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Abstract

Toward the Systematic Design of Complex Materials from Structural Motifs

by

Tess Eleonora Smidt

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Jeffrey B. Neaton, Chair

With first-principles calculations based on density functional theory, we can predict with
good accuracy the electronic ground state properties of a fixed arrangement of nuclei in
a molecule or crystal. However, the potential of this formalism and approach is not fully
utilized; most calculations are performed on experimentally determined structures and stoi-
chiometric substitutions of those systems. This in part stems from the difficulty of system-
atically generating 3D geometries that are chemically valid under the complex interactions
existing in materials. Designing materials is a bottleneck for computational materials ex-
ploration; there is a need for systematic design tools that can keep up with our calculation
capacity. Identifying a higher level language to articulate designs at the atomic scale rather
than simply points in 3D space can aid in developing these tools.

Constituent atoms of materials tend to arrange in recognizable patterns with defined
symmetry such as coordination polyhedra in transition metal oxides or subgroups of organic
molecules; we call these structural motifs. In this thesis, we advance a variety of systematic
strategies for understanding complex materials from structural motifs on the atomic scale
with an eye towards future design.

In collaboration with experiment, we introduce the harmonic honeycomb iridates with
frustrated, spin-anisotropic magnetism. At the atomic level, the harmonic honeycomb iri-
dates have identical local geometry where each iridium atom octahedrally coordinated by
oxygen hosts a Jeff = 1/2 spin state that experiences interactions in orthogonal spin direc-
tions from three neighboring iridium atoms. A homologous series of harmonic honeycomb
can be constructed by changing the connectivity of their basic structural units.

Also in collaboration with experiment, we investigate the metal-organic chalcogenide
assembly [AgSePh]∞ that hosts 2D physics in a bulk 3D crystal. In this material, inor-
ganic AgSe layers are scaffolded by organic phenyl ligands preventing the inorganic lay-
ers from strongly interacting. While bulk Ag2Se is an indirect band gap semiconductor,
[AgSePh]∞ has a direct band gap and photoluminesces blue. We propose that these hy-
brid systems present a promising alternative approach to exploring and controlling low-
dimensional physics due to their ease of synthesis and robustness to the ambient environ-
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ment, contrasting sharply with the difficulty of isolating and maintaining traditional low-
dimensional materials such as graphene and MoS2.

Automated density functional theory via high throughput approaches are a promising
means of identifying new materials with a given property. We automate a search for fer-
roelectric materials by integrating density functional theory calculations, crystal structure
databases, symmetry tools, workflow software, and a custom analysis toolkit. Structural
distortions that occur in the structural motifs of ferroelectrics give rise to a switchable
spontaneous polarization. In ferroelectrics lattice, spin, and electronic degrees of freedom
couple leading to exotic physical phenomena and making them technologically useful (e.g.
non-volatile RAM).

We also propose a new neural network architecture that encodes the symmetries of 3D
Euclidean space for learning the structural motifs of atomic systems. We describe how these
networks can be used to speed up important components of the computational materials
discovery pipeline and generate hypothetical stable atomic structures.

Finally, we conclude with a discussion of the materials design tools deep learning may
enable and how these tools could be guided by the intuition of materials scientists.
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Chapter 1

Introduction

Humanity’s increasing ability to manipulate matter across length scales has been one of
the most influential factors in developing new technologies. Yet as far as we have come,
we are still far from mastering arbitrary forms of matter at one of its most fundamental
controllable level – atoms. Material synthesis and characterization remain laborious and
resource-intensive processes; thus, it is important to prioritize efforts toward existing and
newly-discovered materials that show the greatest promise for new phenomena and techno-
logical applications. In order to efficiently identify the most promising materials, we must
understand how specific atomic arrangements give rise to desirable properties and use avail-
able means to predict arrangements with high likelihood of being synthesized.

The invention of the transistor, a technology made possible by the scientific understanding
of solid state physics, has precipitated an exponential increase in computational power since
the mid-20th century. Now in turn, the multidisciplinary process of materials discovery
increasingly relies on computational methods. We can now rapidly screen materials for
desirable properties by searching materials databases and performing high-throughput first-
principles calculations. This approach has led to the identification of new functional materials
that have been subsequently confirmed in the lab [58, 277, 268]. However, this model of
computational materials discovery is limited to the structures we can provide to our first-
principles methods. How can we systematically design materials to expand our search beyond
the structures stored in databases?

For atomic systems (crystals, materials, molecules, proteins, etc), quantum mechanics
provides an ultimate design constraint. The electronic and nuclear interactions in materials
lead to laws that set rules for the possible geometries atoms can adopt. How these quantum
mechanical rules dictate the resulting atomic configurations is central to this thesis.

The design space of stable atomic systems is much more limited than all possible ar-
rangements of points in 3D space. Atoms in materials form geometric patterns and simple
recurring arrangements. In inorganic crystals, we often identify units comprised of transi-
tion metal atoms coordinated by atoms such as oxygen or sulfur that form simple polyhedra
such as tetrahedra or octahedra. For molecules, we identify subgroups that are prevalent
in organic chemistry such as phenyl groups (benzene) and hydroxyl groups (OH−). These
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recurrent collections of atoms in a fixed structure that we define as structural motifs are the
building blocks of atomic systems.

This thesis explores a variety of systematic strategies for understanding and designing
complex materials from structural motifs on the atomic scale. These approaches for designing
materials combine geometric, chemical, and physical intuition with calculations based on
quantum theory (density functional theory) and symmetry analysis.

The primary features of structural motifs in materials are their geometry and topology:
the shape of the motifs and how the motifs connect or otherwise relate to each other. For
example, a transition metal atom may be octahedrally coordinated by oxygen but this coor-
dination may be distorted away from the Platonic ideal. This distortion can greatly impact
the electronic properties resulting from this motif. These octahedral motifs can connect to
each other in various ways. They can share corners (as they do in Perovskites), edges (as
they do in the Harmonic Honeycomb Iridates in Chapters 3 and 4) or faces (as they do in
Corundum). For many systems, there is no unique way to meaningfully partition an atomic
structure into structural motifs and some may be more useful in specific contexts than oth-
ers. By breaking a structure into components that enable complex phenomena, we may
be able to systematically design motifs and connectivities that lead to desirable properties,
expediting our ability to explore the space of possible materials.

Some material classes share structural motifs but differ in the way those motifs connect.
In the Chapters 3 and 4, we closely analyze how edge-sharing three-fold coordinated IrO6

octahedra in the harmonic honeycomb iridates leads to exotic magnetism. We propose an
infinite series of homologous structures that share the same basic structural units but differ
in their connectivity. We suggest this class of complex correlated systems can be better
understood using a series of homologous structures with an identical local structure but
different connectivity.

In other material classes, structural motifs are defined by interactions between two diverse
starting ingredients, enabling a range of geometries and connectivities. In Chapter 5, we
explore metal-organic chalcogenide assemblies (MOChAs), bulk hybrid materials with low-
dimensional inorganic structures that are scaffolded by organic ligands. In MOChAs, the
formation of motifs is driven by the possible oxidation states of a transition metal and the
packing of chalcogenide (S, Se, or Te) bonded organic molecules around that transition
metal. These motifs connect through supramolecular assembly to form low-dimensional
organic structures. In the case of silver benzene selenolate ([AgSePh]∞), the end product
is a bulk system with two-dimensional electronic properties. We show how MOChAs lend
themselves to geometric analysis and design.

In structural phase transitions the geometry of motifs may change while the topology of
those motifs is maintained. Ferroelectrics are materials that undergo a structural transition
that results in the appearance of a spontaneous polarization that can be switched due to the
energetic adjacency of degenerate low-symmetry states. In Chapter 6 we demonstrate how
symmetry analysis, density functional theory calculations, and post-processing analysis can
be automated to search for ferroelectric candidates, identifying several previously-unknown
ferroelectric candidates. We discuss the use of isotropy subgroups for relating structures via
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symmetric distortions.
Ideally, we want a means to automate the understanding of materials from their atomic

structure. However, it is difficult to hand-code, using physical and chemical intuition, all
possible structural motifs. Deep learning is a machine learning method in which multiple
layers of neural networks are trained using the backpropogation algorithm to learn important
features of large datasets. These techniques have revolutionized computer vision, a field that
previously used hand-crafted features to create models to identify objects in images. Deep
learning models now exceed human performance on a variety of image classification tasks
[94]. In materials informatics, it is currently common practice to hand-featurize atomic
structures when building machine learning models of material properties because we lack
a natural method of encoding these structures for neural networks [36, 279, 33]. If deep
learning techniques can be adapted for atomic systems, they could be used to learn what
structural motifs are chemically stable and give rise to desirable properties. In the Chapter 7,
we present a new type of neural network architecture that can naturally handle 3D geometry
and the mathematical objects that characterize physical systems. We contrast this network
to existing work that focuses on creating input representations of atomic systems compatible
with existing networks invented in computer vision or throwing out geometric information.

The remainder of this chapter gives an overview of the material systems, phenomena,
and computational techniques described in later chapters.

1.1 Harmonic Honeycomb Iridates

The harmonic honeycomb iridates (A2IrO3 for A ∈ Na,Li) are a class of structures with exotic
anisotropic quantum magnetism. At the atomic level, the harmonic honeycomb iridates form
a class of structures with identical local geometry that differ in the connectivity of basic
structural units. Some structures in this series have been synthesized while others have yet
eluded experimental synthesis efforts.

In these materials, electron correlation, spin-orbit coupling, and crystal field effects have
comparable energy scales. The result is anistropic magnetism that originates from a single
spin on each iridium in a Jeff = 1/2 state.

Due to their geometry and spin, these materials may exhibit magnetic interactions de-
scribed by the Kitaev model, an analytically solvable Hamiltonian that gives rise to a quan-
tum spin liquid. Even as the temperature approaches absolute zero, quantum spin liquids
have disordered spin states - the spins never order but rather transition between energetically
degenerate configurations.

Energy levels of a single IrO6 octahedra

The dominant structural motif in harmonic honeycomb iridates are IrO6 octahedra. The
5d orbitals of the iridium atoms are split due to the presence of the oxygen atoms into a
two-fold degenerate manifold containing the x2 − y2 and 2z2 − x2 − y2 d orbitals called Eg
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and a three-fold degenerate manifold containing the xy, yz, and zx d orbitals called T2g.
Since the Eg orbitals are closer to the oxygen atoms than the T2g orbitals and the oxygen
atoms have a negative valence, the Eg orbitals are higher and the T2g orbitals are lower in
energy, see the center of Figure 1.1. The energy difference between these orbitals due to
the presence of the oxygen is called the crystal field splitting. Experimentally, octahedrally
coordinated iridates have crystal field splitting, ∆CF ≈ 3 eV [96].

In the presence of large crystal field splitting, the mixing of Eg and T2g is too energetically
expensive to occur. The matrix elements of the angular moment operator L = (Lx, Ly, Lz)
on the T2g orbitals are identical to those of the p orbitals modulo a minus sign, therefore the
T2g orbitals have Leff = 1 [239]. The corresponding matrix elements for Eg mixing is zero
therefore Eg orbitals have Leff = 0 and are said to be “quenched”[239].

As iridium is a heavy element, its electrons experience a large potential well from iridium’s
nucleus and the energy scales involved begin to be comparable to the energy of the electron.
Thus, the coupling between spin and orbital momentum, proportional to (Z4/n3)L ·S where
Z is the atomic number and n is the principal quantum number, becomes a non-negligible
term of the Hamiltonian [47]. Spin and orbital angular momentum no longer commute and
the quantum states of the electrons are eigenstates of total angular moment, J = L + S.

The T2g orbitals have Leff = 1. Since 1⊗ 1/2 = 1/2⊕ 3/2, the T2g orbitals split into two
manifolds, a two-fold degenerate Jeff = 1/2 manifold and a four-fold degenerate Jeff = 3/2
manifold, see the right of Figure 1.1. If the operator L · S acts on the T2g orbitals with spin
components, we find that the Jeff = 1/2 are λSO higher in energy and Jeff = 3/2 are λSO/2
lower in energy [239]. λSO in iridates is close to 0.5 eV [96], for a total splitting of ≈ 0.75
eV.

Iridium has 9 5d electrons and in the harmonic honeycomb iridates, iridium takes a +4
oxidation state. The energy of Hund’s coupling is smaller than the crystal field splitting
energy (JH ≈ 0.25 eV � ∆CF ≈ 3.0 eV [271]), so the 5 remaining Ir electrons fill the T2g

manifold such that Jeff = 3/2 is filled and Jeff = 1/2 is half filled.
Since the Jeff = 1/2 is half filled, we would expect the iridates to be metallic. However,

d orbitals are more localized than s or p orbitals and electrons experience repulsion from
electrons in other d orbitals. This repulsion can be described by the Hubbard model in which
there is competition between a hopping interaction with coefficient t and the repulsion term
with coefficient U [114, 114]. As U/t→ 0, the system is metallic and as U/t→∞ the system
is insulating. This effect is large in 3d systems (with U ≈ 5 eV) where orbitals are more
tightly bound with little overlap and small in 5d orbitals (U ≈ 1.5− 2 eV in iridates) which
are more diffuse, therefore overlapping more [167, 116]. Despite the effect being small, this
results in the two Jeff = 1/2 states being further split, preventing a metallic state. When a
gap in the electronic states at the Fermi level is cause by Hubbard repulsion, a material is
said to be a Mott insulator. The Mott gap in the honeycomb iridates is ≈ 0.4 eV [96].
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Figure 1.1: The splitting of 5d orbitals for iridium atoms octahedrally coordinated by oxygen
atoms. Crystal field splitting breaks the degeneracy of the 5d orbitals into a two-dimensional
manifold Eg and a three-dimensional manifold T2g. Spin-orbit coupling further splits the T2g

manifold with Leff = 1 into Jeff = 1/2 and Jeff = 3/2 states.

Interaction of edge-sharing IrO6 octahedra

Magnetic interactions arise primarily from exchange symmetry, the requirement that wave-
functions of electrons must be antisymmetric under the exchange of any two electrons [48].
The Hamiltonian for the coupling of two spins can be written as ASi · Sj, where A is a
constant, [49]. The simplest extension of this interaction to the case of many electrons is
given by the Heisenberg model [48],

HH =
∑
ij

JijSi · Sj, (1.1)

where ij denotes neighbors. However, in general the magnetic Hamiltonian can have higher-
order terms.

Given two IrO6 octahedra sharing a single edge, there is a plane defined by the iridium
centers and the two oxygen atoms the iridium share (which we will call the Ir-O-Ir bond
plane). The magnetic iridium atoms interact via their shared oxygen through superexchange
[48]. Given ideal octahedral geometry, there are two identical Ir-O-Ir bond exchange paths for
the isotropic terms. The Jeff = 1/2 states destructively interfere along these paths causing
the isotropic Heisenberg interaction to disappear, leaving a weak anisotropic interaction due
to Hund’s coupling [118]. This is called the Quantum Compass Model. Assuming the Ir-O-Ir
bonds are in the xy-plane, the Hamiltonian further simplifies to
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Figure 1.2: In the harmonic honeycomb iridates, the IrO6 edge-share with three nearest
neighbors, forming three orthogonal planes defined by the Ir-O-Ir bonds. These planes are
indicated with blue, red, and green shading. The Ir ions are indicated by the circles while
the oxygens (not shown) lie on the edges of the polyhedra.

Hij = JzS
z
i S

z
j . (1.2)

The IrO6 octahedra in harmonic honeycomb iridates edge-share with three nearest neigh-
bor octahedra. These neighbors are maximally far apart from one another such that the three
planes defined by the shared oxygen and central iridium atoms are orthogonal to each other,
shown in Fig. 1.2. This gives a 3-fold orthogonal Quantum Compass Model known as the
Kitaev Model, that is

HK = −Kγ

∑
〈ij〉

Sγi S
γ
j . (1.3)

where < ij > denotes, nearest neighbor iridium atoms that form a bonding plane perpen-
dicular to γ.

Due to distortion of the IrO6 octahedra, the magnetism of the harmonic honeycomb
iridates is described by a Kitaev-Heisenberg model, where the distorted Ir-O-Ir exchange
paths prevent complete destructive interference of the isotropic magnetic interaction.

In Chapter 3, we present the discovery of the first 3D harmonic honeycomb iridate and
characterize its anisotropic magnetism. In Chapter 4 we compute the ground state structures
of select members of the harmonic honeycomb homologous series with density functional
theory-based methods (varying U and testing sensitivity to SOC) and investigate the effect
of the alkali metal (Li or Na) on the distortion of IrO6 octahedra.
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Figure 1.3: MOChAs can host inorganic structures of varying dimensionality and topology,
from sheets and tubes (2D), to chains and rings (1D), to individual clusters (0D).

1.2 Metal-organic Chalcogenide Assemblies

(MOChAs)

Metal-organic chalcogenides assemblies (MOChAs) are self-assembled hybrid crystals where
low-dimensional transition metal chalcogenide structures are scaffolded by organic ligands
[267]. Depending on the choice of organic ligand, the electronic structure near the Fermi level
may be entirely dominated by the inorganic structure or influenced by the organic ligand.
Due to the intrinsically insulating nature of many organic ligands, the geometry of MOChAs
can be designed to yield bulk materials with low-dimensional electronic properties.

Electrons restricted in one or more dimensions have properties that differ from electrons
in the bulk due to quantum confinement and the lack of screening by neighboring atoms.
This is one of the driving motivations for research in modern nanoscience.

Two examples of this are graphene and MoS2; both form 2D sheets as well as nan-
otubes. Graphene, a single layer of graphite, is the prototypical low-dimensional material
comprised of an atomically-thin 2D hexagonal lattice of carbon atoms. While graphite is a
semi-metal, graphene is a so-called Dirac semi-metal where electrons near the Fermi level
behave relativistically. Layered transition metal dichalcogenides are comprised of edge shar-
ing coordination polyhedra. These materials (e.g. MoS2) are semiconductors and undergo
an indirect-to-direct bandgap transition when exfoliated to a monocrystalline single-layer.

In both these examples, the bulk material is comprised of monolayers bonded by van der
Waals interactions and the low-dimensional properties are only present in an isolated mono-
layer. Low-dimensional materials are often laborious to synthesize, isolate, and keep clean.
MOChAs present an alternative approach to realizing materials with low-dimensional prop-
erties and to exploring low-dimensional phenomena. In contrast to isolated low-dimensional
materials, MOChAs self-assemble at near room temperature and are robust to an ambient
environment.
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The synthesis of MOChAs is highly modular allowing for various combinations of metals,
chalcogenides, and organic ligands to be readily explored. MOChAs are synthesized using
a metal salt or metal wafer and organic groups attached via a dichalcogen bond (R-E-E-R)
where R represents any organic ligand and E = S, Se, Te. The reaction between the metal
ion and the organochalcogen drives molecular self-assembly, resulting in the formation of
supramolecular hybrid structures. There are three primary synthetic routes for achieving
self-assembly of these structures, shown in Figure 1.5: immiscible layered strategy, gram-
scale bulk synthesis, and wafer-scale gas phase deposition. With care, it is possible to produce
millimeter-scale single-crystals of spontaneously self-assembled hybrid compounds.

With metal-organic chalcogenides, we can harness the variety of geometry of organic
molecules to tune the electronic properties of low-dimensional transition metal chalcogenide
structures. Changing ligands and inorganic composition can yield diverse crystal geometries
or variations of similar structures, see Figure 1.4.

Using MOChAs style synthesis, we can make low-dimensional transition metal chalco-
genide structures of materials that do not form layered materials or other low-dimensional
structures in the bulk. In Chapter 5, we focus on one such example, silver benzene selenolate,
[AgSePh]∞ where the subscript ∞ denotes the bulk material is comprised of many van der
Waals bonded layers of AgSePh. Bulk Ag2Se is an indirect band gap semiconductor com-
prised of four- and five-fold selenium coordinated silver atoms; the coordination polyhedra
edge-share along all three crystal lattice directions. In contrast, [AgSePh]∞ is comprised of
2D sheets of silver tetrahedrally coordinated by selenium with the sheets scaffolded by phenyl
groups. Additionally, [AgSePh]∞ is a direct band gap semiconductor that photoluminesces
blue light. In Chapter 5, we describe multiple synthetic avenues for creating [AgSePh]∞ and
study the quantum confinement of its layers using photoluminescence measurements and
density functional theory.

1.3 Ferroelectrics

When structural motifs are distorted, new electronic properties can arise that were previously
forbidden by symmetry. One such property is ferroelectricity. Ferroelectric materials display
couplings between magnetic, electronic, and lattice degrees of freedom, leading to exotic
phenomena and making them technologically useful.

Macroscopically, a ferroelectric material has a spontaneous polarization that is switchable
by an applied electric field [152] (see Figure 1.6a). At the atomic scale, ferroelectric switching
is a structural transition between energetically degenerate structures with a spontaneous
polarization resulting from the displacements of charged atoms.

Phenomenologically, these degenerate ferroelectric structures arise from the symmetry
breaking of higher-symmetry structure without a spontaneous polarization. Materials can
only host a spontaneous polarization if they have a space group symmetry with a polar point
group. Out of the 32 crystallographic point groups, 10 are polar (1, 2, m, mm2, 3, 3m, 4,
4mm, 6 and 6mm). The remaining point groups are nonpolar. A crystal with a nonpolar
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Figure 1.4: Different transition met-
als and organic ligands form MOChAs
with various coordinations and topolo-
gies. (Top to Bottom) adamantane +
copper give a nanotube structure made of
triangular coordination polygons, carbo-
rane + lead give a chiral 1D chain of see-
saw coordination polyhedra, carborane +
mercury give a non-chiral 1D chain of see-
saw coordination polyhedra.

Figure 1.5: Top) Three methods for mak-
ing MOChAs: immiscible layered strat-
egy, gram-scale bulk synthesis, and wafer-
scale gas phase deposition. Middle row).
Crystals produced from each method.
Bottom row) All three methods produce
different crystal morphologies but uni-
form emission energy.

symmetry has a center of symmetry such that no vector quantity (such as a polarization
vector) can be compatible with the crystal symmetry.

The high-symmetry structure that cannot host a spontaneous polarization belongs to a
nonpolar space group; we call it the nonpolar structure.1 The ferroelectric lower-symmetry
structures belong to a polar space group; we call these degenerate structures the polar
structures. See Appendix D for a concrete example of a prototypical ferroelectric, BaTiO3.
In Chapter 6, we use this symmetry criterion to find compatible pairs of nonpolar-polar
structures to search for new ferroelectrics that may host new physics or be technologically
useful.

1It is common in the ferroelectric literature for it to be said the high-symmetry structure is required
to have centrosymmetry, meaning having inversion symmetry; this is not necessarily correct. Nonpolar is
a more general symmetry criterion. All point groups with inversion symmetry are nonpolar, but there are
chiral, nonpolar point groups without inversion symmetry (222, 422, 622, 32, 23, and 432).
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Figure 1.6: a) A ferroelectric is a material with a spontaneous polarization that is switchable
by applying an external electric field. b) The free energy written in terms of polarization
has a double well, each well representing stable, switchable polar structures. c) A plot of
the polarization of a ferroelectric versus the application of an electric field will produce a
hysteresis loop.

The structural transition from the nonpolar structure to one of multiple possible polar
structures can be due to a phonon mode becoming “soft”, meaning it has become non-
restorative, with decreasing temperature. In order to break the symmetries forbidding a
spontaneous polarization to arise in the higher-symmetry nonpolar structure, the phonon
mode itself must have a polar symmetry. One can search for ferroelectric materials by
computing the phonon band structure for nonpolar structures and identifying polar phonon
modes with negative energies. This method was used by Ref. [86] to search for ferroelectric
candidates.

For our work in Chapter 6, we use a search method motivated by the Landau theory of
phase transitions[60]. Near the structural phase transition between the high-symmetry non-
polar and low-symmetry polar structure, the free energy can be expanded using polarization,
P , (in this case treated as 1D) as an order parameter as the following:

F =
1

2
a0(T − Tc)P 2 +

1

4
bP 4 +

1

6
cP 6 − EP, (1.4)

where a0, b, c are constants, T is temperature, Tc is the critical temperature of the phase
transition, and E is the electric field.

Below a critical temperature Tc, the free energy of a ferroelectric expressed in terms of
polarization has (in the case of a 1D polarization) a double well, with each well represent-
ing a stable, switchable structure with a spontaneous polarization (see Figure 1.6b). This
transition is second order if the coefficient b is positive, and first order if it is negative [60].

In Chapter 6, we search for nonpolar-polar structure pairs that satisfy the symmetry
requirements of Landau theory. In addition to the high(low)-symmetry structures being
nonpolar(polar), we additionally require that they are continuously deformable into each
other. This means that they satisfy group-subgroup relations and the polar structure must
belong to an isotropy subgroup of the nonpolar structure; we go into detail about these
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symmetry requirements in Chapter 6 and Appendix F. We then compute the polarization
of structures along the distortion between nonpolar and polar structure in order to recover
the spontaneous polarization. We must use intermediate structures to recover this quantity
because polarization for a periodic system is defined on a lattice; it is not a single well-defined
quantity and depends on the choice of unit cell [254]. It is the change in the polarization
between the nonpolar and polar structure that is well-defined [205]. If one follows the change
in the polarization value on the polarization lattice as it moves throughout the ferroelectric
distortion, one can define a single-valued change in the spontaneous polarization that does
not depend on the choice of unit cell.

This definition of polarization is compatible with what is seen experimentally. Experi-
mentally, the polarization of a ferroelectric is not measured directly but instead determined
by switching the polarization of a given sample with an external electric field and measuring
the current that results from the polarization switching [153]. If one then plots the inte-
grated current divided by the surface area of the sample (to obtain units of [charge]/[area]
in common units (µCoulomb/cm2).) as a function of electric field, one obtains a plot of the
polarization versus electric field. This plot will have a hysteresis loop due to the switching.
An ideal hysteresis loop would have a simple rectangular loop; above the critical electric field
that is sufficient to oppose the existing polarization, the polarization would instantaneously
switch to the opposite polarization. However, experimentally measured hysteresis loops look
more like Figure 1.6c. The specific shape of the hysteresis loop is determined by the inter-
actions of the ferroelectric domains (domains with differently oriented polarizations) inside
a macroscopic material [153].

In Chapter 6, we design an automated workflow for finding ferroelectric candidates by
harnessing symmetry analysis to find nonpolar-polar structure pairs and calculating the
spontaneous polarization of these candidates using density functional theory calculations of
intermediate structures between the nonpolar and polar structures. This workflow has been
open-sourced and contributed to the atomate python package [165]. The data resulting from
our first ferroelectric search using this workflow on the Materials Project databases[124] has
been made publicly available at http://blondegeek.github.io/ferroelectric_search_

site/.

1.4 Deep learning for atomic systems

Deep learning is a promising technique for expediting existing tools and creating new capa-
bilities in computational materials exploration. It could potentially compute the properties
of materials in an order of magnitude less time and propose hypothetical structures from
experimentally known motifs. One of the challenges with applying deep learning techniques
to materials and atomic systems generally is creating neural networks capable of operating
on and producing the data types relevant to materials, such as 3D geometric configurations.

The community has approached this challenge in two ways: designing specialized input
representations of atomic systems to use with existing neural network architecture [32, 33,

http://blondegeek.github.io/ferroelectric_search_site/
http://blondegeek.github.io/ferroelectric_search_site/
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Figure 1.7: A network with 3D translation- and 3D rotation-equivariance allows us to identify
chemical motifs in any location or orientation using the same filters.

36, 236, 92] and inventing new networks more tailored toward atomic structures [126, 83, 89,
222, 221].

These approaches have been used to predict properties of small molecules and crystals
with chemical accuracy [202, 215, 62, 221] and to generate new molecules for applications
such as drugs and devices [92]. However, these techniques either do not generalize to all types
of atomic systems (molecules, crystals, polymers, nanocrystals, proteins, etc) or they throw
out potentially useful geometric information. For example, Ref. [92] uses string representa-
tions of the topology of molecular graphs, called SMILES strings, as input to their network
[262]. This input representation is not appropriate for material systems because materials
have much more ambiguous bonding structures and a topological representation does not in-
clude any geometric information about the positions of the atoms. Ref. [126, 83, 89, 222, 221]
use pairwise distances to encode atomic structures. Other rotation-invariant geometric in-
formation, such as bond angles can also be included, however this becomes expensive to
encode.

Ideally, a neural network would use the atomic positions of the atomic system we are
investigating and structural motifs could be identified at different locations and orientations
within an example without the need for data augmentation, see Figure 1.7. In Chapter 7,
we present a universal framework for deep learning on atomic systems that can naturally
handle 3D geometry and features of physical systems. We call this framework tensor field
networks.
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Chapter 2

Methods

2.1 Density Functional Theory

The research presented in this dissertation uses density functional theory to understand the
electronic structure of experimentally realized materials, evaluate hypothetical structures,
and relate changes in the geometry of an atomic system to changes in its electronic properties.

Density functional theory (DFT) is a technique that has made quantum mechanical
properties feasible to calculate for a wide variety of atomic systems, tens to thousands of
atoms in size. Modern DFT relies on the Kohn-Sham equations which are solved self-
consistently; expedient linear algebra libraries; and a generous application of compute power
to calculate electronic properties.

The many body Schrödinger Equation in the Born-Oppenheimer approximation can be
written as:

ĤΨ =
[
T̂ + V̂ext + V̂int + EII

]
Ψ = EΨ, (2.1)

where T is the kinetic energy operator, V̂ext is potential energy associated with the nuclei, V̂int
describes the electron-electron interactions, EII is the classical interaction between nuclei,
and E is the energy [162]. While such an equation is simple to write down, it is compu-
tationally infeasible to solve for more than tens of particles because the complexity scales
exponentially with the number of particles [132].

Density functional theory (DFT) formalism relies on two theorems, known as the Hohenberg-
Kohn theorems [109]. First, for a given system, V̂ext(r) and thus the total energy of a system
is a functional of the ground state charge density, n(r), expressed as

E[n(r)] =

∫
drVext(r)n(r) + F [n(r)] + EII , (2.2)

where F [n(r)] includes kinetic energy and electron-electron interactions. Second, the density
that minimizes the total energy is the ground state charge density. These two theorems have
significant consequences; combined they imply the ground state total energy of a system
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of interacting electrons and nuclei is determined by the ground state electron density. We
only need to know the energy functional E[n(r)] to solve for the ground state charge density
variationally[163]. While a wavefunction has 3N variables, a charge density has only 3
(one for each spatial dimension). The greatly reduced number of degrees of freedom needed
to describe the total energy and density of interacting many-body systems makes DFT a
potentially powerful approach compared to more expensive wavefunction based methods.

While the Hohenberg-Kohn theorem proves the existence of a universal functional, it does
not provide a way to determine this functional.1 Fortunately, soon after the appearance of the
Hohenberg-Kohn theorem in 1964, Kohn and Sham found a way to map the many-problem to
that of a single electron in an external potential of non-interacting electrons in 1965 [133]. In
this formulation, solving for the ground state charge density of this effective non-interacting
system leads to the same ground state charge density of the true interacting many-body
system; the ground state wavefunctions of the effective non-interacting system, obtained
from the Kohn-Sham equations are used to determine ground state charge density of the
many-body system. More explicitly, the Kohn-Sham approach reformulates the Hohenberg-
Kohn expression for the ground state functional as:

EKS = TS[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + EXC [n] (2.3)

where TS[n] is the kinetic energy of non-interacting electrons, EHartree[n] is the mean-field
Coulomb interaction energy of the electron density, and EXC [n] is the exchange-correlation
functional. The first three terms of this equation are known and can be straightforwardly
solved for. The EXC [n] term expresses the difference in kinetics and potential of an in-
teracting versus a non-interacting system, which is readily seen in the following expression
[163],

EXC [n] =
〈
T̂
〉
− TS[n] +

〈
V̂int

〉
− EHartree[n], (2.4)

and is in general unknown.

Density functionals

A major success of DFT is that approximate forms of EXC have been developed that have
been very effective. Different density functionals will treat exchange and correlation, EXC [n]
differently. In this dissertation we use the LDA, PBE, and HSE functionals; these functionals
are defined below.

In the local density approximation (LDA), one uses the exact exchange of a homogeneous
electron gas as calculated from quantum Monte Carlo calculations [133]. The EXC for the
LDA depends linearly on the charge density,

1Even if we were handed the universal functional, it may still be too expensive to feasibly compute.
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ELDA
XC [n] =

∫
dr n(r)εhomogen.XC (n(r)). (2.5)

Despite its simplicity, LDA has been successful at describing many material systems. The
generalized gradient approximation (GGA) has lead to a class of functionals that depend on
the charge density and its gradient,

EGGA
XC [n] =

∫
drεGGA

XC (n(r),∇n(r)). (2.6)

The functional by Perdew, Burke and Ernzerhof (PBE) is a specific functional based on
the GGA that is widely used [193]. GGAs can improve on the LDA for certain classes of
systems. Neither LDA nor GGA treat van der Waals dispersion interactions, a nonlocal cor-
relation effect. LDA tends to overbind and PBE tends to underbind, resulting in structures
that tend to have smaller and larger lattice parameters than experiment, respectively. Both
LDA and PBE generally underestimate band gaps.

Hybrid functionals include a different fraction of exact Fock exchange. Range-separated
hybrid functionals can include a fraction of exact exchange at short and long range. The
exchange and correlation functional by Heyd, Scuseria, and Ernzerhof (HSE) includes a
fraction of exact exchange for short range interactions and GGA exchange for longer range
interactions distances and can be written as

EHSE
XC = aEHF,SR

X (ω) + (1− a)EPBE,SR
X (ω) + EPBE,LR

X + EPBE
C (2.7)

,
where a is 0.25 and ω, the range separation parameter, is 0.2 [140]. Fortuitously, HSE tends
to give better band gaps than LDA and PBE, due to the inclusion of some amount of exact
exchange, but for accurate band gaps one needs to go beyond DFT to an excited state
formalism such as many body perturbation theory.

Practically, one arrives at the ground state electron density through a self-consistent
approach. For a given arrangement of nuclei, a starting guess for the charge density is made
based on atomic orbitals. This charge density is then used to generate Vext(r) and Ψi(r).
We then update the wavefunctions based on the solutions of the Kohn-Sham equations. We
repeat until the ground state energy and forces converge to desired values, typically 10−3eV
and 10−2 eV/Å.

Plane waves and pseudopotentials

To represent wavefunctions, one needs a basis set. In this dissertation, we focus on crystal
systems so we use plane-waves. The plane-wave basis depends on the crystallographic lattice
parameters of the input unit cell and an energy cutoff Ecutoff. For a given Ecutoff, all plane-
waves satisfying the following equation are included

h̄2

2me

|G + k|2 < Ecutoff, (2.8)
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where G is a reciprocal lattice vector and k is a vector in reciprocal space.
For many systems, including those described in this thesis, it is computationally expensive

to treat all electrons independently. Like all electrons, the wavefunctions of core electrons
must be orthogonal to one another. Because core electrons exist in a rather confined region
near the nucleus, this requires core electron wavefunctions to oscillate and defines their nodal
structure. To accurately describe these core wavefunctions, one must use a basis that has
a resolution comparable to these oscillations, which can be hundredths of Angstroms. For
example, for Ecuttoff = 520 eV, the resolution is approximately a tenth of an Angstrom.

h̄2

2me

∣∣∣∣ 1

1.2× 10−11 meters

∣∣∣∣2 ≈ 520 eV (2.9)

To achieve a resolution of approximately a hundredth of an Angstrom, Ecutoff would have to
be increased a hundred fold. Moreover, core electrons are highly localized and well-separated
in energy from valence electrons, which are crucial to determining structural and electronic
properties. Therefore, it is a good approximation to freeze them into an effective core and
neglect core degrees of freedom in solving the Kohn-Sham equations. Thus, rather than
treating core electrons directly, we use pseudopotentials which combine the nuclear and core
electron contributions and create a smooth potential.

Treating on-site correlations associated with localized electrons
with Hubbard U

In general, the most commonly used exchange-correlation functionals for the solid state,
LDA and PBE, are most effective where the electron density is nearly uniform. Electrons
in the Kohn-Sham DFT formalism neglecting exact exchange effectively experience spurious
interactions with their contribution to the charge density when the many-body system is cast
as an effective potential. This creates additional unphysical delocalization of the electron
density; this can be highly problematic when describing more tightly bound d and f orbitals
of transition-metals [164].

A computationally inexpensive approach that can improve treatment of such systems
is to introduce a Hubbard U parameter penalizing electrons occupying the same site [26].
However, the value of U is usually empirically set; the use of U means the functional now
depends on the density and occupation and the manner in which U is typically introduced
leads to double counting errors, which can be serious in some cases [164]. Hybrid functionals
such as HSE remove the need for such a parameter by including some amount of exact
exchange. We use Hubbard U parameters in Chapters 4, 5 and 6 to treat materials comprised
of transition-metals.
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Chapter 3

Realization of a three-dimensional
spin-anisotropic harmonic honeycomb
iridate

The work described in this chapter has been published as Ref. [172].

Spin and orbital quantum numbers play a key role in the physics of Mott insulators, but
in most systems they are connected only indirectly — via the Pauli exclusion principle and
the Coulomb interaction. Iridium-based oxides (iridates) introduce strong spin-orbit coupling
directly, such that the Mott physics has a strong orbital character. In the layered honeycomb
iridates this is thought to generate highly spin-anisotropic magnetic interactions, coupling
the spin orientation to a given spatial direction of exchange and leading to strongly frustrated
magnetism. Here we report a new iridate structure that has the same local connectivity as
the layered honeycomb and exhibits striking evidence for highly spin-anisotropic exchange.
The basic structural units of this material suggest that a new family of three-dimensional
structures could exist, the ‘harmonic honeycomb’ iridates, of which the present compound
is the first example.

3.1 Introduction

Quantum spin systems are characterized by small moments where the spin orientation is
decoupled from the crystal lattice, in contrast to Ising-like spin systems that often apply
to higher spin states. In the Heisenberg model describing spin-isotropic exchange between
neigboring spins, spatial anisotropies of the exchange suppress long-range order [170], but
do not lead to anisotropy of the magnetic susceptibility. Striking examples of this are quasi-
1D and -2D systems where the exchange differs by orders of magnitude for neighbors along
distinct crystallographic directions [234, 91]. The spin-orbit interaction introduces magnetic
anisotropy by coupling the spin to the symmetry of the local orbital environment. Although
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in spin-1/2 systems the crystal field does not introduce single-ion anisotropy (due to Kramer’s
protection of the spin-1/2 doublet), it can — via spin-orbit — introduce spin-anisotropies in
the g-factor and in the exchange interactions. The strength of the spin-orbit coupling varies
by orders of magnitude between the 3d and 5d transition metals. In the former, quenching
of the orbital moment decouples the orbital wavefunction from the spin, giving a g-factor
anisotropy that is typically small and an even smaller spin-anisotropy. For example, spin-
1/2 copper in a tetragonal crystal field has a g-factor anisotropy of order 10%, whereas the
spin-anisotropy of exchange is of the order of 1% [91].

The stronger spin-orbit coupling of the 5d transition metals is known to give rise to
larger magnetic anisotropies. In materials with edge-shared IrO6 octahedra, spin-anisotropy
of the exchange between neighboring effective spin-1/2 states is enhanced by the interference
of the two exchange paths across the planar Ir-O2-Ir bond. Jackeli and Khaliullin (JK)
suggested that in the honeycomb iridates this may lead to extreme spin-anisotropy of the
exchange coupling, where in the limiting case, the only non-vanishing interaction is for the
spin component normal to the Ir-O2-Ir plane [119, 59, 3]. In the honeycomb lattice, such an
interaction couples different orthogonal spin components for the three nearest neighbors; no
single exchange direction can be simultaneously satisfied, leading to strong frustration. It
is the possibility of engineering spin-anisotropy coupled to spatial exchange pathways that
has spurred intense scientific research, particularly in connection to the search for quantum
spin-liquids [130, 119, 59, 3]. However, whether the spin-anisotropic exchange interaction
that is coupled to the Ir-O2-Ir bonding plane is realized in such materials remains an intense
subject of scientific debate [233, 3, 63, 97], highlighting the need for the discovery of new
materials with related structures and strongly anisotropic exchange interactions.

We have synthesized single crystals of a new polytype of Li2IrO3 in which we reveal the
effect of the spin-anisotropy of exchange from the temperature dependence of the anisotropic
magnetic susceptibility.

3.2 Results

Crystal structure

Single crystals of Li2IrO3 were synthesized as described in Methods. As shown in Figure
3.1A, the crystals are clearly faceted and typically around 100 × 100 × 200µm3 in size. In
contrast to the monoclinic structure of the layered iridate, we find that these materials are
orthorhombic and belong to the non-symmorphic space group Cccm, with lattice parameters
a = 5.9119(3) Å, b = 8.4461(5) Å, c = 17.8363(10) Å (see Appendix A for details of
the crystallography). The structure (shown in Figure 3.1B and C) contains two interlaced
honeycomb planes, the orientation of which alternate along the c axis. The x-ray refinement
(see Appendix A and Figures A.1-A.4) is consistent with fully stoichiometric Li2IrO3. In
this case the Ir oxidation state is Ir4+ (5d5), fixing the effective Ir local moment Jeff =
1/2, which is consistent with the magnetic properties of our crystals (see Figure 3.2). In
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Figure 3.1: Single crystal of H〈1〉-Li2IrO3 and the Ir lattice structure. (A) Single
crystal oriented to be parallel to the crystallographic axes shown in (C), (B) 3D view and (C)
projection in the ab plane. In (B) gray shading emphasizes the Ir (purple balls) honeycomb
rows that run parallel to the a± b diagonals, alternating upon moving along the c-axis. For
simplicity only Li ions (grey balls) located in the center of Ir honeycombs are shown. In (B)
and (C) the rectangular box indicates the unit cell. Comparing (A) and (C) we note that
the ∼70◦ angle between honeycomb rows is evident in the crystalline morphology.

addition, highly-sensitive single-crystal susceptibility and torque measurements (see below)
observe sharp anomalies at the transition to magnetic order, with no measurable variability
in this transition temperature between many crystals measured, indicating that the observed
magnetic order is well-formed and intrinsic to the crystals. This suggests that if present,
Li vacancy disorder is small, because such vacancies will to lead non-magnetic Ir5+ 5d4[52],
whose presence is expected to give rise to spin-glass behavior [25] which we do not observe.
Taken together, our experiments indicate that our crystals are representative of the high-
purity, stoichiometric limit. We denote the crystal structure H〈1〉-Li2IrO3, where H〈1〉 refers
to the single, complete Honeycomb row.

High temperature magnetic anisotropy

As can be seen in Figure 3.2, the raw magnetic susceptibility shows a magnetic anomaly at
38 K, most likely reflecting the bipartite nature of the structure, which alleviates the magnetic
frustration. Due to the smallness of our samples and sensitivity to sample misalignment, the
anisotropy at high temperatures could not be quantitatively resolved to high accuracy using
SQUID magnetometry. To do so, we utilized torque magnetometry, which exclusively probes
magnetic anisotropy (see discussion in Appendix A) and is sufficiently sensitive to measure
single crystals of ∼ 10µm dimensions. Torque magnetometry was measured by attaching
an oriented single crystal to a piezoresistive micro-cantilever [183] that measures mechanical
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Figure 3.2: The temperature dependence of the single-crystal magnetic suscepti-
bility along the three principal crystalline directions. The inset shows 1/χ for all
three axes χa, χb, and χc. The dashed line indicates the slope of the inverse Curie-Weiss sus-
ceptibility for a paramagnet with effective moment of µeff = 1.6µB, close to that expected of
an Ir Jeff = 1/2 state if g-factor anisotropy is ignored. All three components of susceptibility
show strong deviation from Curie-Weiss behavior as a function of temperature.

stress as the crystal flexes the lever to try to align its magnetic axes with the applied field.
The mechanical strain is measured as a voltage change across a balanced Wheatstone Bridge
and can detect a torque signal on the order of 10−13 Nm. The lever only responds to a torque
perpendicular to its long axis and planar surface. As a result, the orientation of the crystal on
the lever (determined by x-ray measurements and the diamond shaped morphology) defines
the plane of rotation in field and which principal components of anisotropy, αij (i, j ∈ a, b, c)
are measured. To achieve this the cantilever was mounted on a cryogenic goniometer to
allow rotation of the sample with respect to magnetic field without thermal cycling. The low
temperature anisotropy was confirmed on several similar sized single crystals. To measure
αij = χi−χj between 1.5 K and 250 K, three discrete planes of rotation for the same crystal
were used.

A magnetically anisotropic material experiences a torque when its magnetization is not
aligned with the applied magnetic field; the deflection of the cantilever in a uniform magnetic
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field is hence a direct measure of the magnetic anisotropy, ~τ = ~M× ~H. At small fields, where
the magnetic response is linear, the magnetic anisotropy is captured by a susceptibility
tensor Mi = χijHj. For an orthorhombic crystal, the magnetic axes coincide with the
crystallographic directions, defining χa,b,c. For example, for rotations in the b-c plane, the
anisotropic magnetization (Mb,Mc) = (χbHb, χcHc) creates a torque

τa =
(χb − χc)H2sin2θ

2
(3.1)

where θ is the angle between a crystallographic axis (c in this case) and the applied magnetic
field.

The geometry of the lattice is intimately connected to the magnetic anisotropy. Specifi-
cally, we note that the angle φ0 between the honeycomb strips (see Figure 3.1C) is fixed by
the geometry of the edge shared bonding of the IrO6 octahedra (see Figures 3.3A). For cubic
octahedra cosφ0 = 1/3, namely φ0 ≈ 70◦, as shown in Figure 3.3A. The magnetic axes can be
uniquely identified from a complete angular dependence of the torque measurements, with
the amplitude of the sin2θ dependence being proportional to the magnetic anisotropy αij.
The observed magnetic axes are independent of temperature between 300 K and 1.5 K. The
magnetic anisotropy, shown as data points in Figure 3.3B agrees well with the differences
in the low temperature susceptibility data (grey lines in Figure 3.3B). At temperatures that
are high relative to the exchange interaction energy scale, we expect that only the g-factor
affects the magnetic anisotropy. We find that the ratio of the anisotropic susceptibilities
αij/αjk asymptotically approach simple fractions at high temperature (above ∼100 K, see
Figure 3.3C). Specifically, each Ir is in a three-fold local planar environment with (almost)
equidistant neighbors and thus the Ir g-factor anisotropy can be captured by ascribing each
honeycomb plane susceptibility components parallel, χ‖ and perpendicular, χ⊥ to the plane
(consider Figure 3.3A). This uniaxial local iridium environment combined with the relative
orientation of the iridium planes, cosφ0 = 1/3, constrains the three components of suscepti-
bility at high temperature to be equally spaced; 2χb = χa + χc (see Appendix A) and the
anisotropy ratios to be αba/αac = −1/2, αbc/αac = 1/2, αbc/αab = 1, just as we observe. This
observation places constraints on the ordering of the principal components of the g-factor at
all temperatures.

Reordering of the principal magnetic axes

The striking reordering of the principal components of susceptibility revealed in torque and
SQUID magnetometry, is associated with a strong deviation from Curie-Weiss behavior as
the temperature is lowered: αbc changes sign at T ≈ 75 K (Figure 3.3 D and Figures A.5-A.6).
This is in stark contrast to spin-isotropic Heisenberg exchange systems where the low tem-
perature susceptibility reflects the g-factor anisotropy observed at high temperatures, even in
the presence of spatially-anisotropic exchange [91]. The change of sign of αbc arises because
χb softens, becoming an order of magnitude greater than χa and ∼ 5 × χc (Figure 3.2 and
3.3B). As a result, the susceptibility cannot be parameterized by a Curie-Weiss temperature:
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Figure 3.3: Temperature dependence of the magnetic anisotropy. (A) Each Ir is
surrounded by one of two planar, triangular environments indicated by blue and red shaded
triangles, located at ∼ 35◦ either side of the b-axis. (B) The anisotropy of the magnetic
susceptibility as measured by torque and the differences in (SQUID) susceptibilities (grey
lines) are shown as a function of temperature for all three crystallographic directions. An
anomaly indicates the onset of magnetic order at TN = 38 K. (C) The ratios of the anisotropic
susceptibility tend to simple fractional values dictated by the g-factor anisotropy of the local
planar iridium environment. (D) sin(2θ) fits to the anisotropy αbc illustrating the change of
sign at ∼ 75K.

the linear extrapolation of all three components of inverse susceptibility to the temperature
axis depends strongly upon the temperature range considered. Between 50–150 K the ex-
trapolation of all three components of inverse susceptibility is negative, consistent with the
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absence of net moment in the ordered state. However, at higher temperatures (200–300 K)
the inverse susceptibilities 1/χb, 1/χc extrapolate to positive temperature intercepts (see Fig-
ure 3.2) indicating a ferromagnetic component to the interactions. Above 200 K, 1/χ the
Curie-Weiss slope gives µeff ≈ 1.6µB, consistent with a Jeff = 1/2 magnetism.

The observed ten fold increase in χb cannot be driven by the g-factor of the local iridium
environment, whose geometric constraints are temperature independent (see Appendix A).
The temperature dependence of χb must therefore arise from spin-anisotropic exchange.
We note that all the c-axis bonds have the Ir-O2-Ir plane normal to the b-axis, whether
they preserve or rotate between the two honeycomb orientations (see the full structure in
Figure A.3A and a schematic in Figure 3.4A - green shading indicate the Ir-O2-Ir planes).
This is the only Ir-O2-Ir plane that is normal to a crystallographic axis. This coupling of
the spin-anisotropy to the structure, provides evidence for spin-anisotropic exchange across
the c-axis links, and by extension should be present in all Ir-O2-Ir exchange paths. This
likely arises from the interfering exchange mechanism suggested by JK in the context of the
Kitaev model (see Appendix A).

Low temperature magnetic properties

The softening of χb is truncated at 38 K by a magnetic instability. Within the ordered
state, the magnetization increases linearly with applied field (Figure 3.4C, τ/H in 3.4B and
Figure A.6). At sufficiently high magnetic fields H∗, the magnetization kinks abruptly. This
corresponds to an induced moment of ≈ 0.1µB. Above H∗, the finite torque signal reveals
that the induced moment is not co-linear with the applied field, consistent with the finite
slope observed at these fields in Figure 3.4C. This shows that in the phase above H∗ the
induced magnetization along the field direction is not yet saturated (the value is well below
the expected saturated Ir moment of ∼1µB for Jeff = 1/2). The angular dependence of both
the slope of the linear regime and the kink field H∗, exhibit an order of magnitude anisotropy
with field orientation (Figure 3.4D and 3.4E). Such strong anisotropy in a spin-1/2 system
highlights the strong orbital character arising from the spin-orbit coupling, again in contrast
to spin-1/2 Heisenberg anti-ferromagnetism [91].

3.3 Discussion

There is a very interesting connection between the layered honeycomb Li2IrO3 and the
polytype studied here. The H〈1〉-Li2IrO3 is distinguished by its c-axis bond, which either
preserves or rotates away from a given honeycomb plane (see Figure 3.5A and Figure A.7);
in the case that all the bonds preserve the same plane, the resulting structure is the layered
honeycomb system. Further polytypes can be envisioned by tuning the c-axis extent of the
honeycomb plane before switching to the other orientation (see Figure 3.5B). We denote
each polytype H〈N〉-Li2IrO3, where H〈N〉 refers to the number of complete honeycomb rows
(see Figure 3.5B and Figure A.8), and the family as the “harmonic”-honeycombs, so named
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Figure 3.4: Low temperature magnetic properties of the H〈1〉-Li2IrO3. (A) The
Ir-O2-Ir planes defining three orthogonal directions of the spin-exchange, one parallel to b̂
and the other two parallel to â ± ĉ, labelled + and − (â is the unit vector along a). This
connects to the notation used to describe the Kitaev Hamiltonian in SI III. (B) Torque signal
τ divided by the applied magnetic field H at a temperature of 1.5 K, illustrating a linear
low-field dependence and a kink at H∗, which is strongly angle dependent (colors correspond
to angles shown in (D)). (C) Magnetization vs magnetic field applied along the b-axis at a
temperature of 15 K. (D) & (E) The angle dependence θab/ac of the kink field H∗ of the
ordered state (full circles, left axes) with respect to the crystallographic axes a, b and c.
H∗ is correlated to the magnetization anisotropy αij (open circles, right axes) indicating a
common moment at H∗ in all field orientations.
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Figure 3.5: Introducing the harmonic honeycomb series. (A) Two kinds of c-axis
bonds (black links) in the harmonic honeycomb family H〈N〉-Li2IrO3 are shown, one linking
within a honeycomb plane (for example blue to blue, top) and one that rotates between
honeycomb planes (for example red to blue, bottom). For undistorted octahedra, these links
are locally indistinguishable, as can be observed by the local coordination of any Ir atom (also
see Figure 3.3A). (B) These building blocks can be used to construct a series of structures.
The end members include the theoretical N = 0 ‘hyper-honeycomb’ [160, 127, 146] and the
N = ∞ layered honeycomb [189]. Here N counts the number of complete honeycomb rows
in a section along the c-axis before the orientation of the honeycomb plane switches.

to invoke the periodic connection between members. The layered compound, H〈∞〉-Li2IrO3

[189] and the hypothetical hyper-honeycomb structure, H〈0〉-Li2IrO3 [127] are the end mem-
bers of this family (see also SI IV). The edge-sharing geometry of the octahedra preserves the
essential ingredients of the Kitaev model and this is universal for this family of polytypes.
Each structure is a material candidate for the realization of a 3D spin liquid in the pure
Kitaev limit (see Appendix A and for H〈0〉-Li2IrO3 see Refs. [160, 146, 127]).

Finally, we speculate on the consequences and feasibility of making other members of
the H〈N〉-Li2IrO3 family. Both the layered H〈∞〉-Li2IrO3 and the H〈1〉-Li2IrO3 are stable
structures, implying that intermediate members may be possible under appropriate synthesis
conditions. The building blocks shown in Figure 3.5A connect each member of the harmonic
honeycomb series in a manner that is analogous to how corner sharing octahedra connect the
Ruddlesden-Popper (RP) series. Indeed, despite the fact that members of the RP family are
locally identical in structure, they exhibit a rich variety of exotic electronic states; including
superconductivity and ferromagnetism in the ruthenates [169, 99], multiferroic behavior in
the titanates [37], collosal magnetoresistance in the manganites [171] and high temperature



CHAPTER 3. REALIZATION OF A THREE-DIMENSIONAL SPIN-ANISOTROPIC
HARMONIC HONEYCOMB IRIDATE 26

superconductivity in the cuprates [148]. The harmonic honeycomb family is a honeycomb
analogue of the RP series, and its successful synthesis could similarly create a new frontier
in the exploration of strongly spin-orbit coupled Mott insulators.

3.4 Methods

Synthesis

Powders of IrO2 (99.99% purity, Alfa-Aesar) and Li2CO3 (99.9% purity, Alfa-Aesar) in the
ratio of 1:1.05, were reacted at 1000◦C, then reground and pelletized, taken to 1100◦C and
cooled slowly down to 800◦C. The resulting pellet was then melted in LiOH in the ratio of
1:100 between 700-800◦C and cooled at 5◦C/hr to yield single crystals of H〈1〉-Li2IrO3. The
crystals were then mechanically extracted from the growth. Single crystal x-ray refinements
were performed using a Mo-source Oxford Diffraction Supernova diffractometer. Please see
Appendix A for a detailed analysis.

Magnetic measurements

Two complementary techniques were used to measure the magnetic response of single crystals
of H〈1〉-Li2IrO3; a SQUID magnetometer was employed to measure magnetization and a
piezoresistive cantilever to directly measure the magnetic anisotropy. The magnetization
measurements were performed in a Cryogenic S700X. Due to the size of the single crystals,
the high temperature magnetization was near the noise floor of the experiment. Nevertheless,
SQUID measured anisotropies at high temperatures were close to those measured by torque,
with absolute values of χa(300K) = 0.0021µB/T f.u. and χb = 0.0024µB/T f.u.. Curie-Weiss
fits to the linear portion of the susceptibility yielded an effective moment of µeff = 1.6(1)µB,
consistent with Jeff = 1/2 magnetism. However, the SQUID resolution was not adequate to
determine the susceptibilities anisotropy at high temperature to the accuracy we required (see
Figure 3.2 ). To resolve the magnetic anisotropy throughout the entire temperature range, we
employed torque magnetometry, where a single crystal could be precisely oriented. Although
the piezoresistive cantilever technique is sensitive enough to resolve the anisotropy of a∼
50µm3 single crystal, and hence ordering of susceptibilities at high temperature, the absolute
calibration of the piezoresistive response of the lever leads to a larger systematic error than
in the absolute value of the susceptibility measured using the SQUID at low temperature.
To reconcile these systematic deficiencies in both techniques, the torque data was scaled by a
single common factor of the order of unity, for all field orientations and temperatures, so as to
give the best agreement with the differences between the low temperature susceptibilities as
measured using the SQUID. The rescaled torque data was thus used to resolve the magnetic
anisotropy at high temperature where the susceptibility is smallest.

Torque magnetometry was measured on a 50 × 100 × 40µm3 single crystal (5.95 × 10−9

mol Ir) employing a piezoresistive micro-cantilever [183] that measures mechanical stress as
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the crystal flexes the lever to try to align its magnetic axes with the applied field. The
mechanical strain is measured as a voltage change across a balanced Wheatstone Bridge and
can detect a torque signal on the order of 10−13 Nm. Torque magnetometry is an extremely
sensitive technique and is well suited for measuring very small single crystals. The cantilever
was mounted on a cryogenic goniometer to allow rotation of the sample with respect to
magnetic field without thermal cycling. The lever only responds to a torque perpendicular
to it’s long axis and planar surface, such that the orientation of the crystal on the lever
and the plane of rotation in field could be chosen to measure the principal components of
anisotropy, αij. The low temperature anisotropy was confirmed on several similar sized single
crystals. However to measure αij = χi − χj between 1.5 K and 250 K, three discrete planes
of rotation for the same crystal were used. When remounting the sample to change the plane
of rotation, care was taken to maintain the same center of mass position of the crystal on
the lever to minimize systematic changes in sensitivity. Magnetic fields were applied using a
20 T superconducting solenoid and a 35 T resistive solenoid at the National High Magnetic
Field Laboratory, Tallahassee, FL.
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Chapter 4

Ab initio Studies of Structural and
Energetic Trends in the Harmonic
Honeycomb Iridates

Edge-sharing iridates present an exciting opportunity to study the competition of Mott
insulator physics and strong spin-orbit coupling. These interactions also make these materials
a challenge to study computationally. Harmonic honeycomb iridates are a recently discovered
homologous series of stoichiometrically identical structures that host anisotropic magnetism
and exotic spin ordering. We use density functional theory (DFT) to investigate structural
and energetic trends in Li2IrO3 and Na2IrO3 harmonic honeycomb iridates. We predict the
formation energies and distortion of as-yet unsynthesized series members to be degenerate for
identical composition. We also demonstrate that DFT can accurately predict the structure of
Li2IrO3 harmonic honeycomb iridates, but only if we account for strong spin-orbit coupling
and electron-electron correlation at the level of a Hubbard U in these materials.

4.1 Introduction

Iridates have the ingredients believed to be necessary to host a spin-liquid state: crystal field
splitting to create low spin states, strong spin-orbit interactions to couple spin and lattice
degrees of freedom, and frustrated lattices to foster anisotropic magnetic interactions [35].
Systems as complex as iridates, it is invaluable to have a series of structures one can compare
and tune to understand the ingredients driving local and long-range interactions.

The harmonic honeycomb iridates are a recently discovered series of crystal structures
that are three-dimensional analogs to the two-dimensional honeycomb lattice [172]. The
materials are spin-orbit Mott insulators, where strong spin-orbit coupling and electronic
correlation result in the opening of a gap [172, 242, 45, 44]. Like iridates on kagome, hy-
perkagome, pyrochlore and honeycomb lattices, the harmonic honeycombs are geometrically
frustrated which may give rise to new physics leading to a spin liquid state [35]. Direct



CHAPTER 4. AB INITIO STUDIES OF STRUCTURAL AND ENERGETIC TRENDS
IN THE HARMONIC HONEYCOMB IRIDATES 29

evidence of bond-directional interactions in layered honeycomb Na2IrO3, suggest that a spin
liquid state may be achievable in the harmonic honeycomb iridates if anisotropic interactions
can be tuned through structural distortions or chemical substitutions [115].

The harmonic honeycomb structures are pictured in Figure 4.1. We use H 〈#〉 to designate
a particular structure, where # is the number of rows of completed hexagons along the
orthorhombic c direction between alternating bonding planes. Single crystals of Li2IrO3
H 〈0〉, Li2IrO3

H 〈1〉, and Na2IrO3
H 〈∞〉 and polycrystalline samples of Li2IrO3

H 〈∞〉 have
been synthesized [190, 231, 172, 242]. The magnetic order and anisotropy of these materials is
sensitive to distortion and structure dimensionality 1. Not yet synthesized members may have
the environment necessary to host exotic phases and can lend important clues to understand
these materials’ complex magnetic interactions.

Using density functional theory (DFT), we investigate whether as-yet unsynthesized
members are energetically favorable and examine variations in magnetically relevant bond
lengths and angles across the series. We find we can accurately predict these values by
including spin-orbit coupling and Hubbard U-type corrections for Ir 5d orbitals in our cal-
culations. Li2IrO3 is more sensitive to the inclusion of these interactions than Na2IrO3 due
the Ir-Ir bond lengths being 5% shorter in Li2IrO3 than Na2IrO3 . We use the virtual crystal
approximation (VCA) to demonstrate this sensitivity.

Our calculations indicate the harmonic honeycombs of Li2IrO3 are nearly degenerate in
formation energy for various spin-orderings, likewise for Na2IrO3. For a given alkali, the
difference in energetics between phases corresponding to early members of this series do
not exceed 20 meV per formula unit, small compared to the growth temperature of these
materials of approximately 1300 K (112 meV). Thus, the lack of experimental evidence of
other structures may not be an issue of energetics but of kinetics or growth conditions.
For a given alkali, there is no notable change of Ir-Ir bond length or Ir-O-Ir bond angles
across the relaxed harmonic honeycomb series. According to Ref. [120], the strength of local
anisotropic interactions is sensitive to distortions of the iridium oxide octahedra. Since our
calculations show that for a given composition these distortions are uniform across the series,
differences in magnetism of the harmonic honeycomb iridates for a given alkali may indicate
sensitivity to long-range structure. Our calculations suggest that the harmonic honeycomb
iridates may provide a path for understanding and tuning long-range interactions.

4.2 Calculation Details

Our DFT calculations are performed using the Vienna Ab initio Software Package (VASP)
with a plane wave basis [135, 137, 136]. We use the generalized gradient approximation

1Li2IrO3
H 〈0〉, H 〈1〉 and H 〈∞〉 have been measured or postulated to have incommensurate spiral mag-

netic orders [44, 45, 209]. Na2IrO3
H 〈∞〉 has a comparatively simple, commensurate “zigzag” collinear

order [155, 64, 270]. The magnetic anisotropy of Li2IrO3
H 〈0〉 and H 〈1〉 dramatically reorders below the

spin ordering temperature while the magnetic anisotropy of polycrystalline Li2IrO3
H 〈∞〉 and single crystal

Na2IrO3
H 〈∞〉 do not exhibit this change across their transition temperature [172, 242, 231, 233, 55].
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functional of Perdew, Burke, and Ernzerhof (PBE) [193], PAW pseudopotentials [46, 138]
and an energy cutoff of 520 eV. Monkhorst k-point meshes of 9x9x5, 9x9x3, 9x9x1, and
9x9x9 are used for the H 〈0〉, H 〈1〉, H 〈2〉 and H 〈∞〉 structures, respectively. Relaxations
are performed with spin-orbit coupling and Hubbard U corrections to localized Ir 5d states
following the approach in Ref. [81], unless otherwise specified, and allow unconstrained non-
collinear magnetism as described in Ref. [108, 107]. When including these interactions during
optimizations, non-collinear spin and structural contributions to the total energy have to be
calculated iteratively, making these calculations computationally expensive.

Unit cell and ionic position relaxations are initialized with idealized harmonic honeycomb
structures, where iridium oxide octahedra are undistorted such that Ir-O-Ir bond angles are
90◦ and all Ir-Ir bond lengths are taken to be equal and derived from average experimental
values. Relaxations are not restricted to the spacegroup of the initial structure since spinor
wavefunctions used in relativistic calculations transform under the appropriate spin space-
group determined by the magnetic order [217]. Previous studies of the harmonic honeycomb
iridates do not indicate structural transitions at low temperature [172, 233, 64]. Thus, we
report re-symmetrized relaxed structures for ease of comparison using the Materials Project
Python package (pymatgen) [187]. We confirm that there is no significant change in total
energy between the relaxed and re-symmetrized structures. Relaxation results are converged
such that Hellmann-Feynman forces on individual atoms in any direction are less than 0.01
eV/Å, the energy difference between self-consistent electronic steps is less than 10−5 eV, and
that the absolute value of the external pressure, computed as the trace of the stress tensor,
is less than 0.5 kB. When referring to the level of theory of the calculation, we will use
abbreviations to denote the functional used (in this case, PBE) and whether not spin-orbit
coupling (SOC) and a Hubbard U correction to the 5d iridium orbitals (U) is included.

To relax the series for structural and energetic comparisons, we use PBE+SOC+U. The
values for onsite U correction used in studying iridates spans from 0 to 4 eV, with most
calculations using U = 1.5 - 3 eV [168, 272, 184, 155, 161, 150]. We find that lattice
parameters, bond angles, and bond lengths of H 〈1〉 Li2IrO3 are insensitive to U provided
that U was at least 0.5 eV. We use U = 1.5 eV for all calculations, unless otherwise specified,
to ensure that our calculations maintain a gap during relaxations and permit total energy
comparisons between series members. Lattice parameters, bond lengths, and distortions
of PBE+SOC+U relaxations are insensitive to inital magnetic configuration. Because of
this, we initialized structural relaxations with a randomized spin ordering with a normalized
magnetic moment of 1 µB per Ir.

To evaluate different approximations to DFT for these systems, we compare (i) the ratio
of lattice parameters, (ii) Ir-Ir bond lengths, and (iii) Ir-O-Ir bond angles with experimental
values where possible. The first two metrics inform us whether there has been an anisotropic
relaxation of the unit cell. Experimentally synthesized structures have Ir-Ir bond lengths
that vary by less than ± 0.01 Å. Thus, deviations from this trend indicate inaccuracies of a
give approximation.

The third metric is a direct measurement of the distortion of the iridium oxide octahedra,
see Figure 4.1(b-e). The distortion mode of experimental structures from idealized harmonic
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honeycomb lattices is identical across the series for both Li2IrO3 and Na2IrO3 and preserves
the spacegroup of the undistorted structure. The amplitude of the distortion is greater in
Na2IrO3 than Li2IrO3 . The distortion is dominated by displacements of oxygen and alkali
atoms and changes in the Ir-O-Ir bond parameterize the distortion of the iridium oxide
octahedra.

4.3 DFT Results

Tables 4.1, 4.2, 4.3, and 4.4 show lattice parameters and Wyckoff positions for Li2IrO3 and
Na2IrO3

H 〈∞〉, H 〈0〉, H 〈1〉, and H 〈2〉 relaxed with PBE+SOC+U(=1.5 eV).
The lattice parameters for Li2IrO3 and Na2IrO3 structures relaxed with PBE+SOC+U

differ <2% from experimental values, out-performing other approximations tested. Our re-
sults for PBE+SOC+U for Na2IrO3

H 〈∞〉 and Li2IrO3
H 〈∞〉 agree with VASP GGA+SOC+U

calculations in Ref. [161], where U = 3.0 eV. Ref. [161] similarly noted that GGA+SOC+U
gave better agreement with lattice parameters than GGA.

From our structural relaxations of the atomic positions and volume of idealized unit cells
of H 〈0〉, H 〈1〉, H 〈2〉 and H 〈∞〉 Li2IrO3 and Na2IrO3, for a given alkali, we find no notable
change of bond lengths and bond angles across the series. The distortion of the Ir-O-Ir bond
angle is driven by the choice of alkali metal (Li or Na). The ratio of the radii of sodium
and iridium is further from unity than the ratio of radii of lithium and iridium, thus causing
greater distortion of the oxygen octahedra. Experimentally, angles between 92 − 97◦ are
seen in Li2IrO3

H 〈0〉 and Li2IrO3
H 〈1〉. Our calculations find angular variations of only one

degree around average values of 94◦ for Li2IrO3 and 100◦ for Na2IrO3.
The uniformity of distortion and bond lengths across the series results in similar band

structures and densities of states for members of identical composition. For example, Fig-
ure 4.2 shows very little variation in the non-magnetic band structure and density of states
across the series 2. A non-vanishing magnetic order is required to open up a gap in the
harmonic honeycomb iridates. Figure 4.3 shows the nonmagnetic and ferromagnetic along c
density of states of Na2IrO3

H 〈∞〉 and Li2IrO3
H 〈∞〉 relaxed with PBE+SOC+U. While

the non-magnetic band structure is metallic, a magnetic order is able to open the gap for
both H 〈∞〉 structures.

Comparing the total formation energy of members of the series is challenging due to the
complexity of incommensurate magnetic orders. In this chapter, we restrict our comparison
to simple collinear orders: ferromagnetic and Néel antiferromagnetic (nearest neighbors have
opposite magnetization) along H 〈0〉 lattice parameters a, b, and c and non-magetic. These
magnetic orders map identically and unambiguously on inequivalent structures.

We apply a penalty term to the total energy functional to constrain the spin direction
for a given order as described in Ref. [158] and implemented in VASP. For Ir, we used the
an integration sphere of radius 1.423 Å, equalling the Wigner-Seitz radius for elemental Ir.

2Band structures of the harmonic honeycombs can be found in the S.I.



CHAPTER 4. AB INITIO STUDIES OF STRUCTURAL AND ENERGETIC TRENDS
IN THE HARMONIC HONEYCOMB IRIDATES 32

H
〈∞
〉L

i 2
Ir

O
3

H
〈∞
〉N

a 2
Ir

O
3

E
x
p

er
im

en
t

[1
90

]
P

B
E

+
S
O

C
+

U
E

x
p

er
im

en
t

[6
4]

P
B

E
+

S
O

C
+

U

a
b

c
a

b
c

a
b

c
a

b
c

5.
16

8.
93

5.
12

5.
22

9.
03

5.
16

5.
43

9.
39

5.
61

5.
51

9.
54

5.
67

S
p
ac

eg
ro

u
p
:

α
β

γ
α

β
γ

α
β

γ
α

β
γ

C
2/

m
(1

2)
90

.0
0◦

10
9.

76
◦

90
.0

0◦
90

.0
0◦

10
9.

78
◦

90
.0

0◦
90

.0
0◦

10
9.

04
◦

90
.0

0◦
90

.0
0◦

10
9.

33
◦

90
.0

0◦

A
to

m
S
it

e
x

y
z

x
y

z
x

y
z

x
y

z

L
i1

/N
a1

2a
0

0
0

0
0

0
0

0
0

0
0

0

L
i2

/N
a2

2d
0.

5
0

0.
5

0.
5

0
0.

5
0.

5
0

0.
5

0.
5

0
0.

5

L
i3

/N
a3

4h
0

0.
19

1
0.

5
0

0.
16

1
0.

5
0

0.
16

0
0.

5
0

0.
16

0
0.

5

Ir
1

4g
0

0.
33

3
0

0
0.

33
3

0
0

0.
33

3
0

0
0.

33
3

0

O
1

8j
0.

24
8

0.
81

6
0.

24
1

0.
25

2
0.

82
6

0.
23

4
0.

25
2

0.
82

2
0.

21
1

0.
25

2
0.

81
7

0.
20

6

O
2

8i
0.

25
6

0
0.

78
8

0.
26

8
0

0.
76

4
0.

28
9

0
0.

79
6

0.
29

5
0

0.
79

2

T
ol

er
an

ce
:

5.
1E

-0
3

Å
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The total moment on each site depends on the magnetic order and ranges from 0.2-0.4 µB
for Li2IrO3 and 0.14-0.26 µB for Na2IrO3. For a given magnetic order, the magnetic moment
per site varies less than 0.02 µB across the series, thus we do not constrain the magnitude
of the magnetic moments. The magnetic moment per site for Li2IrO3 structures has been
measured to be 0.471 µB for H 〈0〉 [45]. Ref. [270] measured the magnetic moment per site
for Na2IrO3

H 〈∞〉 to be 0.22 µB.
Our iridium site magnetic moments for Na2IrO3 are approximately 0.1 µB smaller than

those calculated in Ref. [166]. In VASP, an integration sphere radius is defined for each
atomic species in the calculation. Any magnetic moment within that radius is then projected
onto local atomic orbitals for a given site. Thus, the differences between Ref. [166] and our
calculations of the local magnetic moment may be due to integration scheme. There is also
an additional 10% contibution from the oxygen sites, as expected for itenerant magnetism,
which we do not add to the total Ir magnetic moment. We do agree with Ref. [166] that we
see roughly a halving of Ir magnetic moments between ferromagnetic and antiferromagnetic
orders.

The reason for the disparity between the magnetic moments calculated for Li2IrO3 and
experiment may be due to the fact that we are imposing magnetic structures (ferromagnetic
and Néel antiferromagnetic) that are not the ground state (incommensurate spiral). As
shown in Ref. [166], the magnitude of magnetic moment per iridium site is sensitive to
magnetic order.

The relaxed Li2IrO3 structures vary by less than 5 meV and the relaxed Na2IrO3 struc-
tures vary by less than 20 meV, respectively. None of the Li2IrO3 or Na2IrO3 structures
are calculated to be significantly lower in energy in comparison to other series members.
Na2IrO3

H 〈0〉 is lower in energy for these particular spin orders in comparison to the other
series members. Without comparing magnetic ground states, it may be difficult to differen-
tiate whether DFT predicts an energetic favorite or if the structures are degenerate. Total
energy differences between collinear orders do not provide substantial insight into the ground
state magnetic orders due to their simplicity compared to experimentally measured ground
states. However, the differences in total energy between calculated magnetic orders is small,
varying less that 10 meV for a given structure. Tables of total energies for given magnetic
orders are included in the Appendix B.

Importance of SOC and U for relaxations

We determine the sensitivity of our structural relaxations to the level of theory used in our
DFT calculations by performing relaxations of idealized structures of Li2IrO3 and Na2IrO3

with different levels of theory (PBE, PBE+U, PBE+SOC, PBE+SOC+U). We find that for
Li2IrO3, it is necessary to use PBE+SOC with U≥ 0.5 eV to obtain structures with Ir-Ir
bond lengths compatible with experiment. In contrast, Na2IrO3 structures are less sensitive
to changes in the level of theory; however, PBE+SOC+U gives the best agreement with
experiment.
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Li2IrO3 relaxations with PBE+SOC+U(<0.5 eV), PBE+SOC, PBE+U(=0,1.5,3,6 eV),
and PBE result in asymmetric Ir-Ir bond lengths (differing as much as 0.5 Å), disparate
Ir-O-Ir bond angles and nonmagnetic orders as the lowest energy magnetic order by at least
100 meV per formula unit. 3D Li2IrO3 structures when relaxed with these levels of theory,
compress along the orthorhombic c lattice direction which opens a gap in the nonmagnetic
band structure, see Table B.1 for converged lattice parameters for Li2IrO3 and Na2IrO3

H 〈1〉
for a given level of theory. Relaxations of Li2IrO3

H 〈∞〉 with these levels of theory resulted
in structures that could not be symmetrized back into C2/m, even with a symmetry tolerance
of 1 Å.

We believe the cause of this anisotropic compression in these cases is due to the need
to break the degeneracy of the t2g 5d-orbitals In Na2IrO3 the ratio of Na and Ir atomic
radii are sufficiently different as to induce large distortions. In this case, the octahedra
are sufficiently distorted as to easily break the degeneracy of the t2g 5d-orbitals. Since, Li
and Ir have more similar radii, there is less distortion from purely electrostatic forces so
distortion is additionally incurred through bending of the opposite atoms of the octahedra.
This distortion easily induces a gap in Li2IrO3 band structure. The distortion lessens as
levels of theory are introduced that break the t2g degeneracy.

Virtual Crystal Approximation

We attribute the difference in sensitivity of Li2IrO3 and Na2IrO3 to level of theory to the
differences in average Ir-Ir separation; in particular, the Ir-Ir sites, which are bridged by
oxygen atoms, are 5% further apart for Na2IrO3 than in Li2IrO3. This larger separation
for Na2IrO3 in this case reduces superexchange interactions through a delocalization of the
Ir 5d electrons via decreased hybridization with O p electrons, reducing the importance of
Hubbard U and SOC corrections to spin-polarized PBE calculations.

We test this hypothesis by performing relaxations of H 〈0〉 with “hybrid” Li-Na atoms to
approximate idealized doping (by continuously changing the alkali atomic radius) using the
Virtual Crystal Approximation (VCA) implemented in VASP. VCA uses a linear combination
of existing pseudopotentials to create a “new” atom, mimicking a solid solution with a given
stoichiometry. For example, if one wishes to calculate the structure of 50% Li and 50% Na,
each alkali metal site would be occupied 50% by a Li atom and 50% by a Na atom. During
a relaxation, the linear combination of the forces experienced on a given site by the different
occupying atomic species is used to calculate the next structure.

VCA approximates isotropic doping – meaning that all sites are equally likely to be re-
placed by the substituting ion. Experimentally, this is known to not be the case for the
harmonic honeycomb iridates. Ref. [161] investigated the change of lattice parameters and
preference of cation substitution in H 〈∞〉 (Na1−xLix)2IrO3 and find that Li atoms anisotrop-
ically replace cation sites, causing local distortions. Thus, our VCA calculations should not
be considered predictions of lattice parameters and bond lengths for doped materials.

Ref. [213] measured that for approximately equivalent Ir-Ir bond lengths, changes in the
Ir-O-Ir bond angle due to distortion (or disorder) from doping can have a dramatic effect on
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magnetic order.
We perform VCA calculations with PBE+U(=0,1.5,3,6 eV) and PBE+SOC+U(=3 eV)

on idealized (Li1−xNax)2 IrO3
H 〈0〉 3. For PBE+U for both (Li1−xNax)2 IrO3, we find a

sharp doping transition at which the H 〈0〉 c axis collapses, resulting in asymmetric Ir-Ir
bonds. This transition moves closer and closer to pure Li doping with increasing U, in-
dicating that it is sensitive to the localization of the Ir 5d orbitals, see Figure 4.4. For
Li2IrO3

H 〈0〉, PBE+U(=6 eV) gives Ir-Ir bond lengths that differ by greater than ± 0.1
Åwhile PBE+SOC+U(=3 eV) gives Ir-Ir bond lengths that differ by less than ± 0.01 Å, see
Figure 4.5.

We also performed VCA calculations with PBE+U(=0,1.5) on idealized (Li1−xNax)2 RhO3
H 〈0〉 and saw similar discontinuities in plots of the Ir-Ir bond lengths as a function of dop-
ing. These discontinuities occurred at lower doping that for (Li1−xNax)2 IrO3 but showed
the same shift to lower doping when a higher Hubbard U correction was applied.

4.4 Conclusion

Despite the complexity of the harmonic honeycomb iridates, our calculations accurately re-
produce experimental structures and predict yet to be synthesized series members by includ-
ing spin-orbit coupling and using Hubbard U corrections for iridium 5d orbitals. Including
these interactions is crucial for accurately calculating properties of Li2IrO3, although less so
than Na2IrO3. Using these calculations, we assess trends in formation energetics and struc-
tural distortion in the harmonic honeycomb iridates. These studies provide concrete insight
helpful to experimental efforts. Our calculations demonstrate the importance of systemat-
ically testing the level of ab initio theory needed to accurately capture basic properties of
complex material systems. The workflow we present can be used for future ab initio studies
to investigate the effects of strain and pressure on the magnetism of the harmonic honeycomb
iridates.

3PBE+SOC+U(=1.5 eV) was insufficient to produce symmetric Ir-Ir bonds for 5% Na and 10% Na so
we used U=3.0 eV
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Li / Na OIr

(a) (b)

(d)

(c)

(e)

Figure 4.1: (a) Conventional unit cells of H 〈0〉, H 〈1〉, H 〈2〉, and H 〈∞〉 [174]. H 〈∞〉, H 〈0〉,
H 〈1〉, and H 〈2〉 have 2, 4, 8, and 12 formula units in their primitive unit cell, respectively.
Members of the harmonic honeycomb series have identical local geometry, only varying in
the connectivity of their basic structural units, orthogonal edge-sharing iridium oxide octa-
hedra. The two growth or bonding planes are normal to a + b and a − b, where a and b
are the orthorhombic lattice vectors (indicated by the axes at the bottom left). The har-
monic honeycomb pattern builds along the orthorhombic c direction. Compared to Li2IrO3

structures, Na2IrO3 structures have greater distortion of iridium oxide octahedra and larger
volume. (b-e) Exaggerated distortions in the harmonic honeycombs. (b-c) Two parallel faces
of each iridium oxide octahedron twist opposite to each other. These faces are parallel to the
growth plane. (c) Which faces twist changes at twisting bonds. (b) A bond that preserves
the bonding plane. (c) A “twist” bond that changes the bonding plane. (d) The octahedra
also compress along their twist axis. (e) The twisting and compression of the octahedra
cause Ir-O-Ir bond angles to increase from their ideal 90◦ and the angle between bonding
planes to be close to the undistorted value of arccos(1/3) 70.5◦.
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Figure 4.2: Non-magnetic density of states normalized by the number of formula units per
unit cell for Li2IrO3 and Na2IrO3 harmonic honeycomb structures. Density of states is similar
across the series.

Nonmagnetic

Ferromagnetic

Energy (eV)
-1 0 1

:

0

0

25

12

D
O

S 
(s

ta
te

s/
eV

)

4
8

5
10
15
20

30

Figure 4.3: PBE+SOC+U density of states of H 〈∞〉 Li2IrO3 and H 〈∞〉 Na2IrO3 for non-
magnetic (all magnetic moments fixed at zero µB) and ferromagnetic (along the H 〈∞〉 b
direction or H 〈0〉 c direction) magnetic orders are shown in (a). A gap opens in the density
of states of both systems with a non-zero magnetic order. Differences in the Li2IrO3 and
Na2IrO3 density of states are caused by distortions of the local environment more so than
change in volume. Li2IrO3 and Na2IrO3 structures have Ir-O-Ir bond angles of 94◦ and 100◦,
respectively.
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Li Na(% Na)
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U = 0 eV

U = 6.0 eV
U = 3.0 eV
U = 1.5 eV

U = 0 eV

U = 6.0 eV
U = 3.0 eV
U = 1.5 eV

Figure 4.4: Plots of ratio of relaxed lattice parameters vs doping for PBE+U where
U=0,1.5,3.0,6.0. The discontinuity indicates that when PBE gives asymmetric Ir-Ir bonds
below a given Na doping. The discontinuity in the lattice parameters shifts toward more Li
doping with increasing U, demonstrating that the performance of the functional is sensitive
to localization of iridium 5d orbitals and closeness of iridium atoms.
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Ir1-Ir1 (bond 2)

with SOC
without SOC
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Figure 4.5: Plots of Ir-Ir bond lengths and Ir-O-Ir bond angles as a function of Na doping
of H 〈0〉 Li2IrO3 for PBE+U and PBE+SOC+U (U = 3 eV). While SOC is not sufficient to
prevent discontinuities in bond length relaxations, it does give uniform bond length ( < ±
0.01 Å) and bond angles ( < ± 1.5 degree) for all relaxations. Note, if U = 3 eV is used for
Li concentration < 15% and U = 1.5 eV for Li concentration < 15% there is no dicontinuity.
(Li1−xNax)2 IrO3 is metallic for U = 1.5 eVand 0.1 < x < 0.2%. According to VCA, the
distortion is not linear in doping.
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Chapter 5

Silver Benzeneselenolate is a
Self-Assembling Direct-Gap
Metal-Organic Chalcogenide
Assembly

Silver and diphenyl diselenide self-assemble into a blue-luminescent excitonic semiconducting
crystalline hybrid lamellar van der Waals solid, silver benzeneselenolate ([AgSePh]∞). Each
composite layer of the vdW solid is itself comprised of an ultrathin silver selenide layer
having 2D connectivity and a supramolecular lattice of ordered phenyl rings. We find that
the material has a strong blue photoluminescence at 467 nm. Density functional theory
calculations imply significant quantum confinement of electronic carriers within inorganic
layers. Three synthetic preparations for [AgSePh]∞ in different scales and form factors were
developed.

5.1 Introduction

Single monolayers separated from layered van der Waals solids, like transition metal dichalco-
genides (TMDs, e.g. MoS2), usually exhibit semiconducting properties that are distinct
from that of the bulk crystalline solid. For example, TMD monolayers possess direct band
gaps and high electron mobilities, whereas their bulk crystalline counterparts are typically
indirect band gap semiconductors [159, 88, 53, 43]. These and other interesting physical
phenomena emerge from single layers due to quantum confinement and enhanced electron-
electron interactions, and provide a variety of opportunities for technological exploitation
[251, 220, 151, 54, 156]. However, the need to isolate monolayers from bulk crystals com-
plicates their use in practical technology. Hybrid coordination polymers that combine an
inorganic semiconducting polymer with a supramolecular matrix comprised of the covalently
linked organic sidegroups have been considered as an alternate route for the preparation of
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low-dimensional materials, with the inclusion of covalently linked ligands serving to isolate
inorganic material systems [80, 111, 113, 112, 237, 260, 267, 252, 102, 143].

Here, we report that one such hybrid coordination polymer, silver benzeneselenolate
([AgSePh]∞, where the infinity subscript denotes a bulk crystal as opposed to a single
monolayer), is a direct-gap semiconductor that expresses fully isolated 2D semiconduct-
ing properties in the bulk crystal. This compound exhibits a deep blue photoluminescence
(467 nm) consistent with a direct-gap semiconductor. We developed two accessible-synthetic-
routes to the single-crystal product: a single-step immiscible-interface method and a one-pot
reaction with gram-scale yield, showcasing the ease at which this hybrid chalcogenide ma-
terial is made by using commercially available small molecule precursor and mild reaction
conditions. We will discuss our synthetic route, optical characterization of the direct gap
semiconductor transition, and our companion density functional theory calculations. We
then employ crystal engineering by way of design of discrete organic diselenide ligands and
assemble them into analogous crystalline metal-organic chalcogenide assemblies. We find the
properties of each are consistent with a propose that variance of organic ligand shape in the
silver organoselenolate system presents a straightforward route towards the preparation of
synthetically tailorable, self-assembling 2D materials from small molecule building blocks.

5.2 Results and Discussion

Synthesis and Characterization of [AgSePh]∞

The chemistry of metal organochalcogenolates[78, 68] present a rich chemical infrastructure
for preparing layered, crystalline supramolecular assemblies. Silver, like many soft transition
metals, can adopt a wide array of coordination geometries[219] while accommodating a broad
variety of organic ligands. For example, both aryl and n-alkyl thiols assemble with silver
into layered crystalline Ag-S 2D coordination polymers[191, 70, 110]. Selenium analogs of
these compounds are less explored, in part because the use of harsh, odorous, or highly
reactive selenium reagents is not ideal. Previous methods used to synthesize both discrete
complexes and coordination polymers occur via chalcogenolysis, through cleavage of the Se-H
bond[182], or the isolation of the reactive selenolate salt (-SeR)[50]. Corrigan and coworkers
first reported the synthesis and single-crystal X-ray structure for a coordination polymer
[AgSePh]∞ (Fig. 5.1) in 2002, during an effort to form silver selenolate polynuclear clusters,
using a selenium lithiate as precursor[69]. The 2D lamellar structure of this product was
characterized; however the application for this coordination polymer had not yet presented
itself, as the interest in low-dimensional TMDs arrived only later.

We prepare single crystals of [AgSePh]∞ via crystallization between two immiscible sol-
vents, water and toluene, at room temperature [267]. We employ the reagent diphenyl
diselenide, a nonodorous, solid organoselenium source. This is dissolved in toluene (3 mM)
and layered over a solution of silver nitrate in H2O (3 mM). Cleavage of the diselenide by
silver ion appears spontaneous, and coordination polymerization is restricted to the liquid-
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Figure 5.1: a) The monoclinic unit cell of solid silver benzeneselenolate contains two com-
plete layers of hybrid chalcogenide 2D polymer. Silver is coordinated tetrahedrally by four
selenium atoms. b,c) The multilayered structure isolates inorganic layers via the benzene
moieties oriented above and below the silver selenide polymer layer. D) A single isolated
layer has a thickness of 1.4 nm, each containing two layers of phenyl rings and one layer
of silver selenolate. Silver is represented as the grey spheres, selenium in dark orange, and
carbon in black. Aromatic rings are accented in blue.

liquid interface. Crystallization occurs readily without stirring over 1-3 days, with product
manifesting as an opaque film, chartreuse in color, pinned between the two solvent layers
(Fig 2a). The structure is confirmed by matching the powder X-Ray diffractogram of both
products to the theoretical pattern derived from the known crystal structure (See support-
ing information, Figure C.1). Alternatively, a one-pot synthesis using triphenylphosphine
to stabilize silver nitrate in tetrahydrofuran, similarly yields crystalline [AgSePh]∞ in high
specificity at a gram scale with crystalline product dimensions in excess of tens of microns.
The one-pot product contains considerably larger and thicker crystals relative to the immis-
cible layer approach, at the cost of increased polydispersity. Products produced by both
routes are otherwise indistinguishable by the characterization methods employed above.
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Figure 5.2: a) A chartreuse deposit of silver benzeneselenolate forms at an immiscible liquid-
liquid interface of organic and aqueous solutions of diphenyl diselenide and silver nitrate,
respectively. b) Crystals of [AgSePh]∞ recovered have typical edge lengths between 1 and 4
microns. b) Scanning electron micrograph of a silver benzeneselenolate silver crystal reveals
the layered structure of the crystal. Individual layers are resolved in high-resolution SEM
images. c) Atomic force microscopy reveals highly uniform [AgSePh]∞ (001) terraces with
measured step heights at 1.4 nm.

The film is harvested by drawing a silicon wafer through the liquid-liquid interface at
an angle. The precipitate adheres readily to silicon substrate. A layer of single crystals of
[AgSePh]∞, each having edge lengths of 1-5 µm and a typical thickness of 100-200 nm,
are shown in Figure 5.2b. Features of the crystal surface are examined by SEM and AFM
in Figure 5.2c-d. The prominent 001 plane of the silver benzeneselenolate crystal is visible
in Figure 5.2c as the large flat face. The smaller faces correspond to 010 and 100 facets,
corresponding to exposed edges of the 2D hybrid crystalline polymer. Scanning electron
microscopy resolves the individual molecular step edges, corresponding to the thickness of a
single silver benzeneselenolate sheet (Fig. 5.2b). Atomic force microscopy (AFM) confirms
the expected 1.4 nm step height of the (001) crystallographic plane. AFM images of these
outermost layers of the [AgSePh]∞ crystal further reveal that the exposed terraces are vir-
tually defect free over hundreds of nanometers, with no molecular vacancies are observed in
our images at this scale.

Optical Characterization of the Semiconductor Direct-Gap

We note comparisons to two-dimensional TMDs, such as MoS2, with some important dis-
tinctions due to the presence of the intervening organic groups and metal-metal interactions.
MoS2 is a layered indirect band gap semiconductor in the bulk, but has a direct band gap
and high charge carrier mobilities as a single layer [159]. Similar to most TMD van der
Waals (vdW) solids[248], adjacent 2D layers of silver benzeneselenolate are covalently de-
coupled. Unlike the TMD solids, the vdW coupling is strongest between the organic ligands,
rather than between neighboring AgSe planes. As the transition metal chalcogenide layer is
chemically decoupled from its neighboring layers, the bulk hybrid silver benzeneselenolate
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system might be expected to be electrically decoupled as well, thereby exhibiting properties
associated with monolayer-TMDs rather than with bulk-TMD systems. To test this hypoth-
esis, we measured the photoluminescence (PL) spectroscopically and microscopically, and
the results are shown in Figure 5.3.

On excitation with shorter wavelength light (380 nm), a single PL peak is observed at 2.65
eV, or 467 nm, a deep blue. To determine if the crystal size affects the PL color or intensity,
we imaged single crystals by confocal microscopy using a 405 nm laser. Measuring the
emission spectra, we find that each single crystal has an emission peak at 467 nm, consistent
with the ensemble measurement (Figure 5.3, Figure C.4, Materials and Methods). Moreover,
we observe no correlations between emission intensity and crystal aspect ratio or surface area
(Figure 5.3e,f). The analysis at the single particle level suggests that the photoluminescence
intensity is not dependent on the lateral size dimensions of the crystal at the microscale.
Instead, emission intensity correlates with number of layers, or crystal thickness. Although
absolute crystal thickness is not directly measured in this experiment, relative thicknesses
may be inferred by visual inspection using the optical microscope (Figures 5.3c-d).

Band Structure Calculations

To understand the origin of the electronic properties of this system, we performed density
functional theory (DFT) calculations with the VASP code [135, 137, 136, 138] using the
hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE), which includes approximate short-
range exchange and correlation effects important for a balanced treatment of delocalized sp
valent and localized d and π states in [AgSePh]∞.

Using experimental lattice parameters and atomic positions, we perform calculations on
the following periodic structures: 1) bulk [AgSePh]∞, 2) single-layer [AgSePh]∞, and 3) a
single-layer [AgSePh]∞ with the phenyls replaced by hydrogen atoms. We use 1) and 2)
to demonstrate that the layers of [AgSePh]∞ are effectively electrically isolated and 3) to
illustrate the impact of the ligand on the electronic structure. Our DFT band structures
and density of states for these systems are summarized in Figure 5.4.

Our computed band structures of bulk and single layer [AgSePh]∞ are indistinguishable,
demonstrating that the layers of bulk [AgSePh]∞ are electrically isolated. Within DFT-HSE,
bulk and single layer [AgSePh]∞ have a direct band gap at Γ of 2.4 eV, in good agreement
with the measured photoluminescence, despite the fact that DFT is not expected to yield
quantitative gaps on formal grounds. To obtain quantitative optical gaps and spectra, a more
advanced treatment of exchange and correlation effects, including electron-hole interactions,
is required in addition to our calculations, e.g., the use of ab initio many-body perturba-
tion theory (MBPT) within the GW approximation and the Bethe-Salpeter equation (BSE)
approach[101, 211, 212]. The lowest-lying DFT-HSE conduction band of bulk [AgSePh]∞
is highly dispersive in plane, with electron effective masses of 1.13 me and 0.44 me, respec-
tively, at Γ (Figure C.6). Bands exhibit significantly less dispersion perpendicular to the
AgSe planes and along the stacking direction of [AgSePh]∞, with an electron effective mass
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Figure 5.3: a) Confocal micrographs showing the color uniformity of photoluminescence in
[AgSePh]∞. b) A single, intense emission of the solid at 467 nm is attributed to a direct-
gap electronic transition. c,d) Optical and confocal micrographs of [AgSePh]∞ showing
fluorescence scanning confocal images of several individual crystals of nearly the same size.
e) Distribution of the intensity from 157 individual crystals plotted as a function of the area
of the crystal and f) aspect ratio. The Pearson’s r-value for each set of data was calculated
by using linear least squares fitting (solid line); for both the plots of area (r-value of 0.07)
and aspect ratio (r-value of 0.1) the Pearson’s r-values indicate no correlation with intensity.
Images are false colored according to emission wavelength.
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Figure 5.4: a) DFT-HSE band structure and density of states of bulk [AgSePh]∞. See
supporting information Figure C.6 for details. Band color signifies the fractional contribution
of states centered on inorganic (Ag and Se, orange) and organic (C and H, black) atoms in
the crystal. The total density of states is shown in gray. b) DFT-HSE band structure of a
single layer of [AgSePh]∞ c) DFT-HSE band structure of a single layer of [AgSePh]∞ with
the phenyls replaced by hydrogen. The hydrogen positions have been relaxed with PBE;
see supporting information Figure C.5. The near-band edge character remains relatively
unchanged when the phenyls are replaced by hydrogen, suggesting that the degree of 2D
quantum confinement is unchanged by 3D crystallization. d) The Brillouin zone for the
primitive cell of [AgSePh]∞. The path in the Brillouin zone used for the band structure is
identified by orange lines and k-point labels.

of 18.7 me, reflecting weak (although non-negligible) interplanar coupling and indicating
significantly lower mobility along the [001] direction.

The electronic structure of bulk and single layer [AgSePh]∞ near the valence and conduc-
tion band edges is dominated by contributions from silver selenide. Figure shows isosurfaces
of the square of the wavefunction for the bulk [AgSePh]∞ conduction band minimum and
valence band maximum states at the Γ point. While the state at the valence band maximum
exhibits directional bonding associated with Ag 4d and Se 3p character, the conduction
band minimum is more delocalized, featuring significant Ag 5s character. As can be seen in
Figure 5.5, the phenyl group p states contribute minimally to band edge states with valence
band maximum and conduction band minimum isosurface density visible only on the carbon
atoms adjacent to the AgSe layer.

The calculated density of states shows a separation of bands having organic (phenyl) and
inorganic (Ag and Se) character near the band gap. The phenyl π and π∗ states are largely
grouped at energies well below and above the Ag- and Se-rich valence and conduction band
edges, respectively, consistent with the relatively large benzene gap (Figure 5.4) and minimal
carbon character at the band edges. Indeed, replacing the phenyl groups with hydrogen leads
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Figure 5.5: Depictions of side and top views of [AgSePh]∞ with overlain charge density maps.
The DFT-HSE computed valence band maximum (VBM) and conduction band minimum
(CBM) at Γ are accented in yellow and blue, respectively. The minimal but non-negligible
participation of carbon in the CBM state suggests tailoring of electronic properties via syn-
thetic modification of ligand.

to small changes in band gap and in-plane effective masses compared to the phenylated layer
(Table C.1, Figure C.5). The relative alignment of the organic and inorganic states suggests
an opportunity to tune the near-band edge character of each component via ligand choice.
A ligand with a smaller band gap, such as pentacene, could contribute states hybridizing
with those of silver selenide at the band edge. Thus, it may be possible to tune electronic
properties of this system, as well as the coupling between layers, by ligand design. The
use of ligands has been successfully used to tune the optoelectronic properties of quantum
dots[216], we can apply the same principles to metal-organic crystalline systems described
here.

Previous experiments and ab initio MBPT calculations on TMDs have established large
exciton binding energies[199], novel screening effects[253], and trion formation[42]. Given the
similarity of its atomic structure to that of 2D TMDs, and the added presence of the phenyl
ligands, such excited state phenomena are also likely to emerge from this silver selenide
system and will be explored in future work.
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5.3 Conclusions and Prospects

Coordination polymers are often treated as kinetic side products en route to more elab-
orate, discrete organometallic clusters. However, the incorporation of organic side groups
with inorganic polymers presents a straightforward approach to combine the chemical variety
of organic chemistry with the compelling transport phenomena exhibited by 2D materials.
Using metal-directed self-assembly, we synthesized silver benzeneselenolate, a material that
expresses 2D semiconducting phenomena in its as-crystallized bulk state. The phenyl rings
additionally appear to efficiently isolate the inorganic layers from one another, enabling the
material to display monolayer-like properties in the bulk, and without need for exfoliation.
The organization of this material is consistent with that of a multilayered single-crystal
supramolecular quantum well. The 2.65 eV peak emission is attributed to a direct-gap tran-
sition. The straightforward synthesis from convenient reagents makes silver benzeneseleno-
late a notable candidate for studying high-binding-energy excitonic physics in as-synthesized
crystalline 2D materials.

Crystal engineering applied to such low-dimensional semiconducting coordination poly-
mers is accessible because of the robustness of silver/chalcogen coordination reactions. Be-
cause any ligand shape and composition can be varied over a broad range, molecular side
group diversification enables a straightforward route to band level engineering between the
organic and inorganic with ligand selection[274]. In this example, the inclusion of covalently
attached ligands considerably alter the properties of the 2D AgSe-R polymer in compari-
son to Ag2Se, which is a small bandgap near-infrared emitter[216, 276]. Using coordination
polymers as the basis for 2D material systems opens synthetic avenues to the investigation
of semiconducting inorganic systems that are not preexisting in nature, due to the variety
of coordination geometries inherent to transition metals and the practically limitless design
available through selection of organic ligands.
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Chapter 6

An Automatically Curated
First-Principles Database of
Ferroelectrics

Ferroelectric materials have a wide-range of technological applications including non-volatile
memory and optoelectronics. In this chapter, we integrate density functional theory, crystal
structure databases, symmetry tools, workflow software, and a custom analysis toolkit to
build a library of known and proposed ferroelectrics. With our automated workflow, we
screen over 17,000 candidate structure pairs from the Materials Project structure database
using symmetry relations between nonpolar and polar structures to generate a dataset of
239 ferroelectric candidates. Results are automatically parsed, stored in a database, and
accessible via a web interface showing distortion animations and plots of polarization and
total energy as a function of distortion. We provide the candidates found using our workflow
on the Materials Project structure database. We benchmark these candidates against exper-
imental data and other ab initio results. The data is available on FigShare and github. We
also contribute our workflow and analysis code to the open-source python packages atomate
and pymatgen so others can conduct their own symmetry driven searches for ferroelectrics
and other phenomena.

6.1 Background and Summary

High-throughput screening of material databases integrated with first principles calculations
has been increasingly successful in the discovery of new functional materials [268, 61, 71].
A remaining challenge is that while all the individual components for performing high-
throughput searches exist, the infrastructure needed to connect and automate all the nec-
essary components is still under development. In particular, the identification and curation
of ferroelectrics has been an active area of research for the past half-century [154, 255, 2].
A ferroelectric material has a spontaneous polarization that is switchable between two or
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more states by an applied electric field [152, 201]. Ferroelectrics are technologically useful,
used in tunable capacitors and non-volatile RAM, and display couplings between magnetic,
electronic, and lattice degrees of freedom [152, 201].

Ferroelectricity arises from a structural phase transition. This phase change results in
the appearance of a spontaneous polarization [152]. In a conventional ferroelectric, the
high-symmetry structure is nonpolar and the low-symmetry structure is polar, permitting a
spontaneous polarization. The atomic structure distorts such that the new structure has a
subset of the symmetries of the original structure, satisfying the requirements of a second-
order phase transition [60].

Abrahams first proposed searching for pairs of nonpolar and polar structures related
by symmetry to find ferroelectric candidates. In the late 1980s, he performed some of
the earliest searches for ferroelectrics in crystallographic database using symmetry criteria
[6, 7]. More recently, similar automated searches for new ferroelectric candidates have used
symmetry arguments to identify nonpolar reference structures for existing polar materials
[57, 117, 139]. Other papers have used a combination of group theoretic and first-principles
calculations to propose ferroelectric candidates [241, 194, 235]. Bennett et al proposed using
high throughput calculations to perform high-throughput substitution calculations on known
classes of ferroelectrics [39, 40, 41]. Recent work used high-throughput phonon calculations
to identify ferroelectric from polar, soft phonon modes [86].

However, previous works have focused on a limited number of compounds or families of
compounds using few symmetry conditions. Furthermore, predictions were based on limited
experimental data due to the screening approach, leading to predictions difficult to test
experimentally. With shrinking computing costs, high-throughput material searches using
density functional theory are on the rise. Ferroelectric databases and systematic screening of
properties such as small band gaps, large polarizations, large volume expansion, high critical
temperatures and coupling to magnetic and/or topological degrees of freedom may lead to
new functional materials and potentially new physical phenomena [87].

In this chapter, we integrate density functional theory (DFT), crystal structure databases,
symmetry tools, workflow software, and a custom analysis toolkit to build a workflow capable
of generating libraries of known and proposed ferroelectrics. This workflow is general and
can be performed on any crystal structure dataset. We present the results from perform-
ing this workflow on the Materials Project database of inorganic crystal structures [124].
We screen over 17,000 candidates using symmetry relations between nonpolar and polar
structure pairs. We identify 239 ferroelectric candidates, 183 being classified as high-quality
candidates by a stringent validation process. 78 of these high-quality candidates are known
(anti)ferroelectrics or previously proposed, and 105 are new. Using the workflow developed
here, this is the first automatically-curated ab initio dataset of diverse, multi-class known
and new ferroelectrics calculated with a standardized method that permits straightforward
comparison. This dataset can be used to develop new tools and criteria for studying ferro-
electricity across diverse materials systems. In addition our code for conducting this search
has been contributed to the open-source python packages atomate and pymatgen so others
can conduct searches of their own and build directly on this work.
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6.2 Methods

Ferroelectricity from First-Principles

The spontaneous polarization is not a direct observable; one can only measure the change
in a material’s spontaneous polarization switching between two stable configurations [208].
Applying an electric field to a ferroelectric leads to a hysteresis loop in a plot of the polar-
ization versus applied electric field. The half of the change in polarization is defined as the
spontaneous polarization at a given field and temperature; the extrapolation of this quantity
to zero field is the spontaneous polarization [152]. The spontaneous polarization can be
directly predicted using ab initio methods.

We identify ferroelectrics as materials possessing two structural phases: a high-symmetry
nonpolar structure and a low-symmetry polar structure that can support a polarization [128].
We automatize a search for compounds supporting two such phases and then compute the
polarization difference between the two structures.

The polar and nonpolar symmetry criteria stems from the following. As a consequence
of structural periodicity, the polarization of a crystal is a lattice vector. This means the
polarization, P, of a crystal is only defined modulo a “quantum of polarization”, [208, 238],

P = P0 +
∑

i∈{a,b,c}

ni
eRi

Ω
, (6.1)

where e is the charge of the electron, ni is an integer, Ri is a lattice vector, and Ω is the unit
cell volume.

In three dimensions, the only space groups compatible with leaving a 3D lattice vector
invariant under its symmetry operations are those with polar point groups. Out of the 32
crystallographic point groups, 10 are polar; these polar point groups can keep points along
specific lines (point groups 2, 3, 4, 6, mm2, 4mm, 3m, 6mm), planes (point group m), or
all points in 3D space (point group 1) fixed [152]. All other point groups are nonpolar. We
define polar structures as crystal structures with a polar space group, which is composed of
a polar point group plus translations, likewise for nonpolar structures.

To recover a smooth polarization path, we ensure the nonpolar structure must be con-
tinuously deformable into the polar structure along a path that preserves the symmetry of
the polar structure. We then perform calculations of multiple structures along the distortion
path to compute the Berry phase polarization, which can be compared to the experimentally
measured spontaneous polarization.

Antiferroelectrics

Antiferroelectrics, in contrast to ferroelectrics, exhibit double hysteresis loops in polarization
versus electric-field measurements [200]. The field-induced phase transition is caused by
energetically competing nonpolar and polar phases separated by a first order phase transition.
The nonpolar phase is often refereed to as “anti-polar” to distinguish it from the nonpolar



CHAPTER 6. AN AUTOMATICALLY CURATED FIRST-PRINCIPLES DATABASE
OF FERROELECTRICS 55

reference structure. Symmetry conditions for antiferroelectrics are described in Ref. [247].
For completeness, to find anti-ferroelectrics using ab initio techniques one would ideally find
the reference nonpolar phase, the antipolar phase and the polar phase. However, one can also
find antiferroelectric candidates by the same method as used to find ferroelectrics. In this
case, the antipolar structure should be found to be lower in energy than the polar structure.

Workflow overview

We first describe the general workflow diagram shown in Figure 6.1. The complete workflow
involves the passing of data between many separate calculations. To create an automated
ferroelectric search, we automate the following tasks:

1. Identifying candidate materials possessing nonpolar-polar structure pairs related by a
group-subgroup symmetry relation.

2. Performing DFT calculations of changes in total energy, band gap, and polarization
across the nonpolar-polar distortion.

3. Post-processing calculation data to compute the spontaneous polarization.

4. Validating the calculation quality for each ferroelectric candidate.

5. Creating an interface for viewing the results for all candidates.

We start by choosing a crystal structure database on which to perform the search (see
Structure Selection Symmetry Analysis) and perform a symmetry analysis to find candidate
materials possessing nonpolar-polar structure pairs related by a continuous symmetry defor-
mation. Any such pairs found to satisfy the symmetry criteria are stored in the Distortion
Database as being deformable by symmetry. This criteria includes the following: The polar
structure belongs to a space group that is a subgroup of the space group of the nonpo-
lar structure. There exists a transformation matrix between the nonpolar structure in its
high-symmetry setting to the low-symmetry setting of the polar structure.

We then prepare a workflow to perform DFT calculations on the candidate pairs to
extract the changes in the band gaps, total energies, and polarization of the distortion (see
Computational Methods). These workflows are stored in a Workflow Database that is then
accessed by our Computing Resources where the calculations are performed.

Then, the information stored in the Distortion, Workflow, and Calculation Databases
is used together to post-process quantities such as the spontaneous polarization and vali-
date the candidates using experimental and previous ab initio results (see Post-processing
and Spontaneous Polarization Values and Verification of computational methodology). The
information needed to assess the quality and properties of the candidates is then added
to the Candidate Database where it can be accessed by our web Interface for viewing the
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Figure 6.1: Diagram of entire automated ferroelectric search workflow. Databases are shown
as purple cylinders. Processes are shown as rectangles: blue designates processes used to
identify and perform ab initio calculations, green designates post-processing and validation,
and orange designates the web-interface. Arrow directions indicate the flow of information.
For example, the Workflow Database provides information to the Computing Resources
for which calculations to compute and the Workflow Database is updated as calculations
complete or errors occur on the Computing Resources.

candidates in aggregate (see Graphical Interface). We finally validate the candidates to en-
sure the polarization and energy profile across the nonpolar-polar distortion are smooth and
continuous.

In the sections below, we describe in detail the methods used for creating an automat-
ically curated dataset of ferroelectrics from the Materials Project database [124]. The Ma-
terials Project database is largely based on structures from the Inorganic Crystal Structure
Database (ICSD) and also includes hypothetical structures created through stoichiometric
substitution. The results from applying our workflow are described below and summarized
in Table 6.1. We note that the workflow we create is modular and open-source, so it can be
readily adapted and applied by others, expanding the search for ferroelectrics and multifer-
roics.
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Table 6.1: Results obtained by applying our workflow to the Materials Project database.
† indicates “in Materials Project database at time of search”. Boxes relate numbers by
symmetry conditions, DFT calculations, and validation processes. Rows separated by a
single line give the sum of the numbers given below it in the same box.

S
y
m

m
et

ry

Structures† ∼67,000
Polar structures† ∼15,000
Distinct polar formula† ∼10,000
Nonpolar-polar pairs ∼17,000
Distinct nonpolar-polar pairs formula ∼1,600
Pairs with continuous transformation 414

D
F

T

Pairs with metallic endpoints 86
Pairs with metallic interpolations 40
Pairs with calculation errors 49
Pairs that completed successfully 239

V
al

id
. High-quality ferroelectric candidates 183

Known ferroelectrics in high-quality candidates 78
New ferroelectrics in high-quality candidates 105

Structure Selection

The input to our workflow is a collection of a candidate nonpolar-polar structure pairs.
There are several methods that can be used to create candidate nonpolar-polar structure
pairs. For example, one can apply a polar distortion to an existing nonpolar structure or
create a nonpolar reference structure for an existing polar structure. For this dataset, we
require both the nonpolar and polar structures to exist in the Materials Project database.

To search for compatible nonpolar-polar structure pairs in the Materials Project dataset,
we find structures that are in space groups that satisfy group-subgroup relations with a
nonpolar high-symmetry space group and a polar low-symmetry space group. We also require
that the number of sites in the nonpolar structure are less than or equal to the number of
sites in the polar structure. We perform this query using is using pymatgen, spglib, and the
Materials Project API [188, 250, 186]. We give the number of structures resulting from this
query in the top box of Table 6.1.

At the time of this search, the Materials Project database has approximately 67,000 struc-
tures, approximately 15,000 of which are polar. We find approximately 17,000 nonpolar-polar
structure pairs. These pairs contain approximately 1,600 materials out of the approximately
10,000 distinct polar compositions in the Materials Project database. All other polar com-
positions in the Materials Project do not have symmetry compatible nonpolar candidates in
the database. We note that it is possible to propose hypothetical nonpolar reference struc-
tures for these polar candidates using group theoretic methods or large symmetry tolerances
[57, 117, 139, 86]; this is left for future work.
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Naming Conventions

We use the formula name output by the pymatgen alphabetical formula method for the
Composition class (with spaces and 1s removed) to output consistent formulas for our can-
didates. This method orders elements in such a way that does not match conventions in
the literature. For example, we use O3PbTi where the standard in the literature is PbTiO3.
Compositions printed by pymatgen also differ from those used in mineralogy, such as for
boracite, lawsonite and many other minerals in our dataset. In our datafiles, we also provide
formula name output by the pymatgen reduced formula method for the Composition class
which sorts elements by electronegativity.

Symmetry Analysis

The automated nature of our ferroelectric search relies on strict symmetry criteria. As
described in the Structure Selection section, we pre-screen our candidate nonpolar-polar
structure pairs using the symmetry tools in pymatgen and spglib to ensure that these pairs
already satisfy basic group-subgroup relationships. We then use symmetry tools provided
by the Bilbao Crystallographic Server (BCS) to impose the symmetry criteria described in
the Workflow Overview [31, 28, 30]. BCS has a freely available web interface for accessing a
wide variety of symmetry tools. We create python scripts to automate interaction with and
scrape returned data from BCS to perform our symmetry checks using the python package
mechanize.

We use the BCS Structure Relations tool to obtain a transformation matrix connecting
two group-subgroup related structures [225, 243, 240]. More details on this process are given
in Appendix F. The Structure Relations tool checks for the following:

1.1 Compatible group-subgroup index relations. The index of a group-subgroup relation
indicates how many ferroelectric domains (distinct polar structures) arise from the
symmetry breaking of the high-symmetry structure.

1.2 There exists a path of maximal subgroups between the high symmetry structure and
low symmetry structure.

1.3 The Wyckoff position splitting of the high symmetry structure is compatible with the
Wyckoff positions of the low symmetry structure.

1.4 The lattice of the high-symmetry structure in the low-symmetry setting must be within
a certain tolerance of the lattice of the low-symmetry structure

1.5 Each atom in the high symmetry structure in the low symmetry setting can be paired
to an atom in the low symmetry structure such that no atom pairs are greater than a
given tolerance apart.

Structure Relations takes Crystallographic Information Files (CIFs) high-symmetry and
low-symmetry structures and tolerance threshholds as arguments. We use a lattice tolerance
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of 3 Å and 10◦ for lattice parameters and angles, respectively. For the present work, we
also use a maximum pairing distance of 1.5 Å, since few ferroelectrics have a distortion that
results in any atom being displaced by more than 1.5 Å.

Out of the 17,000 structure pairs that we test with Structure Relations, 414 are found to
be deformable by symmetry with maximum distortion less than or equal to 1.5 Å.

Symmetry precision

Symmetry precision is a tolerance factor used to assess whether an atom is equivalent to
another after a symmetry operation up to a maximum distance. A symmetry precision
between 10−1 and 10−5 Å is typically used.

In the Materials Project database, a symmetry tolerance of 10−1 Å is used for the reported
space group stored in the database. We use this tolerance to generate CIFs sent to BCS
Structure Relations. We evaluated how varying the symmetry tolerance changes the resolved
space group for all the structures in the Materials Project. We were able to determine this
efficiently by using binary search on a log10 scale for a maximum symmetry tolerance of 10−1

Å and minimum tolerance of 10−5 Å. Out of the 67,000 structures we checked, 50,000(75%)
of structures were resolved into one distinct space group for the entire symmetry precision
range.

For additional discussion about the sensitivity of symmetry precision on resulting space
groups in the search for ferroelectrics, see Refs. [86, 224].

DFT calculation details

We perform spin polarized DFT calculations using the Vienna Ab initio Software Package
(VASP) [135, 137, 136]. We use the generalized gradient approximation functional of Perdew,
Burke, and Ernzerhof (PBE) [193]. Our calculations use PAW pseudopotentials with an
energy cutoff of 520 eV for the plane-wave basis [46, 138].

We use the Berry phase method from Ref. [129, 254, 205, 206, 207] as implemented in
VASP to calculate the electronic part of the macroscopic polarization. We calculate the ionic
part of the macroscopic polarization using the point charge dipole moment for each atom
in the unit cell, see the calc ionic function in pymatgen.analysis.ferroelectricity.

polarization for details.
We use the default parameters VASP input defined in pymatgen (and used by Materials

Project) and atomate [122, 121, 1]. For details on these parameters, see the documentation
for pymatgen.io.vasp.sets.MPStaticSet. We use a Hubbard U correction to localize d
states of select oxides and fluorides following the approach in Ref. [81]. To see the guidelines
for which compounds we apply a U, see Ref. [124, 122, 121, 1]. We use a reciprocal k-point
density of 50 for structural relaxations and 100 for static and polarization calculations. We
use total energy convergence criteria of 5×10−5 eV per atom for the electronic self-consistent
loop and 5× 10−4 eV/Åper atom for the ionic relaxation loop for structural relaxations.
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Figure 6.2: Diagram of DFT workflow written with atomate and Fireworks. Blue and red
boxes denote initial nonpolar and polar structures, respectively, green boxes denote DFT
calculations, orange rhombuses denote decision steps, and purple ellipses denote exit steps.
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LDA is commonly used for polarization calculations because most known ferroelectrics
are oxides and LDA tends to more accurately describe oxides. However, generalized gradient
approximation (GGA) functionals such as PBE tend to generally perform better than LDA
across a wider range of materials. We use PBE to compare to calculations in the Materials
Project. We expect PBE and PBE+U to underestimate the band gap. Our results are in
line with the typical overestimation of PBE for the lattice parameters, and therefore, we
expect a similar overestimation of the polarization.

Scientific workflow packages

We construct the scientific workflows to perform the structural relaxations and calculations
of energy, band gap, and polarization using the FireWorks and atomate python packages
[123, 165]. FireWorks is built for managing computational scientific workflows. atomate
is built for constructing workflows for multiple computational material science codes such
as VASP. atomate uses FireWorks classes to build modules for performing common VASP
calculations such as structural relaxations and self-consistent calculations of total energy.
atomate also provides a framework for building custom modules, which we use to build our
structural interpolations and polarization calculations modules.

DFT workflow

We perform the DFT workflow shown in Figure 6.2 for the 414 candidates with maximum
distortions that do not exceed 1.5 Å and have structures returned from BCS that were able
to be converted to pymatgen Structures objects. We use a maximum distortion cutoff of 1.5
Å because a distortion larger than this cutoff tends to be unphysical.

For each structure pair, we begin with the nonpolar structure in the low symmetry setting
(obtained from BCS Structure Relations in the Symmetry Analysis step) and the polar
structure. We use the nonpolar structure transformed into the low symmetry setting so we
can perform structure interpolations and polarization calculations across similar lattices.

We perform relaxations of the unit cell and atomic positions of both of these structures
two times, similar to what Materials Project performs on its database entries. We then
fix the relaxed nonpolar and polar structures and perform a self-consistent calculation to
compute the total energy and band gap. If either the nonpolar structure or polar structure
is found to be metallic, which we define as having a band gap of less than 10 meV, we stop
the workflow for that candidate.

If the polar and nonpolar structures are both not metallic, we compute the polarizations
of both structures. 31 of the 414 structure pairs were found to have a metallic nonpolar
structure but insulating polar structure, 2 were found to have a metallic polar structure but
insulating nonpolar structure, and 51 were found to have both metallic polar and nonpolar
structures. 2 additional structures have at least a metallic nonpolar structure, but these
workflows were halted before the polar structures had their band gaps computed.
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Figure 6.3: Polarization curves for BaTiO3 along the [001] versus distortion from nonpolar
to polar structure. Due to the change in lattice parameters and volume across the distortion,
the quantum of polarization along the [001] direction is different for each structure. This
causes the spontaneous polarization for different branches to differ. The branch that starts
at zero is the corrected branch. The branch that starts near -600 µC/cm2 is the data from
VASP. Note, while in this specific case, the calculated polarization values for all interpolations
were on the same branch, this is not usually the case.

We compute the total energy, band gap, and polarization of eight linear interpolations
of the nonpolar to polar structures. We found eight interpolations to be sufficient for recon-
structing a continuous same branch polarization for at least 75% of our candidates.

Unlike the previous step where a metallic calculation causes the workflow to stop, we
instead allow interpolations to be metallic but in such cases do not attempt to calculate the
polarization of that structure. 40 candidates were found to have metallic interpolations.

The DFT workflow is labeled as complete when all polarization calculations along the
path have completed or have been skipped in the case of metallic interpolation.

Post-processing Spontaneous Polarization Values

Only polar space groups are compatible with polarization vectors of arbitrary length. Non-
polar space groups are also compatible with a polarization vector, but the polarization vector
modulo quantum of polarization along each lattice direction must be zero or a half quantum.
If we can find a reference nonpolar structure that is sufficiently similar to our polar struc-
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ture, we can calculate the polarization of several interpolations between this initial reference
nonpolar and final the ferroelectric, polar structure. This structure is used as a means to
calculate the spontaneous polarization, it is not necessary for the nonpolar structure to exist
for the polar material to be ferroelectric or for us to calculate a valid polarization.

Starting with the nonpolar structure, we can calculate its polarization which is either
zero or a half quantum of polarization along the three lattice directions. Then we perform
the same calculation for the first interpolation, and then the next, until we arrive at the final
polar structure. If we have a sufficient number of interpolations between our structures, we
will have hopefully traced out smooth, continuous paths in polarization space. Subtracting
the vectors at the nonpolar beginning and the polar ending of these paths will give us the
spontaneous polarization vector.

We perform the following steps to recovering the same branch polarization. We first
construct a periodic lattice for each interpolation with lengths and angles corresponding to
the quantum of polarization along each lattice direction; this corresponds to the second term
of the polarization equation given in the section Ferroelectricity from first-principles. For
calculating polarization, the lengths of the lattice vectors are divided by the volume of the
unit cell and multiplied by conversion factors for electron charge and length scale. Because
our polar and nonpolar structures can have different lattices, the quantum of polarization
along the a, b, and c lattice parameters can differ for each structure. See Figure 6.3 for an
example for BaTiO3.

Our algorithm for adjusting the polarizations to be on the same branch is depicted in
Figure 6.4. First, we take the nonpolar polarization, and choose the image of the polarization
value in the nonpolar polarization lattice that is closest to Cartesian coordinates (0,0,0)
which is one corner of the unit cell. The value of the nonpolar polarization along a, b,
and c can either be zero or a half-quantum. Then, we find the image the of the first
interpolation polarization value (using the first interpolation lattice) that is closest to the
Cartesian coordinates (since lattices may differ) of the moved nonpolar polarization value.
We continue this process until we get to the polar polarization.

This algorithm will find the polarization path with the smallest difference between po-
larizations of subsequent interpolations. This can cause the algorithm to find the incorrect
same branch polarization in cases where the change in polarization between interpolations
is larger than the quantum of polarization between branches. One example of this failure
mode is polarization resolved for CrO3 with workflow ID wfid 1484694851.899452, see
Figure 6.5. In this example, the algorithm chooses a discontinuous path that has a smaller
spontaneous polarization of 79.9 µC/cm2 in red. However, the most continuous path uses
the last three interpolations in the branch shown with a dashed red line give a polarization
of 124.7 µC/cm2.

Graphical Interface

To view the ferroelectric candidate data in aggregate, we create an interactive web site
for viewing polarization and total energy plots, animations of the distortion, and other
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Figure 6.4: A visual demonstration of the same branch polarization algorithm demonstrated
in 1D (rather than 3D) using BaTiO3. As mentioned in Figure 6.3, VASP returns polar-
izations all along the branch starting at -600 µC/cm2. However, to better demonstrate the
algorithm, we will suppose that the values for the polarization for each interpolation are
those circled in red. In the first panel, we move the nonpolar polarization to be on the
branch closest to zero. In the second panel, we move the first interpolated polarization to
be on the branch closest to the adjusted nonpolar polarization. In the third panel, we move
the second interpolated polarization to be on the branch closest to the adjusted first inter-
polation polarization. If the algorithm finishes successfully, the adjusted polarizations will
on the same branch.

data. The interface consists of two main pages: 1) a page containing a sortable table of
ferroelectric candidates organized by category (whether the candidate had a polarization
resolved and if so with what confidence) and 2) individual candidate pages that show energy
and polarization plots, distortion animations, and other data specific to that candidate. This
interface is available at https://blondegeek.github.io/\penalty\z@{}ferroelectric_

search_site/.

Code Availability

The Vienna Ab Initio Software Package (VASP) used to perform DFT calculations is a
proprietary code. The Bilbao Crystallographic Server (BCS) is freely available on-line at
http://www.cryst.ehu.es. Fireworks, atomate, and pymatgen are python packages ac-
cessible on GitHub. Fireworks and atomate are released under a modified BSD (Berkeley
Software Distribution) License. pymatgen is released under a MIT (Massachusetts Institute
of Technology) License. Both MIT and BSD licenses are open-source and permit both com-
mercial and non-commercial use. Our workflow code is included in atomate version 0.6.7
and our analysis code is available in pymatgen since v4.7.4.

https://blondegeek.github.io/\penalty \z@ {}ferroelectric_search_site/
https://blondegeek.github.io/\penalty \z@ {}ferroelectric_search_site/
http://www.cryst.ehu.es
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Figure 6.5: The polarization reconstruction for CrO3 with workflow ID
wfid 1484694851.899452. The polarization along the b lattice parameter is incor-
rectly reconstructed because the different polarization branches are closer than the change
in polarization between structure interpolations. To correctly reconstruct this polarization
with our existing algorithm, more structure interpolations would be needed between the
nonpolar and polar structures.

Our code for recovering the same branch polarization from polarization calculations
has been contributed to pymatgen under the pymatgen.analysis.ferroelectricity mod-
ule. Our code for the DFT and polarization analysis workflows for performing polarization
calculations has been contributed to atomate under the atomate.vasp.workflows.base.

ferroelectric module. We also release a python package to automate interaction with
several BCS’s tools used in this search called bilbaocrystapi. We also provide code for
the interface that we used to view our candidates in aggregate. The web interface for the
current work is hosted at http://blondegeek.github.io/ferroelectric_search_site/.
The code for the interface can be found at http://github.com/blondegeek/\penalty\z@

{}ferroelectric_search_site.

6.3 Data Records

This dataset is available as two JSON files deposited in FigShare (doi:10.6084/m9.figshare.6025634
and doi:10.6084/m9.figshare.5048425) and our GitHub repository (http://github.com/
blondegeek/ferroelectric_search_site). We also provide an interface for viewing the
dataset at http://blondegeek.github.io/ferroelectric_search_site.

The JSON files provide details of the symmetry analysis performed for each candidate
and data generated by DFT calculations and post-processing from the workflow.

http://blondegeek.github.io/ferroelectric_search_site/
http://github.com/blondegeek/\penalty \z@ {}ferroelectric_search_site
http://github.com/blondegeek/\penalty \z@ {}ferroelectric_search_site
http://github.com/blondegeek/ferroelectric_search_site
http://github.com/blondegeek/ferroelectric_search_site
http://blondegeek.github.io/ferroelectric_search_site


CHAPTER 6. AN AUTOMATICALLY CURATED FIRST-PRINCIPLES DATABASE
OF FERROELECTRICS 66

VASP input and output files for each candidate are provided as a zip file on FigShare.
The title of the zip file includes the workflow ID to correlate the VASP files to information
in the JSON files provided.

File format

We contribute the following data:

1. JSON file with information describing all nonpolar-polar structure pairs with group-
subgroup relations compatible with a second-order phase transition in the Materials
Project determined with BCS Structure Relations and used in this search. See Tables
6.2 and 6.3 for details.

2. JSON file with information on workflow status of each calculated candidate and cal-
culation details extracted from VASP inputs and outputs. This includes total energy,
band gap, polarization, post-processed information and validation criteria for candi-
dates with completed calculation. See Table 6.4 for details.

3. Zipped folders with the VASP INCAR, KPOINTS, OUTCAR, and POSCAR files.

Properties

For each candidate we provide an initial nonpolar-polar pair of structures, including the
nonpolar structure in the nonpolar, high-symmetry setting and polar, low-symmetry setting.
We also provide the displacements of each atom and other metrics provided by BCS Structure
Relations.

For each successful calculation, we provide the structure used for calculation, the ionic
and electronic polarization computed by VASP, the ionic polarization computed via the
method of point charges, the energy and energy per atom of the structure, and other com-
monly computed quantities such as total magnetization, magnetization per atom, forces, and
stresses. We also give details as to which calculations (out of the 22 computed) for a given
candidate were completed.

For each set of completed calculations we also provide, the recovered spontaneous polar-
ization using the algorithm described in the Method section and spline data characterizing
the smoothness of the recovered polarization and energy trend across the nonpolar-polar
distortion.

Graphical representation of results

In Figure 6.7, we partition the high-quality candidates into known and new ferroelectrics
and further partition those ferroelectrics into subclasses. In 6.7 we see that known and new
ferroelectric candidates are well mixed along the metrics of nonpolar-polar structure energy



CHAPTER 6. AN AUTOMATICALLY CURATED FIRST-PRINCIPLES DATABASE
OF FERROELECTRICS 67

difference, distortion maximum between nonpolar and polar structures, PBE band gap of
polar structure, and energy above hull.

In the middle of Figure 6.7, the high performers denoted with red triangles are the
perovskite family. Perovskites dominate the ferroelectric literature and we recover many
known perovskite ferroelectrics in this search: LiNbO3, AlBiO3, BiInO3, KNbO3, BaO3Ti,
Bi2Nb2O9Pb, Bi2O9SrTa2, NaNbO3, Bi4O12Ti3, CdO3Ti, O3PbTi, Bi2MoO6, HfO3Pb, O3PbZr
and Ca3Mn2O7.

Other classes identified in the middle of Figure ?? are the organic (NH4)2SO4 family
in blue, boracites in green and structures already proposed by theory to be ferroelectric in
purple. These show that there are many known and proposed ferroelectrics in the literature
with polarizations of 10 µC/cm2 or less.

In the bottom row of Figure 6.7, we categorize new ferroelectric candidates into different
trending compositions or structure types. There are several candidates containing fluorides,
oxocarbons, and hydroxyl groups. We highlight these candidates because they are very
different in composition from oxide ferroelectrics most common in the literature. We also
point out some hypothetical non-magnetic hexagonal manganite-like structures found in the
Materials Project database that have polarizations of approximately 10 µC/cm2 and half-
quantum nonpolar polarizations.

In Figure 6.8, we show trends in the number of deformation candidates with given nonpo-
lar point group - polar point group transitions. Each space group is comprised of translation
and point group symmetry. There are 32 point groups; polar point groups are shown in
red and nonpolar in blue. The thickness and color of line connecting nonpolar and polar
point groups indicate the number of structures in the dataset with a deformation between
those point groups. Point group transitions that correspond to orthorhombic structures such
as mmm → mm2, monoclinic structures such as 2/m → 2 or 2/m → m, and hexagonal
6/mmm→ 6mm are most prevalent.

In Figure 6.9, we show polarization of ferroelectric candidates plotted by polar point
group, similar to the plot of piezoelectric tensor magnitudes in Ref. [71]. The majority of
candidates have polarization less than 5 µC/cm2, shown on the right. The high performers
in point group 4mm are perovskites with a reference structure with in point group m− 3m.
The darkness of a radial cell is proportional to the the number of candidates in that region
of the plot. For example, there are many candidates with polar point groups 2 and mm2
that have polarizations within 25 µC/cm2.

6.4 Technical Validation and Verification

Verification of computational methodology

Several checks are needed to ensure our automated calculations have completed satisfactorily
and the information automatically extracted from them is reliable.
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Figure 6.6: Legend for Figure 6.7.

Testing smoothness of energy and polarization trends with distortion

We want to flag any ferroelectric candidates whose calculations cannot be used to reliably
assess the quality of the candidate. For example, if the trend in total energy is not continuous,
we cannot be confident that we can extract a meaningful polarization trend. Similarly, if
the same branch polarization is not continuous, we can not be confident that an accurate
spontaneous polarization has been determined.

To assess the smoothness of trends in polarization and energy across a distortion, we use
UnivariateSplines from scipy.interpolate. We use cubic splines for fitting polarizations
and quartic splines for fitting total energies. We use the default smoothness parameter of
1.0. With this default, quartic splines sometimes fail for steep double wells. These splines
can be generated using the Polarization class in pymatgen.analysis.ferroelectricity.

polarization.
We found 13 materials to have several discontinuities in total energy (even when these

calculations resulted in smooth polarizations). These materials were transition metal oxides,
fluorides, carbonates, orthosilicates, and phosphates with alkali metals (Li, Na, and Ba
for these specific examples), many being Li-ion battery cathode candidates. The transition
metals in these materials (Co, Cr, Fe, Mn, Ni, V) can take multiple oxidation states. Because
these discontinuities in energy were coincident with discontinuities in the total magnetization,
we believe the cause of these jumps were caused by the transition metal species changing
oxidation state through the distortion. To mitigate this, one might be able to constrain the
total magnetization for each interpolation based on the interpolation of the initial nonpolar
magnetization and final polar magnetization.

Metallic endpoints and metallic interpolations

Workflows that have either polar or nonpolar structures that are calculated to be metallic are
halted. In the workflow data.json, these workflows are designated by a workflow status

of “DEFUSED”. 86 structures have metallic endpoints. These candidates do not have in-
terpolation calculations performed. Occasionally, interpolations between two nonmetallic
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Figure 6.7: Validated ferroelectric candidates from our search. Spontaneous polarization
plotted against nonpolar-polar energy difference, maximum atomic distortion, PBE band
gap, and energy of polar structure above lowest energy polymorph reported in the Materials
Project.
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Figure 6.8: Distortion candidate point group relations.

Figure 6.9: Diagrams of polarization magnitude vs. point group.
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structures are metallic. Out of our 239 completed workflows, 40 of them had metallic in-
terpolation structures. If any interpolation along the path from nonpolar to polar structure
is metallic, the quality of automated analysis cannot be guaranteed. We include these
candidates in our dataset, but they are noted as having a “polarization len” of less than
10 or do not have a “polarization change norm” (in cases where some of the interpolated
polarizations are None). If a candidate has a “polarization len” equal to 10 and have a
“polarization change norm”, all polarization calculations completed successfully.

Comparison of Materials Project to Relaxed Structures

Two structural relaxation steps are already performed on all structures in the Materials
Project. We perform additional relaxations of the unit cell and atomic positions to ensure
total energy convergence. We found only less than 5% (10%) of our relaxed structures have
lattice parameter differences that differed larger than 3% (1%) from the original Materials
Project structures. Because we perform relaxations of nonpolar structures transformed to the
low symmetry polar setting, we compare the relaxed nonpolar structure to the low symmetry
transformed structure output by BCS of the nonpolar structure from Materials Project.

Known and New Ferroelectrics

In any high-throughput search, there are calculations that complete perfectly and some that
require further scrutiny to understand. We deem high-quality candidates as calculations
where the polarization and total energy trends are smooth and continuous according to a
max difference between the data and fitting spline to be 10−1 µC/cm2 for the spline fit to
the same branch adjusted polarization and 10−2 eV for spline fit to the energy trend versus
distortion.

Out of the 239 candidates, 183 pass through our stringent validation that ensures the
polarization and energy trends across the ferroelectric distortion are smooth and continuous.
The remaining candidates are still valid candidates; we recommend checking the polarization
and energy trends by eye as the algorithms used for analysis may not have been able to
reliably recover the spontaneous polarization in these cases.

The only factor that distinguishes known ferroelectrics from new ferroelectrics in our
workflow is whether or not a given ferroelectric candidate is present in the literature. Thus,
we perform a literature review by hand for every considered candidate. We leave automating
such literature searches to future work. We find out of 183 high quality candidates, 78 are
known or previously proposed and 105 are new ferroelectric candidates.

In Figure 6.7, we plot nonpolar-polar total energy difference, maximum distortion dis-
tance, PBE band gap, and energy difference between the polar structure and lowest energy
polymorph reported in the Materials Project of known and proposed and new ferroelectric
candidates versus the calculated spontaneous polarization. The legend for these is in Figure
6.6. We also provide tables of the new candidates in Tables E.2 and E.3 and of the known
candidates in Tables E.4 and E.5.
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As seen in the top of Figure 6.7, there are no trends in these quantities that distinguish
known versus new ferroelectrics. The plots in the middle of Figure 6.7 demonstrate the
variety of known ferroelectric candidates that we are able to recover, from perovskites and
boracites to candidates in the organic (NH4)2SO4 family and proposed by theory. The
plots at the bottom of Figure 6.7 show categories of new ferroelectric candidates we find in
the Materials Project, some from previously known ferroelectric classes such as hexagonal
manganite-like structures and surprising categories such as fluorides, crystals containing
oxocarbons, and crystals containing hydroxyl groups. We elaborate on these categories of
known and new ferroelectrics in the Graphical representation of results.

Validation through comparison to hand-curated list of ferroelectrics in the
Pauling File database

The Pauling File is a materials database accessible through SpringerMaterials [2]. In this
database, there are materials tagged as ferroelectric and antiferroelectric. We use these
tagged entries to estimate how many known (anti)ferroelectrics make it through our workflow.

In the Pauling Files, there are 955 distinct compositions tagged as (anti)ferroelectric,
306 of which are pure (not doped) compositions. Out of 306 pure compositions, 95 of
those compositions are included in the Materials Project as polar materials. This does not
necessarily mean that the Materials Project database contains the same ferroelectric polar
structure as referenced in the Pauling Files, simply that there exists a polar structure in the
Materials Project with the same composition as a tagged ferroelectric or antiferroelectric in
the Pauling Files. 57 of these compositions have nonpolar-polar structures in the Materials
Project, 42 of which are found to be deformable by BCS Structure Relations. 33 of the
42 are successfully identified by the workflow to have smooth polarizations. Out of the
9 candidates that did not successfully make it through the workflow, 6 of them (BiFeO3,
CrO3Y, Eu2GeSe4, O3W, CuLa2O4, Cl3CoTl) had metallic endpoints, 2 candidates (MnO3Y
and Br3MnRb) had metallic interpolation structures, and for 1 candidate (Ge3O11Pb5), there
was a problem converting the BCS provided structures into a pymatgen Structure objects.
This suggests that the primary impact to the robustness of our workflow is the level of
DFT used; since PBE tends to underestimate band gaps, several of these candidates are
experimentally insulating but are metallic in our calculations.

Validation through comparison to experimental measurements in
Landolt-Börnstein series

Experimentally measured polarizations depend greatly on the quality of the sample and
method used to measure the spontaneous polarization. For many ferroelectrics, there are ex-
perimental polarization measurements that have been made across decades that vary greatly
depending on these factors. For example, measurements of single crystal BiFeO3 in 1970
found the polarization to be less than 6.1 µC/cm2 [244]. Thin films of BiFeO3 were measured
to have a polarization 50-90 µC/cm2 [259] in 2003. Then, first-principles calculations pre-
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sented in 2005 predicted the polarization of single crystal BiFeO3 to be 90-100 µC/cm2 [180].
These first-principles results motivated further experimental investigation. Multiple teams
studying ceramic BiFeO3 found a small spontaneous polarization of less than 10 µC/cm2

attributed to the high-conductivity of their samples causing a leakage current [196, 196].
Subsequent measurements of single crystal BiFeO3 which conversely have high-resistivity
permitted measuring a polarization that was in agreement with first-principle calculations
[145].

We compare our calculated polarizations to ferroelectric materials referenced in the
Landolt-Börnstein - Group III Condensed Matter - Ferroelectrics and Related Substances
[227, 228, 229, 230]. This series classifies hundreds of ferroelectrics into a 72 class numbering
scheme. We note that polarization values for ferroelectrics in the Landolt-Börnstein series
volumes 36A, 36B and 36C may be superseded by more recent experimental measurements.

Plots of calculated vs. experimental spontaneous polarizations are shown in Figure 6.10
and tabulated in Table E.1. For experimental polarizations greater than 10 µC/cm2, the
majority of experimental polarizations are between 25% and -50% of those that we calculate.
The exceptions are NaNbO3 and Bi2O9SrTa2, which are calculated to have polarizations
much greater than their experimental values, and the polarization of Bi4O12Ti3 which is
calculated to be much lower than the experimental value. The multiple entries of a given
formula on the plot indicate multiple calculations in our dataset for the same compound.
Compounds with polarizations of less than or equal to 1 µC/cm2 are not shown on the
plot given the log-log scale. For polarizations less than 5 µC/cm2, we see our calculations
capture the general trends of the experimental polarizations.

We find that the PBE functional we use for our DFT calculations overestimates polariza-
tions. This is partially due to unit cells relaxed with PBE having larger than experimental
volumes and thus larger distortions.

Validation through comparison to DFT calculated polarizations

DFT calculated values for the ferroelectric polarization depends heavily on the structures and
functional used in the calculation. For example, we relax the full geometry of our endpoint
structures. Other references constrain the relaxed polar unit cell to have the same volume
as the experimental structure. One such example is [27]; these calculated polarizations will
be systematically smaller than ours due to PBE optimized structures having larger than
experimental lattice parameters.

We compare to literature where a fully optimized (unit cell, volume, and atomic positions)
relaxation procedure is used. The ferroelectric first-principles literature is largely dominated
by studies of perovskites. We compare to calculations for the following perovskites: BaTiO3,
PbTiO3, LiNbO3, SrBi2Ta2O9, BiAlO3, CdTiO3, Ca3Mn2O7, BiFeO3, and YMnO3. These
comparisons are summarized in Table 6.5. We find our calculations in excellent agreement
with the literature that use comparable methods, the only exception being BiFeO3, and
YMnO3.
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Figure 6.10: Experimental vs. Calculated polarizations for ferroelectric materials in the
Landolt-Börnstein series. Note, the plot is log-log. We give colored regions to show which
experimental values are within ±25, ±50, and ±75 of calculated values.

BiFeO3 candidates (of which there are 3) are found to have a metallic nonpolar structure
and YMnO3 candidates (of which there are 4) are found to have metallic intermediate struc-
tures by our workflow and thus do not have computed polarizations in this dataset. Ref.
[275] notes difficulties in calculating polarizations for these structures due to LDA and PBE
underestimating the gap. They attempt to calculate these polarizations at the level of PBE
using a Hubbard U correction of 2 eV and 7.5 eV for the Fe in BiFeO3 and Mn in YMnO3, re-
spectively. They are successful in calculating the polarization of BiFeO3, but YMnO3 is still
metallic in their PBE calculations even with the Hubbard U correction. We used a Hubbard
U correction of 5.3 eV for Fe and 3.9 eV for Mn. See [1] for elaboration on how Hubbard U’s
are chosen in our workflow. We have a metallic nonpolar structure for BiFeO3 and several
metallic interpolations for YMnO3, thus we do not obtain the spontaneous polarization of
either.

6.5 Usage Details

In this chapter, we present 414 nonpolar-polar structure pairs in the Materials Project
database that are compatible with a second-order phase transition as ferroelectric candi-
dates and perform DFT calculations of total energy, band gap and polarization for these
structures pairs.

This dataset offers the first opportunity to compare many known and new ferroelectrics
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Table 6.5: Comparison of this work to other ab initio studies of ferroelectric perovskites.
† indicates the reference being compared to used the Local Density Approximation (LDA)
functional in their calculations. LDA results tend to be smaller than results calculated
with PBE (which we use in this work) due to smaller predicted lattice parameters by LDA
than PBE. The workflow ids for entries in the table are (1) wfid 1476040944.53976 (2)
wfid 1476040944.53976 and wfid 1476040947.794782 (3) wfid 1476040956.832394 (4)
wfid 1476040982.95148 (5) wfid 1476041128.167316 (6) wfid 1476040384.215156 (7)
wfid 1476040759.946834 (8) wfid 1484445148.273011 (9) wfid 1484445014.628732 (10)
wfid 1476040851.179557.

Formula and
Space Group

a (Å) b (Å) c (Å) Ps (µC/cm2)

BaTiO3 Ref. [257] 4.005 - 4.210 43.5
(99) Ref. [275] 4.000 - 4.216 47

This work (1) 4.001 - 4.216 46.3
This work (2) 4.000 - 4.225 47.1

PbTiO3 Ref. [275] 3.844 - 4.767 125.5
(99) This work (3) 3.867 - 4.600 117.2
LiNbO3 Ref. [275] 5.203 - 14.11 84.4
(161) This work (4) 5.216 - 14.11 84.1
SrBi2Ta2O9 Ref. [269] 5.55 5.55 25.10 34.1
(36) This work (5) 5.599 5.612 25.509 37.0
CdTiO3 Ref. [144]† 5.2498 5.3870 7.5699 21
(26) This work (6) 5.402 5.524 7.693 37.0
CdTiO3 Ref. [144]† 5.2392 5.3777 7.6192 29
(33) This work (7) 5.359 5.494 7.813 34.8
BiAlO3 Ref. [34]† 3.84 (cubic) - - 75.6
(161) This work (8) 3.845 - - 81.1
Ca3Mn2O7 Ref. [38]† - - - 5
(36) This work (9) 19.476 5.332 5.377 5.6

This work (10) 19.457 5.334 5.380 5.9
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side by side with the same methodology. We believe by setting strict criteria for ferroelec-
tricity and casting a wide-net using high-throughput searches, we will find candidates that
challenge and advance our understanding of ferroelectric phenomena. As seen in our can-
didates, there may be many candidate ferroelectrics waiting to be discovered that defy our
expectations. This dataset will be useful for creating new tools and criteria for analyzing
diverse ferroelectrics.

The infrastructure provided by the Bilbao Crystallographic Server, FireWorks, pymatgen,
and atomate is crucial to being able to perform these types of searches efficiently. Thus, we
also provide our code and data for these searches with the hope they will lower the barrier
for others to perform similar searches.

Our code for performing structural interpolations and polarization calculations has been
incorporated into the pymatgen and atomate packages. We also release a python package to
automate interaction with several BCS’s tools used in this search. We also provide code for
the interface that we used to view our candidates in aggregate.

The workflow we have presented can be extended to any crystal structure database,
experimental and hypothetical. Several small modifications can be made to this workflow
to extend the scope of these searches. The same DFT workflow can be used to screen any
experimentally measured polar structure by generating nonpolar reference structures with
BCS Pseudosymmetry[57].

This workflow can also be adapted to perform species substitutions and find symmetry
relations between structure types, classes of structures that share space group, Wyckoff
positions, and other lattice similarities.
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Chapter 7

Tensor Field Networks: Rotation- and
Translation-Equivariant Neural
Networks for 3D Point Clouds

The work described in this chapter was submitted to the 2018 International Conference on
Machine Learning with the pre-print available as Ref. [246].

We introduce tensor field networks, which are locally equivariant to 3D rotations, transla-
tions, and permutations of points at every layer. 3D rotation equivariance removes the need
for data augmentation to identify features in arbitrary orientations. Our network uses filters
built from spherical harmonics; due to the mathematical consequences of this filter choice,
each layer accepts as input (and guarantees as output) scalars, vectors, and higher-order
tensors, in the geometric sense of these terms. We demonstrate how tensor field networks
learn to model simple physics (Newtonian gravitation and moment of inertia), classify simple
3D shapes (trained on one orientation and tested on shapes in arbitrary orientations), and,
given a small organic molecule with an atom removed, replace the correct element at the
correct location in space.

7.1 Motivation

Convolutional neural networks are translation-equivariant, which means that features can be
identified anywhere in a given input. This capability has contributed significantly to their
widespread success.

In this chapter, we present a family of networks that enjoy much richer equivariance: the
symmetries of 3D Euclidean space. This includes 3D rotation equivariance (the ability to
identify a feature in any 3D rotation and its orientation) and 3D translation equivariance.

There are three main benefits. First, this is more efficient than data augmentation to
obtain 3D rotation-invariant output, making computation and training less expensive. This
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is significantly more important in 3D than 2D. Without equivariant filters like those in our
design, achieving an angular resolution of δ would require a factor ofO(δ−1) more filters in 2D
but O(δ−3) more filters in 3D.1 Second, a 3D rotation- and translation-equivariant network
can identify local features in different orientations and locations with the same filters, which
is helpful for interpretability. Finally, the network naturally encodes geometric tensors (such
as scalars, vectors, and higher-rank geometric objects), mathematical objects that transform
predictably under geometric transformations such as rotation. Here, and in the rest of this
chapter, the word “tensor” refers to geometric tensors, not generic multidimensional arrays.

Our network differs from a traditional CNN in three ways:

• We operate on point clouds using continuous convolutions. Our layers act on 3D
coordinates of points and features at those points.

• We constrain our filters to be the product of a learnable radial function R(r) and a

spherical harmonic Y
(l)
m (r̂).

• Our filter choice requires the structure of our network to be compatible with the algebra
of geometric tensors.

We call these tensor field networks because every layer of our network inputs and outputs
tensor objects: scalars, vectors, and higher-order tensors at every geometric point in the
network. Tensor fields are ubiquitous in geometry, physics, and chemistry.

Our motivation was to design a universal architecture for deep learning on atomic systems
(such as molecules or materials), but our network design is quite general. We expect tensor
field networks to be useful in many tasks involving 3D geometry. For example, tensor field
networks could be used to process 3D images in a rotation- and translation-equivariant way.
We mention other potential applications in Section 7.6.

In this chapter, we explain the mathematical conditions such a 3D rotation- and translation-
equivariant network must satisfy, provide several examples of equivariant compatible network
components, and give examples of tasks that this family of networks can uniquely perform.

7.2 Related work

Our work builds upon Harmonic Networks [265], which uses discrete convolutions and filters
composed of circular harmonics to achieve 2D rotation equivariance, and SchNet [221], which
presents a rotation-invariant network using continuous convolutions. The mathematics of
rotation equivariance in 3D is much more complicated than in 2D because rotations in 3D do
not commute; that is, for 3D rotation matrices A and B, AB 6= BA in general (see Ref. [204]
for more about the mathematics of tensors under 3D rotations). Ref. [65] introduce Spherical
CNNs, which are equivariant models on spherical spaces. Our network differs from this work

1This is because the manifold of orthonormal frames at a point in 2D (the group O(2)) has dimension 1
and in 3D (O(3)) has dimension 3.
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because it is equivariant to all the symmetries of 3D Euclidean space, both 3D rotation and
translation, and because it directly operates on more general data types, such as points.
SchNet can be emulated by our network by only using L = 0 filters. Harmonic Networks
is the 2D discretized analog of our 3D network. Our network and Spherical CNNs share
much of the same mathematical underpinnings but differ in the learnable parameters for
rotation-equivariant filters. Additionally, while Spherical CNNs use one convolution center,
we use many.

Many other authors have investigated the problems of rotation equivariance in 2D, such
as [278, 93, 149]. Typically these work by looking at rotations of a filter and differ in exactly
which rotations and how that orientation information is preserved (or not) higher in the
network.

Other authors have dealt with similar issues of invariance or equivariance under par-
ticular input transformations. G-CNNs [66] create invariance with finite symmetry groups
(unlike the continuous groups in this work). Ref [65] use spherical harmonics and Wigner D-
matrices but only address spherical signals (two dimensional data on the surface of a sphere).
Ref. [134] use tensor algebra to create neural network layers that extend Message Passing
Neural Networks [89], but they are permutation group tensors (operating under permutation
of the indices of the nodes) not geometric tensors.

The networks presented in Ref. [197, 198] operate on point clouds and use symmetric func-
tions to encode permutation invariance. Ref. [198] employ a randomized sampling algorithm
to include pooling in the network. These networks do not include rotation equivariance.

Other neural networks have been designed and evaluated on atomic systems using nuclei
centered calculations. Many of these capture 3D geometry just by including the pairwise
distance between atoms (e.g. SchNet [222] and the graph convolutional model from Ref. [83]).
Our work notably draws from SchNet [222] for the point convolutions, radial functions, and
self-interaction layers. All models that rely only on pairwise distances or angles between
points have the weakness (unlike this work) that they can not distinguish between chiral
inputs (e.g. left hand and right hand), which have identical pairwise distances but are
different shapes in 3D.

The other major approach to modeling 3D atomic systems is to voxelize the space [258,
51, 249]. In general, these are subject to significant expense, no guarantees of smooth
transformation under rotation, and edge effects from the voxelization step.

An introduction to the concepts of steerability and equivariance in the context of neural
networks can be found in Ref. [67], which focuses on discrete symmetries.

7.3 Representations and equivariance

A representation D of a group G is a function from G to square matrices such that for all
g, h ∈ G,

D(g)D(h) = D(gh)
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A function L : X → Y (for vector spaces X and Y) is equivariant with respect to a group G
and group representations DX and DY if for all g ∈ G,

L ◦DX (g) = DY(g) ◦ L

Invariance is a type of equivariance where DY(g) is the identity for all g. We are concerned
with the group of symmetry operations that includes isometries of 3D space and permutations
of the points.

Composing equivariant networks L1 and L2 yields an equivariant network L2 ◦ L1 (proof
in Appendix H). Therefore, proving equivariance for each layer of a network is sufficient to
prove (up to numerical accuracy) that a whole network is equivariant.

Furthermore, if a network is equivariant with respect to two transformations g and h,
then it is equivariant to the composition of those transformations gh (by the definition of
a representation). This implies that demonstrating permutation, translation, and rotation
equivariance individually is sufficient to prove equivariance of a network to the group (and
corresponding representations) containing all combinations of those transformations. As we
describe shortly, translation and permutation equivariance are manifest in our core layers,
so we will focus on demonstrating rotation equivariance.

Tensor field networks act on points with associated features. A layer L takes a finite set
S of vectors in R3 and a vector in X at each point in S and outputs a vector in Y at each
point in S, where X and Y are vector spaces. We write this as

L(~ra, xa) = (~ra, ya)

where ~ra ∈ R3 are the point coordinates and xa ∈ X , ya ∈ Y are the feature vectors (a being
an indexing scheme over the points in S). (To simplify the formulas here, we are assuming
that inputs and outputs are at the same points in R3, but this is not necessary.) This
combination of R3 with another vector space can be written as R3 ⊕ X , where ⊕ refers to
the direct sum operation, where vectors in each space are concatenated and matrices acting
on each space are combined into a larger block diagonal matrix.

We now describe the conditions on L for equivariance with respect to different input
transformations.

Permutation equivariance

Condition: L ◦ Pσ = Pσ ◦ L
where Pσ(~ra, xa) := (~rσ(a), xσ(a)) and σ permutes the points to which the indices refer.

All of the layers that we will introduce in Section 7.4 are manifestly permutation-
equivariant because we only treat point clouds as a set of points, never requiring an imposed
order like in a list. In our implementation, points have an array index associated with them,
but this index is only ever used in a symmetric way.
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Translation equivariance

Condition: L ◦ T~t = T~t ◦ L
where T~t(~ra, xa) := (~ra + ~t, xa). This condition is analogous to the translation equivariance
condition for CNNs. It is possible to use a more general translation equivariance condition,
where the operator on the right-hand side of the equation also acts upon the Y representation
subspace, but we will not consider that in this chapter.

All of the layers in Section 7.4 are manifestly translation-equivariant because we only
ever use differences between two points ~ri − ~rj (for indices i and j).

Rotation equivariance

The group of proper 3D rotations is called SO(3), which is a manifold that can be parametrized
by 3 numbers (see Ref. [95]). Let DX be a representation of SO(3) on a vector space X (and
DY on Y). Acting with g ∈ SO(3) on ~r ∈ R3 we write as R(g)~r, and acting on x ∈ X
gives DX (g)x.

Condition:

L ◦
[
R(g)⊕DX (g)

]
=
[
R(g)⊕DY(g)

]
◦ L (7.1)

where
[
R(g)⊕DX (g)

]
(~ra, xa) =

(
R(g)~ra, D

X (g)xa
)
. (For layers in this chapter, only the

action of DY(g) on Y that will be nontrivial, so we will use a convention of omitting the R3

layer output in our equations.)
The key to attaining local rotation equivariance is to restrict our convolution filters to

have a particular form. The features will have different types corresponding to whether they
transform as scalars, vectors, or higher tensors.

To make our analysis and implementation easier, we decompose representations into
irreducible representations. The irreducible representations of SO(3) have dimensions 2l+ 1
for l ∈ N (including l = 0) and can be chosen to be unitary. We will use the term “rotation
order” to refer to l in this expression. The rotation orders l = 0, 1, 2 correspond to scalars,
vectors, and symmetric traceless matrices, respectively. The group elements are represented
by D(l), which are called Wigner D-matrices (see Ref. [90]); they map elements of SO(3) to
(2l + 1)× (2l + 1)-dimensional complex matrices.

We could additionally have equivariance with respect to O(3), the group of 3D rotations
and mirror operations (a discrete symmetry). We would augment our convolution using the
method for obtaining equivariance with respect to discrete symmetries described in Ref. [67].
We discuss this a bit more in Section 7.5.

7.4 Tensor field network layers

At each level of a tensor field network, we have a finite set S of points in R3 with a vector
in a representation of SO(3) (that has been decomposed into a direct sum of irreducible
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Figure 7.1: Example of V
(l)
acm representing two point masses with velocities and accelerations.

Colored brackets indicate the a (point), c (channel), and m (representation) indices. (l) is

the key for the V
(l)
acm dictionary of feature tensors.

representations) associated with each point. This is essentially a finite version of a tensor
field, which was our inspiration for this network design.

At each point, we can have multiple instances of l-rotation-order representations corre-
sponding to different features of that point. We will refer to these different instances as
channels. We implement this object V

(l)
acm as a dictionary with key l of multidimensional

arrays each with shapes [|S|, nl, 2l + 1] (where nl is the number of channels with represen-
tation l) corresponding to [point, channel, representation index]. See Figure 7.1 for
an example of how to encode a simple system in this notation.

We will describe tensor field network layers and prove that they are equivariant. To
prove that a layer is equivariant, we only have to prove rotation equivariance for a given
rotation order. This requires showing that when the point cloud rotates and the input
features are transformed, the output features transform accordingly. (All of these layers will
be manifestly permutation-invariant and translation-equivariant.)

Point convolution

This layer is the core of our network and builds upon the pointwise convolutions in [221].
We start by considering the action of a general pointwise filter transformation∑

b∈S

Fc(~ra − ~rb)Vbc

Note that our design is strictly more general than standard convolutional neural networks,
which can be treated as a point cloud S of a grid of points with regular spacing.

Spherical harmonics and filters

To design a rotation-equivariant point convolution, we want rotation-equivariant filters. The
spherical harmonics, Y

(l)
m : S2 → C (where m can be any integer between −l and l), are an

orthonormal basis for functions on the sphere. These functions are equivariant to SO(3);
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that is, they have the property that for g ∈ SO(3) and r̂ ∈ S2,

Y (l)
m (R(g)r̂) =

∑
m′

D
(l)
mm′(g)Y

(l)
m′ (r̂).

For our filters to also be rotation-equivariant, we restrict them to the following form:

F
(lf ,li)
cm (~r) = R

(lf ,li)
c (r)Y

(lf )
m (r̂)

where li and lf are non-negative integers corresponding to the rotation order of the input and

the filter, respectively; R
(lf ,li)
c : R≥0 → R are learned functions; and r̂ and r are the direction

unit vector and magnitude of ~r, respectively. Filters of this form inherit the transformation
property of spherical harmonics under rotations because R(r) is a scalar in m. This choice
of filter restriction is analogous to the use of circular harmonics in Ref. [265] (though we do
not have an analog to the phase offset because of the non-commutativity of SO(3)).

Combining representations using tensor products

Our filters and layer input each inhabit representations of SO(3) (that is, they both carry
l and m indices). In order to produce output that we can feed into downstream layers, we
need to combine the layer input and filters in such a way that the output also transforms
appropriately (by inhabiting a representation of SO(3)).

A tensor product of representations is a prescription for combining two representations l1
and l2 to get another representation l1⊗ l2. If u(l1) ∈ l1 and v(l2) ∈ l2, then u(l1)⊗v(l2) ∈ l1⊗ l2
and

(u⊗ v)(l)
m =

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)u

(l1)
m1
v(l2)
m2

where C are called Clebsch-Gordan coefficients (see Ref. [98]). Note that l is any integer
between |l1 − l2| and (l1 + l2) inclusive, and m is any integer between −l and l inclusive.

The crucial property of the Clebsch-Gordan coefficients that we need to prove equivari-
ance of this layer is ∑

m′
1,m

′
2

C
(l0,m0)

(l1,m′
1)(l2,m′

2)D
(l1)

m′
1m1

(g)D
(l2)

m′
2m2

(g)

=
∑
m′

0

D
(l)

m0m′
0
(g)C

(l0,m′
0)

(l1,m1)(l2,m2)

(7.2)

(see, for example, Ref. [204]).

Layer definition

Filters inhabit one representation, inputs another, and outputs yet another. We need the
Clebsch-Gordan coefficients to combine inputs and filters in such a way that they yield the
desired output representation:
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L(lO)
acmO

(
~ra, V

(lI)
acmI

)
:=

∑
mF ,mI

C
(lO,mO)
(lF ,mF )(lI ,mI)

∑
b∈S

F (lF ,lI)
cmF

(~rab)V
(lI)
bcmI

(7.3)

where ~rab := ~ra− ~rb and the subscripts I, F , and O denote the representations of the input,
filter, and output, respectively. A point convolution of an lF filter on an lI input yields
outputs at 2 max(lI , lF )+1 different rotation orders lO (one for each integer between |lI− lF |
and (lI + lF ), inclusive), though in designing a particular network, we may choose not to
calculate or use some of those outputs.

Using the equivariance of the filter F and the property of the Clebsch-Gordan coefficients
Equation 7.2, we can show the rotation equivariance of point convolutions, Equation 7.1
(detailed proof in Appendix H, Section H.3):

L(lO)
acmO

(
R(g)~ra,

∑
m′

I

D
(lI)

mIm
′
I
(g)V

(lI)

acm′
I

)
=
∑
m′

O

D
(lO)

mOm
′
O

(g)L(lO)

acm′
O

(
~ra, V

(lI)
acmI

) (7.4)

This aspect of the design, and this proof of its correctness, is the core of our result.

Scalars (l = 0) and vectors (l = 1)

In this section, we attempt to demystify Wigner D-matrices, spherical harmonics, and
Clebsch-Gordan coefficients by stating their values for a real representation of l = 0 (scalars)
and l = 1 (vectors). (It can sometimes be simpler to use a complex representation, but we can
always use a basis change to convert between real and complex versions.) The corresponding
objects for l > 1 are more complicated.

The Wigner D-matrices are

D(0)(g) = 1 D(1)(g) = R(g),

where R are the usual rotation matrices on R3. The spherical harmonics are

Y (0)(r̂) ∝ 1 Y (1)(r̂) ∝ r̂

The Clebsch-Gordan coefficients are just the familiar ways to combine scalars and vectors:
For 1⊗ 1→ 0,

C
(0,0)
(1,i)(1,j) ∝ δij

which is the dot product for 3D vectors. For 1⊗ 1→ 1,

C
(1,i)
(1,j)(1,k) ∝ εijk

which is the cross product for 3D vectors. The 0⊗ 0→ 0 case is just regular multiplication
of two scalars, and 0⊗ 1→ 1 and 1⊗ 0→ 1 corresponds to scalar multiplication of a vector.
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Self-interaction

We follow Ref. [222] in using point convolutions to scale feature vectors elementwise and
using self-interaction layers to mix together the components of the feature vectors at each
point. Self-interaction layers are analogous to 1x1 convolutions, and they implicitly act like
l = 0 (scalar) types of filters: ∑

c′

W
(l)
cc′V

(l)
ac′m

In general, each rotation order has different weights because there may be different numbers
of channels nl corresponding to that rotation order. For l = 0, we may also use biases.
Putting a self-interaction layer after a one-hot encoding input is the same as the embedding
layer described in Ref. [222].

The weight matrix W is a scalar transform with respect to the representation index m, so
the D-matrices commute with W , straightforwardly implying that this layer is equivariant.
Equivariance for l = 0 is straightforward because D(0) = 1.

Concatenation

The most general way to combine incoming channels of the same rotation order before
the next point convolution layer is to concatenate along the channel axis (increasing the
number of input channels), then apply a self-interaction layer. This concatenation operation
is equivariant because concatenation does not affect the representation index.

Nonlinearity

Our nonlinearity layer acts as a scalar transform in the l spaces (that is, along the m
dimension). For l = 0 channels, we can use

η(0)
(
V (0)
ac + b(0)

c

)
for some function η(0) : R→ R and biases b

(0)
c . For l > 0 channels, our nonlinearity has the

form
η(l)
(
‖V ‖(l)

ac + b(l)
c

)
V (l)
acm

where η(l) : R→ R can be different for each l and

‖V ‖(l)
ac :=

√∑
m

|V (l)
acm|2

(It may be necessary to regularize this norm near the origin for this layer to have desirable
differentiability properties.)

Note that
‖D(g)V ‖ = ‖V ‖

because D is a unitary representation. Therefore, this layer is a scalar transform in the
representation index m, so it is equivariant.
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Global pooling

A global pooling operation that we use in our demonstrations is summing the feature vectors
over each point. This operation is equivariant because D-matrices act linearly.

7.5 Demonstrations and experiments

We chose experiments that are simple enough to be easily understandable yet suggestive of
richer problems. They each highlight a different aspect of our framework. Each of these
tasks is either unnatural or impossible in existing frameworks.

We have focused on understanding how to construct and train these models in controlled
tasks because of the complexity of the architecture. In future work, we will apply our network
to more complicated and useful tasks.

In these tasks, we used radial functions identical to those used in Ref. [221]: We used
radial basis functions composed of Gaussians, and two dense layers are applied to this basis
vector. The number, spacing, and standard deviation of the Gaussians are hyperparameters.
We used a shifted softplus activation function log(0.5ex + 0.5) for our radial functions and
nonlinearity layers. We implemented our models in TensorFlow [5]. Our code is available at
https://github.com/tensorfieldnetworks/tensorfieldnetworks

Tensor outputs: acceleration vectors in Newtonian gravity and
moment of inertia tensor

Network types: 0→ 1 and 0→ 0⊕ 2
To demonstrate the simplest non-trivial tensor field networks, we train networks to calcu-

late acceleration vectors of point masses under Newtonian gravity and the moment of inertia
tensor at a specific point of a collection of point masses. These tasks only require a single
layer of point convolutions to demonstrate. Furthermore, we can check the learned radial
functions against analytical solutions.

The acceleration of a point mass in the presence of other point masses according to
Newtonian gravity is given by

~ap = −GN

∑
n6=p

mn

r2
np

r̂np

where we define ~rnp := ~rn − ~rp. (We choose units where GN = 1, for simplicity.)
The moment of inertia tensor is used in classical mechanics to calculate angular mo-

mentum. Objects generally have different moments of inertia depending on which axis they
rotate about, and this is captured by the moment of inertia tensor (see Ref. [142]):

Iij =
∑
p

mp

[
(~rp · ~rp)δij − (~rp)i(~rp)j

]

https://github.com/tensorfieldnetworks/tensorfieldnetworks
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Figure 7.2: Network diagram for learning gravitational accelerations and moment of inertia
tensor. The input tensor has indices [channels, points, representation]. The input for
the gravitational acceleration and moment of inertia tasks are point mass scalars, therefore
the representation index is 1-dimensional. Convolution filters are indicated by blocks marked
F and Clebsch-Gordan tensors are indicated by CG. The numbers along the arrows for the
representation index indicate the l of that arrow, with CG blocks combining the input and
filter ls to generate output of a specific l.

The moment of inertia tensor is a symmetric tensor, so it can be encoded using a 0 ⊕
2 representation. (Appendix H contains a more detailed explanation of how to go from
irreducible representations to matrix tensor representation.)

For both of these tasks, we input to the network a set of random points with associated
random masses. (Details of about how these points are generated and about the hyperpa-
rameters for our radial functions are given in Appendix H.) For the moment of inertia task,
we also designate a different special point at which we want to calculate the moment of
inertia tensor.

Our networks are simple: for learning Newtonian gravity, we use a single l = 1 convolution
with 1 channel; for learning the moment of inertia tensor, we use a single layer comprised
of l = 0 and l = 2 convolutions with 1 channel each. See Figure 7.2 for a diagram of these
networks. We use elementwise summed L2 losses for the difference of the acceleration vectors
and for the difference of the moment of inertia tensor. We get excellent agreement with the
Newtonian gravity inverse square law after a 1,000 training steps and with the moment of
inertia tensor radial functions after 10,000 steps.

In Figure 7.3, we show that the single radial filter is able to learn the 1/r2 law for
gravitational accelerations. (Related figures for the moment of inertia task can be found in
Appendix H.)

We could have obtained equivariant accelerations by using a pure l = 0 network to
predict the gravitational potential φ : R3 → R, a scalar field, and then taking derivatives
of φ with respect to the point coordinates to obtain the forces and accelerations (as in,
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Figure 7.3: Radial function learned by l = 1 filter for gravity toy dataset. Minimum radial
cutoff distance of 0.5 is chosen for randomly sampled points such that there are enough
samples generated near the minimum distance.

Figure 7.4: 3D Tetris shapes. Blocks correspond to single points. The third and fourth
shapes from the left are mirrored versions of each other.

e.g., Ref. [222]). However, many important vector quantities, such as magnetic fields in
electromagnetism, cannot be derived from scalar fields.

Shape classification

Network type: 0→ 0
In three dimensions, there are 8 unique shapes made of 4 adjacent cubes (up to trans-

lations and rotations); see Figure 7.4. We call these shapes 3D Tetris, and represent them
using points at the center of each cube.

We demonstrate the rotation equivariance of our network by classifying 3D Tetris pieces
in the following way: During training, we input to the network a dataset of shapes in a single
orientation, and it outputs a classification of which shape it has seen. To demonstrate the
equivariance of the network, we test the network with shapes from the same dataset that
have been rotated and translated randomly. Our network performs perfectly on this task.

We use a 3-layer network that includes the following for every layer: all possible paths
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Figure 7.5: Network diagrams for shape classification task showing how information flows be-
tween tensors of different order. Clebsch-Gordan tensors are implied in the arrows indicating
convolutions. The numbers above the self-interactions indicate the number of channels. Indi-
vidual convolutions, indicated by arrows, each produce a separate tensor, and concatenation
is performed after the convolutions.

with l = 0 and l = 1 convolutions, a concatenation (if necessary), a self-interaction layer,
and a rotation-equivariant nonlinearity. We only use the l = 0 output of the network since
the shape classes are invariant under rotation and hence scalars. To get a classification from
the l = 0 output of the network, we sum over the output of all points (global pooling).

Chirality

There are two shapes in 3D Tetris that are mirrors of each other. Any network that relies
solely upon distances (such as SchNet) or angles between points (such as ANI-1 [236]) cannot
distinguish these shapes. Our network can.

A tensor field network that contains a path with an odd number of odd-rotation-order
filters has the possibility of detecting local changes in handedness. This is because

Y (l)(−~r) = (−1)lY (l)(~r).

A tensor field network that does not include such paths will be invariant to mirror symmetry.
As an example, a 0 → 0 network can correctly classify all 3D Tetris shapes except for the
chiral shapes. The smallest network that can classify chiral shapes must include the path

0
1−→ 1

1−→ 1
1−→ 0 (superscripts correspond to filter rotation order), which yields the vector

triple product ~F1 · (~F2 × ~F3) of the filter vectors ~Fi for each layer. This combination picks
up a minus sign under mirror operations.

Missing point

Network type: 0→ 0⊕ 1
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Figure 7.6: A hypothetical example input and output of the missing point network. (A) A
benzene molecule with hydrogen removed (B) The relative output vectors produced by the
network, with arrows shaded by the associated probabilities.

In this task, we randomly remove a point from a shape and ask the network to replace
that point. This is a first step toward general isometry-equivariant generative models for 3D
point clouds.

We output an array of scalars, a special scalar, and one vector at each point. The
vector, ~δa, indicates where the missing point should be relative to the starting point ~ra (both
direction and distance) and the array of scalars indicates the point type. The special scalar
is put through softmax and used as a probability pa measuring the confidence in that point’s
vote. We aggregate votes for location using a weighted sum:∑

a

pa(~ra + ~δa)

(See Appendix H for a proof that this is translation-equivariant.) This scheme is illustrated
in Figure 7.6.

We train on molecular structures for this task because molecules can be comprised of a
small number of atoms (making the task computationally easy to demonstrate) and because
precise positions are important for chemical behavior.

We trained on structures in the QM9 dataset, a collection of 134,000 molecules with up to
nine heavy atoms (C, N, O, F); including hydrogens, there are up to 29 atoms per molecule
[203].

Our network is 3 layers deep, with 15 channels per rotation order at each layer. The
input features to the network are a one-hot encoding of atom types at each point. We use
2-layer radial functions with 4 Gaussians with centers evenly spaced from 0 to 2.5 angstroms
and variance that is half of the spacing. Most covalent bonds are 1-2 angstroms in length,
so our radial functions are smaller than the diameter of the molecules of the QM9 dataset.

We train on a 1,000 molecule subset of molecules that have 5 to 18 atoms. In a single
epoch, we train on each molecule in the training set (1,000 molecules with 5-18 atoms) with
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Table 7.1: Performance on missing point task

Atoms
Number of
predictions

Accuracy (%)
(≤ 0.5 Å

and atom type)

Distance
MAE in Å

5-18 (train) 15863 91.3 0.16
19 19000 93.9 0.14
23 23000 96.5 0.13
25-29 25356 97.3 0.16

one randomly selected atom deleted (1,000 examples total per epoch). We then test the
network on a random selection of 1,000 molecules with 19 atoms, 1,000 molecules with 23
atoms, and 1,000 molecules with 25-29 atoms.

For each epoch during training, we use each molecule once and randomly remove one
atom. During evaluation, for each molecule, we make a prediction for every possible atom
that could be removed. For example, for a molecule with 10 atoms, we will generate 10
predictions, each with a different atom missing. This is why the number of predictions is
larger than the number of molecules.

We define an accurate placement of the missing atom position to be within 0.5 angstroms
of the removed atom position with the correct atom type according to argmax of the returned
atom type array. We choose the 0.5 angstrom cutoff because it is smaller than the smallest
covalent bond, a hydrogen-hydrogen bond which has a length of 0.7 angstroms. We present
the accuracy of our predictions in Table 7.1. We train for 225 epochs and show comparable
prediction accuracy on the test sets of 19, 23, and 25-29 atoms as the training set of 5-18
atoms. We include a breakdown of the accuracy and distance mean absolute error (MAE)
in the Appendix H.

Our network is most accurate for carbon and hydrogen missing atoms (over 90%), moder-
ately accurate for oxygen and nitrogen (about 70-80%), and not accurate for fluorine atoms
(since there are only 50 examples in our training set, they might not be seen during training
due to random selection of the missing atom).

7.6 Future work

We have explained the theory of tensor field networks and demonstrated how they work on
simple examples.

We hope that tensor field networks can be applied to a wide range of phenomena: In
the context of atomic systems, we hope to train networks to predict properties of large and
heterogeneous systems, learn molecular dynamics, calculate electron densities (as inputs to
density functional theory algorithms), and hypothesize new stable structures. Ultimately,
we hope to design new useful materials, drugs, and chemicals.
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For more general physics, we see potential applications in modeling complex fluid flows,
analyzing detector events in particle physics experiments, and studying configurations of
stars and galaxies. We see other applications in 3D perception, robotics, computational
geometry, and bioimaging.
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Chapter 8

Outlook

In this thesis, we have understood the properties of a variety of atomic systems in terms of
their structural motifs. We have classified these motifs based on their geometry, topology,
and symmetry. We have also investigated potential methods for learning to identify struc-
tural motifs and relating those motifs to electronic properties using custom neural network
architectures equivariant to 3D rotations and translations. While we have focused in this
work on going from structural motifs to properties, the more challenging question is can we
do the inverse?

A holy grail of computational materials discovery is a tool that, given desired mate-
rial properties, can automatically generate corresponding atomic structures that host those
properties [280]. However, before this tool can be feasible, we need an algorithm capable
of generating stable atomic structures, regardless of properties. Such an algorithm does not
currently exist.

High-throughput computational materials discovery pipelines are bottlenecked by our
ability to systematically propose new structures. Generally, structures fed to high-throughput
searches are already experimentally known or are just element substitutions of existing ma-
terials. Current approaches to computational materials discovery often presuppose that a
material already exists and is awaiting identification. In contrast to this assumption, syn-
thesis efforts (such as those at Berkeley Lab, including the Molecular Foundry and the
Energy Sciences Area) regularly yield materials that differ substantially from the structures
in databases of previously known materials.

An algorithm that could generate stable atomic structures could in the process learn a
representation of the structural motifs atomic systems can host. This representation could
be used as an ab initio materials map and as a similarity metric for comparing diverse
atomic systems. There are many similarity metrics that exist for specific classes of material
systems, especially molecules, but they cannot naturally be stitched together. Furthermore,
these metrics do not necessarily allow for algebra on the metric – interpolations in metric
space cannot necessarily be converted back into meaningful structures.

Genetic algorithms have been proposed as a means to generate hypothetical atomic
structures, but they are generally constrained to explore a restricted space of structures
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[261, 195, 157, 181]. Furthermore, it is difficult to understand why a given structure is
generated by these algorithms.

With deep learning techniques specialized to deal with 3D geometry, we can learn a
similarity metric out of the wealth of structural data, we already have available. Ref. [92],
which focuses on molecules, demonstrates that learning such a representation is possible,
although more work is needed to train a network on broader classes of atomic systems.

A computational tool that could generate new atomic-scale geometries would greatly
accelerate materials discovery and innovation. This approach would also aid in resolving
atomic structures from experimental data (such as data generated by users of the ALS)
by reducing the time it takes to characterize new structures. MOChA style synthesis is
amenable to combinatorial exploration through use of automated robotic synthesis. To better
explore this synthesis space, it would be advantageous to have specific structures in mind to
synthesize and quickly assess the relative structural stability and electronic properties of such
structures. While hypothetical structures and density functional theory calculations in and
of themselves cannot readily suggest specific synthetic pathways, due to the modularity of
MOChA style synthesis, often just having components in mind gives direction to a synthetic
search.

Existing tools will play an important role in creating structure generating algorithms.
Contributors to the python package atomate have already started the process of building
recipes for reliably calculating specific material properties with minimal user input [165].
These recipes are rapidly feeding databases of density functional theory calculations and will
serve as crucial datasets for statistical methods. Deep learning techniques can expedite the
calculation of properties traditionally computed with density functional theory and enable
ab initio molecular dynamics for large systems (exceeding thousands of atoms) [89, 223]. It
would also be very helpful to have open-source tools with modern APIs to transform and
relate structures through symmetry. Bilbao Crystallographic Server and ISOTROPY are
excellent tools. However, the fact that there is no open-source version of these codes and
that they do not have modern APIs makes them difficult to modify and include for specific
materials search efforts, including high-throughput first-principles workflows. Having easier
access to these tools would make it much simpler to expand the automated ferroelectric
workflow described in Chapter 6 by including nonpolar structures derived polar structures
and vice versa.

In parallel with automated methods, we need better human-guided design tools to ar-
ticulate the relationships of atomic systems. While software like Avogadro can help a user
articulate a specific atomic system and test its feasibility, these tools do not make the intuitive
leap that one atomic structure can imply many others, such as was the case in Chapters 3
[100]. This is the difference between design of individual systems to systematic design. Para-
metric models used in mechanical design could be immensely useful here if we can combine
them with fast methods for testing the chemical feasibility of atomic structures. The pop-
ularity of Foldit, a video game built on the protein folding software Rosetta, demonstrates
that it is possible to create interactive environments where quantitative chemical insights
can be translated into tools that harness human visual intuition [131].
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New tools are needed to bring us closer to the systematic design of atomic systems. These
tools are emerging with the confluence of open-source software, robotic tools for synthesis
and characterization, decreasing computational costs, systematized high-throughput first-
principles calculations, and rapidly evolving deep learning techniques.
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[65] T. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical CNNs. International
Conference on Learning Representations, 2018.

[66] T. Cohen and M. Welling. Group equivariant convolutional networks. In Proceedings
of the International Conference on Machine Learning (ICML), 2016.

[67] T. Cohen and M. Welling. Steerable CNNs. In International Conference on Learning
Representations (ICLR), 2017.

[68] J. F. Corrigan, O. Fuhr, and D. Fenske. Metal chalcogenide clusters on the border
between molecules and materials. Advanced Materials, 21(18):1867–1871, 2009.

[69] H. L. Cuthbert, A. I. Wallbank, N. J. Taylor, and J. F. Corrigan. Synthesis and Struc-
tural Characterization of [Cu20Se4(3-SePh)12(PPh3)6] and [Ag(SePh)]∞. Zeitschrift
fr anorganische und allgemeine Chemie, 628(11):2483–2488, 2002.



BIBLIOGRAPHY 104

[70] I. G. Dance, K. J. Fisher, R. M. H. Banda, and M. L. Scudder. Layered structure
of crystalline compounds silver thiolates (agsr). Inorganic Chemistry, 30(2):183–187,
1991. doi: 10.1021/ic00002a008.

[71] M. de Jong, W. Chen, H. Geerlings, M. Asta, and K. A. Persson. A database to enable
discovery and design of piezoelectric materials. Scientific Data, 2:150053, 2015.

[72] K. Deguchi, K. Hasebe, K. Gesi, and T. Asahi. 39A-1 (NH4) 2SO4 [F]. In Inorganic
Substances other than Oxides, pages 1–53. Springer.

[73] K. Deguchi, K. Hasebe, K. Gesi, and T. Asahi. 39A-16 K2ZnBr4 [F]. In Inorganic
Substances other than Oxides, pages 1–10. Springer.

[74] K. Deguchi, K. Hasebe, K. Gesi, and T. Asahi. 39A-2 K2SeO4 [F]. In Inorganic
Substances other than Oxides, pages 1–39. Springer.

[75] K. Deguchi, K. Hasebe, K. Gesi, and T. Asahi. 39A-7 Rb2CoCl4 [F]. In Inorganic
Substances other than Oxides, pages 1–15. Springer.

[76] K. Deguchi, K. Hasebe, K. Gesi, and T. Asahi. 39A-9 K2ZnCl4 [F]. In Inorganic
Substances other than Oxides, pages 1–32. Springer.

[77] K. Deguchi, K. Hasebe, K. Gesi, and T. Asahi. 39A-10 Rb2ZnCl4 [F]. In Inorganic
Substances other than Oxides, pages 1–51. Springer, 2005.

[78] S. Dehnen, A. Eichhfer, and D. Fenske. Chalcogen-bridged copper clusters. European
Journal of Inorganic Chemistry, 2002(2):279–317, 2002.

[79] M. Dion, H. Rydberg, E. Schrder, D. C. Langreth, and B. I. Lundqvist. Van der waals
density functional for general geometries. Physical Review Letters, 92(24):246401, 2004.
PRL.

[80] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak,
J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang. Atomically
thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255):1518–
1521, 2015.

[81] S. L. Dudarev, S. Y. Savrasov, C. J. Humphreys, and a. P. Sutton. Electron-energy-
loss spectra and the structural stability of nickel oxide:An LSDA+U study. Physical
Review B, 57(3):1505–1509, 1998.

[82] I. Dzyaloshinsky. A thermodynamic theory of weak ferromagnetism of antiferromag-
netics. Journal of Physics and Chemistry of Solids, 4(4):241–255, 1958.



BIBLIOGRAPHY 105

[83] F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl,
O. Vinyals, S. Kearnes, P. F. Riley, and O. A. von Lilienfeld. Prediction errors of
molecular machine learning models lower than hybrid DFT error. Journal of Chemical
Theory and Computation.

[84] L. J. Farrugia. W inGX and ORTEP for Windows: an update. Journal of Applied
Crystallography, 45(4):849–854, Aug 2012.

[85] A. Fonari and C. Sutton. Effective mass calculator for semiconductors. http://

afonari.com/emc/.

[86] K. F. Garrity. High-throughput first-principles search for new ferroelectrics. Phys.
Rev. B, 97:024115, Jan 2018.

[87] K. F. Garrity, K. M. Rabe, and D. Vanderbilt. Hyperferroelectrics: Proper Ferro-
electrics with Persistent Polarization. Phys. Rev. Lett., 112:127601, Mar 2014.

[88] A. K. Geim and I. V. Grigorieva. Van der waals heterostructures. Nature,
499(7459):419–425, 2013.

[89] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In D. Precup and Y. W. Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1263–1272, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[90] R. Gilmore. Lie groups, physics, and geometry: An introduction for physicists, engi-
neers and chemists. Cambridge University Press, 2008.

[91] P. A. Goddard, J. Singleton, P. Sengupta, R. D. McDonald, T. Lancaster, S. J.
Blundell, F. L. Pratt, S. Cox, N. Harrison, J. L. Manson, H. I. Southerland, and
J. A. Schlueter. Experimentally determining the exchange parameters of quasi-two-
dimensional heisenberg magnets. New Journal of Physics, 10(8):083025, Aug. 2008.
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Figure A.1: X-ray diffraction pattern in the (hk0) (top) and (h1l) (bottom) planes. Raw
data (AB) is well reproduced by calculations (CD) for the Cccm structure (Table A.1), in
contrast an Fddd (hyper-honeycomb) structure (EF) can only explain the existence of less
than half of the observed diffraction peaks.

Single Crystal Refinement

The very different magnetic ordering temperature of our flux-grown single crystals, TN =
38 K, compared to 15 K [231] reported for the so-far-synthesized powders of Li2IrO3 (layered
honeycomb crystal structure, monoclinic C2/m unit cell [189]) suggested that the flux-grown
samples may realize a polytype of Li2IrO3 with a different crystal structure. This was clearly
revealed by x-ray diffraction measurements performed using a Mo-source Oxford Diffraction
Supernova diffractometer. Several crystals were measured and the diffraction patterns were
all consistent in terms of the unit cell and selection rules for the observed diffraction peaks.
Here we report in detail the data on an approximate rhombus-shaped ∼35×103µm3 flux-
grown crystal.

The lattice parameters of the monoclinic layered honeycomb crystal structure [189] could
not account for the positions of over 2000 Bragg peaks measured in our diffraction experi-
ment, which instead could be indexed with an orthorhombic unit cell with parameters given
in Table A.1. Representative diffraction patterns are illustrated in Fig. A.1AB, where (h, k, l)
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Figure A.2: Observed diffraction intensities plotted against those calculated in the refined (A)
Cccm (Table A.1) and (B) Fddd structural models. The dashed lines indicate 1:1 agreement
between data and model and error bars reflect the intensity uncertainties after averaging the
observed intensities of reflections expected to be equivalent under orthorhombic symmetry.
The three families of reflections discussed in the text are plotted as different symbols/colors
(black circles, red squares, and blue triangles). Note that the Fddd model predicts zero
intensity at the observed (odd, odd, even) reflections and largely overestimates the intensities
of (odd, odd, odd) peaks.

refer to wavevector components in reciprocal lattice units of the orthorhombic unit cell. The
highest-symmetry orthorhombic space groups that can account for all of the observed peaks
in the diffraction patterns are Cccm (no. 66) and Ccc2 (no. 37). Both have the same selec-
tion rule for allowed reflections for a general atomic position, (hkl) : h+ k even, (0kl) : both
k and l even, (h0l) : both h and l even. Both have a C-centered unit cell, corresponding to a
translation of (1

2
,1
2
,0), and Ccc2 is obtained from Cccm by removing a mirror plane normal

to the c-axis. In the final refinements of the crystal structure reported below, we did not find
any significant atomic displacements and correspondingly no improvement in the goodness
of fit when the crystal symmetry was lowered from Cccm to Ccc2, so in the following we
discuss only the higher symmetry case.

The unit cell volume is approximately 4× the unit cell volume of the layered honeycomb
structure (Z = 4), which suggested that the present polytype has the same mass density, but
with Z = 16 formula units per unit cell. Since iridium is by far the dominant x-ray scatterer
with 77 electrons (oxygen 8 and lithium 3 electrons), we first attempted a preliminary fit to
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CccmA B Fddd

a
b

c

Figure A.3: Crystal structure models described in the text, (A) Cccm (Table A.1) and (B)
Fddd, large brown balls - Ir, medium light gray balls - Li, small gray balls - O.

the x-ray data assuming a simplified structural model composed solely of Ir ions located in
general positions within the Cccm space group symmetry. The iridium coordinates were set
free to refine within the bounds of the orthorhombic unit cell. Remarkably, the refinement
easily converged with Ir ions occupying two crystallographic sites with coordinates close to
those listed in Table A.1. To test that this solution was reliable, and not an accidental
local minimum in the least squares refinement, we employed simulated annealing techniques
implemented in FullProf [210] to explore the full parameter space of the structural model
against the full data set (treating each observed (h, k, l) reflection as an independent data
point without imposing any symmetry constraints). By constructing a lattice with the
dimensions of the orthorhombic unit cell a × b × c but with lowered symmetry P 1̄, and
populating it with eight iridium ions with atomic fractional coordinates free to vary within
the full unit cell according to the annealing process, we found an unconstrained (except for
inversion symmetry) yet highly reproducible iridium lattice that corresponded to a global
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Figure A.4: Preliminary measurements of the change in the lattice parameters along the
crystallographic a, b and c direction on cooling below the magentic transition at TN. We
do not observe any changes in the crystallographic symmetry, but the elastic response in
each direction is highly anisotropic, with the b-axis changing roughly 10 times more that the
a-axis.

minimum in the parameter space. This structure was found to be in perfect agreement with
the iridium framework of the initial refinement, confirming both the structural model and
the space group, Cccm. In addition, the choice of space group symmetry was subjected to
more rigorous testing by simulated annealing, which was systematically performed under
symmetry constrains corresponding to sub-groups of Cccm and Fddd (see below), all of
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Figure A.5: The magnetic anisotropy extracted from the low field slope of the torque signal
τ/µ0H, similar to that shown in Figure 3.4 B, taken for rotations through the three principal
crystallographic planes and at different temperatures. The anisotropy is shown in units of
µB per Ir, for (A) the χa − χb, (B) χa − χc and (C) χb − χc. The only change of sign in the
anisotropy is in (A) and an enlargement of this scale is shown in Figure 3D of the main text
to emphasize this.

which converged to the Cccm solution or failed, respectively.
Using the measured Bragg peak intensities, space group symmetry, and the identified

iridium positions, we calculated the electron density maps in the unit cell (using Shelxl [177]
and Wingx [84]). This revealed additional electron density pockets, which we identified as
the location of oxygen ions. Lithium ions scatter x-rays very weakly (only 3 electrons) and
their positions cannot be reliably identified using x-ray scattering techniques, especially in
the presence of heavy elements such as iridium. However, assuming that the fundamental
building blocks of the structure are edge-sharing IrO6 and LiO6 octahedra (as in the honey-
comb polytype), one can readily determine idealized lithium positions (listed in Table A.1
and shown in Fig. A.3A) required to achieve this connectivity.

Assuming lithium ions to be fixed at the ideal positions, a full structural model was
refined against the data set using FullProf [210]. Iridium and oxygen ions were located in
the initial positions determined above, and their atomic coordinates were set free to vary
within the constraints of Cccm crystal symmetry. It became apparent that the structural
model gave an excellent fit to most reflections, but over-estimated the diffraction intensity of
a small subset. Specifically, the empirically-determined selection rules for observed (h, k, l)
reflections give three families: (even, even, even) with h+ k + l = 4n, n integer, (odd, odd,
odd) except l = 3 + 6n, n integer, and (odd, odd, even). The intensities of these families of
peaks are plotted in Fig. A.2A against the model calculation. It is clear that the model is in
excellent agreement with the (even, even, even) and (odd, odd, odd) reflections. The model
also explains the presence of the third family of reflections, the (odd, odd, even), but the
observed intensity is weaker than predicted. In fact those reflections showed an asymmetry in
the intensity not expected under orthorhombic symmetry, i.e. I(odd, odd, even) 6= I(-odd, odd, even)

(Fig. A.2A only shows the averaged (reduced) intensity of those reflections with the error
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Figure A.6: Torque signal taken at magnetic fields up to 35 T at the National High magnetic
Field Laboratory. The field H∗ is extremely clear at all angles. At angles away from the
principal axes the torque signal is very clearly linear and follows a sin 2θ dependence described
by equation A.4. The larger asymmetry in this data set compared to that measured in the
superconducting magnet, is due to the larger field gradient experienced by the sample.

bars indicating the spread of values). The degrees of both the lowered average intensity and
asymmetry were found to vary across a number of different samples measured, however, the
excellent agreement to the (even, even, even) and (odd, odd, odd) reflections was robust and
consistent across all samples tested. We propose that the discrepancies in (odd, odd, even)
intensities are most likely due to sample-dependent structural stacking faults, as discussed
later in this section. A final refinement was performed against the (even, even, even) and
(odd, odd, odd) reflections with excellent reliability factors RF2 = 3.83%, wRF2 = 4.91%, and
RF = 2.27% [including also the (odd, odd, even) reflections in the refinement resulted only
in very small changes in the oxygen positions, which we regard to be below the accuracy that
can be reliably determined]. The obtained structural parameters from the final refinement
are given in Table A.1; essentially the same results are obtained in refinement done using
Sir-92 [24] and Shelxl [177]. The above refinement assumed stoichiometric Li2IrO3 with all
atomic positions fully occupied. However, we have also tested for the possibility that each
of the seven cation sites (Ir1-2, Li1-5) could have a mixed Li/Ir occupancy. In this test we
constrain the total site occupancy to unity (i.e. no structural vacancies) with no constraint
on the total Li:Ir atomic ratio (i.e. stoichiometry free to vary). Under these constraints a
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Figure A.7: (A) The two choices of edge shared bonds give rise to two kinds of links that
are locally indistinguishable. These define two bonding planes (see Figure 3A of the main
text) that are an angle φo ∼ 70◦ apart. (B) Links along the c-axis can either keep the same
(S-links) or rotate (R-links) the honeycomb planes.

full refinement of Li/Ir occupancies on the cation sites lead to no significant improvement in
the refinement parameters. Furthermore, the occupancies of the Li and Ir sublattices refined
to their nominal values (Li only in Li1-5 sites and Ir only in Ir1-2 sites) within an error of
less than 3%, further confirming the stoichiometric composition and the structural model
in Table A.1. The obtained crystal structure is illustrated in Fig. A.3A. The full 3D x-ray
diffraction pattern observed is well accounted for by this model and representative plots are
shown in Fig. A.1CD. The refined structure has IrO6 octahedra distorted from ideal cubic
with non-equivalent Ir-O distances spanning a range of up to ∼7% for each octahedron,
comparable to the range of Ir-O distances reported for the IrO6 octahedra in the layered
honeycomb polytype [189].

The resulting Ir network show in Fig.1B-C of the main text is a novel arrangement of
near-ideal honeycombs in three dimensions not reported before as far as we know in other
3d or 5d oxides. Ir honeycombs form parallel rows that alternate along the two diagonals
of the unit cell in the ab plane, namely along a + b at z = 0 and along a − b at z = 1/2.
This alternation leads to a 3D network of inter-connected honeycomb rows stacked along
the c-axis, where all nearest-neighbor Ir-Ir links are nearly the same length (∼ c/6) and all
Ir-Ir-Ir bond angles are close to 120◦. The Ir positions are indeed very close to such an ideal
lattice realized for Ir1 at 8k (1/4, 1/4, 1/12), Ir2 at 8i (1/2, 1/2, 1/6) and c =

√
3(a2 + b2),

compare with Table A.1 where the latter equation is satisfied to within 0.1%. This near-
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Figure A.8: The harmonic honeycomb family is rich in structural possibilities that tune
symmetry (depending on whether the number of NR and NS links is odd or even) and
dimensionality (the extent of the NS links). This table summarizes this observation. Note
we assume that the IrO6 octahedra have ideal cubic symmetry. Complex distortions may
create systems of lower symmetry than that indicated.

regularity of the Ir lattice is directly manifested in the observed x-ray diffraction pattern by
a conspicuous absence of detectable scattering intensity along the c-axis for l = 3 + 6n, n
integer as illustrated in Fig. A.1B, this is not due to a general symmetry-imposed selection
rule of the space group, but is due to a near cancellation of intensity for a lattice built out
of near-ideal honeycomb sections stacked along the c-axis.

The obtained iridium lattice can be thought of as being the N = 1 member of a regular
series of periodic structures of alternating honeycomb sections of different widths (N =
1, 2, 3 . . .∞) as illustrated in Fig. 5B of the main text, with the layered honeycomb polytype
(C2/m) being the N = ∞ end member. The N = 1 structure could be “transformed” into
the honeycomb polytype by selectively mirror-imaging in the bc plane the iridium honeycomb
rows centered at z = 1/2. In this case, iridium ions form infinite honeycomb layers in the
(a + b, c) plane and the unit cell along c is halved. It is clear from this construction why
the reported repeating unit cell dimension of the layered honeycomb structure along this
direction (labelled as bm = 8.9294 Å in the standard monoclinic cell notation [189]) is nearly
half that of the c-axis repeat of the N = 1 polytype, c = 17.8363(10) Å, reported here.

For completeness we note that the different polytypes in the series plotted in Fig. 3.5B
could be easily distinguished experimentally, as they have different symmetries and/or differ-
ent unit cell sizes, and consequently distinct diffraction patterns. For illustration we consider
the N = 0 hyper-honeycomb[127, 146] shown in Fig. 3.5B, H〈0〉. The periodic iridium atomic
arrangement can be described by an orthorhombic unit cell of the same size a × b × c and
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Table A.1: Fractional atomic coordinates for H〈1〉-Li2IrO3 extracted from single-crystal x-
ray data at 300 K (Cccm space group, a = 5.9119(3) Å, b = 8.4461(5) Å, c = 17.8363(10) Å,
Z = 16). All sites are fully occupied and Li positions are fixed to nominal values such that
edge-sharing IrO6 and LiO6 octahedra form a near-hexagonal arrangement in both (a+b, c)
and (a− b, c) planes. The isotropic displacement parameter U for Li is also fixed to a value
in the range found for the other atoms. Values in brackets show standard deviations in the
fitted parameters.

Atom Site x y z U(Å2)
Ir1 8k 0.25 0.25 0.0836(2) 0.0124(4)
Ir2 8i 0.5 0.5 0.1670(3) 0.0206(6)
Li1 8j 0 0.5 0.3333 0.01
Li2 8k 0.75 0.25 0.25 0.0
Li3 8k 0.75 0.25 0.91667 0.01
Li4 4c 0.5 0.5 0.5 0.01
Li5 4d 0.5 0 0 0.01
O1 16m 0.77(1) 0.515(3) 0.087(4) 0.02(1)
O2 8g 0.72(2) 0.5 0.25 0.04(1)
O3 8l 0.00(1) 0.262(8) 0 0.006(9)
O4 16m 0.49(1) 0.262(6) 0.163(3) 0.006(9)

orientation of axes as for N = 1, but face-centered and with diamond glide planes. In the
corresponding space group, Fddd (no. 70), iridium ions occupy a single crystallographic site,
16g (0, 0, z) (origin choice 1), with z = 1/12 assuming the c-axis Ir-Ir bond length is c/6.

Fig. A.1AB and EF show the comparison between data and the calculated diffraction pat-
tern for a generic hyper-honeycomb structural model constructed such as to have hexagonal
layers of edge-sharing IrO6 and LiO6 octahedra in the (a± b, c) planes and 90◦ O-Ir-O and
O-Li-O bonds. The atomic coordinates considered are Li1 16g (0, 0, 1/4), Li2 16g (0, 0, 5/12),
O1 32h(1/4, 0, 1/6), O2 16e (1/4, 0, 0) and the full structure is plotted in Fig. A.3B. As il-
lustrated in Fig. A.1EF the Fddd space group has a much more restrictive selection rule for
allowed reflections compared to Cccm, for example in the (hk0) plane h+k is required to be
a multiple of 4 and both h and k to be even, as opposed to the less restrictive h+ k even for
Cccm, and for (h1l) both h and l odd, as opposed to h odd and l unrestricted for Cccm. The
Cccm selection rules can account for all the experimentally observed reflections, whereas an
Fddd unit cell could not account for the presence of the (odd, odd, even) reflections, such as
the relatively strong (110), see Fig. A.1AE. Furthermore, refinement of the Fddd structure
against the intensities of reflections allowed in this symmetry, namely (even, even, even)
and (odd, odd, odd), gives a statistically rather poor fit with RF2 = 21.4%, wRF2 = 36.2%,
and RF = 13.3%. This becomes clear when comparing the calculated intensities to those



APPENDIX A. APPENDIX FOR REALIZATION OF A THREE-DIMENSIONAL
SPIN-ANISOTROPIC HARMONIC HONEYCOMB IRIDATE 131

observed, shown in Fig. A.2B. The Fddd model only reproduces the correct intensities for
the (even, even, even) reflections, whereas the intensities of the (odd, odd, odd) reflections
are calculated to be approximately double that observed. For completeness, the additional
family of (odd, odd, even) reflections observed in the experimental data are also shown in
Fig. A.2B, wrongly predicted to have exactly zero intensity in the Fddd space group. These
results, coupled with the conclusions drawn from the simulated annealing tests, conclusively
show that the hyper-honeycomb Fddd structural model (and lower-symmetry structures ob-
tained by small distortions of an Fddd parent structure) can be ruled out for the single
crystals reported in this study.

Finally, we note that in addition to sharp Bragg peaks the x-ray diffraction pattern also
revealed the presence of weak, but clearly visible diffuse scattering in the form of “rods”
of scattering intensity in-between Bragg peaks along the l-direction, sharply defined in the
h and k directions, as clearly seen in Fig. A.1B with the selection rule h odd and k odd.
Whilst a quantitative refinement of the data including the diffuse scattering is beyond the
scope of this present study, we propose that this diffuse scattering most likely originates
from occasional structural faults in the nominal Cccm atomic stacking sequence along the
c-axis. The presence of diffuse scattering takes intensity away from the sharp Bragg peaks,
and it is possible that some families of Bragg peaks are affected more than others; this
might explain why the intensity of one particular family of reflections, namely the (odd,
odd, even) peaks located on the diffuse scattering rods, appears weaker in experiment than
predicted by a structurally-perfect Cccm model considered in our refinement, see Fig. A.2A
(blue triangles).

We have carried out extensive high-resolution SXD measurements at ∼8 K to search sig-
nature of lowering of structural symmetry due to magnetic transition. These measurements
were performed on the 6-ID-B undulator bemaline at Advanced Photon Source using an in-
cident photon energy of 11.215 keV and pyrolitic graphite analyzer. Only resolution-limited
Bragg peaks allowed by the proposed space group were observed indicated the structure
remained three-dimensionally ordered and fully coherent well below TN . Furthermore, these
measurements also ruled out any superlattice peaks (e.g. due to structural modulation, or
magnetic order) at half-integer reciprocal-lattice points such as (1/2,0,0), (1/2,1/2,0) The
temperature dependence of the orthorhombic lattice parameters around the magnetic tran-
sition TN = 38 K was measured using θ − 2θ scans to determine the 2θ location of strong
structural Bragg peaks (-2,0,6), (0,0,12), and (0,2,14) as a function of temperature between
8.4 - 45.1 K. Preliminary, data in Figure A.4 shows a small change of all orthorhombic lat-
tice parameters around the 38 K magnetic transition and relaxation to comparable lattice
parameters both below and above the transition. The percent change in lattice parameter
appears to be an order of magnitude greater for the b-axis than for a or c, analogous to
magnetic anisotropy seen in the susceptibility data.
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Magnetic Characterization

A magnetically anisotropic material experiences a magnetic torque when its magnetization
is not aligned with the applied magnetic field; the deflection of the cantilever in a uniform
magnetic field is hence a direct measure of the magnetic anisotropy,

τ = M ×H . (A.1)

At small fields, where the magnetic response is linear, the magnetic anisotropy is captured
by a susceptibility tensor χij.

Mi = χijHj (A.2)

The tensor is diagonal in the basis of the principal magnetic axes, which defines three prin-
cipal components of magnetic susceptibility. For an orthorhombic crystal, these magnetic
axes naturally coincide with the crystallographic directions, defining χa,b,c. For example, for
rotations in the b-c plane, the anisotropic magnetization (Mb,Mc) = (χbHb, χcHc) creates a
torque

τa =MbHc −McHb = (χb − χc)HbHc (A.3)

Defining θ as the angle between a crystallographic axis (c in this case) and the applied
magnetic field, the torque can be rewritten as

τa =(χb − χc)H2sinθcosθ =
(χb − χc)H2sin2θ

2
(A.4)

From this expression, the magnetic axes can be precisely identified from a complete angular
dependence of the torque measurements (Figure 4B of the main text), with the amplitude
of the sin2θ dependence being proportional to the magnetic anisotropy αbc = (χb − χc). In
H〈1〉-Li2IrO3 the magnetic axes are independent of temperature between room temperature
and 1.5 K, but unusually, the sign of the anisotropy between the b and c axes, αbc, changes
at around 75 K(Figure 4D of the main text).

A convenient way to represent magnetization as observed by torque measurements is by
plotting τ/H versus H (Figure 4B of the main text). This figure clearly demonstrates the
linear dependence of magnetization at low fields with a slope that follows a sin2θ dependence
with field orientation (colored curves). The softer component of magnetization appears to
saturate at a field H∗, above which the linear response (equation A.4) is no longer valid. The
finite torque at magnetic fields greater than H∗ indicates the finite angle between M and H
up to the highest measured magnetic fields. H∗ is strongly dependent on the orientation of
the crystal with respect to magnetic field. The largest kink field along the crystallographic
a direction was measured at the NHMFL in Tallahassee. The observed overall negative
slope at higher fields is due to a force component from a finite magnetic field gradient. A
nonlinear torque signal was measured below H∗ for magnetic fields aligned close to the hard
susceptibility direction, χa, where the minimal torque condition is an unstable equilibrium
(Figure 4B of the main text and Figure A.6).
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In the harmonic honeycomb series each iridium atom occupies a local environment with
uniaxial g-factor anisotropy that can be captured by a magnetic susceptibility χ‖, parallel
to and χ⊥, perpendicular to the plane defined by its three nearest neighbor iridium atoms
— the interlaced honeycomb planes. The measured high temperature magnetic anisotropy,
αij, arises from the sum of this local anisotropy of the two honeycomb planes revealing that
χ‖ > χ⊥. Notably this is the opposite of the anisotropy χ‖ < χ⊥ observed for the layered
sodium iridate, H〈∞〉-Na2IrO3 Ref. [232]. Superposition of both honeycomb planes leads to

Ma = M⊥cosφ/2 +M‖sinφ/2

Mb = M⊥sinφ/2−M‖cosφ/2 (A.5)

where the magnetization parallel, M‖, and perpendicular, M⊥, to each of the planes can be
written

M⊥ = χ⊥H⊥ = χ⊥(Ha cosφ/2 +Hb sinφ/2)

M‖ = χ‖H‖ = χ‖(Ha sinφ/2−Hb cosφ/2) (A.6)

Therefore, the geometric relation between the underlying pair of honeycomb planes results
in three components of magnetization determined by only two microscopic parameters

Ma = Ha

[
χ⊥cos2φ/2 + χ‖sin

2φ/2
]

Mb = Hb

[
χ⊥sin2φ/2 + χ‖cos2φ/2

]
Mc = Hcχ‖ (A.7)

Using χ± = (χ‖ ± χ⊥)/2 the anisotropic susceptibility of this family of structures can be
simplified to

χa = χ+ − χ−cosφ

χb = χ+ + χ−cosφ

χc = χ+ + χ− (A.8)

As a consequence, at high temperatures where g-factor anisotropy dominates, all three
principal components of the magnetic susceptibility must order with χc > χb > χa. The
geometry of the undistorted, edge-sharing octahedra constrains the angle separating these
two planes to φ = arccos(1/3) ≈ 70◦ (Figure 3A of the main text). The geometric angle
φ = arccos 1/3, which is also reflected in the crystal morphology, is directly apparent in the
observed high temperature magnetic anisotropy, where χa,b,c are equally spaced,

χa = χ+ − (1/3)χ−

χb = χ+ + (1/3)χ−

χc = χ+ + χ−. (A.9)

This equal separation is observed as the ratios of the high temperature anisotropies saturating
to the values of αba/αac = −1/2, αbc/αac = 1/2, αbc/αab = 1 (see Figure 3.3 B).
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Kitaev quantum spin liquid

Every member of the harmonic honeycomb series is bonded by edge sharing IrO6 octahedra.
The edge-sharing geometry of the octahedra preserves the essential ingredients of the Kitaev
model and this is universal for this family of structures. All three dimensional arrangements
of edge-sharing octahedra maintain the interfering Ir-O2-Ir exchange paths, where each of
the three nearest neighbor Ir-Ir interactions predominantly couples a particular orthogonal
component of spin (see Figure 4A of the main text). In the idealized limit of symmet-
ric octahedra, such changes may compete primarily with the usual rotationally symmetric
Heisenberg interactions. In the Kitaev limit where Heisenberg interactions may be set aside,
the Hamiltonian becomes a sum of spin-anisotropic exchange terms

HK = −Kc
∑
〈ij〉∈b̂⊥

S b̂
i S

b̂
j −Kh

∑
〈ij〉∈(â+ĉ)⊥

Sâ+ĉ
i Sâ+ĉ

j −Kh
∑

〈ij〉∈(â−ĉ)⊥

Sâ−ĉ
i Sâ−ĉ

j , (A.10)

where S b̂ and Sâ±ĉ = (Sâ ± S ĉ)/
√

2 are the spin operators in a set of three orthogonal
directions, with â, b̂, ĉ being unit vectors along the orthorhombic crystallographic axes.
Here we label each bond 〈ij〉 by the axis perpendicular to its Ir-O2-Ir plane; for each bond,
this normal vector lies along one of the directions {(â + ĉ), (â − ĉ), b̂}. The b̂⊥ bonds are
all oriented along the crystallographic c direction. Thus all the nearest neighbor Ir-Ir bonds
can be divided into three classes, one for each component of spin: the b̂ component from the
c-axis bonds, and the â ± ĉ components from the h bonds defining each honeycomb plane
(depicted in red and blue with corresponding ± signs in Figure 4A of the main text). The
exchange couplings Kh are constrained by the symmetry of the space group to be the same
on the (â± ĉ)⊥ bonds, but Kc, the coefficient of S b̂ coupling, is symmetry-distinct from Kh.

The Hamiltonian in Equation A.10 was studied by Kitaev on the honeycomb lattice
and shown to give an exactly solvable quantum spin liquid. The solution relies on the fact
that spin algebra can be represented in an enlarged Hilbert space of Majorana fermions χα

(α = 0, 1, 2, 3) by mapping Sµ → (i/2)χ0χµ (where µ = 1, 2, 3) and implementing constraints
to project back to the physical Hilbert space. As a result, each spin is represented in terms
of two degrees of freedom — one a Z2 gauge field, the other a Majorana fermion moving
in this field. The three-fold local connectivity of the honeycomb lattice together with the
orthogonal Ising coupling of the Kitaev Hamiltonian (Equation A.10) freezes the gauge field
fluctuations associated with the Hilbert space constraint, resulting in static Z2 fluxes. The
problem then reduces to the motion of non-interacting particles in a fixed field. The ground
state of these non-interacting fermions, expressed in terms of the underlying spins, is a
complicated many-body superposition, and in particular is a quantum spin liquid.

In 2D the solution is possible because the honeycomb lattice contains the right number
of hexagon plaquettes (minimal closed paths linking sites) to host the Z2 fluxes. This can
be seen via Euler’s theorem — which states that the number of minimal plaquettes plus
the number of sites equals the number of links, on any 2D lattice. Threefold coordination
means there are three bonds per two sites, and hence there is one flux degree of freedom for
every two spins, as required by the solution. In 3D, there are too many minimal plaquettes
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to host the required number of independent Z2 fluxes. However, a similar counting formula
shows that the required number of independent gauge field degrees of freedom is matched
by subtracting the number of enclosed volumes from the number of faces. Each enclosed
volume gives a constraint; the independent flux constraints in 3D are not individual fluxes
but rather unending flux lines, which form closed flux loops.

An additional difference in the 3D lattices is that, unlike the 2D honeycomb where every
plaquette has six sites, in the harmonic honeycomb lattice the plaquettes vary in length,
including 6, 10, 14 and so on. In particular, for the H〈1〉-Li2IrO3 member there are two
minimal plaquettes, 6 sites long and 14 sites long. The product of spin operators around
each such plaquette forms an operator which commutes with the Hamiltonian. However
products of such plaquette operators around an enclosed volume are reduced to the identity
operation, constraining the flux lines to form closed loops. These gauge field fluxes remain
static, enabling the spin-liquid solution to be extended to 3D for all members of this family
[146, 127].

The ground state of the Hamiltonian described by Eq. A.10 contains no gauge-field fluxes.
In this zero flux sector, the Hamiltonian is quadratic, diagonal in momentum space. Assum-
ing Kc = Kh = K, the dispersion of Majorana Fermions is given by the eight eigenvalues of
the tight-binding matrix

K



0 1 0 0 0 0 0 V ∗2 U
∗
3

1 0 V ∗1 0 0 0 0 0
0 V1 0 1 0 0 0 0
0 0 1 0 V1 0 0 0
0 0 0 V ∗1 0 1 0 0
0 0 0 0 1 0 V ∗2 0
0 0 0 0 0 V2 0 1

V2U3 0 0 0 0 0 1 0


(A.11)

where U3 = exp [ik · c], V1,2 = 1 + U1,2 and U1,2 = exp [ik · (a± b)/2] with the +/− sign
corresponding to U1, U2 respectively. In the symmetric octahedra idealization where the
Kitaev Hamiltonian is most likely to be relevant, the crystallographic vectors take the simple
form a = (2, 2, 0), b = (0, 0, 4) and c = (−6, 6, 0) in the Ir-O Euclidean coordinate system, in
unis where the Ir-O distance is 1. The tight binding dispersion above is easily generalized to
the other 3D lattices with the same a, b base-centered orthorhombic Bravais lattice vectors
and arbitrarily long unit cells along c, by appropriately cycling between V1 and V2 in the
alternating off-diagonal elements of the matrix.

The resulting spectrum of the Majorana Fermions is gapless, and remains gapless for the
entire region of parameter space with Kc ≤ 2Kh [146, 127]. The gapless fermion excitations
form a 1D nodal contour within the 3D Brillouin zone, satisfied by the two equations k ·c = 0
and cos (k · a/2) + cos (k · b/2) = 1/2. For reference, note the BZ boundary satisfies the
equations cos (k · c) = −1 or cos (k · a/2) + cos (k · b/2) = 0.

In the vicinity of the nodal contour the dispersion is linear (ω ∼ |k⊥|) in the two directions
perpendicular to the nodal contour. Increasing Kc/Kh shrinks the nodal contour to a point,
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at Kc = 2Kh; for Kc > 2Kh the fermion spectrum is gapped.
If flux excitations proliferate, they will confine the fermions excitations in the spin liquid.

In 2D, flux excitations are point objects and proliferate at any finite temperature. But in
3D, the fluxes form closed loop, with an energy cost proportional to the length of the flux
loop; large flux loop cost arbitrarily high energy. Thus, in the 3D quantum spin liquid the
fermions will survive in the deconfined phase until an entropy driven phase transition at
finite temperature, separating the 3D quantum spin liquid and the classical paramagnet.
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Other possible structures

To facilitate our description of the harmonic honeycomb family we develop a simple language
based on their structural building blocks. Given a choice of one shared edge, there are two
locally indistinguishable choices for the two remaining bonds, shown in Figure A.7 (A).
Each Ir neighbor can then be in one of two planar environments, which we denote as the
harmonic honeycomb plane (Figure 3A of the main text). The vertical (c-axis) bonds can
then rotate the orientation of the planes (R-links) or keep them the same (S-links), shown
in Figure A.7 (B). We emphasize that the Ir is always coordinated by three others in both
kinds of bonds, just as in the layered honeycomb. In addition to the harmonic honeycomb
family described in the main text, we mention a few other structural possibilities and their
consequences here. The main text only describes a family of structures which have N links
of the type S but only one R link. We can distinguish members of a more general structural
family by different numbers of R and S links, and since the stoichiometry is unchanged we
denote them H〈NR, NS〉-Li2IrO3. For the NR =odd structures, the crystal structures are
orthorhombic. If NR is even the material is monoclinic, just as Na2IrO3, which has the
H〈0,∞〉-Li2IrO3 structure. Note that even in this case, the ∼ 70◦ internal bonding geometry
is still evident in the angle between the monoclinic crystalline directions −am and cm. A
material containing exclusively R links, H〈∞, 0〉-Li2IrO3, is the ‘hyper-honeycomb,’ so named
in analogy with the hyper-Kagome [185, 160, 127, 146]. By changing the number of S and
R links we can therefore tune the global dimensionality and alternate the symmetry of the
materials that are otherwise locally indistinguishable (see Figure A.8). Finally, we note that
S and R links differ in another important regard: S links are inversion symmetric while R
links are not. For structures containing the latter, this may lead to magnetic components
in the Hamiltonian that break inversion symmetry, for example the Dzyaloshinsky-Moriya
term [176, 82]. Note this is a local property in that the total space group for the systems
may remain inversion symmetric.
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Appendix B

Appendix for Ab initio Studies of
Structural and Energetic Trends in
the Harmonic Honeycomb Iridates

Table B.1: Lattice parameters for various levels of theory for H 〈1〉 and H 〈∞〉 Li2IrO3 and
H 〈1〉 and H 〈∞〉 Na2IrO3 . All calculations for a given structure type are initalized with
identical magnetic order. U = 1.5 eV. The percentage difference between the relaxed and
experimental lattice parameter is indicated by the color of the cell.

H 〈1〉 Li2IrO3
H 〈1〉 Na2IrO3

Level of Theory a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)

Experiment 5.91 8.45 17.84 – – –

PBE+SOC+U 5.96 8.53 18.02 6.48 9.10 19.02

PBE+SOC 6.01 8.75 17.17 6.46 9.11 19.13

PBE+U 6.01 8.73 16.99 6.46 9.12 19.10

PBE 6.01 8.76 17.03 6.45 9.13 19.17

Percent error color key: ≤ 1% ≤ 2% ≤ 3% > 3%
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Table B.2: Total energy (eV) for constrained collinear magnetic orders on relaxed Li2IrO3

structures.

Li2IrO3
H 〈#〉

Mag. Order 0 1 2 ∞
Ferro c -35.199 -35.199 -35.199 -35.199

Ferro b -35.195 -35.195 -35.195 -35.194

Ferro a -35.194 -35.193 -35.194 -35.192

Néel c -35.190 -35.191 -35.192 -35.193

Néel b -35.195 -35.195 -35.194 -35.195

Néel a -35.193 -35.194 -35.194 -35.194

Table B.3: Total energy (eV) for constrained collinear magnetic orders on relaxed Na2IrO3

structures.

Na2IrO3
H 〈#〉

Mag. Order 0 1 2 ∞
Ferro c -32.923 -32.910 -32.906 -32.908

Ferro b -32.925 -32.911 -32.907 -32.910

Ferro a -32.930 -32.918 -32.915 -32.915

Néel c -32.927 -32.917 -32.913 -32.916

Néel b -32.927 -32.917 -32.914 -32.917

Néel a -32.925 -32.917 -32.912 -32.916

Table B.4: Bond lengths and angles for experimental and theoretical structures.

Li2IrO3 Na2IrO3

Exp. Theory Exp. Theory

Ir-Ir (Å) 2.97± 0.01 3.01± 0.01 3.13± 0.01 3.19± 0.01

Ir-O-Ir (◦) 94± 3 94± 1 98.5± 0.5 100± 1
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Figure B.1: Non-magnetic and ferromagnetic c band structures of relaxed unit cells of Li2IrO3

and Na2IrO3
H 〈1〉 with PBE+SOC+U with path through k-space show at the bottom of

(a). While the non-magnetic band structure is metallic (b), a gap opens up between j = 1/2
states with a magnetic order (d). The density of states for Li2IrO3 and Na2IrO3

H 〈1〉 (and
likewise for the entire harmonic honeycomb series) is dominated by oxygen p and iridium d
orbitals (c and e).

Table B.5: Table of total energy, Ir-Ir bond lengths, and Ir-O-Ir bond angles for Li2IrO3.

Series Member H 〈0〉 H 〈1〉 H 〈2〉 H 〈∞〉
Ir-Ir Bond Lengths (Å) Ir1-Ir1 2.99684 Ir1-Ir1 3.00519 Ir1-Ir3 3.00367 Ir1-Ir1 3.01747

Ir1-Ir1 3.00675 Ir1-Ir2 3.00499 Ir2-Ir2 3.00226 Ir1-Ir1 3.01011

Ir2-Ir2 2.99884 Ir3-Ir3 3.00838

Ir-O-Ir Bond Angles (Degrees) Ir1-O1-Ir1 94.73 Ir1-O1-Ir2 94.64 Ir1-O1-Ir3 94.36 Ir1-O1-Ir1 94.63

Ir1-O2-Ir1 93.17 Ir1-O2-Ir2 94.59 Ir1-O2-Ir3 94.57 Ir1-O2-Ir1 94.41

Ir2-O3-Ir2 93.43 Ir3-O3-Ir3 94.06

Ir1-O4-Ir1 93.83 Ir1-O4-Ir2 94.23

Ir2-O5-Ir2 94.26

Table B.6: Table of total energy, Ir-Ir bond lengths, and Ir-O-Ir bond angles for Na2IrO3.

Series Member H 〈0〉 H 〈1〉 H 〈2〉 H 〈∞〉
Ir-Ir Bond Lengths (Å) Ir1-Ir1 3.18524 Ir1-Ir1 3.19486 Ir1-Ir3 3.20029 Ir1-Ir1 3.18503

Ir1-Ir1 3.19941 Ir1-Ir2 3.20077 Ir2-Ir2 3.20393 Ir1-Ir1 3.17998

Ir2-Ir2 3.18584 Ir3-Ir3 3.18442

Ir-O-Ir Bond Angles (Degrees) Ir1-O1-Ir1 101.30 Ir1-O1-Ir2 101.27 Ir1-O1-Ir3 101.25 Ir1-O1-Ir1 100.38

Ir1-O2-Ir1 100.11 Ir1-O2-Ir2 101.39 Ir1-O2-Ir3 101.40 Ir1-O2-Ir1 99.97

Ir2-O3-Ir2 100.18 Ir3-O3-Ir3 100.08

Ir1-O4-Ir1 100.36 Ir1-O4-Ir2 100.27

Ir2-O5-Ir2 101.39
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Table B.7: Table of total energy, Ir-Ir bond lengths, and Ir-O-Ir bond angles for experimen-
tally synthesized harmonic honeycomb iridates.

Series Member Li2IrO3
H 〈∞〉 Li2IrO3

H 〈0〉 Li2IrO3
H 〈1〉 Na2IrO3

H 〈∞〉
Ir-Ir Bond Lengths (Å) Ir1-Ir1 2.97885 Ir1-Ir1 2.96502 Ir1-Ir1 2.98356 Ir1-Ir1 3.13793

Ir1-Ir1 2.97870 Ir1-Ir1 2.96981 Ir1-Ir2 2.97575 Ir1-Ir1 3.12975

Ir2-Ir2 2.96144

Ir-O-Ir Bond Angles (Degrees) Ir1-O1-Ir1 94.74 Ir1-O1-Ir1 95.07 Ir1-O1-Ir2 91.57 Ir1-O1-Ir1 97.97

Ir1-O2-Ir1 95.33 Ir1-O2-Ir1 92.57 Ir2-O2-Ir2 96.89 Ir1-O2-Ir1 99.45

Ir1-O3-Ir2 91.78

Ir1-O4-Ir2 95.90

Table B.8: H 〈1〉 Li2IrO3 PBE+SOC+U lattice parameters for varying U. All calculations
are initialized with the same magnetic order. The final magnetizations are not identical to
one another. For PBE+SOC+U(0.25 eV) and PBE+SOC, the experimental lithium iridate
structure is metallic. The relaxed PBE+SOC+U(0.25 eV) and PBE+SOC structures have
gaps and relax to non-magnetic ground states.

U (eV) a (Å) b (Å) c (Å)
Indirect

Gap
(meV)

Direct
Gap

(meV)

1.5 5.96 8.51 18.05 322 373

1.0 5.96 8.53 18.02 230 298

0.5 5.97 8.49 18.03 78 155

0.25 6.01 8.74 17.16 128 128

0 6.01 8.75 17.17 108 108

Table B.9: PBE+SOC+U for various initial magnetizations. All relaxations have a magnetic
order. Magnetic orders were initialized with magnetic moments of 1 Bohr magneton on each
iridium atom.

Initial magnetic
order

a (Å) b (Å) c (Å)
eV per
Li2IrO3

Random order 1 5.96 8.51 18.05 -35.20

Random order 2 5.96 8.51 18.05 -35.20

Ferromagnetic
along c

5.96 8.54 18.01 -35.20

Non-magnetic 5.96 8.54 18.03 -35.20
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Table B.10: PBE+U for various initial magnetizations. Calculations initialized with as a
non-magnetic state relax to be non-magnetic and have similar lattice parameters to a non
spin-polarized calculation.:

Initial Magnetic
order

a (Å) b (Å) c (Å)
eV per
Li2IrO3

Random order 1 5.97 8.62 17.50 -34.54

Random order 2 5.97 8.62 17.50 -34.51

Ferromagetic
along c

5.97 8.62 17.50 -34.54

Non-magnetic 6.02 8.72 16.99 -34.63

Non
spin-polarized

6.01 8.73 16.99 -34.63
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C.1 General Information

Standard high vacuum, Schlenk line technique was employed for gram scale synthesis under
dried nitrogen atmosphere. All reagents were obtained from commercial sources including
dry toluene and tetrahydrofuran and were used without further purification. The reported
yields are for isolated sample. Powder X-Ray diffraction studies were performed on a Bruker
AXS D8 Discover GADDS X-Ray Diffractometer, operated at 35 kV and 40 mA at a wave-
length of Co Ka, 1.79 Å. Scanning electron microscopy (SEM) images were collected on a
Zeiss Gemini Ultra-55 Analytical Field Emission SEM with a secondary electron detector
and at an accelerating voltage of 3 keV, and an FEI Phenom G1 Tabletop SEM. Samples
of crystalline silver benzeneselenolate specimens were prepared by the drop casting of iso-
propanol suspensions onto a silicon wafer, which were allowed to settle followed by drying
the surface with a stream of compressed air. Fluorescence spectra were obtained using an
Edinburgh FLS980 spectrometer using an excitation wavelength of 380 nm.

C.2 Miscible Gram-Scale Synthesis of [AgSePh]∞

An oven dried round bottom flask equipped with a stir bar was charged with silver nitrate (1.4
g, 0.008 mol) and triphenylphosphine (4.4 g, 0.017 mol) in 250 mL of dry tetrahydrofuran.
The solution was stirred for 16 h under nitrogen at ambient temperature giving a cloudy,
white suspension. Diphenyl diselenide (1.3 g, 0.004 mol) in 80 mL of dry tetrahydrofuran
was then added slowly to the flask at -50 C. The reaction was stirred while warming slowly
to room temperature in which a deep yellow solution resulted. The solution is layered with
75 mL of diethyl ether and stirred rapidly until solution is clear and colorless and bright
yellow crystals have precipitated. The solvent is decanted and the solid was purified by the
addition of fresh isopropyl alcohol followed by sonication and centrifugation to separate the
crystalline pellet and supernatant. The crystals are then dried under vacuum giving a canary
yellow fine powder (2.3 g isolated). An additional SEM images of a typical morphology for
the product is shown in Fig. S2.

C.3 Immiscible Interface Synthesis of [AgSePh]∞.

In a glass scintillation vial, 5 mL of 3 mM diphenyl diselenide in toluene solution was carefully
layered over 5 mL of a 3 mM aq. silver nitrate solution and allowed to crystallize at room
temperature for 3 days. Crystals are recovered by passing a substrate, glass or silicon,
through the liquid interface into the aqueous phase, and then gently pulling the substrate
at a 45 degree angle back into the organic phase. The crystals preferentially adhere to
the solid substrate. Poor adhesion is noted when hydrophobic substrates are used; pristine
silicon wafers gave poor results, as did gold, which becomes rapidly functionalized with
benzeneselenolate monolayers on exposure to the organic solution. Gentle drying by forced
air is generally acceptable for most analyses, although an absorbent laboratory wipe can be
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used to wick residual liquids from the surface. Alternatively, suspensions of the crystals can
be isolated by removing the aqueous layer from their reaction vessel using a glass pipette, and
then decanting the toluene layer leaving behind the crystals. The product is then dispersed
in isopropanol and sonicated briefly to remove any residual crystals off the sides of the
glassware, and then pelletizes readily from isopropanol under centrifugation. The crystals
are stored in the dark under vacuum (¡1 mg isolated per crystallization vial). Additional
SEM images of typical morphologies for crystals covered by this method are collected in
Figure S3.

C.4 Fluorescence Imaging Methods

Fluorescent images were acquired on a Zeiss LSM 710 confocal microscope with an Axio Ob-
server.Z1 (Carl Zeiss Microimaging, Thornwood, NY). Crystalline [AgSePh]∞ was dried on
glass coverslips (No. 1.5) and imaged using a 100 oil immersion objective (Plan-Apochromat,
1.40 NA). Confocal scans of the material were obtained using a 405 nm diode laser to excite
the sample and a 585 m wide pinhole. The emission spectrum was separated and the inten-
sity of light between 400-700 nm (in 10 nm bins) was recorded on 32 detectors using the LSM
710 Linear Unmixing mode. The 32 images were imported to and analyzed using FIJI[218].
Isolated crystals were defined using the tracing tool in FIJI to detect the edges of the single
crystal and then used create a region of interest (ROI) around the crystal. For each ROI,
the mean intensity, area, width and height was measured and recorded. Data were then
exported to Origin 8.5.1 (Originlab, Northampton, MA) for analysis by linear regression and
plotting. Atomic Force Microscopy AFM images were captured on a Cypher ES (Oxford
Instruments). A budget Sensors TAP150G cantilever with a spring constant of 4.5 N/m was
used in the repulsive tapping regime with an amplitude of 1.6 nm and a Asp/A0= 0.08. The
z sensor was calibrated using an 18 nm step sample.

C.5 Calculation Methods

Density functional theory (DFT) calculations were performed using a plane-wave basis with
the Vienna Ab Initio Simulations Package (VASP) [135, 137, 136]. We used a short-range hy-
brid functional of Heyd, Scuseria, and Ernzerhof (HSE) [141, 104, 103, 105] for band structure
calculations; we used the local density approximation (LDA), the generalized gradient ap-
proximation of Perdew, Burke, and Ernzerhof (PBE) [193], and the vdW-df2 [79, 214, 147]
functional to relax the experimental structure. Electron-ion interactions are treated with
PAW pseudopotential [46, 138] with a 520 eV plane-wave cutoff; and the Brillouin zone was
sampled with a Monkhorst-Pack mesh [175] of 15× 15× 3 for PBE and df2 relaxations, and
a 7× 7× 1 mesh for the computationally more-demanding HSE calculations.
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C.6 Calculation Details

Band structures for bulk and single layer [AgSePh]∞ and [AgSePh]∞ replaced with hydrogens
are given in Figure C.5. The band structures is nearly identical between bulk and single
layer [AgSePh]∞. The inorganic bands still present in [AgSePh]∞ replaced with hydrogens
are similar to those of bulk and single layer [AgSePh]∞ with small changes to the band gap
and effective masses at the direct gap.

Two symmetrically equivalent configurations of the benzene ligands are possible within
the 2/c space group for the given refinement of [AgSePh]∞[69]. We calculated that the two
orientations differ in formation energy by 214 meV per formula unit with DFT-PBE and we
use the lower energy structure for DFT-HSE calculations. Despite the energy difference, the
band structures of these configurations are nearly indistinguishable. We calculated the elec-
tronic structure for the average of these two configurations and also observed that the band
structure remained largely unaffected by change in the ligands orientation. The structural
parameters for the configuration used for our DFT calculations is given in Figure C.7. The
CIF for the original refinement containing both configurations as partial occupancies can be
found in Cuthbert et. al [69].

DFT calculations were performed for bulk and single-layer [AgSePh]∞ in the lower energy
of the two refined configurations (as described above) and single layer [AgSePh]∞ with the
phenyls replaced with hydrogens. The hydrogens positions for the latter case are relaxed
with DFT-PBE. The primitive cell was used for all calculations. The structure used for our
calculations of the single layer unit cell is simply the conventional unit cell with one of the
[AgSePh]∞ layers removed. There is a 14 Ådistance between the single layers of [AgSePh]∞
and [AgSeH]∞ layers due to the periodic boundary conditions used in our VASP calculations.

To assess DFTs ability to reproduce the experimental structure, we relaxed the experi-
mentally reported crystal structure,28 choosing the lower energy of the two possible phenyl
configurations reported in space group 15, with LDA, PBE, and df2 functionals. (All df2
calculations were performed with PBE pseudopotentials.) A summary of the relaxation re-
sults, including percentage change in lattice parameters, variables describing the Ag lattice,
and the dihedral angle between above and below plane phenyls, is given in Table C.2. The
structures were relaxed until the stress on the unit cell was less than 0.5 kBar.

LDA gave the best agreement with experiment with isotropic changes in lattice parame-
ters of less than 3%. The df2 with PBE pseudopotentials give anisotropic expansion of the
b lattice parameters. PBE gave the worst agreement with experiment with 7% increases in
a and b lattice parameters lying in the AgSe plane. df2 gives the best agreement with the
dihedral angle between above and below layer phenyl ligands. However, the distortion of the
Ag lattice shows poor description of the covalently bonded AgSe layer. The relaxations were
insensitive to an increase in the basis energy cutoff and adding a U = 3.5 eV to Ag atoms.

The dihedral angle for the phenyl groups was determined by fitting Miller planes to
a phenyl group from each orientation in VESTA and calculating the angle between the
planes normal vector[173]. The band structure of the df2-relaxed structure shows a greater
separation between bands of inorganic and organic character, with the bands of organic
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Figure C.1: Powder X-Ray diffractogram of [AgSePh]∞ overlapping the diffractogram cal-
culated from Cuthbert et al. providing positive identification for silver benzeneselenolate.28

Figure C.2: Larger [AgSePh]∞ crystal sizes, having dimensions in excess of 20 µm, are
observed in the gram-scale-reaction product.

character moving away from the Fermi level. Otherwise, the bands remain largely unchanged.
The effective masses of [AgSePh]∞ at the direct band gap were calculated using the EMC
code[85]. The band structures and densities of state were plotted using a locally modified
version of pymatgen[187].
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Figure C.3: Additional micrographs of [AgSePh]∞. Detail of step edges of the layered system
down to single layer step edges are evident in the SEM micrographs.

Table C.1: Calculated effected masses at the direct gap of bulk, single and hydrogen-
truncated [AgSePh]∞ The effective masses at the direct gap are similar for bulk and single
layer [AgSePh]∞ and [AgSePh]∞ truncated with hydrogens. Only two principle directions
are given for 2D single layer calculations.

Structure Principle
Direction 1

Principle
Direction 2

Principle
Direction 3

Bulk a 1.130 b 0.441 c* 18.91
Single Layer a 1.146 b 0.444 – –
Truncated a 0.466 b 0.298 – –
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Figure C.4: Single particles of [AgSePh]∞ were selected from confocal microscopy images
and their spectra were compared. Color was invariant regardless of size and aspect ratio.
Thickness had no discernable effect but the precise thicknesses of crystals can be inferred
only from total intensity. 100 isolated crystals were selected for this representation.

Figure C.5: HSE band structures for bulk and single-layer [AgSePh]∞ and single layer
[AgSePh]∞ with the phenyls replaced with hydrogens Dashed lines show the Fermi level
(at 0 eV) and the HSE band gap for bulk and single-layer [AgSePh]∞. Color of band signi-
fies the fraction of band occupations by inorganic atoms (Ag and Se) versus organic atoms (C
and H). Bulk and single layer HSE band structures look identical. Single layer and hydrogen
truncated AgSe look similar for Ag and Se dominated bands with small changes to the band
gap and mobilities.
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Figure C.6: HSE, PBE, and df2 band structures for bulk [AgSePh]∞ Dashed lines show the
Fermi level. Color of band signifies the fraction of band occupations by inorganic atoms (Ag
and Se) versus organic atoms (C and H). Band occupations and shape remain similar across
these three levels of theory. N , N1 and Z are along the primitive lattice vectors a∗, b∗ and
c∗, respectively.

Figure C.7: Parameters of Ag lattice used in relaxation table.
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Table C.2: Relaxation Wyckoff tables:Lattice and Wyckoff position parameters for one
phenyl configuration of Cuthberts crystal structure and DFT relaxations of that configu-
ration.

Function a
aexp
− 1 b

bexp
− 1 c

cexp
− 1 β

βexp
− 1 θ1 θ2 = θ3 l1 = l2 l3 Dihedral angle

Experiment – – – – 152 104 3.029 2.911 52
LDA -1.17% -1.97% -2.62% -0.65% 152 104 2.993 2.849 29
PBE 6.18% 7.86% 0.43% -0.65% 170 95 3.132 3.656 28
df2 2.74% 10.54% 1.11% -0.92% 154 103 3.099 3.332 38

Table C.3: Wyckoff table for experimental structure of [AgSePh]∞. Lattice and Wyckoff
position parameters for one phenyl configuration of Cuthberts crystal structure.

Cuthbert
Spacegroup: 15 (C2/c)
a b c
5.876 7.299 29.124
α β γ
90 95.79 90
Label x y z Wyckoff letter
Ag1 0.5 0.381 0.25 e
Ag2 0.5 0.982 0.25 e
C1 0.671 0.186 0.141 f
C2 0.453 0.258 0.127 f
C3 0.369 0.267 0.081 f
C4 0.807 0.11 0.108 f
C5 0.496 0.191 0.049 f
C6 0.716 0.12 0.06 f
H1 0.439 0.199 0.018 f
H2 0.447 0.555 0.116 f
H3 0.802 0.08 0.037 f
H4 0.729 0.823 0.072 f
H5 0.363 0.3 0.15 f
Se1 0.792 0.182 0.205 f



APPENDIX C. APPENDIX FOR SILVER BENZENESELENOLATE IS A
SELF-ASSEMBLING DIRECT-GAP METAL-ORGANIC CHALCOGENIDE ASSEMBLY152

Table C.4: Wyckoff table for LDA Relaxation of experimental structure of [AgSePh]∞.
Lattice and Wyckoff position parameters for one phenyl configuration of Cuthberts crystal
structure relaxed with LDA.

LDA
Spacegroup: 15 (C2/c)
a b c
5.807 7.155 28.361
α β γ
90 95.163 90
Label x y z Wyckoff letter
Ag1 0.5 0.363 0.75 e
Ag2 0 0.262 0.75 e
C1 0.277 0.061 0.86 f
C2 0.058 0.02 0.873 f
C3 0.022 0.021 0.921 f
C4 0.457 0.103 0.893 f
C5 0.201 0.063 0.955 f
C6 0.419 0.104 0.941 f
H1 0.171 0.066 0.992 f
H2 0.627 0.141 0.882 f
H3 0.561 0.141 0.968 f
H4 0.351 0.483 0.931 f
H5 0.418 0.483 0.846 f
Se1 0.338 0.062 0.794 f
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Table C.5: Wyckoff table for PBE Relaxation of experimental structure of [AgSePh]∞. Lat-
tice and Wyckoff position parameters for one phenyl configuration of Cuthberts crystal struc-
ture relaxed with PBE.

PBE
Spacegroup: 15 (C2/c)
a b c
6.239 7.873 29.248
α β γ
90 95.166 90
Label x y z Wyckoff letter
Ag1 0.5 0.328 0.25 e
Ag2 0 0.292 0.25 e
C1 0.259 0.061 0.356 f
C2 0.059 0.025 0.372 f
C3 0.036 0.028 0.419 f
C4 0.436 0.099 0.387 f
C5 0.212 0.066 0.45 f
C6 0.411 0.102 0.434 f
H1 0.193 0.07 0.487 f
H2 0.591 0.129 0.374 f
H3 0.549 0.134 0.458 f
H4 0.379 0.499 0.431 f
H5 0.422 0.494 0.347 f
Se1 0.29 0.06 0.29 f
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Table C.6: Wyckoff table for df2 Relaxation of experimental structure of [AgSePh]∞. Lattice
and Wyckoff position parameters for one phenyl configuration of Cuthberts crystal structure
relaxed with df2.

df2
Spacegroup: 15 (C2/c)
a b c
6.037 8.068 29.446
α β γ
90 94.904 90
Label x y z Wyckoff letter
Ag1 0.5 0.393 0.25 e
Ag2 0.5 0.98 0.25 e
C1 0.665 0.188 0.139 f
C2 0.445 0.237 0.127 f
C3 0.365 0.237 0.081 f
C4 0.803 0.14 0.105 f
C5 0.502 0.188 0.047 f
C6 0.721 0.14 0.059 f
H1 0.439 0.188 0.011 f
H2 0.472 0.6 0.115 f
H3 0.829 0.099 0.034 f
H4 0.696 0.778 0.071 f
H5 0.339 0.278 0.152 f
Se1 0.787 0.186 0.204 f
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Appendix D

A prototypical ferroelectric: BaTiO3

BaTiO3 is the prototypical ferroelectric. Well above room temperature, BaTiO3 has a cubic
perovskite structure in space group Pm3̄m (221), shown in Figure D.1. As temperature is
lowered, BaTiO3 undergoes several phase transitions to lower symmetry space groups that
give rise to a spontaneous polarization, see Figure D.2 [273, 125]. BaTiO3 has been known
to be ferroelectric since 1946 [256, 266]. In its tetragonal phase, BaTiO3 has a polarization is
26 µC/cm2 [263]. We use BaTiO3 as a prototypical example for explaining how we conduct
our automated ferroelectric search in Chapter 6 and Appendix F.

Figure D.1: BaTiO3 is the quintessential ferroelectric. BaTiO3 has a cubic perovskite crystal
structure at high temperatures. Both the barium and titanium are octahedrally coordinated
by oxygen. Octahedra of similar center element share corners.
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Figure D.2: BaTiO3 goes through three phase transition as temperature is lowered: Pm3̄
(221) → P4mm (99) → Amm2 (38) → R3m (160). The red arrows in the diagram indicate
the direction of the spontaneous polarization due to the displacement of the titanium atom
and associated rearrangement of the oxygen atoms[273, 125].
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Ferroelectrics



APPENDIX E. APPENDIX FOR AN AUTOMATICALLY CURATED
FIRST-PRINCIPLES DATABASE OF FERROELECTRICS 158

Table E.1: Table of calculated versus experimentally measured polarizations as given in the
Landolt-Börnstein - Group III: Condensed Matter - Ferroelectrics and Related Substances
[227, 228, 229].

Workflow ID Formula Polarization Change LB number Exp Exp Ref
wfid 1476040956.832394 O3PbTi 117.2 1A-11 75 [14, 245]
wfid 1476040982.95148 LiNbO3 84.1 2A-1 71 [264, 11]
wfid 1484444959.892999 NaNbO3 54.0 1A-1 12 [12]
wfid 1484444962.722730 KNbO3 51.6 1A-2 41.2 [10]
wfid 1484444953.778541 BaO3Ti 50.0 1A-10 26 [8]
wfid 1476040950.744757 KNbO3 47.7 1A-2 41.2 [10]
wfid 1476040947.794782 BaO3Ti 47.1 1A-10 26 [8]
wfid 1476040944.53976 BaO3Ti 46.3 1A-10 26 [8]
wfid 1476041110.265759 Bi2O9SrTa2 38.2 9A-12 5.8 [23]
wfid 1484444968.854031 Bi2Nb2O9Pb 37.3 9A-10 NA [20]
wfid 1476040384.215156 CdO3Ti 37.0 1A-9 NA [9]
wfid 1476041128.167316 Bi2O9SrTa2 37.0 9A-12 5.8 [23]
wfid 1476040759.946834 CdO3Ti 34.9 1A-9 NA [9]
wfid 1476040393.450782 NaNbO3 31.9 1A-1 12 [12]
wfid 1476040403.435688 NaNbO3 31.9 1A-1 12 [12]
wfid 1476040428.848867 O3PbZr 23.5 1A-15 16 [15]
wfid 1476040441.814364 O5PTiTl 22.3 35A-13 NA [106]
wfid 1476040425.250661 HfO3Pb 19.7 1A-16 Antiferroelectric [13]
wfid 1476040435.561861 NbO4Sb 18.1 5A-2 19.7 [21]
wfid 1484694826.997820 Bi4O12Ti3 17.1 9A-15 50 [16]
wfid 1476041077.120822 Bi4O12Ti3 11.5 9A-15 50 [16]
wfid 1476040374.879552 CH4N2S 4.8 50A-1 3.5 [226]
wfid 1476040840.841892 O7Sr2Ta2 3.0 8A-6 1.9 [22]
wfid 1484445017.971658 B7IMn3O13 2.8 18A-20 NA [19]
wfid 1476040471.728223 Cl4K2Zn 2.2 39A-9 0.135 [76]
wfid 1476040104.360695 Br4K2Zn 2.0 39A-16 3.0 [73]
wfid 1484445205.351382 B7ClCr3O13 1.6 18A-2 2.5 [17]
wfid 1484445029.449720 K2O4Se 0.7 39A-2 0.15 [74]
wfid 1484445193.941953 Cl4Rb2Zn 0.5 39A-10 0.16 [77]
wfid 1484445190.110462 Cl4K2Zn 0.5 39A-9 0.135 [76]
wfid 1484445186.170228 B7ClMg3O13 0.3 18A-1 0.08 [18]
wfid 1476040478.537387 Cl4Rb2Zn 0.3 39A-10 0.16 [77]
wfid 1476040475.325951 Cl4CoRb2 0.04 39A-7 0.15 [75]
wfid 1476040492.518912 H8N2O4S 0.02 39A-1 0.6 [72]
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Table E.2: New high-quality candidates

Formula Workflow ID Polarization
(µC/cm2)

Energy
Difference

(eV)

Distortion
max (Å)

Band
Gap (eV)

Energy
Above

Hull (eV)

Subcategory

Ag2S wfid 1476040932.225218 0.4 0.002 0.127 1.342 0.075
Ag2S wfid 1476041128.167316 27.5 -0.077 0.723 0.409 0.156
Ag2S wfid 1484444982.346272 45.3 0.089 0.956 1.342 0.075
AgAl11O17 wfid 1476041161.431473 2.2 0.000 1.115 3.142 0.005
AgC2O2 wfid 1476040384.215156 0.0 -0.002 0.328 0.980 0.016
AlCH2NaO5 wfid 1476040789.617210 0.8 -0.001 0.082 5.030 -0.000
AlCl4Hg2Sb wfid 1484445042.637068 0.5 -0.000 0.738 0.835 0.030
AlH3O3 wfid 1476040304.362065 1.1 0.009 0.398 4.963 0.004 Hydroxyls
AlH3O3 wfid 1484445287.593799 8.0 0.007 0.667 4.918 0.018 Hydroxyls
AuCl4K wfid 1484445086.092903 0.3 0.000 0.072 1.451 0.003
B13C2Li wfid 1476041173.637876 0.8 -0.000 0.039 2.562 -0.021
B2O6Zn3 wfid 1476040456.859630 0.1 -0.000 0.031 2.709 0.049
Ba2F7Y wfid 1484445183.339213 0.7 -0.062 1.262 6.501 0.111
BaC2CaO6 wfid 1484445190.110462 1.3 -0.018 0.745 4.676 0.026
BaCO3 wfid 1484444965.570570 1.0 -0.001 1.299 4.465 0.015 Oxocarbons
BaCl5La wfid 1476040438.759718 26.3 0.013 1.526 4.150 0.009
BiO3Y wfid 1476040851.179557 9.9 0.037 0.650 2.057 0.074
Br3CsGe wfid 1476040104.360695 18.4 0.015 0.332 1.461 0.017
C2HO2 wfid 1484445250.57163 3.4 -0.003 0.313 2.829 0.001 Oxocarbons
C2HgN2S2 wfid 1484444959.892999 0.9 -0.002 0.059 2.126 0.021
C6Cu2H10N4S3 wfid 1476040837.97019 0.0 -0.007 0.946 2.733 0.035
CCs4O4 wfid 1476040059.599818 1.7 -0.003 0.294 1.629 0.030
CH4N2S wfid 1476041035.850896 4.8 -0.006 0.770 3.293 0.006
CHO2Tl wfid 1476041077.120822 0.7 0.000 0.088 3.516 0.026 Oxocarbons
CK4O4 wfid 1476040355.151056 2.6 -0.001 0.167 2.232 0.144
CK4O4 wfid 1484445253.438371 9.1 0.002 0.289 2.165 0.053
CK4O4 wfid 1476040413.044763 14.6 -0.002 0.584 1.946 0.146
CK4O4 wfid 1476040390.68687 16.6 0.006 0.608 1.989 0.049
CLi4O4 wfid 1476040854.772923 0.1 0.071 0.221 4.738 -0.007 Oxocarbons
CLi4O4 wfid 1484445317.338075 16.6 0.003 0.236 4.149 0.168 Oxocarbons
CLi4O4 wfid 1476041081.548433 49.0 0.016 1.157 5.050 -0.023 Oxocarbons
CLi4O4 wfid 1476040950.744757 49.2 0.058 0.793 5.088 -0.023 Oxocarbons
CN2Pb wfid 1476040496.278929 10.4 -0.003 0.189 1.728 0.039
CNa4O4 wfid 1476040428.848867 3.6 -0.001 0.151 1.903 0.177 Oxocarbons
CNa4O4 wfid 1476040902.993927 12.5 -0.000 0.670 1.719 0.176 Oxocarbons
CNa4O4 wfid 1484444968.854031 39.2 0.010 1.277 2.184 -0.002 Oxocarbons
CNa4O4 wfid 1484445017.971658 39.2 0.026 0.999 2.184 -0.002 Oxocarbons
CNa4O4 wfid 1476040986.216576 56.3 0.153 1.356 2.162 0.022 Oxocarbons
CO4Rb4 wfid 1484444962.722730 0.6 -0.001 0.117 1.714 0.082 Oxocarbons
CO4Rb4 wfid 1484444978.482971 14.4 0.003 0.571 1.397 0.020 Oxocarbons
CO4Rb4 wfid 1476040478.537387 14.4 -0.004 0.746 1.395 0.020 Oxocarbons
Ca5ClO12P3 wfid 1476040897.624205 2.1 0.001 0.446 5.353 0.019
CaF2 wfid 1476040844.52392 16.3 0.058 0.838 6.227 0.261
Cd2ClP3 wfid 1484694771.994384 0.8 0.000 0.052 1.125 0.057
Cl4GaHg2Sb wfid 1476041044.880577 0.6 -0.001 0.802 0.754 0.049
ClH3O5 wfid 1476040226.929827 5.2 0.047 1.187 5.381 0.007
ClH4NO4 wfid 1476041121.199250 2.2 -0.001 0.903 5.255 0.001
ClIn wfid 1484445180.530019 3.7 0.000 0.039 1.450 0.081
CrO3 wfid 1484445151.553442 0.4 0.021 1.413 1.588 0.039
CrO9P3 wfid 1476040974.294686 1.1 0.001 0.276 3.161 0.034
Cs2HgI4 wfid 1484445283.158561 0.3 -0.001 0.068 2.050 0.021
Cs2O3Pb wfid 1476040245.01667 7.2 0.000 0.288 1.391 0.033
CuI wfid 1484445295.230944 0.6 -0.002 0.121 1.099 0.188
Er2F7K wfid 1476040368.725338 1.5 0.000 0.183 6.924 0.074 Fluorides
F2HRb wfid 1484445224.025729 1.5 -0.001 0.082 6.648 0.049 Fluorides
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Table E.3: New high-quality candidates

Formula Workflow ID Polarization
(µC/cm2)

Energy
Difference

(eV)

Distortion
max (Å)

Band
Gap (eV)

Energy
Above

Hull (eV)

Subcategory

F2Pb wfid 1476041088.40149 5.4 -0.003 0.098 4.396 0.105
F3Nd wfid 1484694880.421050 17.7 0.172 1.143 7.669 0.071 Fluorides
F3PbRb wfid 1476040279.158189 4.0 0.033 0.776 3.804 0.083
F5FeK2 wfid 1476040966.672844 0.5 -0.000 0.084 3.663 0.087 Fluorides
F5V wfid 1476040393.450782 30.0 0.022 1.582 3.215 0.125
F6LiV wfid 1476040909.718858 1.2 -0.024 1.704 3.154 0.097
FTl wfid 1476041001.553476 6.4 0.029 0.498 3.149 0.114
GaLuO3 wfid 1484445209.371670 8.2 0.021 0.344 2.894 0.045 Hexagonal manganite-

like
GaO3Sc wfid 1476040875.673476 10.4 0.014 0.416 3.115 0.051 Hexagonal manganite-

like
H2Mg wfid 1484445164.611735 30.9 -0.040 0.849 2.365 0.072
H2MoO4 wfid 1476040207.31872 0.6 -0.001 0.381 3.426 -0.067
H2O2Sr wfid 1476041124.761330 1.2 0.003 0.257 3.984 0.012 Hydroxyls
H2O2Sr wfid 1476040759.946834 1.2 -0.001 0.187 3.984 0.012 Hydroxyls
H2O4S wfid 1476040460.586026 20.4 -0.003 0.983 6.140 0.003
H2O4Sn3 wfid 1484445064.70045 1.3 -0.006 0.624 2.479 0.060
H2O4U wfid 1476041106.860617 2.9 0.087 1.465 1.909 0.049 Hydroxyls
H2O4U wfid 1476040156.35457 2.9 -0.004 0.174 1.914 0.049 Hydroxyls
H3LaO3 wfid 1476040737.27481 17.9 -0.002 0.189 4.002 0.006 Hydroxyls
H3O3Pr wfid 1476040371.699091 0.3 0.002 0.153 3.676 0.004 Hydroxyls
H3O3Y wfid 1476040282.74358 7.8 -0.001 0.087 3.889 -0.008 Hydroxyls
H4O5S wfid 1476041144.098790 0.8 -0.000 0.195 5.643 0.003
HInO2 wfid 1476040139.05518 13.2 0.010 0.243 1.771 0.050 Hydroxyls
HK2NO6S2 wfid 1484445051.753689 3.2 0.006 0.595 5.261 0.009
HNaO wfid 1476040452.983312 10.7 0.002 0.198 2.982 -0.001 Hydroxyls
HNaO wfid 1484445186.170228 10.7 0.001 0.196 2.982 -0.001 Hydroxyls
HORb wfid 1476040489.133921 10.5 0.007 0.402 3.391 0.010 Hydroxyls
ILi6PS5 wfid 1476040187.488112 1.4 0.016 0.770 2.290 -0.009
K2O7Zn6 wfid 1476040485.585687 2.6 -0.001 0.218 0.808 0.076
K3S4Sb wfid 1476040441.814364 1.0 0.008 0.736 2.158 0.019
KLaS4Si wfid 1476040464.155093 7.4 0.003 0.285 2.854 0.013
LiO12P3Zr2 wfid 1476040894.532948 8.1 0.003 1.225 4.394 -0.020
LiO4PV wfid 1476040196.242976 0.0 -0.000 0.066 2.670 0.018
LiO4PV wfid 1476041131.850447 0.0 0.000 0.083 2.670 0.018
MoO3 wfid 1476040193.378775 5.2 0.072 0.658 2.155 -0.105
NaO11V6 wfid 1476040314.446703 2.4 0.010 0.271 0.987 0.050
NbO5P wfid 1484694927.058575 4.1 -0.001 0.159 2.249 0.002
O23Rb6Si10 wfid 1476040149.329165 0.1 0.013 0.724 4.303 0.004
O23Rb6Si10 wfid 1476040869.259479 0.5 0.008 0.653 4.221 0.010
O2Si wfid 1476040956.832394 0.0 0.004 0.570 5.606 0.008
O2Si wfid 1476040944.53976 0.0 -0.000 0.131 5.527 0.013
O2Si wfid 1476040094.757061 0.0 -0.003 0.846 5.388 0.008
O2Si wfid 1476040820.373005 0.0 -0.000 0.342 5.388 0.008
O2Si wfid 1484694862.160232 0.1 0.008 0.784 5.503 0.003
O2Si wfid 1476041095.479946 0.1 0.004 0.736 5.434 0.006
O2Si wfid 1484445313.916250 0.2 0.004 0.688 5.673 0.008
O2Si wfid 1476041154.194447 0.4 -0.010 1.296 5.592 0.014
O3SbY wfid 1476040753.50691 7.4 0.017 0.462 1.485 -0.018 Hexagonal manganite-

like
O3ScY wfid 1476040358.683542 6.5 0.010 0.321 3.152 -0.004 Hexagonal manganite-

like
O3Te wfid 1476041150.764661 0.4 0.002 0.505 0.550 0.679
OPb wfid 1484444945.05931 53.7 -0.002 0.531 2.257 0.096
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Table E.4: Known high-quality candidates

Formula Workflow ID Polarization
(µC/cm2)

Energy
Difference

(eV)

Distortion
max (Å)

Band
Gap (eV)

Energy
Above

Hull (eV)

Subcategory

Ag3IS wfid 1476040471.728223 0.7 0.002 1.022 0.260 0.080 Proposed by Theory
Ag3IS wfid 1476040762.919897 0.7 0.041 0.772 0.260 0.080 Proposed by Theory
Ag3IS wfid 1476040109.318651 11.8 0.050 0.627 0.505 0.071 Proposed by Theory
Ag3IS wfid 1476040331.097043 11.8 0.011 1.158 0.505 0.071 Proposed by Theory
Al2BaO4 wfid 1476040858.743894 0.3 0.004 0.560 4.079 0.002 Proposed by Theory
Al2BaO4 wfid 1476041047.628179 0.3 0.004 0.560 4.079 0.002 Proposed by Theory
Al2BaO4 wfid 1476040992.366616 0.3 0.004 0.559 4.079 0.002 Proposed by Theory
Al2CaH4O10Si2 wfid 1476040098.062674 4.2 0.005 0.752 5.056 0.004
Al3F19Pb5 wfid 1476041165.857604 13.9 0.020 0.762 5.206 0.084
AlBiO3 wfid 1476041098.970098 81.1 0.068 0.481 2.876 0.000 Perovskite
AlF7MgNa2 wfid 1476040117.949518 1.1 -0.000 0.208 6.660 0.063
B2K3Nb3O12 wfid 1476040134.799732 0.1 0.004 0.220 2.373 0.005
B3CaH5O8 wfid 1476041117.46294 0.6 0.004 0.957 5.591 -0.000
B7ClCr3O13 wfid 1476040223.934313 1.6 -0.000 0.093 2.688 0.014 Boracite
B7ClMg3O13 wfid 1476040840.841892 0.3 0.010 0.491 5.695 0.004 Boracite
B7IMn3O13 wfid 1476041141.321099 2.8 0.005 0.471 3.696 0.012 Boracite
BaNiO3 wfid 1476040159.879894 3.7 0.000 0.046 1.480 0.050
BaO3Ti wfid 1476040217.741157 46.3 0.011 0.226 1.726 0.022 Perovskite
BaO3Ti wfid 1484445022.713113 47.1 0.011 0.129 1.731 0.022 Perovskite
BaO3Ti wfid 1476040190.49918 50.0 0.014 0.241 2.290 0.020 Perovskite
BaO5Ti2 wfid 1476041157.542583 15.3 0.003 0.168 2.142 0.041
BeF4H8N2 wfid 1476040928.68650 0.6 0.011 0.549 6.640 0.022 N2H8SO4 family
BeF4H8N2 wfid 1484445148.273011 0.6 0.009 0.545 6.641 0.022 N2H8SO4 family
Bi2Nb2O9Pb wfid 1476040947.794782 37.3 0.041 0.523 2.321 0.010 Perovskite
Bi2O9SrTa2 wfid 1476040415.883279 37.0 0.028 0.546 2.503 0.006 Perovskite
Bi2O9SrTa2 wfid 1476040872.620729 38.2 0.019 0.515 2.312 0.015 Perovskite
Bi4O12Ti3 wfid 1476040291.620895 11.5 0.023 0.487 1.616 0.052 Perovskite
Bi4O12Ti3 wfid 1476040275.56900 17.1 0.062 0.562 2.447 0.013 Perovskite
Bi4O12Ti3 wfid 1484445193.941953 58.2 0.062 0.566 2.368 0.014 Perovskite
BiCl8F4H3K6 wfid 1476040112.283926 0.1 -0.001 0.160 4.194 0.029
BiInO3 wfid 1484445014.628732 63.7 0.466 0.817 2.749 0.039 Perovskite
BiInO3 wfid 1484444953.778541 63.7 0.011 1.400 2.749 0.039 Perovskite
BiO3Sc wfid 1476040374.879552 6.5 0.323 0.726 2.675 0.029
BiO3Sc wfid 1484445145.139977 6.6 0.000 0.089 2.675 0.029
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Table E.5: Known high-quality candidates

Formula Workflow ID Polarization
(µC/cm2)

Energy
Difference

(eV)

Distortion
max (Å)

Band
Gap (eV)

Energy
Above

Hull (eV)

Subcategory

Br4K2Zn wfid 1476040115.133166 2.0 0.001 0.140 3.656 0.036 N2H8SO4 family
C3ClH10NO4 wfid 1476040269.225119 0.3 -0.000 0.275 5.608 -0.000 Proposed by Theory
Ca3Mn2O7 wfid 1476040396.862183 5.6 0.010 0.383 0.294 0.042
Ca3Mn2O7 wfid 1484445029.449720 5.9 0.010 0.388 0.300 0.042
CdO3Ti wfid 1476040231.867950 34.9 0.003 0.147 2.405 0.092 Perovskite
CdO3Ti wfid 1476040203.326613 37.0 0.003 0.121 2.458 0.093 Perovskite
Cl3CrRb wfid 1476040445.577528 0.0 -0.001 0.115 0.502 0.032
Cl3CrRb wfid 1476040766.163640 0.0 0.007 0.357 0.502 0.032
Cl3CsPb wfid 1476040435.561861 2.3 0.006 0.575 2.418 0.028
Cl4CoRb2 wfid 1484445157.56323 0.0 -0.001 0.251 0.831 0.021 N2H8SO4 family
Cl4K2Zn wfid 1476041169.873380 0.5 0.013 0.698 4.509 0.040 N2H8SO4 family
Cl4K2Zn wfid 1476041110.265759 2.2 0.000 0.112 4.412 0.053 N2H8SO4 family
Cl4Rb2Zn wfid 1476040320.922919 0.3 -0.000 0.129 4.450 0.038 N2H8SO4 family
Cl4Rb2Zn wfid 1476040953.684754 0.5 0.006 0.920 4.514 0.032 N2H8SO4 family
ClH wfid 1476040295.440338 57.2 0.273 1.132 5.152 0.049
CsF3Pb wfid 1476040124.631808 0.7 0.004 0.449 3.383 0.077 Proposed by Theory
CsO4PZn wfid 1476040056.258909 1.0 0.012 0.678 3.958 0.027
F4MgSr wfid 1484694929.994404 10.8 0.035 0.924 6.662 0.079 Proposed by Theory
H2KO4P wfid 1484445095.317873 0.5 0.003 0.360 5.248 0.010
H2KO4P wfid 1476040475.325951 5.2 0.005 0.238 5.421 0.007
H2O wfid 1484694826.997820 13.5 -0.001 0.882 5.478 0.035
H2O wfid 1484445205.351382 13.5 0.000 0.833 5.478 0.035
H2O4PRb wfid 1484445276.419623 5.5 0.006 0.333 5.222 0.004
H8N2O4S wfid 1476041147.43703 0.0 0.007 1.267 5.073 0.000 N2H8SO4 family
HfO2 wfid 1476040425.250661 52.4 0.061 0.859 4.366 0.035
HfO3Pb wfid 1484445174.483678 19.7 -0.004 0.605 2.809 0.036 Perovskite
HfO3Sr wfid 1476040963.135149 15.1 -0.000 0.114 3.744 0.045
K2O4Se wfid 1476040982.95148 0.7 0.000 0.404 3.630 0.016 N2H8SO4 family
KNbO3 wfid 1484445298.485748 47.7 0.011 0.226 1.472 0.013 Perovskite
KNbO3 wfid 1484444992.013915 50.4 0.013 0.177 2.311 0.010 Perovskite
KNbO3 wfid 1476040865.547657 51.6 0.013 0.218 2.058 0.011 Perovskite
LiNbO3 wfid 1476041051.123043 84.1 0.031 1.337 3.396 -0.004 Perovskite
LiNiO4P wfid 1476040220.723663 0.2 -0.000 0.083 3.397 0.040
MgO3Si wfid 1476041102.78923 1.1 -0.005 1.522 4.663 0.025
N6Pb wfid 1476040079.687428 0.4 -0.000 0.229 2.303 0.021
NaNbO3 wfid 1476040492.518912 31.9 0.021 0.493 2.402 0.002 Perovskite
NaNbO3 wfid 1484694837.128419 31.9 -0.000 0.683 2.402 0.002 Perovskite
NaNbO3 wfid 1476040743.679850 54.0 0.015 0.420 2.362 0.002 Perovskite
NbO4Sb wfid 1476040403.435688 18.1 0.000 0.211 2.461 -0.002
O2Zr wfid 1476040756.894491 51.0 0.046 0.828 3.815 -0.065
O3PbTi wfid 1476040989.22333 117.2 0.039 0.581 1.861 0.045 Perovskite
O3PbZr wfid 1476041014.627130 23.5 -0.004 0.356 2.868 -0.024 Perovskite
O5PTiTl wfid 1484445106.855737 22.3 0.004 0.664 2.674 0.027
O7Sr2Ta2 wfid 1476040410.139034 3.0 -0.000 0.088 2.943 0.012
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Appendix F

Isotropy Subgroups: How to check if
two structure are continuously
deformable

A nonpolar-polar structure pair are continuously deformable if the polar structure belongs
to an isotropy subgroup of the nonpolar structure. Given a nonpolar-polar structure pair,
one can determine if the polar structure is related to the nonpolar structure via an isotropy
subgroup by checking the following:

First, we check that the point group of the polar space group is a subgroup of the point
group of the nonpolar space group. An example relating the point groups of the phase
transition of BaTiO3 Pm3̄m→ R3m (see Figure F.1a) is given in F.1b.

Second, we determine the index of the group-subgroup relationship. The index tells
us how many types of ferroelectric domains can form [178]. For some intuitive examples,
let’s consider the phase transitions of BaTiO3, shown in Figure D.2. The index for the
cubic to tetragonal transition is 6, one for each face of a cube. The index for the cubic
to orthorhombic transition is 12 one for each edge of a cube. The index for the cubic to
rhombohedral transition is 8, one for each corner of the cube.

More formally, the definition of the index i is given by i = it × ik where it is the transla-
tionengleiche (same translation) index and ik is the klassengleiche (same symmetry) index
[178]. it gives the reduction of point group operations and ik gives the reduction in transla-
tion symmetry. For example, if the unit cell volume is doubled due to the transition, ik = 2.
If the number of point group operations is reduced by a third, it = 3.

For the BaTiO3 examples, ik = 1 because the ratio of the number of formula units
per primitive unit cell for the polar to nonpolar structure is 1. it however varies because
different numbers of symmetry operations are lost when the structure distorts to the polar
space group. The table in Figure F.1c gives the indices for the maximal polar subgroups of
Pm3̄m (221).

Third, we find chains of maximal subgroups compatible with the index of the group-
subgroup relation for the nonpolar-polar structure pair. From these chains, we can determine
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possible transformation matrices between the nonpolar to polar lattice.
Fourth, for each possible transformation matrix we must check whether the Wyckoff

positions are compatible between the nonpolar structure in the low-symmetry setting and
the polar structure. When a structure is transformed to a lower symmetry setting, the
Wyckoff positions are said to “split”, meaning that due to the reduced symmetry, more
symmetrically unique positions are required to describe the crystal structure.

Fifth, for the transformations that have compatible Wyckoff splitting, we transform the
nonpolar lattice to the polar symmetry setting and compare to the polar lattice. If the lattices
match within a generous tolerance of 3 Åand 10 degrees, we continue with the symmetry
check.

Finally, we check the distance each atom has to move during the distortion. If the
maximum distortion distance is within our tolerance of 1.5 Å, we store the distortion in our
distortion database to then be computed with our first-principles workflow.
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Figure F.1: Symmetry checks for isotropy subgroups the BaTiO3phase transition
Pm3̄m (221) → R3m (160). a) cubic and rhombohedral BaTiO3 structures. b) The max-
imal subgroup relations of the of the point group 4/m3̄2/m (abbreviated as m3̄m), mod-
ified from Figure 7.1 in [179] and reproduced with permission. The nonpolar point group
(4/m3̄2/m) is highlighted in green and the polar point group (3m) is highlighted in red.
The point groups highlighted in blue (4̄3m and 3̄2/m) are the maximal subgroups between
the nonpolar and polar point groups. c) A table, generated using the BCS tool CELLSUB
(http://www.cryst.ehu.es/cryst/cellsub.html) [29], of the indices of the maximal po-
lar subgroups of the cubic space group Pm3̄m with k-index of 1. We have highlighted
those in red that correspond to subgroups shown in Figure D.2 d) A table of the possible
transformation matrices for different chains of maximal subgroup from the nonpolar (221)
to polar space group (160) for a group-subgroup index of 8. This table was generated using
the BCS tool (http://www.cryst.ehu.es/cryst/symmodes.html) SYMMODES[56]. This
transformation matrix is used to transform the lattice and Wyckoff positions.

http://www.cryst.ehu.es/cryst/cellsub.html
http://www.cryst.ehu.es/cryst/symmodes.html
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Figure F.2: Wyckoff splitting for BaTiO3 from the cubic phase to tetragonal phase. While
the cubic phase has 3 symmetrically unique positions, the tetragonal phase has 4.

Figure F.3: Once we have possible transformation matrices for the group-subgroup relation
of a given index that give the proper Wyckoff splitting, we transform the nonpolar lattice to
the polar symmetry setting and compare to the polar lattice. If the lattices match within a
generous tolerance of 3 Åand 10 degrees, we then check the distance the atoms have move
during the distortion.
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Appendix G

A brief primer on deep learning

This section serves to give a quick introduction to the basics of deep learning. Deep learning
is a subfield of machine learning where multiple layers of neural networks are used to learn
complex functions.

In Figure G.1 and Chapter 7, we use diagrams inspired by Penrose notation [192] to
depict neural networks. A neural network or model is a function with learnable parameters.
For example, we can represent a model that learns the function y = f(x) as Figure G.1a.

Fully-connected networks are commonly used and easy to mathematically write down. A
single layer is composed of two components, a linear transformation and a nonlinear function.
In this example, we use the hyperbolic tangent function. A one-layer fully-connected network
is shown in Figure G.1b and written as:

y = tanh(Wx+ b) (G.1)

where highlighted variables indicate learned parameters. Similarly, a two-layer fully-connected
network is shown in Figure G.1c and written as:

y = tanh(W2 tanh(W1x+ b1) + b2)) (G.2)

In this example, one can see the importance of having the nonlinear function. If it was
not present, the two layer network expression could be re-written as a single layer with
W ′ = W2W1 and b′ = W2b1 + b2. Networks with multiple layers can learn more complicated
functions.

Fully-connected networks tend to become cumbersome when the input vector is large or
when the input data has additional structure.

Convolutional neural networks (CNNs) are extensively used in image processing and
computer vision. We build on this type of network in Chapter 7. CNNs take advantage of
the adjacency information of pixels by scanning over an image with learned filters that are
typically much smaller than the image (commonly 3×3 or 5×5 pixels in size). As the filter is
scanned across the image (across convolution centers), the filter multiplies the portion of the
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Figure G.1: Diagrams for example neural networks a) Diagram for an arbitrary function
f . b) A one-layer fully-connected network. c) A two-layer fully-connected network. d) A
diagram for backpropogation through a fully-connected network.

image it overlaps. This resulting matrix is summed to produce a pixel of the output image.
This reuse of weights makes CNNs very efficient compared to fully-connected networks.

To evaluate a model’s performance, we have to define a cost function, this is also called
the error or loss. The cost function is typically evaluated on the output of the model and is
used to update learned parameters via a process called backpropogation.

Backpropogration requires a model to differentiable (or at least have gradients defined
for each operation). One takes derivatives of the cost function with respect to the learnable
parameters (using the chain rule) to obtain that gradients used to update those parameters.
How these gradients are used depends on the optimizer used and hyperparameters of the
optimizer such as the learning rate. For the most simple form of gradient descent, one simply
updates the learned parameter by the gradients multiplied by a learning rate (typically 10−10
to 10−1). More sophisticated optimizers often add in additional “physics” like momentum
to better explore the loss surface.

For a deeper dive into deep learning, we recommend Ref. [94] and the course materials
available at Ref [4].
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Appendix H

Appendix for Tensor Field Networks
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H.1 Proofs of general equivariance propositions

For equivariant L, the following diagram is commutative for all g ∈ G:

X Y

X Y

L

DX (g) DY (g)

L

If a function is equivariant with respect to two transformations g and h, then it is equiv-
ariant to the composition of those transformations:

L(DX (gh)x) = L
(
DX (g)DX (h)x

)
= DY(g)L

(
DX (h)x

)
= DY(gh)L(x)

for all g, h ∈ G and x ∈ X ; that is, the following diagram is commutative:

X Y

X Y

X Y

L

DX (g) DY (g)

L

DX (h) DY (h)

L

Composing equivariant functions L1 : X → Y and L2 : Y → Z yields an equivariant
function L2 ◦ L1:

L2(L1(DX (g)x)) = L2(DY(g)L1(x))

= DZ(g)L2(L1(x))

That is, the following is commutative:

X Y Z

X Y Z

L1

DX (g)

L2

DY (g) DZ(g)

L1 L2

H.2 Motivating point convolutions

We can represent input as a continuous function that is non-zero at a finite set of points
(using Dirac δ functions):

V (~t) =
∑
a∈S

Vaδ(~t− ~ra)
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A point convolution is then equivalent to applying an integral transform with kernel

F (~t− ~s)
∑
a∈S

δ(~t− ~ra)

for some function F . This transform yields

L(~t) =

∫
d3~sF (~t− ~s)

∑
a∈S

δ(~t− ~ra)
∑
b∈S

Vbδ(~s− ~rb)

=
∑
a∈S

δ(~t− ~ra)
∑
b∈S

F (~ra − ~rb)Vb

=
∑
a∈S

δ(~t− ~ra)La

where we define
La :=

∑
b∈S

F (~ra − ~rb)Vb

as in the main text.

H.3 Proof of equivariance of point convolution layer

Figure H.1: Condition for layer rotation equivariance

Under a rotation ~ra 7→ R(g)~ra, we know that ~rab 7→ R(g)~rab and

F
(lf ,li)
cm (R(g)~rab) =

∑
m′

D
(lf )

mm′(g)F
(lf ,li)

cm′ (~rab) (H.1)

because of the transformation properties of the spherical harmonics Y
(l)
m .
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Figure H.2: Filter equivariance equation

Then

L(lO)
acmO

(
R(g)~ra,

∑
m′

D
(lI)

mIm
′
I
(g)V

(lI)

acm′
I

)
=
∑
mF ,mI

C
(lO,mO)
(lF ,mF )(lI ,mI)

×
∑
b∈S

F (lF ,lI)
cmF

(R(g)~rab)
∑
m′

D
(lI)

mIm
′
I
(g)V

(lI)

bcm′
I

=
∑
mF ,mI

C
(lO,mO)
(lF ,mF )(lI ,mI)

×
∑
b∈S

∑
m′

F

D
(lF )

mFm
′
F

(g)F
(lF ,lI)

cm′
F

(~rab)


×

∑
m′

I

D
(lI)

mIm
′
I
(g)V

(lI)

bcm′
I


=
∑
m′

O

D
(lO)

mOm
′
O

(g)C
(lO,m

′
O)

(lF ,mF )(lI ,mI)

∑
b∈S

F (lF ,lI)
cmF

(~rab)V
(lI)
bcmI

=
∑
m′

O

D
(lO)

mOm
′
O

(g)L(lO)

acm′
O

(
~ra, V

(lI)
acmI

)
.
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Figure H.3: Equivariance of Clebsch-Gordan coefficients. Note that each D may refer to a
different irreducible representation.

H.4 Details for gravitational accelerations and

moment of inertia tasks

Moment of inertia radial functions

We can write the moment of inertia tensor as

Iij :=
∑
a∈S

maTij(~ra)

where

Tij(~r) := R(0)(r)δij +R(2)(r)

(
r̂ir̂j −

δij
3

)
The expression that R(2) is multiplying is the 3D symmetric traceless tensor, which can be
constructed from the l = 2 spherical harmonic. To get agreement with the moment of inertia
tensor as defined in the main text, we must have

R(0)(r) =
2

3
r2 R(2)(r) = −r2

Figure H.5 shows the excellent agreement of our learned radial functions for filters l = 0
and l = 2 to the analytical solution.

Point generation details and radial hyperparameters

The number of points is uniformly randomly selected from 2 through 10. The masses are
scalar values that are randomly chosen from a uniform distribution from 0.5 to 2.0. The
coordinates of the points are randomly generated from a uniform distribution to be inside a
cube with sides of length 4 for gravity and 1 for moment of inertia.

We use 30 Gaussian basis functions whose centers are evenly spaced between 0 and 2.
We use a Gaussian variance that is one half the distance between the centers. We use a
batch size of 1. For the test set, we simply use more randomly generated points from the
same distribution.
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Figure H.4: Diagrammatic proof of point convolution rotation equivariance.

We note that −1/r2 diverges as r → 0. We choose a cutoff minimum distance at 0.5
distance because it is easy to generate sufficient examples at that distance with a few number
of points per example. If we wanted to properly sample for closer distances, we would need
to change how we generate the random points or use close to 1000 points per example.

H.5 Proof of weighted point-averaging layer

equivariance

Let S be the set of points (not including the missing point at ~M) with locations ~ra. Suppose

that the output of the network is a scalar and a vector ~δa at each point in S. We take
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Figure H.5: Radial function learned by l = 0 and l = 2 filters for moment of inertia toy
dataset. The filters learn the analytical radial functions. For a collection of randomly
generated point sets, the mean minimum distance is the average of the minimum distance
between points in each point set. Distances smaller than the mean minimum distance might
not have been seen by the network enough times to correct the radial filter.

the softmax of the scalars over S to get a probability pa at each point. Define the votes as
~va := ~ra + ~δa, so the guessed point is

~u :=
∑
a∈S

pa~va

This is the first operation that we have introduced that lacks manifest translation equivari-
ance because it uses ~ra by itself instead of only using ~ra − ~rb combinations. We can show
that ~ra 7→ ~ra + ~t implies

~u 7→
∑
a∈S

[
pa(~ra + ~t) + pa~δa

]
= ~u+ ~t

because the pa sum to 1. This voting scheme is also rotation-equivariant because it is a sum
of 3D vectors. The loss function

loss = (~u− ~M)2

is translation-invariant because it is a function of the difference of vectors in 3D space and
rotation-invariant because it is a dot product of vectors.

H.6 Missing point task accuracies and MAE by epoch

In Table H.1, we give the prediction accuracy and MAE on distance for the missing point
task broken down by atom type. There are 1,000 molecules in each of the train and test
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Table H.1: Performance on missing point task by atom type

Atoms

Number of
atoms with
given type

in set

Accuracy (%)
(≤ 0.5 Å

and atom type)

Distance
MAE in Å

Hydrogen

5-18 (train) 7207 94.6 0.16
19 10088 93.2 0.16
23 14005 96.7 0.14
25-29 16362 97.7 0.15

Carbon

5-18 (train) 5663 94.3 0.16
19 6751 99.9 0.10
23 7901 100.0 0.11
25-29 8251 99.7 0.17

Nitrogen

5-18 (train) 1407 74.8 0.16
19 616 74.7 0.18
23 37 81.1 0.19
25-29 16 93.8 0.26

Oxygen

5-18 (train) 1536 83.3 0.17
19 1539 80.2 0.21
23 1057 68.0 0.20
25-29 727 60.1 0.21

Fluorine

5-18 (train) 50 0.0 0.18
19 6 0.0 0.07
23 0
25-29 0

sets; however, when comparing results by atom type, the relevant number to compare is the
number of examples where a specific atom type is removed. In Figure H.6 and Figure H.7, we
give the accuracy and distance MAE for the missing point task as a function of the number
of training epochs (Tables 7.1 and H.1 contain the results after 225 epochs).
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Figure H.6: Accuracy of missing point task by epoch of training

Figure H.7: Distance MAE of missing point task by epoch of training
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