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PROBIT WITH DEPENDENT OBSERVATIONS

Dale J. Poirier and Paul A. Ruudl

1. Introduction

Estimation of limited dependent variable (LDV) models based on dependent
cbservations has received relatively little attention due to the computational
complexity of obtaining the maximum likelihood estimator (MLE). This paper
considers an alternative method of estimation which is computationally
attractive and relatively efficient. For the sake of brevity, this paper
considers only the probit model, but the approach developed here generalizes
to other LDV models (e.g., the tobit model).

In many situations ignoring dependency among cbservations and simply
computing the pseudo MLE, conditional on the false assumption of independence,
yields a consistent, asymptotically normal but inefficieﬁt, estimator. A
femiliar case in point is the ordinary least squares (OLS) estimator in the
context of the general linear model. A general treatment of this problem is
given by Levine (1883). Levine’s treatment, however, assumes the observed
dependent variable is continuous, thus ruling out LDV models. It is widely
recognized that even for the case of independent sampling, standard theorems
concerning MLE's cannot be simply invoked in the case of LDV modéls. Levine’s
intuitively sensible results have been generalized,'for example, by White
(1984b, Cor. 2.9). We present arguments for Probit models.

In & most important cohtribution, Robinson {(1982) showed under suitable

regularity conditions, that the ordinary tobit (OT) estimator predicated on

1 The authors are Professor of Economics at the University of Toronto and
Assistant Professor of Economics at the University of California, respec—
tively. The authors gratefully acknowledge the helpful comments of Angelo
Melino and two anonymous referees.




independent observations remains consistent and asymptotically normal when the
disturbances are in fact serially dependent. while reminiscent of the
familiar, uncensored regression case, the proofs of Robinson’s results are
nontrivial. In an earlier related paper, Robinson {1980) showed how to
consistently estimate the autocorrelations of a censored Gaussian process and
how to use such estimates to test for serial dependence.

Robinson’s results provide the required asymptotic theory for use of the
OT estimator in the presence of serially correlated disturbances., Although it
is most likely inefficient compared to the true MLE, it has decided
computational advantages. Dagenais (1982) considered computation of the MLE
for the tobit model with first-order autoregreasive disturbances and showed
that it is intractable unless the numbers of consecutive limit-point
observations are small, since these numbers equal the dimensions of the .
integrals involved in the likelihood functicn.z Furthermore, the asymptotic
theory for the MLE in the presence of serially corelated disturbances has not
been rigorously developed.

Gourieroux, Monfort, and Trognon (1982) consider the probit model with
autoregressive-moving-average (ARMA) disturbances and show explicitly how
Robinson’s results of consistency and asymptotic normality extend to the
ordinary probit (OP) estimator and to a related nonlinear least squares
estimator. The authors also derive the sutocorrelation score (Lagrange
multiplier) test statistics assuming a first-order autoregressive disturbance
term and show that it is identical to that for a first-order moving—average

disturbance. The score test for a first-order autoregressive disturbance in a

2 In the related literature on markets in disequilibrium with no sample par—
titioning information, Quandt (1981, p. 59) notes that in his empirical
analysis computational costs were about 125 times costlier for models in-
volving serial correlation than in those that did not.




probit model was also derived by Poirier and Ruud (1980). Jarque and Bera
(1981) derived the score test for autoregressive or moving-average
disturbances of arbitrary order in censored (tobit) and truncated regression
models, with lagged dependent variables possibly present. Kiefer (1982)
derived the score test for zero—-covariance restrictions in probit models based
on panel data. More recently, Robinson, Bera, and Jarque (19856) also derive
score tests for the tobit model against autoregressive disturbances. The
motivation in all of these cases for the score test is that it requires
estimation only under the null hypothesis of independence, and hence it is
computationally tractable.

The task of developing a computationally simple estimator that improves
upon the OP estimator in the presence of serial correltation has been
undertaken by Avery, Hansen, and Hotz (1983), Poirier and Ruud (1980, 198la,
1981b), and Ruud (1981). Avery et al. (1983) consider the case of panel data
in which there is temporal but not cross-sectional dependency in the
obaervationa.3 The authors propose "orthogonality condition estimators” that
are members of the class of generalized method-of-moment (GMM) estimators
developed by Hansen (1982). The efficiency gains of such estimators are,
however, based on asymptotics in which the number of cross—sectional units
grows, Here, as in our previous unpublished work, we congsider only a single
time series, unlike the case studied by Avery et al. {1983). Our primary goal
is to develop a computationally simple estimator that improves upon the OP
estimator in the presence of serial correlation. All asymptotic distribution

theory considered here involves the length of a single time series growing.

3 For other discussions of probit analysis based on panel data, see Heckman

(198la, 1981b) end Ochi and Prentice (1S984).




As will become clear in the subsequent sections, the problem studied here
requires different techmiques than that employed by Avery et ai. (1983).

The basic outline of this paper is as followas. Section 2 explores ML
and quasi-ML estimation in probit models derived from latent variable
regressions involving correlated disturbances. The development emphasizes the
nature of the orthogonality conditions that generate such estimators. Section
3 builds upon the motivations outlined in Section 2 and develops alternative
estimators in the case of a kmown disturbance covariance matrix. For reasons
that will become clear later, such alternative estimators are referred to as
generalized conditional moment (GCM) estimators. An ordering of GCM
estimators according to their asymptotic relative efficiency is developed in
Section 4. Section 5 extends the discﬁssion to cover the case of an unknown
covariance matrix based on first—order autoregressive disturbances. To
expedite reading of this inherently complicated material, all proofs are
confined to appendices, except where we consider the proofs to be insightful.
Section 6 gives an illustrative example of a GCM estimator for a first-order

autoregressive process. Finally, Section 7 provides a few concluding remarks.

2., MLE and Quasi-MLE

Consider the linear regression model
(2.1} y* = x,'Bg + u {t=1 T)
. t t i t ge e vy

where y: is a latent dependent variable, X, is a K—dimensional column
vector of fixed explanatory variables, Bo is a K-dimensional colum vector
of unkrown parameters, and a, is a stochastic disturbence. In the probit

model only the sign of y: , a8 indicated by




(t=1,...,T}

F 4
0, Iif ¥ <90
(2.2) e = 4 b

x
1, if Y, >0

is observed. Letting the notation {*] denote a stacking of the argument,

(2.1) can be written in matrix notaticn as
{2.3) y = XBe + u

where y* - [y:} and u = [ut] are T x1 vectors and X = [xt'] is a
T x K matrix.

In connection with (2.1)=(2.3) the following assumptions are made.

Assumption 1: The disturbances u, (¢=1,2,...) are a stationary process

with zero means and covariance matrix [y & I'(7ve) & E(uu') , where Ty
denotes a positive definite matrix of known functional form three times
differentiasble in the finite-dimensional vector v, . The variances of u,

(t=1,2,...) are all normalized to umity. Also suppose:
a) a, (t=1,2,...) is a-mixing with mixing coefficient a(m) . [See

Definitions A.1 and A.2 of Appendix 1.]

b) al(m) = O(I—c) where ¢ > I ; that is, mca(m) is bounded for all
!=0’1’2,00- .

¢) u has a nonsinguler multivariate normel distribution for amy finite

‘T .
Assumption 2:

a) The paremeter space 6 # B X G for @ & [B*,7']* is compact.
b) PBe lies in the interior of B .

c) 7o lies in the interior of G .




Asgumption 3:
a) x, (t=1,2,...) is non stochastic and lies in the compact space 3 .

t

b) The empirical distribution of x, (¢=1,2,...,T) converges to a
limit distribution denoted by # .

c) The empirical distribution of X, (t=a+l,a+2,...,a+T) converges to
a limit distribution denoted by H , uniformly in a .

d) For any = , the empirical distribution of (xt,xt+')

{t=a+i,a+2,...,a+T) converges to a limit distribution denoted by
Hm , uniformly in a .

Assumption 4: If x'8 = x'fe almost surely (according to distribution
function H) then B8 = B .

Assumptions 2-4 are essentially the same as those used by Gourieroux et
al. (1982). Our Asswumption 1 is slightly weaker than their corresponding
assumption that u, follow a stationary, invertible Gaussian ARMA process
since the latter implies Assumption 1, but not conversely. In fact, for
purposes of Theorems 1 and 2 below, Assumption 1{¢) can be weakened to only
assuming that the marginal distribution F{+) is known and twice
differentiable. Then replacing the normal distribution'function -é(-) in
Theorems 1 and 2 by F(:) , these thecrems can be extended to cover quasi—ML
estimation in such cases as bipary logit with dependent data. We do not
explicitly consider such extensions in this paper because the class of
estimators we propose in Sections 3-5 rely explicitly on the normality
assumption and important properties of the multivariate pormal distribution.
These suggested extensions of Theorems 1 and 2, however, are interesting sinpce
they imply that mixing properties alone are sufficient to investigate the
asymptotic properties of gquasi-ML estimation applied to binary time series for

joint distributions that do not have the convenient correlation structure of




the multivariate normal distribution. In this sense, such extensions are very
much in the spirit of the analysis of Levine (1983).

Our Theorems 1 and 2 below for the OP estimator (quasi-MLE) are more or
less similar in scope to Theorems 1 and 2 of Gourieroux et al. (1982), except
for our slightly weaker Assumption 1, but our approach to proof is different
than the approach taken by Gourieroux et al. (1982). This difference again
reflects the convenience of working directly with the mixing properties of the
disturbances. We use the mixing properties of the disturbance u, to bound
directly the time dependency in the observed data, whereas Gourieroux et al.
(1982) employ a more cumbersome approach (in our opinion) requiring bounding
correlations of the disturbances. The former approach turns out to be quite
patural in binary problems since the mixing coeffiéient a(m) is defined in
terms of the covariaﬁces of observable binary data [see Definition A.1l in
Appendix 1]. The approach of Gourieroux et al. {(1982) follows closely the
approach of Robinson (1982) which appears to be more_natural for tobit models
than for probit models.

Dispensing with issues of approach, we now consider the quasi-MLE
corresponding to maximizing the log—likelihood function predicated on
independence of observations. This estimator corresponds to the ordinary

probit (OP) estimator ﬁQP [under Assumption 1(c)] obtained by maximizing

T
(2.4) Lop(ﬁ;Y} = E (1-y, ] 1n{¥(-x,'B)] + Y, in{e(x,'B)]
t=1

~OP

where y 2 {ytJ . The asymptotic properties of J§ are given in the follow-

ing two theorems, the proofs of which are contained in Appendices 1 and 2.




Theorem 1: Under Assumptions 1l{a,b,c), 2(a), 3(a,b), and 4, EOP is a

strongly consistent estimetor of By a8 T — =,

Theorem 2: Under Assumptions l{a,b,c), 2(a,b), 3(a,c,d), and 4, T% (BOP- Bo)

—1-?-» N(D,ﬂop) ags T — @ , where

(4.5) a® = Qap(ﬁoﬂo) = Ao'l{do “"22 Am] 4070,
&=1

4, = dn(ﬁoﬂo)

(2.8)

[( ) [ f(x'ﬁo)ﬁ(x.,_?o){¢3(x'ﬂugx+¥uipm) - ¢(X'ﬁo)¢(x+;ﬁo)} ”
= B l(xx! s
5 SR O #(x* Bo)P(~x' fa)P(x, o) P(~x, Bo)

-

{@=0,1,...) where Ex denotes the expectation assocatiated with the limiting

= p’(‘fo) s

distribution Ha of x and S = [xt"] , Ho s H, Py

Gov(ut,u } , #(*) and ¢2(-,-;p) denote the univariate and bivariate

L+
standard normal probability demsity functions, respectively, and

h k
(2.7) s2m,k50) = [ [ #a(sitie) dt as

i —C

denotes the bivariate standard normal distribution function.

Theoreus 1 and 2 imply that the ordinary probit estimator B is still
consistent and asymptotically normal when the cbservations are dependent, but
the standard asymptotic covariance matrix 4¢~' im (2.5) must be feplaced by

the computationally more demanding QOP in (2.5). Not surprisingly, QOP




depends on the covariance parameters 7o through dj in (2.8). If ~o 1is
unknown, then a consistent estimator can be cbtained and used in (2.5} to

obtain a consistent estimator of QOP.

Detailed discussion of estimation of
vy is postponed, however, until Section 5.

The importance of Theorems 1 and 2 can be appreciated by considering the
complexity involved in cbtaining the MILE. Let ¢T(-;u,z) dencte the
probability density function of a T-dimensional multivariate normal random
varisble with mean u and covariance matrix Z . Then the likelihood for the
dependent probit model is given by the T~dimensional integral

by bT

' x
(2.8) LBresy) = [ oon | #p3"ixBuT0) dyy ... dy1

a a
! T

where

(t=1,...,T}.

(—=,0) , _if Yt =g
(2.9) (a,.b,) { 1 }

(030) ] if yt =

For even moderate values of T , (2.8) is unmanageable for commonly
encountered structures of g . Furthermore, the asymptotic properties of the
MLE based on (2.8) have not been determined.

The next section develops a family of estimators that includes both ﬁ
and BHL as special cases. In order to provide the reader with intuition
about this family, here we consider the first-order conditions which give rise

to EOP and 3HL . The first-order conditions for (2.4) are
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a %8y ~OP
(2.10) ~OP xu' = 0,
8B B=56

~0P ~0OP

where ua & [ut and

¢(xt'ﬁop)] -¢(xt‘ﬁop)
#(x, B e(x B

ly,
{1

2.1) ¥ 5 Ba,iyyBH =

{t=1,....,T).

The first-order conditions corresponding to the logarithm of (2.8) are

d In L(ﬁl." 53’7

(2.12) X
a8 p=p1L

where ﬁHL 8 [agL] and

(2.13) GHL = E’:L(y;ﬁﬂ‘.'ru} E(utly;ﬁm'.'rol .

t
As written, first-order conditions (2.10) and (2.12) comprise "orthogonality
conditions" involving the regressors X and residuals (2.11) and (2.13),
respectively. Note that one difference between (2.11) and (2.13) is that the

latter expecatation is conditional on the entire ssmple of yt’s iy E [yt} .
The orthogonality conditions are reminescent of the first-order conditions
defing the OLS and generalized least squares (GLS) estimators:

(2.14) X'a = 0,

(2.15) X'Te
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-where 5013 E y* - XEOIS s BOLS = (X'X]"X'y* ' GGIS = y* - XfBGIS , and EGI'S

3 (X'Te X)X Ty .

The lesson to be learmed from these analogies is the following. Since
y* is not observed, (2.14) and (2.15) are non-operatiomal. The operational
counterparts (2.10) and (2.12) replace the residuals Eaus and §GLS with
their expectations based on (2.11) and (2.13), respectively. This, of course,
is the interpretation that the EM algoritlm gives to ML estimation in many LDV

models with normal disturbances.4

Since the residual (2.11) is conditioned only on y, , 3P is expected
to be less efficieat than BHL . While {2.13) takes into account more
information than (2.11), the former also involves a T-dimensional integral,
whereas the latter involves only a univariate integral. This simple
ocbservation suggests a possible trade—off between efficiency and computational
| complexity, and specifically, use of residuals depending on more than one

observation, but not all observations. Investigating such a conjecture is the

goal of the remainder of this paper.

3. Estimation with Enown Covariance Matrix

Building on the motivation of the last section, we now propose
estimators that exploit orthogonality conditions with residuals aimilar to
(2.10) and (2.12). Building on the work of Hansen [1982], we propcse an

optimal choice of orthogonality conditions formed frbm linear combinations of

4 pempster, laird, snd Rubin (1877) describe the properties of the EM
algorithm. Hartley (1974) proposed the algorithm for ordinary probit and
Fair (1977) proposed its use for the ordinary tobit model. Also, Kiefer
(1980) applied the EM algorithm to estimation of the switching regression
model.
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the residuals. Throughout this section, the covariance parameter vector ¥o

is assumed known; the case of unkmown 7o will be treated in Section 5.
First, we wish to enlarge the family of residuals that will be

considered. Ordinary Probit and ML Probit residuals are polar exasmples of a

larger family. While each OP residual is the conditiomal expectation of a

latent disturbance u, given only the corresponding realization of Yy each

ML residual is the conditional expectation of a latent disturbance given the
entire sample y . Intermediate kinds of Probit residuals might condition on
subsets of the ssmple of observed ¥ that contain more than one cbservation,
but fewer than the whole sample.

In order to keep track of such subsets of the sample, we introduce some
new notation. Let n be an integer, 1 S n = f , such that T £ (g) and let
Sai (i=1,....,T) denqte ‘T gubsets of size n from the set 3 3 {1,...,T} of
observation subscripts. For the moment, we postpone the choice of the
specific 5n1 from among the (i) possibilities. Each subset ’ni is an
indexing set to observations and will be used to index vectors and matrices in

the following way:

{(3.1) a = [at‘t"nlj for any {al. vee s aT} :
Thus a is an extract of cbservations from a sample put into a vector (if
the a, are scalars) or a matrix (if the a, are vectors). All double

subscripts have the meaning endowed by (3.1). An important example of (3.1)
is Yni which is a vector of n c¢bservations oﬁ Y, that will serve as a
conditioning set intermediate to a single observation (OP) and the sample
(ML).

We will refer to the size of ’nl , n , as the conditioning level.
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The residuals that arise from admitting such conditioning sets are then

defined as follows:

(3.2} Ay S A, (B = Ela_,1y,;iB:To] .
The analytical form of (3.2) is given in Appendix 3.5 The case of OP
corresponds to n=1: (ﬁ} =7, and ’ni = {i} a0 that Ani = Ai - E[uilyj] .
The case of ML would correspond to n = T except that it has been ruled out
from present consideration by the condition T = (g] since (gj = I,

The primary goal is to cbtain estimators of B8 , treating vo as known,
by focusing on orthogonality conditions analogous to (2.10) and (2.12)
involving (3.2) as residuals. Specifically, we consider orthogonality

conditions of the form

u
O

(3.3) X'A T

where u = un(ﬁ) = [Anlfﬁ)] and An is a T X nT matrix. Again,
comparisons with the previous estimators are straightforward. OP (n=1) sets
A, ‘to the identity matrix and ML sets A = re™! .

We are guided in our search for an optimal An by Hansen’s (1982)

generalized method of moments estimators. Roughly speaking, he has shown that

for finite dimensional ﬁn (and certain regularity conditions), such

This expectation is derived by Tallis (1961). Note that in (3.2) the
elements u and y have identical subscripts. Thus, all the u, for

4
which ¢ & sn are excluded. This is because E[ulynjl = E{E{uluﬂiliyni}

i
- ' -1 - ' -1

= E{E(u uni) Vnr(uni) unilyhi} = B{a uni) Var(uni) Anj , 80 that the
excluded residuals are linearly dependent on the included ones,
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estimators as defined by (3.3) are consistent and asymptotically normal with

mean By and covariance matrix

l ail-1 R ) -1
(3.4) plim T™ |X'A_ —em [X'A Var(u } A 'X] A
n 5 g n n’ “n 3B n

and that as a result, an optimal An is given by

a a} . aa .
(3.5) X'An = E Par(un}" or An = B Var(unj'l .

g B a I8
In this case, (3.4) reduces to

_ aa R aay
(3.6) plim T°' | X' B|— Var(un)" E X
a XB a XB

Although @ ectually contains nf elements, so that the mumber of
orthogonality conditions is growing with seample size and Hansen’s results do
not apply, we make (3.5) our choice for An . Given the central role of
conditional moments and the importance of the weighting'matrix An in our
family of estimators, we will call them generalized conditional moments (GCM)
estimators. In describing the asymptotic properties of our GCM eatimators, we
will establish results analogous to those of Hansen on consiatency, asymptotic
normality, and optimality. The analytical form of the expresions in (3.5) and

(3.6) are also in Appendix A.3.
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3.1 One-Step Estimation

In practice, one will rarely solve the problem in (3.3) by direct, and
naive, numerical methods. Given both its copmsistency and its easy
computability, the OP estimator will always serve as a starting value for any
algorithm to compute the actual GCM estimator for any conditioning level. In
addition, the computation for conditioning levels greater than 2 or 3 is great
because of the repeated evaluation of multivariate normal integrals. Because
of this, iterative minimization algorithms will be prohibitively expensive in
many applications. The popular alternative in such circumstances is a
linearized one-step eatimator baqed on an initial consistent estimator [cf.
Rothenberg and Leenders (1964)]. This estimation method will be applied to
our problem (3.3) in Section 3.3. In this section, we review the consistency
and asymptotic normality of the linearized one-step estimator for general
cases. |

From the perspective of proving estimator consistency, this approach has
theoretical appeal as well. Without the aid of an initial consistent
estimator to identify the neighborhood of the true parameter value, the
possibility of several local solutions to the GCM estimation problem makes it
difficult to choose a solution in finite semples that is guaranteed to
converge asymptotically to the true parameter valiue,

The linearized one-step estimator is defined as follows. In place of
the solution to the system of equations

(3.7) g r8* ) = 0,

{where fr(') is given in (3.3) in our case), compute the linear approximant

B :
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B - [or B ra)s08] £ (B im)

Tor
1]

(3.8)

(Note that the level of conditioning is held fixed in this section and
therefore it is left out as a subscript.) This estimator auccessfully mimics
B* because it poasible to approximate the function f‘T{ﬁ,-ra) closely near 8
= Bp with a first order Taylor series expansion around 8 = EOP. B is the
linear solution using this approximation of fT(ﬁ,'ra) .

The linearized one—step estimator is frequently used to calculate
estimators that are asymptotically MIE’s, when the function fz. is the score
of the log~likelihood function. Such estimators are called linearized maximum
likelihood estimators (IMLE’s). Rothenberg and Leenders (1964) first applied
these estimators to linear simultaneous equations. Our statement of the
properties of the linearized one—step estimator is a modest generalization of

theirs and does not require prooi:

lLemma 1: Consider a continuously differentiable function fT(B} with the
property that Effz.(ﬁo)f = 0 amnd the linearized cne—step estimator

(3.9) B = B + [ory(B)/ag]™" £,(B) .
1r
1) B-22,p8, as T— o,
ii) £.(8) 22, B(f,(f)] uniformly in f as T — =, and

iil} afz.m)/aa is bounded and nom-singular for all p € B ,

then B -2:5:, 8, . If, in addition,

iv) Ixfr(ﬁo) -2- z as T — = and




._l'?'_.

v) of. /a8 -2:3-, glor. /o8] = M(B) umiformiy in B as T — =,
7/ .

M(Be) is nonsingular,

then T2(B - Ba) 2+ M(Po)~‘z . If there exists a sequence (8%} such
that £,(6") = 0 and g% 22 go , then - gY 25,0,

Note that (1) Lemma 1 essentially shows how to pick the correct root in
situations where fr(ﬁ) has several roots, (2) it applies to such guasi-
likelihood situations as those considered by White (1982) and Hansen (1982),
(3) the distribution of the estimators follows from that of f(Bo) and not
the initial consistent estimator 3T , and (4) one can replace the stochastic
matrix function afT(ﬂ]/Bﬁ with its expectation in (3.9) without affecting
the asymptotic behavior of the resulting estimator. Note also that the
estimator might be modified to take a "gtep” other than unity from the initial
consistent estimator, say the step which mininiées the length of the vector

£(B,) [see Newey (1984)].

3.2 Feasible Estimation in the Presence of Nuisance Parameters

Often, an estimation procedure must also handle puisance parameters in
order to obtain an optimal estimator. For example in the general linear
model, the_parameters of the covariance matrix must be estimated consistently
in order to calculate a feasible Aitken estimator for the slope coefficients
that is asymptotically efficient among linear estimators. This is also a
feature of our estimation problem becéuse the weighting matrix A4 in (3.3)
and (3.5) is a function of the unknown parameter vector B¢ . In these cases,
the distribution of the estimator that replaces unknown nuisance parameters in
the weighting matrix with consistent estimators is of interest. The next

lemma describes the asymptotic behavior of such estimators for general cases.
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Lemmas 2: Reconsider the situation in Lemma 1 with the additional structure

(3.10) £(B) = £(B,8) = Tt x(8)'a(@)

and E[2(Be)|X(8)] = O uniquely for 8 = o , where & Is a finite—
dimensional vector of constants and f,r is also continuously

differentiable in 5 . If

i) § 23,54 a5 T ==,
ii) t‘r(ﬁ,s) converges a.s. to its expectation, and

iii) afz/aa and afz_/as are boundex, afz./aﬁ is pon—singular,

then {fi : fr(ﬁ,g) = 0} converges a.s. to Bo . If, in addition,

iv) 1$(§ - 8¢) converges in distribution,
D
v) I%fr(ﬂo,so) —_—z , and
vi) afT/ap and afr/a-r converge a.s. uniformiy in (B8,8) to their

expectations Hﬁ(ﬁ,s) and Hs(ﬁ,s) respectively,

then
vii) ¥(Bo,8) = 0 for all & ,

vitl) TAL(Bo8e) - F(Be,B)] 220,

1) THB - Bo) 2 HylBe,80) 'z

x) and for (6% : £ (8%80)} , TR - Y 220,

The most familiar application of this lemma is the feasible GLS
estimator, which has the same distribution as the GLS estimator which uses the
actual covariance matrix. Result (vii), that the normal equations f'r are

unaffected by the value of the nuisance parameter & on average, drives the
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remaining‘results, beginning with the fact that the Iﬁ¥f has the same
asymptotic distribution regardless of whether & is set to its true value or
to a consistent estimator. Note that both this lemma and Lemma 1 say nothing
about the efficiency of the estimators that they discuss. It is well-known,
for example, that if there are perametric restrictions among the covariance
parsmeters and the regression coefficients, the feasible GIS estimator will
generally be inefficient. This result is perfectly consistent with Lemma 2,
which only states an equivalence and nothing about the properties of the
infeasible estimator. l

Finally, note that Lemmas 1 and 2 can easily be combined to yield an
equivalence between the feasible linearized one-step estimator and its
infeasible counterpart. We will meke extensive use of suéh estimators. We
have discussed the two methods separately to clearly distinguish familiar

components of the structure of our estimators.

3.3 Asgggtofic Properties of the GCM Estimator

Given the consistency of EOP, the conaistency of ﬁ is neither
surprising nor difficult to prove. The implicit function for our estimator,
as given in equation (3.3) after normalization by 7T°! , can be more

completely written as
(3.11) £(B:BosT0)} = T X'A (Bo.70) T (7o) = 0.

For the duration of this section, we will continue to cmmit the subscript for
conditioning level, n , because it will remain fixed. We explicitly denote
the matrix A ip (3.11) as a function of both S and v , as (3.5) implies.

Since B¢ is unknown, the feasible counter-part derived from




- 20 -

@11y BB re) s T w8 ) 880 = 0,

will actually be used. Taking (3.11°) as the definition of fT s

.12y B, = B - [sroe, 3B vovg]] BT E v
is our feasible one-step GCM estimator, where the weighting matrix in brackets
is given in (3.6). Because EGR-—» Bo , the consistency of B must follow
from the convergence of the second term to zero.

In order to obtain such asymptotic results, we must specialize the
information sets 9§ . . AS we have already indicated, it seems clear that we
carmmot have all (g) different information sets because for n <K T this
number can be extremely large and is not of order: O(T]'. In order to ;educe
the number of information sets, it seems intuitively sensible to group
cbservations that are adjacent in the time—series. Therefore, we restrict

sni to

{3.13) ’nt g {t, ted, ..., ten-1} (t=1,...,T-n+l)

where the ¢ subscript has been reintroduced because it has a natural time—
series interpretation. An important implication of this choice of information

sets is that the An defined in (3.2) now form en a-mixing process of the

t
same order as the underlying a, (see Lemme A.2). As a result, we will be
able to extend the asymptotic distribution theory of the OP estimator to- the

case of the GCM estimataor.
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Before obtaining any asymptotic results, we must alsc ensure that our
esitmator (3.12) is well-defined by adding the following assumption:

T

Assumption 5: dbt[Var(ﬁn)] > A& , for some A > O .

This assumption guarantees the definiteness, and invertability, of V&r(ﬁn} .
Given our previous sssumptions, this assumption seems qQquite mild. We
conjecture that it cam actually be deduced from the previous ones.

We can now state our consistency result:

Theorem 3: Under assumptions 1{a,b,c), 2(a,b), 3{(a), 4, and 5, the GCM
estimator Bn in (3.12) is a strongly consistent estimator of Bg as T —

@ |

In order to extend the Central Limit theory applied to the OP estimator,

we must extend Assumptions 3(c,d).

Assumption 3':
a) The empirical distribution of Xnt (t=a+l,...,a+T-n) converges to

a limit distribution Hho , wniformly in a .
b) The empirical distribution of {Xnt'xh,t+m) (t=aT1,....a+Tbn-m)

converges to a limit distribution Hnn , uniformly in a .

These assumptions are stronger than 3(cd) because they involve a multivariate
distribution of dimension 2Kn , in place of one of dimension 2K . Note that
Assumption 3°'(b) implies Assumption 3'(a) if X, contains a constant. The

homogeneity in the xnt that Assumptions 3'(a,b) requires allows us to prove
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that the GCM estimator has an approximately normal distribution when T is

large.

Theorem 4: Under Assumptions 1{a,b,c), 2(a,b), 3{a), 3'(a,b), 4, and 5,

#(Eﬂ ~ Bo) i. N(O,Rn) as T = ®© , where

g, = plim ! Eféu_'/0p] V(un)" E[éu /36"] .

4, The Efficiency of CMD Estimators
Given our parallels with the GLS estimation method, it is not surprising

that for a particular &n , the matrix V[&n;“ is optimal in the semse that
any other matrix metric yields a less efficient estimator. This result
follows from an asymptotic version of the Gauss-Markov Theorem, which closely

resembles Hansen (1982, Lemma 4.3):

Lemma 3: Define the family of estimators {B: Zr'ﬁn(ﬁ) = 0} given by

2.12}. If such a B is consistent and asymptotically normal (CAN}, the
GCH estimator B, that sets Z, = EB[au_*/38] via]~* is best in the

sense that the limiting covariance matrix of Bn is spallest (in the

usual matrix sense).

Proof: We follow Hesnsen’s proof with the exception that the number of moment
conditions, and hence some of our matrices, are growing with sample size T .
Since we have already shown in the previous section, that the covariance
matrices of the GCM estimators do converge, it suffices to show that the

matrix inequalities hold point-wise in a sequence of consistent estimateors for
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the covariance matrices. This follows directly from Hansen’'s Lemma 4.3.

Q.E.D.

Having established that the CMD estimator is best among estimators that
use a particular set of "residuals" ﬁn , we turn to the choice of residuals
or possible combinations of ﬁn by varying n , the level of conditioning.
In the following lemsa and theorem, we show that as the level of conditioning
is increased, the GCM estimator becomes relatively more efficient. As a
result, GCM estimators based on linear combinations of ﬁn and ﬁm for
@ < n are identical to fiﬂ based on z?n alone. Thus, a simple trade-off

between computation and efficiency among GCM estimators holds.

Lemma 4: Let Bn and ﬁn be GCM estimators (3.12) for conditioning levels
@ and n respectively, where m < n . If and only if,

au au
(4.1) El—=| = A A B{—21 .
ap ap’
where
Aijaz[i‘xi fzj'] , (1,J = m,n),

then 317 is efficient relative to En .

Proof: Consider the estimator 73* based on ﬁ* = (ﬁn', ﬁn')'. According to

Lemma 3, the optimal estimator will solve

L)

(4.2) z{ﬁf'] var{a,]"* a,(B,) = O
a8 X xR
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or
o WEE 5
B B A Aon a (By)

Using a partitioned inverse, {4.3) can be rewritten as

aa' -~ -~
(4.4) FG -rGA _AY 4 B|l—2] A7} 2 (BJ| = o
BN nn aﬁ nn " a
un(B*)
where
|
{(4.58) F & E = A AT —
ap" &1 D 544
-1
- _ -1
G = [Am AmAnnAm] .

are not linearly dependent (almost

)
B
Q.
[~

Because the random variables

surely), (4.4) simplifies to the normal equation for if and only if

ﬁn
F =0 . In other words, 3*= Bn if and only if F =0 . Q.E.D.

Theorem 5: Eﬂ is more efficient than ﬁ' .

Proof: First, note that our selection of information sets in {3.13) has the
property that for any =&, n, 1 such that = < n, it follows that there is a

J such that 3 _ < 9 Now suppose that we repeat the experimental design

- J nj'
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using Xn In a repeated design, the GCM estimator for the observations on

;o
En = Anj is the MLE corresponding to the sample indexed by Snj , as
explained in Sections 2 and 3, and is therefore relatively efficient compared
to the GCM estimator for the observations on ﬁm = A Although the
estimators will only be comsistent for a linear function of By if n < K,
this relative efficiency will stand in the sense that the (poassibly singular)
asymptotic covariance matrices will have a positive semi-definite difference.
This particular relative efficiency implies that the GCM estimator for ﬁn =
[Anj] is also relatively efficient compared to the GCM estimator for

an = Aul . According to Lemma 4, this implies that

o~

(4.8) E Pas| | B[A_ 4 '] AL B *a
- a8 mi n mn | g i

for any T , which implies in turm

| aﬁm aan
(4.7) B = AmA;u‘l E .
ag' aa’
Applying Lemma 4 again leads to the result of the Theorem. Q.E.D.

The proof of this theorem brings out an important point: for a
conditioning level n , the CMD estimator uses the orthogonality conditions of
the marginal likelihood functions of gub-semples of size n to form its own
orthogonality condtions. In view of Lesma 3, the GCM estimator takes these
marginal likelihood normal equations and combines them in an optimal (linear)

fashion. Thus, an alternative motivation of GCM estimation begins with the
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marginal log-likelihood functions for sub—sampleé and asks how to best combine
the information in these functions to obtain an estimate of By . However,
the GCM estimator cannot be viewed as an optimal linear combination of the
MLE's for each sub-sample. This follows from recognizing that,
asymptotically, the MLE's are particular linear combinations of their
respective scores whereas the GCM estimators are linear capbinations of the

"residuals"” in those score functions. Nevertheless, our result of relative
efficiency follows intuitively from the fact that for each MLE of.level o
there is another MLE of level =n that is more efficient. The GOM estimators
are in turn improvements upon the MLE’s of a particular conditioning level.
The rather obvious ordering of such underlying MLE’s is extended to an

ordering of GCM estimators.

5. Estimation with Unknown Covariance Matrix

Generally the covariance paramters o are unknown to the researcher
and they must be estimated along with 8¢ . In this secticn, we will discuss
the extension of the results given above for known 7o to cover the
estimation of B and + together. This extension can be accomplished
straight-forwardly by adding the orthogonality conditions for « implied by
the maximum likelihood normal equations to those already used by the GCM
estimator for S . The lemmas and theorem given in the previous section apply
directly to this extended GCM estimator, provided that the asymptotic results
of Section 3 can also be extended.

Fortunately, the additional parsmeters require the evaluation of
integrals of the same order as those in the previous situation. In this
sense, the coméuational burden is not greatly increased. The covariance

parameters do, however, add significantly to the non~linearity of the




- 27 -

estimation problem, and the one-step estimator will be even more attréctive,
compared to actual solution of the conditional moment equations.

The normal equations for the 7~ vector for the MLE are

3 In L(B,1:¥) a vec(T(v)"*]"
(5.1) = % vec[T(v) - B(u u'ly:B8,7)] = 0
an a

where L is defined in (2.8) and (2.8). From (5.1) we see that the relevant
conditional moments are vec(T'(v} - E(u u'ly:B.,7)] = 0. Taking such

functions to the intermediate conditioning levels of GCM eatimators we form

(5.2) w o(B.7: el 2 vec{B(u_.u .") - E(untunt‘lynt:ﬂ.vn
(t=1,a .. ,T-n),

A_,(8)
- - nt
{(5.3) un(e) = [ (8)] .

Our GCM estimator for & = (8,v) would then be formed from

A | ~OP
0 u, (870} o s0P.ia
(5.5) £:(8) = i vig ;6 )"t u (8)
n n
, 28
as the one—-step estimator
(5.6) i = °F - {z[afT(so”)/aan'l fT(ﬁo”)

just as in (3.12). An initial estiﬁate of 7 for the one-step estimator

would be based on the estimator EOP and a combination of the @ in (5.2).
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The extended ﬁn are formally identical to those in Sections 3 and 4
with respect to the characteristics that enable us to prove the preceding
lemmas and theorems. The elements in (5.3) still form an a-mixing process of
order O(m ] and their moments are appropriately bounded and differentiable.
Without further complications, we can assert that Theorems 3, 4, and 5
continue to hold if one replaces f with § as defined in (5.5) and (5.6)

and adds Assumption 2(c) wherever Assumption 2(b) appears.

5. AR(l) Probit

The simplest example of the GCM estimator is its application to a first-

order autoregressive error term:
(6.1) : @, = U, + o8,

where E[at] =g, V[ctj = ] - p2 . One can obtain consistent estimates of
B and p easily. As already pointed out, an estimate of 8 is Eo . One
can derive a simple estimator for p using the OP residuals by finding a root

to the equation

r
l ‘ —
(6.2) v E My s - g[,\“;&'t_l] - 0 where
t=2
(6.3) E[A A ] = ¢t¢t+ﬂ(¢2-tst+m = PP
. 1t"1,t+m] 50 (1-%0(1-9

(Fooo’-1,0,1’--o),

My ® @)/ 180801, b 2 0 B L o 3 e B)  and ey, @
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¢2(xt‘ﬁop,xt+éﬁop,pm) . Experience shows that this estimator is also easy to

ccnpute.s

Given consistent estimates for 8 and » , let us proceed to the GCM
estimator for a conditioning level of one (n=1). We use therefore the same
residuals as ordinary probit, but combine them in & generalized fashion. We

require two terms to compute the weighting matrix in (3.12) given by (3.8):

* 2
BloA, /08] = t _x, and
#,(1-%,)
CoviA Ay 4, giBrPl = BIALAL &giPoPl

which is given in (6.3). Note that in the case we are considering, in which
o is estimated, p is not required for the construction of the "residuals”
and hence its asymptotic distribution is not required, nor do we have to
improve our estimate of » to get a more efficient estimator than BOP from

the GCM estimator.

7. Conclusion

In this paper, a gemeral class of estimators called generalized
conditional moment estimators has been introduced. For such limited dependent
variable models witﬁ serial cqrrelation as general probit, these estimators

provide computationally feasible alternatives to ML estimation. 1In addition,

6 Dickens (1980) used this method for a panel data problem and found that
- quadratic approximations solved the implicit function rapidly and that the
root was always unique. His Monte Carlo experiments suggest that this
estimator can have reasonably small finite sample variance.
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there is an efficiency ranking among the members of the GCM family where the
efficiency grows with increasing computational difficulty.

General probit estimation was explained in detail. Other limited

dependent variable models, like Tobit, can be estimated by the same methods,
although we have not provided the asymptotic distribution theory to
substantiate this claim here. Panel data problems, with relatively long time
series, are an interesting special case because they provide a natural

division for sub—sample conditioning sets, namely the cross~sections in each

time period.
We have also provided asymptotic distribution theory for the ordinary

probit and GCM estimators. The theory provides a direct route to the

consistency and asymptotic normality of quasi maximimum likelihood estimators
for discrete dependent data based on mixing conditionms without reference to
the marginal likelihood function. We have not shown the comsistency or the
asymptotic normality of the MLE and see this as an interesting topic for
future research.

Further work might also investigate the uniqueness of the MLE and the
roots of the GCM conditions. It is well-known that ordipary probit has =
unique maximum likelihood estimator. Similarly, GCM estimators are also
probably unique if one solves their normal equations, rather than employing

the one-step version.
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APPENDICES

A.l Proof of the Consistency of ECP {Theorem 1)

We are interested in dependent sequences of random variables, and like
many others, we will assume that such sequences are o-mixing following the
definitions given by White [1984a, pp. 44, 45]). We will make particular use
of the mixing coefficient a(@m) which is e measure of the dependence in a

stochastic sequence [White, (1984a, p. 45)]:

Definition A.l: For a sequence of randam vectors {Zt} with Bf;? - [

-~}
. D, e . . , .
Zn) and Bn+-§ a )] the mixing coefficient «(@) is defined

to be

(2

a(m) = sup, ’“P{Alasfn,AzeB:“}IP(A‘ N Az) - P(A1)P(A2)] .

The sets B: and Bt+u

Definition 3.40)] represent all the information contained in the respective

[which are formally defined by White (1984a, p. 44,

sequences. The coefficient a(m) measures the dependence between two events

separated by at least =m time periods in terms of the difference between the

joint probability of the events and the product of their marginal
probabilities. The mixing coefficient measures the dependence in the entire
sequence by taking the maximum coefficient over all posaible events and all

time.

Definition A.2: If a{m) — 0 as = — @ , then {zt} is g-mixing.
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In our proofs of the comsistemcy of estimators, we will use two general
results about random sequences that are week mixing. The law of large numbers

that we will use is taken from White (1984a, p. 47, Corollary 3.48):

Lemma A.l (lLaw of lLarge Numbers): Let {Zt} be a sequence with a(m] =

o@?] A r/r-1) . r> 1, such that E(Z,] = u, < © and gz, 17"

A(® Fforsome § >0, andall t . Then ET-HTa—'i:»o.wbere Z, =

T T
Tt Ezt and . 3T z“t :
t=1 t=1
In addition, we will make use of the fact that measurable functions of mixing
processes are mixing of the same order [see White (1984a, p. 47, Theorem
3.49)]: ‘

Lemma A.2: Let g be a measurable function onto Rk and define
Yti g(zt, cees zt”} , where T is finite. If the sequence of random
vectors {Zt} is weak mixing such that a(m) = O(n‘A] for some A )

0 . then {¥,} 1s alsc veak mixing such that a,(m) = O(m'A} .

For many proofs, we will require a stronger result then Lemma A.l. That
is, we will appeal to a uniform law of large numbers. We will use a

convenient one recently given by Andrews {1985):

Lemma A.3 (Uniform law of lLarge Numbers): Let {zt(e)} be a sequence of
random variables such that E[Zt(e)} = ,ut(a) (t=1,2,...} . Let

b I S - 7
Z,(6.0) = Py . Gy ¢ o z,(8) and z,tfﬁ,p; PRI z,(8) ;

7 |-l denotes the Euclidean length of a vector.
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4E(8,0) 2 BIZH0,0)] and 1y, (8.0) 3 B[Z,(8,0)] - Let Zp(8] =

r“zﬁ z,08) . Z';’.(a,p) X Z:(B,p) . and so on. If

-% %
1} Z7(8,0) - #p(8,0) and Z,p(8,0) = Byp(8,0) converge a.s. to
zZero ags T — @,
11) g &« 8 , a compact, convex subsel of RK s
— -1 "
i11) 3p >0 such that T, T™' I, E[supng -8 S0 1|azt(e)/aeu]
{ m,¥8e8,

then (2) Zn(8] - Hp(8) 2:3:, 0 upiformly in 8 and (b] un(8) is

continuous on © , uniformly over T 21 .

Now consider the binomial dependent data ¥4 and take
(A.1) Zt(xt'ﬁ) = IOQ[PI'(.Vtth’ﬁ)/P!'(Yt.Xt'ﬁo)]

where

#(-x'8) , if y, =0
(A.2) Pr(y,,x,'8) = { & ¢ 1}

1- ¢(*x£ﬁ) , if Ye =

for a fixed B e B . This quantity is of interest because of the fundamental

information inequality

(A.3) Eﬁe[Iog{Pr(yt,xt'ﬂ)/Pr(yt,xt’ﬁu)]] = 8, [z,0x,] < 0,

v Xt'ﬁ # xt’ﬁo s

which states that on average Zt(xt'ﬁ) is maximized at Xt'ﬁo , where fBo 1is

the true parameter value [see Lehman (1983, pp. 409 ff.)]. This suggests, in
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turn, that the sequence of maximizers {BT} of the sample quasi log—

likelihood function

T T T
a0 § toglprivpr,m] = ) z0x® ¢ ) tog[Pr(z,.x,'6o))
t=1 t=1 t=1

will be, on average, equal to xt'ﬁu , and converge asympiotically to x t'ﬁu .
This is, in fact, the case.
Follow this simple argument:

{1 Because B is compact and x . is bounded x;ﬁ is bounded. This
implies bounds on zt and all of its moments.

{2) {yt} = {l(xéﬂ +a, > 0)} is a-mixing because (i) X, is non—stochastic
and therefore a—mixing, (ii) a, is a—mixing by Assumption 1, and (iii)
Lemma A.2. Zt(xt'ﬁ) is also clearly a-mixing of the same order as |
u, .

(3) The conditions of the law of large numbers are met for {Z l"(x t',B)} and

n
nt Y [z, 00802, (x,0) | = Zp(8) — Fp(p) =2 0, for cach
t=1
B 6 B . Furthermore, this convergence is uniform in B € B by Lemra

A.3.

(4) Finally, ZZT(,B) :IE{Zt(xt‘ﬁ}] dH,, converges to u(B) s
IE[Zt(xt'ﬁ)] dH , according to Theorem 1 of Jennrich (1969, p. 6351,
using the stationarity of u " and the convergence of {Hn} to H . As
we noted sbove, &{B8) has a unique maximum at Bo . Therefore, Lemma 3
of Amemiya [1973, p. 1002] implies that the sequence {ET} converges

a.s. to B,




(1)

(2)

&)
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Note the following:

This proof dces not depend on the agsumption that the u, are a
Gaussian ARMA process. Nor has any restrictionm on the nature of
dependence, other than a-mixing, been imposed: it is necessary that
a(m) — 0 as = — 0, but not at any particular rate.

The methed of érocf extends immediately to other quasi log-likelihood
functions each term of which involves a subset of the yt’s and for
which the maximum distance 1 between subscripts is bounded by a fixed
finite number. Such extensions are used in Appendix 3.

A corollary to observation (2) is that the consistency of the MLE for
this data cannot be established in this way, for in that case 7 is the

sample size and not finite.
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A.2 Proof of the Asymptotic Normality of AOQ P {Theorem 2)

In oder to prove the asymptotic normality of EOP , we will use the

following central limit theorem presented in White (1984a, p. 124, Thm. 5.19):

Lemma A.4 (Central Limit Theorem): Let {2 t} be a sequence of a-mixing

random scalars such that a(m} = O(E"‘] ,AD> r/(r-1) , r > 1, with
&(Z,] = u, and Var(z,) = o} .o} #0 , and E|zt|2’ ¢4 ¢® for all
a+T
t . Define E;,r s V{T‘*E zt] . If there exists o°® , 0 (g% (=,
t=a+l
such that o2 .= 0% as T -— ® uniformly in a , then T (En - IZTJ/E

a,T
converges in distribution to a X(0,1) random variable.

The probit quasi-MLE ﬁop is the implicit solution to the vector
equation '
T
~0Op _
(A.5) Y a¥ s, = 0
t=1

~OP _ YT . 2 ae_. 1 3OP
where a, = (yt q‘»t} ¢tf[¢t(1 ¢t}] is a scalar, cbt = & £, g ) , and

3 . ® ¢(—xt'fiap) . Given the consistency of 3" shown in Appendix 1, the

critical part of the asymptotic normality argument is whether '(A.S) evaluated

b

at By and standardized by.T is asymptotically normal; that is, does

T
(A.6) r‘*E u, x, 2, xeo.vy
=l
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where a, = (yt - ¢t}'¢t/[¢t(l - ¢t}] is a scalar, qbt = ¢(-xt'ﬁ) , and ¢f:
S ¢(-xt'B) , and V is a positive definite matrix? The individual terms in
(A.8) all have expectation zero, and as a sequence they are a-mixing by Lemma
A.2. Note once again that the compactness of § and B guarantees that all
the moments of these elements are bounded.

The strategy we take in establishing (A.6) is to establish via Lemma A.3

the asymptotic normality of T*(?T - ETJ/E , where
(A.T) z, = §'(ax,] = u,(8'x,)

for an arbitrary K X I vector ¢ of constants. Given that I‘*(ET - ETJ/E
has an asymptotic normal distribution for arbitrary £ , it then follows that

{A.6) must hold. In order tc invoke Lemma A.3, it is necessary to demonstrate

the existence of o° and the uniform convergence of 3; r to g2 . We will
)

make extensive use of the following lemma to show such results.

Lesma A.5: Consider the sequence {(xt.zt)} where

{i) xtﬁﬂi,aconpactsubsetaf Rx.

(ii) the empirical distribution of X, (t=a+l,...,a+T] converges lo a
limit distribation Heg , uniformly in a ,

(iii)} the empirical distribution of (xt ‘xtur} (t=a+l,a+2,...,a+T}
converges to a limit distribution Hm ; uniformly in a ,

@=1,2,... .

{iv} z, (t=a+l,a+2,...,T) is a sequence of vectors of length L

containing Bernoulli random variables that is a—mixing of order
-C
ofm "} , E(zt} = P(xt) . E(ztztm] = .C(xt,xtm) P
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{v] the vector-valued function P:E—-RL , and the wmatrix-valued

functions FiE @ | @@, and C:DEG—ROR" are

absoiutely and uniformly integrable with respect to Hm

(@=0,1,2,...) ,
then
a+T  a+T
(A.8) y E 2 f(x,)'Cov(z,.7,) g(x,)
=a+l v=a+l

converges to a matrix constant as T — @, uniformiy in a .

Proof: Expression (A.8) can be rewritten as the sum of three terms:

a+T
(A.9) T} F(x,)'Var(z,) g(x,) +
=a+l
Tr-1- a+T-m
(A.10) 2 y il 2 £(x,)'Cov(z,,2, ) 9(x,,.] *+
@=1 t=a+l
T-1 a+T-2
(A.11) E T} 2 F(x,,2)'Cov(Z, .2, ] 9(%,]
m=1 =a+l

Expression {A.89) converges by conditions (i), (ii), and (v}, by application of
the Helly-Bray Theorem. By the same logic, each of the expressions inside the
first sum in (A.10) and (A.l1) converges given condition (iii). It remains to
show that the sums over the index = converge. If the covariance terms die

out fast enough as = grows, the double sums in (A.10) and {A.11) will

converge.
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We will prove the stronger result that (A.10) and (A.1ll) are absolutely
summable. The key to our proof is that the mixing condition (iv) places
bounds on the covariance terms. Consider the ( LJ’}M element of

C‘av(zt.z )

t+m

[Cov(zt,z Hi.j = Pr(zt,jz 1, z“n‘i: 1) - Pr(zt'ia- 1}-Pr(zt+m‘1.= 1}

tra

=} IICov(zt.zt+,Jii,ji £ a(m)

by Definition A.l and condition (iv), where the (i,j} subscript in the last
expression labels matrix elements. Therefore, for any fixed £§; € RN ! and

£ €« K'2 , a bilinear form in (A.10) satisfies the inequalities

a+7T-m

B T-1

1 ] ]

E T 2 18:°F, Cavt,t+n tem $2]
m=1 =a+l

T-1 arT-2
-1 1 ' K. 1 3
E T 2 1642 F, Covy tem £, 41l 18279, .9 Covy tim Ttrm §2
m=1 t=a+l

!*

T-1 a+T-m
(A.12) wiw Y am ) e, tillllgy,, Sl -

@m=1 t=a+l

using the Cauchy-Schwarz inequality, where subscripts have been used to
abbreviate arguments indexed by time. Again, conditions (1), (ii), (iii), and
(v) assure the convergence of each sum inside the first summation, and

furthermore, each limit is bounded uniformly in = . By condition (iv}, the
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[--3
series §z= a{m} converges [see Rudin (1876, p. 62, Theorem 3.28)].
¥

Combining these results, it follows that (A.12) is absolutely summable, so
that (A.10) converges to a constant as required. In a similar fashion, {A.1ll)
converges to a constant. Conditions (ii) and {iii) guarantee that this
convergence is upiform in a . Q.E.D

Returning to the asymptotic behavior of the OP estimator, consider

a»T a+T a+T
“6;-’1. e Var[r'*E zt] = T"‘z 2 (t'xtxv'ﬂcov{ut.utm].

=a+1 ra+l v=a+l

Assumptions 3(acd) coincide with conditions (i), (ii), and (iii) of Lemma A.5.
Defining z, = (yt,l}' (L=2) , condition (iv) is satisfied according to
Assumptions 1{a,b). This leaves the definitions of the functions in condition

(v), which are

f(x,) = g(x,) = [$/8,(1-%) - #/(12)] %,
P(x,) 5 (#,1]'
Clx,, X, ] = {(éz(xt‘ﬁo,xu;ao;pm) il e S 0] .
o

where @, is defined in (2.7) and N; = N2 = K . These functiona satisfy
(v) because they are continous and infinitely differentiable. Lemma A.5
implies, therefore, that E;,T does converge uniformly to a constant &% =
'V ¢ and by straight-forward algebra




- 41 -

= 4 254
V—u+ 1 °m

where dm is defined in (2.6). Finally, we conclude that (A.8) holds by
application of Lemma A.4.

Given the asymptotic normality of the score vector in (A.8), proof of
the asymptotic normality of EQP is close at hand. Consider a Taylor Series

expansion of (A.5) around fSe standardized by T-K :

T T T
(A.13) r'*Z a(gpxt - r‘*} ax, + [r"z Xt] P - Be) = 0
t=] =1 t=1
where
: (7.8, )x,'B3,(1-3,) +¥F, - B9 - 3.(1-%,)
(a.14) 7, = -:t[ 3 e Bl S SR el ~ T t}xtxt‘.
- (1-3,)
~OP

;t " é(xt'ﬁ) . ;t E ¢(xt'3) , and B lies on the line segment joining B

amd B¢ . Then (A.13) implies

T T
-1 _
(A.15) AP - go) = [T'l z 4, ] [T-%E “t‘t] .
t=1 t=1

As T — ® , the bracketed inverse in (A.15) converges to 40~' , where 4o

js defined by (2.8), by applicatien of Lemma 4 of Amemiya (1973), using B

2.3, Bo {because EQP Ja.5., Bs) and Assumption 2(a,c,d). Since the

asymptotic distribution of T'* zt u.x, has already been derived in {A.6),

the conclusion of Theorem 2 follows immediately.
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A.3 Asymptotic Properties of GCM Estimators

Proof of Lemma 2: The first-order Taylor series expansion of {3.10) evaluated

at (B,8) around (Bg.8¢) is

FB.B) = 0 = Ffr(Be.8a) ¥ [3f,(B.5)/3p" of (B.5)/38'] [ﬁ . Bu]
3 - 5,

(A.18) = B-Bo = -[ofy(B.5)/88']"" [f1(Bo.50)
- (0f (B.§)/08" )(3 - o)l .

by Lemma 2, (iii), where (5,5) lies on the line segment between (8,8) and
(Be»80) . Conditions (i) and (ii) require both f (Bo.5¢] and & - 8o to
converge a.s. to zero. Condition (iii) guarantees that these zeroces imply the
right-hand side converges to zero, so that the first part of Lemma 2 is
proved.

Renormalizing {A.16) by T5 , we have

P43 - Bo) = -[fp(B.EVAB'I™H [T*£1(Ba.b0)
- (of(B.§)/08") . (8 - 5017 .

Now Tﬁ-fr(ﬁo.so} and Tx'(g - 8¢) have limiting distributions, accerding to
lemma 2, (iv) and (v). The leading matrix inverse converges a.s. to

*[E(afr(ﬂ,,s,}/aﬁ')]‘l by (vi). Using (3.10),

of .(B,8)/08" = [a(B]' ® I] dvec(X(8)]/38
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which has zero expectation at B = o because E[ﬁ(ﬁoJIX(S}] = { . Again,
(vi) implies that afT(B,E}/BS' will converge to zero, so that

&.3

43 - Bo) - [-B(OF(Bo.501/88')]"" THfp(Bo.80) 250 0.
This expression is equivalent to the second result of Lemma 2.

Proof of Theorem 3: First, we apply Lemma 2 to show that fT(ﬁ) given by
(3.11') has a strongly consistenf root when By is replaced by ﬁap in the
matrix An . Then we will apply Lemma 1 to show that a lipear approximation
to that root is also strongly consistent.
Condition (i) of Lemma 2 is the result of Theorem 1 which gives the
strong consistency of EOP . A proof of condition (ii) bas the same elements
~as the proof of Theorem 1. First note that Ant(ﬁu] is a-mixing because (1)

x, is non—-stochastic, (2) a, is a-mixing, and (3) Lemma A.2. Again because

t

X, is non-stochastic, the elements in the sums of T X'A(Bo) 5(ﬁo] are a-

mixing. We can therefore apply Lemma A.l to obtain condition (ii):
frfﬁ,ﬁo,‘fu) —_—t 0 a.8, @88 T = ®
for fT defined by (3.11). Condition (iii) follows from the compactness of
% and B , and from the differentiability of A~ and an .
Having demonstrated the comsistency for inown A{Bg) , we move on to

A(EQP) using Andrew’s uniform LLN, Lemma A.3. That is, we wish to show that

fT(ﬁ,yp,'YnJ —_— 0 a.s. as T — @ ,




to meet condition (ii) of lLemma 1. Condition (iii) of Lemma A.3 follows from
the facts that A(3) is continuous and infinitely differentiable on the
parameter space B , that 3 is compact, and Assumption 5. Therefore, the
function (3.11) satisfies fT{ﬁ,Eop,fg] - fT(B.ﬁo,To) — 0 a.s. and the
(i)=(iii) of Lemma 1 are satisfied, thereby proving the consistency of the GCM

estimator in (3.12).

Proof of Theorem 4: As in the proof of Theorem 2, the key to proving the
asymptotic normality of the GCM estimator rests in showing that the relevant
varaince converges uniformly in the starting point of a time sequence. In the

present cese, we wish to show that

-1 a1 s 1 el Y | ~ N
T°° & E[aun /387 V(Un] E[aun/aﬁ ] ¢

converges appropriately, for any fixed £ € RK . We accomplish this by first

proving

Lemma A.5: Given Assumptions l(a,b,c), 2(a), 3(a), 3’(a,b), 4, and 5,
y b ;'E[&ﬁn'/aﬁ] V(E‘sz E[a&n/ap- ] ¢ converges uniformly in a to a

constant matrix, for any Fixed vector & € R , where ﬁn s
[Ant;t=a+1,...,a+T] s Ay 1S given by (3.2), and ’nt is given by
(3.13}.

Proof: This follows from Lemma A.4 where xt s Xﬁt and zt is a vector

2 2

consisting of a one and n* indicator variables for the n* possible

outcomes of Ypr We construct z, from a base 2 expansion as
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7Y _.
1 if i-1=1, 72 7Y

z,, = { J=1 } (i=2,...,0%+1}
g if otherwise

where yntj is the jth element of Yot and z,, is the itb element of

z, . The required functions are

(X .1 = 9X,,) = M(X,,] BfoA_,/08']

- =7)1.j= 2 M =
where H(Xnt) = {E(untlztj-lj :i=2,...,n°+1] , so that H(Xht} z, Ant and

[a(x_,)'z,] = a_ . Q.E.D.

al:

Lemma A.7: Given Assumptions I(a,b,c), 2(a), 3(a), 3'(a,b), 4, and 5,
Tt g'E[aﬁn'/aﬁ] V{ﬁn}"‘ E[az’in/aﬁ' ] ¢ converges uniformly in a to a

constant matrix, for any fixed vector § & RK . where ﬁn =
[Ant;t=a+1,....a+rj . Ant is given by (3.2), and ,nt is given by

(3.13]}.

r
Proof: First, we show that if 2 lag vy, hes a limit as T — ® and
1=1

T
>w>0, V¥ i, then 2 Iart/thI also has a limit. According to
t=1
Cauchy’s Theorem, the condition implies

¥ri

T2
VQ)O,aTotVTz)T;)To,EI&TtWTtI(6

t=T;
T,

= ) lag,l < A,
=T




Tz Tz
= ) lapwpl S ) lapl/A S e,
t=T, t=T;

1A

go that the implication follows from a second application of Cauchy’s theorem.
Q.E.D.
The result of the lemma follows from what we have just shown and the
result of Lemma A.6. If we decompose V(ﬁnj into to its spectral
decomposition zhwnzn' , Wwhere wn is a diagonal matrix of the eigenvalues
of V(ﬁn] and Zh is a matrix of corresponding eigenvectors, each element of -
the convergent matrix in Lemma A.6 can be written as
n{a+T-n}
2 z,* vry

=arl

where =z, is the tth element of zn'E[aﬁn/aa'] ¢ , so that

¢
n{a+T-n}
2 - ' oy =1 ' - [
2 z, /th = £ E[Bun /98] ZnAn zn E[aun/aﬁ ] ¢
t=as+l
= 77t g E[aﬁn'/ap] V(ﬁnJ'l E[a&n/as'] g
is also a convergent series. The convergencé remains uniform in a . Q.E.D.

Lemma A.8: Given Assumptions I{a,b,c), 2(a), 3(a), 3'(a.b], 4, and 5,
6fr(ﬁ;,32,1o}/aﬁx' and afr(ﬁ;.ﬁg.vu}/aﬁg' converge uniformly in

(B:1.82] to their expectations, where fT iz defined in (3.11).
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Proof: (1) &fp(B1.B2,70)/36" = b E[aan'/ap] V(i}n)'* aﬁn/aa- which has
a convergent expectation according to the previous lemma. That it converges
to the limit of its expectation follows from Lemma A.1. That the convergence
is uniform follows from Lemma A.3. (2) Of (B1.B2.70)/0B2' = N CI
E[Bﬁn'/aﬂ]} avec[V(ﬁn)"jfaﬁ which has expectation zero. As before, in the
proofs of Theorems 1 and 3, this object is contains sums of a-mixing processes
with bounded moments so that Lemma A.l establisheas a.s. convergence to zero.

In addition, Lemma A.3 provides uniform convergence.

Lemma A.9: Given Assumptions Il{a,b,c). 2(a), 3(a), 3’'(a,d), 4, and 5, T%fr

2, No,v) as T — = , where

v = plimT™} E[ai}n'/am V(:‘in)" E[aﬁn/ap- ] .

and fT = fT(ﬁg,ﬁo,1g) is defined by (3.11).

Proof: We will apply lLemma A.4. That the elements of fT are a~-mixing
O(n'c} follows from its construction. Their gxpectatiqns are zero and higher
moments are bounded by our assumptions. Lemma A.7 shows that the variance of
T5 g’fr converges uniformly to a constant. Thus,_the requirements of Lemma
A.4 are satisfied. Q.E.D
It remsins to put these elements together to finish the proof of Theorem
4. We can apply Lemma 2 to the consistent root of (3.11) because (1)
condition (iv} is given by Theorem 2 for 8¢ = So and 3 = EOP s, (2)
condition (v) is given by Lemma A.S, and (3) condition (vi) is given by Lemma
A.8. Result (viii) of Lemme 2 also establishes that condition (iv) of Lemma 1
is met when fT is defined by (3.11'). Condition (v) of Lemma 1 follows from
Lemma A.8. Application of Lemma 1 to (3.11'), therefore yields the required

asymptotic distribution for the GCM estimator in (3.12).
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