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ABSTRACT  

  

Almonds are a major crop in the state of California, in which 90% of all the world’s almonds are 

produced. Widespread drought and strict groundwater regulations pose significant challenges to growers 

throughout the state. Irrigation regimes based on observed crop water status can help to optimize water 

use efficiency, but consistent and accurate measurement of water status can prove challenging.  In 

almonds, crop water status is best represented by midday stem water potential, which despite its accuracy 

is impractical for growers to measure on a regular basis.  This study aimed to use machine learning 

models to predict stem water potential in an almond orchard based on canopy spectral reflectance values, 

soil moisture, and daily evapotranspiration.  Both artificial neural network and random forest models were 

trained and were used to produce high resolution spatial maps of stem water potential covering the entire 

orchard area.  Additionally, for each model type one model was trained to predict raw stem water 

potential values, while another was trained to predict baseline-adjusted values.  Together, all models 

resulted in an average coefficient of correlation of R2=0.73 and an average root mean squared error 

(RMSE) of 2.5 bar.  Prediction accuracy decreased significantly when models were expanded to spatial 

maps (R2=0.33, RMSE=3.31 [avg]).  These results indicate that both artificial neural network and random 

forest frameworks can be used effectively to predict and map stem water potential, but that both 

approaches are unable to fully account for the spatial variability observed throughout the orchard.  

Random forest models predicting raw stem water potential produced the most accurate maps.  Overall, the 

most accurate maps were those produced by the random forest modeling predicting raw stem water 

potential values (R2=0.47, RMSE=2.71 bar). 
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CHAPTER 1: REVIEW OF LITERATURE AND RATIONALE 

 

Precision and Regulated Deficit Irrigation 

 Due to the high demand for water use efficiency in the almond industry, precision irrigation 

techniques are widely used by growers in one form or another.  Broadly, precision irrigation refers to an 

irrigation regime in which water is only applied “in the right place at the right time” to achieve a balance 

of optimal production and efficiency.  Effective precision irrigation requires some knowledge of the water 

status of plants, preferably with a high spatial and temporal resolution.  Across a field, crop water 

requirements may vary greatly due to differences in canopy size, soil variability, and field topography 

(Starr, 2005).  Requirements may also change throughout the growing season due to changing weather 

patterns (Goldhamer, 2005).  In a 2018 study, application of a precision irrigation regime based on 

estimated crop water status in almonds resulted in a 39% reduction in water usage compared with a 

control treatment of 100% evapotranspiration (ET) replacement (Dhillon et al, 2018).   

 Regulated Deficit Irrigation (RDI) is a type of precision irrigation in which the crop is 

intentionally stressed at strategic growth stages, and water is only applied once the estimated crop water 

stress reaches a certain level.  Proper RDI application in almonds allows growers to stretch irrigation 

supplies and reduce crop evapotranspiration, with minimal losses in yield (DeJonge et al, 2015).  In 2004, 

Goldhamer et al found an RDI regime applied to pistachios saved 23.2% of total water relative to the 

control, and significantly increased the water efficiency of the crop from 3.61 to 4.69 (kg marketable 

fruit/mm water).  However, if conditions are not properly assessed, RDI may risk significant reductions in 

crop yield and quality.  Thus, careful monitoring of water stress is key to successful implementation of 

RDI (DeJonge et al, 2015).   
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Stem Water Potential 

 The most widely accepted method of determining the water status of a plant is to measure its 

midday stem water potential (SWP) using a pressure chamber (Drechsler, 2019).  To do so, a leaf is cut 

from the crop and placed inside a sealed chamber.  Using compressed nitrogen, the pressure in the 

chamber is then slowly increased until sap comes out of the leaf petiole (Dhillon et al, 2018).  Obtaining 

SWP measurements is tedious and time consuming and is thus not used as a water status prediction tool in 

commercial settings.   

Crop Water Stress Indices 

 To estimate crop water status without the need for laborious measurements, a number of stress 

indices have been formulated over the last few decades, which may be used to estimate crop water stress.  

The most notable of these is the Crop Water Stress Index (CWSI) derived by Jackson et al in 1981.  The 

CWSI is the ratio of a crop’s canopy temperature minus the air temperature, relative to the temperature 

differential of a well-watered plant and a non-transpiring plant (DeJonge et al, 2015).  CWSI has been 

demonstrated on numerous occasions to correlate well with SWP, making it a potentially viable tool for 

water stress prediction and irrigation decision making.  However, it still requires calculation of a well-

watered (saturated) baseline (which is tedious in a large commercial setting), and its correlation with SWP 

often varies throughout the growing season (Möller et al, 2007).  While the CWSI has its drawbacks, its 

consistent correlation with SWP indicate that its key parameters, namely air temperature, leaf/canopy 

temperature, relative humidity, and vapor pressure deficit may be useful inputs in a predictive model of 

SWP. 

Machine Learning for Water Status Prediction 

In recent years, machine learning algorithms such as Artificial Neural Networks (ANN) and 

Random Forests (RF) have risen in popularity as tools for modeling the complex variables and 

relationships behind plant water stress.    
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Artificial neural networks are a type of computational network simulating the learning structure 

of the brain and nervous system.  They can be applied to perform regression analysis of highly non-linear 

problems and relationships (Hsu et al, 1995).  They are comprised of input, hidden, and output layers, 

with each layer consisting of a number of neurons representing predictive variables.  Figure 2 illustrates 

the structure of an ANN model.  The number of hidden neurons may vary and is defined by the user.  The 

output of each neuron is a function of the weighted sum of its inputs.  Once input and target values 

(outputs) have been defined, the network is able to learn the proper weights and biases that will result in 

accurate prediction of output values (Meyers et al, 2015).   

 

 

Figure 1) Basic Structure of an Artificial Neural Network 

 

In a random forest model, samples are selected randomly with replacement from a training 

dataset to form a network of decision “trees”, which together form a “forest”.  The general structure of a 

random forest can be viewed in figure 2.  A key advantage of random forests is that they are highly 

resistant to overfitting as a result of the high number of decision trees they typically contain (Virdnokar et 

al, 2020).   The model is defined by two main hyper parameters; number of trees (n) and number of 

features used in decision making at each tree (mtry). Based on resulting error stabilization, Belgiu et al 

Input Layer 

Hidden Layer 1 

Layer 

Hidden Layer 2 

Layer 
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(2016) determined n=500 as the optimal number of trees for most modeling scenarios.  Mtry is typically 

set to a value of p/3, where p represents the number of predictive variables (Gislason et al, 2006).  

Alternatively, p/3 may also be used if an exact integer value is preferred.  

 

 

Figure 2) Basic Structure of a Random Forest Model 

 

ANNs have already been utilized in many cases for water stress prediction, most commonly in 

grapevines (Virdonkar et al, 2020). Utilizing thermal indices, canopy temperature data, and air 

temperature, Gutierrez et al (2018) programmed an ANN to predict SWP in grapevines (R2=0.61).  It was 

found that whether baseline temperatures for the indices were included as inputs or not, the ANN 

predicted SWP equally well.  In another vineyard study, Poblete et al (2017) programmed an ANN to 

predict SWP using different combinations of multispectral imagery, and the resultant models predicted 

SWP with moderate to high accuracy, producing coefficients of correlation from R2=0.58-0.87 (Poblete et 

al, 2017).  Similarly, Romero et al predicted SWP across a vineyard with good accuracy, utilizing ten 

vegetation indices derived from multispectral data as ANN inputs (Romero et al, 2018).  In another case, 

Marti et al used both an optimum regression equation and an ANN model to predict SWP in fruit trees, 

with temperature data, relative humidity, solar radiation, and soil moisture as inputs.  The ANN model 
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resulted in an R2 value of 0.93 between predicted and observed values, while the regression equation 

resulted in an R2 value of 0.85, indicating the superiority of an ANN model for water status prediction.  

ANN applications to water status prediction in almonds thus far are somewhat limited and have mostly 

been carried out in a “proof of concept” fashion.  Meyers et al used an ANN to predict an alternative plant 

water status indicator in almonds, Tdiffdry, interpreted as the difference between the temperature of a dry 

leaf and a live leaf.  An ANN was trained several different times, using varying combinations of input 

parameters.  The most successful model utilized SWP, soil water potential, vapor pressure deficit, and 

photosynthetically active radiation as inputs, and resulted in an R2 value of 0.78 between predicted and 

calculated values of Tdiffdry.   

Compared to ANNs, applications of RF models to water stress prediction are notably fewer in 

number (Virdnokar et al, 2020).  Using various meteorological data, Yang et al (2021) used a random 

forest model to predict canopy temperatures of Chinese Brassica (R2=0.77-0.9), the values of which were 

subsequently used for CWSI calculation.  In a 2018 study based in South Africa, a random forest 

classification model was used to determine the level of water stress in grape vines, with a test accuracy of 

83.3% (Loggenberg et al, 2018).   In another case, Pocas et al (2017) investigated the ability of nine 

different types of regression models, including random forest, to predict vineyard pre-dawn SWP in the 

Douro wine region of Portugal.  Each model utilized various hyperspectral vegetation indices as 

predictive variables.  The random forest model predicted vineyard SWP with an average R2 value of 0.77 

and an average RMSE of 0.11 MPa, indicating a promising potential for the application of random forest 

models to water status prediction.  

Vegetation Indices and Hyper/Multispectral Imagery 

Reflectance values of specific spectral bands throughout the electromagnetic spectrum data has 

been known for some time to relate to plant water content, though the specific nature of that relationship 

has remained rather ambiguous.  What is known is that water absorbs radiant energy from many 

wavelengths throughout the electromagnetic spectrum, particularly throughout the mid-infrared region 
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(1300-2500 nm), with significant absorption bands centered on 1450, 1940, and 2500 nm wavelengths 

(Oumar et al, 2013).  By extension, absorption of 400-2500 nm radiation by water causes the reflectance 

of a plant’s leaves to decrease.  When water is lost from leaves, there is an increase in intracellular air 

space, consequently increasing the intensity of reflections within the leaves.  This phenomenon can 

partially explain how water loss may increase reflectance throughout certain regions of the 

electromagnetic spectrum (Carter, 1991).   

Similar to crop water stress indices, many vegetation indices (VI) exist which can be used to 

estimate crop water status (Berni et al, 2017), among other applications such as yield prediction, disease 

detection, and phenotyping (Parker et al, 2020).  Vegetation indices are calculated from remotely sensed 

multispectral imagery and are based on ratios of the reflectance of specific spectral bands.  The most 

widely used vegetation index is the Normalized Difference Vegetation Index (NDVI), calculated using 

the following equation (Berni et al, 2017):  

NDVI = (R800 - R670) / (R800 + R670)                                                                                        (1) 

Where R800 is the reflectance of the 800nm near-infrared (NIR) spectral band, and R670 is the reflectance of 

the 670nm green spectral band.  NDVI has been proven to correlate to some degree with water stress, 

however it is generally considered to reflect more of a cumulative long-term response to water stress in 

crops rather than immediate effects of stress (Baluja et al, 2012).  Another VI is the Photochemical 

Reflectance Index (PRI) calculated with the following equation (Berni et al, 2017): 

PRI = (R570 – R531) / (R570 – R531)                                                                                        (2) 

Where R570 is the reflectance of the 570nm spectral band, and R531 is the reflectance of the 531nm spectral 

band.  In a 2017 study, PRI was found by Berni et al to correlate with canopy temperature in maize 

(R2=0.69), indicating potential viability as a predictor of water stress.  A separate study by Berni et al 

(2009) the visible, red edge and near-infrared regions to correlate best with water stress in canopy crops.  

As PRI is comprised of only visible spectral bands, a VI that encompasses both the red edge and infrared 
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regions may prove more effective for water stress estimation in crops such as almonds. One such VI is the 

Normalized Difference Red Edge Index (NDRE), obtained using the following equation: 

NDRE = (R800 – R720) / (R800 + R720)                                                                                        (3) 

Where R800 is the reflectance of the 800nm NIR spectral band, and R720 is the reflectance of the 720nm red 

edge spectral band.  Zhang et al (2019) found NDRE to vary significantly in response to changes in 

canopy water content of summer maize.  The study also found that canopy reflectance of the red edge 

spectral band itself correlated well with canopy water content (R2=0.77-0.79).     

 In recent years, VIs and multispectral data have shown promise for predicting water stress in 

different crops.  Romero et al (2018) used ten different VIs as inputs to an ANN to predict SWP across a 

vineyard.  While all the indices individually had very low correlations with SWP, the ANN using them all 

as inputs produced a high coefficient of correlation between predicted and observed SWP (R2=0.8 with 

training data, R2=0.72 with validation data).  A new dataset was obtained from a different vineyard site 

and input into the model, again producing a high correlation (R2=0.83).  All the indices used in this study 

were calculated using some numerical combination of the near-infrared, red, and green multispectral 

bands’ reflectance.  While none of the indices on their own demonstrated strong prediction of water 

status, the results of this study seem to indicate that the indices (or the multispectral bands used to 

calculate them) may be good predictors of water status in combination with other parameters in regression 

model.   

 In addition to visible and near-infrared imagery, other regions of the electromagnetic spectrum 

have shown promise as well for water status prediction.  In a 2013 study, Oumar et al programed a neural 

network to predict plant water content (PWC) in trees throughout a eucalyptus plantation, utilizing a 

number of bands and spectral indices from the 800-2000 nm range.  The model predicted plant water 

content with a correlation of R2=0.88.  A sensitivity analysis of each input variable was conducted, and 

revealed that 1450 nm reflectance, Normalized Difference Water Index (NDWI), Normalized Difference 
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Infrared Index (NDII), and 1200 nm reflectance (in that order) were the most important variables to the 

model’s prediction.  Regardless of order, all four parameters were found to be significantly more 

important to the model’s predictions than any other input variables.  NDWI is the normalized difference 

of 860 and 1240 nm band reflectance, while NDII is the normalized difference of 819 and 1649 nm band 

reflectance.  Results from this study indicate that 1450 and 1200 nm band reflectance, as well as the 

reflectance of the bands comprising the NDWI and NDII may be good predictors of SWP in an model 

alongside other input data.  However, a major drawback of measuring reflectance for wavelengths larger 

than 800nm is the cost of equipment.  Cameras with the ability to measure higher spectral ranges are far 

less common and significantly more expensive than those which measure the visible and NIR regions. 

Thus, reflectance of bands beyond 800nm were not included in this study.  

Soil Water Potential 

 Soil water status has long been considered an important factor in irrigation planning (Campbell et 

al, 1982).  While soil water status is not always equivalent to a plant’s water status, especially in orchard 

crops with deep root systems (Naor, 2008), it can serve as a guiding factor for water status indication.  A 

transpiration reduction function (FRF) can be used to correlate soil water potential to crop water status.  

Similar in concept to CWSI, FRF uses a ratio of soil water potential differentials to estimate relative 

transpiration.  Durigon et al found good correlations in common bean when comparing FRF derived 

relative transpiration and CWSI (R2=0.64-0.67), implying soil water status can be a useful predictive 

variable in modeling of plant water status.  
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Hypothesis 

 The literature has shown clearly that RDI implementation may help almond growers produce 

steady yields with less water, provided they can accurately assess crop water status.  Machine learning 

models have been demonstrated to have the potential to produce accurate and timely water stress 

approximations. Remotely sensed multispectral data may serve as useful predictive variables in such a 

model, along with other soil, plant, and climatic variables. This study puts forward two hypotheses: 

1) With the right input variables, a machine learning model can accurately predict SWP in almond 

trees. 

2) Such a model can accurately map spatial SWP throughout an almond orchard.  

Objectives 

 The overall objective of this study is to map water stress in almond orchards using machine 

learning based models.  The specific objectives are as follows: 

1) Develop machine learning based models for SWP prediction in almond orchards. 

2) Use selected models to produce high resolution spatial maps of predicted SWP across the 

orchard. 

3) Compare the performance of ANN and RF based maps. 
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CHAPTER 2: PREDICTION OF SWP IN ALMONDS USING REMOTE 

SENSING AND MACHINE LEARNING 

 

Introduction 

 Almonds are a major crop in the state of California, contributing an estimated $11 billion 

annually to the state’s GDP (Sumner, 2014).  Along with their profitability, almonds are a highly water-

intensive crop, requiring year-round irrigation to maintain optimal quality and yield at harvest.  Recent 

droughts throughout the state coupled with strict groundwater regulations imposed through California’s 

Sustainable Groundwater Management Act have created a major water scarcity problem for this lucrative 

industry, with nearly every almond producer in the state facing water supply challenges.  Thus, there is a 

high demand for increased water use efficiency in almond production. 

 Regulated deficit irrigation (RDI), applying just the right amount of water or slightly less water 

at less sensitive growth stages, has been shown to greatly increase water use efficiency with only 

moderate reductions in quality and yield (DeJonge et al, 2015).  However, proper implementation of RDI 

requires an accurate assessment of crop water status (DeJonge et al, 2015), which can be difficult to 

obtain.  The most widely accepted method of determining a plant’s water status is to measure its midday 

stem water potential (SWP) using a pressure chamber (Drechsler, 2019).  Obtaining SWP measurements 

in this way is tedious and time consuming and thus is rarely used to assess crop water status in 

commercial settings.   According to an Almond Board of California survey, less than 30% of almond 

growers use the pressure chamber to guide irrigation (Almond Board of California, 2019). 

Numerous past studies have attempted to predict water status through other means, such as crop 

water stress indices or predictive models.  In 1981 Jackson et al derived the widely known Crop Water 

Stress Index (CWSI), which is defined as the ratio of a crop’s canopy temperature minus the air 

temperature, relative to the temperature differential of a well-watered plant and a non-transpiring plant 



 

11 
 

(DeJonge et al, 2015).   While CWSI has been demonstrated to correlate well with SWP, it still requires 

calculation of a baseline using a well-watered crop leaf (often impractical to obtain) and its correlation 

with SWP has been found to vary widely throughout a growing season (Mueller et al, 2017). While the 

CWSI has its drawbacks, its consistent correlation with SWP indicates that its key parameters, namely air 

temperature, leaf/canopy temperature, relative humidity, and vapor pressure deficit, may be useful inputs 

in a predictive model of SWP.   

In addition to crop water stress indices, remotely sensed vegetation indices (VI) may also be used 

to estimate crop water status.  While Normalized Difference Vegetation Index (NDVI) is certainly the 

most widely used VI, Normalized Difference Red Edge Index (NDRE) has been demonstrated to correlate 

well with plant water content (Zhang 2019).  By extension it may also be a useful parameter in the 

prediction of SWP. 

In recent years, machine learning (ML) algorithms have emerged as a novel tool for modeling a 

wide variety of agricultural phenomena, including plant water status.  Two common ML approaches are 

Artificial Neural Networks (ANN) and Random Forest (RF).  ANNs are comprised of input, hidden, and 

output layers, each of which contain a number of neurons representing predictive variables.  They are 

particularly useful for modeling of highly non-linear relationships (Virdnokar et al, 2020).  A random 

forest model is made up of many decision “trees” which may be used for regression and classification.  

The defining attributes of this model type are the number of trees “n” and the number of variables used to 

make decisions at each tree, or “mtry”.  Past studies have determined n=500 as the optimal number of 

trees based on resulting error stabilization (Belgiu et al, 2016).  “mtry” is typically set to the square root 

of the number of predictive variables (p), or p/3 if a more precise integer value is desired (Gislason et al, 

2006).  RF models are advantageous as they are highly resistant to overfitting compared with other model 

types (Virdnokar et al, 2020). 

ML models have already been utilized in many cases for water stress prediction.  In a 2018 study, 

an ANN model utilizing thermal indices along with canopy and air temperature data predicted SWP in 
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grapevines with relatively good accuracy [R2=0.61] (Gutierrez et al, 2018). It was found that whether 

baseline temperatures for the indices were included as inputs or not, the model predicted SWP equally 

well.  Several other studies have utilized remotely sensed multispectral imagery in ANN models to predict 

SWP with promising results, with coefficients of correlation ranging from 0.58 to 0.87 (Poblete et al, 

2017; Romero et al, 2018).  In another case, predictive performance of an optimum regression equation 

was compared with that of an ANN model, utilizing various soil and environmental parameters.  The 

ANN model and regression equation resulted in coefficients of correlation between observed and 

predicted values of 0.93 and 0.85, respectively, indicating superiority of the ANN framework for water 

stress prediction.  Applications of random forests for crop water status are less numerous, however Yang 

et al (2021) used a random forest model to predict canopy temperature of Chinese Brassica based on 

various meteorological data (R2=0.77-0.9).  Predicted temperatures were then used for calculation of 

CWSI.  

Currently, applications of machine learning for water status prediction in almonds are relatively 

limited.  In a 2018 study, an ANN model was used to predict water status in almonds with moderate 

success (R2=0.78).  In this case, the model was trained to predict Tdiff dry, an alternative plant water status 

indicator, and utilized SWP as a predictive variable (Meyers et al, 2019).  

Previous work has demonstrated that machine learning may be used effectively to predict water 

status in plants, based on soil and environmental variables, as well as those obtained through remote 

sensing.  This study aims to investigate whether a machine learning based model can be trained to 

accurately predict SWP in almonds, utilizing a combination of soil, environmental, and remotely sensed 

variables.  Additionally, it will investigate the ability of such a model to map SWP spatially across an 

entire orchard and will compare the performance of both ANN and RF based models. 
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Materials and Methods 

Study Site and Experimental Layout 

The site used in this study is a 1.6 hectare plot located at Nickels Soil Lab near Arbuckle, CA.  

The plot contains a total of 15 rows of 50 trees, with 5 rows each of Non-pareil, Butte, and Aldrich 

almond varieties.  Throughout the two seasons during which the study took place, each row received a 

standard irrigation treatment determined by the grower.  Each week irrigation was continually applied 

through driplines over two 24 hour periods. 

 For data collection, twenty focus trees were chosen throughout the orchard to serve as sampling 

locations, with four locations occurring in each non-pareil row (fig 1).  At each location, a 1.5 m 

aluminum access tube was installed near the base of the tree for collecting soil moisture measurements 

using neutron attenuation with a neutron probe (model: Instrotek 503 Hydroprobe, San Francisco, CA).  

An additional ten locations were designated for validation measurements of SWP, for the purpose of 

assessing spatial SWP map predictions.  Data collection was carried out once every one to two weeks, 

typically between the hours of 11am – 3pm. 

 

Fig 3) Locations of focus and validation trees for stem water potential measurements at the Nickels Soil Lab near Arbuckle, 
California. 
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Soil Moisture Measurements 

 On each measurement date, soil moisture was measured at each focus tree using a neutron probe.  

Five measurements were collected at each sampling location from 0.3 to 1.5m, in increments of 0.3m.  

Before beginning each day, a “standard count” was performed on the neutron probe to calibrate readings 

for current environmental conditions.  

Midday Stem Water Potential Measurements 

 At each sample location, midday stem water potential was measured using a PMS Instrument 

Company Model 615 pressure bomb filled with nitrogen gas.  To obtain midday stem water potential, a 

leaf is first covered for fifteen minutes using a Mylar foil bag, which removes the effect of solar radiation 

on the stem water potential reading. The leaf is then removed from the tree and inserted into a chamber 

within the pressure bomb, with the end of the severed stem protruding from the end of a small gasket.  

Then pressure is slowly added to the chamber using the nitrogen gas until water begins to bubble out of 

the end of the stem.  The pressure at which this occurs is considered the tree’s stem water potential 

(Dreschler, 2019).  Prior to measuring, designated leaves were covered with small opaque bags in order to 

minimize the effect of solar radiation on the leaves’ stem water potential.  For each sample location, one 

leaf was measured from the focus tree, and one from the next tree immediately to the south.  These two 

measurements were averaged and considered as the representative stem water potential for the location in 

question.  Occasionally nitrogen gas would run low, in which case only one leaf would be measured at 

each location.  This measurement was still considered representative of the water stress at its location. 

 For eight of the 2022 collection dates, ten extra measurements were obtained from each 

validation location for the purpose of spatial validation of SWP maps. 
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Multispectral Imagery Collection 

Multispectral imagery of the trees’ canopies was collected on each measurement date using a DJI 

Matrice 100 drone equipped with a Micasense RedEdge multispectral camera.  Flights were conducted at 

a height of 80m, utilizing an 85% front and side overlap for the images obtained.  Directly before and 

after each flight, multispectral images of a reflectance calibration panel were captured in order to account 

for current light conditions.  

 

 

 

 

 

 

Figure 4) Left: PMS Model 615 Pressure Bomb used for SWP measurement. Right: Instrotek 
503 Hydroprobe 

Figure 5) Left to Right: DJI Matrice 100, Micasense Reflectance Calibration Panel, and Micasense RedEdge Multispectral Camera 
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Supplemental Environmental Data 

Supplemental ET data for each date was obtained through California’s CIMIS database to help improve 

the scalability of the research in any future applications. The data consisted of total daily ETo (mm/day), 

and was derived from the CIMIS station near Williams, CA, located approximately 16 km north of the 

study area.  Daily ET values were considered representative of the entire orchard.   

Processing of Multispectral Imagery 

During the 2021 season, multispectral images were collected at too sparse of a scale, so creation 

of a complete orthomosaic of canopy reflectance values for each date was not possible.  Instead, 

corresponding images for each sample location were selected based on coordinates embedded in their 

metadata, and canopy reflectance values were extracted using R Studio.  Reflectance values were 

calibrated using a reflectance panel to account for specific ambient light conditions of each date.  

 For all 2022 collection dates, multispectral data was processed using Agisoft Metashape.  By 

stitching together many overlapping images, an orthomosaic covering the entire area of the study site was 

produced.  Using raster transformation functions within the software, each pixel was set to display its 

resultant NDRE value, based on the pixel’s reflectance values for the red edge and near-infrared spectral 

bands.  Raster files displaying NDRE were then exported to ArcMap, where they were all clipped to 

uniform boundaries and resampled to a pixel size of 0.2 meters to decrease model processing time.  Using 

GPS coordinates of each sample location, NDRE values were extracted from each raster to match with 

other point data.    

Artificial Neural Network Training and Sensitivity Analysis 

 Following collection and processing of all 2021 data, initial modeling and sensitivity analyses 

were carried out.  MATLAB’s Deep Learning Toolbox was used to set up and train artificial neural 

networks.  Initially, eight neural network models were trained with different combinations of input 

parameters and compared based on their performance. The best model utilized soil moisture at 0.3-1.5m 
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depths, ET, and NDRE as predictive variables.  Basic sensitivity analysis was performed by retraining the 

model numerous times, with a different parameter excluded each time.  The most important variable was 

determined to be soil moisture, followed by NDRE, and ET.  Sensitivity analysis of individual soil 

moisture depths was not performed at this stage.   

 Following collection and processing of all data for the 2022 growing season, four more neural 

network models were trained.  In order to simplify future model applications, soil moisture data for 1m 

through 1.5m depth was omitted.  The first new ANN to be trained utilized soil moisture at 0.3-0.6m, 

daily ETo, and NDRE as inputs.  The second utilized the same predictors but was trained to predict raw 

SWP values rather than baseline-adjusted SWP.  The third included elevation data as an additional 

predictor, and the fourth utilized soil moisture at 0.3, 0.6, and 1.5m depths, ETo, and NDRE.  This was 

performed to mirror the exact parameters used to train random forest models, and determine if this 

parameter combination also produced better results in an ANN model.  Based on overall accuracy of 

prediction, the first and second models were both selected for generation of maps, in order to gain further 

insight into the effect of predicting baseline-adjusted versus non-baseline SWP values.  

SWP Mapping using Artificial Neural Network Models 

 To generate maps of SWP using the selected ANN models, raster layers were first created for 

each input parameter using ArcGIS Desktop 10.8.1.  Maps were only generated for dates on which extra 

validation SWP measurements had been collected, which were May 17, May 27, June 1, June 14, July 5, 

July 29, August 3, and August 18 (2022).  To do so, kriging was performed using the coordinates and 

matching data of each sample location, using ArcGIS 10’s default measurement variation of 100%.  The 

kriging was fit to the boundaries of the previously generated NDRE layers and sampled to the same pixel 

size (fig 2).  Each matching set of input layers was then exported to R Studio, where their pixel values 

were extracted and transformed into a singular array in which each column represented a single input 

parameter.  The array was then exported to MATLAB, where it was fed into the ANN model, resulting in 

an output array of predicted SWP values.  The output array was then exported to R studio, where it was 
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then transformed back into a raster layer with the same boundaries and resolution as before.  Each map 

was then displayed in ArcMap, where predicted SWP values were extracted from all sample and 

validation locations for further analysis.   

 

Fig 6) Examples of kriging based spatial input layers used for SWP mapping. Left: Soil Moisture (0.3m), Center: Soil Moisture 
(0.6m), Right: Remotely sensed Normalized Difference Red Edge Index 

 

Random Forest Forward Feature Selection 

To train random forest models for SWP prediction, an R package called CAST was used which 

allows for spatial-temporal modeling using machine learning (Meyers, 2018).   

Initially, a “forward feature selection” (FFS) was performed on the training dataset with all 

predictive variables included (fig 3).  The analysis showed that by starting with two predictive variables 

and iteratively increasing the number of predictors, the R2 value of the resulting model’s predictions 

stopped improving after five predictors had been added.  The FFS function reported soil moisture at 0.3 

and 0.6 meters, NDRE, and ET to be the strongest predictive variables.  Additionally, an initial random 

NDRE Soil Moisture (0.3m) Soil Moisture (0.6m) 
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forest model was trained with all input variables and a “variable importance” function was applied, which 

consistently ranked 1.5 meter soil moisture as the fifth most important variable (fig 4).  Thus, the final 

combination of predictive variables for random forest modeling was selected as 0.3, 0.2, and 1.5 meter 

soil moisture, ET, and NDRE.   

 

Fig 7) Results of Feed Forward Selection Analysis 

 

 

Fig 8) Results of Variable Importance Analysis with all Potential Predictors 
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Model Training and Target Oriented Validation 

 Using the designated input parameters, two random forest models were trained with 500 “trees” 

and an “mtry” value of two, based on the recommendation of using a value of p/3 in which p represents 

the number of predictive variables.  A K-fold function with ten repetitions was used for model validation.  

One model was trained to predict baseline adjusted SWP while the other predicted non-baseline values.  

 In addition to regular model training and validation, a target-oriented validation was also 

performed.  Rather than random folds, this method utilized specified folds in which the entire time series 

data of a different sampling location was omitted for each, using the CAST package’s 

“CreateSpaceTimeFolds” function.  This type of validation provided insight into the model’s ability to 

predict stem water potential spatially.  The same variable importance analysis function was also applied to 

the results of the target-oriented validation in order to understand the importance of each variable as it 

pertains to spatial prediction specifically. 

 

Figure 9) Results of Variable Importance Analysis on Target-Oriented Validation 
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SWP Mapping using Random Forest Model 

 Once sufficient random forest models had been trained and validated for both baseline adjusted 

and non-baseline SWP, maps were generated with the same input raster layers used for ANN map 

generation.  For each date, the corresponding raster layers were imported to R Studio, where they were 

input to the model, which then returned a map of the predicted SWP.  

 

Results 

Results of Single Season ANN Modeling 

Following the 2021 growing season, nine preliminary ANN models were trained with varying 

predictive variables.  For all models, the coefficient of correlation between observed and predicted SWP 

ranged from 0.65 to 0.92.  The best performing model utilized soil moisture, ET, and NDRE as predictive 

variables.   

Final ANN Models 

 Following collection of all 2022 data, four additional ANN models were trained with two full 

seasons of data.  For these models, coefficient of correlation between observed and predicted values 

ranged from 0.74 to 0.8 for training data, and from 0.75 to 0.88 for testing data. Compared with ANN 1, 

the normalized RMSE of ANN 2 increased by about 13 percent for both the training and testing datasets, 

indicating that training the ANN models to predict baseline adjusted SWP values may lead to stronger 

results.  Model 3 included the same data as model 2, with the addition of elevation as a predictor.  No 

significant increase in model performance was observed, indicating that the addition of elevation data did 

not increase predictive power.  Model 4 was trained to reflect the performance of ANN modeling with the 

best combination of parameters from random forest modeling.  All goodness-of-fit statistics showed a 
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decrease in model performance from model 2, indicating that the best parameter combination for random 

forest SWP modeling is not necessarily the best for ANN SWP modeling.  

Table 2) Performative Statistics for all Models 

 Training Data Performance Testing data Performance 

Model R
2 rmse nRMSE IOA R

2 rmse nRMSE IOA 

ANN 1 0.8 3.08 0.12 0.7 0.88 2.96 0.12 0.74 

ANN 2 0.74 3.39 0.14 0.66 0.81 3.24 0.14 0.72 

ANN 3 0.75 3.26 .14 0.67 0.79 3.84 0.16 0.71 

ANN 4 0.75 3.34 0.13 0.67 0.75 3.56 0.16 0.67 

RF 1 na na na na 0.6 3.32 0.13 na 

RF 2 na na na na 0.57 3.36 0.14 na 

 

*abbreviations: ANN: Artificial Neural Network, RF: Random Forest, IOA: Index of Agreement, rmse: Root mean squared error, 
nRMSE: Normalized Root Mean Squared Error 

 

Table 3) Descriptions of names, input parameters, and SWP prediction type for all models 

Model Name Parameters SWP Prediction 

ANN 1 SM (0.3-0.6m), ET, NDRE Baseline Adjusted 

ANN 2 SM (0.3-0.6m), ET, NDRE Raw 

ANN 3 SM (0.3-0.6m), ET, NDRE, Elevation Raw 

ANN 4 SM (0.3, 0.6, 1.5m), ET, NDRE Raw 

RF 1 SM (0.3, 0.6, 1.5m), ET, NDRE Baseline Adjusted 

RF 2 SM (0.3, 0.6, 1.5m), ET, NDRE Raw 
 

*abbreviations: ANN: Artificial Neural Network, RF: Random Forest, SM: Soil Moisture, ET: Evapotranspiration, NDRE: 
Normalized Difference Red Edge Index, SWP: Stem Water Potential 
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ANN SWP Map Performance 

 Following generation of SWP maps for designated dates using the selected ANN models, 

predicted SWP values were extracted from all sampling locations as well as extra validation locations.  

These values were plotted against corresponding observed values, allowing for insight into the models’ 

abilities to predict SWP spatially.  For spatially predicted values at sampling locations, coefficient of 

correlation with observed values was much lower than for non-spatial point data, ranging from 0.2 to 0.3. 

RMSE and normalized RMSE both increased significantly as well.  For extra validation locations, 

coefficient of correlation decreased slightly more, and RMSE and normalized RMSE both increased 

slightly.  This makes sense, as model uncertainty would increase further the more you move away from 

data collection locations.   

Random Forest Variable Importance Analysis 

 A variable importance analysis was performed in R Studio on a random forest model which used 

all potential predictors as inputs (soil moisture for 0.3 through 1.5 m, CIMIS ET, elevation, and NDRE). 

The analysis function was applied to both the original training data of the model as well as the results of a 

target-oriented validation which illustrated the model’s ability to predict SWP spatially (fig 5).  The 

analysis performed on the training dataset revealed 0.6 m soil moisture, CIMIS ETo, NDRE, and 1.5 m 

soil moisture to be the most important predictors, in that order.  0.3 m , 0.9 m, and 1.2 m soil moisture 

were reported to have little to no significance in regard to the model’s prediction, and elevation was 

reported to have no significance whatsoever.  The analysis performed on the target-oriented validation 

produced nearly the same result, with the exception of 0.3 m soil moisture being listed as more important 

than 1.5 m moisture.  This was interpreted as an indication that while 0.3 m soil moisture may not be 

significant in prediction based solely on point data, it becomes more useful when the model is 

extrapolated spatially between point data locations.  
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Random Forest Feed Forward Selection 

 A feed forward selection function was applied to all predictive data, the results of which can be 

viewed in figure 3.  The analysis showed that as models were successively trained with more predictive 

variables, the coefficient of correlation for the resulting model stopped improving after a fifth parameter 

was added.  This finding is in agreement with the variable importance analysis, which indicated five 

parameters that were significant to model prediction.  

Random Forest Modeling Results and Map Performance 

 For the baseline-adjusted and non-baseline random forest models, coefficients of correlation were 

0.57 and 0.6, respectively, and nRMSE values were 0.14 and 0.13, respectively.  These results indicate an 

increase in predictive performance compared with ANN models.  Due to the nature of the R Studio 

package used, index of agreement was not possible to estimate for random forest models.   

 A slight increase in performance was observed when comparing baseline-adjusted with non-

baseline model results.  A roughly 5 percent increase in coefficient of correlation was observed, while 

nRMSE decreased by approximately 0.7 percent.   

 Performance of SWP maps generated by random forest models generally increased compared 

with that of ANN.  For non-baseline SWP maps, coefficient of correlation at validation locations was 0.4, 

while nRMSE and index of agreement were 0.19 and 0.56, respectively.  Contrary to model training 

results, performance of baseline adjusted SWP maps was lower by comparison (R2=0.17, nRMSE=0.24, 

IOA=0.52).  The best spatial mapping results were produced by non-baseline adjusted random forest 

maps, while the best model training results occurred with baseline-adjusted random forest models.  The 

reason behind this contradiction is not known.  However it is possible that the single hourly values of 

relative humidity and air temperature used in baseline calculation do not account for true variation 

throughout the orchard, leading to a slight increase in model uncertainty.  
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Comparison of RF and ANN Models 

 No significant difference was observed in model performance for ANN models versus RF.  RF 

based maps produced noticeably more accurate predictions at data sampling locations than ANN based 

maps, but prediction accuracy at validation measurement locations was essentially the same for both map 

types. 

Table 4) Summary of Performance Statistics for all Maps 

 Sampling Locations Validation Locations 

Model R
2 rmse nRMSE IOA R

2 rmse nRMSE IOA 

ANN 1 0.3 3.06 0.21 0.52 0.29 3.64 0.23 0.54 

ANN 2 0.2 3.11 0.2 0.46 0.18 3.81 0.2 0.5 

RF 1 0.6 2.74 0.19 0.59 0.17 3.84 0.24 0.52 

RF 2 0.47 2.71 0.18 0.56 0.4 3.6 0.19 0.56 

 

*abbreviations: ANN: Artificial Neural Network, RF: Random Forest, IOA: Index of Agreement, rmse: Root mean squared error, 
nRMSE: Normalized Root Mean Squared Error 

Comparison of Model and Map Performance 

 For all models, a significant decrease in performance was observed when comparing respective 

map performance to model performance.  Generally, coefficients of correlation decreased by roughly fifty 

percent, and nRMSE values roughly doubled.  In models for which index of agreement could be 

calculated, an approximate twenty five percent decrease in value was observed.   

 For RF models, map performance at sampling locations remained mostly the same as model 

performance, while performance at validation locations was noticeably worse.  For ANN models, map 

performance at sampling locations was significantly worse than model performance, but remained mostly 

constant when considering performance at validation points.  Thus, no significant difference in map 
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performance at validation locations was observed between ANN and RF based maps, but RF based maps 

performed significantly better than ANN maps at sampling locations. 
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Fig 10) ANN baseline SWP Maps 

ANN 1 SWP Maps 
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Fig 11) RF Baseline SWP Maps 

RF 1 SWP Maps 
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Fig 12) ANN Raw SWP Maps 

ANN 2 SWP Maps 
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Fig 13) RF Raw SWP Maps 

RF 2 SWP Maps 
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Discussion 

Results of the experiment have demonstrated the ability of machine learning models to predict 

spatial SWP in almonds.  Across all models, an average coefficient of correlation of R2=0.73 and average 

normalized RMSE of 0.14 were observed between measured and predicted values, which is largely in 

agreement with the findings of recent similar studies.  Poblete et al (2017) and Pocas et al (2017) used 

ML frameworks to predict grapevine SWP with R2=0.58-0.87 and R2=0.77, respectively.  Meyers et al 

(2019) predicted Tdiff dry, (novel plant water status indicator) with R2=0.78 (average).  Based on sensitivity 

analysis from both RF and ANN models, it seems that spectral reflectance data was the strongest 

predictor of water stress, followed closely by root zone soil moisture.  This confirms the findings of 

Zhang et al (2019) that Normalized Difference Red Edge Index can vary significantly in response to 

changes in canopy water content.  The same study also found the red edge spectral band (integral to 

NDRE calculation) to correlate well with canopy water content (R2=0.78).  Romero et al (2018) used an 

ANN model to predict vineyard SWP using only remotely sensed vegetation indices (R2=0.72).  Both the 

literature and this study’s results indicate the potential for development of future almond SWP models 

based entirely on remotely sensed data, eliminating the need for in-situ sensors and labor.  Going forward, 

this could greatly increase the commercial viability of similar workflows for assessment of water stress. 

In both RF and ANN models, map prediction accuracy was significantly less accurate than that of 

the base models themselves.  It seems that a higher spatial sampling density for input variables is 

necessary in order to account for the true spatial variation found throughout an orchard.  Additionally, this 

performance gap may be addressed with the inclusion of more remotely sensed parameters, such as leaf 

canopy temperature, which can be precisely measured on a pixel-by-pixel scale.  

When comparing baseline-adjusted SWP predictions to raw SWP predictions, little difference 

was observed in model performance with point data.  This agrees with results published by Gutierrez et al 

(2018), who used thermal indices as predictors in ANN models to predict grapevine SWP.  It was found 
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that whether or not baseline temperatures were included in thermal indices, the resulting models 

performed equally well.  However, raw SWP showed a slight increase in accuracy for spatial map 

predictions.  As previously mentioned, the single hourly value parameters used in baseline calculation 

likely do not account for variations occurring within the orchard.  Furthermore, baseline calculations are 

by nature an approximation, which introduces further uncertainty to SWP models.  It is possible that 

training models with larger datasets could reveal these uncertainties to a greater degree. 

Both RF and ANN based models performed very similarly, however RF based maps showed 

more accurate predictions at data sampling locations.  In ANN based maps, prediction accuracy roughly 

the same at both data sampling and validation locations.  At sampling locations, the RF framework 

seemed to maintain a degree of consistency between model and map predictions that the ANN framework 

did not.  Additionally, as RF models are highly resistant to overfitting, it seems reasonable to suggest that 

the RF modeling framework is better suited to water stress prediction for almond trees.   

 

 

 

 

 

 

 



 

35 
 

CHAPTER 3: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

Conclusions 

1. Overall results indicate that both ANN and RF based models can reliably predict SWP in almond 

orchards. While model performance was essentially the same for both RF and ANN models, it 

seems reasonable to conclude that RF models are better suited to SWP prediction in almonds, 

based on the superior performance of RF based maps at data sampling locations.  However, it is 

possible that this gap in performance could be removed through the use of larger training datasets 

for both model types.   

 

2. As no significant difference in model performance was observed when baseline adjustments were 

included in target SWP values, it may be concluded that training models to predict “raw” SWP 

values is a better approach.  Baseline calculation for midday SWP is an approximation at best and 

is calculated based on air temperature and relative humidity.  Thus, the noisiness of datasets is 

bound to increase with the inclusion of baselines.  Additionally cross-correlation may occur 

between SWP baseline and ET data calculations, adding redundancy to models.  However, it is 

worth noting that modeling with larger datasets may reveal more noticeable differences in 

performance. 

 

3. None of the modeling approaches detailed in this study can properly account for the true spatial 

variability in SWP, based on the consistent decreased performance observed for validation 

measurement locations.  
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Recommendations for Future Research 

 

1. The results of this study are limited by the size of training datasets used.  The laborious nature of 

SWP measurement, multispectral drone mapping, and soil moisture measurement make large 

datasets difficult to obtain.  Future studies should utilize more training data whenever possible.  

This may help to eliminate some of the ambiguities encountered while analyzing model 

performance, and likely would increase model and map performance in all aspects.  

 

2. In order to increase spatial map performance, future studies should increase spatial sampling 

density if possible.  Additionally, the inclusion of more “high spatial density” parameters, such as 

remotely sensed canopy temperature may help to improve performance.  Alternate spatial 

interpolation methods may also be investigated in order to improve spatial representation of 

predictive variables.  

 

3. Future research should investigate the use of SWP maps as an irrigation decision guide, in which 

irrigation events are triggered once predicted SWP reaches a high enough threshold.  This may be 

compared with a simple irrigation plan, such as the one applied to the study plot for the 2021 and 

2022 growing seasons.  While frequency and timing of data collection in this study was limited 

by logistics and scheduling, future work should aim to consistently collect data directly before or 

after irrigation events.  Studies should investigate the effect of SWP maps as irrigation guides on 

water usage, almond yield, and almond quality.  
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