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Explainable machine learning of the underlying physics of high-energy
particle collisions

Yue Shi Lai,1, ∗ Duff Neill,2, † Mateusz P loskoń,1, ‡ and Felix Ringer1, §

1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Dated: December 15, 2020)

We present an implementation of an explainable and physics-aware machine learning model ca-
pable of inferring the underlying physics of high-energy particle collisions using the information
encoded in the energy-momentum four-vectors of the final state particles. We demonstrate the
proof-of-concept of our White Box AI approach using a Generative Adversarial Network (GAN)
which learns from a DGLAP-based parton shower Monte Carlo event generator. We show, for the
first time, that our approach leads to a network that is able to learn not only the final distribution
of particles, but also the underlying parton branching mechanism, i.e. the Altarelli-Parisi splitting
function, the ordering variable of the shower, and the scaling behavior. While the current work is
focused on perturbative physics of the parton shower, we foresee a broad range of applications of our
framework to areas that are currently difficult to address from first principles in QCD. Examples
include nonperturbative and collective effects, factorization breaking and the modification of the
parton shower in heavy-ion, and electron-nucleus collisions.

Introduction. In recent years machine learning tech-
niques have lead to range of new developments in nu-
clear and high-energy physics [1–29]. For example, in
Refs. [1–5] jet tagging techniques were developed which
often outperform traditional techniques. In Refs. [6–
11] Generative Adversarial Networks (GANs) [30, 31],
a form of unsupervised machine learning, were used to
simulate event distributions in high-energy particle col-
lisions. There have also been efforts to infer physics in-
formation from data. In Ref. [32] a probabilistic model
was introduced based on jet clustering and in Ref. [33]
a convolutional autoencoder within a shower was used
which qualitatively reproduces jet observables. See also
Refs. [34–36] for recent work on physics-aware learning.

The underlying physics information of high-energy par-
ticle collisions is encoded in hard-scattering processes,
the subsequent parton shower and the hadronization
mechanism. These steps are modeled by general pur-
pose parton showers used in Monte Carlo event genera-
tors which play an important role in our understanding of
high-energy collider experiments [37–39]. Starting with
highly energetic quarks or gluons which are produced in
hard-scattering events, parton showers simulate the par-
ton branching processes that occur during the evolution
from the hard scale to the infrared which is followed by
the hadronization step. While the general concept of
parton showers is well established, important questions
about the perturbative accuracy [40–46], nonperturba-
tive effects [47–50] and the modification in the nuclear
environment [51–65], remain a challenge.

In this work, we propose an explainable or White Box
AI approach [66, 67] to learn the underlying physics of
high-energy particle collisions. As a proof of concept,
we present results of a GAN trained on the final out-
put of a parton shower, which not only reproduces the
final distribution of particles but also learns the under-

FIG. 1. Parton splitting process i→ jk with longitudinal mo-
mentum fraction z, relative splitting angle of the two daughter
partons θ and azimuthal angle φ.

lying showering mechanism using the complete event in-
formation. GANs consist of two competing neural net-
works, the generator and discriminator. The design of
our generator network allows to not only describe the
final distribution of particles of the shower but the dif-
ferent layers also give access to the underlying physics
encoded in the parton branching processes. More specif-
ically, we demonstrate that the network can learn the
Altarelli-Parisi splitting function Pi→jk(z), the splitting
angles of individual branching processes and the depen-
dence of the shower on the energy scale Q, see Fig. 1.
This is achieved by separating the GAN into two com-
ponents such that it can learn both self-similar/fractal
aspects of the shower like the Altarelli-Parisi splitting
function as well as Monte Carlo time dependent variables
such as the splitting angle. We use a network architec-
ture that is sufficiently general, and as a result, capable
of incorporating nonperturbative physics in the future.
In order to use the complete information of each event,
we use data representation which is directly given by the
four-vectors of the final state particles. To avoid sensitiv-
ity to the unphysical ordering of the list of four-vectors
during the training process, we use sets to represent the
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n→ n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, θi−1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1→ 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-
tation invariance is achieved by using so-called deep sets
which were developed in Refs. [68–70].

With the framework introduced in this work, we can
access the underlying physics mechanisms effectively de-
parting from the typical black-box paradigm for neu-
ral networks. Moreover, we expect that eventually the
GAN can be trained directly on experimental data (i.e.
measured four-vectors of detected particles). Generally,
GANs are ideally suited for such applications due to
their generalizability and robustness when exposed to im-
perfect data sets. We expect that our approach will be
particularly relevant for studies of heavy-ion collisions at
RHIC and the LHC as well as electron-nucleus collisions
at the future Electron-Ion Collider [71]. In heavy-ion col-
lisions, the presence of quark-gluon plasma (QGP) [72–
80] leads to modifications of highly energetic jets as com-
pared to the proton-proton baseline. These phenomena
are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-
forts have been made to better understand the physics of
this process. Using the novel techniques proposed in this
work, we will eventually be able to analyze the properties
of the medium modified parton shower using, for the first
time, the complete event information.

The parton shower. The parton shower we use for
training the GAN is designed to solve the DGLAP evo-
lution equations, see Refs. [50, 86]. In addition, we set
up the full event kinematics in spherical coordinates such
that we can use the final distribution of partons gener-
ated by the shower as input to the adversarial training
process. We start with a highly energetic parton which
originates from a hard-scattering event at the scale Q.
The parton shower cascade is obtained through recursive
1 → 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-
scribe a DGLAP splitting process i → jk as illustrated
in Fig. 1. First, the large light cone momentum fraction
z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting
functions. Second, the orientation of the two daughter
partons, the azimuthal angle φ, is obtained by sampling
from a flat distribution in the range [−π, π]. Third, the
splitting angle θ which is the relative opening angle of
the two daughter partons, is determined as follows: First,
sample a Monte Carlo time step ∆t from the no-emission
Sudakov factor

exp

[
−∆t

∑
i=q,q̄,g

1−ε∫
ε

dz Pi(z)

]
, (1)

where the Pi denote the final state summed Altarelli-
Parisi splitting functions for (anti-)quarks and gluons.
Then advance the shower time t → t + ∆t and solve for
the splitting angle θ in

t(Q, θ) =

Q tan(θ/2)∫
Q tan(π/2)

dt′

t′
αs(t

′)

π
. (2)

We evolve the shower from the hard scale Q down to the
hadronization scale which we choose as 1 GeV. We note
that the DGLAP shower described here has two cutoff
parameters. First, the angular cutoff on the splitting
angle θ which is introduced by the hadronization scale
and which determines the end of the shower. Second,
we introduce the cutoff ε on the momentum fraction z,
see Eq. (1). For our numerical results we choose ε = 0.03
which avoids the singular endpoints. The generated spec-
trum is accurate in the range ε < z < 1− ε, and emitted
partons that violate these bounds are not evolved further
in the shower. From the parent direction and the vari-
ables (z, θ, φ) of a given 1 → 2 splitting, we set up the
full event kinematics and determine the absolute posi-
tion of the two daughter partons in spherical coordinates
(Θ̃, Φ̃). The relevant kinematic relations are summarized
in the supplemental material. After the shower termi-
nates, we record the final momentum fractions Z of the
partons relative to the initial momentum scale Q as well
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FIG. 3. Comparison of the parton shower and GAN in terms of the final distribution of particles. The three panels show the
momentum fraction Z, the polar angle Θ and the azimuthal angle Φ (from left to right) for Q = 300, 500, 700 GeV.

as their corresponding spherical coordinates (Θ,Φ)1. To-
gether with the on-shell condition they fully specify the
exclusive final state distribution of all particles which are
produced by the shower. We note that the variables z, φ
are independent of the shower time t (self-similar or frac-
tal variables), whereas the splitting angle θ is determined
from the ordering variable of the shower and it also de-
pends on the scale Q. Therefore, we treat θ differently
from the other two variables in the generator network, as
discussed below. The shower described here provides an
ideal test ground to explore the use of explainable ma-
chine learning that aims to extract the structure of the
parton shower, and thus the underlying physics, from the
final distribution of particles in the event. We leave the
investigation of other shower algorithms and nonpertur-
bative effects for future work.

Data representation and setup of the GAN. To avoid
any loss of information, we choose to train the GAN di-
rectly on sets which contain the event-by-event particle
four-vectors produced by the shower. The required per-
mutation invariance is built into the discriminator net-
work by using so-called deep sets which were developed
in Refs. [68–70]. Several equivariant layers are followed
by a permutation invariant layer which ensures that the
discriminator network is insensitive to the ordering of the
input. Since the number of particles that are produced
per event fluctuates, the sets of four-vectors have variable
length. Deep sets are ideally suited to handle input with
different lengths. To accommodate the variable length of
the training data we allow the deep sets to contain up

1 Note that we use the variables (z, θ, φ) to describe an individual
1 → 2 splitting processes as shown in Fig. 1, (Θ̃, Φ̃) are the spher-
ical coordinates of partons at intermediate stages of the shower
and (Z,Θ,Φ) denote the final distributions of the momentum
fraction and angles of the partons after the shower terminates.

to 200 four-vectors which is sufficient for the energy Q
that we consider here. We note that it is also possible to
train the network on a set of observables where Infrared-
Collinear safety is built in directly [22, 87]. We plan to
explore the impact of different data representations in
future work which will be particularly relevant once we
include nonperturbative effects in the shower.

The generator network mimics the structure of a par-
ton shower. It sequentially produces partons and learns
to map n to n + 1 partons. To simplify the training
process, the generator is separated into a Monte Carlo
time-dependent and time-independent part. The time-
independent part is designed to learn the Altarelli-Parisi
splitting function Pi→jk and the azimuthal angle φ which
are the same for every branching process and indepen-
dent of Q. Whereas the other part of the network de-
pends on the Monte Carlo time t and on the energy Q,
i.e. it changes at every step of the shower and produces
emissions which are ordered in the splitting angle θ, see
Eq. (2). Both parts of the generator consist of neural
networks with 5 hidden layers and 50 neurons, which is
illustrated schematically in Fig. 2. We use the exponen-
tial linear unit (ELU) [88] as the activation function, to
avoid step functions in the resulting z and θ distributions.
We note that the two shower cutoffs discussed above are
also explicitly included in the generator network. How-
ever, in general, we expect that the cutoffs can be chosen
as trainable parameters as well.

Using the shower setup described above, we generate
training data for different energies in the range of Q =
200–800 GeV. As a proof of concept, we study a pure
gluon shower where the gluon that splits is chosen at
random. The training process of the GAN is a modified
version of the original GAN approach. More details are
given in the supplemental material.

Numerical results. We first verify that the GAN can
reproduce the final distribution of particles and we then
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FIG. 4. Comparison of the momentum fraction z, i.e. the Altarelli-Parisi splitting function Pg→gg(z) (left) and the relative
splitting angle θ (middle) of the first four splittings from the parton shower and the GAN for Q = 200− 800 GeV. In addition,
we show the θ distribution for three different values of Q for the first splitting (right).

consider the underlying physics by sampling from the dif-
ferent layers of the network. To quantify the agreement
between the shower and the GAN, we consider three
kinematic variables (Z,Θ,Φ) which characterize the fi-
nal distribution of particles. The result of the GAN and
the parton shower is shown in the three panels of Fig. 3,
where 3.5× 108 events from the GAN after 700 training
epochs is compared to 3.5×107 parton shower events. We
observe very good agreement for all three distributions.
The good agreement over several orders of magnitude is
highly nontrivial even without considering the underlying
physics. As expected for a DGLAP shower, the distri-
bution of the parton momentum fractions rises steeply
toward small-Z (left panel). The distribution of the po-
lar angle Θ peaks in the direction of the initial parton
and Φ is flat which is consistent with the flat sampling
of φ for each individual splitting.

Having confirmed that the GAN can reproduce the fi-
nal output of the parton shower, we are now going to
analyze the individual splitting processes to verify that
the network has also correctly learned the underlying
physics. The ability of the GAN to extract information
about parton branching mechanism is the main novelty
of our work. By sampling from different layers of the
network, we study the distribution of the variables (z, θ)
that characterize the individual splitting processes. As
representative examples, we show the results for the first
four splittings in the left and middle panel of Fig. 4. The
distribution of the momentum fraction z is shown in the
left panel for the g → gg splitting process. We observe
very good agreement with the Altarelli-Parisi splitting
function Pg→gg for all four splittings. In particular, we
note that the splitting function diverges for z → 1. In-
stead, the final Z-distribution (left panel in Fig. 3) falls
off steeply toward Z → 1 as expected for a QCD frag-
mentation spectrum. The strikingly different behavior of

the two distributions near the end point clearly demon-
strates that the GAN has in fact learned the underlying
physics mechanism. Next we consider the Monte Carlo
time-dependent θ distribution which is shown in the mid-
dle panel of Fig. 4. We observe that it is correctly repro-
duced by the GAN besides small fluctuations in the tail.
The distributions peak at small values of θ. As expected
for the ordering variable of the shower, the distributions
become more narrow for splittings that occur at later
Monte Carlo time. Here, θ is the only variable that de-
pends on the scale Q. We investigate its Q dependence
by considering the first splitting of the shower which is
shown in the right panel of Fig. 4. Even though the GAN
is optimized to reproduce only the Q-integrated distribu-
tion, the Q-dependence of the shower is nevertheless well
described by the network. We attribute the remaining
numerical differences to the finite number of neurons in
combination with the activation function and their abil-
ity to approximate a steep multi-differential distribution.
This can be mitigated by extending the size of the neural
network. Lastly, we find that the distribution of the az-
imuthal angle φ (not shown) also agrees with the parton
shower result and we thus conclude that the GAN has
in fact accurately learned the underlying physics of the
parton shower.

Conclusions. In this letter we proposed an explain-
able machine learning - a White Box AI - framework
which successfully learns the underlying physics of a par-
ton shower - a hallmark of modeling high-energy par-
ticle collisions. As a proof of concept, we demonstrated
that Generative Adversarial Networks (GANs) using the
full event information are capable of learning the parton
cascade as described by a parton shower implementing
DGLAP evolution equations. As input to the adversarial
training process we used deep sets which yield a permuta-
tion invariant representation of the training data of vari-
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able length. We found that not only the final distribution
of partons in the event can be described by the network
but also the physics of individual splittings processes are
correctly learned by the GAN. We consider our work as
a starting point of a long-term effort with the goal to
eventually train networks directly on experimental data
designed for extracting the underlying physics using full
event information registered in the detectors. We note
that the precision of our approach in falsifying theoretical
modeling is limited by the systematic experimental biases
which we plan to explore in subsequent publications. We
expect our results to be particularly relevant for future
studies of nonperturbative physics, collective effects, and
the modification of the vacuum parton shower in heavy-
ion collisions or electron-nucleus collisions at the future
Electron-Ion Collider.

Acknowledgements. We would like to thank Barbara
Jacak, James Mulligan, Stefan Prestel, Nobuo Sato and
Feng Yuan for helpful discussions. YSL, MP and FR
are supported by the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 and the LDRD Pro-
gram of Lawrence Berkeley National Laboratory. DN is
supported by the U.S. Department of Energy under Con-
tract No. DE-AC52-06NA25396 at LANL and through
the LANL/LDRD Program.

∗ ylai@lbl.gov
† duff.neill@gmail.com
‡ mploskon@lbl.gov
§ fmringer@lbl.gov

[1] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and
A. Schwartzman, “Jet-images — deep learning edition,”
JHEP 07 (2016) 069, arXiv:1511.05190 [hep-ph].

[2] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz,
“Deep learning in color: towards automated
quark/gluon jet discrimination,” JHEP 01 (2017) 110,
arXiv:1612.01551 [hep-ph].

[3] G. Kasieczka, T. Plehn, M. Russell, and T. Schell,
“Deep-learning Top Taggers or The End of QCD?,”
JHEP 05 (2017) 006, arXiv:1701.08784 [hep-ph].

[4] E. M. Metodiev, B. Nachman, and J. Thaler,
“Classification without labels: Learning from mixed
samples in high energy physics,” JHEP 10 (2017) 174,
arXiv:1708.02949 [hep-ph].

[5] C. Englert, P. Galler, P. Harris, and M. Spannowsky,
“Machine Learning Uncertainties with Adversarial
Neural Networks,” Eur. Phys. J. C 79 no. 1, (2019) 4,
arXiv:1807.08763 [hep-ph].

[6] B. Hashemi, N. Amin, K. Datta, D. Olivito, and
M. Pierini, “LHC analysis-specific datasets with
Generative Adversarial Networks,” arXiv:1901.05282

[hep-ex].
[7] S. Otten, S. Caron, W. de Swart, M. van Beekveld,

L. Hendriks, C. van Leeuwen, D. Podareanu, R. Ruiz de
Austri, and R. Verheyen, “Event Generation and
Statistical Sampling for Physics with Deep Generative
Models and a Density Information Buffer,”

arXiv:1901.00875 [hep-ph].
[8] A. Butter, T. Plehn, and R. Winterhalder, “How to

GAN LHC Events,” SciPost Phys. 7 no. 6, (2019) 075,
arXiv:1907.03764 [hep-ph].

[9] R. Di Sipio, M. Faucci Giannelli,
S. Ketabchi Haghighat, and S. Palazzo, “DijetGAN: A
Generative-Adversarial Network Approach for the
Simulation of QCD Dijet Events at the LHC,” JHEP
08 (2019) 110, arXiv:1903.02433 [hep-ex].

[10] S. Farrell, W. Bhimji, T. Kurth, M. Mustafa, D. Bard,
Z. Lukic, B. Nachman, and H. Patton, “Next
Generation Generative Neural Networks for HEP,” EPJ
Web Conf. 214 (2019) 09005.

[11] Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, M. P.
Kuchera, E. Pritchard, M. Robertson, R. Strauss,
L. Velasco, and Y. Li, “Simulation of electron-proton
scattering events by a Feature-Augmented and
Transformed Generative Adversarial Network
(FAT-GAN),” arXiv:2001.11103 [hep-ph].

[12] L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stöcker,
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Supplemental material

We first discuss the splitting kinematics of the DGLAP parton branching process. In particular, we focus on setting
up the full event kinematics in spherical coordinates. We then present more details of the GAN setup.

The angles of the daughter partons relative to the parent direction

The shower is designed to conserve the momentum in the plane orthogonal to the direction of the parent parton
that splits, and also conserve the energy or the light-cone momentum components parallel to the parent direction,
the two being equivalent up to power-corrections in the small splitting angle limit. Formally this does not conserve
the total global transverse momentum relative to the initiating parton of the cascade, on the order of 5 ∼ 10% of the
total energy of the jet, and necessarily builds up a total non-zero invariant mass of the final state, but does preserve
the angular structure of the shower, and the distribution of energy implied by the DGLAP evolution equations.
More sophisticated momentum conservation schemes exist, preserving more of the structure of the distribution of
partons in phase-space. This is necessary for the resummation of logarithms beyond leading logarithmic order, but
such complications are unnecessary for our proof-of-concept.

We consider the DGLAP 1 → 2 parton splitting as illustrated in Fig. 1. The splitting process is characterized in
terms of the longitudinal momentum fractions z and 1− z of the two daughter partons, their relative opening angle θ
and their orientation in azimuth φ. In order to determine the spherical coordinates of the two daughter partons, we
start by calculating their angle with respect to the parent direction, which we denote by θ1,2p. The angles θ1,2p are
illustrated in Fig. 5, and we have θ = θ1p + θ2p. The two angles can be determined from the relative splitting angle θ
which is related to the Monte Carlo time and the momentum fraction z. We consider the splitting of a parent parton
with momentum lµ (in the −z direction) to two daughter partons with momentum qµ and lµ− qµ. Both partons after
the splitting are on-shell q2 = (l − q)2 = 0. Using light cone coordinates, we have

|~q | = q0 =
1

2
(q− + q+) =

1

2
(zl− + (1− z)l+) ≈ 1

2
zl− . (3)

where we used

q+ =
l+

l−
(l− − q−) , (4)

which follows from (l − q)2 = 0. In addition, we have l2 = l+l− and q− = zl−. The approximation in Eq. (3) holds
for l+ � l−. Similarly, we find

|~l − ~q | = l0 − q0 =
1

2
(l+ + l− − (q+ + q−)) =

1

2
((1− z)l− + zl+) ≈ 1

2
(1− z)l− . (5)

In order to write the angle θ1p of the daughter parton with momentum qµ in terms of the splitting angle θ and the
momentum fraction z, we consider

cos θ1p =
~q ·~l
|~q ||~l |

. (6)

We rewrite the expression in terms of the momenta qµ and lµ − qµ as

cos θ1p =
~q · (~l − ~q) + |~q |2

|~q ||(~l − ~q) + ~q |

=
|~q ||~l − ~q | cos θ + |~q |2

|~q |
√
|~l − ~q |2 + |~q |2 + 2|~l − ~q ||~q | cos θ

=
(1− z) cos θ1p + z√

(1− z)2 + z2 + 2z(1− z) cos θ
. (7)
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FIG. 5. Illustration of the DGLAP 1 → 2 parton branching process with the relative opening angle θ of the two daughter
partons and their angles relative to the parent direction θ1,2p.

The last line is obtained by inserting the expressions for |~q | and |~l− ~q | which were obtained above. We thus find the
following expression for the angle between the parent direction and the daughter parton with momentum qµ:

θ1p = arccos

(
z + (1− z) cos θ√

1− 2z(1− z)(1− cos θ)

)
. (8)

Then the angle of the other daughter parton is given as θ2p = θ − θ1p.

The direction of the two daughter partons in absolute spherical coordinates

Given the direction of the parent parton in absolute spherical coordinates (Θ̃p, Φ̃p) and the kinematics of the 1→ 2
splitting (the azimuthal direction and the angles θip derived above), we can now determine the spherical coordinates

of the two daughter partons (Θ̃di, Φ̃di), i = 1, 2. We start with the vector pointing in the direction of the parent
parton. In spherical coordinates, we have

~rp =

sin Θ̃p cos Φ̃p
sin Θ̃p sin Φ̃p

cos Θ̃p

 . (9)

In order to generate the random distribution in azimuth, we construct a random vector ~rr which is then orthonormal-
ized to get a basis vector in the plane transverse to the parent direction. We use flat sampling for each component ~r ir
in the range of [1,−1]. The normalized random vector transverse to the parent direction can then be written as

~rA =
1

N
((~rp · ~rr)~rp − ~rr) , (10)

where the normalization factor N is given by

N =

(∑
i

(
(~rp · ~rr)2~r ip − ~r ir

))1/2

. (11)

By construction, we thus have

~rA · ~rp = 0 , ~r 2
A = 1 . (12)

We can then construct a second basis vector ~rB by calculating the cross product

~rB = ~rA × ~rp , (13)

which is normalized and orthogonal to both ~rA and ~rp. We write the vectors ~rdi of the two daughter partons i = 1, 2
as a sum of two vectors. The first term is the projection of the daughter’s direction onto the direction of the parent
parton which is proportional ∼ cos θ1,2p. The second vector is in the transverse plane relative to the parent direction
and parametrized in terms of ~rA,B and a random variable φ chosen in the range of [0, 2π] (flat sampling). The
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FIG. 6. Illustration of the vectors and angles relevant to determine the direction of the two daughter partons in absolute
spherical coordinates.

magnitude of that second vector is given by sin θ1,2p. For the two daughters i = 1, 2, the resulting vector can be
written as

~rdi = cos(θip)~rp ± sin(θip)(cos(φ)~rA + sin(φ)~rB) . (14)

See Fig. 6 for an illustration of the vectors and angles relevant for setting up the full splitting kinematics of the two
daughter partons. We can then write the polar and azimuthal angle of the two daughter partons as

Θ̃di = arccos(rzdi) ,

Φ̃di = π + arctan

(
rydi
rxdi

)
. (15)

More details of the GAN setup

For practical purposes we split the generator network into a time dependent and a time independent part. Both
parts consist of five hidden layers with 50 neurons and an exponential linear unit (ELU) [88] activation to avoid
discontinuous steps in the generated distributions. The time dependent network generates the next splitting angle θ′i
taking as input the previous angle θ′i−1, the initial scale Q, and a uniformly distributed [0, 1) random number. The time
independent network generates the variables z′i, φ taking as input uniformly distributed [0, 1) random numbers. We
also take the momentum of the parent parton as input to the time independent network. Through the training process,
the GAN learns that this information is not necessary to generate the variables z′, φ. To avoid vanishing gradients,
the immediate output neuron of the time independent neural network generates a transformed z′i = − log(1/zi − 1),
which is then converted to zi that is bounded by (0, 1). Similarly, the θ′i from the output neuron of the time dependent
network is converted to θi which is bounded by (0, π/2).

We propagate an event record of current partons, the initial scale Q, and the current θi throughout the shower
process. A random parton (pure gluon shower) is selected for the splitting process by double indexing: We first
sort the current list of showered partons in descending values of Zi, note its indexing order, and count the number
N of partons when their momenta are above the cutoff ε and are therefore able to split. A random parton is then
chosen from the first N partons, and, using the order of the sorted index, it is mapped to the event record. Since the
processing is de facto executed in parallel, we calculate the splitting of a parton even if N = 0 which is then reversed
afterwards. The highest number of branching processes occur for Q = 800 GeV. In this case, our implementation on
Nvidia Titan RTX reaches an execution time of 95± 4 µs/event.

The discriminator network consists of a sequence of two deep sets networks [68–70]. The first deep sets network
takes the list of partons from the shower as input, and produces the per-event activation. The second deep sets
network uses the output of the first network, the per-event activation, as input and produces the statistical activation
for the entire batch. We augment observables derived from the deep sets with the 2nd to 5th moment of the whole
batch parton momenta, in order to have a fall-back in the first training epochs, until the deep sets are fully trained.
The deep sets and moments are combined by a shallow network with one layer of 20 hidden neurons.
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We employ a modified training process compared to the original GAN which we summarize here. We use the binary
cross entropy as the loss function [89] which is given by

L = −1

2
Ex[logD(x)]− 1

2
Ec[log(1−D(G(c)))] , (16)

where E is the expectation value, D the discriminator, and G the generator. The conditional vector c contains both
the initial parton and a sufficient amount of random numbers for the full shower. The Adam optimizer [90] is used for
both the discriminator and generator, where the exponential decay rate for the first and second moment are chosen as
β1 = 0.5 and β2 = 0.999. The learning rate is λ = 5× 10−4 for the discriminator, and λ = 5× 10−6 for the generator.
To guard against generator training steps that may inadvertently deteriorate the generator, the discriminator D is
trained in each epoch until D(x) > 0.5 for parton shower result x, and D(G) < D(x) where G are the partons
generated by the GAN. After each generator training step, its finite step size result is tested and reverted in case it
resulted in reduced D(G) scores.

The time-dependent and independent networks of the generator are first pre-trained to be in the vicinity of the
physical value. We observe that at the beginning of the training, the untrained discriminator allows the generator
to deviate further from the pre-trained values. After ∼ 500 epochs the discriminator is sufficiently trained to correct
the generator, and closure with the parton shower occurs after ∼ 700 epochs. This mostly concerns the θ variable
whereas z is more robust. We note that this is not a general limitation but allows the training to proceed by a local
minimization. An alternative that we plan to explore in the future is a global optimization in combination with a
random initialization.
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