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ABSTRACT OF THE DISSERTATION

A Hopf-Lax formulation of the eikonal equation for parallel redistancing

and oblique projection

by

Michael Wayne Royston

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Joseph M. Teran, Chair

The level set method is one of the most useful algorithms for scientific computing problems

that require computations over complex geometric domains. By representing geometry

in terms of implicit functions defined over regular Cartesian grids, level set methods au-

tomatically capture a wide range of dynamic shapes and topology changes. They have

gained wide adoption for problems in fluid dynamics, image processing, chip manufactur-

ing, combustion, computer animation and many more. Dynamic changes in the geometry

are automatically resolved by advecting the implicit function throughout a flow domain.

However, it is typically necessary for the function describing the level set to have some

important properties that the advection process does not preserve. One such property is

that the gradient of the implicit function should have unit norm. Given this requirement,

much research has been done on replacing an implicit function with a new function that

preserves the old zero isocontour while satisfying the unit norm gradient constraint. This

process is called redistancing and its solution satisfies the eikonal equation.

Many methods currently exist to solve this problem. Fast marching [1, 2] and fast

sweeping [3] are the most popular redistancing methods due to their efficiency and rel-

ative simplicity. However, these methods require propagation of information from the

zero-isocontour outwards, and this data dependence complicates efficient implementation

on today’s multiprocessor hardware. Recently an interesting alternative view has been

developed that utilizes the Hopf-Lax formulation of the solution to the eikonal equation

[4, 5]. In this approach, the signed distance at an arbitrary point is obtained without the

need of distance information from neighboring points. We extend the work of Lee et al.
ii



[4] to redistance functions defined via interpolation over a regular grid. The grid-based

definition is essential for practical application in level set methods. We demonstrate

the effectiveness of our approach with GPU parallelism on a number of representative

examples.

In addition, we show how our method can be modified to solve the problem of oblique

projection. This problem arises in the simulation of elastoplastic materials. An elasto-

plastic material has a region of allowed (or feasible) stress, and during simulation the

stresses can leave the region. A projection is necessary to return the stress back to the

feasible region. As we will show, this projection is not always a right angle projection.

The shape of the allowed stress region changes depending on the material being simu-

lated. While some closed form solutions exist for determining the projection, in general

this problem is difficult. We provide a parallel solution for finding the oblique projection

needed for an arbitrary region of allowed stress that generalizes the Hopf-Lax approach

to redistancing.
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CHAPTER 1

Redistancing

1.1 Introduction

The level set method [6] is a powerful technique used in a large variety of problems in

computational fluid dynamics, minimal surfaces and image processing [7]. In general

these methods are concerned with the transport evolution ∂ϕ
∂t

+ v · ∇ϕ of a level set

function ϕ : Rn → R in velocity field v. While the essential property of ϕ is typically the

location of its zero iso-contour (Γ = {x ∈ Rn|ϕ(x) = 0}), in practice many applications

additionally require that it be a signed distance function (|∇ϕ| = 1). This property will

not generally be preserved by the transport evolution, but it can be recovered without

modifying the location of the zero isocontour. This process is commonly referred to as

redistancing or reinitialization [8, 9, 10].

We describe the redistancing problem in terms of the signed distance function ϕ that

is obtained from an arbitrary non-signed-distance level set function ϕ0 (while preserving

the zero isocontour of ϕ0). Mathematically, the process obeys the eikonal equation as

|∇ϕ(x)|22 = 1 (1.1)

sgn(ϕ(x)) = sgn(ϕ0(x)).

There is extensive previous work related to the solution of (1.1). The most commonly

used methods are the fast marching method (FMM) [1, 2] and the fast sweeping method

(FSM) [3].

In this chapter we will first discuss the mathematical properties of the eikonal equation

that are important to consider when deriving a discrete approximation. We will then

discuss some of the methods that currently exist to solve the eikonal equation along with

their parallel versions. We will then derive our method using a Hopf-Lax formulation

1



of the time dependent eikonal equation, and show the results of running our method in

parallel on a modern consumer GPU.

1.2 Mathematical properties of the eikonal equation

One way to find a solution to the eikonal equation is to use the method of characteristics.

We can rewrite Equation (1.1) as,

F (x, ϕ,p) = |p|22 − 1 = 0 (1.2)

ϕ(x) = 0 ∀ x ∈ Γ

p = ∇ϕ(x)

Now suppose we have a curve in R2n+1 represented by (x(s), z(s),p(s)) and furthermore

assume that z(s) = ϕ(x(s)) is a solution to Equation (1.2) then following the method of

characteristics from Evans [11] we get

ṗ(s) = λ(−Fx(x(s), z(s),p(s))− Fz(x(s), z(s),p(s))p(s))

ż(s) = λ(−Fp(x(s), z(s),p(s)) · p(s))

ẋ(s) = λ(−Fp(x(s), z(s),p(s)))

Now due to the simplicity of our F we get that Fx = 0, Fz = 0 and Fp = 2p. Thus

ṗ(s) = 0

ż(s) = 2λ|p|22

ẋ(s) = 2λp

Now in addition we know that d
ds
∇ϕ(x(s)) = 0 from ṗ(s) = 0. This means that along this

curve the value of ∇ϕ does not change. Therefore we know that x(s) follows a straight

line, in addition if we choose λ = −1
2

we get

x(s) = ∇ϕ(x(0))s+ x(0) (1.3)

This can be seen as saying that the characteristics of ϕ move in straight lines. In addition

since we know that |p|22 = 1 we get

z(s) = s+ z(0) (1.4)

2



Figure 1.1: Here we see two situations where characteristics can intersect. In both im-

ages our surface is represented by the black line, and the characteristics by the colored

(and gray) lines. In the left image a shock is formed when multiple characteristics from

different starting points intersect. On the right a rarefaction fan is formed when mul-

tiple characteristics are all formed from the same point(due to the boundary being non

smooth).

3



We note that these characteristics are only valid for the supposed curve in R2n+1. These

curves do not have to be infinite, in fact when two characteristic curves coincide they

will both terminate. This can happen in two distinct situations both shown in Figure

1.1. The first is considered a shock. This is when two different points x,y ∈ Γ exist with

s1, s2 such that

x(s1) = y(s2) (1.5)

This will occur, for example, on the inside of a convex surface. The second situation is

called a rarefaction fan. This occurs when Γ is non-smooth. At any point x ∈ Γ where the

boundary is non-smooth ∇ϕ will not exist. Instead there will be a set of sub differentials

∂ϕ. These sub differentials will define the directions of characteristics. Essentially this

means that if we have x1(s) and x2(s) defined from different sub differentials, with x1(0)−

x2(0) = 0 we can still have x1(s) ̸= x2(t) ∀t ̸= 0. We note that a solution ϕ will

be continuous everywhere, and will have a continuous derivative everywhere except at

shocks.

With this choice of λ we can see that a solution z(s) will represent a signed distance

function along the curve as long as it does not hit a shock. Suppose x(0) ∈ Γ, then

z(0) = 0 and

∥x(s)− x(0)∥ = ∥s∇ϕ(x(0))∥ = s = z(s) (1.6)

where we used that ∥∇ϕ(x(0))∥ = 1. Since the only time that more than one point on

the boundary can have a characteristic curve intersect a given point is at a shock, we can

say that x(0) is the closest point on the boundary to x(s)

Now the eikonal equation is not the only PDE that can be used to solve the redis-

tancing problem. We note that the current formulation given in Equation (1.1) is only

spatially variant. There are two similar variations on the eikonal equation that also

include a temporal term. The first variation is

ϕ̃t(x, t) + |∇ϕ̃| = 1 (1.7)

This PDE has the nice property that as time t → ∞ the solution ϕ̃ reaches a steady

state where ϕ̃(x,∞) = ϕ(x). Essentially after time T all points within T distance of the

4



boundary Γ will have reached the correct solution [7], i.e.

ϕ̃(x, T ) = ϕ(x) ∀ x s.t. ϕ(x) ≤ T (1.8)

The second variation we will derive as it is used further in the paper. This second

variation is very similar to Equation (1.7) however we set the right hand side equal to 0.

This variation is given in the work of Lee et al. [4]

|∇ϕ̃|+ ϕ̃t = 0

ϕ̃(x, 0) = 0 ∀ x ∈ Γ
(1.9)

Equation (1.1) and Equation (1.9) are not immediately seen as similar. However, if we

follow the work of Osher [12] we can see that ϕ̃(x, t) = 0 =⇒ ϕ(x) = t, i.e. the zero

level set of ϕ̃(x, t) flow outward along its (the zero level set) normals. The speed at which

it grows is such that after s units of time, a point on the zero level set will have moved s

distance away from its previous location (assuming it has not hit a shock).

To begin, assume we have a PDE written in the following form

F (x, ϕ,∇ϕ) = 0 (1.10)

(1.11)

with Dirichlet boundary data given on Γ a closed set in R2 with an interior Ω and an

exterior Rn/Ω

ϕ(x) = 0 ∀ x ∈ Γ

our goal is to find a new formulation of the PDE that satisfies the Hamilton-Jacobi

equation

∂

∂t
ϕ̃(x, t) +H(x,∇ϕ̃) = 0 in Rn × (0,∞)

ϕ̃ = ϕ0 on Rn × (t = 0)

(1.12)

If we wish to reproduce the eikonal equation in this form, we can start with

F (x, ϕ,∇ϕ) = |∇ϕ| − 1 = 0 (1.13)

where

ϕ(x) = 0 for x ∈ Γ (1.14)
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Now assume we have a solution to the eikonal equation (1.1) ϕ(x) = t . We wish to

construct a function ϕ̃(x, t), t ≥ 0 such that

ϕ̃(x, t) = 0 =⇒ ϕ(x) = t (1.15)

Any such constructions will satisfy

∂

∂xi
ϕ̃(x, ϕ(x)) =0 = ϕ̃xi + ϕ̃tϕxi (1.16)

for all the partial derivatives ∂
∂xi

. This implies

ϕxi = − ϕ̃xi
ϕ̃t

(1.17)

F (x, t,
∇ϕ̃
ϕ̃t

) = 0 (1.18)

|∇ϕ̃
ϕ̃t

| − 1 = 0 (1.19)

|∇ϕ̃| ± |ϕ̃t| = 0 (1.20)

If we assume that ϕ̃ is monotonic in t then the choice of plus or minus determines which

direction the interface is traveling. As such if we have ϕ̃ a solution to

|∇ϕ̃|+ ϕ̃t = 0 (1.21)

ϕ̃(x, 0) = ϕ0 (1.22)

we get ϕ̃(x, t) = 0 =⇒ ϕ(x) = t giving us a time dependent formulation of the eikonal

equation in a Hamilton-Jacobi formulation. We note that the choice of ϕ0 is important.

As we noted at the start, the zero iso-contour follows its outward normal. The outward

normal is defined as the direction followed by the gradient. As such, if we have ϕ0(x) = 0

then the direction the level set will travel at x is determined to be ∇ϕ0(x)

1.2.1 Approximating the eikonal equation

If we wish to use a numerical solution of the eikonal equation (1.1), we first need to

discretize it. We start by assuming we are working on a regular grid in R2. Assume we

want a grid G of size n × n with width between grid nodes h and whose bottom left

corner is defined as x0. Then a grid node xij ∈ G; i < n, j < n represents

xij = x0 + (ih, jh) (1.23)

6



A first order approximation to the eikonal equation on this regular grid is

max(D−x
ij ϕ,−D+x

ij ϕ, 0)
2 + max(D−y

ij ϕ,−D
+y
ij ϕ, 0)

2 = 1 (1.24)

where

ϕij = ϕ(xij)

ϕx(xij) ≈ D±x
ij ϕ =

ϕi±1,j − ϕij
±h

ϕy(xij) ≈ D±y
ij ϕ =

ϕi,j±1 − ϕij
±h

Where Equation (1.24) needs to be true at every point xij. This gives us a series of

coupled equations that all need to be solved simultaneously. The use of the max in

Equation (1.24) can be seen to be choosing which side of the discretization D−
ij or D+

ij the

information is flowing from. Consider Figure 1.2, we know from the solution given by the

method of characteristics that information always propagates away from the boundary,

thus that information propagates from nodes with smaller values to nodes with larger

values. The choice of 0 in the max corresponds to when the sign of both D−
ij and D+

ij is

negative, which means information should be propagating away from ϕij in both directions

which should not be possible. We note that in dimensions > 1 this simply means that at

the given point this direction does not contribute to the propagation(e.g. a shock). In

addition the use of the maximum guarantees there will not be large discontinuities in the

solution where ∇ϕ > 1 in the discretization.

Since the eikonal equation flows information away from the boundary, we can simplify

the Equation (1.24) to the following

ϕH = min(ϕi−1,j, ϕi+1,j)

ϕV = min(ϕi,j−1, ϕi,j+1)

1 =

(
ϕij − ϕH

h

)2

+

(
ϕij − ϕV

h

)2

ϕij =
ϕH + ϕV

2
+

1

2

√
(ϕH + ϕV )2 − 2(ϕ2

H + ϕ2
V − h2) (1.25)

This approximation requires |ϕH − ϕV | < h. This will be the case when the solution is

smooth around a grid node. The solution will not be smooth if a shock has formed in the

solution. In this case the solution will require one of the partial derivatives to be zero.
7



Figure 1.2: Consider a 1d grid representation. The blue dots represent ϕi, the red

dots represent ϕi−1 and the green dots represent ϕi+1. In all figures we assume that

ϕi, ϕi+1, ϕi−1 > 0 The top row all represent valid representations that satisfy Equation

(1.24). The bottom two figures, however, do not. The left figure represents a case where

D−
ijϕ = 1 however −D+

ijϕ = 2. In order for this figure to be valid, the blue dot would

need the same value as the red dot. The bottom right figure represents a case where

D−
ijϕ = −D+

ijϕ = −1
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Thus we will simply take the shortest distance from a neighboring cell and use that as

our approximation.

ϕij = min(ϕH , ϕV ) + h

The difference in methods that use this discretization is simply down to the order in

which grid nodes are updated. While the final solution ϕij must satisfy Equation (1.24)

everywhere the methods to produce ϕij incrementally update the grid nodes until the

final solution is reached. Two of the most common methods used to redistance are the

fast marching method and the fast sweeping method.

1.3 Fast marching

First proposed by Tsitsiklis [1] using optimal control, the fast marching method was in-

dependently developed by Sethian in [2] based on upwind difference schemes. It is similar

to Dijkstra’s method [13] for finding the shortest path between nodes in a graph. The fast

marching method uses upwind difference stencils to create a discrete data propagation

consistent with the characteristics of the eikonal equation. Sorting is used to determine

a non-iterative update order that minimizes the number of times that a point is uti-

lized to create a strictly increasing (or decreasing) propagation. The operation count is

O(N log(N)) where N is the number of grid points and the log(N) term is a consequence

of the sorting.

In fast marching, each node in the grid is conisdered to be in one of three states, far(not

yet visited),considered(node visited and assigned tentative value), and accepted(node vis-

ited and assigned final value). The method follows these steps.

1. Assign every node xij the value ϕij = ∞ and label far

2. For nodes xij ∈ Γ (or nodes close to the boundary) set ϕij = 0 and label accepted

(or set ϕij to an approximation of distance at cells crossed by Γ)

3. ∀ xij ∈ accepted use an approximation of the eikonal equation (see (1.25)) to cal-

culate an approximate value ϕ̂ for each neighbor x̃ of xij. If ϕ̂ < ϕ̃ then set ϕ̃ = ϕ̂

and label x̃ considered. In addition, store the value ϕ̃ in a binary heap.
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4. let x̃ be the node in set considered with the smallest value ϕ̃ found in the binary

heap. Label x̃ accepted

5. for each neighbor x̂ij of x̃ that is not accepted calculate a new tentative value ϕ̃ij

6. if ϕ̃ij < ϕij then set ϕij = ϕ̃ij and label x̃ij as considered

7. if ∃ xij ∈ considered repeat steps 4-7

Consider Figure 1.3 for a graphical example of these steps. The power behind this method

has to due with the heap sort used to keep track of the unknown nodes. We know

that characteristics flow outward from the boundary, this feature also lets us know that

information flows from nodes with smaller values ϕij to larger values. While we dont know

the order of the final ϕij, we can find it by sorting all of our starting nodes, and then

adding on the smallest of the unknown nodes at each step. The heap sort the considered

nodes are stored in allows us to do this with low cost.

1.4 Fast sweeping

Fast sweeping is another option to solve the eikonal equation. Like the fast marching

method, fast sweeping also uses a first order approximation of the eikonal equation.

However instead of an optimal update ordering requiring a sort to find the smallest

node, a Gauss-Seidel iterative approach is used with alternating sweep directions. For a

regular grid in Rn it will take 2n different sweep directions in order to fully redistance

the grid. A sweep direction is simply the order on which the value of ϕ will be calculated

on the grid nodes. The motivation for the sweeps is rather simple and follow from two

properties. The first is that the characteristics of the eikonal equation are straight lines.

The second is that in Rn each axis can be broken into a positive and a negative component.

This means that we can group characteristics into similar segments based off of whether

they are positive or negative for each grid axis. For example, in 2D we can break the

characteristics into four groups, NE,SE,NW,SW , where the N defines characteristics

that are positive in the Y axis, S are characteristics that are negative in the Y axis,

and W and E are defined similarly. We now define one set of sweep directions that will

10



Figure 1.3: Consider a level set with zero iso-countour given by the ellipse. The black

nodes have a value ϕij = 0 given by step 1. For our purposes we are only considering

nodes outside of Γ where ϕ0 > 0. The blue nodes are the original nodes that need to

be defined before the algorithm starts in step 2. In most cases these values are found

by using a ”linear” approximation near the boundary. The orange nodes are those found

by calculating all approximations in neighbor nodes in step 3. The circled orange node

is the node with the smallest value ϕij found in step 4. The green nodes are those that

were calculated using the new value of the blue circled node in steps 5 and 6. These steps

would then continue until every grid node of consideration was blue.
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capture these characteristics. Assume we have a regular grid in R2 of size n× n, for the

4 directions given below, we iterate over i first then increment/decrement j.

NW : j = 1 : n, i = 1 : n

SW : j = n : 1, i = 1 : n

NE : j = 1 : n, i = n : 1

SE : j = n : 1, i = n : 1

(1.26)

Because of the fact that different sweeps will carry different groups of characteristics,

instead of using the ϕH and ϕV given in Equation (1.25) they are defined based on the

sweep directions. Once chosen, we can define ϕNE, ϕSE, ϕNW , ϕSW as follows

ϕNEij =
ϕNEi−1,j + ϕNEi,j−1

2
+

1

2

√
(ϕNEi−1,j + ϕNEi,j−1)

2 − 2((ϕNEi−1,j)
2 + (ϕNEi,j−1)

2 − h2)

ϕSEij =
ϕSEi−1,j + ϕSEi,j+1

2
+

1

2

√
(ϕSEi−1,j + ϕSEi,j+1)

2 − 2((ϕSEi−1,j)
2 + (ϕSEi,j+1)

2 − h2)

ϕNWij =
ϕNWi+1,j + ϕNWi,j−1

2
+

1

2

√
(ϕNWi+1,j + ϕNWi,j−1)

2 − 2((ϕNWi+1,j)
2 + (ϕNWi,j−1)

2 − h2)

ϕSWij =
ϕSWi+1,j + ϕSWi,j+1

2
+

1

2

√
(ϕSWi+1,j + ϕSWi,j+1)

2 − 2((ϕSWi+1,j)
2 + (ϕSWi,j+1)

2 − h2)

(1.27)

Where each of ϕNE, ϕSE, ϕNW , ϕSW are updated in the order defined in (1.26). Once all

4 sweeps have been run, the final value ϕij is defined to be the minimum value over all

the sweeps.

ϕij = min(ϕNEij , ϕSEij , ϕ
NW
ij , ϕSWij )

Note that this is only one set of sweeps that fully update the grid. Any set of sweeps

that can cover the 2n directions will suffice. For a graphical example see Figure 1.4.

The different directions defined in (1.27) are represented by the different colors. The

NE sweep is blue, NW sweep is brown, SE sweep is purple, SW sweep is green. The

colored nodes show which nodes will have their final values set from a corresponding

sweep. While like fast marching, fast sweeping requires the nodes near the boundary to

be updated, this step was skipped in the image for clarity. We note that on the inside of

the ellipse, the color are sitting in opposite quadrants from the outside. This is simply

due to the direction of the characteristics. Some interesting work by Detrixhe et al. [14]
12



Figure 1.4: Consider a level set with zero iso-countour given by the ellipse. Each color

represents a different sweep direction. Each sweep will first follow the horizontal axis,

then the vertical axis.
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used update directions aligned along the diagonals of the grid in order for more parallel

updates. More details will be discussed in the next section.

One drawback of the fast sweeping method is the inability to adhere to a narrow

banding strategy. In many cases only data close to the interface is necessary. For example

in level set advection, as long as the level set function ϕ has the correct sign everywhere

(positive outside of the set, negative inside, zero on the boundary), and has ∇ϕ = 1

”close” to the zero-isocontour of ϕ, the advection will result in the correct answer. With

fast sweeping, the only narrow banding strategy that exists would be to only update

nodes that could be within the narrow band. However due to the fact that Γ is only

required to be closed, the only way to update the narrow band is by checking every node

in the grid, and only updating the close ones. While this will speed up the runtime by not

running full updates on every grid node, it is not as nice as the fast marching method in

which the algorithm can simply terminate once the computed distance reaches a certain

threshold.

1.5 Higher order methods

As stated, both FMM and FSM are first order methods. This can simply be seen by

the fact that we used a first order discretization of the eikonal equation. Consider only

ϕx(xij) the first order approximation is

ϕ+
x (xij) ≈ D+x

ij ϕ =
ϕi+1,j − ϕij

h

ϕ−
x (xij) ≈ D−x

ij ϕ =
ϕi−1,j − ϕij

h

If we instead use a second order approximation for the partial derivatives

ϕ+
x (xij) ≈

ϕi+1,j − ϕij
h

+
h

2

ϕi+2,j − 2ϕi+1,j + ϕij
h2

=
ϕi+2,j − 4ϕi+1,j + 3ϕij

2h

ϕ−
x (xij) ≈

ϕij − ϕi−1,j

h
+
h

2

ϕij − 2ϕi−1,j + ϕi−2,j

h2
= 3

ϕij − 4ϕi−1,j + ϕi−2,j

2h

solving for ϕij in

max(ϕ+
x (xij), ϕ

−
x (xij), 0)

2 +max(ϕ+
y (xij), ϕ

−
y (xij), 0)

2 = 1 (1.28)
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will give a second order approximation of the solution of the eikonal equation. Note this

approximation breaks down near the boundary. In general we assume that we have ini-

tialized a band of nodes around Γ 1 node thick. However the second order approximation

requires information 2 nodes away from a given point. In practice the two main solutions

to this problem is to either initialize a band 2 nodes thick, or to use the first order ap-

proximation close to the boundary, and use the second order approximation further away

from the boundary.

Another higher order method to solve the redistancing problem is to instead solve

ϕt + |∇ϕ| = 1 (1.29)

This equation has the property that after time T , ϕ(x, T ) has the correct values for

all points within T distance of the boundary. Following Osher and Fedkiw [7], we can

discretize the gradient term using HJENO[6] and the time derivative using a Runga-

Kutta scheme. A drawback of this method, is due to the discretization, it is possible for

the interpolation of Γ to move between time steps. Further work by Sussman et al. [15]

accounted for this by adding extra terms to the right hand side to combat the movement

of the interface.

1.6 Parallel fast marching and fast sweeping

Notably, both the FMM and FSM approaches create data flow dependencies since in-

formation is propagated from the zero isocontour outwards and this complicates parallel

implementation. Despite this, various approaches have achieved excellent performance

with parallelization. The Gauss-Seidel nature of FSM makes it more amenable to paral-

lelization than FMM. Zhao initially demonstrated this in [16] where each sweep direction

was assigned to an individual thread with the final updated nodal value being the min-

imum nodal value from each of the threads. We note that this only allows the use of

2n threads in n dimensions. For low dimensional problems (2d and 3d) this does not

utilize the power available in many computers today. Further scaling has been achieved

by splitting the individual sweeps into subdomain sweeps with a domain decomposition

approach. The domain decomposition approach involves splitting the domain into m

subdomains. Typically they provide ”ghost nodes” that are updated in multiple subdo-
15



mains and are passed between subdomains either when updated or at different intervals.

However, this strategy can require more sweep iterations than the original serial FSM

and the required iterations increase with the number of domains which reduces paral-

lel efficiency. Detrixhe et al. [14] developed a parallel FSM that scales in an arbitrary

number of threads without requiring more iterations than in the serial case. Rather than

performing grid-axis-aligned Gauss-Seidel sweeps, they use Cuthill-McKee ordering (grid-

diagonal) to decouple the data dependency(see figure (1.5). Since the upwind difference

stencil only uses grid axis neighbors, nodes along a diagonal do not participate in the

same equation and can thus be updated in parallel trivially.

FMM is more difficult to implement in parallel, however even Tsitsiklis [1] developed

a parallel FMM algorithm using a bucket data structure. A number of approaches use

domain decomposition ideas similar to Zhao [16] and Detrixhe et al. [17] to develop

parallel FMM [18, 19, 20, 21].

In domain decomposition approaches the grid is typically divided into disjoint sub grids

with a layer of ghost nodes representing nodes contained in adjacent neighbors. Each sub

grid is updated in parallel with the desired scheme (FMM, FSM, etc). At some point in

the scheme the values stored in the ghost nodes are transfered to adjacent neighbors, and

nodes that are represented by ghost nodes in neighbors are updated to new values. How

often this information is propagated has a bearing on both the speed of the algorithm, as

well as the number of iterations required for convergence. An algorithm that passes ghost

node information rarely may run faster than another algorithm, but will likely converge

slower due to the delay of information crossing the subdomain boundary. For an example

of breaking a grid into subgrids see figure (1.6).

Jeong et al. [20] developed the fast iterative method (FIM), which is a parallel ap-

proach using domain decomposition but with a looser causal relationship in the node

update list to localize updates for Single Instruction Multiple Data (SIMD) level par-

allelism. Simplifications to the update list in FMM improve parallel scaling, but tend

to increase the number of worst case iterations. Dang et al. [22] extended FIM to a

coarse/fine-grained approach based on domain decomposition with load balancing via

master/worker model that allowed for efficient performance on heterogeneous platforms.

The domain decomposition approach has also been used in FSM, notably in De-
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Figure 1.5: Consider a level set with zero iso-countour given by the ellipse. Each color

represents a different sweep direction. The sweep directions are now aligned along the

diagonals. Nodes connected by a colored line are independent in a given sweep and are

updated in parallel before moving to the next row.
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Figure 1.6: Consider a level set with zero iso-countour given by the ellipse. A grid is

broken up into 4 subdomains. The red nodes represent ”ghost nodes” that when updated

will be used to transfer information into a separate subdomain.
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trixhe et al. [14]. They extended the previous ideas of decoupled updates to hybrid

distributed/shared memory platforms in [17]. They use a domain decomposition strategy

similar to Zhao [16] to divide the grid among available compute nodes and a fine grained

shared memory method within each subdomain that utilizes their approach in [14] to

achieve orders of magnitude performance increases.

Recently an interesting alternative to FMM and FSM has been proposed. Darbon

and Osher [5] and Lee et al. [4] utilize the Hopf-Lax formulation of the solution to

the Hamilton-Jacobi form of the eikonal equation. Notably, the signed distance at an

arbitrary point is obtained without the need of distance information from neighboring

points. This allows for the solution at any given point in any order and prevents the

need for communication across cores which greatly simplifies parallel implementation.

Furthermore, this inherently allows for updates done only in a narrow band near the

zero-isocontour. FSM must solve over the entire domain, and while FMM can be done in

a narrow band, FMM methods are generally more difficult to implement in parallel. These

aspects make the Hopf-Lax approaches in [4, 5] very compelling for parallel architectures.

Lee et al. demonstrated compelling results with abstractly defined functions. However,

treatment of grid-based functions is essential for practical application in level set methods,

and current their current method could not handle this.

1.7 Hopf-Lax formula

We previously derived a Hamilton-Jacobi formulation for the redistancing problem (Equa-

tion (1.9)). However the formulation by itself does not give us a solution to the problem.

Luckily for us, Hopf and Lax have already found a solution for us[23, 24]. We will derive

their solution by following the work of Evans[11]. We start by defining the Legendre-

Fenchel transform of a given function H

H∗(x∗) = sup{< x, x∗ > +H(x)|x ∈ Rn} (1.30)

We propose the Hopf-Lax formula as a solution of Equation (1.12)

ϕ̃(xi, t
k) = miny∈Rn

{
ϕ0(y) + tkH∗

(
xi − y

tk

)}
(1.31)
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To show this suppose x ∈ Rn, t > 0 and ϕ̃ defined by the Hopf-Lax formula given by

Equation (1.31) is differentiable at a point (x, t) ∈ Rn × (0,∞). Then

ϕ̃t(x, t) +H(Dϕ̃(x, t)) = 0

Following Evans[11] we can show this in two parts 1. Fix q ∈ Rn, h > 0

ϕ̃(x+ hq, t+ h) = min
y∈Rn

{
hH∗

(
x+ hq− y

h

)
+ ϕ̃(y, t)

}
≤ hH∗(q) + ϕ̃(x, t)

Where the equality uses a Lemma given in Evans [11]
ϕ̃(x+ hq, t+ h)− ϕ̃(x, t)

h
≤ H∗(q)

let h→ 0+

q ·Dϕ̃(x, t) + ϕ̃t(x, t) ≤ H∗(q)

This inequality is valid for all q ∈ Rn, thus

ϕ̃t(x, t) +H(Dϕ̃(x, t)) = ϕ̃t(x, t) + max
q∈Rn

{q ·Dϕ̃(x, t)−H∗(q)} ≤ 0 (1.32)

We only need H to be convex for the equality to hold

2. Now choose z such that ϕ̃(x, t) = tH∗(x−z
t
) + ϕ0(z). fix h > 0 and set s = t − h, y =

s
t
x+ (1− s

t
)z. Then x−z

t
= y−z

s
, and thus

ϕ̃(x, t)− ϕ̃(y, s) ≥ tH∗
(
x− z

t

)
+ ϕ0(z)−

[
tH∗

(
y − z

s

)
+ ϕ0(z)

]
= (t− s)H∗

(
x− z

t

)
I.E.

ϕ̃(x, t)− ϕ̃((1− h
t
)x+ h

t
z, t− h)

h
≥ H∗

(
x− z

t

)
Let h→ 0+

x− z

t
·Dϕ̃(x, t) + ϕ̃t(x, t) ≥ H∗

(
x− z

t

)
As such

ϕ̃t(x, t) +H(Dϕ̃(x, t)) = ϕ̃t(x, t) + max
q∈Rn

{
q ·Dϕ̃(x, t)−H∗(q)

}
≥ ϕ̃t(x, t) +

x− z

t
·Dϕ̃(x, t)−H∗

(
x− z

t

)
≥ 0

Thus we have shown that any ϕ̃ satisfying (1.31) is a solution for (1.12).
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1.8 Method

As in Lee et al. [4] we use the Hamilton-Jacobi formulation of the eikonal equation(1.1)

given previously.

∂

∂t
ϕ̃(x, t) + ∥∇ϕ̃(x, t)∥2 = 0

ϕ̃(x, 0) = ϕ0(x)

(1.33)

for x ∈ Rn, t > 0. We assume that ϕ0 is constructed such that
ϕ0(x) < 0 x ∈ Ω\Γ

ϕ0(x) > 0 x ∈ (Rn\Ω)

ϕ0(x) = 0 x ∈ Γ

for some set Ω ⊂ Rn. Similarly to Lee et al. [4] we assume that the set Ω is closed and

non-empty. While the theory does not require that Ω is bounded, in practice because we

will be dealing with closed bounded subsets of Rn we will assume that Ω is also bounded.

Isocontours of the time dependent solution ϕ̃ progress from the boundary Γ in its normal

direction at a rate of 1. This property is the reason the construction of ϕ0 is important.

When constructed properly, ∇ϕ0 will point in the normal direction away from the set Ω.

To know the distance to the boundary Γ, we simply need to know at which time t̂ the

zero-isocontour of ϕ̃ has progressed to the point x. In other words, the signed distance

(ϕ(x)) from the point x to the boundary Γ is given by the time t̂ with ϕ̃(x, t̂) = 0:

ϕ(x) = t̂. Note that we only consider the case here of positive ϕ since the case of negative

ϕ is trivially analogous.

As in Lee et al. [4], we treat the problem as root finding and use the secant method.

However, unlike Lee et al. we are specifically interested in redistancing grid based func-

tions. Thus we assume that the initial function is defined in terms of its interpolated

values from grid nodes as ϕ0(x) =
∑

i ϕ
0
iNi(x) where the function Ni is the bilinear in-

terpolation kernel associated with grid node xi and ϕ0
i = ϕ0(xi). Also, when we solve for

the redistanced values, we do so only at grid nodes (i.e. we solve for ϕi = ϕ(xi) = t̂).

Thus the secant method only requires the evaluation of the function ϕ̃(xi, t
k) for itera-

tive approximation tk → t̂. We next discuss the practical implementation of the secant

method and evaluation of ϕ̃(xi, t
k) for grid based data.
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1.8.1 Secant method for roots of ϕ̃(xi, t̂) = 0

In order to use the secant method to solve for the root in this context, we use the iterative

update

tk+1 = tk − ϕ̃(xi, t
k)

tk − tk−1

ϕ̃(xi, tk)− ϕ̃(xi, tk−1)
. (1.34)

The initial guess t0 can either be set from neighboring nodes that have been recently

updated, or generally from a priori estimates of the distance (see Section 1.8.4). How-

ever, when no such information is possible or when it would negatively effect parallel

performance we use t0 = 0. We set t1 = t0 + ϵ where ϵ is proportionate to the grid cell

size.

The main concern with using the secant method in this context is that while ϕ̃(xi, t)

is monotonically decreasing in t, it is not strictly monotone. This means that there can

be times t where d
dt
ϕ̃(xi, t) = 0. For example, if the minimum of ϕ0(xi) over the ball

centered at xi of radius t is in the interior of the ball (at a point of distance s from xi),

then d
dt
ϕ̃(xi, r) = 0 for s ≤ r ≤ t (see Section 1.8.2). The secant method is not well

defined if we have iterates with equal function values. To compensate for this, if secant

would divide by zero, and we have not already converged, we simply increase or decrease

tk+1 = tk±∆tmax in the correct direction. The correct direction is trivial to find, because

if ϕ̃(xi, t
k) > 0 then we need to increase tk. Otherwise we need to decrease tk. In practice,

we use ∆tmax = 5∆x where ∆x is the grid size.

Another issue is that errors in the approximation of ϕ̃(xi, t
k) can lead to more secant

iterations. This can be reduced by solving for ϕ̃(xi, t
k) to a higher tolerance. However, re-

quiring more iterations to approximate ϕ̃(xi, t
k) more accurately can be more costly than

just using more secant iterations with a less accurate (but more efficient) approximation

to ϕ̃(xi, t
k). We discuss the process and cost of solving for ϕ̃(xi, t

k) in Section 1.8.2. Our

modified secant algorithm is summarized in Algorithm 1.8.1.
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Algorithm 1 Modified Secant Method
while |ϕ̃(xi, t

k+1)| > ϵ do

∆t = −ϕ̃(xi, t
k) tk−tk−1

ϕ̃(xi,tk)−ϕ̃(xi,tk−1)

if |∆t| > tol then

if ϕ̃(xi, t
k) > 0 then

∆t = ∆tmax

else

∆t = −∆tmax

end if

end if

tk+1 = tk +∆t

end while

1.8.2 Hopf-Lax formula for ϕ̃(xi, t
k)

The only piece of the puzzle we are currently missing to use Hopf-Lax formulation (1.31)

is finding the Legendre-Fenchel transform of H. For our work H = ∥ · ∥2 and H∗ can be

derived as

∥x∗∥∗ = sup
x∈Rn

x∗Tx− ∥x∥

= sup
x∈Rn

x∗Tx− sup
y∈Rn,∥y∥∗≤1

yTx

= inf
y∈Rn,∥y∥∗≤1

sup
x∈RN

xT (x∗ − y)

= inf
y∈Rn,∥y∥∗≤1


0 y = x∗

∞ else

=


0 ∥x∗∥∗ ≤ 1

∞ else
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where ∥ · ∥∗ is the dual norm of ∥ · ∥. For a norm ∥ · ∥p its dual norm is ∥ · ∥q where
1
p
+ 1

q
= 0. Note that this means that the dual norm of the 2 norm, is itself the 2 norm

H∗(x) =


0 ∥x∥2 ≤ 1

∞ otherwise

or equivalently

ϕ̃(xi, t
k) = min

y∈B(xi,tk)
ϕ0(y) (1.35)

where B(xi, t
k) is the ball of radius tk around grid node xi. Thus the problem of evaluating

ϕ̃(xi, t
k) amounts to finding the minimum of the initial ϕ0 over a ball. While Lee et al.

[4] use Split Bregman iteration to solve this, we instead simply use projected gradient

descent. The only constrain on the system is restricting the minimum to a ball. Since

projecting to a ball is simple, the extra work required in Split Bregman only served

to slow down the calculations. We found that we could use a few hundred projected

gradient iterations and receive accurate answers much faster than in a Split Bregman

iteration largely due to the simplicity of the projection. Using y0
k as an initial guess for

the argmin of ϕ0 over the ball B(xi, t
k), we iteratively update the approximation from

ỹj+1
k = yjk − γ∇ϕ0(yjk) (1.36)

yj+1
k = PROJB(xi,tk)(ỹ

j+1
k ) (1.37)

where

PROJB(xi,tk)(y) =


y ∥xi − y∥2 ≤ tk

xi − tk xi−y
∥xi−y∥2 otherwise

In practice, we set the step size γ equal to the grid spacing ∆x. We found this to be

necessary due to the non-smooth nature of our grid approximation. The gradient is not

defined over the grid cell boundaries when using a bi-linear interpolation. When using a

bi-linear approximation a large amount of the time the minimum over a ball will occur

either on a cell boundary or a cell node. To resolve these accurately we need a small

step size. Note that the gradients ∇ϕ0(yjk) are computed using the bilinear interpolation

kernels Nl(x) as ∇ϕ0(yjk) =
∑

l ϕ
0
l∇Nl(y

j
k). We emphasize that for efficiency the sum

over l can be taken over only the four grid nodes surrounding the cell that the argument
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Figure 1.7: The two vertical lines are the boundary of minimization. Grid node xi = 1.8

is in the middle of the region, and also the starting guess for projected gradient descent.

The sequence of points leading off to the right represent the subsequent steps of gradient

descent. These points converge to the incorrect argmin x = 2.5. The correct solution is

at x = 0.4. In order to converge to this point, the initial guess would have to be less than

1.25
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yjk is in. We further note that the index for the cell containing the argument yjk can be

found in constant time using floor(y
j
αk

∆x
) where yjαk are the components of yjk. In general,

ϕ0 is a non-convex function defined from the grid interpolation and projected gradient

descent will only converge to a local minimum. We illustrate this in Figure 1.7. Failure to

converge to a global minimum can lead to large errors in the approximation of ϕ̃(xi, t
k).

While it is impractical to ensure we achieved a global minimizer, it is possible to find

multiple local minimizers increasing the probability we find a global minimizer. We

solve (1.35) multiple times with different initial guesses y0k and then take the minimum

over these solutions to come up with a final answer that is likely to be close to a global

minimzer. We found in practice, on the order of one guess per grid cell in the ball B(xi, t
k)

is sufficient to find a global minimizer. For problems without many local extrema the

number of initial guesses can be reduced. In general when finding ϕ̃(xi, t
k) we use as

initial guesses PROJB(xi,tk)(yk−1) where

yk−1 =
argmin

y ∈ B(xi, t
k−1)

ϕ0(y)

is the argmin of ϕ0 used in the previous secant iteration as well as a small number of

random points in B(xi, t
k). We use this strategy because PROJB(xi,tk)(yk−1) tends to be a

good guess for the global minimum. In general, it is very likely that at the next step, the

minimum will either be the same point, or along the boundary. Therefore, we prioritize

random initial guesses near the boundary of the ball. In fact, for tk−1 < tk we know that

the argmin will be at a distance s from xi with tk−1 ≤ s ≤ tk so in theory we should

only sample in the annulus. However, in practice we do not have full confidence in the

argmin attained at iteration k − 1 since our procedure is iterative. Allowing for initial

guesses at some locations closer to xi than tk−1 admits the possibility of finding a more

accurate argmin. Thus, we found that skewing the sampling density to be higher towards

the boundary of the ball struck a good balance between efficiency and accuracy. We

illustrate this process in Figure 1.11.

Failure to find the global minimum over the ball can cause unpredictable behavior in

the secant iteration for t̂. This includes false positives where a tk is incorrectly interpreted

as a root. However, continuing to run secant to a fixed large number of iterations usually

corrects for this. In general, there is a tradeoff between the number of initial guesses
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Figure 1.8: The figure illustrates representative random initial guesses used in solving

for ϕ̃(xi, tk). In addition, we use an initial guess equal to the minimizer computed in the

previous secant iteration shown in magenta.
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Figure 1.9: The plots above are the points (ϕ̃(xi, t
k), tk) found when running our algorithm

with different choices of random guess and gradient descent iterations on circle initial data.

The left most plot was run with 100 random guesses, and 1 gradient descent iteration.

The middle plot was run with 1 random guess, and 100 gradient descent iterations. The

right plot was run with 1 random guess and 5 gradient descent iterations. Note that in

all cases, the correct root was found.

and iterations of projected gradient and the number of secant iterations. We illustrate

this in Figure 1.9 which shows the path to convergence for a few choices of iteration

parameters. When ϕ̃(xi, t
k) is solved with high accuracy, the secant iteration converges

with minimal overshoot in 7 iterations. When ϕ̃(xi, t
k) is not solved to high accuracy,

secant overshoots by a large margin, and takes 16 iterations to converge, but notably still

converges. However because each iteration is cheaper, the total runtime is lower to reach

the same convergence for t̂. In practice we found that a few hundred projected gradi-

ent iterations combined with our initial guess sampling strategy struck a good balance

between accuracy and efficiency.

1.8.3 Grid interpolation order

We experimented with higher-order B-spline interpolation for the kernels in

ϕ0(x) =
∑

i ϕ
0
iNi(x). We tried two different ways to implement cubic B-splines. First

we simply tried to use the grid node values as the weights ϕ0
i . This method failed by

causing the interface to move too much in non-smooth regions, and by not capturing

small features. When the width of the interface was on the order of one grid cell the

interpolation would fail to capture any of the interface (the interpolation would be > 0
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Figure 1.10: For both images Bi-Cubic or Bi-Linear interpolation were used to represent

J . Both started with the initial data as a pyramid with a corner in the center of a cell.

Each was then reinitialized approximately 50 times and the changing of the zero-iso-

counter was shown as above. For cubic on the left, instability is introduced by trying to

fit the cubic interpolant to the data. While it handles smooth data better than linear, at

sharp corners the data over fits and becomes unstable. Linear on the right suffers from

no such instability, however because the sharp corner is lost with interpolation, it suffers

from volume loss over time.

in the region). To fix this we tried to find weights ϕ̃0
i that caused the interpolation to fit

the grid nodes exactly. While these weights were able to be found as a precomputation

step, we found that when Γ was non-smooth the interpolation tended to overfit the

boundary. This causes unwanted growth in the zero-isocontour. Linear interpolation is

not perfect either. Linear interpolation suffers from some volume loss at corners and

curves. The zero-isocontour however will never cross grid nodes with linear interpolation,

so under refinement the volume loss is mitigated. Figure 1.10 shows the problem with

both methods

1.8.4 Computing in a narrow band

In many applications, only data close to the interface is needed. Since each grid node

can be solved for independently, and in any order, the Hopf-Lax approach naturally lends

itself to narrow banding strategies for these applications. We first redistance the function

on the coarse grid, then we interpolate values from the coarse grid to the fine grid. We
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Figure 1.11: In this image, the red dot in the center is xi, the solid red line represents

the ball of radius tk and the dotted line represents the ball of radius tk−1. The magenta

point was the approximate argmin yk−1 of ϕ0 over the ball of radius tk−1. Since it is

unlikely for the minimizer to be inside of tk−1 we use coarse (random) grid initial guesses

in the interior. However, since it is possible that expanding t will move the minimizer to

a different location we take a large number of initial guesses along the boundary of tk
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Figure 1.12: A coarse grid 8X smaller than the fine grid was solved for initially. Using

those values the fine grid was only solved on cells where the distance to the boundary

could be less than 0.1, represented as the solid areas of the left image. In the right image

those coarse areas are defined from bilinear interpolation. This coarse/banding approach

provided approximately a 2.5 times increase in performance.

then only recompute values on the fine grid that are smaller than a threshold value and we

use the value interpolated from the coarse nodes as an initial guess t0 for the computation

on the fine grid. As an example see Figure 1.12. We note that we lose no accuracy by

computing the distance at coarse grid nodes because we are still using the fine grid data

as our initial conditions. One benefit of this method is our ability to reconstruct distances

via interpolation in the coarse regions. This can be useful if the application only needs

accurate data near the boundary but still expects data everywhere.

1.8.5 Computing geometric quantities

The Hopf-Lax formulation naturally allows us to compute normals (n = ∇ϕ) and curva-

tures (∇ · n) at the grid nodes. As pointed out in Lee et al. [4], as the argmin yk from

Equation (1.36) is iterated to convergence, it approaches the closest to point to the grid

node xi on the zero isocontour of ϕ0. Therefore, recalling that when tk has converged

(within a tolerance) to the root t̂ of ϕ̃(x, t̂) = 0, tk is approximately the distance to the

zero isocontour, we can compute the unit normal at the grid node from

n(xi) =
xi − yk

tk
.
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Notably, this approximation is very close to the exact signed distance function with zero

isocontour determined by the bilinearly interpolated ϕ0. It is as accurate as the argmin

yk so it essentially only depends on the accuracy of the secant method. We get this very

accurate geometric information for free. Moreover, the curvature (∇·n) can be computed

accurately by taking a numerical divergence of n(xi) that would have accuracy equal to

the truncation error in the stencil (since no grid-based errors are accumulated in the

computation of n(xi)).

1.8.6 Preventing volume loss

For problems where the input data is close to a signed distance function, such as when

redistancing the data given by a step in the level set method, a modification can be made

to mitigate the volume loss suffered in the bilinear interpolation. Taking inspiration

from fast sweeping, we simply do not update nodes next to the boundary. Because

boundary nodes are not updated, the zero-isocontour is not changed. Everywhere else

we use the signed distance function. This gives us a nice function, without changing the

zero-isocontour. The results of this modification with a level set advection scheme can

be shown in Figure 1.18.

1.9 Results

All of the following results were run on an Intel 6700k processor with an Nvidia GTX 1080

GPU. The domain for each problem was set to be [0, 1]X[0, 1] and was run on a 512X512

grid. To ensure efficient performance on the GPU, both projected gradient descent and

the secant method were run for a fixed number of iterations rather than to a specific

tolerance. All timings listed in this section are averages over 5 seperate runs, with the

exception of the Vortex problem which is already an average. This is due to the fact

that we noticed in practice variations of up to 10% in the individual runtimes of a given

problem

32



Figure 1.13: Scaled circle: the initial data is ϕ0 = exp(x) ∗ (.125− (.5− x)2 + (.5− y)2).

The zero level set is a circle of radius .25 centered around (.5,.5)

Problem num_secant num_rand num_proj Timing(ms)

Circle 10 5 100 47.567

Two Points 10 5 100 45.199

Vortex(Per Frame) 10 5 200 73.248

Square 10 4 200 67.582

Sine 10 5 200 71.429

Figure 1.13 shows initial data ϕ0 with a zero-isocontour given by a circle with radius

.25. Figure 1.14 shows a more complicated test. The zero-isocontour is a square bounded

between [.25, .75] in x and y. The corners present rarefaction fans, and the inside needs

to handle sharp corners along the diagonals. Because of these difficulties (especially the

sharp gradient in our original interpolated ϕ0), more work is needed in resolving the

projected gradient descent step to ensure quick convergence of secant method. The zero-

isocontour shown in Figure 1.15 is the union of two overlapping circles. Like in Figure 1.13

the gradient is fairly smooth and thus requires less computation to successfully converge

in gradient descent. In Figure 1.16 we demonstrate our algorithm with a large number of

local minima. This problem requires more projected gradient iterations than the simpler

examples.

Figure 1.18 shows our method being used in a level set advection scheme using a
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Figure 1.14: Square: the initial data is ϕ0 = min(.25− |x− .5|, .25− |y − .5|). The zero

level is a square with side length .5 centered around (.5,.5)

Figure 1.15: Union of circles: the initial data is

ϕ0 = max((.25 − ∥(.3, .5) − (x, y)∥2), (.25 − ∥(.7, .5) − (x, y)∥2)). The zero level set

is a union of two circles both with radius .25, one centered at (.3,.5) and the other

centered at (.7,.5)
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Figure 1.16: Many local minima: the objective function is

ϕ0 = sin(4 ∗ π ∗ x) ∗ sin(4 ∗ π ∗ y)− .01. The zero level set is a group of rounded squares

that almost touch.

simple vortex test. Like previous problems, it was run on a 512X512 grid. For this

problem the average time per frame for redistancing was 73.248ms.

1.9.1 Scaling

The results in table 1.1 were run with the square given in Figure 1.14 with the same

parameters. The poor scaling at the low resolutions is due to not using all of the threads

possible on the GPU.

For table 1.2 we ran our algorithm on the initial data given by 1.13 on a 1024X1024

grid. The problem was broken up into sub-domains and each domain was run separately

on the GPU. Because our algorithm does not require the GPUs to communicate we can

simulate multiple GPUs by running each sub-domain sequentially. We take the average

over the total time as the time per GPU. We note that each GPU runtime was typically

found to be within 5% of the average runtime. The scaling breaks down at high number

of GPUs when we include the time it takes to transfer the data to the GPU. The transfer

time takes approximatly 1.2 ms. If we ignore the time it takes to transfer data to the

GPU we get a result that is close to being perfectly parallel. These results are shown in

Figure 1.17
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Size Timing(ms) average L2 error

32X32 3.303 6.67 ∗ 10−05

64X64 3.392 1.5917 ∗ 10−05

128X128 4.477 3.8723 ∗ 10−06

256X256 17.8400 9.7391 ∗ 10−07

512X512 67.533 2.4624 ∗ 10−07

1024X1024 274.216 6.4343 ∗ 10−08

2048X2048 1185.87 2.3843 ∗ 10−08

Table 1.1: Timing and error at different grid resolutions using a square as our zero

level set. The average L2 error is calculated by calculating the L2 distance between the

computed answer and the analytic solution

# GPUs Total (w/) per GPU (w/) Total (w/o) per GPU (w/o)

1 125.10 125.10 124.05 124.05

2 126.25 63.13 124.76 62.38

4 130.17 32.54 124.92 31.23

8 139.26 17.41 131.10 16.39

16 149.26 9.33 133.24 8.33

32 167.97 5.25 133.07 4.1585

64 206.07 3.22 134.85 2.11

Table 1.2: Timing in ms showing scaling in number of GPUs. The first two columns show

the time it takes to run our problem when we include the timing cost of transferring the

grid data to the GPU (approximatly 1.2ms), while the last two columns show the scaling

without the cost of transferring data
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Figure 1.17: Parallel speed up is plotted both with and without including the cost of

updating memory on the GPU. With 64 GPUs the memory update can take up to 33%

of the runtime. However without the memory update (I.e. if the data is already on the

GPU) the method scales simply.
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Figure 1.18: Practical application: vortex advection test at t = 0,1,2,3,4,5
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CHAPTER 2

Continuum Mechanics

2.1 Introduction

Many materials can be modeled using the theory of elastoplasticity. From granular ma-

terials like sand and concrete [25], to solid materials like bone[26], sheet metal[27], or

polymeric foams[28]. The idea of elastoplasticity is simple, when a small amount of force

is applied to a material it will deform, and when the force is removed the material will

return to its original state. Consider a slinky, when pulled on slightly it will expand,

and when released will return to its compressed shape. However when a large amount of

force is applied, there will be permanent deformation. Take for example a long straight

metal rod, when twisted it will end up like a slinky, and when the force is removed the

deformations will remain. Any force that when removed will allow a material to return

to its original rest state is considered an elastic force. In this work we will model our

elastoplastic materials with the large deformation theory. The idea being that the defor-

mations are on the order of the size of the material. Once we have a deformation we can

break it up multiplicatively into a plastic and elastic portion[29].

The elastic portion can be modeled in many ways, but we will assume we have a

hyperelastic material. This simply means that a strain energy density function W exists

that relates the stress ω in the material to the derivative of W with respect to the strain.

Our work will be primarily concerned with the treatment of the plastic portion. The

plastic deformations are modeled by the choice of the yield criterion that defines a yield

function and a flow rule.

The yield function captures the limit of stress at which further forces on the object

will lead to permanent deformations. While the yield functions are not easily derived

from physical properties, they can be hypothesized based off of stress and strain data
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from real materials. Previous work has given different yield functions that represent the

behavior in different classes of materials. The von Mises yield criterion can effectively

model metals and other ductile materials[30]. The Mohr-Coulomb yield criterion models

granular materials such as sand and concrete[31]. The Drucker-Prager yield criterion

also models granular materials, but is smoother so is better suited for most numerical

simulations[32].

The flow rule, or plastic flow rule, is used to determine what portion of the deformation

will be considered plastic when the deformation is determined to be on the boundary of the

yield surface. There are two ways to define the plastic flow, the first is with an associative

flow rule. An associative flow rule simply states that the part of the deformation aligned

with the gradient of the yield function will be considered plastic, and the rest elastic. An

associative flow rule will enforce the second law of thermodynamics on the system. A non

associative flow rule is any rule that does not follow the previous property. While care

must be taken to avoid adding or losing energy with a non associative flow rule, they can

be used to avoid non-physical results in the simulation such as volume loss or gain.

This flow rule can be viewed as a projection back to the zero-isocontour of the yield

surface. However depending on our coordinates, this projection will not nescassarily be a

right angle projection. Instead we can use an oblique projection where the angle between

the projection and the set can vary from a right angle. While working with the Hopf-

Lax formulation of the previous problem we discovered that with a modification of the

Hamilton-Jacobi equation we could use this method to obliquely project to sets.

In the following chapter we will derive the properties surrounding large deformation

theory. We follow the work of Gonzalez and Stuart [33] and Bonet and Wood [34], and

for further details we refer the reader to those sources. We will derive the associative flow

rule and show how it can be viewed as an oblique projection back onto the yield surface.

Finally we will show results with both normal and non-physical yield surfaces using our

method as the flow mapping.
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Figure 2.1: There exists a map ϕ that transforms the material state (left) into the spatial

or current state (right).

2.2 Elastoplastic deformations

We consider a material in its rest configuration Ω0, this will also be called the material

configuration. A point X ∈ Ω0 is considered to be a point in material space. We will call

X both a material point and a particle. Let Ωt be the evolution of Ω0 after forces have

been applied up to time t. We will call ϕ the deformation map that tells us where a point

X ∈ Ω0 has moved to at time t. This will be given by x = ϕ(X, t) and x ∈ Ωt. We will

call Ωt the spatial or current configuration. You can see this relation between Ω0 and Ωt

in Figure 2.2

The deformation gradient F(X, t) = ∂ϕ
∂X

is used to describe the local deformation of

a local neighborhood around X. Essentially, given an infinitesimal vector dX, we can

calculate the vector it is transformed into by ϕ as dx = F(X, t)dX. In addition, we can

calculate the change in volume of an infinitesimal region around X by using J = detF.

J = 1 is the case when there is no volume change. When J > 1 then the neighborhood

has increased in volume, similarly when J < 1 the neighborhood has decreased in volume.

In a material with no plastic deformation, if we can define the elastic potential, or

stored strain engergy function ψ only using F then the material is considered to be

hyperelastic.

2.3 Conservation of mass

For a general elastoplastic material we can describe the state of the material using its

density ρ(x, t) and its velocity v(x, t). Take an arbitrary volume V bounded by a surface
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S that is fixed in space. The mass inside of the volume is given by∫
V

ρdV

for conservation of mass to hold, we will assume that the decrease of mass in the fixed

volume V

− d

dt

∫
V

ρdV = −
∫
V

∂ρ

∂t
dV (2.1)

is equal to the rate of mass flux out of V∫
S

ρv · dS =

∫
V

∇ · (ρv)dV (2.2)

Since Equations (2.1) and (2.2) must be equal for any volume V. As such, conservation

of mass can be written as
∂ρ

∂t
+∇ · (ρv) = 0 (2.3)

Equation (2.3) works with conservation of mass at a specific location in space. However

sometimes we want to work in material space. For any quantity f = f(x, t) we can take

two different time derivatives. The first is ∂f
∂t

which is the rate of change in f at a fixed

point in space. We can also ask for the rate of change of a particular point in the material

as it moves through space (given by x(t))
Df

Dt
=

d

dt
f(x1(t), x2(t), x3(t), t) (2.4)

=
∂f

∂t
+
dx1
dt

∂f

∂x1
+
dx2
dt

∂f

∂x2
+
dx3
dt

∂f

∂x3
(2.5)

=
∂f

∂t
+ v · ∇f (2.6)

As such we can rewrite the conservation of mass laws as
∂ρ

∂t
+∇ · (ρv) = ρ∂

∂t
+ ρ · ∇v + v · ∇ρ (2.7)

=
Dρ

Dt
+ ρ∇ · v = 0 (2.8)

2.4 Conservation of momentum

Take a volume V bounded by a surface S that moves with the flow. Then its momentum

is ∫
V

DV ρv (2.9)
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so the rate of change of momentum is
d

dt

∫
V

dV ρv =

∫
V

dV ρ
Dv

Dt
(2.10)

because the surface moves with the flow the mass contained by the volume V is constant.

By Newton’s second law, the change in momentum must equal the net forces on the

volume. The forces we will be dealing with are g the force due to gravity and σ the force

due to internal stress. This internal stress will be defined later. Given these two forces,

the total force will be ∫
V

dV ρg +

∫
S

σ · dS =

∫
V

dV (ρg +∇ · σ) (2.11)

Again since this must be true for all V we get

ρ
Dv

Dt
= ρg +∇ · σ (2.12)

2.5 Stress and strain

Stress and strain are two quantities that are useful to describe the state of the material.

In this section we will derive the stresses and strains we used, as well as others in order

to give a more complete picture. We begin by defining the deformation gradient as it will

be needed to study the strain.

2.5.1 Deformation gradient

Suppose we have the material rest state of Ω0 at time t = 0. We wish to define how the

material has deformed moving from time t = 0 to time t = s. There exists ϕ such that

∀ xs ∈ Ωs ∃ X s.t. xs = ϕ(X, s)

I.e. ϕ is a mapping between Ω0 and Ωs for any time t = s. Suppose we have a point

XP ∈ Ω0 and a point XQ in a neighborhood of X. These points translate to

xp = ϕ(XP , t)xq = ϕ(XQ, t)

If we define the vector DX and Dx as

dX = XQ −XP

dx = xq − xp
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these are related by

dx = xq − xp = ϕ(XP + dX, t)− ϕ(XP ) =
∂ϕ

∂X
dX

We then define the deformation gradient tensor F as

F =
∂ϕ

∂X

The deformation gradient is useful because it captures rotation, stretching, and shear

forces.

2.5.2 Strain

Strain, or deformation, is used as a way to capture the stretching of local neighborhoods

from Ω0 to Ωt. There are many different ways to define strain, but for our work in

elastoplasticy the most useful are the elastic left Cauchy-Green deformation tensor and

the plastic right Cauchy-Green deformation tensor. In order to motivate their definitions

we first ignore plasticity.

The left Cauchy-Green deformation tensor is defined as

b = FFT (2.13)

and the right Cauchy-Green deformation tensor is defined as

C = FTF (2.14)

Both of these tensors are symmetric and positive definite. In order to see the motivation

consider the polar decomposition of the deformation gradient

F = RU = VR (2.15)

This decomposition breaks down the stretch and rotation from F into two separate parts.

However, both b and C only consider stretch. We refer the reader to Lubarda[35, 36] for

work considering rotation in the deformation gradient and strains.

b = FFT = V2 (2.16)

C = FTF = U2 (2.17)
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The difference between the two Cauchy-Green tensors is that b operates on the spatial

vectors, and C operates on material vectors. Similar to above we define the elastic left

Cauchy-Green tensor and the plastic right Cauchy-Green tensor as

bE = FEF
T
E (2.18)

CP = FT
PFP (2.19)

as before, bE is a map over spatial coordinates, and CP is a map over material coordinates.

One nice property of these tensors is that they are invariant under the rotation. As such,

any stresses defined off of them will also be invariant to rotation.

The only other strain we will examine is the Hencky strain

ϵ =
1

2
logb (2.20)

and the elastic Hencky strain is given by

ϵE =
1

2
logbE (2.21)

The Hencky strain will be useful later to simplify some expressions.

2.5.3 Stress

The deformation gradient tells us how a material has changed, but does not tell us what

forces the material is experiencing. In order to understand these forces we will derive the

Cauchy Stress σ.

We start by assuming that the stresses in a material Ω can be nonuniform. This

assumption is not hard to make, for example if you apply a force to a small section of a

wood block sitting on the ground, you would expect the stresses near the point of force

to be higher than those far away. Take a point p in the material Ω if we cut the material

by a plane P with normal n passing through p we can calculate the force acting on the

material through that plane Fp. By shrinking the plane(δP being the area of the plane we

are working with) we can calculate the traction force t corresponding to a given direction

n

t(n) = lim
δP→0

Fp

δP
(2.22)
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We note that t(n) is a vector containing the direction and amount of force being applied

from a given normal. The direction may vary with changing n but the following property

must hold

t(−n) = −t(n)

In fact, Cauchy’s Law states that there exists a stress tensor σ which maps n to t by

t = σn

To prove this, take an infinitesimally small tetrahedra with one vertex on the origin, and

the other three vertices along the major axis defined by the unit vectors e1, e2, e3. Let

da be the area of the face defined by the non origin points with normal n, and dai be the

area of faces with normals ei. dv is the volume of the tetrahedra, and f is the force per

unit volume acting on our point p. Using Newton’s second law we have

t(n)da+
3∑
i=1

t(−ei)dai + fdv = 0 (2.23)

now since dai = (n · ei)da we get

t(n) = −
3∑
i=1

t(−ei)
dai
da

− f
dv

da
(2.24)

=
3∑
i=1

t(ei)(n · ei) (2.25)

=
3∑

ij=1

σij(ej · n)ei (2.26)

where the force term f disappears because dv
da

→ 0 as we shrink the tetrahedra. The rest

is simply the result of tensor calculation

t(n) =
3∑

ij=1

σij(ej · n)ei (2.27)

=
3∑

ij=1

σij(ei ⊗ ej)n (2.28)

=

[
3∑

ij=1

σij(ei ⊗ ej)

]
n (2.29)

= σn (2.30)

(2.31)
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where

σ =
3∑

ij=1

σij(ei ⊗ ej) (2.32)

The Cauchy stress is sometimes called the true stress. This is because it is a measure of

the force per unit area of the current, deformed configuration. It can be useful to consider

other measures of stress for simulation purposes.

The Kirchhoff stress tensor τ is simply the Cauchy stress scaled by the volume change

compared to the original configuration

τ = Jσ (2.33)

where J is the Jacobian of F the deformation gradient.

The first Piola-Kirchhoff stress tensor P relates the forces acting in the deformed

configuration to the surface element in the original reference configuration. Consider an

element of a surface in the reference configuration defined by NdS, where dS is the area

of the surface, and N is the unit normal. After deformation this element will be deformed

to nds where ds is the area of the deformed element, and n is the new normal. Suppose

we have a force df acting on the element in the current(deformed) configuration. Then

using the cauchy stress we have

df = σnds (2.34)

we define the first Piola-Kirchhoff stress tensor P by

df = PNdS (2.35)

these two stresses are related by

P = JσF−T (2.36)

Whereas the first Piola-Kirchhoff stress relates forces in the deformed configuration to

areas in the reference configuration, the second Piola-Kirchhoff stress(S) relates forces

in the reference configuration to areas in the reference configuration. It can be calcu-

lated by taking the force vector in the current deformed configuration df and finding the

corresponding vector in the undeformed configuration df̄ = F−1df it can be written as

S = JF−1σF−T (2.37)
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Worth noting is that both the Cauchy stress and the second Piola-Kirchhoff stresses are

symmetric. However the first Piola-Kirchhoff stress is not symmetric due to having to

relate the reference configuration and the current configuration.

2.6 Plasticity

In elastoplasticity we assume that when too large a force is applied to a material it will

undergo both plastic and elastic deformation. This means that we must have a maximal

attainable stress allowed in a material before plastic deformation occurs. We will call this

the yield condition, i.e. the point in which the material starts to yield under load. This

is the point at which the material is no longer able to ”resist” the deformation elastically

and any further deformation becomes permanent.

We can think of the yield condition as defining a region of stress space as allowable.

We start with a yield surface, which is a region of stress space where the elastic stress is

allowed to be. We assume that we can construct a yield function F as a scaler valued

function of stress, such that F ≤ 0 implies the stress is allowable, and F > 0 implies the

stress is non physical and not allowed.

Suppose we have three quantities F the yield function, Ḟ its rate of change and τ the

stress it is defined over. Note while we use τ here, the yield function can be defined over

any measure of stress. Then we have three cases

• Case I F < 0 =⇒ τ is inside the yield surface and the deformation is purely

elastic

• Case II F = 0 , Ḟ < 0 =⇒ τ is on the yield surface, but is moving into the

allowed domain, thus the deformation is still only elastic

• Case III F = 0 , Ḟ = 0 =⇒ τ is on the yield surface and staying on it, therefore

some of the deformation must be plastic.

Note that F > 0 and F = 0 , Ḟ > 0 are non physical and are thus not allowed.

Case III is the difficult case to handle. While the first two cases simply state that the

stress is elastic, the last case requires some modification of the stress in order to maintain
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feasibility. Once a stress τ is on the yield surface, further forces applied to the surface

will not cause τ to move elastically. Instead some of that force must be transfered into

the plastic deformation. In order to decide how that force is transfered, we need a plastic

flow rule.

2.6.1 Plastic flow

Once we have a yield surface we simply need to know how the elastic stress ”flows” along

the yield surface. While previously we said that F was a function of stress, we note that

stress is a function of strain. For the following derivations it will be easier to first start

with strain before moving back to stress. As such we will consider F to be a function of

the elastic left Cauchy-Green strain bE. We will use a plastic flow rule to determine how

ḃE can be determined from Ḟ .

A plastic flow rule needs to satisfy the following conditions.

1. Yield condition

2. Principle of maximum plastic dissipation

3. Second law of thermodynamics

For the yield condition we simply state that in order to activate plastic flow, the

stress/strain must be on the yield surface. The other two conditions will be used to

determine how to arrive at an appropriate solution.

2.7 Rates of plastic flow

We first start by deriving ḃE from Ḟ . In order to do so we need to derive the rates of

change of the elastic strain and the plastic strain.

Ḟ = ḞEFP + FEḞP (2.38)

ḞE = ḞF−1
P − FEḞPF

−1
P

ḞP = F−1
E Ḟ− F−1

E ḞEFP .
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using bE = FEF
T
E we can see

ḃE = ḞEF
T
E + FEḞ

T
E

ḃE = ḞF−1
P FT

E − FEḞPF
−1
P FT

E + FEF
−T
P ḞT − FEF

−T
P ḞT

PF
T
E (2.39)

ḃE = ḞF−1
P F−1

E FEF
T
E + FEF

T
EF

−T
E F−T

P ḞT − FEḞPF
−1
P FT

E − FEF
−T
P ḞT

PF
T
E (2.40)

ḃE = ḞF−1bE + bEF
−T ḞT − FEFPF

−1
P F−T

P FT
P ḞPF

−1
P F−T

P FT
PF

T
E − FEF

−T
P ḞT

PF
T
E

(2.41)

ḃE =
∂v

∂x
bE + bE

∂v

∂x

T

+ FC−1
p FT

P ḞPC
−1
p F− FC−1

p ḞT
PFPC

−1
p FF T (2.42)

ḃE =
∂v

∂x
bE + bE

∂v

∂x

T

+ LvbE (2.43)

where

LvbE = FĊ−1
p FT = −FC−1

p ĊpC
−1
p FT = −FC−1

p ḞT
PFPC

−1
p FT − FC−1

p FT
P ḞPC

−1
p FT

(2.44)

and

Ḟ =
∂

∂t

(
∂x

∂X

)
=

∂

∂X

(
∂x

∂t

)
=
∂v

∂X
=
∂v

∂x
· ∂x
∂X

=
∂v

∂x
· F (2.45)

and Cp = FT
PFP is the plastic left Cauchy-Green strain. It is convenient to use the

notation

ḃE = ḃE|ḞP=0 + LvbE, ḃE|ḞP=0 =
∂v

∂x
bE + bE

∂v

∂x

T

(2.46)

where ḃE|ḞP=0 is the strain in the absence of plasticity. We first note that ḃE|ḞP=0 uses

terms that we assume are already known. However LvbE = FĊ−1
p FT is based off of the

rate of change of the plastic strain, which we do not know. As such we can view LvbE as

the free variable in our plastic solve and write it as LvbE = −γL where L is an arbitrary

direction, and γ is chosen such that Ḟ ≤ 0. In the next sections we will show how to

choose L in order to satisfy the last two constraints.

In most cases the yield function F is a function of stress τ . τ is a function of the left

Cauchy-Green strain bE, which is in itself a function of time. This means we can write

F (τ(bE(t))), which means if we want to write its derivative with respect to time we get,

by the chain rule,

Ḟ(τ(bE(t))) =
∂F

∂τ
(τ(bE(t))) :

∂τ

∂bE
(bE(t)) :

DbE
Dt

(t)

=
∂F

∂τ
(τ(bE(t))) :

∂τ

∂bE
(bE(t)) : (

∂v

∂x
bE + bE

∂v

∂x

T

+ LvbE)

(2.47)
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Where (:) is the generalized dot product for matrices, i.e.

A : B =
∑
i

∑
j

AijBij

We recall that LvbE = 0 in the absence of plasticity. As such during period of only

elastic deformation the rate of change can be defined as β

β =
∂F

∂τ
(τ(bE(t))) :

∂τ

∂bE
(bE(t)) : (

∂v

∂x
bE + bE

∂v

∂x

T

) (2.48)

If we combine this with the choice of LvbE = −γL then Equation (2.47) can be rewritten

as

Ḟ = β − γ
∂F

∂τ
(τ(bE(t))) :

∂τ

∂bE
(bE(t)) : L (2.49)

Now we can begin to define LvbE based off of the three cases listed above.

In Case I we have F (τ(bE(t))) < 0 meaning there is no plastic deformation happening

so LvbE = 0

In Case II we have F (τ(bE(t))) = 0 and Ḟ < 0 this means that the rate of change due

to elasticity is enough to keep us in the allowed stress region, i.e. β < 0. This means that

even with LvbE = 0 the stress is still feasible, so again there is no plastic deformation.

In Case III we have F (τ(bE(t))) = 0 and Ḟ = 0. There are two ways that this can

happen. Either the elastic evolution of our material will keep the stress on the yield

surface, i.e. β = 0, or it will try to bring the stress outside the yield surface (β > 0). The

first situation with β = 0 requires no plastic deformation so again we can say LvbE = 0.

The second situation however requires some plastic flow in order to balance out β. While

we have not yet decided on how to choose L, once chosen γ is easy to define

γ =
β

∂F
∂τ
(τ(bE(t))) :

∂τ
∂bE

(bE(t)) : L
(2.50)

We can condense the previous cases into the following definition

LvbE =


0 if F (τ(bE(t))) < 0 or [F (τ(bE(t))) = 0] and β ≤ 0]

−γL if F (τ(bE(t))) = 0 and β > 0

(2.51)

We haven’t yet chosen the direction of flow L. We note that there are many different

choices of L that will allow us to satisfy the feasibility constraint. as long as ∂F
∂τ
(τ(bE(t))) :

∂τ
∂bE

(bE(t)) : L ̸= 0. However we can use the second law of thermodynamics to give us a

better idea of the best L to choose to more accurately represent physical materials.
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2.7.1 Energy dissipation and stress/rate pairs

By the second law of thermodynamics, we know that the plastic flow should not decrease

the entropy of the system. In other words, it must not instantaneously increase the rate

of change of the total energy [33]. In purely elastic motion the total energy does not

change. Physically we expect that plastic deformation should cause dissipation of energy

and the total energy of the system should decrease[37, 38]. Using these properties we will

derive a choice of L.

The energy at time t of the material in B0 is

E(t;B0) = EK(t;B
0) + EP (t;B

0) (2.52)

E(t;B0) =

∫
B0

R(X, 0)

2
|V(X, t)|22 dX+

∫
B0

ψ(FE(X, t),FP (X, t))dX. (2.53)

Where R(X, t) is the Lagrangian mass density at time t, V(X, t) is the velocity at a

material point X and ψ is an energy density function to be defined later. The rate of

change of the energy is

E ′(t;B0) =

∫
B0

R(X, 0)V(X, t)A(X, t)dX+

∫
B0

∂ψ

∂FE

(FE(X, t),FP (X, t)) : ḞE(X, t)dX

+

∫
B0

∂ψ

∂FP

(FE(X, t),FP (X, t)) : ḞP (X, t)dX. (2.54)

where A is the acceleration at a material point X and∫
B0

∂ψ

∂FE

(FE,FP ) : ḞP ]dX =∫
B0

∂ψ

∂FE

(FE,FP ) :
(
ḞF−1

P − FEḞPF
−1
P

)
dX =∫

B0

P :
(
Ḟ− FEḞP

)
dX =

−
∫
B0

V ·
(
∇X ·P

)
dX+

∫
∂B0

V · (PN) ds(X)−
∫
B0

(
FT
EP
)
: ḞPdX =

with P = ∂ψ
∂FE

(FE,FP )F
−T
P the first Piola Kirchoff Stress. Using R(X, 0)A(X, t) =

(∇X · P)(X, t), which is conservation of linear momentum in Lagrangian view, with

Equation (2.54) gives

E ′(t;B0) =

∫
∂B0

V · (PN) ds(X)−
∫
B0

(
FT
EP
)
: ḞPdX+ (2.55)∫

B0

∂ψ

∂FP

(FE,FP ) : ḞPdX.
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Note that
(
FT
EP
)
: ḞP =

(
FT
E

∂ψ
∂FE

(FE,FP )
)
:
(
ḞPF

−1
P

)
. The term

LP = ḞPF
−1
P (2.56)

is called the plastic velocity gradient. Using this we can write the change in energy as

E ′(t;B0) =

∫
∂B0

V · (PN) ds(X)−
∫
B0

ME : LPdX+ (2.57)∫
B0

∂ψ

∂FP

(FE,FP ) : ḞPdX.

where we define the Mandel stress ME as

ME = FT
E

∂ψ

∂FE

(FE,FP ). (2.58)

The term
∫
∂B0 V · (PN) ds(X) is the rate of work done on B0 at time t via contact with

material external to the region.

2.7.2 Isotropy

Assume we have an energy density ψ(FE,FP ) that is isotropic. Due to isotropy ψ can

be writen in the form of ψ(FE,FP ) = ψ̂(I(FE), II(FE), III(FE))

I(FE) = tr(bE)

II(FE) = tr(bE)2 − tr(bTEbE)

III(FE) = det(bE)

Where the invariants are defined to be the invariants of bE due to the assumed isotropy

of ψ.
∂I

∂FE

= 2FE

∂II

∂FE

= 2(I(FE)FE − bEFE)

∂III

∂FE

= 2III(FE)F
−1
E

∂ψ

∂FE

(FE,FP ) =
∂ψ̂

∂I

∂I

∂FE

+
∂ψ̂

∂II

∂II

∂FE

+
∂ψ̂

∂III

∂III

∂FE

∂ψ

∂FE

(FE,FP ) = 2

(
∂ψ̂

∂I
+ I

∂ψ̂

∂II

)
FE − 2

∂ψ̂

∂II
bEFE + 2III

∂ψ̂

∂III
F−1
E

∂ψ

∂FE

(FE,FP ) = α(FE)FE + β(FE)bEFE + γ(FE)F
−T
E

τ = PFT =
∂ψ

∂FE

(FE,FP )F
−T
P FT = α(FE)bE + β(FE)bE

2 + γ(FE)I.
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where α, β, γ are all scaler functions that depend on FE.

Note that τ and bE as well as τ and bE
−1 commute in this case

bEτ = bEτ , bE
−1τ = τbE

−1. (2.59)

τ is the Kirchhoff stress and it is convenient to work with for some models. E.g. we can

rewrite the plastic dissipation in terms of τ since

ME : LP = τ :
(
FEḞPF

−1
)
. (2.60)

Using the definitions in Equations (2.39) and (2.44) and

LvbEb
−1
E = −FEF

−T
P ḞT

PF
−1
E − FEḞPF

−1 (2.61)

we can conclude that in the case of isotropic energy density

τ :
(
LvbEb

−1
E

)
= −τ :

(
FEF

−T
P ḞT

PF
−1
E

)
− τ :

(
FEḞPF

−1
)

= −tr
(
τFEF

−T
P ḞT

PF
−1
E

)
− τ :

(
FEḞPF

−1
)

= −tr
(
τFEF

T
EF

−T
E F−T

P ḞT
PF

−1
E

)
− τ :

(
FEḞPF

−1
)

= −tr
(
τbEF

−T ḞT
PF

−1
E

)
− τ :

(
FEḞPF

−1
)

= −tr
(
bEτF

−T ḞT
PF

−1
E

)
− τ :

(
FEḞPF

−1
)

= −tr
(
τF−T ḞT

PF
T
E

)
− τ :

(
FEḞPF

−1
)

= −2τ :
(
FEḞPF

−1
)

(2.62)

Where much of the cancelling can be attributed to bE and τ being symmetric and

tr(AB) = tr(BA)

2.7.3 Plastic dissipation rate without hardening

In summary, if we assume there is no energy added into the system via contact with

material external to the region, and that ψ is defined only in terms of the elastic strain,

the rate of energy release due to plasticity (with no hardening) can be written as∫
B0

ẇp(X, t)dX (2.63)
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where

ẇp =
(
FT
EP
)
: ḞP = ME : Lp = −1

2
τ :
(
LvbEb

−1
E

)
(2.64)

where the last equality only holds for isotropic energy density.

2.8 Associative

Assume we have no hardening, e.g.

ψ̃(FE) = ψ̂(
1

2

(
FE

TFE − I
)
)

Thus

P = FE
∂ψ̂

∂EE
(
1

2

(
FE

TFE − I
)
)F−T

P

and the Mandel stress ME satisfies

ME = FT
E

∂ψ

∂FE

= CE
∂ψ̂

∂EE
. (2.65)

If we choose LP such that

ME : LP ≥ M∗ : LP (2.66)

for all admissible states of stress M∗, then

1. If M∗ = 0 is an admissible state of stress, then

E ′(t;B0) ≤
∫
∂B0

V · (PN) ds(X) (2.67)

which says that the plasticity dissipates energy.

2. If the region of admissible M∗ is (a) convex and (b) defined via f(M∗) ≤ 0 then

LP ∈ ∂f(ME) satisfies Equation (2.66).

Similarly, if we choose −1
2
LvbEb

−1
E ∈ ∂f we get an associative plastic flow when we write

the yield surface in terms of τ : f(τ ).
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2.8.1 Yield surface and plastic flow

We will have plastic flow ḞP ̸= 0 when our stress is on the boundary of the feasible

region, and without plasticity we would leave the region. In the case of isoptropy and a

yield surface defined in terms of the Kirchhoff stress, then

LvbE = −2λ
∂f

∂τ
(τ )bE (2.68)

where

• If f(τ ) < 0 or f(τ ) = 0 and α ≤ 0, then λ = 0.

• Otherwise if, f(τ ) = 0 and α > 0, then λ = α
β

where

α =
∂f

∂τ
:
∂τ

∂bE
: ḃE|ḞP=0, β = 2

∂f

∂τ
:
∂τ

∂bE
:

(
∂f

∂τ
(τ )bE

)
. (2.69)

2.8.2 Isoptropic yield surface

Suppose the yield surface function f : V2
sym → R is isotropic: f(VτVT ) = f(τ ) for all

rotations V. Then as discussed in Appendix (§4.1.2), we can write f(τ ) = f̂(τ1, τ2, τ3)

where τ =
∑

i τiui ⊗ ui and ∂f
∂τ
(τ ) =

∑
i
∂f̂
∂τi

ui ⊗ ui. Therefore since τ and bE have the

same eigenvectors

∂f

∂τ
(τ )bE =

∑
i

∂f̂

∂τi
λ2Eiui ⊗ ui (2.70)

Furthermore using the properties of isotropic energy density,

β = 2
∑
i,j

∂f̂

∂τi
C̃ij(bE)

∂f̂

∂τj
λ2Ej (2.71)

where
∂τ

∂bE
(bE) :

(∑
j

σjuj ⊗ uj

)
=
∑
i,j

C̃ij(bE)σjui ⊗ ui

for arbitrary
∑

j σjuj ⊗ uj.
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2.9 Hencky strain

The elastic Hencky strain ϵE is defined as

ϵE =
1

2
log (bE) . (2.72)

The rate of change of the elastic Hencky strain is given by

ϵ̇E =
(
[B](bE) ◦ [ḃE]

)
kl
uk ⊗ ul (2.73)

where bE =
∑

i λ
E
i
2
ui ⊗ ui, ϵE =

∑
i log

(
λEi
)
ui ⊗ ui, [ḃE]ij = ui ·

(
ḃEuj

)
are the

components of ḃE in the eigen basis and

[B](bE) =


1

2λ2E1

log(λE1)−log(λE2)

λ2E1−λ
2
E2

log(λE1)−log(λE3)

λ2E1−λ
2
E3

log(λE2)−log(λE1)

λ2E2−λ
2
E1

1
2λ2E2

log(λE2)−log(λE3)

λ2E2−λ
2
E3

log(λE3)−log(λE1)

λ2E3−λ
2
E1

log(λE3)−log(λE2)

λ2E3−λ
2
E2

1
2λ2E3

 . (2.74)

See Appendix (§4.1) and Equation (4.3) for the derivation. If we define the elastic po-

tential as a function of the Hencky strain as

ψ(FE,FP ) = µϵE : ϵE +
λ

2
tr (ϵE)2 (2.75)

then

τ = CϵE = 2µϵE + λtr (ϵE) I. (2.76)

This can be written in terms of the eigen basis of bE as

τ = CϵE =
∑
i,j

Ĉij log
(
λEj
)
ui ⊗ ui (2.77)

with

[Ĉ] =


2µ+ λ λ λ

λ 2µ+ λ λ

λ λ 2µ+ λ

 .

2.9.1 Yield surface and plastic rate of change

With this energy density, the rate of change of the elastic Hencky strain has the favorable

property that its direction is simply related to the yield surface when it is written in
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terms of ϵE. Specifically, α and β in Equation (2.69) can be written as

α =
∂f

∂τ
:
∂τ

∂ϵE
: ϵ̇E|ḞP=0, β = 2

∂f

∂τ
:
∂τ

∂ϵE
:

((
[B](bE) ◦ [

∂f

∂τ
(τ )bE]

)
kl

uk ⊗ ul

)
(2.78)

and since ∂f
∂τ
(τ ) =

∑
i
∂f̂
∂τi

ui ⊗ ui and bE =
∑

i λ
2
Eiui ⊗ ui and

[
∂f

∂τ
(τ )bE]ij = ui ·

(
∂f

∂τ
(τ )bEuj

)
=


∂f̂
∂τi
λ2Ei, i = j

0, otherwise

and [B](bE) from Equation (2.74), as well as ∂τ
∂ϵE

= C from Equation (2.77)

β =
∑
i,j

∂f̂

∂τi
Ĉij

∂f̂

∂τj
(2.79)

2.10 Flow direction

In order to stay inside of our yield surface during plastic deformation we know that for

an associative model

LvbE = −2λ
∂f

∂τ
(τ )bE (2.80)

This allows us to say that

τ̇ =
∂τ

∂bE
ḃE (2.81)

breaking up ḃE into elastic and plastic parts, we get that in order for ḟ = 0 we get

τ̇ p =
∂τ

∂bE
: −2λ

∂f

∂τ
bE (2.82)

however if we are instead working with the Hencky strain ϵE using (2.73) and (2.68) we

can see that

τ̇ p = λ
∂τ

∂ϵE
:

((
[B](bE) ◦ [

∂f

∂τ
(τ )bE]

)
kl

uk ⊗ ul

)
(2.83)

and noting that τ̇ p only changes in its eigen values we get

∂τ̂p
∂t

= λĈ
∂f̂

∂τ
(2.84)

where λ serves as the magnitude of the plasticity and Ĉ ∂f̂
∂τ

is the direction
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2.11 Return mapping

When we move from the continuous setting to the discrete setting, the modification of

the stress due to plasticity needs to be modified. Since plasticity only turns on at the

boundary it is easier to return an invalid stress state to the boundary then enforce the

stress to never leave the boundary. As such during a discrete time step, if our stresses

leave the yield surface we will project the stress back. We note that this projection is not

the closest point projection. If it were, the direction in the continuous case would just be
∂f̂
∂τ

. Instead we use an oblique projection such that

X− P (X) = γA∇f(P (X)) (2.85)

or the projection direction is proportional to the normal of the surface multiplies by a

matrix. The following Hamilton Jacobi equation

∂

∂t
ϕ+ ∥∇ϕ∥C = 0 (2.86)

ϕ(X, 0) = f(X) (2.87)

where

∥X∥C =
√
XTCX

has the property that when a minimizer y0 of the Hopf-Lax equation is found

X − y0 = C∇f(y0) (2.88)

As such, the return mapping from invalid stress states simply requires solving the Hopf-

Lax formulation for the modified Hamilton Jacobi equation and outputting y0. We note

that ∥X∥C is a norm given C is Symmetric Positive Definite. The Legendre transform of a

norm is given as follows. Assume we have a norm ∥·∥ and its dual ∥x∥∗ = maxy:∥y∥≤1 y
Tx.

The Legendre transform of a function f is defined as

f ∗(x∗) = sup
x∈Rn

x∗Tx− f(x)

we note that the dual of the dual norm is the original norm ∥ · ∥ = ∥ · ∥∗∗ this implies
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∥x∥ := supy∈Rn,∥y∥∗≤1 x
Ty

∥x∗∥∗ = sup
x∈Rn

x∗Tx− ∥x∥

= sup
x∈Rn

x∗Tx− sup
y∈Rn,∥y∥∗≤1

yTx

= inf
y∈Rn,∥y∥∗≤1

sup
x∈RN

xT (x∗ − y)

= inf
y∈Rn,∥y∥∗≤1


0 y = x∗

∞ else

=


0 ∥x∗∥∗ ≤ 1

∞ else

Now we simply need to calculate the dual norm of ∥·∥C and we are ready to move forward

∥x∥C∗ = max
y:∥y∥C≤1

yTx

This max occurs when

Cy√
yTCy

= x

We note that this max occurs on the boundary of the set, so ∥y∥C = 1

y = C−1x

∥x∥C∗ = xTC−1x

Our Hop-lax formulation then becomes

ϕ̃(xi, t
k) = miny∈Rn

{
ϕ0(y) + tkH∗

(
xi − y

tk

)}
where H∗ is the Legendre-Fenchel transform of H = ∥ · ∥C

H∗(x) =


0 ∥x∥C∗ ≤ 1

∞ otherwise

or equivalently we minimize ϕ0(y) over the ellipse defined by
√
(x− y)TC−1(x− y) < tk
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2.12 Modifications to algorithm

When implementing the return mapping, the only part of our previous algorithm we need

to modify is equations (1.36)

ỹj+1
k = yjk − γ∇ϕ0(yjk) (2.89)

yj+1
k = PROJEC(xi,tk)(ỹ

j+1
k ) (2.90)

where PROJEC(xi,tk)(ỹ
j+1
k ) projects to the ellipse defined by

√
(x− y)TC−1(x− y) < tk.

In order to find this projection, we simply find ŷj+1
k = R(ỹj+1

k −xi) where R is the rotation

matrix defined by the Eigenvectors of C. This allows us to project back assuming that

the ellipse is orientated along the x, y, and z axis. For 2D the projection is found by

assuming that our point is in the first quadrant (ŷ0 > 0 and ŷ1 > 0) and our ellipse

is orientated along the x and y axis. then we can use Newton to find the roots of the

following function in t to find the closest projection point.

F (t) = (
e0y0
t+ e20

)2 + (
e1y1
t+ e21

)2 − 1 = 0

In addition, our initial data will be an analytic function whose zero isocontour is the

Yield Surface we desire.

2.13 Results

To show the possibilities of our method, we ran our stress projection with an MPM solver

(see next chapter for an explanation on MPM) to see how different yield surfaces would

result in different material behaviors. For each set of figures below we provide the yield

surface used, as well as three different simulations that were run. The yield surfaces

are provided using the Hencky strain as their base. As such (0, 0) is a point with no

stress. The first quadrant are points that are in tension, the third quadrant are points in

compression, and the second and fourth quadrant are points under shear force. For the

following section we will call the line y = x the hydrostatic axis. All of our yield surfaces

will be symmetric across the hydrostatic axis. Every simulation was run using the Saint

Venant–Kirchhoff model for the hyperelasticity portion, using a Young’s modulus of 5

and a Poissons ratio of 0.4. We have 4 groups of simulations. The first uses the Drucker
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Prager yield surface. Drucker Prager is most often used to model sand and other granular

materials. For our simulations we applied varying amounts of ”cohesion” to the model,

which for our purposes was how much we shifted the cone along the axis y = x into the

first quadrant. Higher values of cohesion meant that the material would stick together

through larger forces. The other three yield surfaces are all non physical. The first two are

the 2D projection of their 3D yield surfaces. The von Mises yield criterion in 3d is used

to simulate some metals, and its 2D projection is an ellipse aligned along the hydrostatic

axis. The Tresca yield criterion is based around the idea of having a maximum for the

amount of shear allowed in a material. Again we project it onto a 2D space and we

find a 6 sided prism. The last yield surface we provide is a lemniscape aligned along the

hydrostatic axis. This is a material that seems to avoid shear, however as it is non convex

it is very non physical.

Most of these simulations use the associated flow rule we derived previously. How-

ever one problem with an associated flow rule is that it is not nescessarily volume

preserving[39]. As such, some of the Drucker Prager cone examples were run with a

non associated flow rule that was volume preserving. This non associated flow rule also

used our method, just with a different matrix C that was found to return the projection

along the line y = −x.

We ran three different simulations for each yield surface. The first simulation in the

top right corner of each figure is the result of 2.5 seconds of a verticle column of the

material collapsing under its own weight. The middle row is the results of a block of the

material falling through an open hour glass after 2.5 and 5 seconds, occasionally when

the material did not need the full simulation time we use 1.25 and 2.5 seconds for the

images. The last row is a block of the material falling onto a sharp wedge, cutting it in

half, after 1 and 2 seconds.
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Figure 2.2: Drucker Prager with cohesion of 1.8 using an associated flow rule. Due to the

large amount of cohesion allowed, the material is bouncy and tends to break into large

chunks.

63



Figure 2.3: Drucker Prager with cohesion of .36 Associated. We provide one more example

of wet sand. Again we note how the sand breaks apart in chunks, but is still able to flow

through the hourglass.
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Figure 2.4: Drucker Prager with cohesion of .18 using an associated flow rule. Here we

start to see more of what we might expect with wet sand, however due to our return

mapping being non volume preserving, all three simulations tend to see a large amount

of volume growth.
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Figure 2.5: Drucker Prager with cohesion of .018 using an associated flow rule. This

small amount of cohesion simulates nearly dry sand. The sand flows as one might expect,

however again there is a large amount of volume gain.
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Figure 2.6: Drucker Prager with cohesion of .18 using a non Associated flow rule. By

using a volume preserving flow rule we can see a closer expectation of what our wet sand

might actually look like. The sand sticks together, but still piles nicely.
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Figure 2.7: Drucker Prager with cohesion of .018 non Associated. Again we simulate

nearly dry sand with a volume preserving flow rule. There is no volume growth, and in

the wedge example we can even see the two waves of sand colliding beneath the wedge
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Figure 2.8: With the von Mises 2d projection we don’t really see what we would expect

from a simulation of metals. Instead we see more of a Jello like material that jiggles and

is able to be squeezed. The hourglass simulation reached a steady state by 2.5 seconds,

so we show you the results after 1.5 and 2.5 seconds.
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Figure 2.9: By shrinking the radius of the ellipse given in the 2d projection of the von

Mises yield criterion, more of the stresses get transferred into the plasticity. This allows

our material to be more willing to shrink and squeeze. During the hourglass simulation

for a brief time the material separates before reuniting at the end. Again the hourglass

simulation is shown at 1.25 and 2.5 seconds.
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Figure 2.10: As before by shrinking the ellipse even further, more stress gets pushed into

plasticity. This causes the falling materials to shrink more than the collapsing column,

as larger stresses are shown in the falling materials. The small stresses experienced in

the collapsing column are allowed to remain elastic.
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Figure 2.11: Here our yield surface is a lemniscape with ”radius” 1. The most interesting

simulation ends up being the column collapse. Due to shear forces not being elastic, the

entire material expands sideways as the plastic forces compensate before settling in. In

the wedge drop, the material hits the ground and expands sideways as the shear force is

not allowed to be elastic.
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Figure 2.12: Again as seen in the von Mises examples, by shrinking the size of the yield

surface, large stresses are moved into the plasticity and result in large volume shrinkages.
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Figure 2.13: Here we have a material that allows more compression than expansion. As

such the material tends to stick together through the forces we applied to it. Worth

noting is that these are some of the bouncier examples, probably due to the larger yield

surface.

74



Figure 2.14: When both compression and tension are given a large area to work with, we

end up with a material that is very bouncy and does not break up easily. A very small

portion of it breaks off in the hourglass example. The impact with the floor is enough to

break up the material further in the wedge example.
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Figure 2.15: In this material the yield surface allows for more compression than tension.

This seems to cause the material to actually bounce off of the surfaces it hits. In addition

it breaks up into larger chunks.
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CHAPTER 3

Material Point Method

The Material Point Method(MPM) is a modern method of simulating continuum mate-

rials like solids, liquids, and gases. It was derived by Sulsky et al.[40] as an extension of

the Fluid-Implicit-Particle(FLIP) [41]. Being a hybrid method, it shares many common

features with the Particle-in-Cell(PIC) method [42, 43]

In MPM the material Ω is simulated using both Lagrangian particles and an Eularian

grid. The Lagrangian particles are used to store variables such as mass, position, veloc-

ity, etc., while the Eularian grid is used to efficiently calculate gradients used in force

calculations and deformation gradients. Both the Lagrangian and Eularian views have

advantages when it comes to calculating states in simulations. The Lagrangian view can

efficiently track the motion of the material through advection, while the Eularian view

can easily capture the interactions between particles as well as self collision. Because the

mesh in the Eularian view is independent of the material Ω MPM can easily handle large

deformations that would cause pure grid based methods to struggle. The Lagrangian

view allows easy calculation of gradients and interaction between separate materials that

a pure particle based method would struggle with.

In this chapter we will present a derivation of the Material Point Method specifically

for elasoplastic simulations following the work of Klar et al.[44].

3.1 Overview

Every MPM time step begins with all information being carried on the particles. It then

follows a number of steps, and finishes with all information again on the particles. As

such, the grid being used does not need to remain between time steps. In addition one

could form a different grid at each time step, however in practice the same grid will be
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reused for efficiency.

The following steps will be carried out at every time step

1. Transfer to grid: Transfer mass and momentum from the particles to the grid. Use

the mass and momentum on the grid to calculate velocity.

2. Apply forces: Compute elastic forces using a deformation gradient that has been

projected in step 7, and apply the forces to the grid velocities.

3. Grid collisions: Project grid velocity to check for collisions against any rigid bodies

or obstacles in the simulation.

4. Friction: Compute and apply friction based on any collisions in previous step.

Retain velocities from before and after this step.

5. Transfer to particles: Transfer velocities from grid to particles.

6. Update particles: Update remaining particle states, such as position and deforma-

tion gradient

7. Plasticy and hardening: Project the deformation gradient for plasticity, and update

the elastic and plastic parts.

3.1.1 Material state

In MPM the state of the simulation is stored on the particles. We store mass mp, position

xnp , velocity vnp , and affine momentum Bn
p . This affine momenum matrix Bn

p is stored for

use in the APIC transfer[45]. We use APIC due to its increased stability over FLIP.

In addition we store the elastic component of the deformation gradient, Fn,p
E . The

plastic component of the deformation gradient Fn,p
P is not needed in our simulations,

this is due to our assumptions on energy and strain being derived only from the elastic

deformation gradient. Note that we keep track of whether FE is on the particle by using

a super script in order to keep with notation from previous chapters.
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3.1.2 Transfer weights

In order to facilitate the frequent transfer between particles and grid we need to associate

between each particle p and each grid node i a weightwnip which determines how strongly

the particle and nodes interact. For particles and nodes close together we expect the

weight to be large. As particles and nodes get further apart we expect the weights to

decrease. In addition for simplicity of computation we want each particle to have a finite

range of influence, i.e. if a particle and node are further apart then a distance d we

should expect wnip = 0. To satisfy this we compute our weights based off of a kernel

wnip = N(xnp − xni ), where xnp and xni are the locations of the particle and grid node

respectivly. In addition when computing forces we will need the spatial derivatives of the

weights ∇wnip = ∇N(xnp − xni )

The choice of the kernel N leads to trade off with respect to smoothness, computa-

tional efficiency, and the area of influence. Multilinear kernels have typically been used

in FLIP solvers due to their simplicity. However Steffen et al. [46] show that due to the

discontinuity of the gradient, as well as the gradient being far from zero when N is close

to zero, leading to large forces being applied to grid nodes with tiny weights, multilinear

kernels are not the best choice. Instead we use cubic b-splines, when the grid spacing is

h, the cubic b spline is given as

N̂(x) =


1
2
|x|3 − |x|2 + 2

3
0 ≤ |x| < 1

1
6
(2− |x|)3 1 ≤ |x| < 2

0 2 ≤ |x|

(3.1)

N(x) = N̂(
xx
h
)N̂(

xy
h
)N̂(

xz
h
) (3.2)

3.2 Transfer to grid

The first step of every time step is to transfer mass from the particles to the grid. This

is done by simplying suming each weighted particles mass.

mn
i =

∑
p

wnipmp (3.3)
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Again particles far away from a grid node do not contribute to its mass, as such we can

assume that they do not contribute to any of the other transfers given below.

Next we need to transfer velocity. This is done using the APIC transfers given in Jiang

et al. [45]. We use APIC instead of PIC or FLIP due to its ability to conserve linear and

angular momentum [45, 47]. The PIC transfers suffer from excessive dissipation [41, 48],

and FLIP transfers exhibit ringing instabilities caused by particle velocity modes hidden

from the grid [48, 49]. The PIC and FLIP transfers are done by

(mv)ni =
∑
p

wnipmpv
n
p (3.4)

This follows from the assumption that the volume represented by a particle p moves with

uniform vp velocity. APIC discards this assumption and instead surrounds each particle

with a local velocity field given by the affine function

vnp (x) = vnp +Cn
p (x− xnp ) (3.5)

where Cn
p , the velocity spatial derivative, is expressed using the affine momentum matrix

Bn
p and inertia tensor Dn

p as

Cn
p = Bn

p (D
n
p )

−1 (3.6)

where

Dn
p =

∑
i

wnip(x
n
i − xnp )(x

n
i − xnp )

T =
h2

3
I for N cubic (3.7)

Although typically the inertia tensor Dn
p is a high order polynomial based off of the grid

nodes and particles, for the cubic B splines it simplifies to the constant tensor given. As

such we can calculate the transfered particle momentum as

(mv)ni =
∑
p

wnipmp(v
n
p (xi) +Bn

p (D
n
p )

−1(xni − xnp )) (3.8)

Then the grid velocities are simply calculated by dividing momentum by mass

vni =
(mv)ni
mn
i

(3.9)
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3.3 Grid update

We next update velocities on the grid. In order to do so, we need to calculate the forces

being applied on the material, and use these forces to update the grid velocities. The

velocity update can either be explicit or implicit. The explicit velocity updates works

well with problems that have a relatively low stiffness. When the stiffness of the system

becomes too large, it becomes advisable to move to an implicit solver. In either case we

will need to start with the force fi(< Fn,p
E >) where we use <> to denote that the elastic

deformation gradient at every particle Fn,p
E is used in the calculation.

fi(< Fp
E >) = −

∑
p

V 0
p

∂ψ

∂FE

(< Fp
E >)F

p
E
T∇wnip (3.10)

where V 0
p

3.3.1 Explicit integration

For explicit integration we assume that the forces can be calculated based off of the

current state giving

v∗
i = vni +

δt

mn
i

fi(< Fn,p
E >) (3.11)

In the explicit integration we can compute the force on each node separately (including

external forces) and apply them per grid node

fni = −
∑
p

V 0
p

∂ψ

∂FE

(Fn,p
E )Fn,p

E
T∇wnip + f ext(xi) (3.12)

v∗
i = vni +

δt

mn
i

fni (3.13)

Once forces have been applied we will have to handle collisions v∗
i → v̄n+1

i and then apply

friction v̄n+1
i → ṽn+1

i The process for collision is detailed in section 3.3.3.

3.3.2 Implicit integration

For implicit integration we need to know the updated velocities in order to compute the

forces acting on the grid nodes. In addition, because the collision handling impacts the

velocities it needs to be incorporated into the implicit solver. To enforce collision response
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we use a set of constraints Gk to be defined in section 3.3.3.

v̄n+1
i = vni +

δt

mn
i

fi(< Fn+1,p
E >) +

∑
k

∇Gkiλk (3.14)

Gk ≥ 0 (3.15)

λk ≥ 0 (3.16)

Gkλk = 0 (3.17)

Where a (collision object/node) pair is considered collision free if Gk(< x̄i >) ≥ 0 where

x̄i = xni + δtv̄i. Note that friction is still handled explicitly in this formulation.

The system is nonlinear and is solved using Newton’s method. The collision con-

straints are solved for by projection, and each Fn+1,p
E is updated with the projection given

in the previous chapter. Due to plasticity the system is asymmetric, as such GMRES is

used to solve it. In the absence of plasticity, the Conjugate Gradient method can be used

in each newton step.

3.3.3 Collision and friction

We separate the collision and friction into two steps. While this is not necessary, in the

implicit solve we only factor in the collision response. Thus separating the two makes the

derivation easier for the implicit solve and has no effect on the explicit solve.

Each collision object is represented by a signed distance function ϕ(x) with the con-

vention it is positive outside and negative inside. If we could handle the collision detection

on particles, we would simply enforce ϕ(xn+1
p ≥ 0. In practice however doing so would

cause the deformation gradient Fn+1,p
E to become out of sync due to direct updates on

xn+1
p . To solve this we instead use the grid velocity to process collisions.

While one could process collisions by adjusting v̄n+1
i to enforce ϕ(xn+1

p ) ≥ 0, this would

require very complicated collision process in both the explicit and implicit cases due to

v̄n+1
i affecting multiple nodes. Instead we process collisions using the nodes themselves as

in Gast et al. [50]. We use the deformed grid to apply constraints instead of the particles.

The deformed grid nodes x̄i are defined as

x̄i = xni + δtv̄i (3.18)
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Now we can not simply say that ϕ(x̄n+1
i ) ≥ 0 because we expect there to be grid nodes

inside of an obstacle. Instead we will have a set of constraints Gk(< x̄n+1
i >)geq0 or

Gk(< x̄n+1
i >) = 0. These constraints can be applied indepently on each grid node when

collision is detected. There are three types of collision constraints that our MPM method

handles:

1. Sticky: The sticky constraint requires that x̄n+1
p remain stationary with respect to

the collision object

2. Separating: The separating constraint requires that a node x̄n+1
p does not penetrate

deeper into the object in the next time step, it is however free to move in any

direction that satisfies this constraint

3. Slip: The slip constraint simply requires that if a node is colliding with the object,

it is allowed to move along the surface of the object but it must stay at the same

depth. A node not colliding has no collision response.

3.4 Transfer to particles

Once we have the post friction velocities ṽn+1
i , we can compute the new velocities vn+1

p

and affine momentum Bn+1
p . If we were using PIC or FLIP the new velocities would be

vPICp =
∑
i

ṽn+1
i wnip (3.19)

vFLIPp =
∑
i

(ṽn+1
i − vni )w

n
ip (3.20)

With FLIP the particle velocities are set as a linear combination of the two with ratio α

as α-FLIP

vn+1
p = α(vnp + vFLIPp ) + (1− α)vPICp (3.21)

With PIC and APIC the particle velocities are simply

vn+1
p = vPICp (3.22)

In addition APIC needs to update the affine momentum as well

Bn+1
p =

∑
i

wnipṽ
n+1
i (xni − xnp )

T (3.23)
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3.5 Update particle state

Next the particles position and deformation gradient need to be updated. The position

is simply found by interpolating back from the moving grid nodes

xn+1
p =

∑
i

wnipx̄
n+1
i (3.24)

Note that this uses the weights from the start of the time step. Since the particles move

with the flow, the deformation gradient at time n+ 1 is simply found by

F̂E

n+1,p
= Fn+1,p

E + δt(∇ṽ)pF
n,p
E (3.25)

where

(∇ṽ)p =
∑
i

ṽn+1
i (∇wnip)T (3.26)

The last step is to ensure that the deformation gradient F̂E

n+1,p stays within the yield

surface. For this we simply use the projection given in the previous chapter to arrive at

Fn+1,p
E = Z(F̂E

n+1,p
) (3.27)

where Z denotes the projection.
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CHAPTER 4

Appendix

4.1 Appendix: eigen decomposition differentials

Consider the space of symmetric 3× 3 matrices R3×3
sym, thus S ∈ R3×3

sym have eigen decom-

positions, S = VΛVT for some orthogonal V and diagonal Λ. We can define a class of

functions g : R3×3
sym → R3×3

sym that are inherited from scalar functions g : R → R as

g(S) = Vg(Λ)VT

where we use the notation

g(Λ) =


g(λ1)

g(λ2)

g(λ3)

 and Λ =


λ1

λ2

λ3

 .

We can derive the differentials of scalar inherited g using the expressions for the

differentials of the eigen decomposition of S. The eigen decomposition of the symmetric

matrix S can be thought of as a function over R3×3
sym: V : R3×3

sym → R3×3
orth and Λ : R3×3

sym →

R3×3
diag, or V(S) and Λ(S) to emphasize the dependent variable. By definition, we have

the relation

δS = δVΛVT +VδΛVT +VΛδVT

and since VTV = I,

δVTV +VT δV = 0.

Using W = δVTV, we see that W is skew symmetric and that

VT δSV = WTΛ+ δΛ+ΛW.
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Since W is skew symmetric, it can be written as

W =


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


and thus

VT δSV =


δλ1 −ω3(λ2 − λ1) ω2(λ3 − λ1)

−ω3(λ2 − λ1) δλ2 −ω1(λ3 − λ1)

ω2(λ3 − λ1) −ω1(λ3 − λ2) δλ3

 . (4.1)

Thus denoting A = VT δSV, we have the expressions

ω1 = − a32
λ3 − λ2

, ω2 =
a31

λ3 − λ1
, ω3 = − a21

λ2 − λ1
, and δλi = aii, i = 1, 2, 3

Similar to the eigen decomposition

VT δgV = WTg(Λ) + δg(Λ) + g(Λ)W

where

δg(Λ) =


g′(λ1)δλ1

g′(λ2)δλ2

g′(λ3)δλ3

 .

Thus,

VT δgV =


g′(λ1)a11

g(λ2)−g(λ1)
λ2−λ1 a21

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ2)−g(λ1)
λ2−λ1 a21 g′(λ2)a22

g(λ3)−g(λ2)
λ3−λ2 a32

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ3)−g(λ2)
λ3−λ2 a32 g′(λ3)a33


and

δg = V


g′(λ1)a11

g(λ2)−g(λ1)
λ2−λ1 a21

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ2)−g(λ1)
λ2−λ1 a21 g′(λ2)a22

g(λ3)−g(λ2)
λ3−λ2 a32

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ3)−g(λ2)
λ3−λ2 a32 g′(λ3)a33

VT .

We can rewrite this in terms of the matrix

B =


g′(λ1)

g(λ2)−g(λ1)
λ2−λ1

g(λ3)−g(λ1)
λ3−λ1

g(λ2)−g(λ1)
λ2−λ1 g′(λ2)

g(λ3)−g(λ2)
λ3−λ2

g(λ3)−g(λ1)
λ3−λ1

g(λ3)−g(λ2)
λ3−λ2 g′(λ3)


using the Hadamard product (or entry-wise product) where the i, j entry of A ◦ B is

AijBij (with no summation on the repeated indices). That is,

δg = V
(
B ◦

(
VT δSV

))
VT (4.2)
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4.1.1 Symmetric tensors

This result generalizes to functions over symmetric tensors. If g : V2
sym → V2

sym, then

δg = ([B](S) ◦ [δS])kl uk ⊗ ul (4.3)

where S =
∑

i λiui × ui is the eigenvalue decomposition of S. [δS], [B](S) ∈ R3×3 and

[B](S) ◦ [δS] ∈ R3×3 is their Hadamard product. The entries in the matrix [δS] are

[δS]ij = ui · (δSuj), i.e. it is the expression of δS in the eigenbasis of S. We would assume

the convention λ1 ≥ λ2 ≥ λ3 to make the mapping [B] :→ V2
sym well defined from

[B](S) =


g′(λ1)

g(λ2)−g(λ1)
λ2−λ1

g(λ3)−g(λ1)
λ3−λ1

g(λ2)−g(λ1)
λ2−λ1 g′(λ2)

g(λ3)−g(λ2)
λ3−λ2

g(λ3)−g(λ1)
λ3−λ1

g(λ3)−g(λ2)
λ3−λ2 g′(λ3)

 .

4.1.2 Scalar functions of symmetric tensors

Let f : V2
sym → R with f(S) = f̂(λ1, λ2, λ3) = f̃(I(S), II(S), III(S)) where

I(S) = λ1 + λ2 + λ3, II(S) = λ1λ2 + λ1λ3 + λ2λ3, III(S) = λ1λ2λ3. (4.4)

Using Equation (4.1), we can conclude

δf =
∂f

∂S
(S) =

∑
i

∂f̂

∂λi
(λ1, λ2, λ3)δλi =

∑
i

∂f̂

∂λi
(λ1, λ2, λ3)ui · (δSui)

Thus, the derivative is given by

∂f

∂S
(S) =

∑
i

∂f̂

∂λi
(λ1, λ2, λ3)ui ⊗ ui. (4.5)
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