
UCLA
UCLA Previously Published Works

Title
Incorporating heterogeneous sampling probabilities in continuous phylogeographic 
inference - Application to H5N1 spread in the Mekong region.

Permalink
https://escholarship.org/uc/item/04f6j73f

Journal
Bioinformatics, 36(7)

ISSN
1367-4803

Authors
Dellicour, Simon
Lemey, Philippe
Artois, Jean
et al.

Publication Date
2020-04-01

DOI
10.1093/bioinformatics/btz882
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04f6j73f
https://escholarship.org/uc/item/04f6j73f#author
https://escholarship.org
http://www.cdlib.org/


Phylogenetics
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Abstract

Motivation: The potentially low precision associated with the geographic origin of sampled sequences represents
an important limitation for spatially explicit (i.e. continuous) phylogeographic inference of fast-evolving pathogens
such as RNA viruses. A substantial proportion of publicly available sequences is geo-referenced at broad spatial
scale such as the administrative unit of origin, rather than more precise locations (e.g. geographic coordinates).
Most frequently, such sequences are either discarded prior to continuous phylogeographic inference or arbitrarily
assigned to the geographic coordinates of the centroid of their administrative area of origin for lack of a better
alternative.

Results: We here implement and describe a new approach that allows to incorporate heterogeneous prior sampling
probabilities over a geographic area. External data, such as outbreak locations, are used to specify these prior sampling
probabilities over a collection of sub-polygons. We apply this new method to the analysis of highly pathogenic avian in-
fluenza H5N1 clade data in the Mekong region. Our method allows to properly include, in continuous phylogeographic
analyses, H5N1 sequences that are only associated with large administrative areas of origin and assign them with more
accurate locations. Finally, we use continuous phylogeographic reconstructions to analyse the dispersal dynamics of dif-
ferent H5N1 clades and investigate the impact of environmental factors on lineage dispersal velocities.

Availability and implementation: Our new method allowing heterogeneous sampling priors for continuous phylo-
geographic inference is implemented in the open-source multi-platform software package BEAST 1.10.

Contact: simon.dellicour@ulb.ac.be

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

The lack of submission/publication of precise sampling locations
associated with viral sequences limits the application of spatially ex-
plicit phylogeographic analyses of fast-evolving pathogens such as
RNA viruses. Continuous phylogeographic inference (Lemey et al.,
2010) requires sampled sequences to be associated with relatively
precise geographic coordinates and as such, viral isolates/sequences
with low sampling accuracy pose a concrete problem. Indeed, when
studying the spread of a pathogen, a potentially large proportion of
publicly available sequences is only associated with very large ad-
ministrative units or even countries, as more precise data are either
not traceable, lost or not deemed important at the time of sample
collection or submission (Claes et al., 2014). If precise information
exists, it may require contacting the original submitters or searching
independent databases and/or as Supplementary Materials related to
publications (Tahsin et al., 2017). Therefore, it is difficult to quan-
tify the exact proportions of sequences submitted with more or less
precise sampling origin such as country, administrative area, city,
village or even precise geographic coordinates. However, for an im-
portant proportion — or even the majority — of viral sequences
deposited in a database like GenBank, the level of precision of the
sampling location does not go beyond the country or the first na-
tional administrative subdivision. In the present study, we use a
classification by levels that refer to such administrative subdivisions.
This classification is for instance used by the Database of
Global Administrative Areas (gadm.org) and avoids using termin-
ology that is country-specific (e.g. state, province, chiefdom, etc.).
Administrative subdivision of levels 1 and 2, hereafter referred to as
‘admin-1’ and ‘admin-2’, are here, respectively, defined as the first
and second administrative entities below the country level (‘admin-
0’), which would e.g. reflect states and countries in the USA or prov-
inces and districts in Thailand.

Common practice entails that sequences associated with an im-
precise sampling location, such as a country or a broad administra-
tive area, are either discarded during the data collection step of a
continuous phylogeographic inference (e.g. Holden et al., 2013) or
assigned to the geographic coordinates of the centroid points of their
administrative polygons of origin (e.g. Biek et al., 2007; Pybus et al.,
2012). The former may lead to a non-negligible loss of (genetic)
data whereas the latter may prove to be completely irrelevant given
the very low or even unlikely probability that the sequence has been
collected at that centroid location. Alternatively, it may be of inter-
est to use polygons to define a prior range of sampling coordinates
(Nylinder et al., 2014). This approach remains restricted to uniform
sampling probabilities within polygons and may therefore only be
relevant for relatively small administrative areas (e.g. admin-2 level).
However, integrating unknown sampling coordinates over relatively
broad administrative areas (e.g. of admin-1 or admin-0 level) in a
uniform fashion may introduce undue uncertainty.

Geographic spread of avian influenza viruses has frequently been
the focus of continuous phylogeographic analyses (e.g. Jin et al.,
2014; Lu et al., 2014; Trov~ao et al., 2015). Among these viruses, the
highly pathogenic avian influenza (HPAI) H5N1 virus of the Goose/
Guangdong/96 lineage caused a panzootic of unprecedented propor-
tions in poultry, in terms of number of outbreaks and animals
affected, socio-economic impact and geographical range (Gilbert
et al., 2008; Kilpatrick et al., 2006; Li et al., 2004). The HPAI
H5N1 virus responsible for the panzootic was reported for the first
time in live bird markets in the Chinese province of Guangdong in
1996 (Sims et al., 2005). The virus started spreading worldwide in
2003 and in 2008, it had extensively spread across the Eurasian and
African continents. H5N1 currently persists in many countries such
as Egypt, Indonesia, Vietnam and China (Domenech et al., 2009),
but also regularly re-emerges in non-endemic countries. As for many
other studies, an important proportion of the geo-referenced viral
sequences of HPAI H5N1 available for the Mekong region are asso-
ciated with imprecise sampling locations, which impeded applica-
tions of high-resolution continuous phylogeographic analysis to gain
insights into the virus dissemination pattern and its drivers (Lemey
et al., 2010). Therefore, the spatiotemporal reconstruction of H5N1
spread in the Mekong region represents an interesting example for

investigating new approaches aiming to reduce the uncertainty
related to sampling origin in the context of phylogeographic
analyses.

In the present study, we aim to present and apply a new ap-
proach to address sampling location uncertainty. This method is
based on the specification of heterogeneous and potentially null
sampling probabilities associated with a series of sub-polygons and
informed by external spatial data. For the specific case of HPAI
H5N1 in the Mekong region, we have identified two datasets to in-
form the priors of the sampling location of viral sequences: the dis-
tribution of HPAI H5N1 outbreaks from the EMPRES-i database (a
global database of reported outbreaks in animals) and host (chick-
ens, ducks) incidence data. We here focused on a dataset of sequen-
ces from the Mekong region in the period 2003–2012. Poultry
production and trade systems are very heterogeneously distributed
in South-East Asia, resulting in a fairly heterogeneous distribution of
H5N1 outbreak records (Gilbert et al., 2008; Pfeiffer et al., 2013).
Therefore, this area is a very good study case to unravel the dispersal
history of the virus using a continuous phylogeographic inference, as
the results could help understanding the spatial dynamics of virus
dispersal.

2 Materials and methods

2.1 Compilation of H5N1 sequences datasets
We extracted HPAI H5N1 sequences (HA gene) from GenBank that
originated from the Mekong region (Cambodia, Laos, Thailand,
Vietnam) and that belong to some of the main clades circulating in
these countries: clades 1, 1.1, 1.1.2, 2.3.4 and 2.3.4.3. Clade 1 and
its subclades (e.g. clades 1.1 and 1.1.2) were identified in 2003 and
were predominant in the Mekong region until 2012 (Cuong et al.,
2016). As for clade 2.3.4 (and its subclade 2.3.4.3), it superseded
clade 1 in northern Vietnam from 2005 to 2009 (Artois et al., 2016;
Nguyen et al., 2008). The selection of these clades was based on the
availability of associated metadata like sampling year and geograph-
ic origin, which are required for spatiotemporal reconstructions
using continuous phylogeography. Further, we only extracted
sequences for which at least an admin-1 area of origin was known,
which was directly retrieved from publications, or from either the
OpenFlu database managed by the Swiss Institute of Bioinformatics
(openflu.vital-it.ch) or the EMPRES-i database developed and man-
aged by the Food and Agriculture Organization of the United
Nations (FAO, empres-i.fao.org). This led to the compilation of a
dataset consisting of 214 sequences from clade 1, 25 from clade 1.1,
30 from clade 1.1.2, 29 from clade 2.3.4 and 22 from clade 2.3.4.3
(Fig. 1). Among these 320 sequences, 138 were associated with an
admin-1 polygon of origin (hereafter referred to as ‘admin-1 sequen-
ces’) and 182 were associated with an admin-2 polygon of origin
(hereafter referred to as ‘admin-2 sequences’; Fig. 1).

2.2 Constraining sampling uncertainty
BEAST (Bayesian Evolutionary Analysis by Sampling Trees) is an
open-source multi-platform software package to perform Bayesian
phylodynamic inference while accommodating phylogenetic uncer-
tainty (Suchard et al., 2018). Now at version 1.10, BEAST allows to
specify, for a given sequence, a polygon defining a uniform prior
range of sampling coordinates (hereafter referred to as ‘uniform
prior approach’; Nylinder et al., 2014). This prior can be specified
using a polygon defined in a Keyhole Markup Language (KML) file,
which is a file format used to display geographic information system
data in software packages such as Google Earth (www.google.com/
earth).

To allow assigning non-uniform prior sampling probabilities, we
extended this feature by allowing the specification of several non-
overlapping sub-polygons, where each sub-polygon can be associ-
ated with a different sampling probability. Any given sequence can
be associated with an external KML file, which can specify several
sub-polygons linked to specific sampling probabilities, the sum of
which is constrained to be equal to 1. We implemented this novel
heterogeneous sampling prior approach (hereafter referred to as
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‘heterogeneous prior approach’) in BEAST 1.10 (Suchard et al.,
2018) and an example of the related XML settings as well as edited
KML files can be found as Supplementary Appendix S1.

In practice, each admin-2 sequence was associated with a single
polygon of origin with a sampling probability equal to 1. Indeed, the
size of admin-2 polygons typically remains relatively small at the
scale of an entire study area on which we aim to infer the lineages
dispersal history (Fig. 2). At this geographical scale and for these
sequences, there is little to be gained by further specifying areas
associated with different sampling probabilities within an already
small admin-2 polygon. Our proposed heterogeneous prior ap-
proach was only used for admin-1 sequences (Fig. 2). For admin-1
sequences, simply considering the entire polygon of origin to define
a uniform prior range of sampling coordinates would involve an im-
portant uncertainty on the sampling location. Overall, we here
aimed to use more informative/constrained priors by assigning sam-
pling probabilities to the admin-2 polygons nested within the
admin-1 polygon of origin. As detailed below, we used external data
to define a sampling probability assigned to each admin-2 polygon.

2.3 Generating sub-polygons with a sampling

probability
We employed our novel heterogeneous prior approach that avoids
having to either specify large prior ranges of sampling coordinates or
discard admin-1 sequences. In our application to HPAI H5N1, we
used external data, such as annual outbreak records, to constrain the
initial broad prior range of sampling coordinates. For a given admin-1
sequence, we first analysed the map of outbreak records correspond-
ing to the sampling year of that sequence. Such annual maps gather
the number of outbreak records per admin-2 polygon (Supplementary
Fig. S1). For each admin-2 polygon nested in the admin-1 polygon of
origin, the assigned sampling probability was then estimated as the
number of outbreak records in that particular admin-2 polygon div-
ided by the total number of records in the overall admin-1 polygon.
With this approach, we explicitly assumed that the probability that
the sequence originated from a given admin-2 area is linearly propor-
tional to the number of outbreaks recorded in that area. It is import-
ant to note (i) that the admin-2 sampling probabilities always sum to
one and (ii) that some admin-2 polygons can be associated with a
zero-sampling probability (Fig. 3). The rationale behind the former is
that it is highly unlikely that the admin-1 sequence originates from an

admin-2 area for which there is no outbreak record during its sam-
pling year. In the absence of outbreak records, we could have used
host species incidence data (for chickens and ducks; Fig. 2) to define
the sampling probabilities to assign to admin-2 polygons. However,
this was not the case since we had outbreak records within all admin-
1 areas for which we obtained sampled sequences. The detailed pro-
cedure is available in Supplementary Appendix S1.

HPAI H5N1 outbreak records in the Mekong region were previ-
ously compiled and used in Artois et al. (2016). These records were
extracted from the database of the Global Animal Health
Information System of the FAO (EMPRES-i; http://empres-i.fao.
org). The final dataset is made up of 6762 outbreak records comple-
mented with 338 records provided by the Department of Animal
Health (Hanoi, Vietnam). About 98% of these outbreaks were geo-
referenced at the administrative level 3 (commune), 0.5% at the ad-
ministrative level 2 (district) and 1.5% at the administrative level 1
(province). The definition of an outbreak may have varied over time
and by country, but in most cases, outbreaks were assumed to repre-
sent a farm, or a group of farms where HPAI H5N1 was observed at
least once at a given point in time (Artois et al., 2016).

2.4 Continuous phylogeographic analyses
Continuous phylogeographic analyses were performed using the
relaxed random walk diffusion model implemented in BEAST
(Lemey et al., 2010; Pybus et al., 2012), applied to each clade separ-
ately and using a Cauchy distribution to model among-branch het-
erogeneity in diffusion velocity. We also used the BEAGLE 3 library
(Ayres et al., 2019) to improve computational performance. In add-
ition, and for each analysis, we specified a non-parametric coales-
cent model as the tree topology prior (Gill et al., 2013), we modeled
the substitution process according to the SRD06 parametrization
(Shapiro et al., 2006), and we specified a relaxed clock model with
rates drawn from an underlying lognormal distribution (Drummond
et al., 2006). Markov chain Monte Carlo (MCMC) chains were run
for 500 million iterations while sampling every 100 000 generations,
and discarding the first 10% of the samples in each chain as burn-in.
Finally, maximum clade credibility (MCC) trees were obtained with
TreeAnnotator 1.10 (Suchard et al., 2018) and convergence and
mixing properties were inspected using Tracer 1.7 (Rambaut et al.,
2018). For comparative purposes, we performed each continuous
phylogeographic analysis with the uniform prior as well as the new

Fig. 1. Sampling maps of H5N1 clades in the Mekong region. Crosses and dots refer to sampling locations of H5N1 sequences assigned to an admin-1 or admin-2 polygon,

respectively
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heterogeneous prior approach. In the former approach, uniform
prior ranges of sampling locations were defined for all the sampled
sequences, no matter if they were associated with an admin-1 or an
admin-2 polygon of origin (Nylinder et al., 2014). For the latter ap-
proach, and as described above, prior ranges assigned to admin-1
sequences were defined with a collection of admin-2 polygons each
associated with a distinct sampling probability (see Supplementary
Appendix S1 for the practical details).

For each clade-specific phylogeographic analysis, we used the R
package ‘seraphim’ (Dellicour et al., 2016a, b) to extract the spatio-
temporal information embedded in 100 trees sampled from the pos-
terior distribution (after burn-in had been removed). After this
extraction step, each branch in the phylogeny can be treated as a dis-
tinct movement vector (Pybus et al., 2012) and we further used ‘ser-
aphim’ to estimate the mean branch dispersal velocity.

2.5 Comparing the uniform and heterogeneous prior

approaches
To further test and compare the uniform and heterogeneous prior
approaches, we performed additional phylogeographic analyses

solely based on admin-2 sequences from clade 1 and considered dif-
ferent levels of sampling precision. Specifically, we performed three
distinct phylogeographic analyses: (i) analyses using the uniform
prior approach while considering only admin-1 level sampling loca-
tions for all sequences, (ii) analyses using the heterogeneous prior
approach also considering only the admin-1 origin of each sequence
and (iii) analyses using the uniform prior approach but this time
based on the original admin-2 sampling locations. In order to com-
pare the spatial uncertainty associated with each phylogeographic
inference, we reported the area of time-sliced polygons representing
the 95% highest posterior density (HPD) regions computed for each
successive year. In addition, we also used these analyses to compare
the gain in accuracy, i.e. the increase in probability to position a
given sequence in its actual admin-2 polygon of origin, when using
the heterogeneous instead of the homogeneous prior approach.

Given that the accuracy gain assessment is only possible when
relatively precise sampling locations are available, we also proposed
an exploratory investigation of the relevance of the external data
used to inform sampling priors. Specifically, we simulated 1000 sets
of sampling coordinates for the admin-2 sequences of clade 1 (but it
could have been for any set of sampling points randomly distributed
in sampled admin-1 polygons) following both the uniform and het-
erogeneous priors. We then compared the maximum and average
gain in sampling location accuracy when considering heterogeneous
rather than uniform priors of sampling coordinates. This assessment
was performed once considering the past outbreak records and once
considering the host incidence data to inform the heterogeneous
priors.

2.6 Investigating the impact of environmental factors
Finally, we used the package ‘seraphim’ to exploit phylogenetically
informed movement data for studying the association between par-
ticular environmental factors and the dispersal velocity of the H5N1
virus lineages in the Mekong region. Specifically, we investigated the
impact of several factors: the main land cover variables for the study
(‘croplands’, ‘forests’, ‘savannas’), the elevation, the inaccessibility
to major cities (quantified as the time it takes to travel to the nearest
major city of >50 000 inhabitants), as well as human population

Sampling
map

Admin-1 borders
Admin-2 borders

Outbreak
records

Host species
density

A B C

log10(individuals/km2)log10(outbreak records)

0 1 0 12 3 2 3 4

Fig. 2. External data considered to assign sampling probabilities to admin-2 polygons. (A) Sampling map of H5N1 clade 1 sequences. As in Fig. 1, crosses and dots refer to sampling

locations of H5N1 sequences assigned to an admin-1 or admin-2 polygon, respectively. (B) Map of outbreak records gathering data cumulated from 2004 to 2012 for admin-2 poly-

gons (see also Supplementary Fig. S1 for annual maps). (C) Host species density map displaying, for each admin-2 polygon, log-transformed densities for both host species (chickens,

ducks). While admin-2 polygons are colored by hosts density to avoid visual confusion, it is the actual total number of hosts that was considered to compute and assign a sampling

probability to each of these admin-2 polygons. For illustrative purpose, the admin-1 area highlighted by the red contour is displayed in a bigger size in Fig. 3

A B C

Fig. 3. Zoom on a given admin-1 polygon for which a sampled sequence is assigned.

Admin-2 polygons are delimited by green borders (A) and further colored by log-

transformed outbreak records (B) and log-transformed host species densities (C, see

Fig. 2 for the respective color scales). In this example, only 6 out of 13 admin-2 pol-

ygons are associated with a non-null number of outbreak records. If none of these

admin-2 were associated with outbreak records, the host incidence data would have

been used to assign a sampling probability to each admin-2 polygon
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and host species (chicken and duck) densities. All environmental fac-
tors were tested as potential conductance factors (i.e. factors facili-
tating movement) and as potential resistance factors (i.e. factors
impeding movement). Correlations between phylogenetic branch
durations and environmental distances were quantified as a statistic
Q, which is computed as the difference between (i) the coefficient of
determination obtained when branch durations are regressed against
environmentally scaled distances and (ii) the coefficient of determin-
ation obtained when branch durations are regressed against distan-
ces computed on a ‘null’ raster, i.e. a raster with a value of ‘1’
assigned to every cell. An environmental factor was only considered
as potentially explanatory if both its distribution of regression coef-
ficients and its associated distribution of Q values were positive
(Jacquot et al., 2017). In a positive distribution of estimated Q val-
ues (i.e. with at least 90% of positive values), statistical support was
then evaluated against a null distribution generated by a randomiza-
tion procedure and formalized using a Bayes factor (BF) value
(Dellicour et al., 2017). The full procedure is detailed in
Supplementary Appendix S2.

3 Results

As detailed above, we used the continuous diffusion model imple-
mented in BEAST (Lemey et al., 2010) to infer the dispersal history
of the five H5N1 clades selected in this study. We performed a sep-
arate continuous phylogeographic inference for each clade. For the
largest clade (i.e. clade 1, 214 sequences), we also performed these
analyses both (i) using the uniform prior approach for all the
sequences (no matter the precision level of their geographic origin)
and (ii) using a combination of the uniform and heterogeneous prior
approaches, respectively, for the admin-2 and admin-1 sequences.
The comparison of prior ranges of sampling coordinates generated
in both cases is displayed in Supplementary Fig. S2. This visual com-
parison shows that our heterogeneous prior approach leads natural-
ly to a more heterogeneous sampling probability across admin-1
polygons. In addition, we also compared the uncertainty related to
the continuous phylogeographic inference. In particular, we com-
pared the area of the time-sliced polygons representing the 95%
HPD regions computed for each successive year (Supplementary
Fig. S3). Although this difference is not necessarily obvious when
visually comparing both overall phylogeographic reconstructions,
this comparison confirmed that the 95% HPD polygons tend to
be smaller when using the heterogeneous prior approach
(Supplementary Fig. S3).

To further compare the uniform and heterogeneous prior
approaches, we have also performed additional phylogeographic anal-
yses only based on admin-2 sequences from clade 1. These analyses
confirm that the heterogeneous approach results in a decrease in esti-
mated spatial uncertainty relative to the uniform approach (Fig. 4).
Indeed, when admin-2 sequences are downscaled at the sampling pre-
cision of the admin-1 level, the heterogeneous approach allows reach-
ing phylogeographic uncertainty in between the uncertainties
obtained with the uniform prior approach at the admin-1 and admin-
2 levels (Fig. 4). Furthermore, we have also compared the gain in ac-
curacy, i.e. to what extent the heterogeneous prior outperforms the
uniform prior approach in estimating sampling coordinates in the ac-
tual admin-2 polygons of origin. This analysis reveals that using the
heterogeneous instead of the uniform prior approach leads to an in-
crease of up to 0.33 in the posterior probability to accurately position
a given sequence in its actual admin-2 polygon of origin (on average,
an increase in posterior probability equal to 0.11; 95% HPD¼ [0.00–
0.22]). Although relatively moderate, this analysis formally demon-
strates the gain in sampling accuracy offered by the heterogeneous
prior approach. Taken together, these evaluations of precision and ac-
curacy gain confirm the utility of the heterogeneous prior approach
when some sequences are associated with a large sampling area: it
allows including such sequences while increasing the probability of ac-
curacy and also avoiding integrating too much uncertainty in the con-
tinuous phylogeographic reconstruction.

In parallel, we also illustrate how to explore the potential inter-
est of using a specific external dataset to inform heterogeneous

sampling priors. As detailed in Section 2, we have simulated sam-
pling coordinates following uniform as well as heterogeneous priors
informed by the past outbreak record data or, alternatively, by the
host incidence data. Again, we then compared the number of sam-
pling coordinates accurately estimated in the actual admin-2 poly-
gon of origin. When based on the past outbreak records, this
analysis confirms the gain in accuracy obtained when using hetero-
geneous as compared to uniform priors, i.e. a similar increase up to
0.39 in the probability to accurately position a given sequence in its
actual admin-2 polygon of origin (averaged increase of 0.13, 95%
HPD ¼ [0.00–0.31]). When based on host species incidence data,
using the heterogeneous priors only leads to an average probability
increase of 0.09 (95% HPD ¼ [0.04–0.16]), which actually illus-
trates that this alternative data source results in a lower increase in
sampling accuracy. These results thus further demonstrate the utility
of using such a heterogeneous prior, as well as the importance of
considering the appropriate external data to inform these priors.

Phylogeographic reconstructions based on the combination of
the uniform prior and heterogeneous prior approaches reveal differ-
ent dispersal histories among the five H5N1 clades considered in
this study. While clades 1, 2.3.4 and 2.3.4.3 were primarily intro-
duced in northern Vietnam, clades 1.1 and 1.1.2 rather appeared in
the South of the Mekong region (in southern Vietnam and
Cambodia, respectively). Additionally, phylogeographic reconstruc-
tions reveal a few long-distance lineage dispersal events for clades 1,
1.1 and 2.3.4. When compared to an H5N1 risk map built for the
region (Fig. 5), these long-distance dispersal events appear to have
occurred through areas associated with lower risk of H5N1 occur-
rence. Such a risk map was previously generated by Gilbert et al.
(2008) using an ecological niche modeling approach to statistically
analyse the association between the recorded HPAI H5N1 virus
presence and environmental factors. The comparison of mean
branch dispersal velocities estimated for each clade further reveals
differences in terms of dispersal dynamics: while we estimate a simi-
lar mean branch dispersal velocity for clades 1 (559 km/year 95%
HPD [352, 1359]) and 2.3.4.2 (508 km/year 95% HPD [230,
1381]), a lower value is estimated for clade 1.1 (162 km/year 95%
HPD [65, 473]) and higher values are estimated for clades 1.1.2
(901 km/year 95% HPD [502, 2793]) and 2.3.4 (1501 km/year 95%
HPD [689, 5408]). Overall, these results highlight a dispersal vel-
ocity heterogeneity at the clade level.

Finally, we investigated whether heterogeneity in lineage disper-
sal velocity (among and within clades) could be related to a specific
environmental factor. For this purpose, we used an analytical work-
flow already described in previous studies (e.g. Dellicour et al.,
2017; Laenen et al., 2016) and implemented in the R package ‘sera-
phim’ (Dellicour et al., 2016a, b). Here, we investigated the impact
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Fig. 4. Comparison of the phylogeographic uncertainty between the uniform and

heterogeneous prior approaches. This comparison is based on three additional phy-

logeographic analyses solely considering admin-2 sequences from clade 1: (i) analy-

ses using the uniform prior approach while downscaling the sampling origin of all
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of the following environmental factors (Supplementary Fig. S4): ele-
vation, land cover variables (‘croplands’, ‘forests’, ‘savannas’), in-
accessibility (quantified as the time it takes to travel to the nearest
major city of >50 000 inhabitants), as well as human, chicken and
duck population densities. All factors were tested as single potential
conductance factors (i.e. factors facilitating movement) and as single
potential resistance factors (i.e. factors impeding movement). Our
analyses do not reveal any strong support (BF >20) for environmen-
tal factor acting as resistance or as conductance factors, i.e. signifi-
cantly explaining the overall heterogeneity measured for the lineage
dispersal velocity. However, a few environmental factors are associ-
ated with both a positive Q distribution and an approximated BF
just above 3, which would correspond to a ‘positive’ support accord-
ing to the scale of interpretation of Kass and Raftery (1995;
Supplementary Fig. S5; see also Supplementary Appendix S2 for the
details of this analysis).

4 Discussion

The continuous phylogeographic reconstructions performed in this
study reveal different dispersal histories between clades, but also
heterogeneous dispersal velocities within clades. Yet, our assessment
of environmental factors that might have impacted lineage dispersal
velocity have not highlighted any factor that is significantly more
correlated with dispersal durations than geographic distance alone.
This overall result indicates that lineage dispersal velocity for H5N1
does not tend to uniformly vary according to particular environmen-
tal conditions. This result is also in line with the fact that poultry
trade structure is known to be impacted by international borders
(Pfeiffer et al., 2007, 2013). As we can see in Fig. 5, continuous phy-
logeographic inferences reveal several long-distance dispersal events
of lineages crossing the Mekong region. However, most of these
events have occurred between the distant northern and southern
Vietnam areas rather than between different countries. This result

Fig. 5. Risk map and reconstructed spatiotemporal diffusion for each H5N1 clade considered in this study: mapped MCC trees and 95% HPD regions. MCC trees and 95%

HPD regions are based on 100 trees subsampled from each post-burn-in posterior distribution. Nodes of MCC trees are colored according to their time of occurrence. About

95% HPD regions were computed for successive time layers and then superimposed using the same color scale reflecting time. The risk map comes from Gilbert et al. (2008)

Incorporating heterogeneous sampling probabilities in continuous phylogeographic inference 2103

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz882#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz882#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz882#supplementary-data


further emphasizes the importance of national and human-mediated
movement of infected poultry within the trading network. The vel-
ocity of HPAI H5N1 virus spread does not seem to be notably asso-
ciated with continuous environmental conditions that would impact
the virus dispersal in wild populations.

The clade-specific continuous phylogeographic inferences per-
formed in this study were based on equivalent proportions of
admin-2 and admin-1 sequences. This illustrates that, for the empir-
ical example we have analysed here, our heterogeneous prior ap-
proach allows to roughly double the amount of sequences associated
with an informative prior range of sampling coordinates. As illus-
trated in Fig. 3, assigning sampled sequences to the centroid point of
a broad (e.g. admin-1) polygon can be irrelevant. In this example,
the centroid point of the admin-1 polygon does not fall in an admin-
2 polygon for which H5N1 outbreaks have been recorded at all.
This provides a good illustration of a situation that motivates the de-
velopment of the heterogeneous prior approach presented here. The
second motivation was to avoid having to potentially discard an im-
portant number of valuable admin-1 sequences from the present
analysis, which amount to 43% of our sequences dataset. In the con-
text of spatially explicit phylogeographic analyses, there is a trade-
off between the geographic precision of the study and the amount of
genetic data that can be involved in the analysis. With the heteroge-
neous prior approach we propose here, we aim to increase the num-
ber of sequences that can be properly included in spatially
continuous inferences by employing a prior range on the geographic
origin as constrained as possible.
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