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We present a method to solve the inverse problem in pulsed photothermal radigRTTif) that
exploits advantages of truncated singular value decomposifieB8VD) while imposing a
non-negativity constraint to the solution. The presented method is a hybrid in the sense that it
expresses the solution vector as a linear superposition of right singular vectors, but with a
non-negative constraint applied to it. The weights for the superposition are determined using an
optimization algorithm. In one-dimensional PPTR simulation examples, the best reconstruction
results are of comparable quality to those of the conjugate gradient method. Furthermore, the hybrid
method exhibits a sharper knee in the L-curve and small susceptibility to over-iteration in presence
of experimental noise, thus facilitating the regularization process. As a result, the reconstructed
temperature profiles are more likely to be closer to the original initial profile20@5 American
Institute of Physics[DOI: 10.1063/1.1851473

I. INTRODUCTION improves stability of the iteration and the ultimate solution is

) _ more accuraté.Second, due to severe ill-posedness of the
Pulsed photothermal radiometiPTR is a noncontact ppTR inverse problem, regularization is required to avoid

technique that utilizes an infrared detector to measure thgyer-jteration(fitting of noise rather than real signavhich

time dependent temperature increase in a test ma{érial. leads to unrealistic steep gradients in the predicted tempera-
Typically, the material is irradiated with pulsed laser light, yyre profiles.

which is selectively absorbed in subsurface chromophores. The cG method, currently used in our group, works di-

From the temporal behavior of the measured surface radigzctly with observable quantitigénitial temperature rises at
tive emission, the laser-induced subsurface temperature proarious depths so a non-negative constraint is relatively
file can be reconstructed. PPTR has been used to determiggajghtforward to implementNN-CG). Regularization can
the depth of chromophores in human skin such as epiderm@le gone through “early termination” based on “L-curve”
melanin and hemoglobin in the vasculature of port wine Stairhnalysislo'” However, in presence of experimental noise, the
. 3’4 ) - 7. b
(PWS birthmarks: . ___ “knee”in the L-curve is often not very sharp, so the selected
Determination of the spatial temperature distributiongegree of regularization remains somewhat arbitrary. In con-
from the measured radiometric signals constitutes a severelyast T.SvD permits a more direct control over the degree of
ill-posed inverse problem which explains why a large num-reqy|arization(i.e., truncation parameterin this approach,
ber of inversion methods has been investigated. The earliege solution only contains those spatial frequencies permitted
method to solve the PPTR inverse problem on human skiBy the appropriately truncated set of singular vectors. How-
used a stepwise(layer by Ia_ye} least squares fitting eyer, the solutions frequently contain unphysical negative
approact. Subsequently applied methods  include leasttemperatures since implementation of a non-negative con-
squares ftruncated sm69ular value decomposititi®VD),"  straint is inherently not possible. That latter was an important
Levenbe4rg—Marquar(§t, and conjugate gradient(CG)  reason for Milneret al? to prefer NN-CG over T-SVD for
methods’ More recently, Xiao and Imhéfcombined T-SVD PPTR depth profiling of human skin.
with the maximum entropy methoMEM) and later just In this paper, we demonstrate and test a novel method,

MEM,® to solve the inverse problem. The same group alsQyhich combines the advantages of T-SVD with a non-

demonstrated the application of a neural network as an altefiegative constraint to solve the PPTR inverse problem.
native method.

A thorough comparison of these methods for PPTR ha$; THEORETICAL BACKGROUND
not been done so it is difficult to rank their quality. However, . . -
several aspects that are important for an inversion methoft: Constituting equations for PPTR profiling
can be identified. First, the method must be able to imple- In PPTR, the temperature field evolutiafi(z,t) can be
ment a non-negativity constraint to the solution vector. Thisexpressed in terms of the quasi-instantaneous laser-induced
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temperature profileAT(z,t=0), and the Green’s function
G(z,Z ,1):

AT(z,t) = fo G(z,Z' ,1)AT(Z',0)dZ . (1)
0

For the Green'’s function, we use the expression derived
by Milner et al* for a semi-infinite medium with a radiative/
convective heat transfer at the air-tissue interface. The 0 100 200 300 400 500
Green’s function involves the thermal diffusivifp=1.1 z (um)

X107 m2s71),'? and the reduced heat transfer coefficient

(h=20 m—l).l3 Because the temperature increase due to thE'G-_l- The fi;/g Ior\:\(est o[rjder right singular vectors calculated for the kernel
laser pulse is much smaller than the initial background tem[namxK used in this study.
perature, the increase in radiometric sigd&t) can be ex-

pressed as

m
. K=2 oup], (5
AT(z,t)e MRz, (2) =1
=0

AS(t) = CMlRJ

Equation(2) reflects that the signals are collected from where we assume that the rankkofequalsm, as in the case
all depthsz, attenuated according to Beer’s law with the of PPTR form=n. The vectorsy; are the left singular vec-
absorption coefficient,r (2 10* m™%, representative of tis- tors which are of the same length 8sThe scalars; are
sue at wavelengths between 4uBn). The constanC ac-  corresponding singular values. The corresponding right sin-
counts for optical properties of the sample surface and detegular vectorsy; are orthonormal and of the same length as
tion system specifics such as integration time and detectivityector T. The vectors with higher subscriptontain higher

across the detector bandwidth. spatial frequencies. The five lowest order vectorsare
Substitution of Eq.(1) into Eg. (2) results in a double shown in Fig. 1.
integral which can be conveniently rewritten as Truncated SVD of the kernel matrix is a useful tool

for inversion of PPTR signals. The solution estimaté can
be written as a linear superposition pfright singular vec-

e}

AS(t) = AT(z,00K(zt)dz @ tors:
z=0 ’
expressingAS(t) in terms of the initial temperature profile p
AT(2) and a kernel functiorK(z,t). The explicit expression TP =3 cu,, (6)
and guidelines to compute the function valu€&,t) are i=1

provided in the Appendix. For a more detailed derivation of
the above equations and underlying assumptions we refer Wherecl

3 to ¢, are weights corresponding to the vectogso
other papers:

Up.

The weights can be determined either analytically
throughc;=u'S/a;, (e.g. Ref. 7 or by minimizing the Eu-
B. Singular value decomposition clidian norm of the residuall(c,,c;,cs, ... ,cp) [EQ. (7)] us-

The discrete form of Eq3) expresses the measured sig- Ing an optimization algorit

nal AS(t) and the initial temperature profildT(z) as a
known vectorS of lengthn and unknown vectof of length f(C1,C5,Ca. ... Cp) = [KTP =S|, (7)
m, respectively, while the kern& is an by m matrix with

An advantage of T-SVD is that the truncation parameter
elementK(z,t) Az

p (the number of singular vectors used in the superposition
can be used as a robust regularization parameter. The “dis-

S=K-T. (4) crepancy principle* relates the signal to noise ratiSNR)

Whenm is equal ton, K is a square matrix and can be of the PPTR signag(t) to the maximum value op. Inclu-
inverted. In theory,T may be calculated directly a3 sion of higher-order vectors usually results in loss of conver-
=K ™1S. However, due to the nature of the kernel functign, gence and temperature profiles with unphysical oscillating
is nearly singularhas a defect rank Hence,K ! is practi-  features. In practice, it may be difficult to determine the SNR
cally incalculable. Moreover, the result of the inversion isand, consequently, the optimal value pf A practical ap-
often useless because even the slightest noise on the mgaoach to determinp is by plotting an L-curve, the points of
sured signa$ results in very large oscillations in the solution which represent the solution norm versus the residual norm
vector T. When an inverse problem involves a near singularobtained by gradually increasing the number of singular vec-
matrix K, singular value decompositiof8VD) can be em- tors. The “knee” of such a curve is typically sharp and indi-
ployed to rewriteK as cates the optimal value fqr (e.g., Refs. 4, 11, and 14
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Ill. METHOD A) 15 4
A. SVD based non-negative optimization

As mentioned before, the T-SVD method can predict
negative values fof, which is unrealistic for PPTR. Below,
we present a method which also minimizes the residual, asin
Eq. (7), but with a modified expression farP,

We defineTE\f,L as a linear superposition of right singular
vectors[as in Eq.(6)] and then apply the non-negativity
constraint by setting the negative vector eleme'h&%(q)
to O: 0

05"

P
Ti(@) = max) 3 oi(@,0. ®) By
An optimization algorithm is used to find weightsthat

minimize the residual norm:

fun(C1,C,Ca, - Cp) = IKT = S| (9
Note that when one or more eIementsTéj,L are modi-
fied (setto 0, T&p,)q is no longer a linear superposition of right 05{
singular vectors. Therefore, the non-negativity constrednt
constitutes a departure from SVD theory. Nevertheless, using
the solution ansatirm,, (8) ensures that high order vector
components, which cause instabilities in the solution, will 0
not be present. We will refer to the presented method as SVD
based non-negative optimizati¢8VD-NN). FIG. 2. (A) The original temperature profilg,, and reconstructed profiles
As noted above, the SVD-NN method requires an algowith SVD-NN method ap=2, 4, and indicated in chajtand(B) profiles
rithm to Optimize the Weightsi_ We app|y a nonlinear opti_ reconstructed with NN-CG after iterations 2, 4, and 1300.
mization algorithm which is commercially implemented by
Frontline Systems Inclncline Village, NV) and available as and investigate the robustness of SVD-NN in comparison
add-in (“Solver”) in Microsoft ExceP. This algorithm uses with NN-CG. For each method we determine the recon-
the generalized reduced gradi€@RG) method as imple-  structed profileT that matchesT,, best. To quantify the
mented in an enhanced version of Lasdon and Waren'fatch, we compute the Euclidian norm of the difference be-
GRG2 code™ ™ tween the reconstructed and original temperature profiles:
Regularization of the solution with SVD-NN is similar ”T_Torig” and defineT ,yima as the temperature profile with
as in T-SVD. The truncation parametgy which limits the  the smalles{T—T,g|. In parallel, the L-curves will be ana-
singular vector components and spatial frequencies allowegzed to determine the optimal degree of regularization with-
in the solution, is gradually increased until the iteration getsout knowledge of the actual profile. Finally, we consider the
out of control. sensitivity of the solution with respect to over- and under-
regularization.

B. Comparison of SVD-NN with NN-CG
IV. RESULTS

We compare the SVD-NN approach to the more estab-
lished CG algorithm, directly minimizing the residual norm The original temperature profild, and 3 recon-
[KT=9]| by optimizingT. We use a custom implementation structed profiles obtained with SVD-Nt p=2, 4, and 6
(Fortran of the CG developed earliéf° which includes the are shown in Fig. @). These profiles were obtained starting
non-negative constraint to the solution. the iteration atp=1 (optimizing the weightc;). Subse-

To compare the methods, we used a simple initial temguently, we added the second singular ve¢for2) and op-
perature profilel o4 (see Fig. 2and simulated a correspond- timized ¢, and ¢, simultaneously, using the previously ob-
ing PPTR signalS. The two layers inT 4, in which tem-  tained value forc; (and c,=0) as the initial values. We
perature is increased, represent a superficial absorbing layegpeated this process unfik6, each time using the weight
(epidermis and a deeper PWS blood vessel layer. For allvalues obtained for the previoysas initial values. At each
calculations presented herein, the total time$ds 200 ms, value of p, the iteration was automatically stopped when a
discretized in 200 step@\t=1 m9 and the total depth fof pre-set convergence criterigne., the relative improvement
is 500 um, discretized in 50 step@z=10 um). of the residual norm below 0.0p%as achieved. The number

First we investigate if SVD-NN reconstructed profiles of iterations required for convergence, and the corresponding
are similar to those obtained with NN-CG. For this compari-residual norm values are listed in Table I. We also list the
son we use the simulated sigrialwith no additional noise. number of iterations required with NN-CG to reach the same
Next, we add Gaussian noise $p equivalent to SNR=200, residual norm values. FigurgR) shows the corresponding
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TABLE I. The number qf it_eration(sand total iterationsrequired to reach a A -020f 'b T ! T T NN-CIG ]
preset convergence criterion with the SVD-NN method at epcialue, [ et SYDNNA
corresponding residual norm values and number of iterations required with i i ..o SVD-NN2
the NN-CG method. -025 | — ]
SVD-NN NN-CG = i
§ -030 o ) E
p Iterations(total) Iterations [KT-S| - [ p=4
1 1) 1 0.366291 -038} S 1
2 4(5) 2 0.191721 i s pe3
3 7(12) 3 0.068128 osol s , , , , TS
4 12 (24) 4 0.018759 17 16 15 14 A3 12 i
5 62 (86) 300 0.000306 log [|KT- 51|
6 21(107) 1300 7.6E-05 . - . .
) . . ) ¢ 4 <o SVD-NN2
profiles for NN-CG. Comparing Figs.(&) and ZB), it can
be noted that the solutions obtained using both methods are  _ *°[ 1
very similar. £ Vo
Figure 3 shows the residual nori T-9] plotted ver- o 02f by .
sus the total number of iterations. Initially, the SVD-NN - S
method requires more iterations than NN-CG to reach the o1l ii i .
same residual norm valud€s-0.015. The opposite is true, ‘e
however, when the optimization advances and solutions in- 0ol '

clude higher spatial frequencies. With NN-CG, the decrease 1 5 10 100 1000
of the residual norm temporarily stalls at several stages in the Iterations / singular vectors

iteration process, causing plateaus in the curve at, for e)ﬁflG. 4. The L-curves are plotted for NN-CG, and 2 different iteration strat-

ample, residual norms of approximatelyx20 and 4 egies with the SVD-NN method. The arrows pointing towards the right
X 1074 Interestingly, these levels roughly coincide with indicate the iteration stages at whihym, is obtained. The three arrows

those forp:4 and p=5 of the SVD-NN curve indicating pointing towards the left indicate iteration stages at which over-iteration

furth imilarity bet the t thod resulted in some artifacts ifi. (B) shows||T~T, versus the number of
urthér similanty between the two methoas. included singular vectons for the two SVD-NN methods and the number of

Next, we compare both methods using the same Simuterations for the NN-CG method. Vertical arrows indicate iteration stages at
lated signalS with Gaussian noise addéd8&NR=200. As a  which Toyna is achieved and horizontal arrows indicate overiterated stages.
result, once the residual norm reaches a value, corresponding
to the noise level it is only marginally reduced by consecu-
tive iterations(for NN-CG) or increase op (for SVD-NN)—  (SVD-NN2), each timep is increased the initial values for all
while the norm of the corresponding solutiof®| begins to  weightsc; to C, are set to zero. In both approaches, we used
increase. These effects combined form the knee in the corrgy values of 1-25, providing 25 points for the L-curve.
sponding L-curves. In Fig.(4), we show the L-curves for The L-curve for the NN-CG shows a smoother knee,
the NN-CG method and two different approaches for thebecause the residual noffi{ T—-S|| decreasegradually and
SVD-NN optimization. The first approad8VD-NN1) is the  the solution normincreases gradually as the iteration
same as used for Figs. 2 and 3. In the second approagitogresses through a large number of iteration steps. With

both SVD-NN approaches, in contrast, the knees of the

1.E+00 - p=1 R L-curves are sharper, indicating the optimal truncation pa-
= rameter ofp=5-6[Fig. 4A)].
1.601 In Fig. 4B) we plot | T-T, versus the number of
_ iterations for NN-CG and versysfor SVD-NN. We identify
w 1-B02 1 the number of iterations for NN-CG and the truncation pa-
é rameterp for SVD-NN at whichT,pima iS reachedlonger,
= 1.603 4 vertical arrows. These stages in the optimization procedure
are also indicated in Fig.(A) (by the longer arrows For
1804 1 SVD-NN, these points coincide with the sharp knee in the
p=0 L-curve. This observation is important, because in practice,
1805 ' ' ' ' when the original object is not known, the curves as in Fig.
1 10 100 1000 10000 ) :
terations 4(B) cannot be generated. Nevertheless, if the knee in the

L-curve is distinct, the corresponding temperature prdfile
FIG. 3. The solution residual norm plotted versus the total number of iterajg likely to be close torl

. . . optimal
tions for the NN-CG and SVD-NN, respectively. The dashed lines are pro- : )
vided as a guide to help find the number of iterations required with the, The optlmal reconstructed temperature profﬂ'%t,mm

NN-CG to obtain the same solution residual norm level obtaineg#c, 4,  fof €ach met_hOd are shqwn in Fig(4. To i”_UStr_ate the
and 6 with the SVD-NN method. effect of continued iteration we plot one arbitrarily chosen
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A)2 —NNCG ing that both constrained methods under test yield same, well
"""" SVD-MWN1 behaved solutions. A rigorous investigation of these relations
sy mrmes SVO-NN2 is beyond the scope of this paper.
. Torig Note that the total reconstruction time is also dependent
<, P on the computation time required per iteration step. The
3]

FORTRAN implementation of CG algorithm running on a
PC platform, is much fastgr<2 s for 1000 iterationsthan

the SVD-NN method with Solver as an optimizer15 s
\ for 100 iterations This may be an unfair comparison be-
cause both the optimization algorithms and implementations

2 (mm) are different. In preliminary experiments, we compared
our SVD-NN method with straightforward optimization of
B)2 ——— NNOG 50 elements of the vectdr, both using the same optimizing

A o SVD-NN 1 algorithm (Solver, using CG algorithin In this case,
N A U SVD-NN2 SVD-NN was about 3 times faster per iteration step and
Torig more than 100 times faster to obtain solutions correspon-

e, ding to p=5 or higher(see Fig. 3. However, in a Matla

& implementation using the nonlinear optimizing function

05 | . “Isgcurvefit” (choosing the subspace trust region method

t R based on interior-reflective Newton metfdd over the

. AT / Levenberg—Marquarfit®>?®and Gauss—Newtéhline search

method$, we found that both approaches took about 1 s to
obtain solutions corresponding fo=5 or higher. It should
also be noted that the SVD-NN method involves the numeri-
cal decomposition of the kernel matrk. For n=200 and
m=50, this time is negligiblé<20 m9 in comparison to the
iteration time. Moreover, for a given, m, At, and Az the
decomposition must be done only once, after which the right
singular vectors can be stored and reused for subsequent
PPTR profile reconstructions. A more systematic investiga-
tion would be necessary to conclude on possible advantages
of SVD-NN over straightforward optimization with regard to
computational speed.
V. DISCUSSION The L-curve characteristics of SVD-NNig. 4(A)] are

To the best of our knowledge, the combination of a non-very similar to those shown by Milneet al* for uncon-
negative constraint with singular vectors with optimizationstrained T-SVD. The sharp knee, a direct result of using the
of the SVD weights has not been reported before. We woulshumber of singular vectors allowed in the solutign as the
like to emphasize that this hybrid approach is not a rigorousegularization parameter, permits a more objective and con-
SVD method, but it exploits some important characteristicsclusive regularization than the smoother knee obtained with
of T-SVD. The presented method takes advantage of the fabiN-CG regularized by early termination. In the latter ap-
that singular vectors are ordered by relevafiee, the size proach, namely, higher spatial frequencies are introduced
of o), which allows for a straightforward regularization into the solution more gradually, over a larger number of
through truncation, leading to effective rejection of noise initeration steps. SVD-NN also allows a more direct control
the inversion process. over the regularization degree: The number of singular vec-

In this study, we found that very similar reconstruction tors allowed in the solution can be linked to the SNR via the
profiles can be achieved using different methods, requiringliscrepancy principle.
different numbers of iteration steps. For example, the profile We considered two different iteration strategies for
in Fig. 2(A) (residual norm value of ¥1077) is achieved SVD-NN and found a significant difference between the two
with 107 iterations at 6 optimization variablés,—pg) with  in terms of susceptibility to over-iteratioffig. 4B)]. The
the SVD-NN method. Virtually the same profile is obtained robustness of the SVD-NN1 approach arises from the fact
with the NN-CG method involving 50 optimization variables that the most significant weights are always biased by the
(vector elementdT;) after 1300 iteration stepFig. 2(B)].  values determined in the preceding step, which is by defini-
Similarities or equivalence between optimization methodgion less ill-posed.
such as CG, T-SVD and regularization methods such as In summary, the hybrid SVD-NN method combines re-
“Tikhonov"?* have been noted befofé However, it should — construction stability and quality of the non-negativity con-
be noted that implementation of the NN constraint in a waystraint with more direct control over the regularization de-
violates the assumptions of the underlying theory not onlygree(from T-SVD). The observed quality of reconstructions
for T-SVD but also for the CG algorithrtand calls for non- and robustness with respect to over-iteration make it prom-
trivial augmentation of the latterin that sense, it is reassur- ising for PPTR photo-thermal depth profiling.

300 400 500
z (mm)

FIG. 5. (A) Temperature profiled yyn,, identified in Fig. 4B), for each
method andB) examples of over-iterated profiles.

profile for each method in Fig.(B). The iteration stages for
these three profiles are indicated in FigéA¥and 4B) by
the shorter arrows.
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