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We present a method to solve the inverse problem in pulsed photothermal radiometrysPPTRd that
exploits advantages of truncated singular value decompositionsT-SVDd while imposing a
non-negativity constraint to the solution. The presented method is a hybrid in the sense that it
expresses the solution vector as a linear superposition of right singular vectors, but with a
non-negative constraint applied to it. The weights for the superposition are determined using an
optimization algorithm. In one-dimensional PPTR simulation examples, the best reconstruction
results are of comparable quality to those of the conjugate gradient method. Furthermore, the hybrid
method exhibits a sharper knee in the L-curve and small susceptibility to over-iteration in presence
of experimental noise, thus facilitating the regularization process. As a result, the reconstructed
temperature profiles are more likely to be closer to the original initial profiles. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1851473g

I. INTRODUCTION

Pulsed photothermal radiometrysPPTRd is a noncontact
technique that utilizes an infrared detector to measure the
time dependent temperature increase in a test material.1,2

Typically, the material is irradiated with pulsed laser light,
which is selectively absorbed in subsurface chromophores.
From the temporal behavior of the measured surface radia-
tive emission, the laser-induced subsurface temperature pro-
file can be reconstructed. PPTR has been used to determine
the depth of chromophores in human skin such as epidermal
melanin and hemoglobin in the vasculature of port wine stain
sPWSd birthmarks.3,4

Determination of the spatial temperature distribution
from the measured radiometric signals constitutes a severely
ill-posed inverse problem which explains why a large num-
ber of inversion methods has been investigated. The earliest
method to solve the PPTR inverse problem on human skin
used a stepwiseslayer by layerd least squares fitting
approach.3 Subsequently applied methods include least-
squares truncated singular value decompositionsT-SVDd,4

Levenberg–Marquardt,5,6 and conjugate gradientsCGd
methods.4 More recently, Xiao and Imhof7 combined T-SVD
with the maximum entropy methodsMEMd and later just
MEM,8 to solve the inverse problem. The same group also
demonstrated the application of a neural network as an alter-
native method.9

A thorough comparison of these methods for PPTR has
not been done so it is difficult to rank their quality. However,
several aspects that are important for an inversion method
can be identified. First, the method must be able to imple-
ment a non-negativity constraint to the solution vector. This

improves stability of the iteration and the ultimate solution is
more accurate.4 Second, due to severe ill-posedness of the
PPTR inverse problem, regularization is required to avoid
over-iterationsfitting of noise rather than real signald which
leads to unrealistic steep gradients in the predicted tempera-
ture profiles.

The CG method, currently used in our group, works di-
rectly with observable quantitiessinitial temperature rises at
various depthsd, so a non-negative constraint is relatively
straightforward to implementsNN-CGd. Regularization can
be done through “early termination” based on “L-curve”
analysis.10,11However, in presence of experimental noise, the
“knee” in the L-curve is often not very sharp, so the selected
degree of regularization remains somewhat arbitrary. In con-
trast, T-SVD permits a more direct control over the degree of
regularizationsi.e., truncation parameterd. In this approach,
the solution only contains those spatial frequencies permitted
by the appropriately truncated set of singular vectors. How-
ever, the solutions frequently contain unphysical negative
temperatures since implementation of a non-negative con-
straint is inherently not possible. That latter was an important
reason for Milneret al.4 to prefer NN-CG over T-SVD for
PPTR depth profiling of human skin.

In this paper, we demonstrate and test a novel method,
which combines the advantages of T-SVD with a non-
negative constraint to solve the PPTR inverse problem.

II. THEORETICAL BACKGROUND

A. Constituting equations for PPTR profiling

In PPTR, the temperature field evolutionDTsz,td can be
expressed in terms of the quasi-instantaneous laser-induced
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temperature profileDTsz,t=0d, and the Green’s function
Gsz,z8 ,td:

DTsz,td =E
0

`

Gsz,z8,tdDTsz8,0ddz8. s1d

For the Green’s function, we use the expression derived
by Milner et al.4 for a semi-infinite medium with a radiative/
convective heat transfer at the air-tissue interface. The
Green’s function involves the thermal diffusivitysD=1.1
310−7 m2 s−1d,12 and the reduced heat transfer coefficient
sh=20 m−1d.13 Because the temperature increase due to the
laser pulse is much smaller than the initial background tem-
perature, the increase in radiometric signalDSstd can be ex-
pressed as

DSstd = CmIRE
z=0

`

DTsz,tde−mIRzdz. s2d

Equations2d reflects that the signals are collected from
all depthsz, attenuated according to Beer’s law with the
absorption coefficientmIR s23104 m−1, representative of tis-
sue at wavelengths between 4–5mmd. The constantC ac-
counts for optical properties of the sample surface and detec-
tion system specifics such as integration time and detectivity
across the detector bandwidth.

Substitution of Eq.s1d into Eq. s2d results in a double
integral which can be conveniently rewritten as

DSstd =E
z=0

`

DTsz,0dKsz,tddz s3d

expressingDSstd in terms of the initial temperature profile
DTszd and a kernel functionKsz,td. The explicit expression
and guidelines to compute the function valuesKsz,td are
provided in the Appendix. For a more detailed derivation of
the above equations and underlying assumptions we refer to
other papers.4,13

B. Singular value decomposition

The discrete form of Eq.s3d expresses the measured sig-
nal DSstd and the initial temperature profileDTszd as a
known vectorS of lengthn and unknown vectorT of length
m, respectively, while the kernelK is a n by m matrix with
elementsKsz,td Dz:

S= K ·T. s4d

Whenm is equal ton, K is a square matrix and can be
inverted. In theory,T may be calculated directly asT
=K −1S. However, due to the nature of the kernel function,K
is nearly singularshas a defect rankd. Hence,K −1 is practi-
cally incalculable. Moreover, the result of the inversion is
often useless because even the slightest noise on the mea-
sured signalS results in very large oscillations in the solution
vectorT. When an inverse problem involves a near singular
matrix K , singular value decompositionsSVDd can be em-
ployed to rewriteK as

K = o
i=1

m

siuivi
T, s5d

where we assume that the rank ofK equalsm, as in the case
of PPTR formøn. The vectorsui are the left singular vec-
tors which are of the same length asS. The scalarssi are
corresponding singular values. The corresponding right sin-
gular vectorsvi are orthonormal and of the same length as
vectorT. The vectors with higher subscripti contain higher
spatial frequencies. The five lowest order vectorsvi are
shown in Fig. 1.

Truncated SVD of the kernel matrixK is a useful tool
for inversion of PPTR signals. The solution estimateTspd can
be written as a linear superposition ofp right singular vec-
tors:

Tspd = o
i=1

p

civi , s6d

wherec1 to cp are weights corresponding to the vectorsv1 to
vp.

The weights can be determined either analytically
throughci =ui

TS/si, se.g. Ref. 7d or by minimizing the Eu-
clidian norm of the residualfsc1,c2,c3, . . . ,cpd fEq. s7dg us-
ing an optimization algorithm,4

fsc1,c2,c3, . . . ,cpd = iKTspd − Si2. s7d

An advantage of T-SVD is that the truncation parameter
p sthe number of singular vectors used in the superpositiond
can be used as a robust regularization parameter. The “dis-
crepancy principle”14 relates the signal to noise ratiosSNRd
of the PPTR signalSstd to the maximum value ofp. Inclu-
sion of higher-order vectors usually results in loss of conver-
gence and temperature profiles with unphysical oscillating
features. In practice, it may be difficult to determine the SNR
and, consequently, the optimal value ofp. A practical ap-
proach to determinep is by plotting an L-curve, the points of
which represent the solution norm versus the residual norm
obtained by gradually increasing the number of singular vec-
tors. The “knee” of such a curve is typically sharp and indi-
cates the optimal value forp se.g., Refs. 4, 11, and 14d.

FIG. 1. The five lowest order right singular vectors calculated for the kernel
matrix K used in this study.
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III. METHOD

A. SVD based non-negative optimization

As mentioned before, the T-SVD method can predict
negative values forT, which is unrealistic for PPTR. Below,
we present a method which also minimizes the residual, as in
Eq. s7d, but with a modified expression forTspd.

We defineTNN
spd as a linear superposition of right singular

vectors fas in Eq. s6dg and then apply the non-negativity
constraint by setting the negative vector elementsTNN

spd sqd
to 0:

TNN
spd sqd = maxHo

i=1

p

civisqd,0J . s8d

An optimization algorithm is used to find weightsci that
minimize the residual norm:

fNNsc1,c2,c3, . . . ,cpd = iKTNN
spd − Si2. s9d

Note that when one or more elements ofTNN
spd are modi-

fied sset to 0d, TNN
spd is no longer a linear superposition of right

singular vectors. Therefore, the non-negativity constraints8d
constitutes a departure from SVD theory. Nevertheless, using
the solution ansatzTNN

spd , s8d ensures that high order vector
components, which cause instabilities in the solution, will
not be present. We will refer to the presented method as SVD
based non-negative optimizationsSVD-NNd.

As noted above, the SVD-NN method requires an algo-
rithm to optimize the weightsci. We apply a nonlinear opti-
mization algorithm which is commercially implemented by
Frontline Systems Inc.sIncline Village, NVd and available as
add-in s“Solver”d in Microsoft Excel®. This algorithm uses
the generalized reduced gradientsGRGd method as imple-
mented in an enhanced version of Lasdon and Waren’s
GRG2 code.15–19

Regularization of the solution with SVD-NN is similar
as in T-SVD. The truncation parameterp, which limits the
singular vector components and spatial frequencies allowed
in the solution, is gradually increased until the iteration gets
out of control.

B. Comparison of SVD-NN with NN-CG

We compare the SVD-NN approach to the more estab-
lished CG algorithm, directly minimizing the residual norm
iKT−Si by optimizingT. We use a custom implementation
sFortrand of the CG developed earlier,4,20 which includes the
non-negative constraint to the solution.

To compare the methods, we used a simple initial tem-
perature profileTorig ssee Fig. 2d and simulated a correspond-
ing PPTR signalS. The two layers inTorig, in which tem-
perature is increased, represent a superficial absorbing layer
sepidermisd and a deeper PWS blood vessel layer. For all
calculations presented herein, the total time forS is 200 ms,
discretized in 200 stepssDt=1 msd and the total depth forT
is 500mm, discretized in 50 stepssDz=10 mmd.

First we investigate if SVD-NN reconstructed profiles
are similar to those obtained with NN-CG. For this compari-
son we use the simulated signalS with no additional noise.
Next, we add Gaussian noise toS, equivalent to SNR=200,

and investigate the robustness of SVD-NN in comparison
with NN-CG. For each method we determine the recon-
structed profileT that matchesTorig best. To quantify the
match, we compute the Euclidian norm of the difference be-
tween the reconstructed and original temperature profiles:
iT−Torigi and defineToptimal as the temperature profile with
the smallestiT−Torigi. In parallel, the L-curves will be ana-
lyzed to determine the optimal degree of regularization with-
out knowledge of the actual profile. Finally, we consider the
sensitivity of the solution with respect to over- and under-
regularization.

IV. RESULTS

The original temperature profileTorig and 3 recon-
structed profiles obtained with SVD-NNsat p=2, 4, and 6d
are shown in Fig. 2sAd. These profiles were obtained starting
the iteration atp=1 soptimizing the weightc1d. Subse-
quently, we added the second singular vectorsp=2d and op-
timized c1 and c2 simultaneously, using the previously ob-
tained value forc1 sand c2=0d as the initial values. We
repeated this process untilp=6, each time using the weight
values obtained for the previousp as initial values. At each
value of p, the iteration was automatically stopped when a
pre-set convergence criterionsi.e., the relative improvement
of the residual norm below 0.002d was achieved. The number
of iterations required for convergence, and the corresponding
residual norm values are listed in Table I. We also list the
number of iterations required with NN-CG to reach the same
residual norm values. Figure 2sBd shows the corresponding

FIG. 2. sAd The original temperature profileTorig and reconstructed profiles
with SVD-NN method atp=2, 4, and 6sindicated in chartd andsBd profiles
reconstructed with NN-CG after iterationsj =2, 4, and 1300.
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profiles for NN-CG. Comparing Figs. 2sAd and 2sBd, it can
be noted that the solutions obtained using both methods are
very similar.

Figure 3 shows the residual normiKT−Si plotted ver-
sus the total number of iterations. Initially, the SVD-NN
method requires more iterations than NN-CG to reach the
same residual norm valuess.0.015d. The opposite is true,
however, when the optimization advances and solutions in-
clude higher spatial frequencies. With NN-CG, the decrease
of the residual norm temporarily stalls at several stages in the
iteration process, causing plateaus in the curve at, for ex-
ample, residual norms of approximately 2310−2 and 4
310−4. Interestingly, these levels roughly coincide with
those forp=4 and p=5 of the SVD-NN curve, indicating
further similarity between the two methods.

Next, we compare both methods using the same simu-
lated signalS with Gaussian noise addedsSNR=200d. As a
result, once the residual norm reaches a value, corresponding
to the noise level it is only marginally reduced by consecu-
tive iterationssfor NN-CGd or increase ofp sfor SVD-NNd—
while the norm of the corresponding solutionsiTi begins to
increase. These effects combined form the knee in the corre-
sponding L-curves. In Fig. 4sAd, we show the L-curves for
the NN-CG method and two different approaches for the
SVD-NN optimization. The first approachsSVD-NN1d is the
same as used for Figs. 2 and 3. In the second approach

sSVD-NN2d, each timep is increased the initial values for all
weightsci to cp are set to zero. In both approaches, we used
p values of 1–25, providing 25 points for the L-curve.

The L-curve for the NN-CG shows a smoother knee,
because the residual normiKT−Si decreasesgradually and
the solution norm increases gradually as the iteration
progresses through a large number of iteration steps. With
both SVD-NN approaches, in contrast, the knees of the
L-curves are sharper, indicating the optimal truncation pa-
rameter ofp=5–6 fFig. 4sAdg.

In Fig. 4sBd we plot iT−Torigi versus the number of
iterations for NN-CG and versusp for SVD-NN. We identify
the number of iterations for NN-CG and the truncation pa-
rameterp for SVD-NN at whichToptimal is reachedslonger,
vertical arrowsd. These stages in the optimization procedure
are also indicated in Fig. 4sAd sby the longer arrowsd. For
SVD-NN, these points coincide with the sharp knee in the
L-curve. This observation is important, because in practice,
when the original object is not known, the curves as in Fig.
4sBd cannot be generated. Nevertheless, if the knee in the
L-curve is distinct, the corresponding temperature profileT
is likely to be close toToptimal.

The optimal reconstructed temperature profilesToptimal
for each method are shown in Fig. 5sAd. To illustrate the
effect of continued iteration we plot one arbitrarily chosen

TABLE I. The number of iterationssand total iterationsd required to reach a
preset convergence criterion with the SVD-NN method at eachp-value,
corresponding residual norm values and number of iterations required with
the NN-CG method.

SVD-NN NN-CG

iKT-Sip Iterationsstotald Iterations

1 1 s1d 1 0.366291
2 4 s5d 2 0.191721
3 7 s12d 3 0.068128
4 12 s24d 4 0.018759
5 62 s86d 300 0.000306
6 21 s107d 1300 7.6E−05

FIG. 3. The solution residual norm plotted versus the total number of itera-
tions for the NN-CG and SVD-NN, respectively. The dashed lines are pro-
vided as a guide to help find the number of iterations required with the
NN-CG to obtain the same solution residual norm level obtained forp=2, 4,
and 6 with the SVD-NN method.

FIG. 4. The L-curves are plotted for NN-CG, and 2 different iteration strat-
egies with the SVD-NN method. The arrows pointing towards the right
indicate the iteration stages at whichToptimal is obtained. The three arrows
pointing towards the left indicate iteration stages at which over-iteration
resulted in some artifacts inT. sBd showsiT−Torigi versus the number of
included singular vectorsp for the two SVD-NN methods and the number of
iterations for the NN-CG method. Vertical arrows indicate iteration stages at
which Toptimal is achieved and horizontal arrows indicate overiterated stages.
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profile for each method in Fig. 5sBd. The iteration stages for
these three profiles are indicated in Figs. 4sAd and 4sBd by
the shorter arrows.

V. DISCUSSION

To the best of our knowledge, the combination of a non-
negative constraint with singular vectors with optimization
of the SVD weights has not been reported before. We would
like to emphasize that this hybrid approach is not a rigorous
SVD method, but it exploits some important characteristics
of T-SVD. The presented method takes advantage of the fact
that singular vectors are ordered by relevancesi.e., the size
of sid, which allows for a straightforward regularization
through truncation, leading to effective rejection of noise in
the inversion process.

In this study, we found that very similar reconstruction
profiles can be achieved using different methods, requiring
different numbers of iteration steps. For example, the profile
in Fig. 2sAd sresidual norm value of 7310−7d is achieved
with 107 iterations at 6 optimization variablessp1−p6d with
the SVD-NN method. Virtually the same profile is obtained
with the NN-CG method involving 50 optimization variables
svector elementsTid after 1300 iteration stepsfFig. 2sBdg.
Similarities or equivalence between optimization methods
such as CG, T-SVD and regularization methods such as
“Tikhonov”21 have been noted before.22 However, it should
be noted that implementation of the NN constraint in a way
violates the assumptions of the underlying theory not only
for T-SVD but also for the CG algorithmsand calls for non-
trivial augmentation of the latterd. In that sense, it is reassur-

ing that both constrained methods under test yield same, well
behaved solutions. A rigorous investigation of these relations
is beyond the scope of this paper.

Note that the total reconstruction time is also dependent
on the computation time required per iteration step. The
FORTRAN implementation of CG algorithm running on a
PC platform, is much fasters,2 s for 1000 iterationsd than
the SVD-NN method with Solver as an optimizers,15 s
for 100 iterationsd. This may be an unfair comparison be-
cause both the optimization algorithms and implementations
are different. In preliminary experiments, we compared
our SVD-NN method with straightforward optimization of
50 elements of the vectorT, both using the same optimizing
algorithm sSolver, using CG algorithmd. In this case,
SVD-NN was about 3 times faster per iteration step and
more than 100 times faster to obtain solutions correspon-
ding to p=5 or higherssee Fig. 3d. However, in a Matlab®

implementation using the nonlinear optimizing function
“lsqcurvefit” schoosing the subspace trust region method
based on interior-reflective Newton method23,24 over the
Levenberg–Marquardt6,25,26and Gauss–Newton27 line search
methodsd, we found that both approaches took about 1 s to
obtain solutions corresponding top=5 or higher. It should
also be noted that the SVD-NN method involves the numeri-
cal decomposition of the kernel matrixK . For n=200 and
m=50, this time is negligibles,20 msd in comparison to the
iteration time. Moreover, for a givenn, m, Dt, and Dz the
decomposition must be done only once, after which the right
singular vectors can be stored and reused for subsequent
PPTR profile reconstructions. A more systematic investiga-
tion would be necessary to conclude on possible advantages
of SVD-NN over straightforward optimization with regard to
computational speed.

The L-curve characteristics of SVD-NNfFig. 4sAdg are
very similar to those shown by Milneret al.4 for uncon-
strained T-SVD. The sharp knee, a direct result of using the
number of singular vectors allowed in the solutionspd as the
regularization parameter, permits a more objective and con-
clusive regularization than the smoother knee obtained with
NN-CG regularized by early termination. In the latter ap-
proach, namely, higher spatial frequencies are introduced
into the solution more gradually, over a larger number of
iteration steps. SVD-NN also allows a more direct control
over the regularization degree: The number of singular vec-
tors allowed in the solution can be linked to the SNR via the
discrepancy principle.

We considered two different iteration strategies for
SVD-NN and found a significant difference between the two
in terms of susceptibility to over-iterationfFig. 4sBdg. The
robustness of the SVD-NN1 approach arises from the fact
that the most significant weightsci are always biased by the
values determined in the preceding step, which is by defini-
tion less ill-posed.

In summary, the hybrid SVD-NN method combines re-
construction stability and quality of the non-negativity con-
straint with more direct control over the regularization de-
greesfrom T-SVDd. The observed quality of reconstructions
and robustness with respect to over-iteration make it prom-
ising for PPTR photo-thermal depth profiling.

FIG. 5. sAd Temperature profilesToptimal, identified in Fig. 4sBd, for each
method andsBd examples of over-iterated profiles.
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APPENDIX

The kernelKsz,td of Eq. s3d is expressed as

Ksz,td = sCmIRDz/2de−z2/4DtHerfcxsu−d + erfcxsu+d

−
2h

h − mIR
ferfcxsu+d − erfcxsu1dgJ , sA1d

whereu+, u−, andu1 are defined as

u± = mIR
ÎDt ± z/Î4Dt, u1 = hÎDt + z/Î4Dt. sA2d

For a correct numerical implementation of the Kernel
matrix K in Matlab® and to guarantee smooth corresponding
singular vectors, care must be taken.

First, we have found it essential to use a numerical
approximation28 for the error function erfsxd instead of the
Matlab® implementation for this function or the related func-
tion erfcxsxd,

erfsxd > 1 − sa1t + a2t
2 + a3t

3 + a4t
4 + a5t

5de−x2
, sA3d

where t=1/s1+0.3275911xd, a1=0.254829592, a2
=−0.284496736,a3=1.421413741,a4=−1.453152027,a5

=1.061405429.Since this approximation starts to oscillate
for values larger than approximately 5, the relatederfcxsxd
also becomes oscillatory. For large values ofx, this latter
function is correctly approximated by

erfcxsxd > 1/sxÎpd for x @ 1. sA4d

At some valuexT, the transition between the approxima-
tions sA3d and sA4d must be made which introduces some
discontinuity. We have found for our application that the
transition is smoothest whenxT=5.6 and the resulting singu-
lar vectors in the matrixK are smooth.

Second, for small timest and relatively large depthsz, a
problem may arise when the term erfcxsu−d is calculated.
When u− is smaller than −30se.g., for t,0.5 ms, z
.450 mmd, the terms expsu−

2d in erfcxsu−d become ex-
tremely large s.10300d. Straightforward evaluation of
erfcxsu−d leads to an error in most computations which can
be completely avoided by rewriting Eq.sA1d as

Ksz,td = e−z2/4DtHerfcxsu+d −
2h

h − mIR
ferfcxsu+d

− erfcxsu1dgJ + emIRsmIRDt−zd erfcsu−d. sA5d

Note that a similar problem does not occur for evalua-
tion of erfcxsu+dd with large positive values foru+ because of
the application of Eq.sA4d.
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