging the difference in
context formation between geographic space and linguistic expressions, we introduce
three approaches to model the geographic influence in determining latent representations.
These methods include, naive spatial context, simple augmented spatial context, and

Information Theoretic, Distance Lagged (ITDL) augmented spatial context.
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Figure 3.1: POI type rank-frequency and log-log plot.

3.4.1 Latent Representation Method

Recent work has shown that the latent representation model Word2Vec can effectively
capture the semantic relationships in word spaces based on the distributional semantics
assumption [107,[102]. From analyzing the POI type distribution, we know that, similarly
to the word frequency distribution [I17], it follows a power law distribution. This leads us
to taking advantage of the Word2Vec model and its underlying distributional semantics
assumption for the study of POI types in geographic space.

We selected the Skip-Gram model, which predicts context POI types given center
types. Our objective is to approximate the true place type probability distribution from
our training data. A typical approach is to use cross entropy to measure the difference

between the learned probability and the true probability. Since our data is discrete and
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we only care about the center place type, the cross entropy can be simplified as:

D(9,y) = —yclog(gc) (3.1)

where ¢ and y are the learned probability distribution and true probability distribution,
respectively. g. is the predicted probability of the context POI types given the center
place type (denoted by the index ¢), and y. is the true probability of the context POI

types given the center place type. g. can be further defined as:

Ue = P(t1,ta,t3, ..., tml|te) (3.2)

where tq,t5, 13, ..., t,, are the context place types and t. is the center place type. In order
to calculate the probability, we apply the Naive Bayes assumption. Note that y. will
always be 1. Finally, we use the softmax function to turn the scores into probabilities
and substitute the POI types with vector representations. The objective function is

defined as:
exp(ul v,)

m
minimize J = —logH W - (3.3)
1=1 2pe1 €TP(U V)
where u; and v, are the context place type vectors and center place type vectors, respec-
tively; |T'| is the cardinality of a POI type, i.e., its extension. We implement the model in

TensorFlow using Mini-Batch Gradient Descent and Noise-Contrastive Estimation [118].

3.4.2 Naive Spatial Context

An intuitive approach to utilize the structure of geographic space is to naively model
the spatial context based on the center place type and context place type co-occurrences.
We denote the context place type as teontest and center place type as teepser. This naive

method is faithful to the original Word2Vec model and captures the spatial contextual
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information using a nearest neighbor approach. Unlike natural languages which are
sequential in nature, Points of Interest in Yelp are distributed in a 2D geographic space.
As a result, instead of using a fixed-size sliding window to construct (tcenter, teontert) DAITS,
we create spatial buffers around each center POI to detect the k-nearest neighbor POIs
and record their respective place types as our training pairs. Since each center POI [;
and each context POI [; can have a set of place types T}; and Tj; respectively, we use the
Cartesian product Tj; X Tj; = {(tcenters teontewt)|tcenter € Tli A teontext € T1;} to obtain the
training pairs for each center POI and candidate context POI. We append these training

pairs to the final list of training data .S C’nawf] as we iterate through all center and context

POls.

3.4.3 Simple Augmented Spatial Context

Within the naive spatial context the geographic component, namely the distance, is
merely used as a criteria to search the neighborhoods and not modeled directly. In this
second approach, we augment the naive spatial context by incorporating distance decay
and/or aggregated check-in counts (as proxy for the relative popularity or dominance).
The rationale behind this approach is that we acknowledge both distance and human
activity as essential components in modeling the latent representations of POI types,
and, hence, want to study how they can contribute to the final result by modeling them
both individually and in combination. Here we define popularity P; of a POI [; as the
number of total check-ins associated with [;. By augmenting the spatial context, we
increase the number of times a (fcenter, teontext) tuple appears in our training dataset with

a factor of 3, where 8 € {n|n € Z,n > 1}.

4We use SC as an abbreviation for Spatial Context and use different subscripts to denote different
types of Spatial Contexts.
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For incorporating activity alone, the factor g is defined as:

Bgleckin = [1 + ln(l + Plj)-l (34)
where 5lj _is the augmenting factor for the training tuple (fcenter, teontest) When the
checkin g g g p

context POI is ;. This is an extrinsic augmentation approach.

For incorporating distance decay alone, we define the augmenting factor as:

1+ Z‘kﬂl Py,
stance = | T TS (3.5)
1stance 1 + da(li, l])

where |L| is the total number of POIs, d(l;,1;) is the distance between center POI [; and
context POI [}, and a is an inverse distance factor, set to 1 in our case. The numerator is a
smoothing constant for a given POI dataset. This is an intrinsic augmentation approach.

For combining both distance decay and human activities in the spatial context, the

augmenting factor, which combines both intrinsic and extrinsic approaches, is defined as:

, 1+ In(14+ By)
lj .

o 3.6
/Bcomblned ’V 1 + da(liu l]) ( )

As one can see, the proposed augmenting factors are based on the check-ins of the
context POI as well as the distance from the center POI to the context POI, thus incor-
porating more geographic information in the spatial context. In fact, the naive spatial
context is a special case of the augmented spatial context where the factor 8 equals to
1. For the simple augmented spatial contexts, our hypothesis is that the popularity of
a POI as a context has a positive effect on the center POI whereas the influence of a
context POI on a center POI decreases as the distance between them increases. By set-
ting an augmenting factor # based on these geographic components, we are stretching

the original distribution of POI types in a manner that reveals more latent information
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in geographic space. To give an intuitive example for our rationale, a single place of the
type Stadiums & Arenas may dominate a neighborhood while many individual parking

spaces and bars only play a supportive function despite their higher frequencies.

3.4.4 ITDL Augmented Spatial Context

While the simple augmented spatial context approach models distance and human
activities directly, the augmenting factor only applies to the original spatial context
using the k-nearest neighbor method. In this sense, the context POIs are limited to
the k nearest neighbors regardless of how far or how close they are from the center
POI. However, different place types are likely to follow different spatial distributions and
form distinct spatial clusters. For example, places of type Restaurants may be located
closely to many other places of types such as Hotels, Bars, and Department Stores,
generating a dense spatial cluster, while POI of type Police Departments and other
area-serving places will show very different patterns when compared to nearby places
(via their types). This spatial variation means that different spatial context information
can be captured within different distances. In addition, the distance we are focusing on
rapidly increases for such types, so naively setting a single threshold for the search buffer
or the number of nearest neighbors will result in homogeneous spatial contexts for many
different place types, thus sacrificing spatial heterogeneity and numerous distinguishing
geospatial semantic characteristics. In light of this, we suggest having multiple different
spatial contexts for each POI. Inspired by the use of semi-variograms in spatial statistics
such as Kriging, we make use of distance lags, i.e., discrete bins, for constructing our
spatial contexts. Such binning by a given lag also adjusts for the uncertainty (also called
tolerance) of place centroids. In fact, previous work shows that the median distance of a

POI between different database providers, such as Yelp and Foursquare, is 63 meters [57].
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Figure 3.2: ITDL augmented spatial context example.

In the following, we will use a lag distance of h = 100m.

We use a default distance bin width for each distance lag, thus generating multiple
spatial contexts for the same POI. Each spatial context can be used to learn a latent
representation that encodes the distributional semantics between the center POI type
and the context POI types within said distance bin. Our rationale behind this approach
is that due to the nature (and function) of places and their interaction with other places
and regions, an all-encompassing spatial context, even augmented with distance decay
and human activities, is not sufficient for understanding the overall variation in the
geographic patterns. Instead, we propose to first capture the local context by dividing
the continuous geographic space, namely the distance, into discrete lags and then combine
the semantic information from these different lags to obtain a more holistic global view
of each place type; see Figure (3.2

Since we aim to capture the spatial interaction between different place types, we
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want to set the maximum threshold of our spatial context based on this. We define
Dy; as the set of pair-wise POI distances of the same type t;. For each POI type t;,
we calculate the minimum intra-class distance min(Dy;) and use the maximum of these
intra-class distances as our threshold T'S for the spatial contexts (here the supremum of

the per-type infimums):
TS = max(min(Dy ), min(Dys), min(Dy3), ..., min(Dy,)) (3.7)

which is the maximum distance value, for at least one type among all place types, to
search for context POIs that will not encounter the same type as the center. This T'S
value helps to capture as much inter-class spatial interaction as possible. Hence, for each
center POI, there are s = | 15] spatial contexts.

For each spatial context, we propose a novel information theoretic, distance lagged
augmentation method. The simple augmented spatial context takes into consideration
distance decay and human activities, in the ITDL augmented spatial context, however,
we focus on the human activities within the local context as well as the uniqueness of each

place types per distance bin. The first component that incorporates human activities is

defined as:

P
A= —log, (1 - —J> (3.8)
1+ M Pl

|M

where P,; is the popularity (check-in counts) of a place type ¢; and k:|1 P! is the total

number of check-in counts of all place types within a distance bin with width A. This

is a monotonically increasing function with respect to %, which means that if
k=1" tk

a place type has high popularity among all place types within the bin, this component
value will be very high. The second component adopts the idea of information content

(here, surprisal) from information theory to model the uniqueness of a place type given
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a distance bin:

U = ~logs(F}) (3.9)

where Ft’} is the probability of encountering place type ¢; in a distance bin. U essentially
represents the information content of a place type ¢; within a distance bin. Larger
Ft’; values will result in reduced information content. Finally, we integrate these two

components using a convex combination and our I'TDL augmentation is defined as:
i

where w and 1 — w are the weights for the components. Intuitively, this allows us to
distinguish unique places (of a certain type) that are highly popular from places that are
popular in virtue of their type. Algorithm [I] shows the detailed procedures to construct
the ITDL augmented spatial context SCirpr. In order to improve the efficiency of
this algorithm, we split the whole task into s tasks that can run in parallel, thus each
worker only constructs a spatial context for one distance bin. In short, for the ITDL
augmentation method, we use individual context settings to capture extrinsic components
such as the popularity and the uniqueness of place types and use multiple spatial context

bins combined to capture the intrinsic components such as distance and spatial variation.

3.5 Evaluation Schemes

In this section, we introduce three different ground truths that we establish to eval-
uate our proposed methods. These ground truth results can also be used to evaluate

other tasks involving place type similarity and relatedness. The first ground truth is
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Algorithm 1: Constructing ITDL-based Augmented Spatial Contexts SCrrpy,
Input : L= (N,G,T),s, h,w
Output: SC]TDL
SCrrpr, = initialize list
foreach [; € L do

1
2

3 T); = a set of place types associated with [;

4 for n =0;n < s;n++do

5 sc = check-in total of all place types in bin n
6 sp = POI total of all place types in bin n

7 foreach [; € L do

8 T}; = a set of place types associated with [;
9 if nh < d(l;,1;) < (n+1)h then
10 foreach t;; € T}; do
11 foreach t;; € 1;; do
12 cc := check-in of

13 cp = count of t;

14 A = —logs(1 — cc/sc)

15 U = —logs(cp/sp)

16 aug = ceil(wA + (1 — w)U)

17 append tuple (ty;, tx;) to SC}prp, aug times
18 end

19 end
20 end
21 end
22 end
23 end

built from the original Yelp place type hierarchyE] We take advantage of this top-down
hierarchy and evaluate to what degree our bottom-up approaches can approximate Yelp’s
hierarchy. The second ground truth is obtained using Human Intelligence Tasks (HIT)
via Amazon Mechanical Turk which is a binary test. The third one is obtained from
another HIT which provides similarity and relatedness rankings for different POI types.
These three ground truth results, one using top-down information from Yelp and the

other two provided by human judges, provide a comprehensive evaluation for our work.

Shttps://www.yelp.com/developers/documentation /v3/all_category _list /categories.json
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3.5.1 Hierarchy-based Evaluation Scheme

The original Yelp categories provide us with a natural way to calculate the similarity
and relatedness of different POI types based on their hierarchical structure. There are two
major ways to measure (semantic) similarity and relatedness for our tasks: distribution-
based measures and knowledge-based measures [I19]. While our proposed methods aims
to capture the distributional semantics, the evaluation scheme derived from Yelp cat-
egories falls into the knowledge-based measures group. Numerous models have been
proposed for such measures. In summary, edge-based measures and information content-
based measures are two widely-used subgroups. In our study, we choose two measures
from each subgroup to form our evaluation scheme. In addition, since the information
content-based measures depend on the definition of information content, we also select
two different definitions of information content in order to provide a more holistic evalu-
ation scheme. In the end, we have 6 different measurements based on the Yelp hierarchy.

The first edge-based measurement is proposed by Wu & Palmer [120], which is defined

as:
2N,
N, + Ny + 2N;

SIMWP(tl,tQ) = (311)

t1.s 1s defined as the least common superclass of place types t; and t,. N; is the shortest
path from ¢ to t;.;. N2 is the shortest path from t, to ¢;.s. N3 is the shortest path from ;.

to root. The second edge-based measurement is proposed by Leakcock & Chodorow [121]:
SIMo(ty, ts) = — (N) (3.12)
rc\l1,t2) = —tog 2D .

where D is the maximum depth of the taxonomy and N is the shortest path between
place types t; and t,.

For the information content-based measurements, we use the models proposed by
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Lin [122] and Jiang & Conrath [123]. Their definitions are shown in Eq. and Eq.|3.14}
respectively. IC is the information content of each place type and ;. is the least common
superclass of place types t; and t, within the Yelp hierarchy. Jiang & Conrath’s method

calculates the distance between t; and to, so the similarity is equal to STM;c(t1,t2) =

1/D[S]C(t1,t2).

B 21C (tyes)
STMpin(ty,ts) = ICH) + I10(6) (3.13)

DIS;c(ty,te) = IC(ty) + IC(ty) — 2IC (tyes) (3.14)

Both models proposed by Lin and Jiang & Conrath depend on the definition of
information content, so we also include two different definitions of information content
that can be calculated from the place type hierarchy. The information content proposed

by Sénchez et al. [124] is defined as:

e + 1
ICSzmchez = —109 (315)

max_leaves + 1

where |leaves(t;)| is the number of leaves of place type ¢; in the hierarchy, |subsumers(t;)|
is the number of place types that are more general than ¢; in the hierarchy and max _leaves
is the number of leaves for the root place type. The information content proposed by

Seco et al. [125] is defined as:

log(|hypo(t;)| + 1)

IC eco=1—
§ log(max _types)

(3.16)

where |hypo(t;)| is the number of POI types that are more specific than ¢; and mazx_types
is the maximum number of types in the hierarchy. Combining these definitions of infor-

mation content with the methods by Lin and Jiang & Conrath, leads to four measures.
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By using these semantic similarity measures, we calculate the pair-wise similarity of
Yelp place types. Because these six measures differ in terms of what they measure, the
resulting scores are also slightly different. Based on the similarity scores, for each place
type, we generate a ranking of similar place types from the most similar to the least
similar. We obtain six different groups of rankings for each of the POI types in Yelp. To
confirm the validity of this evaluation scheme, we use Kendall’s coefficient of concordance
W to assess the agreement among these six groups of rankings. The average Kendall’s
W of all (1030) place types E] among the six measurements is 0.981, indicating a nearly
perfect agreement among measures. Moreover, in our experiment, we use a subset of 93
place types (see Section and the concordance remains stable at 0.979. This result
implies that our evaluation scheme based on the place type hierarchy is valid. To evaluate
the result, we mimic the task of geographic information retrieval, e.g. finding the most
similar place type based on a given place type. By choosing the first place type in each
of the 1030 rankings, we can obtain the result for all six measurements. To evaluate our
latent representations, we generate our own rankings of each place type based on the
augmented spatial contexts using pair-wise similarity [] and use Mean Reciprocal Rank

(MRR) to test the performance of our methods.

3.5.2 Binary HIT Evaluation Scheme

The hierarchy-based evaluation scheme has some potential drawbacks. First, the
hierarchy is created by a small set of people which may lead to a bias. Moreover, in
this hierarchy of more than 1000 place types (nodes), the average path length is only
1.73 which indicates that the taxonomy is very shallow. This will result in ties in the

rankings generated using the hierarchical structure. Finally, a hierarchy always encodes

SWe only consider 570 place types, namely those that have at least 14 instances in our dataset and
use various subsets of these 570 types in our experiments.
TAll similarity scores for our place type embeddings are calculated using Cosine Similarity.
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10. Please click on the type of place that is most dissimilar to the other two place types:

Dentists
Education

Orthodontists

Figure 3.3: Binary HIT example.

some underlying ontological commitments, e.g., grouping arts and entertainment in a
common class. Hence, in addition to the hierarchy-based evaluation, we utilize Amazon’s
Mechanical Turk for a binary HIT evaluation scheme.

For the HIT task, we generate 80 triplets with each element in the triplet being a place
type. For example, one of the triplets is (Dentists, Education, Orthodontists). ﬁ
The task is to choose the place type from each triplet that is most dissimilar from the
other two. For each place type in the triplet, a human judge will make a binary decision;
see Figure [3.3] We published the HIT task on Amazon Mechanical Turk and each of
these 80 tests was done by 25 human workers. The final result of each test is determined
by the mode answer of the 25 human workers. For instance, the final answer for the
test (Dentists, Education, Orthodontists) is Education as this is the most often
excluded type.

To evaluate the latent representations generated by augmented spatial contexts, for
each triplet, we calculate the pair-wise similarity score using 2-combination. For ex-
ample, for the above mentioned triplet, we calculate the similarity scores of three pairs
(Dentists, Education), (Dentists, Orthodontists) and (Education, Orthodontists).
We pick the one with the highest score and return the other place type as the result for
this test using our methods. For instance, if (Dentists, Orthodontists) has the high-
est score, then Education is the result from our methods. We evaluate the accuracy of

different methods on all triplets.

8See Goodman’s deliberation on similarity for a rationale about using triples [126].
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3.5.3 Ranking-based HIT Evaluation Scheme

While the binary-based HIT evaluation can complement the Yelp hierarchy task by
relying on human judges, the task is relatively easy. Hence, for the ranking-based HIT
evaluation scheme, we want to use human judges to generate a ranking result for each
place type. We selected 10 place types and for each place type we selected 7 candidate
place types for ranking, so altogether we have 70 POI type pairs. We ask 25 human
judges on Amazon Mechanical Turk to rate on a scale of 1-7 the similarity of each of
these pairs. Such task can be considered as very challenging in the context of studying
semantic similarity [101] and requires more attention to user interface design (Fig. to
adjust for some well-known characteristics of human similarity judgments, notably that
such judgments are known to be non-symmetric. In addition, we selected a slider-based
design to ease visual comparison between pairs; see [126].

After receiving the results, we have rankings of each place type from 25 human judges.
In order to check if the rankings are consistent, and, thus, whether the task is meaningful,
we use Kendall’s coefficient of concordance W to evaluate the agreement score among
the judges. The average Kendall’s W score over all place types in the test is 0.79 which
indicates very high agreement.

In order to evaluate our place embeddings using the proposed augmented spatial
contexts, we generate a ranking for each place type based on the pair-wise similarity
score. We then calculate the average Spearman’s rank correlation coefficient between our
rankings and the rankings from the HIT task as the criteria to evaluate the performance

of our models.
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1. Please rate the similarityirelatedness score between BARS and NIGHTLIFE

2. Please rate the similarity/relatedness score between BARS and RESTAURANTS

1

3. Please rate the similarityirelatedness score between BARS and CASINOS

1

4. Please rate the similarity/relatedness score between BARS and GARDENERS

1

5. Please rate the similarityirelatedness score between BARS and PUBS

6. Please rate the similarity/relatedness score between BARS and ELECTRONICS

1

7. Please rate the similarityirelatedness score between BARS and CINEMA

1

Figure 3.4: Ranking-based HIT, showing one MTurk result.
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Figure 3.5: Left to right, Mean Reciprocal Rank (MRR) for the hierarchy-based evalu-
ation, accuracy for the binary HIT evaluation, and Spearman’s p for the ranking-based
HIT evaluation.

3.6 Experiment and Result

In this section, we discuss the experiments to evaluate our work and their results.
We also point to an interesting research question that arises from our work. First, we
have to define the number of dimensions for the POI type embeddings. Next, we com-
pare our embeddings with the state-of-the-art word embeddings trained from the Google
News corpus as a baseline using the proposed evaluation schemes in order to reiterate
the necessity of augmenting spatial contexts to obtain richer semantic information from
geographic space. In addition, we visualize and analyze different embeddings spaces from
different augmented spatial contexts using dimension reduction techniques and present
place type profile as a visual assistance tool for understanding place type similarity and
relatedness. Finally, we briefly look at a very interesting research question that arises
from our work, namely whether there is potential for compression by merely using a
subset of POI types to learn all POI types. From an urban planning perspective, this
question can also be framed from a summarization perspective, by asking whether there

are certain place types that are indicative of a neighborhood (when modeled as a set of

POI) .
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3.6.1 Selecting Dimensions

An important parameter for latent representation models is the number of dimensions
for the embedding vectors. As the total number of place types is relatively small compared
with the vocabulary size of natural language, we selected dimensions ranging from 10 to
100 with a step interval of 10 to determine the number of optimal dimensions for our
model. Since we want to combine both intrinsic and extrinsic information in our spatial

ly

o mbineq 11 this task, which takes into

context, we focus on using the augmenting factor (8
consideration the influence of geographic distance and POI popularity. Figure |3.5] shows
the dimension test result using the Yelp hierarchy-based evaluation scheme, the binary
HIT test, and the ranking-based HIT. Although there is a variation in the absolute
values of the six measurements, the overall trend is very similar. It shows that using 70

dimensions yields the best overall results and we will use this number for the experiments

described below.

3.6.2 Comparison

By introducing the augmented spatial contexts, we want to demonstrate the richness
of semantic information latently encoded in geographic patterns. First, to justify the
need for POI type embeddings, we compare the evaluation results of the word embeddings
trained from the Google News corpus with the place type embeddings trained from Yelp
POIs and our augmented spatial contexts. Word embeddings have been used in a variety
of information retrieval tasks and have been frequently used as proxies for geographic
information retrieval. Many of the word embeddings techniques, however, only consider
unigrams, such as the pre-trained Word2Vec embeddings from Google, which means that
they are not suitable for many place type names, such as Auto Repair. In addition,

and as argued above, geographic space is inherently different from word space, and,
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Table 3.1: Mean Reciprocal Rank for the hierarchy-based evaluation.

Model SIMwp | SIMpc | SIMpin UCsanchez) | SIMpin (ICseco) | SIMjc (UCsanchez) | SIMjc (ICseco)
Word2Vec 0.288 0.321 0.354 0.334 0.349 0.333
SChaive 0.412 0.398 0.474 0.442 0.455 0.478
SC ohecki 0.385 0.387 0.448 0.428 0.452 0.474

SCluistance 0.381 0.396 0.458 0.426 0.443 0.458
SCoombined 0.420 0.418 0.478 0.435 0.462 0.482
SCirDL 0.447 0.431 0.498 0.479 0.487 0.483

thus, word embeddings lack the ability to capture spatial interaction among different
geographic entities and distance (decay) effects which is a significant factor in measuring
place type similarity and relatedness.

In order to support our argument, we compared the word embeddings with the pro-
posed place type embeddings using different spatial contexts, namely one with the naive
spatial context and four with the augmented spatial contexts. Recall that there is a
weight parameter w in the ITDL augmented spatial contexts, to adjust the relative im-
portance of A (activity) and U (uniqueness). We tested our model with w values ranging
from 0.1 to 1 with 0.1 as step interval. Our T'S value is 2644.5 meters, so the total
number of spatial contexts for each w value for the ITDL approach and a lag of 100m is
s = |2644.5/100] = 26. In the end, we can obtain 234 different augmented spatial con-
texts and learn place type embeddings from each of these contexts using parallel threads.
In order to compare the evaluation results, for each w value, we test the performance
of each of the 26 bins and concatenate the embedding vectors of the top five bins to
generate the final place type embedding of 350 dimensions. We use the best w values as
our final result of the ITDL augmented spatial contexts.

We compared the pre-trained Google Word2Vec result with our place type embeddings
using both the hierarchy-based evaluation scheme and the binary HIT evaluation scheme.
SChaive 18 the spatial context without augmentation. SCipeckin, SCaistance; SCeombined
and SCrrpr, are the methods detailed in Section [3.4] Table shows the result of the
hierarchy-based evaluation. As mentioned earlier, word embeddings trained using Google

News corpus only contain unigrams, so we select a subset (93 place types) as our testing
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data. All methods are tested using the six measures described in Section Table
shows the binary and ranking-based HIT results. The hierarchy and binary evaluations
show that the results obtained by using spatial contexts, even without any augmentation,
are substantially better than the one purely based on a linguistic perspective, thereby
also showing the benefits of our approach over previous work outlined in Section This
confirms our hypothesis that geographic space carries rich latent semantic information
that cannot be captured by the word space alone. For the ranking-based evaluation
scheme, we dropped the Google Word2Vec embeddings to be able to use bigrams and
because using a merely linguistic context already did not perform well for the two simpler
tasks. In all three evaluations the ITDL augmented spatial contexts is able to model more
semantic information, and, thus, yields better results for the place type similarity tests.
With a p of 0.7, i.e., a strong correlation with human judgments, and an accuracy of
0.95 this becomes most apparent for the more difficult HITs. This is a remarkable result
as humans utilize substantially richer information to reason about similarity, e.g., the
meaning (and similarity) of the type labels, background knowledge, e.g., about cultural
and historic reasons why Asian foods are alike, and so forth. Financially, it is worth
mentioning that short as well as long-distance bins contribute to these results, e.g., the
highest p is obtained by a concatenation of bins 4-17-1-5-24 (w = 0.1), where 24 represents

the 100m distance lag at 2400 meters from the center POL.

Table 3.2: Accuracy for binary HIT evaluation and Spearman’s p for ranking-based HIT.

Model Accuracy Model p
Word2Vec 0.750 SCaive 0.56
SChaive 0.850 SCeheckin | 0.56
Sccheckin 0.700 SCdistance 0.57
SCdistance 0.875 SCcombined 0.51
SCeombined 0.875 SCrrpr | 0.70
SCrrpr 0.950
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Figure 3.6: Place Type Profile with w = 0.5.

3.6.3 Place Type Profiles

Although we use the concatenated place type embeddings in our evaluation, individ-
ual augmented spatial context can be used separately for analyzing the characteristics
of different place types. Here we propose a 3D visualization, namely place type pro-
file as a tool to compare different POI types and their semantic relationships. We use
t-Distributed Stochastic Neighbor Embedding (t-SNE) [127] to reduce our place type
embeddings in each distance bin into two dimensions, then stack each of these 2D space
together to build a 3D profile. Figure [3.6| shows the profiles of selected types generated
with w = 0.5, the x-axis and y-axis are the two components after dimension reduction
using t-SNE and the z-axis is the distance bin.

One can see that Bars, Restaurants and Hotels always cluster together no matter
which distance bin they are in. Police Departments are a certain distance apart in each
bin. Health & Medical remains far away from all other POI types. This pattern shows

that Bars, Restaurants, and Hotels have very similar contexts in each distance bin,
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Table 3.3: Place type compression result.

Model Accuracy | p
All Place Types 0.950 0.70
W/O Restaurants 0.925 0.70
W /O Nightlife 0.925 0.70

W /O Professional Services 0.925 0.68
W/O Health & Medical 0.900 | 0.68
W/O 18 Place Types 0.875 0.59

which implies that they interact in similar ways with other POI type. We will return to

this argument when discussing compression potential next.

3.6.4 Place Type Compression

So far, our experiments are all based on all POI types, which means that we generate
our training data for each augmented spatial context using all types and run the latent
representation model to retrieve place type embeddings. However, this approach is time-
consuming as the number of (feenter, teontert) Dairs increases in later distance bins and
may also lead to overfitting. In order to obtain more condensed results, we proposed the
novel idea of place type compression. Our intuition is that many place types such as
Restaurants and Nightlife are co-located with other types (via their POI) following
similar patterns. Hence, our hypothesis is that these types can serve as proxies in the
sense that we can omit, for instance, all nightlife places (and places of their 17 subtypes)
and still learn good embeddings for all types including Nightlife. Some place types
such as Professional Services have weaker interaction patterns with other place types,
thus making it harder to represent them by other POI types.

In order to test our hypothesis, we select four different root place types: Restaurants,
Nightlife, Professional Services, and Health & Medical. We remove each of these

place types and their subtypes from the context POI types in our training and run our
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models using the I'TDL augmented spatial contexts. In addition, we run our model by
removing all 18 place types aside of those four (there are 22 root place types). The
accuracy result of the binary HIT evaluation and the Spearman’s p result of the ranking-
based HIT are shown in Table The result shows that dropping either Restaurants
or Nightlife does not have much effect on the final embeddings while dropping either
Professional Services or Health & Medical will result in a (small) decrease in per-
formance. Consequently, given the 570 studied types, removing even 69 from them, e.g.,
by removing the Restaurants supertype, leaves us with enough proxy types, i.e., types
that interact with other types in similar ways. Dropping 18 place supertypes, however,
and trying to generate embeddings merely on the 4 remaining supertypes will result in a
substantial decrease. This confirms our hypothesis that we can compress our model and

still obtain high-quality latent representations of place types.

3.7 Conclusion and Future Work

In this research we proposed a novel approach, namely augmented spatial contexts,
to capture the semantics of place types by learning vector embeddings and using them
to reason about place type similarity and relatedness, a common prerequisite for geo-
graphic information retrieval. By comparing the place type embeddings generated using
the proposed methods with state-of-the-art word embeddings, we were able to show
that our information-theoretic, distance lagged augmented spatial contexts substantially
outperform the baseline and better capture the latent semantic information. We also
established three different evaluation schemes to systematically evaluate the resulting
POI embeddings. We published the embeddings as well as the HIT results online to
foster reproducibility and in the hope that they will be reusable by others working on

vector representations of place types. We used place type profiles as a way to visualize
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the semantic relationship among different place types. Finally, we outlined the idea of
indicative POI types and their usage in compression as a novel research avenue.

In the future, we will explore place type compression in more detail to determine
how different combinations of POI types can affect the quality of the overall place type
embeddings and will follow up on the idea of using them to summarize neighborhoods.
Finally, we focused on geodesic distance here but our methods can be generalized, e.g.,

using L1 distance (taxicab), in future work.
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Chapter 4

xNet+SC: Classifying Places Based
on Images by Incorporating Spatial

Contexts

This chapter focuses on the multimedia leaf nodes (e.g. images) in geographic knowledge
graphs. Since the labels for these images are typically not provided, we take advantage
of the place type labels of surrounding images and utilize the hidden pattern in the
geospatial contextual information to help classify images. Using re-ranking and Bayesian
methods, we explore different ways in which geospatial contextual information can be
incorporated. By combining visual stimuli with the help of the state-of-the-art convo-
lutional neural networks (such as AlexNet, ResNet, and DenseNet) and spatial contexts
(spatial relatedness, spatial co-location, and spatial sequence patterns), our model is able
to improve classification accuracy. The model can be applied to label the leaf nodes con-
sidering geographic entities in the neighborhood for geographic knowledge graphs. Such
information can then be used to inform different ways to select different multimedia leaf

nodes in the summarization process.
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Abstract With recent advancements in deep convolutional neural networks, researchers
in geographic information science gained access to powerful models to address challenging
problems such as extracting objects from satellite imagery. However, as the underlying
techniques are essentially borrowed from other research fields, e.g., computer vision or
machine translation, they are often not spatially explicit. In this paper, we demonstrate
how utilizing the rich information embedded in spatial contexts (SC) can substantially
improve the classification of place types from images of their facades and interiors. By
experimenting with different types of spatial contexts, namely spatial relatedness, spatial
co-location, and spatial sequence pattern, we improve the accuracy of state-of-the-art
models such as ResNet — which are known to outperform humans on the ImageNet dataset
— by over 40%. Our study raises awareness for leveraging spatial contexts and domain
knowledge in general in advancing deep learning models, thereby also demonstrating that

theory-driven and data-driven approaches are mutually beneficial.
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4.1 Introduction

Recent advancements in computer vision models and algorithms have quickly perme-
ated many research domains including GIScience. In remote sensing, computer vision
methods facilitate researchers to utilize satellite images to detect geographic features and
classify land use [128] [129]. In urban planning, researchers collect Google Street View
images and apply computer vision algorithms to study urban change [130]. In cartogra-
phy, pixel-wise segmentation has been adopted to extract lane boundary from satellite
imagery [131] and deep convolutional neural network (CNN) has been utilized to rec-
ognize multi-digit house numbers from Google Street View images [132]. These recent
breakthroughs in computer vision are achieved, in equal parts, due to advances in deep
neural networks as well as the ever-increasing availability of extensive training datasets.
For example, the classification error in the latest image classification challenge using the
ImageNet dataset is down to about 0.023[]

However, such impressive results do not imply that these models have reached a level
in which no further improvement is necessary or meaningful. On the contrary, such deep
learning models which primarily depend on visual signals are susceptible to error. In
fact, studies have shown that deep (convolutional) neural networks suffer from a lack
of robustness to adversarial examples and a tendency towards biases [41]. Researchers
have discovered that, by incorporating adversarial perturbations of inputs that are indis-
tinguishable by humans, the most advanced deep learning models which have achieved
high accuracy on test sets can be easily fooled [133] [134) 135]. In addition, deep learning
models are also vulnerable to biased patterns learned from the available data and these
biases usually resemble many unpleasant human behaviors in our society. For instance,
modern neural information processing systems such as neural network language models

and deep convolutional neural networks have been criticized for amplifying racial and
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gender biases [1306] 137, 4T, 138]. Such biases, which can be attributed to a discrepancy
between the distribution of prototypical examples and the distribution of more complex
real world systems [42], have already caused some public debates. To give a provocative
example, almost three years after users revealed that Google erroneously labeled photos
of black people as “gorillas”, no robust solutions have been established besides simply
removing such labels for now. [

The above-mentioned drawbacks are being addressed by improvements to the avail-
able training data as well as the used methods [139, [136]. In our work, we follow this
line of thought to help improve image classification. In our case, these images depict
the facades or interiors of different types of places, such as restaurants, hotels, and li-
braries. Classifying images by place types is a hard problem in that more often than not
the training image data is inadequate to provide a full visual representation of different
place types. Solely relying on visual signals, as most deep convolutional neural networks
do, falls short in modeling the feature space as a result. To give an intuitive example,
facades of restaurants may vary substantially based on the type of restaurant, the target
customers, and the surrounding. Their facade may be partially occluded by trees or cars,
may be photographed from different angles and at different times of the day, and the
image may contain parts of other buildings. Put differently, the principle of spatial het-
erogeneity implies that there is considerable variation between places of the same type.

To address this problem and improve classification accuracy, we propose to go beyond
visual stimuli by incorporating spatial contextual information to help offset the visual
representational inadequacy. Although data availability is less of an issue nowadays,
the biased pattern in the data poses a real challenge, especially as models such as deep
convolutional neural networks take a very long time to train. Instead of fine-tuning

the parameters (weights) by collecting and labeling more unbiased data, which are very

Zhttps://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/
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resource-consuming, we take advantage of external information, namely spatial context.
There are many different ways one can model such context; in this work, we focus on
the types of nearby places. We explore and compare the value of three different kinds
of spatial context, namely spatial relatedness, spatial co-location, and spatial sequence
pattern.

We combine these context models with state-of-the-art deep convolutional neural net-
work models using search re-ranking algorithms and Bayesian methods. The result shows
that, by considering more complex spatial contexts, we can improve the classification ac-
curacy for different place types. In fact, our results demonstrate that a spatially explicit
model [I40], i.e., taking nearby places into account when predicting the place type from
an image, improves the accuracy of leading image classification models by at least 40%.
Aside from this substantial increase in accuracy, we believe that our work also contributes
to the broader and ongoing discussion about the role of and need for theory, i.e., domain
knowledge, in machine learning. Finally, and as indicated in the title, our spatial context
(SC) models, can be added to any of the popular CNN-based computer vision models
such as AlexNet, ResNet, and DenseNet — abbreviated to zNet here.

The remainder of this paper is organized as follows. Section provides an overview
of existing work on spatial context and methods for incorporating spatial information
into image classification models. Section presents the image classification tasks and
provides information about the convolutional neural network models used in our study.
Section [£.4] explains in detail three different levels of spatial context and ways to combine
them in image classification models. Section [4.5] presents the results. Finally, Section

concludes the research and points to future directions.
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4.2 Related Work

There is a large body of work that utilizes spatial context to improve existing meth-
ods and provide deeper insights into the rich semantics of contextual information more
broadly. For instance, spatial context has been recognized as a complementary source
of information in computational linguistics. By training word embeddings for differ-
ent place types derived from OpenStreetMap (OSM) and Google Places, Cocos and
Callison-Burch [46] suggested that spatial context provides useful information about se-
mantic relatedness. In Points of Interest (POI) recommendation, spatial context has
been used to provide latent representations of POI, to facilitate the prediction of future
visitors [47], and to recommend similar places [I11]. By implementing an information
theoretic and distance-lagged augmented spatial context, Yan et al. [48] demonstrated
that high-dimensional place type embeddings learned using spatial contexts can repro-
duce human-level similarity judgments with high accuracy. The study showed that such
a spatially explicit Place2Vec model substantially outperforms Word2Vec-based models
that utilize a linguistic-style of context. Liu et al. [T41] used spatial contexts to measure
traffic interactions in urban area. In object detection, Heitz and Koller [142] leveraged
spatial contexts in a probabilistic model to improve detection result. Likewise, by em-
bracing the idea that spatial context provides valuable extrinsic signals, our work analyzes
different kinds of spatial contexts and tests their ability to improve image classification
of place types.

Existing work on image classification has realized the importance of including a geo-
graphic component. One direction of research focused on enriching images with geospatial
data. Baatz et al. [I43] took advantage of digital elevation models to help geo-localize
images in mountainous terrain. Lin et al. [I44] made use of land cover survey data and

learned the complex translation relationship between ground level images and overhead
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imagery to extend the reach of image geo-localization. Instead of estimating a precise
geo-tag, Lee et al. [I45] trained deep convolutional neural networks to enrich a photo
with geographic attributes such as elevation and population density. Another direction
of research (which is more similar to our study) focused on utilizing geographic informa-
tion to facilitate image classification. In order to better understand scenes and improve
object region recognition, Yu and Luo [146] exploited information from seasons and loca-
tion proximity of images using a probabilistic graphical model. Berg et al. [61] combined
one-vs-most image classifiers with spatiotemporal class priors to address the problem of
distinguishing images of highly similar bird species. Tang et al. [62] encoded geographic
features extracted from GPS information of images into convolutional neural networks
to improve classification results.

Our work differs from the existing work in that we explicitly exploit the distributional
semantics found in spatial context [48] to improve image classification. Following the
linguistic mantra that one shall know a word by the company it keeps, we argue that one
can know a place type by its neighborhood’s types. This raises the interesting question
of how such a neighborhood should be defined. We will demonstrate different ways in
which spatial contextual signals and visual signals can be combined. We will assess to
what extent different kinds of spatial context, namely spatial relatedness, spatial co-
location, and spatial sequence pattern, can provide such neighborhood information to

benefit image classification.

4.3 Image Classification

In this section, we first describe the image classification task and the data we use.
The task is similar to scene classification but we are specifically interested in classifying

different business venues as opposed to natural environment. Then we explain four
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different deep convolutional neural networks that solely leverages the visual signals of
images. These convolutional neural network models are later used as baselines for our

experiment.

4.3.1 Classification Task

Our task is to classify images into one of the several candidate place types. Because
we want to utilize the spatial context in which the image was taken, we need to make
sure each image has a geographic identifier, e.g. geographic coordinates, so that we are
able to determine its neighboring place and their types. In order to classify place types
of images, we consider the scene categories provided by Zhou et al. [147] as they also
provide pretrained models (Places365-CNN) that we can directly use. E] Without losing
generality, we select 15 place types as our candidate class labels. The full list of class
labels and their alignment with the categories in Places365-CNN is shown in Table {4.1]
For each candidate class, we selected 50 images taken in 8 states E] within the US by
using Google Maps, Google Street View, and Yelp. These images include both indoor
and outdoor views of each place type. Please note that classifying place types from
facade and interior images is a hard problem and even the most sophisticated models
only distinguish a relatively small number of place types so far which is nowhere near the
approximately 420 types provided by sources such as Foursquare. Places365, for instance,
offers 365 classes but many of these are scenes or landscape features, such as waves, and

not POI type, such as cinemas, in the classical sense.

3https://github.com/CSAILVision/places365/blob/master/categories_places365.txt
4 Arizona, Illinois, Nevada, North Carolina, Ohio, Pennsylvania, South Carolina, and Wisconsin
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Table 4.1: Class label alignment between Yelp and the Place365 model.

Class label Places365-CNN category
Amusement Parks amusement_park
Bakeries bakery
Bookstores bookstore
Churches church
Cinema movie_theater
Dance Clubs discotheque
Drugstores drugstore, pharmacy
Hospitals hospital, hospital_room
Hotels hotel, hotel_room
Jewelry jewelry_shop
Libraries library
Museums museum, natural_history_museum, science_museum
Restaurants fastfood_restaurant, restaurant, restaurant_kitchen, restaurant_patio
Shoe Stores shoe_shop
Stadiums & Arenas stadium

4.3.2 Convolutional Neural Network Models

To establish baselines for our study, we selected several state-of-the-art image clas-
sification models, namely deep convolutional neural networks. Unlike traditional image
classification pipelines, CNNs extract features from images automatically based on the
error messages that are backpropagated through the network, thus fewer heuristics and
less manual labor are needed. Contrary to densely connected feedforward neural net-
works, CNN adopts parameter sharing to extract common patterns which help capture
translation invariance and creates sparse connections which result in fewer parameters
and being less prone to overfitting.

The architecture of CNNs has been revised numerous times and has become increas-
ingly sophisticated since its first appearance about 30 years ago. These improvements
in architecture have made CNN more powerful as can be seen in the ImageNet chal-
lenge. Some of the notable architectures include: LeNet [148], AlexNet [149], VGG [150],
Inception [I5I], ResNet [I52], and DenseNet [I53]. We selected AlexNet, ResNet with
18 layers (ResNet18), ResNet with 50 layers (ResNet50), and DenseNet with 161 lay-
ers (DenseNet161). AlexNet is among the first deep neural networks that increased the

classification accuracy on ImageNet by a significant amount compared with traditional
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classification approaches. By using skip connections to create residual blocks in the
network, ResNet makes it easy to learn identity functions that help with the vanishing
and exploding gradient problems when the network goes deeper. In DenseNet, a dense
connectivity pattern is created by connecting every two layers so that the error signal
can be directly propagated to earlier layers, parameter and computational efficiency can
be increased, and low complexity features can be maintained [I53]. These models were
trained on 1.8 million images from the Places365-CNN dataset. We used the pretrained

weights for these models.

4.4 Spatial Contextual Information

In this section, we introduce three different kinds of spatial contexts and explore
ways in which we can combine them with the CNN models in order to improve image
classification. The first type of spatial context is spatial relatedness, which measures the
extend to which different place types relate with each other. The second type of spatial
context is spatial co-location, which considers what place types tend to co-occur in space
and the frequency they cluster with each other. The third type of spatial context is
spatial sequence pattern which considers both spatial relatedness and spatial co-location.
In addition, spatial sequence pattern considers the interaction between context place

types and the inverse relationship between distance and contextual influence. We use

POIs provided by Yelp as dataset. [’

4.4.1 Spatial Relatedness

Since the output of CNN is the probability score for each class label, it is possible to

interpret our task as a ranking problem: given an image, rank the candidate class labels

Shttps://www.yelp.com/dataset
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based upon the visual signal and spatial context signal. For the visual signal, we can
obtain the ranking scores (probability scores) from the CNN architectures mentioned in
Section Since the original CNN models has 365 labels, we renormalize the probability
scores for each candidate place type by the sum of the 15 candidate ranking scores so
that they sum up to 1. This renormalization procedure is also applied to the other two
spatial context methods explained in Section and Section We will refer to
the renormalized scores as CNN scores in this study. For the spatial context signal, the
ranking scores are calculated using the place type embeddings proposed in [48]. These
embeddings capture the semantics of different place types and can be used to measure
their similarity and relatedness. In this regard, the task is equivalent to a re-ranking
problem, which adjusts the initial ranking provided by the visual signal using auxiliary
knowledge, namely the spatial context signal. Intuitively, the extent to which the visual
signals from the images match with different place types and the level of relevance of the
surrounding place types with respect to candidate place types jointly determine the final
result.

Inspired by search re-ranking algorithms in information retrieval, we use a Linear
Bimodal Fusion (LBF) method (here essentially a 2-component convex combination),
which linearly combines the ranking scores provided by the CNN model and the spatial

relatedness scores, as shown in Equation [4.1]

s;i =w"s] +w's;] (4.1)

where s;, s7, and s] are the LBF score, CNN score, and spatial relatedness score for
place type ¢ respectively, w’ and w” are the weights for the CNN component and spatial
relatedness component, and w’ + w"™ = 1. The weights here are decided based on the

relative performance of individual components. Specifically, the weight is determined
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using Equation [£.2]

L — (4.2)
acc® + acc”

where acc’ and acc” are the accuracies for CNN and spatial relatedness measurements
for the image classification task. Intuitively, this means that we have higher confidence
if the component performs better on its own and want to reflect such confidence using
the weight in the LBF score.

In order to calculate the spatial relatedness scores, we use cosine similarity to measure
the extend to which each candidate class embedding is related with the spatial context
embedding of an image in a high dimensional geospatial semantic feature space. Following
the suggestions in [48], we use a concatenated vector of 350 dimensions (i.e., 70D vectors
for each of 5 distance bins) as the place type embeddings. The candidate class embeddings
can be retrieved directly. Then we search for the nearest n POIs based on the image
location, determine the place types of these n POlIs, and calculate the average of these
place type embeddings as the final spatial context embeddings for images. The cosine
similarity score sm; is calculated between the spatial context embedding of an image and
the embedding of each candidate place type class i. Because sm; ranges from -1 to 1,
we use min-max normalization to scale the values to [0,1]. Finally, we apply the same
renormalization as for the CNN score to turn the normalized score sm; into probability
score, i.e. spatial relatedness score sj.

Combining these normalizations together with Equation [4.1) and Equation 4.2] we are
able to derive that 0 < s; < 1 and ZZ]\LI s; = 1 where N = 15 in our case. This means

that the LBF score s; can be considered a probability score.
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4.4.2 Spatial Co-location

The spatial relatedness approach follows the assumption that relatedness implies like-
lihood which is reasonable in cases where similar place types cluster together, such as
restaurant, bar, and hotel. However, in cases of high spatial heterogeneity, this assump-
tion will fall short of correctly capturing the true likelihood. An example would be places
of dissimilar types that co-occur, e.g., grocery stores and gas stations. Moreover, the LBF
method can only capture a linear relationship between the two signals.

Following Berg et al. [61], we also test a Bayesian approach in which we assume
there is a complex latent distribution of the data that facilitates our classification task.
Intuitively, the CNN score gives us the probability of each candidate class t given the
image I, i.e., P(t|]), and the spatial context informs us of the probability of each candi-
date class given its neighbors ¢y, ¢o, c3, ..., ¢, denoted as C', around the image location,
i.e., P(t|C). We would like to obtain the posterior probability of each candidate class
given both the image and its spatial context, i.e., P(¢|I,C). Using Bayes’ theorem, the
posterior probability can be written as:

P(I,C|t)P(t)

P(t|1,C) = PO

(4.3)

For variables I, C', and t, we construct their dependencies using a simple probabilistic
graphical model, i.e., Bayesian network, which assumes that both the image I and the
spatial context C' are dependent on the place type ¢, which intuitively makes sense in
that different place types will result in different images and different place types of their
neighbors. We know that given information about the image [ we are able to update
our beliefs, i.e., the probability distributions, about the place type t. In addition, the
changes in our beliefs about the place type ¢ can influence the probability distributions

of the spatial context C'. However, if place type t is observed, the influence cannot flow
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between I and C, thus we are able to derive the conditional independence of I and C'

given t. So Equation [4.3| can be rewritten as:

P(|I,C) = P([’tj)f(jl(%?]j(t)
_ P(I)P(I) P(t|C)P(C) P(t) (4.4)
P(1) P(t)  P(I,C) |
P(t|I)
) P(t|C)

in which we have dropped all the factors that are not dependent on ¢ as they can be
considered as normalizing constants for our probabilities. It follows that the posterior
probability P(t|I,C') can be computed using the CNN probability score P(t|]), the spa-
tial context prior P(t|C'), and the candidate class prior P(t). Instead of estimating
the distribution of spatial context priors, we take advantage of the spatial co-location
patterns and calculate the prior probabilities using the Yelp POI data directly. As men-
tioned earlier, the spatial context C' is composed of multiple individual context neighbors
C1,C2, C3, ..., Cy; hence, we need to calculate P(t|cy,co,cs, ..., ¢,). In order to simplify our
calculation, we impose a bag-of-words assumption as well as a Naive Bayes assumption
in the spatial co-location patterns. The bag-of-words assumption simplifies the model
by assuming that the position (or the order) in which different context POIs occur does
not play a role. The Naive Bayes assumption implies that the only relationship is the
pair-wise interaction between the candidate place type t and an individual neighbor’s
place type ¢; and there is no interaction between neighboring places wrt. their types, i.e.

(¢;dley|t) for all ¢;, ¢;. Using spatial co-location, we are able to calculate the conditional

count(c;,t)

count (D where count(c;, t) is the

probability using place type co-location counts P(¢;|t) =
frequency that neighbor type ¢; and candidate type t co-locate within a certain distance

limit and count(t) is the frequency of candidate type ¢ in the study area. Combining all
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these components, we can derive:

P(t|C) = P(t|cy, Cas ooy )

_ POTIL, Plalt)
~ P(ey,ca,¢3, .., Cn) (4.5)
_ P(t) [T, count(c;, t)

P(cy,c9,¢3,.0,¢q)  count(t)”

Using Equation [4.4] and Equation [£.5] we can derive the final formula for calculating
P(t|I,C) shown in Equation [1.6] For the sake of numerical stability, we calculate the log
probability logP(t|I,C') using the natural logarithm. Since the natural logarithm is a
monotonically increasing function, it will not affect the final ranking of the classification

results.

logP(t|I,C) l0g<PP(7E|t§)P(t|C))

= log (P( P(tI) [[;=, count(c;, t))

C1,C2,C3,y .0y Cp)  cOuNt(t)”

x logP(t|I) + Z log(count(c;,t)) — nlog(count(t))

=1

where we also drop P(cy, g, ¢3, ..., ¢,,) as it does not depend on ¢, so it will not affect the
result ranking. The log posterior probability is then used to generate the final ranking

of candidate place types and produce the classification results.

4.4.3 Spatial Sequence Pattern

The spatial co-location approach follows the bag-of-words assumption that the po-
sition of spatial context POIs does not matter and the Naive Bayes assumption that
the context neighbors are independent of each other. However, in many cases this as-

sumption is too strong. In fact, numerous methods, such as Kriging and multiple-point
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geostatistics, have been devised to model geospatial proximity patterns and complex
spatial interaction patterns. However, incorporating these complex spatial patterns in a
multidimensional space would adversely affect the model complexity and make the dis-
tribution in Section intractable. In order to strike the right balance between the
complexity of model and the integrity of spatial context pattern, we propose to capture
the spatial sequence pattern in our model by collapsing the 2D geographic space into a
1D sequence.

Specifically, we use the Long Short-Term Memory (LSTM) network model, a variant of
recurrent neural network (RNN), in our study. Recurrent neural networks are frequently
used models to capture the patterns in sequence or time series data. In theory, the naive
recurrent neural networks can capture long term dependencies in the sequence, however,
due to the vanishing and exploding gradient problem, they fail to do so in practice. LSTM
is explicitly designed to solve the problem by maintaining a cell state and controlling the
input and output flow using forget gate, input gate, and output gate [154]. We use LSTM
as a generative model in order to capture the latent distribution of place types using the
spatial sequence pattern. In the training stage, the input is a sequence of context place
types ¢y, ¢o, C3, ..., ¢, and the output is the place type t of the POI from which the context
is created. The input sequence is ordered in a way so that the previous one is further
away from the output than the next one in the collapsed 1D space. Image one would drive
around a neighborhood before reaching a destination. For each of the POIs encountered
during the route, one would update the beliefs about the neighborhood by considering
the current POI and all previously seen POIs. Upon arriving at the destination, one
would have a reasonable chance of guessing this final POI’s type. The structure of the
LSTM model is shown in Figure [4.1 We apply a dropout after the LSTM layer to avoid
overfitting. After training the LSTM model on Yelp’s POI dataset, we are able to obtain

the spatial context prior P(t|cy, co, 3, ..., ¢n) based on the spatial sequence pattern around
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Figure 4.1: Structure of the LSTM.

the image locations in our test data. We specifically removed the image locations and
their context in the training data. Similar to the spatial co-location approach, we use

Bayesian inference and log probability to calculate the final result:

o X o P(t‘[)
logP(t|1,C) | g( i P(t|C)) -

= logP(t|I) + logP(t|c1, ca, 3, ..., cn) — log P(t)

where the candidate class prior P(t) can be computed using the Yelp data. Since we use
LSTM as a generative model, in the prediction phase, sampling strategies, such as greedy
search, beam search, and random sampling, can be applied based on the distribution
provided by the output of the LSTM prediction. However, we only generate the next
prediction instead of a sequence, so we do not apply these sampling strategies. Instead, we
make use of the hyperparameter temperature 7 to adjust the probability scores returned
by the LSTM model before combining them with the CNN model in a Bayesian manner.
Including the hyperparameter 7, the softmax function in the LSTM model can be written

as:
61‘])( log—lti )

logit,
Z;'V:l exp(%n])

where logit; is the logit output provided by LSTM before applying the softmax function

P(t|C) =

(4.8)

and N = 15 in our case. Intuitively, when the temperature 7 is high, i.e., 7 — o0, the
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probability distribution will become diffuse and P(¢;|C') will have almost the same value
for different t;; when 7 is low, i.e., 7 — 01, the distribution becomes peaky and the
largest logit; stands out to have a probability close to 1. This idea is closely related to
the exploration and exploitation trade-off in many machine learning problems. The value
of 7 will affect the probability scores P(t;|C') but not the ranking of these probabilities.

In this study, we propose two ways to model the 2D geographic space as a 1D sequence.
The first one is a distance-based ordering approach. For any given POI, we search for
nearby POIs within a certain distance from it, choose the closest n POIs, and rearrange
them by distance with descending order, thereby forming a 1D array. This distance-based
method is isotropic in that it does not differentiate between directions while creating
the sequence. The second method is a space filling curve-based approach. We utilize
Morton order here which is also used in geohashing to encode coordinates into an indexing
string that can preserve the locality of spatial locations. We use Morton order to encode
the geographic locations of every POI and order them in a sequence based upon their
encodings, i.e., indexing sequence. After obtaining the sequence, for each POI, we use
the previous n POI in the sequence as the context sequence. Other space filling curves
could be used in future work.

Because each POI can have multiple place types associated with it, e.g., restaurant
and beer garden, the sequence of place types is usually not unique for the same sequence
of POIs. As our LSTM input is a sequence of place types, we compute the Cartesian

product of all POI type sets in the sequence of nearby places:

Toy X Toy X Toy X oo x Tt = {(te) Loy tegy oty ) Vi =1,2,3,..,n, t,, € T.,}  (4.9)

where T, is the set of place types associated with POI ¢; in the context sequence. In

practice, however, we randomly sample a fixed number of place type sequences from each
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of the Cartesian product for the POI context sequence as the potential combinations

grow exponentially with increasing context size.

4.5 Experiment and Result

In this section, we explain our experimental setup for the models described above,
describe the metrics used to compare the model performance for place type image clas-

sification, and present the results and findings.

4.5.1 Implementation Details

For all three types of spatial context, we use 10 as the maximum number of context
POIs and a distance limit of 1000m for the context POI search. For the spatial sequence
pattern approach, we use a fixed sample size of 50 to sample from the Cartesian product
of all POI type sets in the sequence. [f] We use a one-layer LSTM with 64 hidden units.
We train our LSTM model using the recommended Root Mean Square Propagation
(RMSProp) optimizer with a learning rate of 0.005. A dropout ratio of 0.2 is applied in
the LSTM and we run 100 epochs. The same settings are used for all LSTM trainings in
our experiment. The total number of POI in the dataset is 115,532, yielding more than
5 million unique training sequences.

For evaluation, we use three different metrics, namely Mean Reciprocal Rank (MRR),
Accuracy@1, and Accuracy@5. Another common metric for image classification would
also be Mean Average Precision (MAP), but since there is only one true label per type

in our task, we use MMR instead.

6The median for types per place in Yelp is 3.
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4.5.2 Results

We run the 750 test images we collected, i.e., 50 images per each of 15 types, on the
four CNN baseline models (AlexNet, ResNet18, ResNet50, and DenseNet161) as well as
the combined models using our three different types of spatial context. E| In addition
to the two methods for converting geographic space into 1D sequences in the spatial
sequence pattern approach, we also test one model using random sequences with the
same context count and distance limits. We did so to study whether results obtained
using the LSTM would benefit from distance-based spatial contexts. A higher result
for the spatial sequence based LSTM over the random LSTM would indicate that the
network indeed picked up on the distance signal.

The hyperparameter 7 can be adjusted; a value of 0.5 has been proposed as a good
choice before. In order to test this and find the optimal temperature value, we run
the combined model using spatial sequence patterns with three types of sequencing ap-

proaches, namely random sequence, distance-based sequence, and Morton order-based

sequence.

0.45 0.45- 0.45

A
0.40- \ 0.40
{ AlexNet
gE g “Fesheits
/ = DenseNet161
0.35 0.35
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Temperature Temperature Temperature

Figure 4.2: From left to right, MRR result using distance-based sequence, random
sequence, and Morton code-based sequence with varying temperatures

"Transfer learning could be applied to fine tune the CNN models first, but we only have limited
images and our hypothesis is that spatial context can be used as a powerful complement or alternative
to the visual component for image classification.
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We test temperature values ranging from 0.01 to 2 with a step of 0.01. We combine
the spatial sequence pattern models with all CNN models. The MRR result with respect
to temperature are shown in Figure [£.2] Although there are a slight variations, the
MRR curves all reach their peaks around a 7 value of 0.5. This confirms the suggestion
from the literature. Figure [4.3|shows selected example predictions. The results for MRR,

Accuracy@1, and Accuracy@b using the baseline models as well as our proposed, spatially

explicit models are shown in Table Table and Table [4.4] [}

Figure 4.3: From left to right, images of a restaurant, a hotel, and a museum from
Yelp, Google Street View, and Google Maps respectively. The first image is incorrectly
classified as library using all 4 CNN models and it is correctly classified as restaurant
using the spatial sequence pattern (distance) models. The second image is classified
as hospital and library by the original CNN models and is classified as hotel by the
spatial sequence pattern (distance) models. For the third image the correct label
museum is in the third position in the label rankings of all 4 CNN models while,
using the spatial sequence pattern (distance) models, ResNet18 and ResNet50 can
correctly label it and in the label rankings of AlexNet and DenseNet161 museum is in
the second position.

Table 4.2: MRR result using baseline models and proposed combination models using
different types of spatial context and sequences

MRR AlexNet | ResNet18 | ResNet50 | DenseNet161
Baseline 0.27 0.28 0.31 0.31
Relatedness 0.27 0.28 0.31 0.32
Co-location 0.30 0.31 0.31 0.32
Sequence Pattern (Random) 0.38 0.40 0.42 0.42
Sequence Pattern (Distance) 0.41 0.42 0.44 0.44
Sequence Pattern (Morton order) 0.39 0.42 0.43 0.43

8The baseline models are not comparable with a random classifier which would yield an expected
accuracy of 1/15 in this case, because the baseline CNN models have 365 unique labels and we choose
15 labels in our experiment.
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As we can see, by incorporating spatial context in the image classification model,
we are able to improve the classification result in general. However, integrating spatial
relatedness using the LBF method does not seem to affect the result. This essentially
confirms our aforementioned assumption that relatedness does not always imply likeli-
hood. The benefit of incorporating spatial relatedness in cases of spatial homogeneity
are likely to be offset by cases of hight spatial heterogeneity in which spatial relatedness
may have an negative effect as dissimilar places co-occur.

The Accuracy@1 measurement is improved by incorporating spatial co-location com-
ponent in the models. This confirms our previous reasoning that considering the external
signal, namely spatial contexts, and assuming a complex latent distribution of the data
in a Bayesian manner improve image classification. However, for MRR the improvement
is marginal and for Accuracy@b there even is a decrease after incorporating the spatial
co-location component because this type of spatial context falls short of taking into ac-
count the intricate interactions of different context neighbors. This shortcoming is not
clear when only looking at the first few results in the ranking returned by the combined
models, but it becomes clearer in later results in the ranking output, thus resulting in a
decrease for Accuracy@b5 and only a slight increase in the MRR measurement.

Table 4.3: Accuracy@1 result using baseline models and proposed combination models
using different types of spatial context and sequences

Accuracy@1 AlexNet | ResNet18 | ResNet50 | DenseNet161
Baseline 0.07 0.07 0.09 0.09
Relatedness 0.07 0.07 0.09 0.09
Co-location 0.15 0.17 0.17 0.17
Sequence Pattern (Random) 0.18 0.18 0.19 0.20
Sequence Pattern (Distance) 0.20 0.20 0.22 0.22
Sequence Pattern (Morton order) 0.19 0.20 0.22 0.22

The Bayesian combination model using spatial sequence patterns shows better over-

all results compared with the baseline models, the spatial relatedness model, and the
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Table 4.4: Accuracy@b result using baseline models and proposed combination models
using different types of spatial context and sequences

Accuracy@5h AlexNet | ResNetl8 | ResNet50 | DenseNet161
Baseline 0.50 0.56 0.59 0.60
Relatedness 0.52 0.56 0.58 0.59
Co-location 0.42 0.44 0.45 0.44
Sequence Pattern (Random) 0.65 0.69 0.73 0.73
Sequence Pattern (Distance) 0.67 0.70 0.73 0.75
Sequence Pattern (Morton order) 0.65 0.70 0.72 0.71

spatial co-location model. This is because the spatial sequence patterns capture spatial
interactions between the neighboring POIs that are neglected by the other models. From
the result we can see that using a distance-based sequence is better than using a random
sequence. To prevent confusion and to understand why the random model still performs
relatively well, it is important to remember that this model utilizes spatial context. How-
ever, it does not utilize the distance signal within this context but merely the presence of
neighboring POI. The results show that a richer spatially explicit context, one that comes
with a notion of distance decay, indeed improves classification results. Interestingly, the
sequence using Morton order, which is widely used in geohashing techniques, does not
further improve the result compared to the distance-based sequence. There may be mul-
tiple reasons for this. First, we may have reached a ceiling of possible improvements by
incorporating spatial contexts. Second, our Morton order implementation takes the 10
places that precede the target place in the index. This may result in directional effects.
Finally, all space filling curves essentially introduce different ways to preserve local neigh-
borhoods; utilizing another technique such as Hilbert curves may yield different results.
Given that the Morton order-based sequence in many cases yield results of equal quality
to the distance-based sequences, further work is needed to test the aforementioned ideas.

Summing up, the results demonstrate that incorporating a (distance-based) spatial

context improves the MRR of state-of-the-art image classification systems by over 40%.
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The results for Accuracy@1 are more than doubled which is of particular importance

for humans as this measure only considers the first ranked result.

4.6 Conclusion and Future Work

In this work, we demonstrated that utilizing spatial contexts for classifying places
based on images of their facades and interiors leads to substantial improvements, e.g.,
increasing MRR by over 40% and doubling Accuracy@1, compared to applying state-
of-the-art computer vision models such as ResNet50 and DenseNet161 alone. These
advances are especially significant as the classification of places based on their images
remains a hard problem. One could argue that our proposal requires additional informa-
tion, namely about the types of nearby places. However, such data are readily available
for POI, and only a few nearby places are needed. Secondly, and as a task for future
work, one could also modify our methods to work in a drive-by-typing mode in which
previously seen places are classified, and these classification results together with their
associated classification uncertainty are used to improve estimation of the currently seen
place, thereby relaxing the need for POI datasets. In the future, we would like to apply
transfer learning and experiment with other ways to encode spatial contexts, e.g., by
testing different space-filling curves. We plan to develop models to directly capture 2D
spatial patterns rather than using a 1D sequence as a proxy and test whether spatial

contexts also aid in recognizing objects beyond places and their facades.
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Chapter 5

A Spatially-Explicit Reinforcement
Learning Model for (Geographic

Knowledge Graph Summarization

This chapter presents a generic method for geographic knowledge graph summarization
based on reinforcement learning by considering spatial relations explicitly. The proposed
method tackles three major challenges in summarizing geographic knowledge graphs,
namely the complexity of graph structure, the subjectivity of summarization criteria,
and the richness of geospatial semantics. The complexity of graph structure is handled
by formulating the summarization tasks as a Markov Decision Process and applying
the Monte Carlo Policy Gradient method. Wikipedia summaries are used to provide a
relatively objective summarization baseline. In order to capture the richness of geospatial
semantics, we apply the geospatial inductive bias by introducing an explicity spatial
relation in addition to existing relations in the graph. Results from Chapter [3] and
Chapter [4] can be potentially incorporated in this method. The evaluation has shown
promising results for the proposed spatially-explicit method.
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Abstract Web-scale knowledge graphs such as the global Linked Data cloud consist of
billions of individual statements about millions of entities. Unsurprisingly, many of the
most densely connected entities are places and regions, often characterized by thousands
of incoming and outgoing relationship to other places, actors, events, and objects. In
recent years, this has fueled the interest in knowledge graph summarization techniques
that compute representative subgraphs for a given collection of nodes. In this paper,
we propose a novel summarization method that incorporates spatially-explicit compo-
nents into a reinforcement learning framework in order to help summarize geographic
knowledge graphs, a topic that has not been considered in previous work. Our model
considers the intrinsic graph structure as well as the extrinsic information to gain a more
comprehensive and holistic view of the summarization task. By collecting a standard
dataset and evaluating our proposed models, we demonstrate that the spatially-explicit
model yields better results than non-spatial models, thereby demonstrating that spatial

is indeed special as far as summarization is concerned.
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5.1 Introduction

Knowledge graphs were originally introduced to promote the creation, retrieval, and
reuse of human and machine readable structured data. Recent advances in related tech-
nology stacks such as knowledge graph-based question answering systems as well as the
adoption by commercial companies have highlighted the success of knowledge graphs in
both academia and industry. Users and providers of geographic information have always
been at the forefront of research in knowledge graphs and their representations as they
address many key challenges in the areas of semantic interoperability and spatial data
infrastructures that have plagued GIScience for years [155]. In fact, a large number of
entities in WikidataE] — a sister initiative of Wikipedia to create a repository for struc-
tured information — are spatial and dedicated geospatial knowledge graph hubs such as
LinkedGeoDataP| contain billions of statements about geographic entities.

In theory, today’s abundance of geographic data facilitates new research and more
powerful question answering systems. From a more practical perspective, however, sifting
through the data deluge becomes increasingly challenging. Ramscar et al. [I8] have shown
that too much information may adversely influence our cognitive information-processing
capacities and unavoidably result in lags and retrieval errors. As a result, researchers are
working on ways to better present data for humans, such as interfaces and visualization
tools to make knowledge graphs more user-friendly and more accessible for non-technical
audiences. One novel area of study is knowledge graph summarization, namely selecting
and identifying the property-value pairs that best represent the underlying entity from a
large and convoluted graph [22].

The idea of summarizing a knowledge graph in a way such that the subgraph retains

the significant substructures and meaning, here prominent nodes and edges, of the original

"https://www.wikidata.org
Zhttp://linkedgeodata.org
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graph is intriguing. However, this task is entangled with a lot of challenges, especially in
the geospatial domain. One challenge is related to the inherently complex structure of
graph data. Unlike other commonly-used structures such as the 1D sequence of natural
languages and the 2D grids of images, graph structures are peculiar in their own ways. For
example, on the global level, two graphs can be isomorphic, i.e., have the same structure,
while they have distinct representations (e.g., labeling and visual representations). On
the local level, substructures such as homophily and structural equivalence [I56] coexist
in the graph as proxies to encode the underlying patterns. In addition, since most
knowledge graphs follow the so-called Open World Assumption (OWA) — which implies
that there are possibly missing statements/triples in the knowledge graph without having
to assume that those missing statements do not hold true in reality — the original structure
of the graph might not represent the complete information. This adds another layer of
complexity.

As a result of the versatility and peculiarity of graph data, traditional methods that
rely heavily on handcrafted features/rules (such as clustering coefficients and other graph
summary statistics) for knowledge graph summarization are not sufficient enough because
they do not generalize well. Another challenge is the subjectivity of the summarization
criteria. The relative importance of a node (entity) or an edge (relation/property/predi-
cate) in the knowledge graph is not universally defined and different application fields can
interpret it differently. For instance, a knowledge graph that primarily models friendship
relation among individuals may take advantage of the connectivity information (such as
degrees, betweenness, closeness, or eigenvector centrality) to determine important nodes
in the summarization process. On the contrary, to summarize the DBpediaﬂ knowledge
graph — a crowd-sourced community effort to extract structured information from var-

ious Wikimedia projects — where there are a large number of distinct relation types

3https://wiki.dbpedia.org/
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and the whole graph is densely connected, latent information embedded in the labels
and abstracts of each entity and relation is required to determine the extent to which
each component of the graph is related with one another in order to rank the rela-
tive importance. Besides the aforementioned challenges, geographic knowledge graph
summarization has its distinct challenges. Given the inherent richness of geospatial se-
mantics [48, [49], geospatial components such as spatial contexts play a significant role
in understanding spatial entities and their dependencies. However, existing (knowledge)
graph summarization methods [2I] are not tailored towards the geospatial domain thus
neglecting such special components. For instance, a summary about Santa Barbara, CA
is also always a partial summary of California. As humans we give special weight to
the places where important historic figures were born even if they spent their entire life
somewhere else. Hence, every summary of the city of Ulm, Germany, e.g., the first para-
graph of its Wikipedia article, lists Albert Einstein as notable resident despite his family
moving to Munich a year after his birth. For Munich in turn, his name is not prominently
featured in the city’s description. This may be related to the broader phenomenon of
duration neglect [157].

In light of this, we propose to adopt a reinforcement learning-based approach to
explicitly incorporate spatial contextual information. Our method combines both intrin-
sic structure and extrinsic information to help summarize geographic knowledge graphs
as most domain-agnostic work [22) 158 159, 160, B33, O9] fails to consider the inherent
richness of geospatial semantics. In fact, we believe that there is no prior work about ge-
ographic knowledge graph summarization at all — despite places such as Vienna, Austria
being represented by tens of thousands triples in modern knowledge graphs, and, hence,
in desperate need for graph summarization. In order to strike the balance between diver-
sity and uniformity in summarizing geographic knowledge graphs, our model utilizes the

idea of distance decay and information entropy to determine the relatedness of different

92



A Spatially-Explicit Reinforcement Learning Model for Geographic Knowledge Graph
Summarization Chapter 5

spatial /non-spatial entities.

By intrinsic structure, we mean the graph structure where each entity is connected
by properties. We embrace the current trend of utilizing vector representations, namely
translation-based embedding models [161], to embed the structural information of knowl-
edge graphs. The semantic information — by which we mean latent information encoded in
natural language, and, hence, not directly available to structural analysis — of the knowl-
edge graph is captured by the embeddings of entity and relation labels. For extrinsic infor-
mation, we take advantage of the Wikipedia abstracts of different places (geographic en-
tities) to guide our summarization process since these abstracts are exemplary summaries
of each geographic entity produced by human ingenuity, and there is a clear tractable
correspondence between Wikipedia articles and knowledge graphs [162] 163, [164]. By
combining reinforcement learning with knowledge graph embeddings, word embeddings,
information theory, and spatial contexts, we aim to tackle the challenges mentioned
above. Knowledge graph embeddings efficiently encode the hidden structure of the graph.
Word embeddings facilitate the transmission of semantic information in the knowledge
graph to the summarization process. Information theory together with the reinforcement
learning framework (guided by Wikipedia summaries) is employed to partially mitigate
the subjectivity issue that impacts knowledge graph summarization tasks. After all,
Wikipedia abstracts provide relatively neutral [43] [44], curated, concise, and generic di-
gests that highlight the distinctive and significant aspects of different places. Spatial
contexts are used to help recover missing links in the geographic knowledge graph and
uncover the hidden geospatial patterns.

The research contributions of this paper are as follows:

o We utilize Wikipedia summaries to guide the geographic knowledge graph summa-

rization process using reinforcement learning. Instead of mostly relying on intrinsic
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information, such as node groups in grouping and aggregation-based approaches
and the number of bits needed to describe the graph in bit compression-based ap-
proaches, our approach reaps the complementary strengths of intrinsic information
from the graph structure and extrinsic knowledge using Wikipedia summaries by
framing the task as a sequential decision making process that can be optimized

using reinforcement learning.

e We account for the richness of geospatial semantics in geographic knowledge graphs
and incorporate such information in the summarization process in order to better
capture the relatedness of geographic entities and provide better results. We do so
by following established GIScience methods, namely modeling distance decay, as

well as from an information theoretic perspective.

e We create a dataset DBPSGEﬂ that includes 369 place summaries from Wikipedia
and a subgraph of DBpedia for geographic knowledge graph summarization tasks
and make it openly available. A lack of standard datasets has been one of the ob-
stacles that hinder research development in the area of geographic knowledge graph
summarization and to some degree geographic information retrieval in general. By
taking the initiative to collect this dataset, we hope it will foster further research

in this area.

o We establish different baselines for the geographic knowledge graph summarization
task for the DBP369 dataset. Our result shows that by considering spatial contex-

tual components the summarized graph better resembles the Wikipedia summary.

e Finally, to the best of our knowledge this is the first research to consider the problem

of geographic knowledge graph summarization. This is remarkable as Web-scale

“http://stko.geog.ucsb.edu/gkg/
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knowledge graphs such as Linked Data store tens of millions of places and often

thousands of statements (subject-predicate-object triples) about them.

The remainder of this paper is organized as follows. Section summarizes existing
work on knowledge graph summarization, spatially-explicit models, and utilizing rein-
forcement learning in the context of knowledge graphs. Section describes the basic
procedure of our data collection and provides detailed information about the DBP369
dataset. Section explains the proposed method for geographic knowledge graph sum-
marization. Section applies the model to the DBP369 dataset and evaluates the

results. Section concludes the research and points to directions for future work.

5.2 Related Work

Most graph summarization techniques fall into one of the four categories [21] namely:
grouping or aggregation-based approaches, bit compression-based approaches, simplifi-
cation or sparsification-based approaches, and influence-based approaches. Knowledge
graph summarization usually adopts the simplification or sparsification-based approach
for the reason that the prime motivation for summarizing knowledge graphs is to provide
a subgraph that highlights the important entities and relations of the original graph.
Cheng et al. [22] and Thalhammer and Rettinger [I59] proposed to utilize the graph
structure and performed PageRank to identify relevant entities and summarize the graph.
Pirro [160] formalized the notion of relatedness in knowledge graphs to better harness the
large variety of information. While these papers primarily take advantage of the intrinsic
information of knowledge graphs, some work is geared towards extrinsic knowledge. For
instance, Bast et al. [33] utilized textual information from Wikipedia to build logistic
regression and generative models to calculate relevance scores for relations in knowledge

graph triples. Our work takes the best of both worlds by considering intrinsic knowledge
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graph structure and extrinsic information simultaneously.

In addition, all the work mentioned above aims at retrieving/ranking entities/rela-
tions based on certain criteria such as relevance scores with respect to a user’s queries
rather than providing a subgraph that captures the essence of the original graph. Our
work provides a subgraph that summarizes the relations and connected entities for each
geographic entity based on corresponding Wikipedia abstracts. With the recent trend to-
wards learning latent representations of graphs [165], methods based on matrix factoriza-
tion strategies (such as Singular Value Decomposition (SVD), CUR [166], and Compact
Matrix Decomposition (CMD) [167]) have been used in which low-rank approximations of
adjacency matrices are viewed as sparse approximation summaries of the original graphs.
Our work embraces the idea of adopting a more scalable neural network-based approach,
namely the TransE [I61] model, to learn low-dimensional latent knowledge graph repre-
sentations and applying these embeddings within our summarization pipeline.

In order to study the influence of geospatial contexts on identifying different types
of places, Yan et al. [48] proposed a latent representation learning method based on
augmented spatial contexts. Similarly, Yan et al. [49] used spatial sequence patterns of
neighborhoods as Bayesian priors and combined them with state-of-the-art convolutional
neural network models to help improve image classification for different place types using
data collected from Yelp and Google Street View. Mai et al. [§] incorporated geographic
weights into the latent representation learning process in order to provide better knowl-
edge graph embeddings for geographic question answering tasks. Our work, follows the
same line of reasoning, namely that spatially-explicit models substantially outperform
more general models when applied to geographic data. Kejriwal and Szekely [88] pre-
sented a geospatial data source generated using weighted neural embeddings methods on

Geonameq’| data. The resulting embeddings encode geographic contextual information.

Shttps://www.geonames.org/
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Researchers working on knowledge graphs have been exploring different ways in which
reinforcement learning can be used. For example, Xiong et al. [I68] adopted the REIN-
FORCE (Monte Carlo Policy Gradient) algorithm [169] to make a policy-based agent
learn multi-hop relational paths for knowledge graph reasoning tasks by considering ac-
curacy, diversity, and efficiency in their reward function. Das et al. [I70] framed the
knowledge graph reasoning task as a finite horizon, deterministic partially observable
Markov Decision Process (MDP) and designed a randomized non-stationary history-
dependent policy parameterized by a long short-term memory network (LSTM) [154].
Shen et al. [I71] developed the M-Walk graph-walking agent using recurrent neural net-
work (RNN) to encode the history of the walked path and Monte Carlo Tree Search
(MCTS) with a neural policy to generate trajectories yielding more positive rewards
to overcome the challenge of sparse rewards under the off-policy Q-learning framework
for knowledge graph completion. However, none of these approaches used a geographic
dataset. Moreover, our work is based on the novel idea of treating the geographic knowl-
edge graph summarization task as an MDP and the decision at each summarization step

is made by the reinforcement learning agent.

5.3 Dataset

Given the lack of existing work on geographic knowledge summarization and re-
lated benchmarks, we collected the dataset DBP369 for our research and hope it can be
adopted in similar research studies in the future. We initially picked 500 places from
different areas of the world, as shown in Fig. [5.1] In this work, we would like to explore
the possibility of guiding the summarization process of geographic knowledge graphs by
means of unstructured human knowledge. There are two parallel parts of our dataset:

1) Wikipedia summaries of each of these places, 2) A geographic knowledge graph con-
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taining each of these places and their related entities. These places include well-known

- i

Figure 5.1: Place distribution map (Eckert IV).

metropolitan areas such as New York City and Los Angeles as well as areas with archae-
ological and historic significance such as Olympia, Greece. We used the MediaWiki APIE]
to find the corresponding Wikipedia pages for these places, from which summary texts
were extracted. These summaries provide a human-generated guidance for summarizing
geographic knowledge graphs.

For the geographic knowledge graph part, we selected DBpedia as our data source,
as it has numerous geographic entities, is being actively maintained and updated, has
a clear one-to-one correspondence for each Wikipedia article, and provides a diversified
and comprehensive coverage of properties. In order to construct our geographic knowl-
edge graph from DBpedia, we prepared these 500 places from Wikipedia and retrieved
all links that appeared in the summaries of these 500 articles. We generated mappings to

find the corresponding entities for these places as well as the links. After obtaining these

Shttps://en.wikipedia.org/w/api.php
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seed entities, we generated SPARQL["| queries to retrieve 1-degree and 2-degree neighbors
iteratively in order to form subgraphs surrounding these seed nodes. In DBpedia all
statements are organized as (head, relation, tail) or (subject, predicate, object) triples.
Query shows an example query that uses a basic graph pattern to obtain 1-degree

(both incoming and outgoing) neighboring nodes of DBpedia entity dbr:Los_Angeles.

PREFIX dbr: <http://dbpedia.org/resource/>

SELECT DISTINCT * WHERE {{

dbr:Los_Angeles 7pl 7o

FILTER (CONTAINS (str(?pl),’http://dbpedia.org/ontology/’) && !isLiteral
— (70))}

UNION {

?s 7?p2 dbr:Los_Angeles

FILTER (CONTAINS (str(?p2),’http://dbpedia.org/ontology/’) && !isLiteral

— (7s8))}}

Listing 5.1: An example SPARQL query for retrieving the 1-degree neighbors for
dbr:Los_Angeles, using it as both the head (subject) and the tail (object) entity.

We only considered relations with prefix http://dbpedia.org/ontology/ since these mapping-
based relations have a much higher quality. For the purpose of our modeling strategy,
we further removed duplicate triples/statements and filtered out entities that appeared
less than 10 times. In the end we obtained a dataset that contains 369 Wikipedia place
summaries and a DBpedia subgraph that connects these 369 place entities with various
other spatial and non-spatial entities, e.g., historical figures, via different relations, thus
forming our geographic knowledge graph.

For the 369 places, the average length for the Wikipedia summary is 299 words and
each summary on average contains 28 links. For the geographic knowledge graph, there

are all together 419,579 entities, 534 unique relations, and 3,248,715 triples/statements.

"https://www.w3.org/TR/rdf-sparql-query/
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The data is split into a training set of 334 places and a test set including 35 places.
Fig. shows a slice of our dataset. The text in the middle is part of the summary for
Los Angeles (dbr:Los_Angeles) and the graph surrounding the text illustrates the way in
which different entities are connected with each other. We highlight the correspondence

between the links in the summary and DBpedia entities.

dbr:Los_Angeles
dbo:isPartOf dboisPartO dbo:isPartOf

. dbr:California
dbo:isPartOf

dbr:Hollywood

is one of the most substantial economic
engines within the [United Stated, with a diverse
‘economy in"a broad range of professional and cultural . dbobirthPlace
dbr:United_States fields. Los Angeles is also famous as the home
of a major center of the world entertainment

industry. .

‘,,—"’dbr:Leonardo_DiCaprio

dbo:residence dbo:starring

dbr:Malibu,_California _ ‘/d
dbo:director
dbr:Titanic_(1997_film)

dbr:James_Cameron

Figure 5.2: Three links Los Angeles, United States, and Hollywood in this text are
mapped to three entities dbr:Los_Angeles, dbr:United_States, and dbr:Hollywood re-
spectively. By retrieving the 1-degree and 2-degree neighbors of these entities, we are
able to find their connections as well as information about other related entities.

5.4 Methods

In this section, we introduce our spatially-explicit reinforcement learning method.
Instead of pruning the graph as explored by previous studies [99], we decide to tackle
the problem in a reverse manner. We formulate the task as a sequential decision making
problem where we start from the simplest graph, namely a single node (the geographic
entity in question), and iteratively propose to make the graph more complex and ex-

pressive by sequentially adding new relations (edges) and entities (nodes) through trial

100



A Spatially-Explicit Reinforcement Learning Model for Geographic Knowledge Graph
Summarization Chapter 5

and error until the graph representation closely resembles Wikipedia’s textual summary.
We first introduce the reinforcement learning model by explaining the basic components
such as the environment, agent, actions, states, and rewards. Our policy-based agent
learns to pick meaningful relations by interacting with the geographic knowledge graph
environment. Then we describe the training pipeline where the model is first trained on

a supervised policy followed by being retrained using the reward function.

5.4.1 Reinforcement Learning Framework

The geographic knowledge graph summarization task is formalized as a Markov De-
cision Process (S, A, P,, R,) where two components, namely the environment and the
agent, interact with each other, as shown in Fig. S = {s1, 52, ..., S, } 1 a set of states
that contains useful information from the history of the MDP. A = {ay,as,...,a,} is
a set of actions that the agent can take for the state provided by the environment.
Because of the memorylessness of the MDP, the state transition probability matrix
P.(s,s") = Pr(s;y1 = §'|sy = s,a; = a) represents the probability of reaching state s’
at time ¢+ 1 after the agent takes action a in state s at time ¢t. R,(s,s’) is the immediate
reward after taking action a and transitioning from state s to state s'.

To intuitively understand the process, let us suppose the MDP starts with a graph
that is composed of the place entity itself and the Wikipedia summary of the place. At
each step, the agent analyzes the current state (by considering information about the
graph as well as the Wikipedia summary) of the process and decides to add one of the
possible relations to the graph to grow it in the hope of more closely resembling the
Wikipedia abstract. The agent gets a certain amount of reward depending on the extent
to which this step was successful in reaching this goal. When the process terminates, i.e.,

an episode of MDP has been conducted, the graph is expected to be a good summary
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The Geographic Knowledge Graph Environment Policy-Based Agent
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' - - : RelLU
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Figure 5.3: The geographic knowledge graph environment and the policy-based agent

interact with each other in the reinforcement learning model. The graph environment

on the left shows how the place entity dbr: Washington,_D.C. is connected with other

spatial /non-spatial entities via various relations. The agent on the right interacts

with the environment in the MDP and learns to pick relations to help summarize the

graph.
of the original geographic knowledge graph for this place. The goal of the agent is to
maximize the amount of reward it receives. During this process, the agent is learning
to discover the sweet spot on the spectrum between information deficit (a graph with a
single node for the place entity itself) and information overload (the whole geographic
knowledge graph containing 419,579 nodes) by considering the textual summarization
counterpart, namely the Wikipedia abstract. In order to balance the trade-off between
exploration and exploitation, the behavior of the agent is defined by the stochastic policy
m(als) = Pr(a; = a|s; = s) which is a probability distribution that determines the
likelihood of the agent taking action a in state s at time step t¢.

In our model, the policy network (shown in Fig.|5.3)) is used to learn an approximation
function that captures the dynamics of the interaction and to parameterize the policy
mp(als) of the agent. It is a fully-connected neural network with two hidden layers.

Rectified Linear Units (ReLU) are used as activation functions in the hidden layers and

the softmax function is used in the output layer to generate probabilities for each possible
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action. Before diving into the training pipeline, we further explain each concept in the

context of our summarization task.

5.4.2 States

The states capture the information in the MDP. Since our model aims to capture both
intrinsic and extrinsic information, we utilize the geographic knowledge graph structure
as well as the semantic information from the Wikipedia summaries.

Since there are more than 400,000 entities in our geographic knowledge graph, model-
ing them as discrete atomic symbols using one-hot vectors in the states is not feasible. In
order to provide a condensed representation of the entities, we use the translation-based
knowledge graph embedding approach (TransE) [161]. The TransE model provides a
scalable and generic way to embed nodes and edges in a heterogeneous graph into the
same vector space. By considering the relations in the graph as translations in the em-
bedding space, the model extracts local and global connectivity patterns between entities.
The intrinsic structures of the graph are, thus, embedded in these latent representations
of entities and relations. The states in the MDP are supposed to help the agent un-
derstand the current environment in order to make decisions about the next step. In
this case, the entity embeddings can help capture the progress in the summarization
process with respect to the Wikipedia summary. We use the sum of the entity embed-
dings z; = ) .. £, € 1n the current summarization graph at step ¢ to capture the intrinsic
structural information where e; is the embedding for entity 7 in a set of entities Fj.

As these entities also appear as links in Wikipedia summaries, we denote the sum
of the embeddings of entities from a target Wikipedia place summary as Zigrger =
Zie Erarger € where Figge: is a set of entities that appear in the target Wikipedia place

summary. The intrinsic component of the state representation is defined as si™""s'¢ —=
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(Z¢, Ztarget — Z¢) Where the first component (left) encodes the structure of the summa-
rization graph at step ¢ and the second component (right) encodes the gap between the
current graph structure z;, and the desired structure z;grge;.

extrinsic , we consider the labels

For the extrinsic component of the state representation sj
of the entities and relations in the graph as well as the Wikipedia text summary. Neural
word embeddings have proven to be an efficient and effective way of encoding meaning of
words in our natural languages [102, 107]. We adopt the fastText word embedding model
proposed by Bojanowski et al. [172] as it handles out-of-vocabulary words and considers
the morphology of words by viewing each word as a bag of character n-grams.

After obtaining the word embeddings using the fastText model, we use the sum of the
entity label and relation label embeddings h; = »,_; v; to help capture the semantic
information of the graph at step t. In order to obtain the latent representation of the
Wikipedia textual summary, we utilize the Smooth Inverse Frequency (SIF) embedding
approach to generate paragraph embeddings hyg: using the word embeddings. The
theoretical justification of this method is provided by Arora et al. [I73]. The idea is to
multiply each word vector v,, by the inverse of its probability of occurrence p(w). Here

o is a smoothing constant and is set to 0.001 by default. We then obtain h, by

target

summing these normalized and smoothed word vectors and dividing them by the number

of words |W|:

Va 5.1
target |W| Z a+p ( )

As suggested by Arora et al. [I73], we obtain the matrix representation of all 369
Wikipedia summaries and remove the first principal component from this matrix to
generate the final embeddings hy,, 4 for each Wikipedia place summary because the top
singular vector tends to contain syntactic information and removing it cleans up the

embeddings’ ability to better express semantic information.
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Similar to the intrinsic component, the extrinsic component of the state is represented
as ste“’””m”C = (h¢, hygrger — hy) and the state representation is a concatenation of these

two components:

St = (Sintrinsic7 Sf:ctrinsic) = (Zt7 Ztarget — Zy, hta htarget - ht) (52)

After calculating state representations, the cosine distance is calculated between the
current graph and the target Wikipedia summary for both entity embeddings and label
embeddings, denoted as dist,, = 1 — cos(Z, Ziarger) and distn, = 1 — cos(hy, hygrget)

respectively. The termination of the process is decided by:

distz, disthl

1, if dist,, < 5+ or disty, < —
T = (5.3)

0, otherwise

where dist,, and disty, denotes the initial cosine distance between the subgraph and the
Wikipedia summary for entities and labels respectively. The process terminates if 7 = 1.
This means that if either the cosine distance for entity embeddings or label embeddings

is at most half of the initial cosine distance the process will terminate.

5.4.3 Actions

Given the place entity and Wikipedia summary, the agent aims to choose actions that
iteratively leads to a better summary of the geographic knowledge graph for the place
in question. Starting from the initial state sy, the policy network (shown in Fig.
outputs the probability of choosing each action a. Since there are 534 unique relations
in our geographic knowledge graph, the normal action space is of size 534.

After the agent takes an action and decides to add a relation to the current subgraph,
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the environment checks possible ways of connecting the entities on the current subgraph
with potential new entities via the chosen relation. Let us suppose (by checking the
graph) that there are n potential triples to be added to the current subgraph. Each
triple contains an entity that is already in the graph, the chosen relation, and a new
entity (either a head or a tail entity) to be added. We use the index i to denote the new
entity where 1 < ¢ < n and triple; to denote the corresponding triple for entity ¢. Our
model picks the triple (and the new entity) among all candidate triples from a distribution
where the probability for each triple p(triple;) is proportional to the information content

of the new entity:

— log(p())
?:1 —log(p(5))

p(triple;) = 5 (5.4)

where p(7) is the probability of encountering entity 7 in the whole geographic knowledge
graph and —log(p()) is its information content. The rationale behind this approach is
that entities that are rich in information content carry latent information that can more
efficiently enrich our knowledge about the place we wish to summarize.

In addition to the normal 534 actions, we also propose a novel step by including a
dedicated spatial action to make the model spatially-explicit. This idea stems from the
data-driven approach that exploits the hidden patterns of geographic data [16] and is in-
spired by previous work on spatially-explicit models where spatial contextual information
facilitates place type embeddings [48], image classification for places [49], and geographic
question answering [§]. Following a similar school of thought, we aim to utilize spatial
context to help improve geographic knowledge graph summarization. Another reason
to incorporate this special spatial action is that, as mentioned in Section it helps
in discovering missing links in the geographic knowledge graph by connecting spatially
related entities together. Simply put, a human (textual) summary of San Diego will in-

clude the adjacent border with Mexico. However, such adjacency relation does not exist
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in DBpedia, and, hence, Tijuana (and Mexico in general) would not be reachable within
the graph for the agent.

The spatial action itself is modeled as an extra action that the agent can take at any
step t. However, if the agent decides to take a spatial action, our model only gathers
candidates that are geographic entities and are not connected with any entities in the
current subgraph directly. We execute a spatial query retrieving all geographic entities
within k-meter radius of the place we want to summarize. Our spatially-explicit model
selects one geographic entity among these candidate geographic entities from a distribu-
tion where the probability for each candidate p(i) is proportional to the inverse of the

distance between the candidate and the place ¢ in question:

d(i,q)~"
> d(G )

p(i) = (5.5)

where d(i, q) denotes the geodesic distance between candidate i and place ¢. This inverse
distance strategy favors nearby geographic entities over distant ones. While the spatial
radius buffer gives a local geographic view around the center place entity, we also propose
to incorporate a global view that is modeled by the PageRank score of each entity in
the whole geographic knowledge graph [174]. Intuitively, some places, e.g., landscape
features, are characteristic for an entity to be summarized despite their distance due to
their overall importance. Mount Fuji is such an example despite its distance of over
100 km from Tokyo. Each entity is assigned a score pr; after running the PageRank
algorithm. This score represents the relative importance of each entity in the graph by
examining the incoming and outgoing link connections. By combining the global graph
view and the local geographic view, we propose to use a weighted inverse distance in the

probability calculation:
() prid<i7Q)_1
1) = =5 _
> i prid(j,q) !
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After deciding on the relations and entities to add into the subgraph through either
spatial or non-spatial actions, new state representations are generated using the methods
explained in Section and the new state is then presented to the agent to help it

decide on the next action.

5.4.4 Rewards

The reward function plays an important role in guiding the agent to summarize the
geographic knowledge graph as the goal of our reinforcement learning model is to find an
optimal behavior strategy for the agent to obtain optimal rewards. In our model, there
are three components in the reward function, namely similarity score, diversity score,
and connection score.

In order to help the agent select the actions (relations) that make the subgraph
representation resembles the Wikipedia summary representation from such a large action
space, an intuitive way is to incorporate such mechanism in the immediate reward. In
addition to cosine distance calculated after the agent takes an action as described in
Section [5.4.2] the cosine similarity is also calculated. The normal similarity score is then

defined as the sum of the cosine similarities:

r?i%?;;iity = COS(Zta Ztarget) + COS(ht, htarget) (57)

where larger cosine similarity values will result in higher scores for the reward compo-

normal
similarity®

nent r Moreover, considering the fact that sometimes the TransE model does
not handle one-to-many and many-to-many relationships well [I61] and summing or
averaging the entity embeddings may exacerbate such issues because the connectivity
information of individual nodes/entities may be dwarfed by the crude aggregation of

other nodes/entities, we propose to substitute the entity similarity score cos(z¢, Ziarget)
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by another measurement to highlight the difference of the intrinsic structure between the
subgraph and the Wikipedia summary. Such a measurement is inspired by the Hausdorft
distance commonly-used to measure the difference between two geometries. Instead of
using a metric such as Euclidean distance as in Hausdorff distance, we use cosine dis-
tance because it is insusceptible to the change of magnitude of embedding vectors. This

measurement is defined as:

$iMmazmin( Lty Erarget) = 1 —max min (1 — cos(e;, €;)) (5.8)
<o ]eEtarget

where E is a set of entities on the subgraph at time step ¢, Eyq,4e is a set of entities in the
Wikipedia summary, and e; and e; are entity embeddings for entity ¢ and j respectively.

The max-min similarity score is then defined as:

r:}sﬁ%i?ty = Simma:pmin(Eta Etarget) + COS<ht7 htarget) (59)

While there are 535 possible relations/actions (including the spatial action), these re-
lations follow a long-tail distribution, which might lead the agent to pick the most possible
relations in order to avoid penalties. In addition, a good graph summary should exhibit
a balance between diversity and uniformity. In light of this, we propose to incorporate a

diversity score into the reward function:

+0.5, if relation is not already on the subgraph
Tdiversity = (510)
—0.5, otherwise

Since it is possible that the model might pick relations and entities that are not di-
rectly connected to the place entity in question, we would like to discourage such behavior.

For example, to summarize dbr:Los_Angeles, the model might add new triples regarding
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dbr:California (because dbr:California became part of the subgraph for dbr:Los_Angeles
at some point) instead of dbr:Los_Angeles. This behavior is the result of the data bias in
knowledge graphs [I75] as prominent entities are safer for the model to target and would
mislead the model to summarize the wrong place. In order to alleviate this potential

issue, we propose to include the connection score:

+0.5, if entity is directly connected to the place
Tconnection = (511)

—0.5, otherwise

The reward function is then defined as the combination of the three components:

R= Tsimilarity + Tdiversity 4 Tconnection (512)

It is worth noting that simply reducing relations to be selected from 1-degree queries
relative to the entity to be summarized would not be a suitable solution. This would

restrict the summary subgraph to a star-shape.

5.4.5 Training Procedure

As mentioned in Section [5.4.1 we use a policy-based method to train our spatially-
explicit reinforcement learning model. The advantage of policy-based methods over value-
based methods such as Q-learning [176] and SARSA [I77] is that they solve an easier
problem by optimizing the policy 7 directly, can provide a stochastic policy, and can be
applied to a wider range of problems where the state space is large or even continuous.
The objective of the policy-based method is to maximize the total future expected rewards
J:

J(0) = Esapi(s)amm(als) 12(s, ) (5.13)
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Following the REINFORCE (Monte Carlo Policy Gradient) method [169], the policy

network is updated using the gradient:

VoJ(0) = Egpr(s),ammo(als)@(5, @) Vg log my(als)

o (5.14)
%NZ Z Q(s,a)Vylogmy(als)

1=0 s,a€eps;

where N episodes eps are sampled from the process, Q(s; = s,a; = a) = E[Gy|s; =
s,a; = a) is the expected return starting from state s after taking action a, and the return
Gy = Z:OZO V* Ry 4141 is the total discounted reward from time step t with discount factor
v € [0,1]. A low v value implies that the agent is myopic in evaluating the situation and
values immediate reward over delayed future reward. In addition, similar to the idea of
diversity reward in Section [5.4.4] we include the entropy of the policy as a regularization
term in the optimization where we encourage a more diversified set of actions. The

entropy is defined as:

H(0) = — Y my(als)logm(als) (5.15)

a€A

In order to maximize the total future expected rewards J and the entropy H, the loss

function is formulated as:

Lreinrorce = —(J + aH) (5.16)

where « is the regularization factor.

Due to the size of the action space, it would be challenging for the policy agent to
learn to pick actions purely based on trial and error. In order to solve this problem
and inspired by imitation learning [I78] and the training pipeline proposed by Silver et
al. [I79], we first train our model with supervised learning and then retrain the supervised

policy with the proposed reward function to learn summarizing the geographic knowledge
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graph.

For the supervised learning stage, we use the links in Wikipedia summaries to help
gather positive training samples. We query the whole graph to check if the links in the
Wikipedia place summary are directly connected to the place entity itself and keep track
of these connections. In addition, in order to learn about the spatial action as well, we
randomly incorporate nearby geographic entities via the special spatial relation. This
procedure is applied to every place in the training place set in order to get our positive
training samples for the supervised learning. A reward of +1 is used for each step in these
positive training samples. After the supervised training stage, we retrain the model using
the reward function described in Section to help the agent pick up desired relations
to better summarize the graph. Summarizing one place is considered an episode eps.
The model starts with a single node (the place entity itself) for the graph and follows
the stochastic policy m(als) to iteratively add relations. We limit the maximum length

of the episode with an upper bound max_eps_len to improve the training efficiency.

5.5 Experiment and Results

In this section, we explain our experiment setup for the model, describe the evaluation

metrics used to test the model performance, and present our results and findings.

5.5.1 Implementation Details

Since we use H0-dimensional vectors for both entity and label embeddings, the result-
ing state representations are 200-dimensional vectors. For spatial action, we use a search
radius of k£ = 100,000 meters in our geopatial query. The discount factor v for the cu-
mulative reward we use in the model is 0.99. In the policy network, the first hidden layer

has 512 units and the second hidden layer has 1024 units. The Adam Optimizer [I80] is
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used to update the parameters in the policy network. The upper bound for the episode
length is set to max_eps_len = 20.

Different alternative settings are proposed for actions and rewards in Section |5.4.3
and Section |5.4.4] respectively. The alternatives in the actions component are non-spatial
actions vs. spatial actions and unweighted inverse distance (Eq. vs. PageRank-

weighted inverse distance (Eq. [5.6). The alternatives in the reward component are

normal maxrmin

Teimilarity VS: Tsimilarity- In order to better understand the contribution of different

component alternatives and to testify our assumption that spatially-explicit models are
superior in modeling geographic data, we examine our method with different combi-

nations of these alternatives, resulting in 5 models, namely RLyonspatial—normar (model

normal

without spatial actions using rgheo, score), RLspatiai—normar (model with spatial ac-

normal

tions using T similarity score), RLyonspatial—mazmin (model without spatial actions using

marmin
similarity

marmin

T ity score), RLspatial—mazmin (model with spatial actions using r score), and

RLpatial—mazmin—pr (model with spatial actions and PageRank-weighted inverse distance

maxrmin

usimg 7nsz‘milawity score).

5.5.2 Results

To evaluate the models, we consider the intrinsic and extrinsic components sepa-
rately. For the summarization results, we would like to see the improvements of using
our summarization approach compared with the initial information, i.e., we compute
the difference between the cosine similarity of the summarized graph and the Wikipedia
summary and the cosine similarity of the initial place entity/label and the Wikipedia
summary:

diﬂentity = COS(ZT7 Ztarget) - COS(Zh Ztarget) (517>
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difflabel = COS<hT7 htm‘get) - COS(hl, htarget) (518>

where diffeni, € [—2,2] and diffjpe € [—2,2] are the difference of cosine similarities
between entity and label embeddings and z; and hy are the final entity and label em-
beddings for the summarized graph. Higher diff scores show better summarization re-
sults. In addition to this evaluation metrics, we also calculate the Mean Reciprocal Rank
(MRR) score for these 5 models. We calculate the cosine similarity scores between the
summarized graph of the place with all 35 candidate places in our test set and then rank
them. We record the rank position of the corresponding Wikipedia place summary for
each place entity, take the reciprocal of the rank, and then calculate the mean of these
reciprocal ranks for all 35 places in the test set. Higher MRR scores correspond to better
model performance.

Table and Table show the diff,, 1, and diffjsse; scores for all 35 test places. As
we can see, on average all 5 models show positive diffc,it, and diffjope; scores, implying
that these models are effective in creating subgraphs that resemble the Wikipedia sum-
mary, thus facilitating the summarization of these places. In general, the scores for the
intrinsic component diff,,;1, are lower than the ones for the extrinsic component diffjgpe
for the same place and on average. One reason might be that the TransE model takes
into account the local and global connectivity information of entities and since the place
entity itself is usually closely connected with the Wikipedia links for this place entity the

initial single-node graph z, tends to be quite similar to z;q,4e¢, making further improve-

marmin

ments less prominent. On average, incorporating the spatial action or using the rg2mmw,

component in the reward function helps improve the performance and including both
further improves the result. The best model is RLgpatiai—mazmin—pr for both the intrinsic

diffe1ir, and extrinsic diffj,p; components. On average it has a 147% and 90% increase
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compared with the RL,onspatial—normar Model for the intrinsic and extrinsic components

respectively.

Table 5.1: MRR result for 5 models.

Entity Label
RLyonspatial—normar | 0.9190  0.6975
RLgpatiai—normal 0.9380 0.7183
RLyonspatial—mazmin | 0.9428 0.7095
RL spatial—mazmin 0.9571 0.7396
RLspatial—maxmin—pr 0.9523 0.7742

By examining the results in Table[5.2|and Table[5.3]for RLpatiai—normar a1d R Lyonspatial—mazmin
we can see that adding the spatial action is beneficial for the model to capture more se-
mantic information and using the 25 reward component facilitates the model to
capture intrinsic structural information as the diff;,;e; result is better for RLpatiai—normai

than for RL,onspatiai—mazmin and vice versa in the case of diff,t,. The MRR result in

Table [5.1] aligns with our findings.

dbr:Georgetown_University

dbo:city

dbr:Bureau_of_Land_Management 'spatial dbr:Institute_of_Medicine
dbo:location .

dbo:city’ dbo:city

dbr:National_Geographic_(magazine)
dbr:Foreign_Policy dbo:headquarter . spalial
dbo:capital
dbr:United_Negro_College_Fund
dbr:United_States_Department_of_State dbr:United_States
dbr:White_house

Figure 5.4: Summarization result for dbr:Washington,_D.C..

Fig. and Fig. [5.5] show the summarization results for dbr:Washington,_D.C. and
dbr:Guangzhou using the RLgpatiai—mazmin—pr 1odel. The model learns to pick differ-
ent relations such as dbo:capital, dbo:city, dbo:headquarter, dbo:location, dbo:isPartOf,

and the spatial relation. In the case of dbr:Washington,_D.C., the relationship between
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dbr:A_Road_and_a_Will
dbr:Super_Girl_(TV_series) dbr:Yuexiushan_Stadium
dbo:location
dbr:Guangdong

dbo:location, location

dbr:Sun_Yat-sen_University dbr:Guangzhou =
dbo:city/ \dbo:lsPanOf

dbo:isPartOf

spatial dbosisPartof dbo:headquarter
dbr:Panyu_District P oigTa .
dbo:city
dbr:China_Southern_Airlines
dbr:Guangshen_Expressway

dbr:South_China_University_of_Technology

7

dbo:isPartOf

Figure 5.5: Summarization result for dbr:Guangzhou.

dbr:Pearl_River_Delta

dbr:White_House and dbr: Washington,_D.C' is missing in the original geographic knowl-
edge graph. Without the spatial relation, such certainly important information would
have been lost. Our spatially-explicit model shows advantage over non-spatial models.
In the case of dbr:Guangzhou, as we incorporate the connection reward r.opnection into the
model, it refrains from summarizing other entities even though dbr:Macau is included in

the subgraph at some point.

5.6 Conclusions and Future Work

In this research, we introduced and motivated the need for geographic knowledge
graph summarizations and proposed a spatially-explicit reinforcement learning framework
to learn such graph summaries. Due to the lack of benchmark and standard datasets,
we collected a dataset that contains Wikipedia place summaries as well as a geographic
knowledge graph for 369 places as seed. In order to explore different possibilities of
modeling the summarization process, we suggested different alternatives for the actions
and rewards formulation in the model. By testing 5 models using different combinations

of the alternative components, we conclude that a spatially-explicit model yields superior
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summarization results compared to non-spatial models, thereby confirming that spatial
is indeed special as far as knowledge graph summarization is concerned.

In the future, we would like to test if reducing the variance in the Monte Carlo
Policy Gradient method by using an advantage function or the Actor-Critic framework
would help improve the performance. Finally, our and other approaches do not consider

datatype properties which is an important goal for future research.
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Chapter 6

Summarizing Geographic
Knowledge: A Case Study of

Enriching Geocoding Services

In this chapter, we develop an enriched geocoding service using knowledge graphs and
illustrate the importance of summarization to help users understand the context knowl-
edge of different geographic entities and gain insights about spatial patterns. the chapter
explains the motivation of developing this web map interface, presents related work on
georeferencing and geospatial knowledge graphs, discusses data source selection, formalize
the geocoding enrichment process, illustrates the entropy-based summarization method,
introduces the serverless and scalable framework, and demonstrate the utilities of the

geographic knowledge map using two example functions.
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6.1 Introduction

Since its inception dating back as many as 55,000 years [I81], map has become an
essential element of our life — from various atlases of the world to numerous applications
embedded with maps on mobile devices. With the rapid development of GIScience and
computer science, the making of maps has transitioned from a cartographer’s privilege
to a layman’s trivia. The advances in web technologies, especially the rise of Web 2.0,
have lead to the renaissance of maps [I82]. By hybridizing different data sources, map
mashup has extended the original meaning of map, making it an enriched source of
obtaining geographic knowledge.

One essential component of all these web map applications is geocoding. Geocoding is
a computational process that bridges the gap between humans recognition of places and
machine-readable place representations. Geocoding services have become so ubiquitous
that people have taken them for granted in daily life. For example, in routing and
navigation, geocoding acts as a proxy to encode addresses, intersections, or even places of
interests (POI) into coordinates so that more complicated route optimization algorithms
can proceed using these coordinates.

Unlike traditional gazetteers, which normally include spatial footprints, place types
and toponyms [I83], places in human mind are more vivid than simple coordinates. For
instance, when someone talks about a place, he will most likely also talk about the de-
mographics of the place such as the population distribution of a country or terrains of
a place such as whether an area is mountainous, because people tend to use such asso-
ciated information rather than coordinates to relate to places. We call these pieces of
information pertaining to places as examples of geographic knowledge. Such geographic
knowledge can be grouped into two categories based on whether or not the knowledge is

obtained from reasoning: primary geographic knowledge and derived geographic knowl-
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edge. Primary geographic knowledge does not require any extent of reasoning. The
population of a city is primary geographic knowledge because it is a piece of factual in-
formation that does not include any insight or external experience whereas the knowledge
that China is the most populous country in the world is derived geographic knowledge
for the simple reason that this information is obtained from a comparison. Because of
the heterogeneity of geographic information, geographic knowledge can be obtained from
a variety of sources and in different formats. Conventional approaches to utilize this
geographic knowledge would entail complex techniques such as natural language process-
ing especially if the knowledge was originated from unstructured text data, which is the
major data format on the Web. The geospatial semantics paradigm [I55] has provided
the GIScience community with an alternative and a more promising source of geographic
knowledge.

By incorporating geospatial semantics, more specifically geographic knowledge graphs,
with the traditional geocoding mechanism, we present a system that can help users dis-
cover geographic knowledge of an area of interest. While the enriched geocoding system is
better at conveying useful information than traditional geocoding systems, the challenge
of selecting, presenting, and summarizing the large amount of information to end users
arises. In order to tackle this challenge, we employ a method based upon information
theories to prune the part of the geographic knowledge graph that is associated with
the matching entities to prevent flooding users with loads of information. The raison
d’étre of this approach is four-fold. First and foremost, by incorporating one or two
knowledge graphs, the entire Linked Data Cloud, in essence, is exposed to us due to
the interconnection among numerous datasets. As of January 20191 the Linked Data

Cloud consists of about 1,234 individual datasets, providing not only domain-agnostic

'Linking Open Data cloud diagram 2019, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja
Jentzsch, Richard Cyganiak, and Vladimir Andryushechkin. http://lod-cloud.net/
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knowledge but also domain-specific content which includes geography, government, life
sciences, linguistics, media, publications, social networking and user-generated informa-
tion. All this data can be potentially used with our approach, drastically enriching our
knowledge about places. Second, since all of them share the same data model — RDF —
and are highly structured, machines can easily interpret them without sophisticated data
massaging such as natural language processing. Third, the ontologies that come with
these datasets are the proxies of higher level human knowledge which can further enrich
our geographic knowledge. The knowledge from ontologies can be subclass-superclass
relationships, transitivity of certain properties, topological relationships, etc. Fourth, by
introducing an information theory-based summarization approach, the system is able to
strike the right balance between information overload and information deficit in order to
help users navigate and assimilate important geographic knowledge empowered by the
enriched geocoding service.

The remainder of this paper is organized as follows. In Section [6.2] we will review
some of the related work on georeferencing and geospatial linked open data and emphasize
the key difference between their work and our work. In Section[6.3] we will talk about the
implementation details and a serverless framework we adopt. Section 4 will be focusing
on demonstrating our geographic knowledge map interface and Section 5 will conclude

our research as well as point out some future directions.

6.2 Related Work

In this section, we summarize two areas of related work. The first area is georeferenc-
ing, which is a broader concept that includes geocoding. While geocoding technologies are
relatively mature, we also review existing work on geotagging and geoparsing and point

out that our research has a different perspective comparing to existing work in georefer-
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encing. The second area is geospatial Linked Open Data (a.k.a. geographic knowledge
graphs). We review existing work combining the spatial component in GIScience with

knowledge graphs from both the data and methodology perspectives.

6.2.1 Georeferencing

Georeferencing is a broad term that describes the process of associating data with
spatial coordinate systems. It usually includes geotagging, geocoding and geoparsing.
Geotagging means manually assigning geographic identifications to an object. Geocoding
in most cases requires gazetteers to facilitate the mapping between textual geographic
information such as place name or address and spatial coordinate systems. Geoparsing,
however, goes beyond geocoding in that it deals with ambiguous geographic references
in unstructured natural language texts.

Research on geocoding has been focusing on two perspectives: geocoding methods and
geocoding quality. Hutchinson and Veenendaal [184] developed an agent-based method
that utilized the belief, desire, intention (BDI) model for intelligent geocoding. Rat-
cliffe [I85] examined the accuracy of geocoding based on TIGER-typed files in relation to
cadastral and census areal units. Zandbergen [186] proposed a comprehensive framework
to evaluating the quality of geocoding with different address data models, namely address
points, parcels and street networks. In order to increase the accuracy, most geocoding
systems provide multiple candidates for each query and utilize a hierarchy-based criterion
to select the best result. Goldberg and Cockburn [I87] formalized the candidate selec-
tion criteria in geocoding and presented three alternative strategies, namely uncertainty-
based, gravitationally-based, and topologically-based strategies. While many geocoding
methods are particularly designed for spatial data, Murray et al. [I88] argued that it is

especially challenging to geocode spatio-temporal data and designed a geocoding method
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for spatio-temporal data, taking advantage of the use of supplementary land use informa-
tion, aerial photographs and local knowledge. For the task of georeferencing ambiguous
or sometimes cryptic place names in social networks, Davis Jr et al. [I89] recursively
expanded the network of locatable users using social relationships to enrich the location
information of tweets. Georeferencing has also been used in Search and Rescue (SAR)
in a context that lacks explicitly spatial data [190]. Our work, however, differs from the
above-mentioned research in that it does not focus on either the method or quality of
geocoding or georeferencing in general but pays more attention on enriching geocoding

results instead.

6.2.2 Geospatial Linked Open Data

From a data perspective, geospatial Linked Open Data represents the marriage of
Linked Data and GIS. Both the Linked Data community and GIS community are work-
ing actively together to refine the definition of geospatial Linked Open Data. Their
mutual influence has incubated a variety of research studies and technical advances in
both fields. Many Linked Data sources such as DBpedia, Freebase and Wikidata have
hosted a large amount of geographic data. The GIS community also started to provide
dedicated geospatial Linked Dataset such as GeoNames Linked Data and LinkedGeo-
Data. Abdelmoty et al. [I91] summarized the limitations of Semantic Web language for
the representation of geographic place and proposed approaches that combine rules and
Semantic Web language to alleviate such limitations. Lopez-Pellicer et al. [192] proposed
to publish resources alongside their metadata in RDF to help identify real world enti-
ties with geospatial Web resources. In an attempt to facilitate geographic information
retrieval, Lopez-Pellicer et al. [193] presented a geographic knowledge vocabulary and a

tool for building large knowledge bases of geographic places. In order to provide spatial
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reasoning support for geographic knowledge graphs, as contributors to the GeoSPARQL
OGC standard, Battle and Kolas [194] examined the overall state of geospatial data
in the Semantic Web and implementated GeoSPARQL in the Parliament triple store.
From a data quality perspective, Janowicz et al. [86] presented a comprehensive study of
systematic errors and their potential causes in geographic knowledge graphs.

From a methodology perspective, spatially-explicit models have been using the idea
of geospatial inductive bias to handle the geospatial semantics in geographic knowledge
graphs. For example, Chapter |3| presented a latent representation learning method that
utilized biased sampling strategy to uncover hidden geographic patterns in order to em-
bed different place types. These place types are essential components in the ontology
for various geographic knowledge graphs. Chapter |5 developed a spatially-explicit rein-
forcement learning model to help summarize geographic knowledge graphs. The proposed
model introduced an explicit spatial action for the agent to capture the geospatial seman-
tics in geographic knowledge graphs. Mai et al. [§] incorporated the weighting scheme
based on geographic distance between spatial entities in the knowledge graph in order to

learn better embeddings for question answering tasks.

6.3 Framework & Implementation

In this section, we first describe our data source selection process by comparing differ-
ent geocoding services as well as geographic knowledge graphs. We propose 4 criteria on
which our selection is based. Then we discuss our geocoding enrichment mechanism by
giving formal definition and implementation details. In order to make our system more
scalable, we take advantage of the serverless architecture provided by Amazon Web Ser-
vices (AWS) and explain the deployment of our system on AWS. Finally, we present an

entropy-based summarization approach for selecting a subset of informative nodes from
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the original geographic knowledge graph in order to help users navigate the geographic

knowledge map that we develop.

6.3.1 Data Source

For the geocoding service, we choose both OpenStreetMap (OSM) NominatimE] and
GeoNamed| as they are freely available robust geocoding services. We make use of OSM
data because it provides a comprehensive set of APIs and tools for researchers to take
advantage of the crowd sourcing data. GeoNames is a geographic database that covers
toponyms around the world. GeoNames has both a traditional version and a Linked Data
version. OSM and GeoNames are used as access points into the Linked Data Cloud as
they are partially linked to Wikipedia from which many Linked Datasets are originated
primarily. It is not a trivial task to choose our knowledge graph data sources from a
selection of 1,234 datasets. We narrow it down by first filtering out datasets that are not
directly associated with geographic information. In this case, we only focus on datasets
that are either cross-domain or in geography domain. Furthermore, the quality and
coverage of these datasets vary a lot. We review the use cases and research [162, 163
1641, [195] 196] based on these datasets and select 4 candidate knowledge graph datasets.
These 4 candidates are: Freebase, DBpedia, Wikidata, LinkedGeoData. We pick our
final datasets based on 4 major criteria: 1) whether the data source contains a sufficient
amount of geographic entities, 2) whether the data source is actively maintained and
up-to-date, 3) whether there is a clear correspondence between the data source and OSM
Nominatim or GeoNames, 4) whether the data source has a comprehensive coverage of
different properties/predicates for each entity.

Knowledge graph data in LinkedGeoData can be traced back to OpenStreetMap

Zhttp://nominatim.openstreetmap.org/
3http://api.geonames.org/findNearbyJSON
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Table 6.1: A comparison of different candidate data sources with respect to 4 criteria.

LinkedGeoData | Freebase | DBpedia | Wikidata
Geographic Entities Yes Yes Yes Yes
Up-to-date Yes No Yes Yes
Clear Correspondence Yes Partially Yes Yes
Comprehensive Coverage No Yes Yes Yes

data. Every entity in this case is a geographic entity and it is being regularly maintained
and updated based on the OpenStreetMap data. Since LinkedGeoData contains mostly
geographic entities, it lacks the non-spatial entities that are needed in providing a general
spatial knowledge for map users. The relations/predicates in the LinkedGeoData graph
are typically about geometries, thus failing to provide a comprehensive view of geographic
entities. Freebase data has been used frequently in knowledge graph related research
as benchmark and standard dataset and it contains geographic entities. However, this
dataset is not currently being maintained and only a snapshot of the data is available.
As a consequence, it does not correspond to the evolving OSM or GeoNames data very
well.

In the end, we select 2 datasets — DBpedia and Wikidata — which satisfy the 4
criteria. All these data sources are freely accessible. DBpedia aims to extract structured
information from Wikipedia and provides numerous data for semantic queries on the Web.
Unlike DBpedia, Wikidata creates structured information from scratch and is constantly
maintained and curated by a community similar to the one for Wikipedia. DBpedia and
Wikidata represent two of the most interconnected nodes in the Linked Data Cloud and
are used as the sources of our geographic knowledge. While there is no direct concept of
entity in GeoNames and OSM, in GeoName unique features are treated as entities and
in OSM each node, way or relation is considered as an entity. As dedicated geographic
datasets, GeoNames and OSM have a much larger coverage of spatial entities. It’s also

interesting to note that, although DBpedia predates Wikidata, its coverage for spatial
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data is much less than Wikidata. However, the richness of the information in DBpedia

is the highest among all these datasets.

6.3.2 Geocoding Enrichment

The main challenge of incorporating geographic knowledge into geocoding services is
to correctly correspond entities from geocoding services with entities from our geographic
knowledge bases, namely DBpedia and Wikidata. To tackle this challenge, we take
advantage of OSM and GeoNames dataset and harness the power of geospatial SPARQL
queries provided by DBpedia and Wikidata endpointsm We call this process Geocoding
Enrichment, illustrated in Figure[6.1] SPARQL, made standard by the World Wide Web
Consortium (W3C), is a semantic query language for knowledge bases. SPARQL by itself
does not natively have a strong support for geospatial queries. As a geospatial extension
for SPARQL, GeoSPARQL defines a vocabulary for representing geospatial data in RDF
and supports a variety of complex geospatial query functions. However, none of the
DBpedia and Wikidata endpoints supports GeoSPARQL. In the case of DBpedia, we
can only use the keyword FILTER to apply spatial queries. In the case of Wikidata, we
can use a set of predefined spatial services for the same purposes.

Most geocoding services provide both forward geocoding and reverse geocoding func-
tions. In either scenario, two variables will be determined by the function, namely the
toponym or address and coordinates. In order to formalize the operations, we define some
of the basic terms we will be using in this research. We use the general term label for
toponym or address and denote it by L, and we denote coordinates by C. The process of
geocoding can be formalized as C' = f,(L) (given the label L, the service returns the co-

ordinates C') and the process of reverse geocoding can be formalized as L = f,.(C) (given

‘http://dbpedia.org/sparql/
Shttps://query.wikidata.org/
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Raw Data
OpenStreetMap Wikidata

‘ ‘ Boston
' 6 Enriched Geographic Knowledge
‘ ‘ ‘ Boston osm:Boston

Geocoding Enrichment wd:Boston
GeoNames DBpedia gn:Boston

O ® 0
“ ‘ ‘ db:Boston

‘ . Boston
" Boston“

Figure 6.1: Geocoding enrichment illustration. This process combines information
from two geographic databases, namely OpenStreetMap and GeoNames, with knowl-
edge from two knowledge graphs, namely Wikidata and DBpedia to help enrich the
geocoding results.

the coordinates C, the service returns the label L), where f, and f, are different functions

of the geocoding service. Based on Definition [2| for knowledge graphs and Definition

for geographic knowledge graphs, we define the task of Geocoding Enrichment.

Definition 4 (Geocoding Enrichment) Given a Geographic Knowledge Graph G =
(V,€) and a geocoding service with functions F' = {f,, f;} which return the (label, coor-
dinates) pair (I,c) where l € L and c € C, the task of Geocoding Enrichment is to find

the entity set {s|(s, rdfs:label, 01) € T A (s, :coordinates,09) € T N oy <> LN oy > ¢} CV.

In this formal definition, rdfs:label is a common predicate in knowledge graphs that
connects an entity with its label and :coordinates is a predicate variable that links an
entity with its geographic identifications depending on the specific knowledge graphs. For

example, in DBpedia :coordinates would be geo:geometryﬂ and in Wikidata it would be

Shttp://www.w3.org/2003/01/geo/wgs84_pos#geometry
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wdt:P625[1 The notation o, < [ indicates that o, and [ are comparable. Since in many
cases, toponyms of the same spatial entity with difference provenance do not match
with each other strictly, e.g. Los Angeles in GeoNames and LA in DBpedia. Making
0, and [ comparable relaxes the strict string matching conditions. However, due to the
nature of geocoding services, a high precision is preferred over a high recall, so in our
implementation we still use strict string matching instead of Levenshtein distance or even
more sophisticated fuzzy string matching methods. For the spatial footprint part, due
to the precision of different datasets and potential errors, we also use the relaxed form of
spatial matching oy <+ ¢. In practice, in order to increase precision, we only use a small
radius buffer to search spatial entities.

While it is possible to solely follow the Geocoding Enrichment definition for the task,
it is not efficient enough and can sometimes be redundant. Figure [6.2] shows the detailed
workflow of our implementation. Since OSM are partially linked to Wikipedia, the origi-
nal source of DBpedia, it is an ideal starting point to access the Geospatial Linked Open
Data Cloud. Likewise, GeoNames is partially linked by Wikidata, which makes it our
secondary access point. In the cases in which no link can be found by using both OSM
and GeoNames, we follow the formal definition of the task and generate SPARQL queries
to match entities from geocoding services with entities from the geographic knowledge
base directly. If no matching entities are found even via SPARQL queries, the system
will reduce the zoom level of the web map and try to match a coarser level toponym
in the database. For example, if the label [ returned by the geocoding service is in the
form “street address, neighborhood, city, county, state, country” and the system fails to
match on the state address level, it will try to match the neighborhood level, and so forth.
In realization, the formal Geocoding Enrichment task is transformed into the following

SPARQL query [6.1] in Wikidata. $wktLiteral$ and $label$ correspond to two variables ¢

"https://www.wikidata.org/wiki/Property:P625
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, y

reduce
zoom level

Figure 6.2: Geocoding enrichment workflow

and [ respectively.

# Geocoding Enrichment
SELECT 7place 7placelabel 7distance
WHERE {
# match spatial footprint
SERVICE wikibase:around {
?place wdt:P625 7location
# create a buffer
bd:serviceParam wikibase:center $wktLiteral$
# radius 2km
bd:serviceParam wikibase:radius "2"

bd:serviceParam wikibase:distance 7distance
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}

# match toponym

SERVICE wikibase:label {

bd:serviceParam wikibase:language "en
?place rdfs:label 7placelabel

X

FILTER(lcase(str(?placelabel)) = $label$)

} ORDER BY 7distance

Listing 6.1: An example SPARQL query.

6.3.3 Serverless & Scalable Framework

Geocoding enrichment is an extension to our common geocoding services. Our geocod-
ing enrichment workflow connects geocoding services to geographic knowledge graphs on
the fly and it is capable of providing stand-alone services for any geocoding queries. In
order to demonstrate and showcase the power of our geocoding enrichment extension, we
use it as a server side for a web map that can help users discover geographic knowledge.
To deal with the potential challenge of high request volume, we take advantage of the
serverless architecture of AWS. The whole geocoding enrichment workflow is converted
into and deployed as several microservices in the serverless framework.

A detailed framework outline is illustrated in Figure[6.3] The core part of the frame-
work is the middle part, which includes AWS Lambda and Amazon API Gateway. AWS
Lambda hosts functions we implement for the geocoding enrichment so that geographic
knowledge could be retrieved as a result. Amazon API Gateway communicates and ex-
changes requests and responses between our functions and the Geospatial Linked Data
Cloud. It also acts as a messenger to listen to the requests sent by the web map interface
and respond with the data returned by the AWS Lambda functions.
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/ AWS Lambda
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Geocoding services
and other APIs on
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Figure 6.3: A serverless framework for geographic knowledge map

6.3.4 Geographic Knowledge Summarization

As mentioned in Chapter (I and Chapter [2, in most cases, the amount of information
provided by geographic knowledge graphs tends to overwhelm end users and prevent
them from analyzing and digesting useful information. The geocoding enrichment process
in our system connects the traditional geocoding services with the world of knowledge
provide by knowledge graphs and at the same time exposes users to an enormous amount
of information, including redundancy, noise, and error associated with it. For example,
in DBpedia the geographic entity dbr:San_Francisco is directly connected to 248 objects.
It is unrealistic to present all these objects to users and expect them to sift through these
entities and gain useful knowledge. The whole process would become counterproductive
without selecting and summarizing such large amount of information.

Since the main goal of incorporating knowledge graphs into geocoding services is
to help users gain more geographic knowledge, we follow the philosophy of maximizing
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knowledge gain while minimizing redundancy as well as striking the balance between
information overload and information deficit. In light of this, we choose to adopt idea
in information theory and use entropy to help select and summarize our geographic
knowledge returned by the geocoding enrichment process. Entropy is utilized for three
reasons. 1) Entropy measures the information contained in an entity as opposed to the
portion that is determined or predictable. In this sense, entropy is an ideal proxy for
measuring the knowledge gain or loss by adding or removing different entities. 2) Entropy
can measure the diversity. For a uniform distribution where each piece of information
is equally likely to be obtained (high diversity), the entropy will be high. For a skewed
distribution or a distribution where one piece of information is much more likely to be
obtained than others (low diversity), the entropy will be low. 3) Entropy effectively
sets the bound of the performance of the strongest lossless compression possible. In this
sense, entropy is a good measurement for data compression which is closely related to
our geographic knowledge summarization task in this context.

Once the geocoding enrichment process is done, the focus is switched to the geo-
graphic knowledge graph component to bring more geographic knowledge on the map.
The anchoring point on the geographic knowledge graph now becomes the access point
towards the world of knowledge. Our prototype system is designed to gather information
from geographic knowledge graphs from two perspectives, as shown in Figure The
first one is the additional attribute information (including a short description, population
information for populated places, images if available, etc.) for each geocoded and an-
chored entity. The second one is grounding connected entities on the map. By retrieving
related geographic entities, the spatial knowledge map is able to present the users with
linkage information in the geographic space. In addition, our spatial knowledge map also
shows spatial patterns for different types of geographic features. More detailed examples

will be described in Section [6.4]
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Attribute
Information
Anchored Entity Dl_ilsr:;i;a\l/ge?y
Related
Geographic
Entities

Spatial Pattern
Discovery

Figure 6.4: Spatial knowledge map components.

For the attribute information part, we use heuristics to select a subset of predicates
that is more relevant for facilitating the understanding of geographic entities and remove
irrelevant ones, such as topic’s main Wikimedia portalﬂ topic’s main templatdﬂ, and
topic’s main categorym. For the related geographic entities part, we adopt an entropy-
based strategy to summarize the resulting graph. By default, we retrieve all geographic
entities directly connected to the anchored entity using Query [6.2 However, this would
result in a lot of geographic entities (denoted as 7o in the query) on the map. The
situation would aggravate if users are interested in higher degrees of connected geographic
entities (such as 2nd-degree or 3rd-degree geographic entities) as the result size would

grow exponentially.

SELECT DISTINCT ?7wdPLabel 70 7olLabel 7coords

WHERE {

8https://www.wikidata.org/wiki/Property:P1151
Ynttps://www.wikidata.org/wiki/Property:P1424
Ohttps://www.wikidata.org/wiki/Property:P910
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VALUES “?propType {wikibase:WikibaseItem wikibase:Url wikibase:
< String wikibase:Monolingualtext}

$anchoredEntity$ 7wdtP 7o

70 wdt:P625 7coords

?7wdP wikibase:directClaim 7wdtP

?wdP wikibase:propertyType 7propType

SERVICE wikibase:label {

bd:serviceParam wikibase:language "en

Listing 6.2: A SPARQL query to retrieve all geographic entities directly connected to
$anchoredEntity$.

In order to tackle this issue, we propose a summarization mechanism for the retrieved
geographic knowledge. Instead of returning all connected geographic entities, our system
caches these entities and retrieves predicate and objects for the connected geographic en-
tities. This is done by using Query . Suppose an entity e; has n predicates p}, p?, ..., p?.
We denote the number of objects for a predicate pg as freg;;. The probability for predi-
cate p! is defined as

freq;

Pr(p;) = S freqa (6.1)

The entropy for the geographic entity e; is then defined as

H(e:) = =) Pr(p})log(Pr(p})) (6.2)

SELECT 7sub ?wdtP 7oLabel

WHERE {
VALUES 7sub { $connectedGeographicEntityList$ }
?sub ?7wdtP 7o

?7wdP wikibase:directClaim 7wdtP
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SERVICE wikibase:label {

bd:serviceParam wikibase:language "en"

Listing 6.3: A SPARQL query used for calculating entropy.

After calculating the entropy for each connected geographic entity e;, the system ranks
them based on entropy values and only retains a certain percentage of entities that have
entropy values above the threshold. This percentage parameter is adjustable. A higher
percentage value would entail that fewer nodes are removed and a smaller percentage
value would result in a graph that is summarized to a greater extent. Figure |6.5] shows
the original graph for retrieving all 1st-degree neighboring nodes and part of the 2nd-
degree nodes for Los Angeles. Figure shows the result of retaining only 40% of the

nodes from Figure based on the entropy of each node calculated using Equation [6.2]

Figure 6.5: The original graph containing all 1st-degree nodes and part of the 2nd-de-
gree nodes for Los Angeles.
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Figure 6.6: Summarized graph for Los Angeles for the same graph shown in Figure [6.5

6.4 Spatial Knowledge Discovery

By introducing geocoding enrichment, we expose ourselves to a sea of possibilities.
Geocoding is one of the key components in many common applications such as naviga-
tion and web maps. In many cases, geocoding is also the nexus between spatial and
non-spatial information. Spatial information such as the geographic identification of an
entity can be combined with non-spatial information such as population to generate ge-
ographic knowledge. In this section, we showcase some of the potentials of incorporating
geographic knowledge into geocoding services with two examples on a web map applica-
tion. In this application, we show that, by enriching the geocoding result, we are able to
not only explore the linkage between distinct spatial entities in non-spatial space but also

compute and analyze some basic geospatial statistics such as kernel density estimation

(as shown in Figure [6.4).
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6.4.1 Linkage Discovery

Although the primary building blocks in a knowledge graph are RDF triples, a knowl-
edge graph as a whole can be viewed as a gigantic directed graph with each node being
an entity and each edge being a property connecting a pair of entities. Exploring the
network structures of the graph or even simply the links between different entities can
reveal some hidden information. For instance, Janowicz et al. [86] coined the term spatial
degree by counting the number of property paths between a geographic identification and
an entity of an arbitrary type. Using this concept, they were able to identify some of the
potential modeling errors in geographic knowledge graphs. In contrast, map distances
are Euclidean distances. Combining graph distance with map distance is an ideal way to

explore and discover spatial entity linkage and association.

W Graph View

imiimisedthdnmoisjrati

Figure 6.7: 2nd-degree places of Golden Gate Bridge (graph view).
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Figure 6.8: 2nd-degree places of Golden Gate Bridge (map view).

However, naively plotting the entire knowledge graph on a map is not very useful
because there are too many spatial entities and it will create an information overflow. A
more intuitive approach is to adopt the follow-your-nose pattern of Linked Data. Users
can either use the forward geocoding or reverse geocoding function to locate a place on
the map. Since we are using the enriched geocoding service, a corresponding spatial
entity from the knowledge graph will be automatically retrieved on the fly. Meanwhile,
we avail ourselves of the power of SPARQL to essentially perform a breadth-first search
of the knowledge graph in order to find all the directly connected spatial entities with
respect to the original query point. Then by following any of these 1st-degree places
(with respect to the original query point), users are able to discover more connections.
For example, when a user query about Golden Gate Bridge, all the 1st-degree places
including Marin County, Golden Gate, San Francisco and United States will be shown
on the map. If the user is interested in the connected place San Francisco, he can

further retrieve all 1st-degree places with respect to San Francisco (2nd-degree places
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with respect to Golden Gate Bridge).In other words, the user can follow his nose and
explore the network structure of these places while being able to compare it with the
Euclidean counterpart on the map at the same time. This is because we have both a
graph view (see Figure and a map view (see Figure . Although the number of
paths the user can explore between different places is infinite, it has been shown that the
average graph distance between entities is less than or equal to 5 [I97]. One observation
from the graph view is that, for the 2nd-degree graph of Golden Gate Bridge, we can
tell that San Francisco has already started to create its own community and it has way
more connections than the original place — Golden Gate Bridge. Likewise, from the map
view, we can notice that San Francisco is connected to many spatially distant places and
the links between Golden Gate Bridge and its 1st-degree places have been shadowed by
those of San Francisco’s because they are too close to each other spatially. In addition
to the linkage discovery, for each individual place, the user can also view its attributes
retrieved from the Linked Data Cloud (see Figure [6.9).
|

Golden Gate Bridge

Description  The Golden Gate Bridge is a suspension bridge
spanning the Golden Gate strait, the mile-wide,
three-mile-long channel between San Francisco Bay
and the Pacific Ocean. The structure links the U.S
city of San Francisco, on the northem tip of the San
Francisco Peninsula, to Marin County, bridging both
U.S. Route 101 and California State Route 1 across
the strait. The bridge is one of the most
internationally recognized symbols of San Francisco,
California, and the United States.

Architect Joseph Strauss

Carries U.S. Route 101 in California
Califomia State Route 1

Clearance 67 (unit: metre)

Color international orange

United States of America

Golden Gate

May 27, 1937

v Joseph Strauss

i lane

Tl

Zoom to

Figure 6.9: Attribute information from the knowledge graph.
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6.4.2 Spatial Pattern Discovery

Another use case of the geocoding enrichment extension is that people can retrieve
essential information to derived spatial patterns for an area of interest. We take advantage
of one of the most well-represented properties in the Linked Data Cloud — rdf:type to
retrieve information about place types. rdf:type in our case is a general group of properties
that can help us identify the place type associations and each knowledge graph has its own
version, for instance, Wikidata uses wd:P31 (instance of). Several research studies have

demonstrated the validity of using place types to discover spatial patterns and spatial

signatures [198, [65].
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Figure 6.10: Heatmap showing the distribution of skyscrapers in San Francisco

We implement a minimal spatial pattern discovery function using the place type
information retrieved from Wikidata. To activate this function, users can choose Spatial
Knowledge Search from the drop down menu. A control panel will then appear. Users
can zoom in, zoom out or pan to desired spatial extent. After clicking on the search
button, a list of place types will be shown based on the query result of the geocoding
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enrichment extension. For each of the place type, users can either view the kernel density
map (heatmap) or directly visualize them as points. Figure shows an example of the
spatial pattern. It shows that there are 103 skyscrapers in downtown San Francisco in the
Wikidata knowledge base. From this kernel density map we can tell that most skyscrapers
are located in the Financial District and some of them are in nearby neighborhoods such
as Rincon Hill and South of Market. Users will also be able to see the attributes of

individual place as shown in Figure [6.9

6.5 Conclusions

In this research, we propose to incorporate geographic knowledge into the current
geocoding services using a systematic workflow. We develop the workflow by first for-
malizing our Geocoding Enrichment task and then we relax some of our constraints for
pragmatic purposes. In order to scale our geocoding enrichment extension, we take
advantage of AWS serverless framework and deploy it as a web service so that any ap-
plications with the same interface can access our service. In addition, we adopt an
entropy-based approach to help summarize the geographic knowledge associated with
the anchored entity. Finally, to demonstrate the power of geographic knowledge enriched
geocoding service, we build an interactive web map application with two major func-
tionalities, namely linkage discovery and spatial pattern discovery. Both functions have
shown that the enriched geocoding service can help users gain much more geographic
knowledge with a few simple operations.

For future work, in terms of the current geographic knowledge map, we can modify
the way the linkage is presented by considering the property types as well. In this way,
we are able to distinguish between topological properties and non-topological properties.

For the spatial pattern discovery part, semantic signatures can be incorporated to help
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users identify spatially functional regions. Another direction is to apply the enriched

geocoding service to other scenarios to discover more potentials.
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Chapter 7

Conclusions

In this dissertation, the topic of geographic knowledge graph summarization has been
dissected into different but related parts. This chapter concludes the dissertation by
synthesizing these different parts and provide insights about the theoretical as well as
the practical contributions. In addition, several limitations are listed as directions for

improvement. Areas for further investigation are also discussed in the end.
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7.1 Summary and Discussions

This dissertation explores the question of leveraging both top-down knowledge engi-
neering and bottom-up knowledge learning approaches to help summarize geographic
knowledge graphs under the context of the geospatial semantics paradigm. Such a
paradigm shift is propelled by three major demands in the course of the development
of GIScience, namely the interoperability demand, the accessibility demand, and the
conceptualization demand. While bringing geospatial semantics (geographic knowledge
graphs in particular) to the GIScience community helps dealing with these demands, it
also creates new challenges. It creates diversity from two perspective, namely the di-
versity in terms of cross-domain interconnection for various knowledge graphs and the
diversity in terms of heterogeneous types of information for each entity in the same
knowledge graph. The sheer amount of information (the number of entities, predicates,
and datasets) provided by geographic knowledge graphs are overwhelming.

The idea of less is more is the central philosophy of geographic knowledge graph
summarization. From a human-centric perspective, the overwhelmingly large amount
of information imposes burden on our cognitive load, hinders our cognitive information-
processing capacities, and results in lags and retrieval errors. Too much information from
geographic knowledge graphs also leads to too many choices for us to decide in terms of
selecting and filtering useful information. This creates the undesired paradox of choice
and demotivates users from using geographic knowledge graphs in the first place. From
a data-centric perspective, geographic knowledge graph summarization helps reduce the
data volume, speeds up queries, supports large scale interactive analysis, and facilitates
the elimination of noise [21].

While there are different ways to tackle the problem, this dissertation aims to treat

the summarization task from three aspects considering the composition of geographic
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knowledge graphs, namely the hierarchical components, the multimedia leaf node com-
ponents, and the general relation and entity components. The advantage of such a
strategy is that by decomposing geographic knowledge graphs into different parts the
major demands that gave rise to geospatial semantics in the first place are taken into
consideration. For instance, by isolating the hierarchical structure of the place type
ontology in geographic knowledge graphs and learning their latent representations, our
approach not only preserves the original conceptualization in the ontology but also pro-
vides a robust embedding mechanism that is accessible and interoperable across different
machine learning models. By focusing on the images and their labels for multimedia
leaf nodes in geographic knowledge graphs, our approach promotes the accessibility of
geographic knowledge graphs among common users as people tend to utilize multimedia
to understand data.

Specifically, Chapter 3| focuses on place types in the ontology hierarchical structure
and presents a latent representation learning method to embed these place types. This
latent representation learning strategy takes advantage of geospatial contextual informa-
tion by considering local as well as global contexts. Instead of using language as proxies,
the proposed information-theoretic and distance lagged method direct uses geographic
entities to model place types which results in an improvement in performance compared
with existing models using a hierarchy-based evaluation scheme, a binary-based human
judgment evaluation scheme, and a ranking-based human judgment evaluation scheme.
These place type embeddings can be used for calculating semantic similarities for differ-
ent place types and eventually be used for selecting and summarizing type information
in geographic knowledge graphs. Chapter [4] focuses on leaf image nodes and presents an
image classification model that combines visual signals with spatial contextual signals
to help improve classification results for different place types. It explores the possibility

of incorporating different types of spatial contexts, namely spatial relatedness, spatial
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colocation, and spatial sequence patterns. The evaluation shows that spatial sequence
patterns modeled as Bayesian priors are able to substantially improve the classification
result. Such a model can be use to help label unknown leaf image nodes in the geographic
knowledge graph and facilitate the selection and summarization process while preserving
the accessibility. Chapter |5| proposes a spatially-explicit reinforcement learning model
for geographic knowledge graph summarization. Instead of focusing on a particular com-
ponent, this model provides a generic approach. In order to tackle the challenge of the
inherent geospatial semantics, the model adopts the idea of geospatial inductive bias and
introduces a special spatial action for the reinforcement learning agent in an attempt to
provide a robust algorithm. Chapter [6] presents a spatial knowledge map interface that
illustrate the functionality and effectiveness of geographic knowledge graph summariza-
tion in the context of enriching geocoding services. The interface is empowered by a
serverless and scalable framework using AWS. It can be used to facilitate the discovery
of spatial knowledge such as linkage discovery and spatial pattern discovery.

In summary, this dissertation provides the background and motivation for summariz-
ing geograhic knowledge graphs, explains foundational concepts, decomposes the summa-
rization task into separate but related parts, answers these research questions separately,
and illustrates the usefulness of geographic knowledge graph summarization via a spatial

knowledge map interface.

7.2 Research Contributions

The main contribution of this dissertation is the hybrid approach of summarizing geo-
graphic knowledge graphs by decomposing them into related components. The reason for
the decomposition and the resulting hybrid approach is that three major demands (inter-

operability demand, accessibility demand, and conceptualization demand) in GIScience
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can be preserved. The dissertation points out the fact that, while graph summarization
and knowledge graph summarization have been intriguing research topics for the data
mining community and the semantic web community, research on geographic knowledge
graphs is still scarce. Although existing methods and algorithms for graph summariza-
tion can be adopted, these models are not capable of explicitly taking into account the
inherent geospatial semantics embedded in geographic knowledge graphs. To elaborate
on this point, this dissertation summarizes foundational concepts and ideas behind var-
ious research in GIScience and argues that such ideas are important for the geographic
knowledge graph summarization task as well.

In the following, we discuss the specific theoretical contributions and practical impli-

cations of this research.

7.2.1 Theoretical Contributions

This dissertation has made a number of theoretical contributions to the GIScience

field. In this subsection, we summarize them as follows.

Major demands in the current GIScience development. Although listed as the
background for the research explored in this dissertation, three major demands have been
the driving force for embracing the geospatial semantics paradigm. These three demands,
namely the interoperability demand, the accessibility demand, and the conceptualization
demand, have been entangled with a lot of research questions in GIScience in recent years.
By explaining them as means of improving efficiency in processing the large amount
of heterogeneous geographic data, providing more accessible interfaces for the general
audience, and establishing a better conceptualization model to mitigate the inherent
vagueness in geographic phenomenon, we hope this dissertation can stimulate further

studies in understanding the implications of the geospatial semantics paradigm.
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The idea of geospatial inductive bias. By formalizing the concept of geospatial
context, this dissertation brings up the idea of geospatial inductive bias based upon the
idea of inductive bias in machine learning models. The hidden patterns in geospatial
context are frequently exploited by a variety of models in geography (such as geograph-
ically weighted regression), but such an idea was not formalized as a general approach
towards developing more robust and suitable models for geographic data. This disserta-
tion provides a formalization of such an idea and proposes that geospatial inductive bias

should be adopted in order to develop generalizable models for geographic data.

A hybrid approach for geographic knowledge graph summarization. This dis-
sertation provides the definition of knowledge graphs by considering its duality in concep-
tual representation and implementation. The definition of geographic knowledge graphs
is subsequently clarified by extending existing definition of knowledge graphs. While
there are many ways to summarize geographic knowledge graphs, in the dissertation we
present a hybrid approach based on the decomposition of the graph. Such an approach
allows us to target specific areas, such as the place type ontology, the multimedia leaf

nodes, and the generic properties and entities separately.

Spatially-explicit models. While many data mining and machine learning models
provide a general strategy to solving problems, naively applying these models in the
GIScience domain is not ideal because of the heterogeneous nature and the hidden se-
mantics of geographic data. The idea of spatial is special demands that models dealing
with geographic data should explicitly consider spatial patterns by exploring the geospa-
tial inductive bias. Chapter [3| Chapter [d, and Chapter 5] have shown that by develop-
ing spatially-explicit models for geographic data, the performance can be substantially

improved for a variety of machine learning models, including representation learning,
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classification, and reinforcement learning.

7.2.2 Practical Implications

This research also has practical values and can be applied in pragmatic settings. In

the following, we outline several applications that could benefit from this research.

Semantic search for locations. While Chapter|3|is primarily focusing on place types,
the proposed methods can be used for a variety of geographic entity or entity types. The
latent representation learning approach provides low dimensional vector representations
for geographic entities/entity types which can be used as inputs for the search engines.
Because these embeddings contain semantic relatedness and similarity, search engines
empowered by these embeddings are able to understand the meaning of these entities/-
types in the geospatial context. As a result, these search engines can help provide a

semantic search (as opposed to string-based matching) for locations.

Location recommendation. The embeddings for different place types can also be
used for location recommendation applications. Because these embeddings encode in-
formation about the spatial distribution as well as popularity (check-in counts) among
users, they can imply the preference of different users under different spatial-temporal
contexts. By combining trajectory information of a user, these embeddings can be used
as inputs to help identify hidden patterns and predict future locations. Such a model is

essential for location recommendation systems.

Image classification systems. As explained in Chapter [ the bias in training data
has imposed a lot of challenges for correctly classifying images. The proposed idea in-

corporate spatial contextual signals into image classification to help improve the perfor-
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mance. This idea is particularly useful for classifying images that are less common and
can potentially help improve sample efficiency. This has important implications for prac-

tical image classification systems as efficiency and accuracy are two major considerations.

Geographic knowledge graph visualization and exploration systems. The ul-
timate goal of this dissertation is to find ways to help better summarize geographic
knowledge graphs. In Chapter [5] a generic approach has been proposed and sample
summary graphs have been provided. In practice, this approach can be integrated in
geographic knowledge graph visualization and exploration interfaces as demonstrated in
Chapter [0} Such a system is able to benefit from the concise representation and insightful

digest of the geographic knowledge graph and provide an improved user experience.

7.3 Limitations and Future Work

In the following, we discuss limitations in this research as well as potential areas that

could be integrated in the future work.

Spatial modeling in high dimensions. While real-world geographic entities are usu-
ally in 3D or 4D (if time is considered an extra dimension) space, the spatially-explicit
models developed in this dissertation are mostly 1D or 2D. For instance, in Chapter [3]
we calculate the neighborhood distribution in a 2D space. In Chapter [, the neighbor-
hood is collapsed into a 1D sequence in the proposed model. While these strategies are
a result of the trade-off between model complexity and performance, it is important to
note that by collapsing the dimensions of geographic entities the loss of information is
inevitable. Future improvements could be made by considering model architectures that

are specifically designed for high dimensional structures.
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Large scale study of the summarization task. Because of the lack of standard
dataset for research studies in geographic knowledge graph summarization, we take the
initiative to collect a subgraph from DBpedia to form our geographic knowledge graph
in this research. While this dataset is useful for establishing baselines and comparison
in model performance, a large scale study of the summarization task is still needed.
Such a large scale study would require a substantially larger geographic knowledge graph
dataset. While the same method could be potentially applied, the noise and error in the
real-world dataset might pose additional challenges. Additional improvements are also
needed to provide an efficient strategy for summarizing large scale geographic knowledge
graphs. Future work can potentially focus on improving the space and time complexity
of existing models and incorporate mechanism to handle noise to make the model more

robust.

Data type properties and literals in geographic knowledge graphs. Although
this dissertation specifically considers place type information as well as multimedia leaf
nodes, it does not consider data type properties and literals which contain a lot of infor-
mation in geographic knowledge graphs. In Chapter [3], the knowledge graph embedding
model is not able to handle data type properties and literals. These literals, although are
not typically encoded in knowledge graph embedding models, contain important seman-
tics in the context of geographic knowledge graphs, such as the population information
of a city and the elevation of a mountain, etc. In future work, data type properties and
literals can be incorporated in the embedding learning process and should be considered

in the summarization process.
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