
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Algorithms for Human Genetics

Permalink
https://escholarship.org/uc/item/04c284r3

Author
KIRKPATRICK, BONNIE

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/04c284r3
https://escholarship.org
http://www.cdlib.org/

Algorithms for Human Genetics

by

Bonnie Beth Kirkpatrick

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Computational and Genomic Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Richard M. Karp, Chair
Professor Yun S. Song

Professor Michael I. Jordan
Professor Rachel Brem

Spring 2011

Algorithms for Human Genetics

Copyright 2011
by

Bonnie Beth Kirkpatrick

1

Abstract

Algorithms for Human Genetics

by

Bonnie Beth Kirkpatrick

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Richard M. Karp, Chair

Whereas Mendel used breeding experiments and painstakingly counted peas, modern
biology increasingly requires computational tools. In the late 1800’s probability and ex-
perimental genetics were the critical tools for discovering the gene. Today, the combined
use of statistical and computational methods to make genetic and genomic discoveries has
increased after the discovery of the DNA double-helix and the development of sequencing
methods. By examining relationships among individuals using computational tools, geneti-
cists have been able to understand the biological mechanisms that produce genetic diversity,
map ancestral movements of populations, reconstruct ancestral genomes, and identify rela-
tives. Furthermore, models in genetics have inspired advances in computer science, notably
the model for inheritance in families is an early example of a graphical model and helped
inspire the sum-product algorithm.

The genetic data of interest is single-nucleotide polymorphism (SNP) data, which are
positions in the genome known to have nucleotide variation across the population. Humans
are diploid individuals having two copies of each chromosome. Data for an individual can
come in two forms, either haplotypes or genotypes. The haplotypes are two strings, each
giving the sequence of nucleotides that appear together on the same chromosome. The
genotypes, for each position in the genome, give an unordered set of nucleotides that appear.
In particular the genotype is said to be ‘unphased’ due to the lack of information about which
nucleotide appears on which chromosome.

In human genetics there are two main ways to model relatedness: evolutionary relation-
ships between people and closer, family relationships. Evolutionary relationships, from the
domain of population genetics, occur through a distant relative and leave small traces of the
relationship in the genome. Family relationships are typically much closer and leave much
larger traces in the genome. This thesis examines algorithms for both types of relationships.

For evolutionarily related individuals, this thesis presents the perfect phylogeny and co-
alescent and then examines two related questions. The first is related to privacy of genetic
data used for research purposes. In order to share data from studies while hopefully main-
taining the privacy of study participants, geneticists have released the summary statistics
of the data. A natural question, whether individuals can be detected in the summary data,
is answered in the affirmative by using a perfect phylogeny model. The second question is

2

how to construct perfect phylogenies from haplotypes where there is missing data. We in-
troduce a polynomial-time algorithm for enumerating such phylogenies. This algorithm can
be used to compute the probability of the data as an expectation over possible coalescent
genealogies.

Recent relationships are modeled using a family tree, or pedigree graph. Traditionally,
geneticists construct these graphs from genealogical records in a very tedious process of
examining birth, death, and marriage records. Invariably mistakes are made due to poor
record keeping or incorrect paternity information. As an alternative to manual methods,
this thesis addresses the problem of automatically constructing pedigree graphs from genetic
data.

The most obvious way to reconstruct pedigrees from genetic data is to use a structured
machine learning approach, similar to phylogenetic reconstruction. That method would
involve a search over the space of pedigree graphs where the objective is to find the pedigree
graph with the highest likelihood of generating the observed data. Unfortunately, this is
not a good way to proceed for two reasons: the space of pedigree graphs is exponential, and
the likelihood calculation has exponential running time. The likelihood calculation given
genotype data is known to be NP-hard. In an attempt to make use of the likelihood in
complex pedigrees, the method PhyloPed uses a Gibbs sampler to infer haplotypes from
genotype data. In a second attempt to use likelihood methods, this time for haplotype
data, an NP-hardness result is presented. A third attempt to find an efficient algorithm for
the likelihood problem results in a state-space reduction method for the pedigree hidden
Markov model.

Since likelihood-based approaches seem completely infeasible, a completely different ap-
proach is introduced. We focus on the problem of inferring relationships between a set of
living individuals with available identity-by-descent data. For convenience, we assume that
the inferred pedigree is monogamous without inter-generational mating. Two heuristic and
practical pedigree reconstruction methods are introduced, one for inbred pedigrees and the
other for outbred pedigrees. This work immediately reveals another important problem,
that of evaluating the resulting inferred pedigree against a ground-truth pedigree. This can
be done either by determining whether the two pedigrees are isomorphic or by finding the
edit distance between the two pedigrees.

i

To my parents, George and Denise Kirkpatrick.

ii

“A man should learn to detect and watch that gleam of light which flashes across his
mind from within, more than the lustre of the firmament of bards and sages. Yet he dis-
misses without notice his thought, because it is his.”

“There is a time in every man’s education when he arrives at the conviction that envy
is ignorance; that imitation is suicide; that he must take himself for better for worse as his
portion.”

–Ralph Waldo Emerson, Self-Reliance

iii

Contents

List of Figures v

1 Introduction to Human Genetics 1
1.1 Genetics and Inheritance . 1

1.1.1 Genetic Variation . 1
1.1.2 Meiotic Inheritance . 3
1.1.3 Data . 4

1.2 Motivating Questions . 7
1.3 Computational and Statistical Challenges . 8

2 Unrelated Individuals 10
2.1 Populations . 11

2.1.1 Coalescent . 11
2.1.2 Perfect Phylogeny Tree . 13

2.2 Detecting Individuals in Pools . 16
2.2.1 Likelihood-Ratio Test . 18
2.2.2 Perfect Phylogeny Simulation . 18
2.2.3 Estimated Frequencies . 19
2.2.4 Discussion . 22

2.3 Efficiently Constructing Perfect Phylogenies from Binary Characters with
Missing Data . 23
2.3.1 Background and Examples . 23
2.3.2 Enumerating Resolutions for Binary Partial Characters under the RDH 25

3 Related Individuals 36
3.1 Introduction . 37

3.1.1 Pedigrees . 37
3.1.2 Inheritance States and Identity by Descent (IBD) 38
3.1.3 Inheritance Probabilities . 39

3.2 Problems of Interest . 41
3.2.1 The Peeling Algorithm and Elston-Stewart 43
3.2.2 Hidden Markov Models, Lander-Green, and the Forward-Backward

Algorithm . 45
3.3 Hardness . 46

iv

4 Algorithms for Inference 53
4.1 Gibbs Sampler . 53

4.1.1 Methods . 54
4.1.2 Results . 61
4.1.3 Summary . 65

4.2 Haplotype Hidden Markov Model . 67
4.3 State-Space Reduction for HMMs . 69

4.3.1 Introduction . 70
4.3.2 Problem Description . 71
4.3.3 Simulation Results . 78
4.3.4 Summary . 78

5 Algorithms for Pedigree Reconstruction 80
5.1 Introduction . 81
5.2 Pedigree Structure and a Simple Reconstruction Algorithm 83
5.3 Accuracy Measurements . 86

5.3.1 Isometry between Pedigrees . 86
5.3.2 Edit Distance between Pedigrees . 87

5.4 Two Practical Algorithms for Reconstruction 97
5.4.1 IBD Model for Constructing Outbred Pedigrees (COP) 98
5.4.2 IBD Model for Constructing Inbred Pedigrees (CIP) 98
5.4.3 Heuristic Graph Partitioning Method 101
5.4.4 Simulation Results . 101

5.5 Discussion . 107

6 Conclusions 109
6.1 Progress on Motivating Questions . 109
6.2 Future Problems . 110

6.2.1 Pedigree Likelihood Calculations . 110
6.2.2 IBD Estimates . 113

Bibliography 115

Index 123

v

List of Figures

1.1 Recombination. This figure illustrates the two parental chromosomes and
four gametes that result from the recombination event at the indicated recom-
bination junction on the parental chromosomes. The parental chromosomes
are homologous and distinguished by their colors. The chromosomes that ap-
pear together in one cell are encircled by a line. The two recombinants are a
collage of the parental chromosomes. Only two of the four resulting gametes
contain recombinant chromosomes, which are colored with both yellow and
blue. 4

1.2 Perfect Data. One chromosome is illustrated with two copies for each person
(rectangles with the sequence of the genome being along on the x-axis). The
colors represent which regions of the chromosomes are identical to those in the
parent. Each child receives a collage of their parents two chromosomes, with
one collage coming from each parent. The positions in the genome where the
colors change represent recombination breakpoints. We would like to assay
the color pattern, since this would represent complete data. However, there
is no experiment which can tell us exactly where recombination breakpoints
are. Instead, we typically use genotyping to assay particular positions in the
genome, called single nucleotide polymorphisms (SNPs), to determine what
nucleotide alleles appear there. Two SNP positions are illustrated here. There
is some hope that in the near future haplotype data may become available
from next-generation sequencing technologies. 5

1.3 Genotype Data. The same chromosomes are shown here as in Figure 1.2.
As previously mentioned, we would really like to know exactly where the
recombination breakpoints occur. However, genotyping only tells us the un-
ordered set of alleles that appear at each site. Two sites are shown here.
Both the haplotype information and the recombination breakpoints must be
inferred from the genotype data. 5

2.1 Compatibility. The characters given in Table 2.1 are convex on this tree.
The root of the connected subtree on which a character’s 1-states are convex
is labeled with that character. 15

vi

2.2 Equivalent Power of Perfect Phylogeny Haplotypes and Indepen-
dent Loci. For common haplotypes and common alleles (0.1 frequency),
both tests were applied to 1000 SNPs. The haplotype test was performed
on 500 independent SNP-pairs whose haplotypes conformed to a perfect phy-
logeny. The genotype test had 1000 independent SNPs. 17

2.3 Power of the LR Test After Haplotype Frequency Estimation with
k = 2. Pools of 10 individuals, each with 100 independent pairs of linked
SNPs. The analysis was repeated for 100 replicates. The left-most curve
is the test results when the pool haplotype frequencies are known exactly.
The curve just under that one, is obtained by inferring the pool haplotype
frequencies. The right-most curve is the result of the testing all 200 SNPs
with the genotype test. 20

2.4 Power of the LR Test After Haplotype Frequency Estimation for
k = 1, 2 This figure was generated using only the analytical minimum KL
calculation (i.e. without using the perfect phylogeny test). Pools of 100
individuals, each with 100 independent pairs of linked SNPs. The analysis
was repeated for 100 replicates. The left-most curve is the test results when
the pool haplotype frequencies are known exactly. The curve just under that
one, is obtained by inferring the pool haplotype frequencies. The right-most
curve is the results of the testing all 200 SNPs with the genotype test. . . . 21

2.5 Power of the LR Test After Haplotype Frequency Estimation for
k = 1, 2, 3 Comparing tests on single SNPs, tuples of SNPs, and triples of
SNPs. This test was run on 150 SNPs for 10 pools with 100 individuals each. 22

2.6 Two examples of a set of characters C that meets the RDH requirement
but does not have a perfect phylogeny. To the left of each is the partition
intersection graph int(C) which contains cycles of four vertices that violate
Buneman’s theorem. 24

2.7 Two trees that fit the partial characters given in Table 2.2. The edges are
labeled with the characters they correspond to. 25

2.8 The heavy edge, (u, v), is a tree edge. The light edges are the pair-wise
partition intersection graph edges. CA

i represents the A-partition of Ci,
{s|Ci(s) = A}, where A ∈ {0, 1}, similarly for CB

i . Notice that coloring char-
acter Ci results in the subtree Tu|(v,u) being bi-colored while subtree Tv|(u,v)

is monochromatic. 28

3.1 Two Drawings of the Same Pedigree. These two drawings are of the
same pedigree graph. A third, more traditional, representation is shown in
Figure 3.2 . 37

3.2 Traditional Drawing of a Pedigree. This is the same pedigree as that
shown in Figure 3.1 . 38

vii

3.3 Inheritance Options for Half-Cousin Pedigree. The black disks are
alleles, with each diploid person having two alleles. The inheritance edges
indicate transmission of a parent’s allele to the child. The four edges relevant
to IBD inheritance for individuals A and B are numbered 1, ..., 4. The alleles
of each person are sorted so that the left allele is the one inherited from the
father and the right allele is inherited from the mother. Each allele has a
binary inheritance choice, in that it can be a copy of either of the parent’s
two alleles. 39

3.4 Non-IBD and IBD Inheritance States. For the pedigree from Figure 3.3,
there are 16 possible inheritance states on the 4 relevant edges. Two inher-
itance states are shown here. The left panel shows a non-IBD inheritance
state, 1011, where no allele from individuals A and B is copied from the
same ancestor. The right panel shows an IBD inheritance state, 1001, where
the red alleles in individuals A and B are copied from the same ancestor.
Indeed, there is only one other IBD inheritance state, 1111, where the right
allele of the grandmother is copied to individuals A and B. 40

3.5 Illustration of Inheritance Probabilities. The pedigree shown in this
figure is the same as that given in Figure 3.1. Each pair of colored polygons
are the two alleles for a single individual. Three positions in the genome
are illustrated as three separate inheritance state graphs. Edges connect
alleles that are copies of each other. The contributions to the inheritance
probability for each position are recorded below the graph. For the first
locus, P[s] = 1/26 and the founder contributions are given. For the second
and last locus, the recombination contributions and founder contributions
are given. For recombination contributions, we have θ to the power of the
number of recombination edges, shown in red. For the founder contribution,
we multiply the probabilities of each specified founder allele. The red founder
alleles are unspecified and contribute probability 1. 42

3.6 Lander-Green Hidden Markov Model. The emission states are labeled
G1, ..., GT . Example hidden states for a four-person pedigree are shown above
the emission states. The alleles of each person in the pedigree are drawn as
a hollow disk, and the alleles are implicitly grouped in pairs. There are an
exponential number of hidden states, one state for each inheritance vector.
Recombination probabilities give the transition probabilities for the HMM. If
two b-bit inheritance vectors differ at i bits, then the transition probability
is θi

j−1(1− θj−1)
m−i. 45

3.7 Genotype and Haplotype Pedigrees. (Left) Genotyped individuals are
shaded. We show one typed individual’s genotype which is expanded into the
haplotypes of the typed individuals in the proxy family of the haplotype pedi-
gree. (Right) Haplotyped individuals are shaded. For each of the genotyped
individuals in the left panel, the mapping adds a nuclear family containing
five new individuals with haplotypes having the pattern illustrated. 48

viii

4.1 Lineage Decomposition The left panel shows the whole pedigree while the
right panel shows the lineages of the pedigree. The non-lineage parents are
dashed, and individuals 6 and 5, respectively, are parents of individuals in
the lineages L(1, 2) and L(3, 4) . 55

4.2 Accuracy Against Recombination Rate. This plot shows results of
10,000 blocks for M2 the 2-lineage, 10-individual family. The accuracy of
each method was computed for different physical distance between neighbor-
ing SNPs. 63

4.3 ROC Plot for Tests With and Without Genotype Inference. Pedigree
R1 was tested at 3 SNPs for disease linkage after hiding a linked disease SNP.
Of the 4 simulated SNPs, neighboring SNPs were separated by roughly 6kbp. 66

4.4 ROC Plot for Tests With and Without Genotype Inference. Pedigree
R2 was tested at 5 SNPs for disease linkage after hiding a linked disease SNP.
Of the 6 simulated SNPs, neighboring SNPs were separated by roughly 25kbp. 67

4.5 Predicting Recombinations. The left panel is the average accuracy for
predictions from a pedigree with two half-siblings and three parents. The
right panel shows results from a six-individual, three-generation pedigree. In
both cases, 500 simulation replicates were performed, and the average accu-
racy of estimates from the haplotype data is superior to those from genotype
data. However, as the number of untyped founders increases, in both cases,
the accuracy of estimates from haplotype data drop relative to the accuracy
from genotype data. The accuracies of genotype and haplotype estimates
appear to converge. 70

4.6 Two Half-Cousins. (Left Panel) A pedigree with four non-founders of
which two are half-cousins together with their common grandparent. Circles
and boxes represent female and male individuals, while the two black dots for
each person represent their two chromosomes or alleles. Edges are implicitly
directed downward from parent to child. The alleles of each individual are
ordered, so that the left allele, or paternal allele, is inherited from the person’s
father, while the right, maternal allele is inherited from the mother. The two
cousins are labeled A and B. It is easy to see that the only possible IBD
is between alleles Am and Bm, the maternal alleles of individuals A and B,
respectively. (Right Panel) This makes the four male founders irrelevant to
the question of IBD. The four meioses are labeled in the order of their bits,
left-to-right,and the inheritance states are represented in binary as b1b2b3b4.
Let bi = 0 if that allele was inherited from the parent’s paternal allele, and
bi = 1 if from the maternal allele. For instance, A and B are IBD only for
inheritance states 1001 and 1111. 76

4.7 Hamming distances between each pair of partition sets. 77

ix

4.8 Maximal Ensemble Algorithm Results. The y-axis is the original size of
the state space, and the x-axis give the number of ensemble states produced
by the maximal ensemble algorithm. All simulated pedigrees had two gener-
ations, n = 6 individuals per generation, and Poisson mean λ = 2. The black
points are for monogamous pedigrees and the red points are for pedigrees
with half-siblings. 79

5.1 Constructing a Pedigree from the Full D-Splits. Given the d-splits
in DI for the set I of all the individuals in the pedigree on the left, we can
use the construction algorithm to recover the pedigree. These are the Venn
diagrams of the construction at three different steps in the algorithm. Each
panel shows a full generation of algorithm iterations, and right-most panel
shows the complete construction. Each d-split is drawn as a set containing
the related individuals. Each set in the diagram is labeled with the name
of its d-split, and the names of the d-splits are arbitrary as long as they are
distinct. 85

5.2 Comparing Different Distances Estimates. With n = 14 and λ = 3,
there were 2500 pairs of pedigrees simulated. Each point is an average of 50
simulations. The values of n and λ were chosen such that the branch-and-
bound algorithm would finish computing the true edit distance. The random
matching heuristic yields an estimated edit distance which is fairly close to
the true edit distance. The DP algorithm performs nearly perfectly for small
numbers of actual changes, while it returns the solution found by the random-
matching heuristic when it cannot find a solution for parameter k = 8. The
upper panel shows the accuracies of each algorithm. The lower panel shows
the difference in accuracy between the true edit distance and each distances
returned by the random-matching heuristic and DP algorithm. 95

5.3 Running Times. These are box plots comparing the running times of the
three different algorithms: heuristic algorithm, branch-and-bound algorithm,
and the DP algorithm. The heavy line is the median, the rectangle indicates
the first and third quartiles. In this case the median is coincident with the
first quartile for all three algorithms. The outliers are not shown; specifically,
there are a number of very long execution times for the optimal algorithm. . 96

5.4 Pair of Individual Related at Generation g. To test whether individuals
k and l are siblings at generation g, we look at the distribution on the length
of genetic regions shared IBD between all pairs of i and j descended from k
and l, respectively. 99

5.5 Test Case. Specific individuals in the pedigree are indicated with either
circles or squares. The triangle represents all the descendants of a particular
individual. This represents the case where individuals i and j are cousins via
the oldest generation. 99

x

5.6 Reconstruction under High Inbreeding. Here the pedigrees were simu-
lated with a fixed population size of n = 10 individuals per generation. Over
multiple generations, this results in a high level of inbreeding. The inaccuracy
on the y-axis is measured by computing the kinship distance. (Reconstruction
accuracy of 50 simulated pedigrees were averaged.) 102

5.7 Reconstruction under Less Inbreeding. Pedigrees here were simulated
with a population size of n = 50. The y-axis show inaccuracy measured by
kinship distance. (Reconstruction accuracy of 50 simulated pedigrees were
averaged.) . 103

5.8 Reconstruction for Deep Pedigrees. Pedigrees here were simulated with
a population size of n = 400. (Reconstruction accuracy of 50 simulated
pedigrees were averaged.) . 104

5.9 Comparison with GBIRP on Inbred Simulations. The three-generation
pedigrees here were simulated with n = 10 extant individuals, since GBIRP
could not process larger pedigrees. The accuracy of 1000 simulated pedi-
grees were computed and plotted. Here the CIP method performs the best,
i.e. closest to zero on both plots. 105

5.10 Comparison with GBIRP on Outbred Simulations. The three-generation
pedigrees here were simulated with n = 10 extant individuals, since GBIRP
could not process larger pedigrees. Here, the simulated pedigree relating the
extant individuals was outbred. The accuracy of 1000 simulated pedigrees
were computed and plotted. All methods perform better than they did on
the inbred data set. Over all, the COP method performs best on the outbred
data. 106

xi

Acknowledgments

Many wonderful people have contributed to my academic pursuits. Chiefly among them
are Richard Karp and Eran Halperin who together coached me through graduate school.
Professor Karp, thank you for being very approachable and for constantly asking me to
find simple and clear ways to communicate our work. Professor Halperin, thanks for always
sharing career advice and for always encouraging me to work on very practical problems.
Thanks also go to Yun Song and Michael Jordan whose appreciation of statistics has been a
pervasive influence on my work. Perhaps the most formative influence of all, my sister, Kay
Kirkpatrick, thank you for your early insistence that I take math courses and your continued
mentoring which has shaped my academic pursuits through college, graduate school, and
beyond.

Before arriving at Berkeley, I had a number of outstanding mentors. Gwen Jacobs,
thank you for encouraging me to study computational biology. Binhai Zhu, thanks for
teaching me algorithms and complexity theory and more recently collaborating with me on
some of the work that appears in this thesis. Brendan Mumey, thanks for supervising my
undergraduate research at Montana State University. Nancy Amato, after mentoring me
through two summers of research at Texas A & M University, deserves many thanks for
suggesting that I would enjoy graduate school.

Thanks go to all my co-authors who made each research project worth doing. Every one
of you made valuable contributions to the research and to my graduate education. Without
you the projects appearing in this thesis would not have gotten finished.

Thanks to the Designated Emphasis for providing a venue for a computational biology
community at Berkeley. Thanks to Samantha Riesenfeld, Sriram Sankararaman, Meromit
Schuster, Ma’ayan Bresler, and Josh Paul for building a computational biology community
in Computer Science. Thanks to Anna-Sapfo Malaspinas, I will never forget the Judo class
we took as a break from all the research.

Without my dear chums, graduate school would have been a lot less pleasant. Ben and
Juliet Rubinstein, Alex Simma, Louis Alarcon, Zach Anderson, Leon Barrett, Pratik Patel
and Anupama Bowonder, Todd and Cheryl Templeton, Alan and Jessica Wu, and Subbu
Venkatraman and Praveena Garimella, without you all, I would not have survived the rigors
of graduate school. Thank you for all the Friday night dinners, Settler’s games, barbecues,
and holiday parties. I will miss you all more than words can express. Thanks also to my
dear friends Roger and Olga Pearce. We have struggled through graduate school together,
even though at different schools.

Finally, to all my family, I owe a debt of gratitude for all the support and love that
has kept me grounded throughout graduate school. My parents George and Denise, thanks
for nurturing inquisitive minds in both your children. Kay Kirkpatrick and Pierre Albin,
my sister and brother-in-law, thanks for always giving me the benefit of your support and
advice. Lauren Barth-Cohen, thanks for continuing to believe in me.

1

Chapter 1

Introduction to Human Genetics

Genetics is fundamental to understanding biology. The instructions for the cell are
primarily encoded in DNA which is inherited from parent to child. This chapter introduces
the biological processes of inheritance and mutation, as well as the motivating questions
behind computational genetics research. Some of this introductory material was taken
from [57].

1.1 Genetics and Inheritance

The genome, in the form deoxyribonucleic acid (DNA), is believed to encode much of the
information for the development and function of living organisms. Over the last decade, large
quantities of human genomic data have become available. These data specifically identify
genetic variation between people. In order to understand genetic variation, we first need to
consider the biological medium, DNA molecules, and how they encode variation. We also
need to understand inheritance, the origin of similarity between people, and its relationship
to DNA. Both variations and similarities appear in most modern data sets, because the
locations of the variants are sampled with sufficient density along the DNA sequence. As a
result, these biological observations provide the intuition behind the algorithms we develop
in later chapters.

1.1.1 Genetic Variation

DNA and Chromosomes. A strand of DNA is a sequence of repeating units, named
nucleotides, together with the phosphate and sugar groups which bond covalently to provide
the connected backbone structure between the nucleotides. The four possible nucleotides
are represented with the letters: A, C, G, and T. Each nucleotide can form a hydrogen
bond with the complementing nucleotide on another DNA strand: usually A bonds with
T, and G with C. DNA is energetically stable when found as a double helix containing two
hydrogen-bonded and complementary strands of DNA. One long DNA double-helix is coiled,
with the aid of histone proteins, into a structure named a chromatid . A chromosome is an
X-shaped structure formed by joining two identical chromatids. Each chromosome contains

2

a 4-fold redundancy of the genetic information, since there are two identical chromatids each
containing a double helix which is formed from a DNA strand and its complement.

Humans have 23 types of chromosomes, numbered 1-22 and the 23rd being the sex
chromosome. Each type of chromosome encodes a different set of genes , with each gene being
the blueprint for a functional unit (protein or non-coding RNA). Both the unique physical
features of a chromosome and the unique set of genes it contains identify a chromosome as a
specific one of the 23 chromosome types. The 23rd chromosome is the sex chromosome, and
it comes in two varieties, either an X or a Y. For the remainder of this discussion, we will
leave aside the complexities of the sex chromosomes and will restrict our discussion to the
22 autosomal chromosomes. Most human cells are diploid, meaning that they contain two
‘copies’ of each chromosome type. Thus, a diploid human cell contains 46 chromosomes. It
is important to note that the two copies of each chromosome, although identical in type,
are not identical in genetic content. To emphasize this difference, we refer to these copies
as homologous chromosomes .

An analogy from computer science that may be helpful is that of classes and instanti-
ated objects. One can think of the 22 autosomal chromosomes as classes which each contain
different variable declarations, or different sequences of nucleotides. Having diploid human
genetic material is similar to having two instantiations of each of the chromosome objects,
and the exact nucleotide content is slightly variable across instantiations of the same chro-
mosome.

Single-Nucleotide Polymorphisms. A location in the nucleotide sequence where vari-
ation occurs is named a polymorphic site or locus. The variants appearing in the genome
at a polymorphic location are referred to as alleles . On average, 99.9% of sites in the human
genome are identical in all humans [93]. Much genetic variation occurs at single-nucleotide
locations, and these sites are known as single-nucleotide polymorphisms (SNPs). Thus, in
the case of SNPs, the alleles are nucleotides.

Continuing with the object analogy introduced above, we can think of the variable
content of a single chromosome class as a long array of nucleotide elements. Notice that the
array only contains the information on a single piece of DNA from each chromosome, since
there is no need to represent the 4-fold redundancies. Each gene is then described as a tuple
of indices which give the the start and end positions of the gene in the nucleotide array. For
the purposes of the analogy, we can think of a SNP site as a single polymorphic position in
the nucleotide array. In the interest of accuracy, we note that although the term ‘position’
is useful for conceptual explanations, it is not synonymous with ‘site’ or ‘locus’ since the
latter two terms implicitly account for variations in sequence length across individuals.

The alleles of each SNP would be the set of nucleotides that can possibly appear in the
sequence at the SNP locus. In practice, the alleles of a particular SNP are determined by
examining many genomes for variation at that particular site. While SNPs are the genetic
variants on which we focus in this thesis, there are other types of variation that are amenable
to the methods presented in this thesis, such as microsatellite loci, copy-number variants,
and some structural variation.

3

1.1.2 Meiotic Inheritance

Since most sites in the genome are identical across all humans, there are some significant
sources of genetic similarity. These sources are explained by the process of inheritance which
transmits genetic material from parents to their offspring. In diploid organisms with sexual
reproduction, each parent contributes half of their genetic material to each offspring. One of
the offspring’s homologous chromosomes comes from the father, and the other is contributed
by the mother. A haplotype is a sequence of alleles that were inherited together from a single
parent and all appear on the same chromosome in an individual.

This simple picture of direct inheritance has two additional processes that produce hap-
lotype diversity: recombination and mutation. Although these two mechanisms are most
clearly observed in families, the effects of recombination and mutation are also seen among
groups of ‘unrelated’ humans due to the evolutionary relatedness of the human species.

Recombination. Meiosis is the form of cellular reproduction that produces gametes, eggs
and sperm, for sexual reproduction. A recombination event occurs during meiosis in the
parent just prior to gamete or zygote formation and results in DNA being swapped between
the two homologous parental chromosomes. This forms a new combination of alleles in
the haplotype being transmitted to the offspring. Thus, the genetic material contributed
by a single parent is from both grandparents, because recombination yields a recombinant
chromosome containing portions of both grand-parental chromosomes (see Fig. 1.1). For
more molecular details about recombination, refer to Hartwell et al [38]. Between one and
three recombination events occur per chromosome per generation. The average rate of
recombination between contiguous nucleotides is 10−8, but recombination rates vary locally
by at least four orders of magnitude [68]

Recombination is usually modeled by the probability θ of a recombination event be-
tween two loci. For instance consider two SNPs, C1 and C2 with alleles {A, T} and {G,C}
respectively. In a parent having haplotypes AG and TC, the recombinant gametes have
haplotypes AC or TG while the parental-type gametes have AG or TC. The farther apart
two loci appear on the DNA sequence, the larger the probability of observing recombinant
gametes. As a result, loci that are very far apart are said to be unlinked with θ ' 0.5. If two
loci are contiguous, or nearly contiguous, in the genome, they are said to be linked because
the vast majority of the gametes carry the parental-type alleles (θ << 0.5). Although the
frequency of recombinant gametes is usually only counted in a family study or in sperm
study, there is a related concept that describes the historical effects of recombination in a
largely-unrelated population. Linkage disequilibrium (LD) measures linkage by examining
the haplotypes in the population and determining whether the alleles appearing at two loci
are correlated. There are several different statistics for LD (see [4] for details).

Mutation. Rather than producing new combinations of existing alleles, a mutation is an
event that introduces a new allele. The mutation rate per SNP is estimated as being between
10−8 and 10−9 [99]. One formulation of mutation that is useful at the population-level is
the perfect phylogeny. The main assumption underlying it is the infinite-sites assumption,

4

Recombination

junction

Two Parental Chromosomes Four Gametes

Figure 1.1: Recombination. This figure illustrates the two parental chromosomes and four
gametes that result from the recombination event at the indicated recombination junction
on the parental chromosomes. The parental chromosomes are homologous and distinguished
by their colors. The chromosomes that appear together in one cell are encircled by a line.
The two recombinants are a collage of the parental chromosomes. Only two of the four
resulting gametes contain recombinant chromosomes, which are colored with both yellow
and blue.

where each site can only mutate once over history. Of course, if there really are countably
infinite sites, the genome-wide mutation rate is spread across so many sites that there is
little chance of mutating the same site twice.

Among unrelated people, inheritance and evolution have resulted in a small number
of short haplotypes being shared by many people. If a haplotype is untouched by either
recombination or mutation, it will propagate through a phylogeny and will be shared by
many individuals. Recombination would seem to diversify away the effects of inheritance by
re-assorting the haplotypes, but linkage results in short regions of the genome having con-
served haplotypes. The process of mutation also diversifies haplotypes, but at a sufficiently
low rate that local haplotypes will differ in only a few positions. These ideas inspire the
perfect phylogeny method introduced in Chapter 2.

1.1.3 Data

Perfect data would tell us both the haplotype of each individual and exactly where the
recombination breakpoints occurred, see Figure 1.2. Currently, sperm typing and family
studies are the only way to reliably determine where recombination breakpoints occur. In
sperm studies, the haploid gametes in sperm are genotyped to determine where recombi-
nation breakpoints are[18]. In family studies, the recombinations must be inferred from
genotype data. There is some hope in the near future of obtaining haplotype information
via sequencing methods, although this data is currently unavailable.

Genotyping Although haplotypes are the genetic variants that are most useful for genetic
studies, using laboratory methods to determine haplotypes from diploid cell samples is

5

Figure 1.2: Perfect Data. One chromosome is illustrated with two copies for each person
(rectangles with the sequence of the genome being along on the x-axis). The colors represent
which regions of the chromosomes are identical to those in the parent. Each child receives
a collage of their parents two chromosomes, with one collage coming from each parent. The
positions in the genome where the colors change represent recombination breakpoints. We
would like to assay the color pattern, since this would represent complete data. However,
there is no experiment which can tell us exactly where recombination breakpoints are.
Instead, we typically use genotyping to assay particular positions in the genome, called
single nucleotide polymorphisms (SNPs), to determine what nucleotide alleles appear there.
Two SNP positions are illustrated here. There is some hope that in the near future haplotype
data may become available from next-generation sequencing technologies.

Figure 1.3: Genotype Data. The same chromosomes are shown here as in Figure 1.2.
As previously mentioned, we would really like to know exactly where the recombination
breakpoints occur. However, genotyping only tells us the unordered set of alleles that
appear at each site. Two sites are shown here. Both the haplotype information and the
recombination breakpoints must be inferred from the genotype data.

6

currently prohibitively expensive for large numbers of individual. Instead most studies
perform genotyping, an affordable analysis of genetic variation that is performed on diploid
cell samples. A genotype experiment examines SNPs at particular loci in the nucleotide
sequence and determines which alleles appear in the pair of homologous chromosomes.

The genotype of an individual reveals the (unordered) set of alleles that appear at each
site. Figure 3.7 illustrates the genotypes of a portion of the DNA sequence belonging to
a diploid individual. A single locus can contain two distinct alleles, in which case it is
heterozygous , or one allele, in which case it is homozygous . In the mother in Figure 3.7,
the second locus is homozygous, while the other is heterozygous. Notice that the genotype
is symmetric, since the set of alleles revealed by the analysis does not contain any order
information. For individual i and locus j, we will use the notation

{g0
ij, g

1
ij}

to refer to the individual’s two alleles.
The order information is contained in the haplotypes of an individual. In Figure 1.2,

the father has two haplotypes AG and TC. There are two haplotype pairs that satisfy the
father’s genotypes shown in Figure 1.3. In general, when there are H heterozygous sites
in the observed genotype, there are 2H−1 haplotype pairs that could have produced the
genotype. We will represent the haplotypes as a vector of alleles. So, individual i will have
two haplotype vectors

(h0
i , h

1
i)

with hk
ij being the allele at site j. Genotypes and haplotypes for the same person must be

consistent, so that the set of alleles at each site are identical

{g0
ij, g

1
ij} = {h0

ij, h
1
ij}.

Since genotyping is inexpensive relative to haplotyping, most studies based on haplotypes
collect genotype data and infer the haplotypes from the genotypes (also called the phase
information). Due to the symmetry properties relating genotypes to haplotypes, the decision
to collect genotype data introduces a non-trivial problem of inferring the haplotypes.

Sequencing Whole genome sequencing methods are currently being developed. These
methods will allow us to examine genetic variation at an unprecedented resolution. Not
only will we be able to detect unknown rare variants and examine structural variation (such
as chromosomal rearrangements), but using families we will be able to observe distinct
mutation events that produce novel variants. Exome sequencing is one method producing
invaluable information about novel variants [39].

Single-molecule sequencing is another genome sequencing technology where the genome
is sheared into many small fragments and then the fragments are sequenced by using DNA
replication machinery to bind complementary florescent nucleotides to the sheared fragments
of DNA. A camera is used to read the colors of the florescent nucleotides as they are
consecutively attached to the fragments yielding a sequence “read” of the fragment. Single-
molecule sequencing is an attractive alternative to genotyping and may soon yield long

7

haplotype reads for individuals [26]. Such technologies are being developed and may become
commercial within five to ten years. Sequencing methods would yield more information from
the same set of sampled individuals than genotyping methods, because more of the phase
information would be known.

1.2 Motivating Questions

The driver behind computational genetics research is a desire to fully understand ge-
netic epidemiology, pharmacogenomics, cancer genetics, population histories, and inheri-
tance processes. All of these goals require a sophisticated understanding of inheritance and
the functional expression of each unique genome.

The genome encodes most of the information required to orchestrate cellular activities.
Genes are expressed in the form of proteins or non-coding RNAs to carry out cellular func-
tions. Cascades of chemical reactions involving multiple proteins and RNAs lead to complex
cellular processes. Measurable characteristics of these processes are called phenotypes, or an
observable trait of an organism. The grand challenge of genetics is go understand how the
genome encodes phenotypic variation, and how small changes in the genome can result in
varying disease susceptibility.

A complete understanding of genetics, genetic variation, and the functional consequences
of genetic variation will greatly aid in understanding disease and treatment response. Every
individual has their unique genome and their unique disease susceptibilities. Furthermore,
every individual has a unique response to drug treatment that is dependent on their unique
genome through their ability to metabolize drugs. The goal of genetic epidemiology is to
elucidate the relationship between the genome and disease. Pharmacogenomics is aimed at
understanding how genetic variation influences drug response in an individual manner.

Much of the work in both genetic epidemiology and pharmacogenomics involves attempts
to correlate the presence or absence of a genetic variation with a disease or a drug response.
In these studies, researchers collect genetic material from individuals who have a particular
disease, called cases, and from individuals without the disease, called controls. In stud-
ies with unrelated individuals, association studies are done which are statistical tests for
correlation. These are often regression tests with allelic variations being the independent
variables and the disease being the dependent variable [77]. If there is a correlation detected,
then the tested variation is presumed to be involved in production of the disease phenotype.
Of course, biological investigation must follow-up the statistical study to determine whether
the detected variation is actually linked to a gene that might be causative for the disease.
These studies have successfully found genetic variations involved in Celiac disease, diabetes,
Crohn’s disease, and heart disease.

The classical association study is done with unrelated individuals. There is a similar
study, known as linkage analysis, which is performed on families[72]. Presuming that there
is a single site of variation responsible for the disease, the goal is to find the location in
the genome that best explains that site. The principal feature of the data that is exploited
is linkage disequilibrium, the correlation between neighboring sites in the genome. These
studies have found the genetic basis of many diseases including cystic fibrosis, Huntington’s,

8

and sickle-cell anemia.
Another critical application of computational methods is cancer genetics. The somatic

genome of cancer cells carries mutations that produce malignant behavior from the cancer
cells [89]. The genomes of cancer cells and normal cells differ in critical places that influence
the production of the cancerous phenotype. Since mitosis proceeds without recombination
(in contrast to meiosis), somatic genomes typically reproduce with few changes. Cancer is
usually the product of particular mutations occurring in genes whose disruption can produce
a cancerous phenotype.

It is also becoming evident that a population genetic perspective is required to under-
stand the disease phenotype of virus populations. It seems that the infectious properties of
HIV require that a population of the virus be present in the infected person’s blood. The ex-
istence of multiple virus genomes (i.e. with small changes from the ancestral virus genome)
allow the virus population to be more robust to environmental changes and influences the
virulence of the virus population [60].

Population genetic problems involve inferring the history of human populations, such
as bottlenecks and divergences. Very recent investigations involve the question of whether
Neanderthals mated with humans and how recently [33]. Many forensic questions are also
of a population genetic nature, such as identifying the owner of a tissue sample left at a
crime scene [86]. Finally there are important questions of genetic privacy that are becoming
more relevant as genotyping technologies become more commonplace.

Family-based analysis are useful beyond just finding disease-gene correlations using link-
age analysis or association testing. Genotypes of family members can be used to observe
evidence of novel variants, those variants not present in parents but appearing in their
children. Novel variants are mutations and provide a way to investigate mutation rates,
particularly using whole genome sequencing methods which are more likely than genotyping
methods to capture the presences of rare mutations. Fine-scale recombination rates can be
mapped using family studies. Families provide the only known way to estimate recombi-
nation rates in human females [20]. On the other hand, male recombination rates can be
inexpensively estimated from sperm-typing studies.

Additionally there are a number of questions regarding inferring relationships. Paternity
testing is one of the most common relationship testing methods. Beyond that, one might
test for any particular relationship between a pair of individuals. Even more important is
the problem of inferring relationships on a set of individuals.

1.3 Computational and Statistical Challenges

In this thesis, we will focus on a number of specific computational and statistical chal-
lenges. The problems addressed here include privacy of individuals participating in genetic
studies, pedigree analysis with haplotype data, inferring haplotypes in large pedigrees, infer-
ring recombination breakpoints from haplotype data, and inferring pedigrees from genotype
data.

There are a number of interesting population genetic questions. In Chapter 2 we will
focus on two questions. The first is the privacy of individuals participating in genetic

9

studies. It was originally thought that average allele frequencies across the individuals in
a study could be released without violating the privacy of study participants. This idea
was strikingly false [41]. Indeed, we will investigate how haplotype information can be used
to more accurately detect individuals in studies than genotype information. The second
population genetic question in this thesis is that of the compatibility of partial binary
characters with the perfect phylogeny. In general this problem is NP-hard, however we
consider a particular variety of data under which this problem is solvable in polynomial
time. In particular, we can enumerate the perfect phylogenies that are compatible with
a given set of partial characters. This has applications to computing the probability of
data under the coalescent with infinite sites. This is the first known algorithm for these
calculations on missing data.

Next, we consider questions regarding family genetics. In Chapter 3, after introducing
family trees, or pedigrees, we introduce hardness results for pedigree calculations given
haplotype data. Regardless of the hardness of these calculations, we proceed to introduce
three different algorithms for pedigree calculations in Chapter 4. The first algorithm infers
haplotypes for all individuals in a large pedigree on a small number of loci. Haplotype
inference of this type can improve the power of association studies on pedigrees. The
second algorithm infers recombination breakpoints from haplotype data. It turns out that
when there is missing data for some of the individuals in the pedigree, haplotype data and
genotype data can be equally useful for inferring recombination breakpoints. Finally, we
introduce a method for improving the efficiency of pedigree likelihood calculations.

In Chapter 5 we consider methods for pedigree reconstruction. First, we introduce a
theoretical method for pedigree reconstruction that has conceptual value. Next, we intro-
duce the problem of evaluating the accuracy of inferred pedigrees. This problem can be
formulated either as a pedigree isomorphism problem or as an edit distance problem. The
edit distance problem turns out to be APX-hard, however there appear to be efficient and
useful heuristics for approximating the edit distance. Finally, we introduce two practical
methods for inferring pedigrees from identity-by-descent data. The simulation results indi-
cate that these methods work better than the state-of-the-art methods. We then discuss an
application of this method to publicly available data.

The final contribution of this thesis is to discuss future problems in Chapter 6. Several
natural and important problems are proposed. In particular sequence data is opening new
opportunities to modify existing algorithms and make genetic discoveries. In addition, the
pedigree reconstruction problem is not solved. There is much work left to do both in
evaluating pedigree reconstruction methods and in improving the methods.

10

Chapter 2

Unrelated Individuals

Strictly speaking no set of individuals is ’unrelated’, since even individuals of different
species are related phylogenetically. To clarify the context of this chapter, we are interested
in individuals who are not recently related, i.e. not related via close family relationships.
In particular, we imagine a population of haploid individuals who mate randomly with
each other (i.e. no biased selection of mates) and are not subject to the forces of selection.
The main process is mutation and genetic sequences are generated in the model via the
introduction of mutated alleles. This random process is the coalescent process.

Why would we want to model a diploid human population using a haploid model with so
many restrictions? The reason is that this model can be dealt with mathematically, in that
we can actually compute certain quantities of interest. It turns out that the genealogies
generated by the coalescent process are trees with randomly chosen branch lengths. As
we know, trees are convenient both for closed-form solutions for quantities of interest and
for efficient computation. Under more complicated, non-tree models, such as the coalescent
with recombination, the genealogies, called ancestral recombination graphs (ARGs), are more
difficult to perform calculations with [40].

Under one particular model of mutation, the coalescent with infinite sites, the genealogies
generated by the coalescent must be consistent with the perfect phylogeny tree [101]. For
a given perfect phylogeny tree, there are many coalescent genealogies consistent with it,
thus computing probabilities of data under this model requires enumerating genealogies
consistent with the perfect phylogeny. Fortunately, the perfect phylogeny can be found
efficiently for binary data when there is no missing data [36].

This chapter introduces the coalescent with infinite sites and the perfect phylogeny.
Then it proceeds to introduce two algorithms. The first algorithm is an application of the
perfect phylogeny to the problem of detecting individuals in pooled data sets. Geneticist
have shared genotype data from studies by pooling the individuals in the study and releasing
the average allele frequencies for each site. Recently this pooled data was shown to violate
the privacy of individuals participating in the study, since individuals can be detected in
the pooled data [81]. The algorithm introduced in this chapter extends previous work by
leveraging haplotypes to better detect individuals in pooled data.

The second algorithm introduced in this chapter considers efficient ways for constructing

11

perfect phylogenies from binary data with missing values. While this problem is hard in
general, there are settings in which the phylogenies can be found in polynomial time. In
particular, we introduce an enumeration algorithm which finds all the perfect phylogenies
consistent with the input data, provided that the input data satisfy a certain condition.
This algorithm gives the first known way to compute probabilities of observed data with
missing values under the coalescent model with infinite sites.

2.1 Populations

The ’population’ referred to in the title ’population genetics’ is one that satisfies the
assumptions of the coalescent process. These are populations that are panmictic, or well
mixed by random mating, and not subject to selection. The study of family relationships is
a different topic typically falling outside the purview of population genetics. The panmictic
populations referred to here are typically populations of haploid individuals that evolve by
a mutational process without recombination. Although more recent models have considered
recombination and diploid individuals [40].

One of the oldest population models was introduced by Wright [100] and Fisher [30] in
1931 and 1930, respectively. This was after the discovery of the gene and Mendelian genetics,
but before Watson and Crick discovered the structure of DNA and long before the advent
of molecular genetics. The advent of sequencing and genotyping methods changed the field
of theoretical population genetics into a practical science with applications to forensics,
epidemiology and pharmacogenomics.

2.1.1 Coalescent

The coalescent [47] defines a genealogical process on haploid individuals (where each
individual has a single copy of each chromosome), for example bacteria or yeast. The co-
alescent primarily models mutation and is the limiting result for the Wright-Fisher model
on an infinite population [98]. The properties of the coalescent have been beautifully de-
veloped in many books which also give the relationship between different variations on the
coalescent model [98, 40]. One very well studied version of the coalescent is the coalescent
with infinite sites, which is related to the perfect phylogeny [82], and is a model used both
for evolutionary and population-genetic relationships. Much of the literature devoted to the
coalescent deals with the problem of sampling coalescent trees from the probability distribu-
tion of the genealogy given the observed data (typically from the most recent generation).
In this section, we will restrict ourselves to discussing the Wright-Fisher (WF) model and
Kingman’s n-coalescent with the infinite-sites mutation model without recombination. Both
WF and Kingman’s coalescent can be thought of as a directed tree whose nodes are haploid
individuals and whose edges describe inheritance from an individual in an older generation
to one in a more recent generation.

12

Wright-Fisher Model.

The Wright-Fisher (WF) model consists of a fixed number, N , of haploid individuals
per generation and a fixed number of generations t. The generations are discrete with no
mating between generations. To simulate reproduction going forward in time, each haploid
individual chooses their haploid parent uniformly at random from the previous generation,
i.e. each parent has chance 1/N of being chosen. The number of offspring of a particular
individual is Poisson distributed [40]. The WF model is a coalescent process, because when
starting with the most recent generation and looking backward in time, there is always
a single ancestor from which all the extant individuals are descended, termed the most
recent common ancestor (MRCA). This means that the genealogy of relationships forms a
tree. (Note that some versions of the WF model for diploid individuals do not necessarily
coalesce [73].)

The WF model has discrete generations, but it is mathematically convenient to consider
continuous time approximations. Let n be a fixed sample size of extant individuals taken
from the most recent generation. When taking the limit as N →∞ the WF model converges
to the continuous-time n-coalescent described by Kingman [47].

Frequently the population size is re-scaled to obtain an effective population size that
facilitates the conversion between discrete-time units and continuous-time units. Specifically,
a common scaling is such that one unit of continuous time is the average time in the WF
model for two individuals to coalesce into a common ancestor, which is 2N generations.

The n-Coalescent

We will limit our discussion to giving the stochastic process to sample coalescent genealo-
gies on n extant individuals. Certainly this discussion does not do justice to the breadth of
work on the coalescent. Please see [40, 98] for much more in-depth expositions.

To sample a coalescent genealogy, we begin with n individuals. Let k represent the
number of branches in the tree.

1. Initially, let k = n.

2. While k > 1 simulate events as follows.

(a) The waiting time T c
k to the next coalescent event backwards in time is exponen-

tially distributed as T c
k ∼ Exp(

(
k
2

)
).

(b) To choose the particular event, pick a random pair (i, j) of branches where 1 ≤
i < j ≤ k uniformly among the

(
k
2

)
possible pairs of branches.

(c) Merge lineages i and j into one branch updating the branch count k = k − 1.

The Infinite Sites Mutation Model

Here we are concerned with simulating the haplotypes of the individuals in addition to
the genealogy. We restrict our attention to the infinite sites model for mutation where each
new mutation occurs at a unique position in the genome and the length of the haplotype is

13

the number of mutations. The genome is assumed to be infinitely long so that a uniform at
random choice of a site to mutate always produces a unique site. This means that there are
no recurrent mutations, i.e. mutations at the same site occurring at different time points.
This is only one mutation model, please see [40, 98] for other mutation models.

We can modify the WF model to simulate haplotypes under the infinite sites model as
follows. For each reproduction event, the parental haplotype chosen is passed on unmodified
with probability 1 − u. With probability u the parental haplotype undergoes a mutation
event at a unique site. Once mutation occurs at a site, that particular mutant allele is
inherited to all the individual’s descendants. Typically use a bit to represent each site
where a ∈ {0, 1} represents the ancestral allele and 1− a represents the mutant allele.

We can similarly modify our generative model for sampling an n-coalescent. Let ρ
represent the population mutation rate which is a scaled WF mutation rate, typically ρ =
4Nu. Again, let k represent the number of branches in the tree.

1. Initially, let k = n.

2. While k > 1 simulate mutation and coalescent events as follows.

(a) The waiting time to the next event backwards in time is exponentially distributed
Exp(k(k − 1 + ρ)/2).

(b) Choose the type of event, either coalescent or mutation, as follows. With prob-
ability (k − 1)/(k − 1 + ρ) the event is a coalescent event and with probability
ρ/(k − 1 + ρ) it is a mutation event.

(c) To choose the particular coalescent event, pick a random pair (i, j) of branches
where 1 ≤ i < j ≤ k uniformly among the

(
k
2

)
possible pairs of branches, merge

lineage i and j, and let k = k − 1.

(d) To choose a particular mutation event, pick a branch to mutate uniformly at
random from the k branches. Leave the number of branches, k, unchanged.

Computing probabilities of observed data under the coalescent model with infinite sites
involves effectively enumerating all the genealogies consistent with the data and determining
the probability of each genealogy. This can be done reasonably effectively by enumerating
the perfect phylogenies consistent with the data and then enumerating the genealogies con-
sistent with the perfect phylogenies using dynamic programming [101]. To discuss this,
we need to introduce the perfect phylogeny and algorithms for finding perfect phylogenies
compatible with the data.

2.1.2 Perfect Phylogeny Tree

The perfect phylogeny tree is a variant of the coalescent. Specifically, it is the coalescent
with infinite sites, but without the branching order specified by the coalescent genealogy.
In other words, many coalescent genealogies are consistent with one perfect phylogeny tree,
see [101] for details.

14

C1 C2 C3 C4 C5

S1 1 0 1 1 0
S2 1 1 0 0 1
S3 1 0 0 1 0

Table 2.1: Compatible characters. Here the rows are haplotypes and the columns are
SNPs. In the language of phylogeny, the columns are called characters. Characters are
compatible if there exists a perfect phylogeny for the haplotypes.

A perfect phylogeny on binary characters (in this case SNPs, see Table 2.1) is defined
as a rooted tree having haplotypes as nodes and SNPs as edges. Every edge in the tree,
labeled with a SNP, represents a a → 1 − a mutation at that SNP where a ∈ {0, 1} is the
ancestral state of the SNP. Note that this tree is not necessarily a binary tree. Since there
are many inheritance events that could violate a tree-like structure, we will introduce the
two assumptions that guarantee the phylogeny to be a tree:

1. The number of sites is infinite relative to the genome-wide mutation rate, which allows
each site to mutate at most once in the phylogeny.

2. No recombination occurs between haplotypes, and thus each haplotype has a single
ancestor.

From property (2), it is easy to see that the phylogeny must be a tree, since each haplotype
can only have one ancestor. The definition of the perfect phylogeny tree as rooted assumes
that there is a most recent common ancestor (MRCA) for the phylogeny. Property (1) tells
us that each haplotype containing a mutation descended from the ancestral haplotype where
the mutation first occurred. Let each node of the tree represent a haplotype, then the root of
the tree is the MRCA of the extant haplotypes. Each edge in the tree represents a mutation
that occurred between a parent-node and a child-node. Parent and child relationships in
the tree are indicated by two nodes sharing an edge, and the parent node has the shorter
path to the root. This figurative use of parent and child should not be confused with genetic
relationships such as Mendelian inheritance. Thus, every edge has two adjacent haplotypes
which differ by a single SNP, and that SNP labels the edge (Figure 2.1). Property (1) tells
us that there is at most one edge in the tree that corresponds to each mutation, and this
edge corresponds to the one time in history when the mutation occurred. Therefore, there
are no recurrent mutations.

For an example of a phylogenetic tree see Figure 2.1. There are three haplotypes on five
sites. Only four of the sites mutate, and these four sites, {C2, C3, C4, C5}, label the tree
branches on which they mutate.

Compatibility of Data

Wherever possible we will follow the notation used by Semple and Steel [82]. A phylo-
genetic tree T is an ordered pair (T, φ) with a label set X, where T = (V,E) is a tree and
φ : X → V is called the labeling map.

15

h3 = 10010

h1 = 10110 h2 = 11001

C2, C4, C5C3

Figure 2.1: Compatibility. The characters given in Table 2.1 are convex on this tree. The
root of the connected subtree on which a character’s 1-states are convex is labeled with that
character.

A character is a map C : X ′ → A from a non-empty subset of the label set to the set of
character states. If X ′ = X, the map C defines a full character. If |A| = 2, the character
is called a binary character and the states are labeled A = {0, 1}. A non-full character, C,
having X ′ ⊆ X and X ′ 6= X, is a partial character. For example, Table 2.1 is a data set
where the rows of the table are haplotypes. The columns are characters, which are simply
the values of all the haplotypes at a particular site. The characters can be thought of as
SNPs. Here the data are for full characters since there is no missing data.

A set of partial characters C = {C1, C2, ..., Cm} has some unspecified character states
on X where X is the label set obtained from the union of the domains of Ci for all i. A
resolution of C is a full character set CR which agrees with C in every specified character
state and gives some assignment for the unresolved characters.

A character C : X → A∪{∗} is convex on a phylogenetic tree T = (T = (V,E), φ) if and
only if there is an extension C̄ : V → A of the character such that the following conditions
hold:

i) The restriction of the domain of C̄ to X ′ yields a function equivalent to C.

ii) Let Ta be the subgraph of T induced by the set of vertices mapped by C̄ to a
particular character state a. For every character state a ∈ A, Ta is connected and
disjoint from all other Tb for b ∈ A, a 6= b.

A set of characters is compatible if and only if there is a phylogenetic tree on which
all the characters are convex. A set of partial characters C is compatible when there is a
fully-specified resolution CR that is compatible.

In general there are three distinct problems pertaining to compatibility of characters.

i) Given a phylogenetic tree T and a set of characters, determine whether the charac-
ters are compatible with the tree.

ii) Given a set of characters, determine whether the characters are compatible and
construct a tree on which the characters are convex.

iii) Given a set of characters, find the maximal subset of characters that are compatible.

16

Problem (i) is easily computed in linear time. Problem (ii) is known as both the char-
acter compatibility problem and the perfect phylogeny problem. In the general case, both
problems (ii) and (iii) are NP-hard [82]. For the case of binary characters, there is a poly-
nomial algorithm for determining compatibility [36]. Even for binary partial characters,
problem (ii) is NP-hard [88].

For example the characters given in Table 2.1 are compatible with the phylogenetic tree
in Figure 2.1. In this case, there is only one phylogenetic tree compatible with the data,
since the characters are full binary characters.

Perfect Phylogeny Haplotyping

The perfect phylogeny compatibility problem described above is defined for haplotype
data. Due to the ubiquity of genotype data, it is useful to define a notion of compatibility
between genotype data and a perfect phylogeny tree. Let g0

ij and g1
ij be the two binary

genotype alleles for individual i at site j, with gk
ij ∈ {0, 1}. The genotype of person i is

compatible with a perfect phylogeny tree if there exist two tree haplotypes h0 and h1 with
binary alleles such that g0

ij + g1
ij = h0

j + h1
j for all sites j. A set of genotypes are compatible

with a perfect phylogeny tree if all the genotypes in the set are compatible with the perfect
phylogeny tree. This problem is known as the Perfect Phylogeny Haplotyping problem.

The problem of finding perfect phylogenies compatible with genotype data was first pro-
posed by Gusfield [35]. An efficient algorithm was given by [28]. A linear time algorithm
was found by Ding, Filkov and Gusfield [22]. Later in this thesis, the perfect phylogeny
haplotyping problem will be used to find haplotypes for the founders of a pedigree in Chap-
ter 4.

2.2 Detecting Individuals in Pools

The problem under investigation here is the privacy of individuals participating in genetic
studies. Suppose there is a cohort of n individuals contributing to a genetic study. Suppose
that the genotype alleles are binary, i.e. gk

ij ∈ {0, 1}. It is possible to pool the genetic data
of the participants as follows

pj =
1

2n

n∑
i=1

g0
ij + g1

ij.

The pool allele frequencies pj for site j are simply the fraction of genotypes of individuals in
the pool that have the 1-allele. Originally it was thought that these pool allele frequencies,
~p = (p1, ..., pm), for a study cohort could be publicly released, in order to facilitate research,
without violating the privacy of study participants.

In 2008, Homer, et al. [41] published the striking result that publicly releasing the pool
allele frequencies of a cohort violated the privacy of the study participants. Indeed, they
showed that, given the genotype of an individual, it is possible to detect whether that person
participated in the study. Intuitively, this result extends also to close relatives, for example,
siblings can share long haplotypes.

17

More recently, Sankararaman, et al. [81] investigated the number of independent loci
whose pool allele frequencies could safely be published without violating privacy. Specifically
they tested the hypothesis that an individual was a better match for a pool than for an
ethnically matching population. They used a likelihood ratio test to test for the hypothesis
that the individual’s genotype could be generated by a random draw of two haplotypes
from the pool versus the hypothesis that the individual’s genotype could be generated by
a random draw of two haplotypes from the ethnically matching population. They proved
theoretical bounds making use of the likelihood ratio test for individuals in the pool which
assumes independence of the sites in the genome. Indeed the likelihood ratio test is the
theoretically most powerful test under the assumption of independence.

Here, we investigate whether the dependence between sites in the genome, or linkage
disequilibrium, can be used to more reliably detect individuals in a pool than is possible
under the assumption of independence. The work in the section is unpublished work done
in collaboration between the author, Sankararaman and Halperin.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Plot

False Positive Rate

P
ow

er

geno
hap

Figure 2.2: Equivalent Power of Perfect Phylogeny Haplotypes and Independent
Loci. For common haplotypes and common alleles (0.1 frequency), both tests were applied
to 1000 SNPs. The haplotype test was performed on 500 independent SNP-pairs whose
haplotypes conformed to a perfect phylogeny. The genotype test had 1000 independent
SNPs.

18

2.2.1 Likelihood-Ratio Test

Two likelihood ratio (LR) tests were computed: one for genotypes and one for haplotypes.
For the genotype case, the LR test was computed exactly as done by Sankararaman, et
al [81]. For SNP j, let pj be the pool allele frequency, and let fj be the population allele
frequency. For the person of interest i, let cij be the number of 1-alleles at SNP j, meaning
that cij = g0

ij + g1
ij for gk

ij ∈ {0, 1}. Then the genotype LR test for person i over m
independent SNPs is

Lg
i =

m∑
j=1

cij log

(
pj

fj

)
+ (2− cij) log

(
1− pj

1− fj

)
. (2.1)

For k linked SNPs, the haplotype LR test was computed in a similar manner. Let
h ∈ Zk

2 be a haplotype on k SNPs, i.e. a string of k bits. Divide the genome into m sets
of k contiguous SNPs. For the jth set of k SNPs, let fjh be the population haplotype
frequency and pjh be the pool haplotype frequency. Presume that we have the haplotypes
of the person whose presence in the pool we wish to detect. For this person of interest i,
let cijh ∈ {0, 1, 2} be the count of haplotype h for the jth set of SNPs, where

∑
hCijh = 2.

Then the haplotype LR test for person i at m haplotype blocks of SNPs is

Lh
i =

m∑
j=1

∑
h

cijh log

(
pjh

fjh

)
.

2.2.2 Perfect Phylogeny Simulation

Can linked SNPs be as useful as the same number of independent SNPs? In an ideal
simulation setting, we examine the haplotype test for k = 2 where the number of independent
SNPs for the genotype test is m/2 where m is the number of linked SNP-pairs in the
haplotype test. We find that false positive and false negative rates for these two tests are
essentially identical.

The simulation was performed independently for 1000 pairs of SNPs, and each SNP pair
was in LD according to the perfect phylogeny model. Specifically, for each SNP pair, j,
first select 3 haplotypes, Hj1, Hj2, Hj3, u.a.r. from {00, 01, 10, 11}. To randomly choose the
haplotype frequencies, Fj1, Fj2, Fj3, draw Fj1 ∼ Unif(0, 1) and Fj2 ∼ Unif(0, 1− Fj1) and
set Fj3 = 1− Fj2 − Fj3. These frequencies represent the population haplotype frequencies.
Next, we draw 1000 haplotypes for the pool. Each person’s haplotypes were drawn from the
population, with independent draws at each pair of SNPs. The likelihood ratio (LR) test
was computed with complete knowledge of the actual pool haplotype and allele frequencies
and with known population haplotype and allele frequencies. (Also considered were the
degenerate cases, where one or more Fjk = 0, however the ROC plots of the genotype and
haplotype tests remained very similar.)

Consider a simulation of 10 pools with 500 perfect phylogeny tuples and 1000 indepen-
dent SNPs. Let all the haplotype frequencies and all the allele frequencies be common (i.e.
0.9 ≥ Fjk ≥ 0.1 for all j, k, and the allele frequencies, Aj,l =

∑
k Hj,k,lFj,k, of SNP l ∈ {1, 2}

19

for tuple j, similarly satisfy 0.9 ≥ Ajl ≥ 0.1 for all j and l). Figure 2.2 shows that the hap-
lotype test performs similarly to the genotype test (Equation 2.1). This result means that
relative to the total number of independent SNPs, half the number of haplotype blocks are
necessary to obtain the same power when the haplotypes conform to the perfect phylogeny.
Worded differently, using the same number of SNPs, in linked and unlinked configurations,
we get the same power if the haplotypes conform to a perfect phylogeny as we do with
independent SNPs.

2.2.3 Estimated Frequencies

Simulation. We simulated pools and reference populations from the 58C and UKBS con-
trol groups from the Wellcome Trust Case Control Consortium (wtccc). There were 3004
individuals genotyped on the 500k Affymetrix array, and after preprocessing the data, there
were 2937 unrelated individuals with 462386 common SNPs. A SNP is said to be not in
Hardy-Weinberg equilibrium (HWE) if the frequency of the heterozygous genotype does not
match that expected from the independent allele frequencies. The preprocessing step re-
moved SNPs that were rare or not in HWE and removed individuals that had more than 3%
missing data, that had too much IBD with another individual, or that had non-European an-
cestry. In each replicate, a pool of n individuals were selected without replacement from the
2937 available individuals, and the 2937− n unselected individuals comprised the reference
population.

Estimation for k = 2. The haplotype frequencies for the reference population were in-
ferred by phasing all the reference individuals together using Beagle. This procedure used
all the available SNP genotypes, and was not limited to the 29624 pairs of SNPs that were
selected in the preprocessing step. A test individual’s haplotypes were inferred also using
Beagle, by phasing that person together with the reference population.

The pool haplotype frequencies were calculated by assuming that the pool individuals
were drawn from the same population as the reference individuals (and assuming correct
estimation of the population haplotypes). If the least frequent population haplotype occurs
< 0.005, then the perfect phylogeny method for pool haplotype inference was used. Oth-
erwise, the pool haplotype frequencies were obtained by minimizing the Kullback-Leibler
(KL) divergence between the pool haplotype frequencies and the population frequencies.

In the first case, the least frequent, or minor, haplotype was rare enough that it appears
in very few pools. With the three remaining haplotypes and the pool allele frequencies, we
solved a system of three equations with three unknowns to obtain the haplotype frequencies.
In cases where any estimated haplotype frequency were negative, then the data were incom-
patible with the population perfect phylogeny model. For example, suppose the population
haplotypes are {00, 01, 11} and the pool allele frequencies are 0.3 and 0.2. Notice that if
the pool haplotype frequencies are p1, p2, p3, then these equations imply that p3 > p2 + p3,
which is not possible with non-negative haplotype frequencies.

When the perfect phylogeny case did not apply, either due to a common minor haplotype
or due to an incompatibility, we optimized the four possible pool haplotype frequencies

20

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Plot

False Positive Rate

P
ow

er

SNP Inference
HAP Inference
HAP exact

Figure 2.3: Power of the LR Test After Haplotype Frequency Estimation with
k = 2. Pools of 10 individuals, each with 100 independent pairs of linked SNPs. The
analysis was repeated for 100 replicates. The left-most curve is the test results when the
pool haplotype frequencies are known exactly. The curve just under that one, is obtained
by inferring the pool haplotype frequencies. The right-most curve is the result of the testing
all 200 SNPs with the genotype test.

to minimize the KL divergence between the pool frequencies and the reference haplotype
frequencies. Since we used the pool allele frequencies as constraints, there was one free
variable; here refer to it as p01. For tuples of linked SNPs, i.e. k = 2, the objective function
is

p̂ = argminp

∑
ph

ph log
ph

fh

= (1− a0 − p01) log
1− a0 − p01

f00

+ p01 log
p01

f01

+ (a0 − a1 + p01) log
a0 − a1 + p01

f10

+(a1 − p01) log
a1 − p01

f11

where, as before, h ∈ {00, 01, 10, 11} is a haplotype for the SNP pair, a0 and a1 are the
pool allele frequencies, ph is a pool haplotype frequency, and fh is a population haplotype
frequency.

Results for 2-SNP Blocks. As before, we computed the power by counting the fraction
of individuals in the pool that had a significant LR test result when k = 1 and k = 2. The

21

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Plot

False Positive Rate

P
ow

er

SNP Inference
HAP Inference
HAP exact

Figure 2.4: Power of the LR Test After Haplotype Frequency Estimation for
k = 1, 2 This figure was generated using only the analytical minimum KL calculation (i.e.
without using the perfect phylogeny test). Pools of 100 individuals, each with 100 inde-
pendent pairs of linked SNPs. The analysis was repeated for 100 replicates. The left-most
curve is the test results when the pool haplotype frequencies are known exactly. The curve
just under that one, is obtained by inferring the pool haplotype frequencies. The right-most
curve is the results of the testing all 200 SNPs with the genotype test.

false positive rate was obtained by counting the fraction of pool individuals for which there
was a significant LR test result on the pool of n− 1 individuals where the test individual’s
genotype had been removed from the pool.

For pools of n = 10 individuals, p = 100 pools, 100 pairs of SNPs, the genotype and
haplotype inference test results are shown as the red and blue lines in Fig. 2.3. The haplotype
test shown in green (third line in the legend) is the haplotype test performed when knowing
the actual pool haplotype frequencies. This shows the power lost by mis-estimation of the
pool haplotype frequencies.

Figure 2.4 was generated using only the minimum KL calculation (i.e. without using
the perfect phylogeny test) on pools of 100 individuals, each with 100 independent pairs
of linked SNPs. This plot also shows the power lost by the haplotype frequency estimates
relative to knowing the actual pool haplotype frequencies.

Results for 3-SNP Blocks We used a similar inference method for the pool frequencies
of 3-SNP blocks (KL equations not shown). We apply the LR test for pool membership with
k = 1, 2, 3 and compare the results. The results shown in Figure 2.5 show that the power

22

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Plot of 150 SNPs, 10 pools, 100 p. per pool

False Positive Rate

P
ow

er

SNP
2 HAP
3 HAP (PP < 0.005)

Figure 2.5: Power of the LR Test After Haplotype Frequency Estimation for
k = 1, 2, 3 Comparing tests on single SNPs, tuples of SNPs, and triples of SNPs. This test
was run on 150 SNPs for 10 pools with 100 individuals each.

of the 3-SNP test deteriorates below the single SNP test that assumes independence. This
shows that for 3-SNP haplotypes, the potential improvement in power by taking advantage
of haplotype information is lost due to errors in haplotype frequency estimation.

2.2.4 Discussion

We introduced a haplotype likelihood ratio (LR) test for detecting the presence of in-
dividuals in pools. For haplotypes on 2 SNPs, this test effectively leverages linkage dise-
quilibrium to improve the power over that obtained by assuming SNPs are independent.
For haplotypes on 3 SNPs, we find that the inaccuracy of haplotype inference weakens the
power of the haplotype likelihood ratio test making it less effective than the likelihood ratio
test that simply assumes that the sites are independent.

Recall that Sankararaman, et al. [81] investigated the number of independent loci whose
pool allele frequencies could safely be published without violating privacy. Clearly it is
critical that those published pool allele frequencies are indeed from independent sites in the
genome. Otherwise a haplotype test, such as the one introduced here, might still be able to
detect study participants in the pooled data.

23

2.3 Efficiently Constructing Perfect Phylogenies from

Binary Characters with Missing Data

The work from this section was done in a collaboration between the author and Stevens [56].
For partial characters, we need to redefined the labeling map. Let the labeling map be

φ : X → V 2 where V 2 are the power sets of V . A taxon can always label some connected
subtree of the phylogeny, as noted by Halperin and Karp [37].

2.3.1 Background and Examples

Let V (Ci, Cj) be the set of values that the pair of characters Ci and Cj takes over the
the observed taxa in C. Then for binary characters V (Ci, Cj) ⊆ {(0, 0), (0, 1), (1, 0), (1, 1)}.
The classic splits-equivalence theorem [82] states that a collection of full binary characters is
compatible if and only if |V (Ci, Cj)| ≤ 3 for all pairs of characters Ci and Cj. An equivalent
statement of the splits-equivalence theorem, is that each character corresponds to a single
edge in the tree [82].

Definition 2.3.1 (rich data hypothesis). A set of binary partial characters where |V (Ci, Cj)| =
3 for all pairs of characters Ci and Cj conforms to the rich data hypothesis (RDH) of
Halperin and Karp [37].

In general, determining if a collection of binary partial characters is compatible is NP
complete. The rich data hypothesis is of theoretical importance in that it characterizes a
class of tractable perfect phylogeny problems on binary partial characters. Halperin and
Karp were also able to demonstrate that under certain sampling conditions data will fre-
quently conform to the rich data hypothesis.

Halperin and Karp noted that for RDH characters there was at most one topology for
the resulting phylogeny [37]. We will prove this fact later.

Partition and Subtree Intersection Graphs

There are two related notions that are extremely important for determining character
compatibility. As defined by Semple and Steel, we introduce the partition intersection graph
int(C) and the subtree intersection graph of T induced by C int(C, T).

Each character in C, C : X ′ → A, induces a partition on the taxa given by C−1(A). The
partition intersection graph int(C) = {VI , EI} summarizes the co-occurrence of character
state pairs on the observed taxa. int(C) is defined on C as follows. There is a vertex
in VI for each character, state pair. For a binary character Ci there will be two vertices
corresponding to C0

i and C1
i . There is an edge between two vertices if their character state

pairs occur for some taxon s in X. In other words (Ca
i , C

b
j) ∈ EI if there is some taxon s

such that Ci(s) = a and Cj(s) = b.
The partitions induced by character C can be mapped to the phylogenetic tree T using φ.

We can define an intersection graph on the vertex set of the minimal subtree of T containing
a partition of character C. Specifically, the subtree intersection graph of T induced by C

24

Figure 2.6: Two examples of a set of characters C that meets the RDH requirement but
does not have a perfect phylogeny. To the left of each is the partition intersection graph
int(C) which contains cycles of four vertices that violate Buneman’s theorem.

int(C, T) = {VI , EJ} is the graph having vertex set VI and edges EJ . As defined above, there
is a node in VI for every character, state pair. Let A be a set of taxa, and let T (φ(A)) be
the minimal subtree of T containing vertex set φ(A). Then there is an edge (Ca

i , C
b
j) ∈ EJ

if there is some tree-node v ∈ T such that v ∈ T (φ(Ca
i)) and v ∈ T (φ(Cb

j))
A legal edge in either of these graphs must connect nodes belonging to different charac-

ters.

Some RDH examples and intuition

Not every collection of binary partial characters satisfying the rich data hypothesis is
compatible. While the partial characters do not violate the splits equivalence, all resolutions
will violate splits equivalence. Figure 2.6 gives two examples of binary matrices that satisfy
the rich data hypothesis but no completion of these characters is compatible.

Not every set of compatible characters satisfies the rich data hypothesis. For example,
let the character set C = {C1, C2, C3, C4, C5}. The taxa are X = {S1, S2, S3}. The tree and
character matrix are given in Figure 2.1 and Table 2.1 (example taken from [74]). Indeed in
this example, it is easy to see that the character matrix does not satisfy the RDH (see C1

and C2), even though there exists a tree on which all the characters are convex. Recall the
splits-equivalence theorem, which states that there is a correspondence between the edges
of T and the characters. This theorem states that for each character, C there is an edge
which when removed from the tree produces two subtrees, one subtree containing only the
taxa mapped to state 0 by C and the other subtree containing only taxa mapped to state
1 by C.

This example illustrates several aspects with the RDH with distinct informative char-
acters. If a character appears twice in the character matrix, then the matrix fails the rich

25

S4 S3 S1, S5 S2

S4 S1, S3 S5 S2

C2 C1 C3

Figure 2.7: Two trees that fit the partial characters given in Table 2.2. The edges are labeled
with the characters they correspond to.

data hypothesis test. In addition, if every taxon has the same state in character C1, then
the matrix will fail the RDH test.

Lemma 2.3.1. Let C be a set of partial characters on taxa X such that C satisfies the RDH.
There exists a set C for which there are multiple resolutions for some unspecified character
state.

Proof. Let C = {C1, C2, C3} be the set of partial characters and let the taxa be X =
{S1, S2, S3, S4, S5} as given in Table 2.2. C satisfies the RDH since all entries Sk from a pair
of columns Ci(Sk)× Cj(Sk) ∈ {{0, 0}, {0, 1}, {1, 0}}

There is no unique resolution for the unspecified character state C1(S1). There are two
trees that satisfy the compatibility requirement. These trees are given in Figure 2.7 with
each edge being labeled by the character it corresponds to.

C1 C2 C3

S1 * 0 0
S2 1 0 1
S3 0 0 0
S4 0 1 0
S5 1 0 0

Table 2.2: C has no unique resolution for unspecified state C1(S1)

2.3.2 Enumerating Resolutions for Binary Partial Characters un-
der the RDH

When given data that satisfies the rich data hypothesis, we can find a tree that is com-
patible with the partial characters in O(nm2) time. Notice that the RDH requires that the
input characters all be distinct.

Algorithm 2 defines the BINARY-RESOLVE algorithm. The algorithm takes as input a
set of m distinct partial characters on n taxa such that every pair of characters satisfies the

26

rich data hypothesis. This algorithm is a modified version of the linear-time tree-popping
algorithm first described by Meacham [69] and reviewed in full detail in Phylogenetics [82].

The BINARY-RESOLVE algorithm works by iteratively modifying a tree to respect the
bipartition on the taxa that is described by character Ci. The tree begins as a single node
labeled with all the taxa. For each new character, we find the unique node, b, that is labeled
with taxa having both character states 0, 1 of Ci. We then add a single edge to the tree by
splitting b into two nodes b0 and b1, each labeled with the taxa of b that belong to a single
color or bipartition of Ci. The edges incident to b, are then connected to either b0 and b1 in
a manner preserving convexity. Consider T [V \{b}], the subtrees induced by removing node
b from T . Each of these subtrees that is 0-colored is connected to b0 and similarly for b1.
This splitting operation is called tree-popping.

Compatibility under the RDH

Before describing the details of the BINARY-RESOLVE algorithm, we need to define
several terms and present several results regarding compatibility under the RDH.

Recall that φ is defined as mapping a taxa to a set of nodes in the tree where the set
must define a subtree of T . For convenience, we define φ−1(Tv|(u,v)) = {s : φ(s) ⊆ Tv|(u,v)}.

A character Ci defines a 2-coloring on the subtrees of the phylogeny T = (T = (V,E), φ)
as follows. Let (u, v) be an edge in the tree T . Let Tv|(u,v) be the subtree of T , rooted at
v and not including edge (u, v). Given an edge e = (u, v) ∈ E and a coloring character,
Ci, there is a coloring of the subtrees, Tu and Tv, obtained by removing edge (u, v) from the
graph. The coloring is given by the resolved character states of Ci induced on Tu and Tv.
In other words, for a directed edge (u, v) ∈ E, we define

color(Tv|(u,v), Ci) = {Ci(s)|Ci(s) 6= ∗, φ(s) ⊆ Tv|(u,v), and s ∈ X}.

If a subtree is labeled with a single character state, we call it monochromatic, otherwise the
subtree is bicolored. Subtrees having only unspecified character states are said to have no
color.

Similarly, we can define the color of a node v with respect to coloring character Ci to be

color(v, Ci) =
⋂

u∈adj(v)

color(Tv|(u,v), Ci),

where adj(v) are the nodes adjacent to u in tree T and Tv|(u,v) is the subtree of T rooted
at v obtained to removing edge (u, v) from the graph. Again, we can discuss a node that is
monochromatic, bicolored, or has no color.

Now, we will prove the essential property of a set of compatible characters that satisfy
the RDH. The first result, that there are no uncolored nodes, is critical for the intuition
behind the tree-popping algorithm.

Theorem 2.3.1. Given that characters C1, C2, ..., Ci satisfy the RDH with a character Ci to
server as a coloring character and phylogenetic tree T = (T = (V,E), φ) that is compatible
with distinct characters {C1, C2, ..., Ci−1}, every vertex in the tree has a color (i.e. it is

27

impossible to select a directed edge (u, v) such that subtree Tv rooted at v contains only
unresolved characters, and it is impossible for a vertex, v, to have color(v, Ci) = ∅).

Proof. First, we prove the statement about subtrees being resolved. Assume that there
exists a directed edge (u, v) ∈ E such that color(Tv, Ci) = ∗. Then the set of taxa Sv =
φ−1(Tv|(u, v)) = {s : φ(s) ⊆ Tv|(u,v)} mapped to the subtree Tv have no color, Ci(s) = ∗ for
all s ∈ Sv. Then, by the splits-equivalence theorem, there is a resolved character CR

uv that
corresponds exactly to the edge (u, v) that splits the taxa into the partitions φ−1(Tu|(v,u))
and φ−1(Tv|(u,v)); see Figure 2.8. But, since all of the partition Ci that overlaps with Tv is
unspecified, the character pair Ci and CR

uv fail the rich data hypothesis. This means that for
any unresolved character Cu,v, the pair Ci and Cuv also fail the rich data hypothesis. This
contradiction proves that all subtrees must have a color.

Second, we prove that ∀v ∈ V , color(v, Ci) 6= ∅ by contradiction. Assume there exists a
vertex v for which color(v, Ci) = ∅. Then there must exist two subtrees Tv|(u,v) and Tv|(w,v)

rooted at v such that

color(Tv|(u,v), Ci) ∩ color(Tv|(w,v), Ci) = ∅.

Since we know that color(Tv|(u,v), Ci) 6= {∗} and color(Tv|(w,v), Ci) 6= {∗}, the first part of
the proof, then it must be the case that one of these subtrees has taxa labeled with 0 and
the other taxa labeled with 1. With out loss of generality, let

{1} ⊂ color(Tv|(u,v), Ci), and {0} ⊂ color(Tv|(w,v), Ci).

Then there can be no taxa labeling node v (∀s, φ(s) 6= {v}). Therefore, for any full resolution
of the characters CR, by splits equivalence, there must be (at least) two edges with the same
split, i.e. the edges (u, v) and (w, v). Therefore, two full characters must be identical, which
violates the RDH for those two characters. This also means that any partial characters of
those characters must also violate the RDH. Therefore, every node must be colored.

Theorem 2.3.2. A phylogenetic tree T = (T = (V,E), φ) is compatible with partial charac-
ters C = {C1, C2, ..., Cm} if and only if every full resolution, CR, is compatible with T where
for Ci ∈ C, CR

i ∈ CR is defined by CR
i (s) = color(v, Ci) for some v ∈ φ(s) with coloring

character Ci.

Proof. Given a phylogenetic tree T = (T = (V,E), φ) compatible with partial characters
C = {C1, C2, ..., Cm}, we will prove that CR is compatible with T . First, we will show that
the above CR

i is a well defined resolution of Ci, then we will show that it is compatible with
T .

First, for CR
i to be a resolution of Ci, it must be that ∀s such that Ci(s) 6= ∗ we have

Ci(s) = CR
i (s). Certainly, we know that ∀s such that Ci(s) 6= ∗, Ci(s) ∈ color(Tv|(u,v), Ci)

for all v such that φ(s) ⊆ Tv|(u,v) by definition of the coloring. Since character Ci(s) must
be convex on the tree and since color(Tv|(u,v), Ci) 6= ∗ by the previous lemma, this implies
that Ci(s) ∈ color(v, Ci) for all v ∈ φ(s).

28

Tu|(v,u) Tv|(u,v)
u v

CA
i CB

i

Figure 2.8: The heavy edge, (u, v), is a tree edge. The light edges are the pair-wise partition
intersection graph edges. CA

i represents the A-partition of Ci, {s|Ci(s) = A}, where A ∈
{0, 1}, similarly for CB

i . Notice that coloring character Ci results in the subtree Tu|(v,u)

being bi-colored while subtree Tv|(u,v) is monochromatic.

Now, to show that CR
i is well-defined, we must show that every taxon s has a single

color. By the previous lemma, every taxon has some color (i.e. there are no uncolored taxa,
since there are no uncolored nodes). Therefore, we need only establish that every taxon,
s, has no more than one color, i.e. that |{a ∈ color(v, Ci)|v ∈ φ(s), a 6= ∗}| = 1. This is
equivalent to showing that ∀v ∈ V , |{a ∈ color(v, Ci)|a 6= ∗}| = 1, meaning that there are
no bi-colored nodes. We will show this by contradiction. Let v be a bi-colored node, i.e. a
node v such that {0, 1} ∈ color(v, Ci). This implies that {0, 1} ∈

⋂
u∈adj(v) color(Tv|(u,v), Ci).

In turn, this means that {0, 1} ∈ color(Tv|(u,v), Ci) ∀u ∈ adj(v). Therefore Ci is not convex
on T for any possible resolution, since clearly any possible character-state subtrees T0 and
T1 are not disjoint.

Now, given full characters CR compatible with T , then any partial character set C that
satisfies the RDH is also compatible with T by definition.

This theorem tells us three things. First, when given a set of characters, specifying T
and φ is the same as specifying compatible resolutions of the characters. Recall that there
may be multiple resolutions. Second, for s with φ(s) containing multiple nodes, s can take
the color of any of those nodes. Third, we can define a correspondence between characters
and edges by appeal to the splits-equivalence theorem on full characters. We will formalize
this next.

For a particular tree T , using Theorem 2.3.2 we can define a one-to-one mapping fT from
the partial characters C to the resolved characters CR. This is well-defined, because for each
character Ci ∈ C, simply apply the theorem to color the taxa, thereby obtaining a resolved
character. Since CR is compatible with T , the splits-equivalence theorem guarantees us a
correspondence between edges in the tree and resolved characters. Let s : CR → E be the
mapping from edges of T to characters given by splits-equivalence.

Definition 2.3.2 (correspondence of partial characters to edges). For phylogenetic tree
T = (T = (V,E), φ), let g : C → E be a function giving the correspondence between edges

29

in the tree and partial characters. Specifically, we can write g as the composition of two
functions: g = s ◦ fT . We call g(Ci) the edge that corresponds to partial character Ci ∈ C.
A set of partial characters may be mapped to a particular edge g−1(e) for e ∈ E.

Before proceeding to the main result in this section, we need to extend our notion of a
partition intersection graph and prove one more lemma. We extend the idea of a partition
intersection graph to consider taxa that may be unresolved for a particular character.

We define a pair-wise partition intersection graph (PWPIG) under T as being a partition
intersection graph on two characters: C(u,v) represented by an edge (u, v) in the tree and
some other character Ci. Consistent with the definition of a partition intersection graph for
a set of characters, this pair-wise graph is a bipartite graph with vertex set W = X ∪ Y
where X = {Tu|(v,u), Tv|(u,v)}, and Y = {C0

i , C
1
i }. Again, we have edges (x,CA

i) where x ∈ X
and CA

i ∈ Y if and only if there is a taxon s ∈ φ−1(x) and Ci(s) = A, for A ∈ {0, 1}. This
object is a hybrid of the partition intersection graph and the subtree intersection graph.

Corollary 2.3.1. Given a character Ci to serve as a coloring character and a phylogenetic
tree T = (T = (V,E), φ) compatible with characters {C1, C2, ..., Ci−1}, then there is at most
one bicolored node b.

Proof. There is at most one bicolored node, b, by contradiction. Let b′ be another such
node. Pick an arbitrary edge e′ on the undirected path between b b′. Let Ce′ ∈ g−1(e′)
be one corresponding character for edge e′, by splits-equivalence on the resolved characters.
Then in the pair-wise partition intersection graph for Ce′ and Ci, there are two bicolored
subtrees. Therefore there are four edges in the graph, and the characters are incompatible.
Therefore, we conclude that there is at most one bicolored node.

Theorem 2.3.3. Given a character Ci to serve as a coloring character and a phylogenetic
tree T = (T = (V,E), φ) compatible with characters {C1, C2, ..., Ci−1} where for all s ∈ X
the subtrees φ(s) are of maximal compatible size, then there is a unique bicolored-node b ∈ V
if and only if

1. Ci is not already represented by an edge in the tree T , and

2. Ci is compatible with {C1, C2, ..., Ci−1} on tree T ′ = (T ′, φ′) with φ′ having subtrees of
maximal compatible size where T ′ = (V \ {b} ∪ {b0, b1}, E ∪ {(b0, b1)}) and

φ′(s) =

φ(s) ∀s s.t. b 6= φ(s)
φ(s) \ {b} ∪ {b0, b1} ∀s s.t. b ∈ φ(s) = b and Ci(s) = ∗
φ(s) \ {b} ∪ {bCi(s)} \ {τ1, ..., τk} ∀s s.t. b ∈ φ(s) = b and Ci(s) 6= ∗

where for each i with 1 ≤ i ≤ k, τi ∈ T [V \ {b}] such that color(τi, Ci) 6= Ci(s), and
T [V \ {b}] is subtrees of T induced by removing node b.

Proof. For each Cj such that j < i, there is an edge e = g(Cj) in the tree T that corresponds
to character Cj, by splits-equivalence on the resolved characters. This edge represents the
partitions of character Cj, since the taxa on the two subgraphs induced by removing e

30

correspond exactly to the partitions the character Cj induces on the taxa. This tree edge is
drawn in Figure 2.8.

(⇐) First, we assume that characters {C1, C2, ..., Ci} are compatible and Ci not in the
tree. Then for all j < i, we have characters Cj and Ci whose partition intersection graph
contains exactly 3 edges (by the RDH and by compatibility). Notice that there is a full
resolution of the characters {C1, ..., Ci−1} specified by T . Let edge e = g(Cj) correspond
to character Cj in tree T by splits-equivalence for the resolved characters. Directed edge
e towards the bi-colored subtree of T induced by the removal of edge e and according to
coloring character Ci. By the RDH, there is one such bi-colored subtree, so the direction
is well defined. Furthermore, all edges e have a direction, since they all have corresponding
characters (by the previous theorem). Then there must exist at least one node with out-
degree zero, since the RDH implies that all the characters are distinct and since character
Ci is not in tree T . Every node with out-degree zero is clearly bicolored, since {0, 1} ⊂
color(Tv|(u,v), Ci) ∀u ∈ adj(v). There is at most one node, b, with out-degree zero, by
Lemma 2.3.1 since there is at most one bicolored node.

(⇒) Second, we will assume that the node b ∈ V is the unique bi-colored node. The
challenge is to find a phylogeny T ′ = (T ′, φ′) that is a modification of the phylogeny T
and on which all the characters are compatible. The subtrees of T induced by removing b,
T [V \{b}], are monochromatic. We can see that any unresolved taxa s of Ci (i.e. Ci(s) = ∗),
if it is mapped to one of the monochromatic induced subtrees, must be resolved to be
consistent with that subtree’s color by Theorem 2.3.2.

We obtain T ′ as specified in the Theorem statement. To complete the proof, we need to
prove maximality of the subrees of φ′ and compatibility of T ′.

Now, we prove maximality. For each s ∈ X, if the subtree of φ(s) is of maximal size.
Since the creation of φ′ only removes nodes from subtrees τi that are incompatible with
Ci(s), then the subtree of φ′(s) is of maximal size.

To prove compatibility, we use the pair-wise partition intersection graphs under T and
T ′. Consider first the PWPIG under T . For an arbitrary edge e in T , we can consider
the partition intersection graph of a character Ce ∈ g−1(e), a corresponding character to
e, and Ci. As above, Tu|(v,u) and Tv|(u,v) are the two subtrees of T induced by removing
edge e. Without loss of generality, let subtree Tu|(v,u) be the subtree for which the partition
intersection graph has 2 edges, one to each set of Ci. Then, we can draw the partition
intersection graph as in Figure 2.8.

The PWPIG under T ′ has the same edges as the PWPIG under T . Clearly edges in
the PWPIG under T must appear in the PWPIG under T ′ because T ′ is a modification of
T . We need only establish that no additional edges appear; this is argued by contradiction.
Suppose that under T ′, the PWPIG has an edge between CA

i and φ′(Tv|(u,v)), i.e. the missing
edge in Fig. 2.8. Then there exists an s such that φ′(s) ⊆ Tv|(u,v) with Ci(s) = A. Since
b /∈ Tv|(u,v), φ

′(s) = φ(s) and φ(s) ⊆ Tv|(u,v). Then under T , the PWPIG must also have
an edge between CA

i and Tv|(u,v). But this edge does not exist by the RDH, and we have a
contradiction.

The above theorem essentially gives the tree-popping algorithm. By initially having a
tree with a single node and φ mapping all the taxa to that one node, we can take advantage

31

of the recursive nature of the theorem. Each step of the algorithm adds another character
to the tree by splitting the sole bicolored node and updates each φ(s) to maintain the
maximal subtree on which taxon s is compatible. The only remaining result is the proof of
splits-equivalence for the partial characters, i.e. the proof that the tree resulting from the
tree-popping method is unique.

Theorem 2.3.4. Let C be a set of partial characters on taxa X such that C satisfies the
rich data hypothesis and C has a perfect phylogeny. While there may be multiple resolutions
for unspecified character states, the tree topology T = (V,E) on which the characters are
convex is unique.

Proof. According to the tree-popping procedure, we initially have a tree with a single node
and φ mapping all the taxa to that one node. This initial tree is unique. For each tree-
popping step, a unique node b is found and split, producing a unique tree. Since the
tree-popped tree is unique at every step, the final tree is unique.

Algorithms

The algorithms implement the tree-popping procedure outlined in Theorem 2.3.3. When
given the existing tree T and a character Ci, Algorithm 1: SPLIT-NODE finds the unique
bicolored node b if it exists. Algorithm 2: BINARY-RESOLVE implements the tree-popping
algorithm.

Algorithm 2: BINARY-RESOLVE implements the tree-popping algorithm. The input
is the binary partial characters, C = {C1, C2, ..., Cm} on taxa X = {S1, S2, ..., Sn} and the
output is a phylogenetic tree T = (T = (V,E), φ) or ∅ The initial phylogeny is simply one
node labeled with all the taxa. The algorithm considers each character, Ci, in turn, adding
it to the the existing phylogenetic tree. It calls SPLIT-NODE to determine which node
of the tree should be tree-popped and replaced with two new nodes, one for each state of
character Ci.

The input to Algorithm 1: SPLIT-NODE is a phylogenetic tree T = (T = (V,E), φ)
on characters C1, ..., Ci−1, the current coloring character, Ci, and the color data structure
containing the colors of monochromatic subtrees for each character in T , i.e. C1, ..., Ci−1.
The output is (b, e) such that b ∈ V ∪ ∅ is a vertex b with out-degree zero, e ∈ E ∪ ∅ is
an edge e = (u, v) with no direction, the edge directions for every edge e ∈ E, dir(e), and
the color data structure, color(v, Ci), with the color of monochromatic subtrees rooted at v
under Ci. The algorithm finds the unique bicolored node by using the coloring character Ci

to give directions to the edges in the tree and then finding the unique node with out-degree
zero. In order to properly implement the φ update procedure in the Theorem, SPLIT-NODE
also records the color of every monochromatic subtree in the phylogeny. All this is done in
O(mn) time.

Lemma 2.3.2. For each character Ci and tree T the SPLIT-NODE algorithm finds a
unique bicolored node b to tree-pop, determines that the character Ci is already in the tree,
or declares the characters incompatible.

32

Algorithm 1 SPLIT-NODE(T = (T = (V,E), φ), Ci, color)

1: foreach edges (u, v) ∈ E do
2: Let Cuv ∈ {C1, ..., Ci−1} be the character corresponding to edge (u, v).
3: { Examine the PWPIG for Cuv and Ci to obtain the edge direction. }
4: D ← color(u,Cuv)
5: Initialize bcounts[i]← 0 for i ∈ {0, 1}.
6: Initialize counts[i][j]← 0 for i, j ∈ {0, 1}.
7: foreach taxon s ∈ X do
8: if count[Cuv(s)][Ci(s)] == 0 then
9: bcount[Cuv] + +

10: end if
11: count[Cuv(s)][Ci(s)] + +
12: end for
13: if bcount[D] == 1 then
14: dir((u, v)) = (u→ v)
15: color(u,Ci) = j such that count[D][j] > 0
16: end if
17: if bcount[1−D] == 1 then
18: dir((u, v)) = (v → u)
19: color(v, Ci) = j such that count[1−D][j] > 0
20: end if
21: if dir((u, v)) = ∅ then
22: e = (u, v)
23: end if
24: end for

25: nb← 0
26: foreach vertex v ∈ V do
27: if color(v, Ci) = ∅ then
28: b = v
29: nb+ +
30: end if
31: end for

32: if nb == 0 then
33: { Character Ci is already in the tree. }
34: RETURN (∅, e, dir, color(., Ci)
35: else
36: if nb == 1 then
37: RETURN (b, ∅, dir, color(., Ci))
38: else
39: { Character Ci is incompatible. }
40: RETURN (∅, ∅, dir, color(., Ci))
41: end if
42: end if

33

Algorithm 2 BINARY-RESOLVE(C) Returns one tree topology T and a mapping φ that
has multiple resolutions for the taxa.

1: { Initialize V , E, φ with a single node. }
2: V ← {v}
3: E ← ∅
4: for i = 1 to n do
5: φ(Si)← v
6: end for

7: T ← (T ← (V,E), φ)
8: color(v, Ci)← ∅ ∀v ∈ V, ∀i ∈ {1, ...,m}
9: { Process characters. }

10: for i = 1 to n do
11: (b, e, dir, color(., Ci))← SPLIT-NODE(T =(T = (V,E), φ, Ci, color))

12: if b = ∅ and e = ∅ then
13: RETURN ∅ { incompatible }
14: end if

15: if b 6= ∅ then
16: { Tree-pop b to split it into two nodes }
17: E ← E ∪ {(b0, b1)}
18: V ← V \{b} ∪ {b0, b1}
19: color(b0, Ci) = 0
20: color(b1, Ci) = 1
21: foreach u such that (u, b) ∈ E do
22: Replace edge (u, b) with (u, bcolor(u,Ci))
23: end for

24: end if

25: { Update taxon labels to be on the correct side of the new split }
26: foreach taxa Sj ∈ X such that b ∈ φ(Sj) do
27: if Ci(Sj) = ∗ then
28: φ(Sj) = φ(Sj) \ {b} ∪ {b0, b1}
29: else
30: φ(Sj) = φ(Sj) \ {b} ∪ {bCi(Sj)}
31: foreach node v ∈ φ(Sj) do
32: if color(v, Ci) 6= Ci(Sj) then
33: φ(Sj) = φ(Sj) \ {v}.
34: end if
35: end for
36: end if
37: end for

38: end for
39: RETURN T = (T, φ)

34

Proof. If the algorithm finds no bicolored node, then the edge e returned by the SPLIT-
NODE algorithm is the edge in the tree that corresponds to character Ci, and the tree need
not be changed. Lines 25-31 of SPLIT-NODE count the number of nodes with out-degree
zero, i.e. the number of nodes having no monochromatic color under coloring character Ci.
If the algorithm finds a unique node b with out-degree zero, which by the proof of Theo-
rem 2.3.3 must be the unique bicolored node, then SPLIT-NODE returns b. If SPLIT-NODE
finds more than one node with out-degree zero, By Cor. 2.3.1, it declares the characters in-
compatible.

Theorem 2.3.5. If the characters are compatible, the BINARY-RESOLVE algorithm finds
a unique tree T and for each taxon s ∈ X the maximal subtree φ(s) of T on which the taxon
is compatible.

Proof. If the characters are compatible, by Lemma 2.3.2, for each character Ci the algo-
rithm will find a unique bicolored node to tree-pop. The BINARY-RESOLVE algorithm
implements the tree-popping procedure given in Theorem 2.3.3 for replacing node b with
b0 and b1, and updating φ. Therefore by Theorem 2.3.3 the algorithm obtains the tree T
which is compatible with all the characters and the φ which has the maximal subtrees for
each of the taxa. By splits-equivalence, the tree obtained by the algorithm has the unique
topology which is compatible with the input characters.

This algorithm gives us a method to determine a unique tree that is compatible with
the given partial characters, and a way to determine all the possible resolutions of the
unspecified character state.

The running time of the BINARY-RESOLVE is O(nm2) time. The for loop at line
9 ranges over all m characters and performs two operations: SPLIT-NODE and the tree-
popping procedure. The SPLIT-NODE operation which takes O(nm) time. The tree-
popping update for φ takes O(nm) time. Therefore the running time of BINARY-RESOLVE
is O(nm2).

Discussion

This section presents an algorithm that can calculate a unique tree that is compatible
with all the binary partial characters given to it. It also finds all possible labellings for the
unspecified character states. One interesting direction for future work is the extension of
the rich data hypothesis to non-two-state characters. In this case, the rich data hypothesis
could be defined in terms of the partition intersection graph and cycles. A pair of characters
would satisfy the generalized rich data hypothesis if and only if adding a single edge to the
partition intersection graph would create a cycle. Then all the partial characters in the
data would be pair-wise compatible. This does not guarantee the compatibility of the set of
characters, but it ensures that there are a restricted number of resolutions for the unspecified
character states.

The algorithm presented in this section is likely to be useful for resolution of partial
haplotypes. Halperin and Karp showed that the rich data hypothesis holds with high prob-
ability for a large number of partial haplotypes [37]. To get this result they created a

35

probabilistic model that generates partial haplotypes. In addition, they showed that the
phase of genotypes can be resolved by resolving the partial haplotypes.

Furthermore this method will be useful for computing probabilities of data under the
coalescent with infinite sites when the data has missing values. To do this, one would need to
use the enumeration algorithm here to enumerate the perfect phylogenies, and then for each
perfect phylogeny compute the probability of the data under the coalescent. An efficient
method for the last step is given in [101]. This enumeration algorithm is the first known
algorithm allowing computation of these probabilities.

36

Chapter 3

Related Individuals

Pedigrees, or family trees, are important in genetics, computer science and statistics.
The pedigree graph encodes all the possible Mendelian inheritance options, and provides
a model for computing inheritance probabilities for haplotype or genotype data. Recent
contributions to genetics from pedigree calculations include fine-scale recombination maps
for humans [20], discovery of regions linked to Schizophrenia [70], discovery of regions linked
to rare Mendelian diseases [71], and insights into the relationship between cystic fibrosis and
fertility [31].

Algorithms for pedigree problems are of great interest to the computer science commu-
nity, in part because of connections to machine learning algorithms, optimization methods,
and combinatorics [32, 102, 76, 62, 91]. The pedigree graph encodes a set of inheritance pos-
sibilities and is a graphical model which models inheritance probabilities by using a graph
whose edges are conditional probability events and whose nodes are random variables. Even
thirty years after the development of some of the first pedigree algorithms [59, 27], pedi-
gree graphical models continue to be a challenging graphical model to work with. Known
algorithms for inheritance calculations are either exponential in the number of individuals
or exponential in the number of loci [61]. There have been numerous and notable attempts
to increase the speed of these calculations [85, 1, 29, 13, 32, 63, 23]. Recent work from
statistics has focused on fast and efficient calculations of disease-linkage that avoid the full
inheritance calculations [9, 96].

Statistical calculations on pedigrees are the principal method behind the most accurate
disease-association approaches [80, 96]. In those approaches, the aim is to find the regions
of the genome that are associated with the presence or absence of a disease among related
individuals.

This chapter introduces pedigrees, inheritance probabilities, and likelihood calculations.
Three probabilistic and combinatorial quantities of interest on pedigrees are introduced.
The previously known hardness of these three problems given genotype data is discussed
and a novel hardness result for the same problems given haplotype data is introduced.

37

3.1 Introduction

3.1.1 Pedigrees

Untyped
Male

Typed

Female

Female Male
Typed

Untyped

Parent

Child

4 5

6

1 2

3

Untyped
Male

Typed

Female

Female Male
Typed

Parent

Child

Parent

Untyped

4 5

6

1 2

3

Figure 3.1: Two Drawings of the Same Pedigree. These two drawings are of the same
pedigree graph. A third, more traditional, representation is shown in Figure 3.2

A pedigree is a directed acyclic graph where the set of nodes, I, are individuals, and
directed edges indicate genetic inheritance between parent and child. A diploid pedigree
(i.e. for humans) necessarily has either zero or two incoming edges for each person. The set,
F , of individuals without incoming edges are referred to as pedigree founders. An individual,
i, with two parents is a non-founder, and we will refer to their two parents as m(i) and p(i).
Due to every person having a male and female parent, it is well known that legal pedigree
graphs are four-colorable [94].

Pedigree graphs are drawn with the edges implicitly directed down from parent to child,
without drawing the actual direction arrow on the edge. Circle nodes are females, boxes are
males, as in Figure 3.1. There are three ways to draw the parent-child edges. The left panel
of Figure 3.1 has one edge drawn for each parent-child pair. The right panel of Figure 3.1
bundles the edges from a pair of parents to their children into the diamond ’marriage’ node.
Figure 3.2 shows the traditional way that epidemiologists draw pedigrees where a horizontal
edge between a male and female indicate marriage and an edge proceeds downward from the
marriage line to indicate all the offspring of the coupling, so that full-siblings are adjacent
to each other. At various points in this thesis we will use different representations based on
convenience.

For convenience, we will number the generations backwards in time, with larger numbers
being older generations. Let g be the number of generations of individuals in the graph.
For example, if g = 1, then we are discussing only the extant individuals, those individuals

38

Untyped
Male

Typed

Female

Female Male
Typed

Untyped

Parent

ChildChild

Parent

4 5

6

1 2

3

Figure 3.2: Traditional Drawing of a Pedigree. This is the same pedigree as that shown
in Figure 3.1

at the most recent generation. If g = 2 the graph contains the extant individuals and their
parents.

We call a pedigree regular when all individuals only mate with other individuals at the
same generation. A pedigree is monogamous if and only if every individual mates with at
most one other individual, so that there are no half-siblings. A pedigree has inbreeding if
there exists two individuals, one the ancestor of the other, such that there are multiple paths
in the pedigree graph connecting those two individuals.

Unlike a phylogeny, where the principal process is mutation, in a pedigree, the principal
process is recombination. In pedigrees the typical assumption is that there is no mutation
of alleles during inheritance. While this assumption is clearly not biologically accurate,
genotyping errors are too common to be able to distinguish between actual mutations and
genotyping errors.

Recombination along the genome is typically modeled as a Poisson process, where the
distance between recombination breakpoints is drawn from an exponential distribution. The
mean of the exponential is a function of the recombination rate [24, 7]. This is a model
for recombination without interference, where interference means that the presence of one
recombination breakpoint suppresses the occurrence of breakpoints in neighboring regions
of the sequence [65].

3.1.2 Inheritance States and Identity by Descent (IBD)

The pedigree graph represents the possible inheritance options, i.e. which alleles can be
copies of each other. Let us consider one position, j, in the genome. If there are |I \ F |
non-founders, we can represent the inheritance state of all alleles in the pedigree with a

39

A B

1

2 3

4

Figure 3.3: Inheritance Options for Half-Cousin Pedigree. The black disks are alleles,
with each diploid person having two alleles. The inheritance edges indicate transmission of
a parent’s allele to the child. The four edges relevant to IBD inheritance for individuals A
and B are numbered 1, ..., 4. The alleles of each person are sorted so that the left allele is
the one inherited from the father and the right allele is inherited from the mother. Each
allele has a binary inheritance choice, in that it can be a copy of either of the parent’s two
alleles.

|I \ F |-bit vector sj. For each non-founder, let us indicate the source of each maternal
allele using the binary variable sm

i,j ∈ {0, 1}, where the value 1 indicates that xm
i,j allele has

grand-maternal origin and 0 indicates grand-paternal origin. Similarly, we define sp
i,j for the

origin of i’s paternal allele. The vector sj = {sp
i,j, s

m
i,j|∀i} is the inheritance state for locus j.

Individuals of interest are called identical by descent (IBD) if a particular founder allele
was copied to each of the individuals. In general, the inheritance state is a collection of
trees, since each allele is copied from a single parent.

For example, see Figure 3.3 where a half-cousin pedigree is shown in detail with the black
disks representing alleles. The inheritance edges relevant to IBD relationships between
individuals A and B are numbered 1, ..., 4. Since there is one bit per edge, there are 16
inheritance states for the four numbered edges in this pedigree. Shown in the left panel of
Figure 3.4, a non-IBD inheritance state for individuals A and B is 1011. There are only two
inheritance states which yield IBD relationships, 1001 and 1111, the former is illustrated in
the right panel of Figure 3.4.

3.1.3 Inheritance Probabilities

We represent a single chromosome as an ordered sequence of variables, xj, where each
variable takes on an allele value in {1, ..., kj}. Each variable represents a polymorphic site,
j, in the genome, where there are kj possible sequence variants. Notice that even though
we restricted ourselves to binary alleles in Chapter 2, we are now considering the general
case. Since diploid individuals have two copies of each chromosome, one copy inherited
from each parent, we will use a superscript m and p to indicate the maternal and paternal
chromosomes respectively. For a particular individual i, the information on both copies of
a particular chromosome at site j is represented as xm

i,j and xp
i,j.

Furthermore, we assume that inheritance in the pedigree proceeds with recombination

40

s1

s2 s3

s4=1

=0 =1

=1
s1

s2 s3

s4=1

=0 =0

=1

Figure 3.4: Non-IBD and IBD Inheritance States. For the pedigree from Figure 3.3,
there are 16 possible inheritance states on the 4 relevant edges. Two inheritance states
are shown here. The left panel shows a non-IBD inheritance state, 1011, where no allele
from individuals A and B is copied from the same ancestor. The right panel shows an IBD
inheritance state, 1001, where the red alleles in individuals A and B are copied from the
same ancestor. Indeed, there is only one other IBD inheritance state, 1111, where the right
allele of the grandmother is copied to individuals A and B.

and without mutation (i.e. Mendelian inheritance at each site). This imposes consistency
rules on parents and children: the allele xm

i,j must appear in the mother m(i)’s genome as
either the grand-maternal or grand-paternal allele, xm

m(i),j or xp
m(i),j, and similarly for the

paternal allele and the father p(i)’s genome.
Let x be a vector containing all the haplotypes xm

i , x
p
i for all individuals i ∈ I, then we

are interested in the probability

P[x] =
∏
f∈F

P[xp
f]P[xm

f]
∏

i∈I\F

P[xp
i |x

p
p(i), x

m
p(i)]P[xm

i |x
p
m(i), x

m
m(i)], (3.1)

where the superscript m and p indicate maternal and paternal alleles, while the functions
m(i) and p(i) indicate parents of i. The first product is over the independent founder
individuals whose haplotypes are drawn from a prior distribution which is often the uniform
distribution. The second product, over the non-founders, contains the probabilities for
the children to inherit their haplotypes from their parents. The unobserved vector x is
not immediately derived from observed haplotype data, since vector x contains haplotype
alleles labeled with their parental origins for all the individuals. To compute this quantity,
we need notation to represent the parental origins of each allele where differing origins for
neighboring haplotype alleles will indicate recombination events.

Recall that sj is a binary vector giving the inheritance state for site j. A recombination is
observed at consecutive sites as a change in the binary value of a source vector, for instance,
sm

i,j = p and sm
i,j+1 = m. To compute the inheritance portion of Equation 3.1, we will sum

over the inheritance options P[x] =
∑

s P[x|s]P[s] where P[s] = 1/22|I\F |

As introduced in Chapter 1, we can observe two kinds of data for pedigree individuals
whose genetic material is available. The first, and most common, is genotype data, a
tuple of alleles (g0

i,j, g
1
i,j) that must appear in the variables xm

i,j and xp
i,j for each site j.

41

Since these alleles are unlabeled for origin, we do not know which allele was inherited from
which parent. The second type of data is haplotypes, where we observe two sequences of
alleles h0

i and h1
i and each sequence represents alleles that were inherited together from the

same parent. However, we do not know which sequence is maternal and which is paternal.
Let χ(sk

i,j) = p if inheritance bit sk
i,j = 0 and χ(sk

i,j) = m if inheritance bit sk
i,j = 1.

For either type of data, define a function Ci,j for locus j which indicates compatibility of
the assigned haplotype alleles with the data and requires inheritance consistency between

generations. Specifically, for genotype data Ci,j = 1 if xm
i,j = x

χ(sm
i,j)

m(i),j , xp
i,j = x

χ(sp
i,j)

f(i),j , and

{xm
i,j, x

p
i,j} = {g0

i,j, g
1
i,j}. Under haplotype data, the Ci,j = 1 when the first two equalities,

above, hold and {xm
i,j, x

p
i,j} = {h0

i,j, h
1
i,j}, which are the haplotype alleles at locus j.

Now, we write Equation 3.1 as a function of the per-site recombination probability
θ ≤ 0.5. For particular values of all the haplotype alleles xm

i,j and xp
i,j, the haplotype

probability conditional on the inheritance options and the observed data through Ci,j is

P[x|s] =
∏
f∈F

l∏
j=1

Cf,jP[xp
f,j]P[xm

f,j]
∏

i∈I\F

Ci,1

l∏
j=2

Ci,j · θ(Rm
i,j+Rp

i,j) · (1− θ)(2−Rm
i,j−Rp

i,j)

where Rm
i,j = I[sm

i,j−1 6= sm
i,j] and Rp

i,j = I[sp
i,j−1 6= sp

i,j]. Figure 3.5 illustrates each component
of P[x|s] as well as P[s].

3.2 Problems of Interest

Given a pedigree and some observed genotype or haplotype data, there are three problem
formulations that we might be interested in. The first is to compute the probability of some
observed data, while the last two problems find values for the unobserved haplotypes of
individuals in the pedigree.

Likelihood. Find the probability of the observed data by summing over all the possible
unobserved haplotypes, i.e. ∑

x

∑
s

P[x|s]P[s].

Maximum Probability. Find the values of xm
i,j and xp

i,j that maximize the probability of
the data, i.e.

max
x

∑
s

P[x|s]P[s].

Minimum Recombination. Find the values of xm
i,j and xp

i,j that minimize the number of
required recombinations, i.e.

min
x,s

∑
i

l∑
j=2

I[sp
i,j−1 6= sp

i,j] + I[sm
i,j−1 6= sm

i,j]. (3.2)

42

Inheritance Probabilities

. . .

(1/2)6

p[]2 p[]2

Ө4 (1- Ө)2 Ө (1- Ө)5

p[]3 p[]1 p[]2 p[]2

Figure 3.5: Illustration of Inheritance Probabilities. The pedigree shown in this figure
is the same as that given in Figure 3.1. Each pair of colored polygons are the two alleles for a
single individual. Three positions in the genome are illustrated as three separate inheritance
state graphs. Edges connect alleles that are copies of each other. The contributions to
the inheritance probability for each position are recorded below the graph. For the first
locus, P[s] = 1/26 and the founder contributions are given. For the second and last locus,
the recombination contributions and founder contributions are given. For recombination
contributions, we have θ to the power of the number of recombination edges, shown in red.
For the founder contribution, we multiply the probabilities of each specified founder allele.
The red founder alleles are unspecified and contribute probability 1.

43

The likelihood is commonly used for estimating site-specific recombination rates, rela-
tionship testing, computing p-values for association tests, and performing linkage analysis,
which is a likelihood ratio test for the recombination rate between a hypothetical disease
locus and the observed genetic loci. Haplotype and/or IBD inferences, obtained by max-
imizing the probability or minimizing the recombinations, are useful for non-parametric
association tests, tests on haplotypes, and tests where there is disease information for un-
observed genomes.

The pedigree likelihood was introduced long before there were computers to do the
calculations. The two algorithms most commonly used for computing these likelihoods are
the Elston-Stewart algorithm [27] introduced in 1971 and the Lander-Green algorithm [59]
introduced in 1987. The former algorithm is exponential in the number of sites, while the
later is exponential in the number of individuals. More recently these calculations have
been formulated using the graphical model framework from machine learning [61]. We
now know that both the Elston-Stewart and Lander-Green algorithms deal with the same
pedigree graphical model, they just choose a different elimination order for the sum-product
algorithm. The Elston-Stewart algorithm eliminates individuals in a process called ’peeling’,
while the Lander-Green algorithm eliminates loci.

3.2.1 The Peeling Algorithm and Elston-Stewart

Elston and Stewart’s peeling algorithm [27] is usually applied to outbred pedigrees. This
requirement is introduced to remove loops from the pedigree graph, i.e. removing the possi-
bility of inbreeding. Loops are troublesome for the peeling algorithm, because they increase
the tree-width of the pedigree graph, thereby increasing the sizes of the cliques required
by the junction-tree algorithm [61, 58], a generalization of the sum-product algorithm to
non-tree-like graphs. Since, the clique sizes directly influence the running time, it is best to
keep them small.

For the purposes of this section, we will consider monogamous outbred pedigrees which
consist of a single lineage denoted L(p, q), i.e. the descendants of a monogamous founding
pair (MFP), p and q, and the founder parents of the descendants of p, q. The Elston-
Stewart algorithm is a dynamic programming algorithm that proceeds up the pedigree from
the leaves.

Let indices i and j denote haplotypes. Let Lr be the subpedigree rooted at a child r
of the founders. For each node w in Lr let T (w) be the subtree consisting of individual w
and all its descendants; in particular, T (r) = Lr. If w 6= r let a(w) denote the haplotype
that w receives from its founder parent, and b(w), the haplotype that w receives from its
non-founder parent in L(p, q), and let α(i) be the probability that a(w) = i. Let a(r) and
b(r) the two lineage haplotypes of r (all relevant properties are unaffected by interchanging
a(r) and b(r)). Let C(w, i, j) be an indicator variable that is 1 if the haplotype pair (i, j)
is consistent with the genotype of individual w. Let H(w) denote the set of children of w.

44

We want to compute:

Pr(i, j) =
∑

b(x),a(x)∀x∈T (r)

C(r, i, j)Pr[a(r) = i, b(r) = j|MFP haplotypes]

·
∏

x∈T (r)

Pr[b(x), a(x)|b(l(x)), a(l(x)), h0
n(x), h

1
n(x)]

where n(x) is the founder parent of individual x. If we re-arrange the equation, we get a
message for each individual just as in the sum-product algorithm. The message is a factor
in the complete marginal. Then for leaf-nodes u, and internal nodes w, where w 6= r we
have the recursive equations:

Leaf:
Pu(i) =

∑
j

α(j)C(u, i, j)

Internal Node:

Pw(i) =
∑

j

α(j)C(w, i, j)
∏

x∈H(w)

Px(i) + Px(j)

2

Founder Child:

Pr(i, j) = C(r, i, j)
∏

x∈H(r)

Px(i) + Px(j)

2

We can compute all these quantities by working upward from the leaves of the tree Lr to the
root. The running time of the algorithm is O(N2L) where N is the number of haplotypes
and L is the number of individuals in Lr.

We now extend the restricted model to encompass the monogamous pair of founders, p
and q in their lineage L(p, q). Extending the restricted model to this case, we make the same
assumptions as above except that the MFP-children r ∈ H(p) have two lineage haplotypes.
We continue to assume that each founder parent of a child in L(p, q) is the parent of at
most one node in L(p, q) and that a probability distribution α independently determines
the probability of haplotype transmission for haplotypes from the founders other than p, q.

Let Pp,q(i, j, k, l) be the probability that the haplotypes of all nodes of L(p, q) are com-
patible with the genotype data at those nodes, given that p has haplotypes i and j and q
has haplotypes k and l. Then the recursive probabilities for the founder pair are

Pp,q(i, j, k, l) = C(p, i, j)C(q, k, l)
∏

r∈H(p)

Pr(i, k) + Pr(i, l) + Pr(j, k) + Pr(j, l)

4

where, for each r ∈ H(p), the quantities on the right-hand side are computed according
to the recursive algorithm given above. The execution time of the computation is O(N4L)
where N = 2m is the number of haplotypes, m is the number of SNPs, and L is the number
of individuals in the lineage.

45

3.2.2 Hidden Markov Models, Lander-Green, and the Forward-
Backward Algorithm

G1 G2 GT

(1−θ)4

θ1(1−θ)3

θ4

Figure 3.6: Lander-Green Hidden Markov Model. The emission states are labeled
G1, ..., GT . Example hidden states for a four-person pedigree are shown above the emission
states. The alleles of each person in the pedigree are drawn as a hollow disk, and the alleles
are implicitly grouped in pairs. There are an exponential number of hidden states, one state
for each inheritance vector. Recombination probabilities give the transition probabilities for
the HMM. If two b-bit inheritance vectors differ at i bits, then the transition probability is
θi

j−1(1− θj−1)
m−i.

The pedigree likelihood can obtained by constructing a hidden Markov model for the
linkage dependencies along the genome. At each locus, the HMM considers the constraints
given by the genotype data. We first use the forward-backward algorithm [79] to compute
the marginal inheritance probabilities for each locus using a hidden Markov model. While
the forward-backward algorithm is the terminology used for general HMMs, the pedigree
algorithm has a special name, the Lander-Green algorithm [59].

The likelihood can be modeled using a hidden Markov model along the genome with
inheritance paths as hidden states. The transition probabilities are functions of θj and the
number of recombinations between a given pair of inheritance graphs. Let b = |I \F | be the
number of non-founders. Let Xj be the random variable for the hidden state at position j.
Then the probability of transitioning from inheritance state sj−1 to sj is

Pr[Xj = sj|Xj−1 = sj−1] = θ
|sj−sj−1|
j−1 (1− θj−1)

b−|sj−sj−1|.

where θj−1 is the recombination rate between site j − 1 and site j. See Figure 3.6 for an
illustration of the HMM for a four-person pedigree.

46

Given the data, we compute the marginal inheritance path probabilities at each site by
using the forward-backward algorithm for HMMs. Sobel and Lange [85] described a method
for enumerating only the inheritance paths compatible with the allele data observed at each
locus. There are at most k = 22|I\F | inheritance paths when I \ F is the set of non-founder
individuals, and both the forward and backward recursions do an O(k2) calculation at each
site, making this algorithm exponential in the number of individuals.

3.3 Hardness

The work in this section was a novel contribution by the author [50, 48].
Single-molecule sequencing is an attractive alternative to genotyping and could yield

haplotypes for individuals in a pedigree [26]. In order to exploit the information contained
in haplotype data, we need to understand the instances where diploid inheritance is com-
putationally tractable given haplotype data.

Pedigree analysis with genotype data is well studied in terms of complexity [76, 62] and
algorithms [27, 59, 85]. Less is known about haplotype data on pedigrees. This section con-
siders the three probabilistic and combinatorial problems introduced earlier and introduces
novel hardness results for haplotype data. Given haplotype data on a pedigree, finding both
minimum recombination and maximum probability haplotypes is as tractable as comput-
ing the same quantities for pedigrees with genotype data (i.e., these problems are NP- and
#P-hard, respectively).

With genotype data, the likelihood and minimum recombination problems are NP-hard,
while the maximum probability problem is #P-hard. Piccolboni and Gusfield [76] proved the
hardness of the likelihood and maximum probability computations by relying on a single
locus sub-pedigree with half-siblings. Although their paper discussed a more elaborate
setting involving a phenotype, their proof, however, applies to this setting. Li and Jiang
proved the minimum recombination problem to be hard by using a two-locus sub-pedigree
with half-siblings [62]. In all these proofs, half-siblings were pivotal to establishing reductions
from well known NP and #P problems.

In this section, we introduce a simple and powerful reduction that converts any genotype
problem on a pedigree of n individuals into a haplotype problem on a pedigree of at most
6n individuals. This reduction is simple, because it merely introduces four full-siblings and
an extra parent for each genotyped individual. We do not need complicated structures
involving inbreeding or half-siblings. The reduction works equally well for all three problem
formulations. Note that the proofs in this section require that per-site recombination rate
θj = θ is equal across all sites.

Mapping. Given a pedigree with genotype data, for any of the three pedigree problems,
we define a polynomial mapping to a corresponding haplotype problem with exactly 5|G|
individuals haplotyped. First we create the pedigree graph for the new haplotype instance,
and later we construct the required haplotype observations from the genotype data.

Let G ⊂ I represent the set of genotyped individuals in a pedigree having individuals I
and edges E. We will create a haplotype instance of the problem, with individuals H ∪ I

47

and edges R∪E. To obtain the set H, we add five individuals, i0, i1, i2, i3, i4, to H for every
individual i ∈ G. The set of new relationship edges, R, will connect individuals in sets H
and G. Specifically, the edges stipulate that i and i0 are the parents of full-siblings i1, i2, i3,
and i4 by including the edges: i0 → i1, i0 → i2, i0 → i3, i0 → i4, i→ i1, i→ i2, i→ i3, and
i → i4. We will refer to these five individuals, i0, i1, i2, i3, and i4, and their relationships
with i as the proxy family for individual i. For example in Figure 3.7, the 6-individual
genotype pedigree in becomes a 21-individual haplotype pedigree. This produces a pedigree
graph with exactly 5|G|+ |I| individuals and 8|G|+ |E| edges.

To obtain the new haplotype data from the genotype data, we type only individuals
in H such that the corresponding genotyped individual in G is required, by the rules of
inheritance, to have the observed genotypes. Without loss of generality, assume that the
genotype alleles are sorted such that g0

i,j < g1
i,j. Now we can easily constrain the parental

genotype for individual i ∈ G by giving the spouse, i0, homozygous haplotypes of all ones
while giving child i1 the haplotypes {~1, g0

i }, child i2 haplotypes {~1, g1
i }. This guarantees the

correct genotype, but does not ensure that the haplotypes of that genotype have the same
probability or number of recombinations.

Since there is an arbitrary assorting of genotype alleles at neighboring loci into the parent
haplotypes xp

i and xm
i , we will use the remaining two children to represent possible re-

assortments of the genotyped parent’s Ti heterozygous loci, indexed by tj where 1 ≤ j ≤ Ti.

In addition to the haplotype ~1, child i3, will have haplotype consisting of hi3,tj := g1−jmod 2
i,tj

while child i4 has the genotyped parent’s complementary alleles hi4,tj := gjmod 2
i,tj

. This results
in child i3 and i4 alternating in having the smaller allele at every other heterozygous locus.

This reduction preserves the solutions to the three problems up to constant factors or
constant coefficients. Specifically, the solution to the haplotype version of the problem is the
solution to the genotype version with the values of the functions being related by constant
factors or coefficients, depending on whether the function is a recombination count or a
probability.

Lemma 3.3.1. Let rg be the minimum number of recombinations in the genotype problem
instance. The mapping yields a haplotype problem instance having rh = rg +

∑
i∈G 2(Ti− 1)

for the minimum number of recombinations, where Ti is the number of heterozygous sites in
genotype i.

To prove this result, we exploit the alternating pattern of alleles assigned to the four
children. This pattern forces there to be two recombinations, among the four children,
between consecutive heterozygous loci.

Proof of Constant Dependence for Minimum Recombination. Consider the haplotype instance
of the problem. Recall that set G is defined as the individuals who are genotyped in the
genotype problem instance, and, by construction, they are not haplotyped in the haplotype
problem instance. For each i ∈ G the rules of inheritance applied to i’s proxy family dictate
that the set of alleles at each position are given by g0

i,j and g1
i,j. Therefore, the proxy family

dictates the genotype of i.
Since the haplotypes for all the typed individuals are completely given, we only need

to consider the assortment of the alleles from g0
i and g1

i into the maternal and paternal

48

g031

g032

...

g03m

x

x

...

x

x

x

...

x

g131

g132

...

g13m

x

x

...

x

x

x

...

x
g031

g032

...

g03m

g131

g132

...

g13m

g031

g132

g03m

...

x

x

...

x

g131

g032

g13m

...

x

x

...

x

Genotype Pedigree Haplotype Pedigree

Figure 3.7: Genotype and Haplotype Pedigrees. (Left) Genotyped individuals are
shaded. We show one typed individual’s genotype which is expanded into the haplotypes
of the typed individuals in the proxy family of the haplotype pedigree. (Right) Haplotyped
individuals are shaded. For each of the genotyped individuals in the left panel, the mapping
adds a nuclear family containing five new individuals with haplotypes having the pattern
illustrated.

49

alleles of individual i. Clearly this assortment determines the number of recombinations
that the proxy family contributes to Equation (3.2). However, we will use induction along
the genome to show that every possible phasing of the parental genotype induces the same
minimum number of recombinations among the four children, namely 2(Ti − 1).

Now we define an arbitrary assortment of the genotype alleles into two haplotypes for
person i. We can think of this parental genotype for l loci as a string s ∈ {H,T}l, where
H represents a homozygous site and T a heterozygous site. Recall that Ti is the number
of heterozygous sites in the genotype string, and those sites appear at indices tj where
1 ≤ j ≤ Ti. For this genotype there are 2Ti−1 pairs of haplotypes that phase the given
genotype. Represent each pair by setting Ti − 1 binary variables

Ptj =

{
0, if xp

i,tj
< xm

i,tj
,

1, otherwise.

Note, that we are only interested in the origin of the children’s haplotypes, rather than in
the origin of i’s haplotypes, so the p and m can arbitrarily label either haplotype.

Since {i1, i2} between them have the parent genotype at every locus, one of them has
origin p while the other has origin m, and similarly for {i3, i4}. For each locus, indicate the
paternal origin of the allele for individuals i1 and i3, respectively with Qj and Sj. Formally,
Qj = 1 if both hi1,j = xp

i,j and hi2,j = xm
i,j while Qj = 0 otherwise. Similarly, Sj = 1 if both

hi3,j = xp
i,j and hi4,j = xm

i,j while Qj = 0 otherwise.
Define Rj as the minimum recombination count before locus j. Notice that Pt1 sets the

origin of all the child haplotypes, therefore Rt1 = 0, since all preceding homozygous loci can
have the same origin as locus t1.

From tj to tj+1 we have two cases:

1. If Ptj = Ptj+1
, then Qtj = Qtj+1

and Stj 6= Stj+1
, by the alternating construction of

children i3 and i4 as compared with i1 and i2.

2. Similarly, if Ptj 6= Ptj+1
, then Qtj 6= Qtj+1

and Stj = Stj+1
.

Furthermore, regardless of the number of homozygous loci separating tj and tj+1, the number
of recombinations can only be increased. Therefore, we have the recursion

Rtj+1
= 2 +Rtj ,

proving the lemma.

After applying the mapping, the haplotype probability turns out to have a coefficient that
is independent of the haplotype assignment to the non-founding parent of the proxy family.
This coefficient can be computed in linear time from the genotype data using a Markov
chain. The Markov chain has 16 states and has a transition step between each pair of
neighboring loci. This small Markov model can be thought of in the sum-product algorithm
as an elimination of the typed individuals in the proxy family; alternatively, it is also
equivalent to peeling-off the typed proxy individuals in the Elston-Stewart algorithm [27].
Once we have this coefficient, independent of the haplotype assignment, it is clear that
the likelihood and maximum probability haplotype problems also have haplotype solutions
related proportionally to the genotype solution.

50

Lemma 3.3.2. The mapping yields a haplotype problem instance having haplotype proba-
bilities proportional to the haplotype probabilities of the genotype instance. Specifically, for
all x,

Ph[x] =
(
Pg

[
{xi|i ∈ I}

])∏
i∈G

pt(i)
∏

j

P[xp
i0,j = 1]P[xm

i0,j = 1]

where the proxy family transmission probability is a function of genotype gi, the recombina-
tion rate θ ≤ 0.5, and of the transition matrices P , Q0110, and Q1001,

pt(i) =

(
1

16

)
~1 · P h0

Ti∏
j=0

(
OjQ0110 + (1−Oj)Q1001

)
· P hj ·~1T

and Oj indicates whether index j is odd, h0 is the number of homozygous loci that begin
proxy parent’s genotype, and hj is the number of consecutive homozygous loci after the j’th
heterozygous locus where there are Ti heterozygous loci for proxy parent i. The transition
probabilities are given by Pij = θH(i,j)(1− θ)4−H(i,j) where H(i, j) is the Hamming distance
between inheritance states i and j. Let Q0110 be a transition matrix having non-zero recom-
bination probabilities only in column 0110 (i.e. Q0110,i,j = Pij when j = 0110). Similarly, let
Q1001 be a transition matrix with non-zero recombination probabilities only in column 1001.

Proof of Proportional Haplotype Probability. Without loss of generality, assume that indi-
viduals i ∈ G are all fathers in their proxy family. This is simply for convenience of
notation.

Let x be any fixed assignment of haplotypes to all the individuals in the pedigree. When
conditioning on the assigned haplotypes for individual i, the probability of the proxy family
of i is independent of the probability for the rest of the pedigree. Since we can say this for
all the proxy families, the terms in the probability for the pedigree individuals in set I (i.e.
those also in the genotype pedigree) are equal to the probability on the genotype data in
the genotype pedigree. Therefore, we write that∑

s

Ph[x|s]P[s] =
∑

s

Pg

[
{xi|i ∈ I}|{si|i ∈ I}

]
P
[
{si ∈ I}

] ∏
i∈G

(∏
j

P[xp
i0,j = 1]P[xm

i0,j = 1]

)

·

(∏
k

P[xp
ik
|xp

f(ik), x
m
f(ik), s

p
ik

]P[xm
ik
|xp

m(ik), x
m
m(ik), s

m
ik

]P[sp
ik

]P[sm
ik

]

)
.

The sum over vector s can be split into sums over the component pieces. The sums
involving the sik can be distributed into the product over k, since that is the only place
they are used. Let sik = (sp

ik
, sm

ik
). We easily see that P[xm

ik
|xp

m(ik), x
m
m(ik), s

m
ik

]P[sm
ik

] = 1, since
there are two ways to inherit the 1-allele from the mother, and all of them are compatible.∑

s

Ph[x|s]P[s] =
∑

{si|i∈I}

Pg

[
{xi|i ∈ I}|{si|i ∈ I}

]
P
[
{si ∈ I}

] ∏
i∈G

(∏
j

P[xp
i0,j = 1]P[xm

i0,j = 1]

)

·

∏
k

∑
sik

P[xp
ik
|xp

f(ik), x
m
f(ik), s

p
ik

]P[sp
ik

]

 .

51

Let pt(i) be the transmission probability for the proxy family, defined as

pt(i) =
∏

k

∑
sik

P[xp
ik
|xp

f(ik), x
m
f(ik), s

p
ik

]P[sp
ik

].

View this probability as a Markov chain along the genome with a state space of size 24 where
each state indicates the inheritance of (si1 , si2 , si3 , si4). The transition probabilities are given
by Pij = θH(i,j)(1 − θ)4−H(i,j) where H(i, j) is the Hamming distance between inheritance
states i and j. By design, the transitions allowed by the data have an unusual structure
dictated by the heterozygous loci of the proxy parent. Specifically, at a heterozygous locus,
there is exactly one inheritance state that satisfies the children’s haplotypes. At homozy-
gous loci, all the inheritance states are allowed. So, we compute this probability using the
l-state transition probabilities to determine the contribution of a particular stretch of l ho-
mozygous loci that are followed by a heterozygous locus. Notice that the heterozygous locus
has, as inheritance indicators, either (0, 1, 1, 0) or (1, 0, 0, 1), and these alternate between
consecutive heterozygous loci.

Let Q0110 be a transition matrix having non-zero recombination probabilities only in
column 0110 (i.e. Q0110,i,j = Pij when j = 0110). Similarly, let Q1001 be a transition matrix
with non-zero recombination probabilities only in column 1001. Let h0 be the number of
homozygous loci that begin proxy parent’s genotype and let hj be the number of consecutive
homozygous loci after the j’th heterozygous locus where 1 ≤ j ≤ Ti and Ti is the number
of heterozygous loci for proxy parent i. Now, we can write the transmission probability in
terms of matrix operations

pt(i) =

(
1

16

)
~1 · P h0

Ti∏
j=0

(
ZjQ0110 + (1− Zj)Q1001

)
· P hj ·~1T

where Zj indicates whether the j’th heterozygous locus has inheritance indicators (0, 1, 1, 0).
The column vector of ones at the end simply sums all final state probabilities to obtain the
total probability.

Finally, notice that the two heterozygous inheritance states (0, 1, 1, 0) and (1, 0, 0, 1) are
arbitrarily labeled. The main feature is that these states alternate at heterozygous loci, and
it does not matter which one occurs first. So, we can write

pt(i) =

(
1

16

)
~1 · P h0

Ti∏
j=0

(
OjQ0110 + (1−Oj)Q1001

)
· P hj ·~1T

where Oj indicates the event that j is odd. Now we have a quantity that is a function of
the genotype data and not dependent on the haplotypes under consideration.

Corollary 3.3.1. The mapping yields a haplotype problem instance having a likelihood and
maximum probability proportional, respectively, to the likelihood and maximum probability

52

of the genotype instance. Specifically,

∑
x

∑
s

Ph[x|s]P[s] =

 ∑
{xi|i∈I}

∑
{si|i∈I}

Pg

[
{xi|i ∈ I}|{si|i ∈ I}

]
P
[
{si ∈ I}

]
·
∏
i∈G

pt(i)
∏

j

P[xp
i0,j = 1]P[xm

i0,j = 1]

and

max
x

∑
x

Ph[x] =

(
max
{xi|i∈I}

Pg[{xi|i ∈ I}]
)
·
∏
i∈G

pt(i)
∏

j

P[xp
i0,j = 1]P[xm

i0,j = 1]

where pt(i) is proxy family i’s transmission probability as defined in Lemma 3.3.2.

Proof of Proportional Likelihood and Maximum Probability. Lemma 3.3.2 shows that X is
independent of the coefficient of proportionality between the haplotype probability and the
genotype probability. Therefore, this coefficient factors out of both the likelihood and the
maximum probability equations.

Although this reduction establishes the hardness of these haplotype pedigree problems, it
does so by constructing children whose haplotypes require many recombinations and would
be extremely unlikely to occur naturally. Accordingly, we suspect that realistic instances of
these haplotyping problems may provide more information about the locations of recombi-
nations than genotype instances.

53

Chapter 4

Algorithms for Inference

Statistical inference is the process of finding parameter values to fit a statistical model
to data. Often inference is defined as an optimization problem. In this chapter, we make
use of practical methods from machine learning including the sum-product algorithm and
sampling algorithms.

The first problem considered in this chapter is to infer haplotypes from genotype data on
pedigrees where the chosen haplotypes should maximize the inheritance likelihood. This is
done without explicitly computing the likelihood by using a Gibbs sampler, see Section 4.1.
We will see that that haplotype inference has applications to improving the accuracy of
association studies on pedigrees.

The second problem is to infer recombination rates from haplotype data. This is done
using an HMM similar to the Lander-Green algorithm described in Chapter 3 and the
forward-backward algorithm for inference of the maximum-likelihood recombination rate.
Simulation results show that the best recombination rate estimates are obtained from hap-
lotype data where every individual in the pedigree is haplotyped.

The final algorithm in this chapter is a method for removing symmetries from the IBD
hidden states of any pedigree HMM. This method reduces the number of hidden states,
therefore improving the efficiency of sum-product calculations on the HMM, including the
forward-backward algorithm. Simulations show that the exponential state-space reduction
algorithm can decrease the number of hidden states exponentially.

4.1 Gibbs Sampler

The work in this section was performed as a collaboration between the author, Halperin,
and Karp [55, 51].

In this section, we consider a special case of the pedigree haplotyping problem for complex
pedigrees having multiple lineages. Specifically, we are interested in regions of the genome
that are sufficiently linked that there is little evidence of recombination during pedigree
meiosis. Further, there are two cases for these regions. First, if there is little evidence
of ancestral recombinations or recurrent mutations in the founding haplotypes, the perfect
phylogeny model [35] would apply to the pedigree haplotypes. The perfect phylogeny model

54

has been shown to be realistic as long as the studied region is physically short [21, 22,
28]. Second, if there is evidence of ancestral recombinations in the region, then ancestral
recombinations must be allowed, and the founding haplotypes are not restricted to a perfect
phylogeny. We make no other assumptions about recombination rates or founder allele
frequencies. These two cases allow us to make simplifying assumptions and allow efficient
computation over large and complex pedigrees without compromising accuracy.

To solve the first case of the problem, we propose a blocked Gibbs sampler with running
time polynomial in the number of SNPs and linear in the number of individuals. Roughly,
PhyloPed, our method, chooses overlapping blocks of individuals that correspond to lineages
in the pedigree. A single sampling step updates the haplotype assignments for all the
individuals in the lineage of interest. The algorithm considers each lineage in turn, updates
that lineage, and continues until convergence. PhyloPed begins the blocked Gibbs sampler at
an initial state that is a feasible haplotype configuration that is compatible with the perfect
phylogeny. In practice, the initial haplotype state can often be obtained quickly, though in
the worst case, due to disallowing recombination, the running time may be exponential in
the number of individuals. In the case that the founder haplotypes could not have come from
a perfect phylogeny, PhyloPed reverts to the second case, without the perfect phylogeny,
and runs the same blocked Gibbs sampler from an initial haplotype configuration with
unrestricted founder haplotypes (with running time exponential in the number of SNPs).
Furthermore, PhyloPed does not require knowledge of recombination rates or founder-allele
frequencies. The perfect phylogeny allows more accurate haplotype inference, for a small
number of SNPs, and yields inferences that can substantially improve the power to detect
disease linkage.

4.1.1 Methods

According to convention, assume that every non-founder has both their parents rep-
resented in the pedigree. For each of the M bi-allelic SNPs, every individual w has
an unordered single-locus genotype gm

w at SNP m. An individual with a fully observed
genotype has a single set of possible alleles gm

w ∈ {{0, 0}, {0, 1}, {1, 1}}. An individ-
ual with an unobserved or partially observed genotype has several possible sets of alleles
gm

w ∈ {{{0, 0}, {0, 1}, {1, 1}}, {{0, 0}, {0, 1}}, {{0, 1}, {1, 1}}}.
We denote a haplotype by a sequence of binary alleles, h ∈ {0, 1}M , where M is the

number of SNPs in a region of the genome. Let the m-th allele of haplotype h be denoted
by h(m). A pedigree state associates an ordered pair of haplotypes (or multi-locus genotype),
sw = (h0

w, h
1
w), with each individual w ∈ I. The haplotypes of an individual are consistent

with the observed genotypes provided that at each SNP m, all known alleles are represented
in the haplotypes, meaning that {h0

w(m), h1
w(m)} ⊂ gm

w . Let C(w, sw) be an indicator
variable that is 1 when the haplotype state sw is consistent with the observed genotypes.
Let S(w) be the set of all haplotype states that are consistent with w’s observed genotype.

We assume that the M SNPs are tightly linked and are effectively unable to recombine
when passed from one generation to the next. In other words, haplotypes are passed accord-
ing to Mendelian inheritance. More precisely, we define an individual’s haplotype state sw

55

as non-recombinant when the haplotype h0
w inherited from the father, p(w), exactly matches

one of the father’s haplotypes, h0
w = h0

p(w) or h0
w = h1

p(w), and similarly h1
w, inherited from

the mother, m(w), matches one of the mother’s haplotypes.
Mendelian inheritance gives the probability that each of the father’s (or mother’s) hap-

lotypes are inherited by the child: Pr[h0
w = h0

p(w)|h0
p(w) 6= h1

p(w)] = 1/2 and Pr[h0
w =

h0
p(w)|h0

p(w) = h1
p(w)] = 1. This assumption determines a family of probability distributions

over states of the pedigree, given genotype data for some of the individuals. Our goal is
to find the haplotypes that maximize the conditional distribution of pedigree states given
genotype data for some individuals.

Lineage Decomposition. Rather than computing the joint distribution of haplotype
assignments to all the founders, we decompose a complex pedigree into tree-like lineages.
Roughly speaking, each lineage is a block of variables that will be updated in a single
iteration of the blocked Gibbs sampler, and the lineages are not necessarily disjoint from
each other.

A lineage is defined as follows. Let H(w) denote the set of children of node w. Founders
p and q are called a monogamous founding pair (MFP) if and only if H(p) = H(q) (i.e.,
there are no half-siblings of the founders’ children). Assume that the pedigree contains
only monogamous married pairs of founders. The lineage of the monogamous founding pair
(p, q) is the induced subgraph of the pedigree that contains all the descendants of p and q.
Formally, the lineage L(p, q) is a directed, acyclic graph that contains a source node for each
p and q and a node for each descendant of (p, q). This means that L(p, q) is the smallest
subgraph of the given pedigree such that L contains both founders p and q and, if L contains
a node w, then L contains the children of w. If a parent of w is not in L then that parent
is called the non-lineage parent.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

1

5 6 7

8

3 42

L(1,2) L(3,4)

���
���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

8

6 7

3 4

5

8

1 2

6 5

Figure 4.1: Lineage Decomposition The left panel shows the whole pedigree while the
right panel shows the lineages of the pedigree. The non-lineage parents are dashed, and
individuals 6 and 5, respectively, are parents of individuals in the lineages L(1, 2) and
L(3, 4)

For example a pedigree and its lineages are shown in Fig. 4.1 as two distinct pedigree

56

sub-graphs. Notice that parents of lineage members fall into four categories: 1) founders
participating in the MFP, and 2) non-lineage founding parents, 3) non-lineage parents (non-
founders who are descendants of another lineage) and 4) lineage descendants (descended
from the MFP).

Our goal is to chose a haplotype state for the pedigree from the posterior distribution of
haplotype states given the genotype data of the pedigree and assumptions about haplotype
sharing between lineages. A side effect of this is that PhyloPed infers all missing alleles, in-
cluding haplotypes (and genotypes) for ungenotyped individuals. To find a haplotype state,
we consider each lineage separately and calculate the distribution of haplotype states for
the monogamous pairs of founders, given the genotype data of their descendants and prob-
abilistic assumptions about the states of the non-lineage founders and non-lineage parents.
The calculation proceeds in three phases:

1. Find a consistent, non-recombinant state for the pedigree. If there is such a state that
is also compatible with some perfect phylogeny on all of the observed genotypes [35,
28], choose that state. Otherwise, when the founder haplotypes require ancestral
recombinations or back mutations, choose any consistent, non-recombinant state for
the pedigree haplotypes.

2. Decompose the pedigree into lineages, as described above.

3. Iterate over the collection of lineages: first, compute the distribution for the MFP
haplotypes conditioning on the genotypes in the lineage and conditioning on the cur-
rent states of the non-lineage parents, and second, sample new haplotype states for
the lineage descendants from the computed distribution.

Branch-and-Bound for Non-recombinant Haplotype Inference

This algorithm initializes the algorithm in the previous section. Here we describe how
to obtain a consistent, non-recombinant pedigree state (with a pair of haplotypes for every
individual). We use a branch-and-bound algorithm that branches on possible haplotype
states for each nuclear family and bounds consideration of haplotypes states when those
haplotypes would yield a lower transmission likelihood than a previously observed pedigree
state. The transmission likelihood for a pedigree state {sw|w ∈ I} is defined as:∏

w∈I\F

C(w, sw)Pr[sw|sp(w), sm(w)].

Preprocessing. The preprocessing step is a linear-time operation that reduces the number
of branching options that our algorithm will take. Assume the pedigree is ordered topolog-
ically. This means that the first node considered will be an individual without children and
that children must be considered before their parents. Each nuclear family is considered in
topological order until reaching the founders. Each trio is quickly considered to eliminate
haplotype pairs for each individual that are inconsistent with the genotypes of other trio
members. Recall that S(w) is defined as set of haplotype pairs that are consistent with the

57

observed genotypes of individual w. Typically |S(w)| = 2Nw where Nw is the number of
heterozygous loci in w’s genotype. However during the preprocessing step means that we
effectively reduce the size of S(w) by removing haplotype pairs that are inconsistent with
the genotypes of w’s nuclear family.

Alternatively, we can choose to restrict our attention to the subsets P (w) ⊂ S(w) having
the property that H = {P (w)|w ∈ I} are haplotypes compatible with a single perfect
phylogeny tree. For haplotypes this is equivalent to the stipulation that the evolution
of the founding haplotypes occurred without recombination according to the infinite-sites
coalescent model [35]. We use the BuildTree algorithm in [28] to quickly find the o(2M−1)
perfect phylogeny trees compatible with the genotyped individuals, where M is the number
of SNPs.

Branching. For each nuclear family (in topological order), the algorithm branches on
each possible haplotype assignment to the two parents. We get this list of assignments by
listing the possible assignments to both parents that are consistent with the genotypes of
the children. Once a haplotype assignment is made to both the parents, the children are
assigned haplotypes (if they were not already assigned when considering a previous nuclear
family). The haplotypes for the children are chosen to maximize the transmission likelihood
conditional on the assignments for the parents.

In order to get the consistent, non-recombinant haplotype-pairs for the parents, we use
Boolean logic. For the first parent, we make a Boolean expression that yields all pairs
of haplotypes that are consistent with the genotypes of all the children and one of the
parents (irrespective of the other parent’s genotype). This list contains only haplotype pairs
that maintain Mendelian consistency with the children. Once we have the list of feasible
haplotype assignments for this parent, we branch the computation and make a different
assignment to the first parent in each branch.

The second parent’s haplotypes are assigned conditional on the assignment already made
to the first parent, and there is a similar Boolean expression that gives a list of haplotype-
pairs that are now consistent with all the individuals in the nuclear family. Again, the
algorithm branches once for each distinct haplotype assignment for the second parent.

Bounding. The branching process proceeds up the pedigree either until all individuals
are assigned haplotypes, or until a bounding opportunity appears. For each individual en-
countered while proceeding up the pedigree, the algorithm updates the partial log of the
transmission likelihood which contains terms for individuals appearing later in the topo-
logical ordering. If the partial log-likelihood becomes smaller than the log-likelihood for a
previously observed state, then the algorithm ceases to follow that branch of the computa-
tion.

Inference Scheme

We will briefly introduce inference on a single lineage, then discuss multiple lineages.
Finally, we will give the detailed equations for inference.

58

Inference for a Single Lineage. To describe step 3 in detail, we need to establish a
few assumptions. First, assume that we have a consistent, non-recombinant state for the
pedigree (for details, see below). Also, assume for the moment that there is a known prior
probability for founder haplotypes, α(h) for the 2m possible haplotypes. Each time inference
is performed on a lineage, the algorithm removes inbreeding loops by randomly choosing an
individual to condition on. This is done by successively finding the oldest inbred descendant
(whose parents are not inbred) and flipping a coin to choose which parent will be designated
the non-lineage parent for the duration of the iteration.

For a single, non-inbred lineage, we can compute the probability of the MFP haplotypes
by conditioning on 1) the haplotype assignments of the non-lineage parents, 2) the genotypes,
and 3) the prior probability α. The child of a non-lineage parent inherits either one of the two
equally-likely non-lineage haplotypes, if the non-lineage parent has a haplotype assignment,
or one of the 2m possible founder haplotypes drawn from α, if the non-lineage parent is an
ungenotyped founder. The prior and transmission probabilities yield a tree-like graphical
model from which to learn the MFP haplotype distribution. For the lineage L(p, q), let
Pp,q(i, j, k, l) be the marginal probability of the haplotype assignment (i, j) to p and (k, l)
to q conditioned on the genotypes in the lineage and the haplotype assignments of the non-
lineage parents. This is a marginal probability, because it is computed by summing over
possible haplotype assignments for lineage descendants.

Some fairly standard bottom-up dynamic-programming equations yield the MFP marginal
Pp,q(i, j, k, l) and incomplete marginals, or messages, for the lineage descendants (see the
peeling algorithm in [61]). The descendant marginals are incomplete, because they are com-
puted by summing only over possible haplotype assignments to their descendants (rather
than summing also over possible assignments to their ancestors), and are conditioned only
on the genotypes of their descendants (rather than all of the lineage genotypes). For an
MFP child, r, with two lineage haplotypes (i, j), define Pr(i, j) as the incomplete marginal
probability of r having haplotypes (i, j) conditioned on the genotypes of r’s descendants.
Similarly, for all other lineage descendants, with one lineage haplotype, define Pw(i) as
the incomplete marginal probability of w having lineage haplotype i conditioned on the
genotypes of w’s descendants (see below for equations).

When considering all possible haplotype assignments, computation of these conditional
probabilities takes time O(N4 · L) where N = 2m is the number of possible haplotypes and
L is the number of individuals in the lineage. Recall that m is small and the computation
is feasible, because all the SNPs are in a short region of the genome and are in linkage
disequilibrium. In cases where only perfect phylogeny haplotypes are considered, the running
time is reduced to O((m+1)4L). This follows from the fact that a perfect phylogeny contains
at most m+ 1 haplotypes.

In order to update the haplotype state of a lineage, we use a top-down random prop-
agation algorithm that chooses a new pair of haplotypes for each individual in the lineage
(similar to the random propagation algorithm described in [61]). Random propagation al-
lows us to choose haplotype assignments for each person from the correct, or complete,
marginal haplotype distribution for that individual. For the pair of founders, p, q, haplo-
types (i, j, k, l) are chosen proportional to α(i)α(j)α(k)α(l)Pp,q(i, j, k, l). Children, r, of the

59

MFP are randomly assigned haplotypes (h0
r, h

1
r) ∈ {(i, k), (i, l), (j, k), (j, l)}, conditional on

the MFP haplotype assignment (i, j, k, l), with probability proportional to Pr(h
0
r, h

1
r). All

other lineage descendants, w, are given a lineage haplotype hw conditional on the haplotypes
(h0

l(w), h
1
l(w)) of their lineage parent l(w). So, Pr[h0

w = h0
l(w)] is proportional to Pw(h0

l(w)).

And the non-lineage haplotype h1
w is chosen from the set {h0

n(w), h
1
n(w)} of haplotypes for the

non-lineage parent n(w) and probability proportional to α(h1
w)C(w, h0

w, h
1
w). The random

propagation scheme is also accomplished in time O(N4L), except when perfect phylogeny
haplotypes are known, making the running time O((m+ 1)4L).

Inference for Multiple Lineages. We now extend our algorithm to consider several
monogamous founding pairs simultaneously. We no longer assume that there is a fixed α
distribution or that the haplotype states never change. Instead, we use an iterative process
that computes a new haplotype distribution αt at each iteration t and maintains a consistent,
non-recombinant haplotype state for all the individuals in the pedigree. For each iteration,
t, consider each MFP (p, q) and its lineage L(p, q):

1. Given the previous estimate of αt−1, perform the bottom-up dynamic programming
calculation to compute Pt

p,q(i, j, k, l), Pt
r(i, j) and Pt

w(i) for the MFP (p, q).

2. Use αt−1 together with the various Pt probabilities in the random propagation scheme
to sample a new haplotype state for the individuals in the lineage.

After obtaining an updated Pt
p,q(i, j, k, l) for each MFP (p, q), compute the updated prior

distribution as the marginal average αt(h) ∝
∑

(p,q)m
t
p,q(i)+m

t
p,q(j)+m

t
p,q(k)+m

t
p,q(l) where

the marginal mt
p,q(i) =

∑
j

∑
k

∑
l Pt

p,q(i, j, k, l) and similar definitions apply for mt
p,q(j),

mt
p,q(k), and mt

p,q(l). The iterations continue until the l1 deviation between αt and αt−1

falls below a pre-determined threshold. Clearly the running time of our method depends on
the number of iterations until convergence. In practice, the l1 deviation of the αt estimates
drop rapidly and most of the blocks in Fig. 4.2 converged in roughly 6-8 iterations (data
not shown).

Correctness. We have described a blocked Gibbs sampling scheme where in each itera-
tion, the updated block is a non-inbred subgraph of a pedigree lineage. Each update step
uses a mixture of bottom-up recursion and top-down sampling to update the haplotype as-
signments in each block. A Markov Chain employing this update algorithm will converge to
the correct posterior probability distribution when the haplotype states of the pedigree form
an irreducible state space. In each update iteration, the haplotypes for the lineage individu-
als are updated conditional on the haplotypes assigned to the non-lineage parents, while the
haplotypes of the non-lineage parents and all other pedigree individuals are unchanged. If
the unchanged haplotypes are drawn from the stationary distribution, then after an update,
all the haplotypes together represent a sample from the stationary distribution. This would
by true for any blocking scheme, but we have chosen the lineage blocking scheme for ease
of computation.

60

Details for Updating Lineage Haplotype Assignments

We describe how the haplotype assignments in a single lineage are updated within one
iteration of our algorithm. Assume that we have a consistent, non-recombinant state for the
pedigree (obtained by the branch-and-bound method). For the moment, consider restricted
instances of a general lineage L(p, q) for founders p and q. Further, consider the subgraph
of L(p, q) that contains only one child, r, of MFP (p, q). Call this subgraph Lr. For these
restricted instances we assume:

1. Lr is a tree; i.e., there is no inbreeding. This means that except for r, who has two
lineage haplotypes, each node in Lr has one non-lineage parent n(r) and one lineage
parent l(r) in Lr. If a lineage individual has two non-inbred parents in the lineage, flip
a coin to choose which parent will be the non-lineage parent for the current update
step.

2. We assume that each non-lineage founder is the parent of at most one node in Lr.

3. For each non-lineage parent v, the haplotype that v transmits to its child in Lr is
drawn from a given prior probability distribution α, and the haplotype transmissions
from the different non-lineage parents are mutually independent. For a non-lineage
founder, all haplotypes are considered transmittable. However, for non-founder, non-
lineage parents, the set of transmittable haplotypes is limited to {h0

n(r), h
1
n(r)} and

must be from a consistent, non-recombinant state of the pedigree

Our algorithm is similar to the peeling plus random propagation scheme described in [61]
and has two steps, the Elston-Stewart dynamic programing step moving up the lineage (see
Section 3.2.1 for details) and the random propagation of new haplotype assignments down
the lineage.

Random Propagation. Once we have computed the quantities Pp,q(i, j, k, l), Pr(i, j) and
Pw(i) for the MFP (p, q) and their descendants we can sample efficiently from the conditional
distribution of the joint assignments of haplotype pairs to all nodes of L(p, q), subject to the
requirement that the haplotype assignment at each node is compatible with a consistent,
non-recombinant state for all their descendants. Each sample is computed by traversing
L(p, q) top-down, starting at the source nodes p and q. The haplotype pair assigned to each
node is determined after the haplotype pairs assigned to its parents have been determined.

In detail, the process is as follows. As before, let i, j denote the two haplotypes of p and let
k, l the two haplotypes of q. The probability, in the sample, that the haplotypes of p and q are
set to the particular values (i, j, k, l) is proportional to α(i)α(j)α(k)α(l)Pp,q(i, j, k, l), where
the constant of proportionality makes the probabilities of all choices sum to 1. Similarly, let
r be a child of the founding pair. Then the probability that r’s haplotypes are set to (i, k)
is proportional to Pr(i, k), and a similar formula holds for the three other possible choices
(i, l), (j, k), and (j, l). If w is a node of L(p, q) whose parent z is not p,q, or r then the
sampling process sets the lineage haplotype as either h0

z or h1
z with probability proportional

to Pw(h0
z) and Pw(h1

z). The probabilities of the other joint choices are computed similarly.

61

The execution time of the sampling process is O(N4L), where L is the number of individuals
in the lineage, and N = 2m is the number of haplotypes on m loci.

We now extend our algorithm to deal with violations of the tree-like model. The viola-
tions are of two types:

1. A non-lineage founder may be a parent of more than one node among the descendants
of the monogamous founding pairs.

2. A node may be the child of two nodes descended from the same MFP. In that case, one
of the parents is arbitrarily designated as the non-lineage parent and the edges from
such non-lineage parents are excluded in forming the dags L(p, q) descending from the
monogamous founding pairs. As a result, each descendant of a monogamous founding
pair lies in exactly one of these dags.

4.1.2 Results

Pedigree Simulations. In order to test the accuracy of our method, we simulated a set of
pedigrees with their corresponding haplotypes. Given a pedigree, founder haplotypes were
generated uniformly at random from the phased HapMap CEU haplotypes for Chromosome
1. We considered only common SNPs (with minor allele frequencies at least 0.05). We
performed multiple trials, where each trial consisted of a distinct sample of SNPs chosen
to have a specific density along the genome. This allowed us to vary the mean physical
distance between neighboring SNPs. Each sample of SNPs was arbitrarily partitioned into
non-overlapping blocks of a fixed length for haplotype inference.

The non-founders were generated in successive generations using Poisson-distributed
recombinations (without interference), where the recombination rate was a function of the
physical distance, such that there is an average of two recombinations on the length of
Chromosome 1. Considering each non-founder in turn, we obtained one haplotype from
each parent by uniformly choosing one of the parental haplotypes to provide the allele
for the first SNP. Alleles for successive SNPs were chosen either to be non-recombinant
or recombinant according to the recombination rate. We refer to the complete simulation
output (of phased haplotypes) as the gold-standard data.

We chose pedigrees with fixed structure. For each pedigree we fixed the number and
set of individuals to be genotyped in the data input to each of the phasing algorithms (and
removed the phase information for all of the ungenotyped individuals).

L1 10 copies of a 20-individual family with 1 lineage and exactly 13 genotyped individuals
(1000 blocks of 3 SNPs with 11kbp between SNPs)

S1 single family with 10 lineages and 59 individuals, exactly 24 of them being genotyped
on 1000 blocks of 3 SNPs.

M1 5 copies of the family from S1, with exactly 24 individuals genotyped in each family
(1000 blocks with 3 SNPs).

62

M2 10 copies of a 10-individual family with 2 lineages and exactly 5 genotyped individuals
(10,000 blocks of 3 SNPs).

H1 single 16-individual, 2-lineage pedigree with half siblings and exactly 9 genotyped indi-
viduals on 300 blocks of 5 SNPs.

R1 60 copies of a 12-person family with 2 lineages and 12 individuals with 6 genotyped
individuals on blocks of 4 SNPs.

R2 30 copies of a 7-person nuclear family with 5 full siblings and 5 children genotyped on
blocks of 6 SNPs

Haplotype Inference Accuracy.

We compared our approach to two others, Merlin [16] and Superlink [29]. Merlin and
Superlink perform a maximum-likelihood calculation on a similar graphical model of inher-
itance in a pedigree, where recombination rates and founder allele frequencies are given as
fixed parameters of the model. However, Merlin employs a different elimination order for the
EM algorithm than does Superlink and has an option for non-recombinant haplotype infer-
ence (this option was not used here, because it seemed to make little difference to inference
accuracy). PhyloPed uses a graphical model of inheritance that is similar to that used by
Merlin and Superlink but does not require the founder allele frequencies or recombination
rates.

The input data consisted of the pedigree relationships and the genotype data for only
the typed pedigree members. Merlin and Superlink were additionally provided with the
correct recombination rates and with either an uninformative prior for the founder alleles
or the perfect prior (i.e., the correct allele frequencies). Every phasing program was run on
consecutive, non-overlapping blocks of k SNPs, and all programs ran on the same blocks.
The output of each of the phasing programs was compared to the gold-standard data,
and again the comparison used the same k-sized blocks. In cases where phasing programs
provided a list of possible phasings, the first phasing was tested for accuracy. Accuracy was
measured as the percentage of haplotype assignments in the phase estimate that matched the
haplotypes in the gold-standard haplotype data. Notice that in this definition of accuracy the
parental origin of the haplotype is irrelevant. Notice also that if the assumptions of PhyloPed
are not satisfied, meaning that a particular family required recombinant haplotypes, then
PhyloPed produced no estimate, and we conservatively chose to penalize our method by
scoring the lack of a prediction as zero accuracy.

Simple vs Complex Pedigrees. For the single-lineage pedigree L1, we simulated blocks
of size k = 3 with the average physical distance between SNPs being 11kbp. All methods
estimated haplotypes with similar accuracy (Table 4.1, row L1). This suggests that the
models have few practical differences on simple pedigrees.

For multi-lineage pedigrees S1, M1, M2, and H1, we see that PhyloPed outperforms the
other methods (Table 4.1, rows S1,M1, and H1, and Fig. 4.2). Most of these results were
generated for blocks with k = 3 SNPs, because larger blocks were infeasible for Merlin.

63

Perfect Prior Uninformative Prior
Pedigree Method Avg Std-Dev Avg Std-Dev

L1 PhyloPed 0.867 0.030 0.867 0.030
Merlin 0.855 0.018 0.857 0.018

Superlink 0.836 0.034 0.819 0.023
S1 PhyloPed 0.809 0.065 0.809 0.065

Superlink 0.796 0.064 0.642 0.066
M1 PhyloPed 0.808 0.060 0.808 0.060

Superlink 0.795 0.058 0.636 0.058
H1 PhyloPed 0.816 0.161 0.816 0.161

Merlin 0.750 0.138 0.761 0.124
Superlink 0.799 0.116 0.717 0.148

Table 4.1: Average accuracy and standard deviation. In all cases, PhyloPed dramat-
ically outperforms Merlin. PhyloPed is substantially better than Superlink, when given a
non-informative perfect prior. When given the perfect prior, Superlink performs no better
than PhyloPed. In cases where Superlink and PhyloPed have comparable performance, we
see that the uninformative prior particularly hurts Superlink’s accuracy. Merlin was unable
to execute S1 and M1 due to running time.

Figure 4.2: Accuracy Against Recombination Rate. This plot shows results of 10,000
blocks for M2 the 2-lineage, 10-individual family. The accuracy of each method was com-
puted for different physical distance between neighboring SNPs.

However, pedigree H1 was simulated with k = 5 SNPs, and still PhyloPed outperforms the
others.

We also see in Table 4.2 that each method is favored under different pedigree types.
Our method performs roughly comparably to Merlin, while Superlink clearly has an edge in
speed in all instances except the half-sibling case.

64

Pedigree Method Avg Run-Time

L1 PhyloPed 0.150 s
Merlin 0.166 s

Superlink 0.072 s
S1 PhyloPed 0.612 s

Superlink 0.041 s
M1 PhyloPed 18.2 s

Superlink 0.156 s
H1 PhyloPed 3.69 s

Merlin 0.088 s
Superlink 17.5 s

Table 4.2: Average run-time per block. Each program has different run-time strengths.
PhyloPed compares favorably to both Merlin and Superlink on different types of pedigrees.

Violations of Assumptions. We consider two violations of the assumptions for the three
methods. First, we consider the performance of the three methods for different physical
distances between SNPs in the block (resulting in a range of recombination rates). PhyloPed
consistently outperforms Superlink and Merlin even as the recombination rate increases
(Fig. 4.2). Second, it is possible for the founder allele frequencies to be unknown, even
while the recombination rates may be known. We provide both Superlink and Merlin with
uninformative founder allele frequencies (i.e. frequency 0.5 for all alleles). In this scenario,
Merlin performs comparable to when it is given a perfect prior, but Superlink’s accuracy
decreases dramatically.

Power to Detect Disease Linkage.

Here we examine the influence that haplotype inference may have on the ability to cor-
rectly detect disease linkage. We consider three disease detection methods: 1) MQLS [96],
a quasi-likelihood association test, 2) Merlin’s linkage test [1], and 3) Merlin’s association
test [14]. Specifically, we are interested in whether haplotype inference before disease de-
tection, will improve the power to detect the disease without many more false positives.
We consider haplotypes inferred by both Superlink and PhyloPed, with our method draw-
ing multiple samples from the Gibbs sampler and retaining only individual haplotypes that
appear in at least 80% of the samples.

We simulated 500 replicates of genotype data respectively for pedigrees R1 and R2
exactly as described above. Then, for each replicate, we select a SNP to be the disease locus
and hide all genotype data for that SNP from the inference and testing programs. The two
disease models of interest are:

Alternative: disease status being a random function of the disease locus via the penetrance
probabilities that result in a population prevalence of 0.1 and relative risk 5;

Null: disease status being randomly chosen, such the total number of affected individuals

65

is the same as in the alternative model.

In both these models, we ensure that at least 20% of the individuals in the pedigree have
the disease. This results in genotype data at 3 SNPs and 5 SNPs respectively for the R1 and
R2 pedigrees. Recall that ungenotyped individuals are simulated by hiding the genotypes
of 6 and 2 individuals respectively.

We compare the various methods by plotting a receiver-operator curve (ROC) showing
the true positive and false positive rates of each test for different test-score cutoffs. The
main advantage of this plot is that it allows comparison without requiring an analytical null
distribution for each test. A superior method has an ROC that appears above and to the
left of those for other methods.

For both the R1 and R2 pedigrees, the most accurate disease detection method is to use
the MQLS test on the PhyloPed inferred genotypes, see Figures 4.3 and 4.4. This is more
accurate than simply using the MQLS test or the Merlin linkage test without any inference,
presumably due to the missing genotypes. Notably, MQLS consistently gave the best power
for linkage detection without inference of missing data. Using the linkage test after inferring
genotypes with PhyloPed seems to result in little consistent advantage, probably due to
the test integrating over all inheritance possibilities. That approach is advantageous when
the estimate has very high confidence, such as with R2, but otherwise it performs similarly
to the linkage test alone (data not shown). Furthermore, when inferring genotypes with
Superlink on many different pedigrees, we observed a consistent disadvantage, unless there
is little missing data (data not shown for Superlink+Merlin). The Merlin association test
performs its own genotype inference prior to using a regression test for association, and
surprisingly performs much better than the Merlin linkage test in Figure 4.3.

4.1.3 Summary

We have introduced PhyloPed which leverages the population genetics of the founders to
produce superior haplotype estimates for multi-lineage pedigrees. Specifically, PhyloPed as-
sumes that the founder haplotypes are drawn from a perfect phylogeny and that haplotypes
are inherited without recombination in the pedigree. As we have shown, this approach works
very well for short regions with dense SNPs. Not only does our method provide accurate
haplotype inference, but also these inferences substantially improve power for disease detec-
tion when a sufficient amount of genotype data on linked SNPs is available. We recommend
that pedigree association studies analyze their data with a combination of PhyloPed and
MQLS, or MQLS alone if inference is impractical.

In addition to the perfect phylogeny model, there are several other reasons that PhyloPed
outperforms other methods. Intuitively, Occam’s razor suggests that our method would
be preferable on blocks having little recombination. Assuming no recombination provides
not only fewer phasing options to consider but also fewer parameters and less over-fitting.
PhyloPed requires no prior information, neither for the recombination rates nor for the
founder allele frequencies, making it more robust, even with inaccurate priors.

Many factors influence the accuracy of haplotype estimation, including the complexity
of the pedigree, the number and relationships of genotyped individuals, and the number of

66

Figure 4.3: ROC Plot for Tests With and Without Genotype Inference. Pedigree
R1 was tested at 3 SNPs for disease linkage after hiding a linked disease SNP. Of the 4
simulated SNPs, neighboring SNPs were separated by roughly 6kbp.

linked SNPs. The number of genotyped individuals in the pedigree and their relationships
with the other pedigree members influence the number of constraints available for haplotype
estimation. Typically, having genotypes for more individuals yields better haplotype esti-
mates. Similarly, simultaneous phasing of larger numbers of linked SNPs can reveal more
haplotype information, provided that the pedigree is not so large that the computational
burden is infeasible. This section has focused on inference in deep and complex pedigrees
and partitioned the genome into blocks before phasing. In order to properly treat the whole
genome, future research should consider partitioning schemes and methods for producing
whole genome haplotype estimates from the estimates for each partition.

Pedigrees should not be made unnecessarily complex. Multiple-lineage pedigrees are
only useful in the case where each founding lineage provides information about either the
phenotype or the relatedness of genotyped individuals. For example, estimation of haplo-
types in a nuclear family whose members are genotyped and phenotyped would not benefit
from the introduction of grandparents whose additional degrees of freedom provide no ad-
ditional constraints on the haplotypes or phenotypes. However, if a pair of grandparents
are the common ancestors of this nuclear family and another genotyped family, then the
grandparents’ presence in the pedigree (along with the additional family) would provide

67

Figure 4.4: ROC Plot for Tests With and Without Genotype Inference. Pedigree
R2 was tested at 5 SNPs for disease linkage after hiding a linked disease SNP. Of the 6
simulated SNPs, neighboring SNPs were separated by roughly 25kbp.

useful constraints.

4.2 Haplotype Hidden Markov Model

The work in this section was a novel contribution by the author [50, 48].
Single-molecule sequencing is an attractive alternative to genotyping and may soon yield

haplotypes for individuals in a pedigree [26]. Sequencing methods would apparently yield
more information from the same set of sampled individuals, which is critical due to the
limited availability of individuals for sampling in multi-generational pedigrees (i.e. individ-
uals usually must be living at the time of sampling). There is substantial evidence that
haplotypes can be more useful than genotypes for both population and family based studies
when using methods such as association studies [5, 16] and pedigree analysis [14, 51]. While
it is intuitive that haplotypes provide more information than genotypes, there are instances
with family data in which there are few enough typed individuals that there is little practi-
cal difference between haplotype and genotype data. Since we have already determined the
complexity of likelihood calculations given haplotypes in Chapter 3, the goal of this section

68

is to discuss algorithms for haplotype data and compare them to algorithms for genotype
data.

To compute the analogous probability for haplotype data, we use a similar HMM to the
one given in Section 3.2.2. For haplotypes, the hidden states must consider the haplotype
orientations, which specify the parental origins of all the observed haplotypes. Notice that
these orientations are not equivalent to inheritance paths, since they only specify inheritance
edges between haplotyped individuals and their parents. For each of the 22|H| haplotype
orientations, where H is the set of haplotyped individuals, we enumerate the inheritance
paths compatible with the haplotype alleles, their orientations, and the pedigree relation-
ships. Alternatively, each of the inheritance paths enumerated for the genotype algorithm
induces a particular orientation on the haplotypes heterozygous for that locus (i.e. parental
origin of the entire haplotype). Thus, the hidden states for the haplotype HMM are the
cross-product of the orientations and the inheritance paths.

The haplotype HMM has transition probabilities that are nearly identical to the genotype
HMM with the exception that transitions between inheritance paths with different haplotype
orientations have probability zero. Recombinations are only allowed when they do not occur
between typed haplotypes.

The forward-backward algorithm is also used on the haplotype HMM. However, there
are 22(|I|+|H|−|F |) hidden states, yielding a slightly slower calculation. Fortunately, the hap-
lotype recursions can be run simultaneous with the genotype recursions, meaning that the
inheritance paths need only be enumerated once.

Haplotype Likelihoods in Linear Time

There is one obvious instance of the haplotype likelihood problem where there is a
polynomial-time algorithm. Even though it is impractical to assume that we can sample
genetic material from deceased individuals in a multi-generational pedigree, for a moment,
let us consider the case where all the individuals in the pedigree are haplotyped.

The Elston-Stewart algorithm [27] for genotype data has a direct analogue for haplotype
data. This algorithm calculates the likelihood via the belief propagation algorithm by elim-
inating individuals recursively from the bottom up. Each individual is “peeled off”, after
their descendants have been peeled off, by using a forward-backward algorithm on the HMM
for the mother-father-child trio.

The haplotype version of this algorithm is linear when all the individuals are haplotyped,
since each elimination step is conditionally independent of all the others. Given the parents’
haplotypes, regardless of which was inherited from which grand-parent, the probability of
the child’s haplotype is independent of all other trios. Therefore, we can take a product
over the likelihoods for all the trios, and compute each trio likelihood using a 4-state HMM.
Then for k non-founding individuals, and l loci, this algorithm has O(kl) running time.

This same intuition carries through to the minimum recombination problem, and each
trio can be considered independent of the others. This contrasts with the genotype mini-
mum recombination problem which is known to be hard, even when all the individuals are
genotyped [62].

69

Results

To simulate realistic pedigree data, SNPs were selected from HapMap that span 100mb
on both sides of a loosely-linked pair of sites. There are 40 SNPs total, with 20 tightly linked
SNPs on each side of a strong recombination breakpoint having θ = 0.25. The haplotypes for
these SNPs were selected randomly from HapMap. Pedigree haplotype and genotype data
were simulated for each child by uniformly selecting one of the parental alleles for the first
locus, and subsequent loci were selected on the same parental haplotype with probability θj

for each locus j. Inheritance was simulated for 500 simulation replicates.
The simulation yielded completely typed pedigrees. For each pedigree, we removed the

genotype and haplotype information for increasing numbers of untyped individuals. For
each instance of a specific number of untyped individuals, two values were computed on
the estimated number of recombinations between the central pair of loci: the haplotype
and genotype accuracies. Accuracy was computed as a function of the l1 distance between
the deterministic number of recombinations and the calculated distribution. Specifically,
accuracy was 2−

∑
i≥0 |xi−ai|, where xi was the estimated probability for i recombinations

and ai was the deterministic indicator of whether there were i recombinations in the data
simulated on the pedigree.

In all the instances we observed a trend where the best accuracy was obtained with hap-
lotype data where everyone in the pedigree was haplotyped. For example, a five-individual
pedigree with two half-siblings is shown in Figure 4.5, left panel. With the three founders
untyped, the haplotype data yielded similar accuracy as the genotype data. Consider a
three-generation pedigree having two parents, their two children, an in-law, and a grand-
child for a total of six individuals, three of them founders. This pedigree has a similar
trend in accuracy as the number of untyped founders increases, Figure 4.5, right panel.
As the number of untyped individuals increases, the accuracies of genotype and haplotype
estimates appear to converge.

4.3 State-Space Reduction for HMMs

The work in this section was done as a collaboration between the author and Kirk-
patrick [52].

Typical Hidden Markov Models (HMMs) on the genotypes of related individuals require
an exponential number of hidden states. We look for maximal ensembles of the hidden states
that can be used to create a new HMM with a more efficient running-time. We give a O(n2)
algorithm that finds a group of isometries of the state-space which subsumes an existing
algorithm by considering more isometry cases. From previous work, it is clear that finding
the new state-space for an arbitrary group of isometries is NP-hard, and there is unlikely
to be a polynomial algorithm for exploiting the state-space found by a polynomial-time
isometry algorithm. So, we turn our attention to an exponential algorithm which provides
optimal state-space reductions.

We settle an open problem by giving an example showing that a permutation group on the
2n vertices of the hypercube can produce larger ensemble states than a group of isometries

70

Figure 4.5: Predicting Recombinations. The left panel is the average accuracy for pre-
dictions from a pedigree with two half-siblings and three parents. The right panel shows
results from a six-individual, three-generation pedigree. In both cases, 500 simulation repli-
cates were performed, and the average accuracy of estimates from the haplotype data is
superior to those from genotype data. However, as the number of untyped founders in-
creases, in both cases, the accuracy of estimates from haplotype data drop relative to the
accuracy from genotype data. The accuracies of genotype and haplotype estimates appear
to converge.

on the n dimensions of the hypercube. We introduce an improved algorithm for finding the
maximal ensemble states, sets of hidden states, that preserve both the Markov property and
the identity by descent (IBD) information of the individuals of interest. Our algorithm has
run-time O(n4n) as compared with previous algorithms having run-time O(n!22n), where n
is the number of meioses in the pedigree.

4.3.1 Introduction

Motivation. Estimates of probabilities on pedigrees are of great interest to computer
scientists because they give an important example of graphical models which model prob-
ability distributions by using a graph whose edges are conditional probability events and
whose nodes are random variables [61]. Methods for reducing the state-space of a pedi-
gree graphical model could generalize to other graphical models, as noted also by Geiger et
al [32].

The Problem Summary. Hidden Markov Models (HMMs) analyzing the genotypes of
related individuals typically take exponential–or even super-exponential–running time, so
it is desirable to find more efficient algorithms. Any partitioning of the state space into
ensemble states (i.e., states with identical emission probabilities and comparable transition
probabilities) will improve the running time of an HMM, even if the ensembles are not
optimal: since these HMMs have an exponential state space and a running time polynomial

71

in the size of the state space, even an exponential algorithm for finding ensemble states can
improve the running time of the HMM calculations.

Literature Review. Donnelly [24] introduces the idea of finding ensemble states for the
IBD Markov modeland uses a manual method for finding the symmetries for several ex-
amples of two-person pedigrees. Browning and Browning [12] formalize the requirements
for symmetries that can be used as ensemble states in a new HMM. They give the first
algorithm for finding the maximal set of isometries that preserve the Markov property and
the IBD information. Their algorithm, however, appears to have worst-case running time
of at least of O(n!4n), where n is the number of meioses in the pedigree. They leave open
the question of whether groups other than isometry groups could give useful state-space
reductions [12].

McPeek [66] presents a more careful formulation of the identity states and a naive al-
gorithm. Most recently Geiger et al [32] give a special-case state-space reduction involving
only isometries that collapse simple lineages (multiple generations with a single child per
generation and with the non-lineage parents being founders).

Related problems have been considered in the systems literature. Junttila considered
partitions of a state space of strings and discussed the computational complexity of find-
ing representatives of each orbit where the representative is the lexicographically minimal
string [43]. Several people have introduced algorithms for finding symmetries for systems
applications [64, 44]

Our Approach. Inspired by the work of Browning and Browning [12], we look for max-
imal ensembles of the hidden states that can be used to create a new HMM with a much
more efficient running-time. We introduce an improved algorithm for finding the maximal
ensemble states, sets of hidden states, that preserve both the Markov property and the iden-
tity by descent (IBD) information of the individuals of interest. Not only does our algorithm
run faster than previous approaches, but it also finds larger ensemble states.

First, we discuss the problem of finding a group of isometries, permutations, of the n
dimensions of the hypercube. These isometries may not be the maximal group, i.e. the group
with the largest number of elements. Browning and Browning introduced an algorithm that
finds a maximal group of isometries, however their algorithm is super-exponential.

Then we introduce an algorithm for finding a permutation group on the 2n vertices of
the hypercube, and produces the most efficient ensemble states (i.e. the smallest partition of
the state-space that respects the IBD and Markov properties and has the minimal number
of sets in the partition). Notice that this algorithm optimizes a different objective function
than that introduced by Browning and Browning, and indeed, their algorithm may not find
the optimal partition of the state space, as we demonstrate by giving an example.

4.3.2 Problem Description

Consider a pedigree graph, P , having individuals V as nodes and having n meioses with
each meiosis being a directed edge from parent to child. Let I being the set of individuals

72

of interest (perhaps because we have data for those individuals). An inheritance state or
vector is a binary vector x with n bits where each bit indicates which grand-parental allele,
paternal or maternal, was copied for that meiosis. The equivalent inheritance graph, Rx,
has two nodes per individual (one for each allele) and edges from inherited parental alleles
to their corresponding child alleles. Individuals of interest are called identical by descent
(IBD) if a particular founder allele was copied to each of the individuals. In general, the
inheritance graph is a collection of trees, since each allele is copied from a single parent.

The set of all inheritance states (binary n-vectors) is the n-dimensional hypercube Hn,
with 2n vertices. The inheritance process is modeled as a symmetric random walk on Hn,
with the time dimension of the walk being the distance along the genome. At equilibrium,
the walk has uniform probability of being at any of the hypercube vertices. From vertex
x in Hn, a step is taken to a neighboring vertex after an exponential waiting time with
parameter λ = n. For each individual zygote, with one meiosis, this is a Poisson process
with parameter λ = 1 and genome length roughly 30.

There is a discrete version of this random walk, which is often used for hidden Markov
models (HMMs) that compute the probability of observing the given data by taking an
expectation over the possible random walks on the hypercube. Let X be a Markov process,
{Xt : t = 1, 2, ...,m} for m loci with a state space Hn consisting of all the inheritance states
of the pedigree. The recombination rate, θt, is the probability of recombination per meiosis,
between a neighboring pair of loci, t and t + 1. If t and t + 1 are separated by distance d,
then the Poisson process tells us that the probability of an odd number of recombinations
is θt = 1/2(1 − e−2λd). The natural distance on Hn is the Hamming distance, |x − y|, for
two states x and y. Then the probability of transitioning from x to y is

Pr[Xt+1 = y|Xt = x] = θ
|x−y|
t (1− θt)

n−|x−y|.

Conventional algorithms for computing likelihoods of data have an exponential running
time, because the state space of the HMM is exponential in the number of meioses in the
pedigree. We propose new ways to collapse hypercube vertices into ensemble states for a
new HMM that has a more efficient running time. In particular we are interested in optimal
ensemble states that preserve certain relationship structures and the Markovianness of the
random walk.

The relationship structures we wish to preserve are the IBD relationships on the individ-
uals of interest I. Let Im be the maternal alleles of all the individuals and Ip be the paternal
alleles of all the individuals. We say that a partition J of all the alleles Im∪Ip is IBD for the
inheritance state x if for each element of J , every allele in that element appears in the same
connected component of the inheritance graph Rx. If we write CC(Rx) for the partition
induced by the connected components of Rx, then J is IBD for inheritance state x if and
only if J = CC(Rx). The partition J induces an IBD class called DJ on the inheritance
states:

DJ = {x ∈ Hn|J = CC(Rx)}.

Let Dei
be the identity IBD class, where each ei is a set with a single element; this identity

IBD class corresponds to the partition created by the identity permutation.

73

The condensed identity states introduced by Jacquard [42] are the IBD classes for a pair
of inbred individuals. McPeek [66] mentions that there is a natural extension of the pair-
wise identity states to more generalized IBD classes for inbred pedigrees and proved that
those IBD classes are equivalence classes on the emissions probabilities. Geiger, et al [32]
simply stated the requirement that the ensemble states for a reduced HMM must induce an
equivalence class on the emissions probabilities.

We define potential ensembles of states as being the orbits of a group of symmetries,
where the symmetries map elements of an IBD class to other elements of the same IBD
class. Let G be a group on the state space Hn of X. A symmetry is a bijection ψ ∈ G
where ψ is a permutation on 2n elements, the vertices of Hn. Furthermore, to preserve the
IBD classes, all the permutations ψ ∈ G must satisfy ψ(x) ∈ DJ for all x ∈ DJ and for all
J . The orbits of G are sets

w(y) = {x|x = ψ(y) and ψ ∈ G}
for all y ∈ Hn.

A special type of symmetry group is a group of isometries, Giso, where each isometry
is a bijection T ∈ Giso on Hn where |T (x) − T (y)| = |x − y| for all x, y. If Giso is an
isometry group that preserves the IBD classes, then the orbits of Gi can be the states of
a new Markov random walk. Let Y be the new Markov process, {Yt : t = 1, 2, ...,m} on
the same m loci having states {W1,W2, ...,Wk}, where each state is an orbit Wi = w(y) for
some y and Wi ∪Wj = ∅. Notice that the orbits define a partition on the vertices of the
hypercube. The Markov process Y has transition rates

Pr[Yt+1 = Wj|Yt = Wi] =
∑
y∈Wj

Pr[Xt+1 = y|Xt = x] for x ∈ Wi. (4.1)

Browning and Browning [12] demonstrated that a group of isometries will always produce
ensemble states that are Markovian. They also showed that any isometry T : Hn → Hn can
be uniquely written as T = π ◦ φa where π is a permutation on n elements, the bits of the
hypercube vertex, and φa is a switch function where φa(x) = a+ x where + is the bit-wise
XOR operation.

Markov Property

Let Y be a new Markov processes, {Yt : t = 1, 2, ...,m} on the same m loci, having states
{W1,W2, ...,Wk}, which are orbits of G. This new Markov chain is coupled to the original
such that when Xt = x ∈ Wi, Yt = Wi, and Yt is a projection of Xt into a smaller state
space. The transition probabilities are:∑

y∈Wj

∑
x∈Wi

Pr[Xt+1 = y|Xt = x].

Process Y , the expectation process with transition probabilities:

1

|Wi|
Pr[Yt+1 = Wj|Yt = Wi] =

∑
y∈Wj

Pr[Xt+1 = y|Xt = x]

= E[Ej|Xt = x],

74

where Ej is the event that Xt+1 ∈ Wj. The equilibrium distribution is: Pr[Yt = Wi] =
|Wi|/2n. In order for this to hold, we need to choose a group G having orbits such that∑

y∈Wj

Pr[Xt+1 = y|Xt = x1] =
∑
y∈Wj

Pr[Xt+1 = y|Xt = x2] (4.2)

for all x1, x2 ∈ Wi for all i. While isometries certainly satisfy this property, there are other
groups that do also.

We also need to show that an isometry group G of has orbits such that

Pr[Xt+1 = y|Xt = x] = Pr[Xt+1 = T (y)|Xt = T (x)] (4.3)

for all T ∈ G, y ∈ Wj and x ∈ Wi for all i, j.

Isometry Algorithm

Several authors have found groups of isometries that lead to state-space reductions. This
approach was pioneered simultaneously by Browning and Browning [12] and by McPeek [66].
Browning and Browning introduced an exponential algorithm for finding the maximal group
of isometries (equivalently the minimal partition of the inheritance vectors obtained by any
group of isometries). More recently, Geiger, et al [32] made use of a particular type of
isometry group that is detectable in O(n2) time.

Obtaining the State Space from Isometries. Once we have obtained a group of
isometries, for instance by using the Geiger, et al. method, we need to obtain the orbits
of this group of isometies. Notice that this might be accomplished by finding a represen-
tative element of each orbit and testing whether other elements belong to the same orbit
or not [64, 44]. Since isometries include permutation groups, this problem is clearly also
hard for groups of isometries. Additionally, we note that computing Equation 4.1 appears
to require enumeration of the orbit Wj. No matter how we obtain a group acting on the
inheritance vectors, whether it is an isometry of the axis of the hypercube or a permuta-
tion on the vertices of the hypercube, enumeration of the orbits of the group appears to be
required.

Given an arbitrary group of isometries, we give an exponential algorithm for enumerating
the orbits of the group. This algorithm relies on a disjoint-set forest which represents
partitions of the inheritance vectors. Initially, this forest consists of each inheritance vector
in it’s own set. We consider each element of the generating set of the group. For each
element of the generating set, we apply that element to map each of the inheritance vectors.
Let xi be mapped to xj by the group element. Then union of xi and xj is performed in
the disjoint-set forest. Once we have considered each element of the generating set, and
applied it to all of the inheritance vectors, the disjoint-set forest contains exactly the sets
corresponding to the orbits of the group. This is easily seen by the fact that only inheritance
vectors xi and xj appear in the same orbit if and only if there is a group element g such
that g(xi) = xj. An alternative way to compute the number of orbits is to apply Burnside’s

75

Counting Theorem [25]. However this approach requires either summing over the group
elements or the state-space, and either approach is exponential.

We conjecture that an exponential algorithm is required to find the orbits of an isometry
group, the efficiency in the running-time of the algorithm for finding the isometries is lost
when we generate the ensemble states. Meaning, we conjecture that the problem of finding
the orbits is NP-hard. Certainly computing the transition probabilities requires enumera-
tion. This leads us to considering exponential algorithms for finding groups with the desired
properties. Particularly since simulations will demonstrate that such algorithms can yield
exponential improvements in the required state-space, whereas the Geiger, et al. isome-
try approach seems to yield only linear improvements in the size of the state-space (from
simulations, data not shown).

Example

It is necessary to give an example showing that isometry groups do not yield maximal
reductions in the size of the state-space. While it is true that a maximal group of isometries
yields state-space savings, groups of permutations on the vertices of the hypercube give the
maximal possible state-space reduction (i.e. the minimal number of orbits of any group
acting on the inheritance vectors).

For example, given 4 meioses for two half-cousins, A and B, with one shared grandparent,
their common grandparent and their respective parents who are half-siblings, we have 16
hypercube vertices (see Figure 4.3.2). Our individuals of interest are I = {A,B}. The IBD
classes of interest are J1 = {Ap}{Am, Bm}{Bp} and J2 = {Ap}{Am}{Bm}{Bp}, since these
are the only partitions of alleles of individuals I that have non-empty IBD classes. The IBD
classes induced on the hypercube vertices are: DJ1 = {1001, 1111} and DJ2 = Hn \DJ1 .

Notice that in this instance we cannot use the IBD classes DJ ∀J as the state space of
a new Markov chain. For example, if we were to let Zt be a Markov chain on the partition
given by the IBD classes, then the Markov criteria would fail to hold. Specifically, consider
state X1 = 0001 and x2 = 0011. Then by checking Equation (4.2), we have

∑
y∈DJ1

Pr[Xt =

y|Xt = 0001] = θ(1− θ)3 + θ3(1− θ) but
∑

y∈DJ1
Pr[Xt = y|Xt = 0011] = 2 · θ2(1− θ)2.

The largest partition of Hn that satisfies the Markov criteria is PJ = {1001, 1111},
PR = {0010, 0100}, PG = {1011, 1101}, PB = {0000, 0110}, PK = {0011, 0101, 1010, 1100},
and PL = {0001, 0111, 1000, 1110}. Let H be the matrix of pair-wise Hamming distances
between all the vertices of the hypercube (matrices given in Fig 4.7). Then the transition
probabilities take the form:

1

|Wi|
Pr[Yt+1 = Pj|Yt = Pi] =

∑
y∈Pj

θ|x−y|(1− θ)n−|x−y|.

For example, Pr[Yt+1 = PL|Yt = PK] = 1
2
θ(1− θ)3 + 1

2
θ3(1− θ).

Notice that this partition cannot be the orbits of a group of isometries, because there
is no T = φaπ that maps PK → PK without also mapping some elements PJ → ¬PJ . For
example, π = (2 3) maps 0011→ 0101 and 1010→ 1100 while φ1001 maps 0011→ 1100 and
0101→ 1010, but φ1001 maps 1001→ 0000, thereby violating the IBD class.

76

A B

1

2 3

4

Am Bm

1

2 3

4

Figure 4.6: Two Half-Cousins. (Left Panel) A pedigree with four non-founders of which
two are half-cousins together with their common grandparent. Circles and boxes represent
female and male individuals, while the two black dots for each person represent their two
chromosomes or alleles. Edges are implicitly directed downward from parent to child. The
alleles of each individual are ordered, so that the left allele, or paternal allele, is inherited
from the person’s father, while the right, maternal allele is inherited from the mother. The
two cousins are labeled A and B. It is easy to see that the only possible IBD is between
alleles Am and Bm, the maternal alleles of individuals A and B, respectively. (Right Panel)
This makes the four male founders irrelevant to the question of IBD. The four meioses are
labeled in the order of their bits, left-to-right,and the inheritance states are represented in
binary as b1b2b3b4. Let bi = 0 if that allele was inherited from the parent’s paternal allele,
and bi = 1 if from the maternal allele. For instance, A and B are IBD only for inheritance
states 1001 and 1111.

The sub-partition of the above partition that satisfies the isometry distance property is
{1001, 1111}, {0010, 0100}, {1011, 1101}, {0000, 0110}, {0011, 0101}, {1010, 1100}, {0001, 0111},
and {1000, 1110}. Notice that this last partition is the orbits of the isometry group G =
{e, π} where e is the identity map and π = (2 3) permutes the second and third bits.

Maximal Ensemble Algorithm

Consider the IBD classes, DJ for all J of interest. Of course the IBD classes are dis-
joint. Consider the (2n)! permutations on the vertices of the hypercube. Naively, these are
all candidate permutations for our group. However, we are interested in the permutation
group(s) that give us the largest orbits, alternatively the largest partition of the hypercube
vertices, that satisfy the Markov property. Notice that this objective function is different
than that employed by Browning and Browning, since they were looking for the largest
group of isometries. However, this objective function is well motivated by the exponential
algorithms that seem to be required for finding the orbits and the transition functions of
isometry groups. In addition, as shown by the example, the maximal group of isometries
does not yield the optimal state space reduction.

We find the optimal state-space reduction by recursively partitioning the partition, first
according to the sum of the powers and then according to the powers themselves. This is
possible since the Markov property must produce a partition that is a sub-partition of the
IBD classes (i.e. in order to respect the IBD classes). This approach will at worst produce a

77

PR \ PJ 1001 1111
0010 3 3
0100 3 3

PG \ PJ 1001 1111
1011 1 1
1101 1 1

PB \ PJ 1001 1111
0000 2 4
0110 4 2

PG \ PR 0010 0100
1011 2 4
1101 4 2

PB \ PR 0010 0100
0000 1 1
0110 1 1

PB \ PG 1011 1101
0000 3 3
0110 3 3

PJ \ PK 0011 0101 1010 1100
1001 2 2 2 2
1111 2 2 2 2

PR \ PK 0011 0101 1010 1100
0010 1 3 1 3
0100 3 1 3 1

PG \ PK 0011 0101 1010 1100
1011 1 3 1 3
1101 3 1 3 1

PB \ PK 0011 0101 1010 1100
0000 2 2 2 2
0110 2 2 2 2

PJ \ PL 0001 0111 1000 1110
1001 1 3 1 3
1111 3 1 3 1

PR \ PL 0001 0111 1000 1110
0010 2 2 2 2
0100 2 2 2 2

PG \ PL 0001 0111 1000 1110
1011 2 2 2 2
1101 2 2 2 2

PB \ PL 0001 0111 1000 1110
0000 1 3 1 3
0110 3 1 3 1

PL \ PK 0011 0101 1010 1100
0001 1 1 3 3
0111 1 1 3 3
1000 3 3 1 1
1110 3 3 1 1

Figure 4.7: Hamming distances between each pair of partition sets.

78

partition with each element in its own set. Since the recursive sub-partitioning at minimum
splits sets in two, the number of iterations required is O(n). Checking the Markov properties
requires O(4n) time for each iteration, since we have to check the 2n×2n matrix of distances,
or sums of distances, between partition elements. So, the total running time is O(n4n).

Lemma 4.3.1. (Correctness Proof.) This partitioning algorithm produces the partition
respecting the IBD classes and the Markov property which has the least number of sets.

Proof. Clearly the partitioning algorithm produces a partition that respects the IBD, since
it begins with the partition given by the IBD classes and sub-partitions it. The algorithm
also produces partitions that respect the Markov property, since it iteratively sub-partitions
of the IBD-class partition until the Markov property is satisfied. Since partition sets are
only divided if they violate the Markov property, the algorithm necessarily finds the optimal
partition.

4.3.3 Simulation Results

We simulated pedigrees under a Wright-Fisher model with monogamy where each pair
of monogamous individuals has Poisson-distributed number of offspring. There are n indi-
viduals per generation and λ is the mean number of offspring per monogamous pair. The
individuals of interest, I, were the extant individuals, i.e. those in the most recent gener-
ation. These pedigrees have no inter-generational mating due to how the Wright-Fisher
model is defined. To get a half-sibling pedigree, each edge of the pedigree had 50% chance
of have a new parent drawn at random. Since monogamy was not preserved during this
random process, the resulting pedigree had half-siblings.

Running the simulation process and the maximal ensemble algorithm 100 times for
each type of simulation produced Figure 4.3.3. The maximal ensemble algorithm produces
exponential reductions in the size of the state-space. Whether the relationships have half-
siblings seems not to influence the practical applicability of the algorithm.

In practice, the algorithm seems limited to pedigrees of roughly 14 meioses, due to the
exponential nature of enumerating the state-space. Since it is NP-hard to find inheritance-
path representatives for the orbits of a group of isometries, it seems that enumeration
of the state-space is unavoidable. Additionally, determining the transition rates require
enumeration. Given these constraints and the practical success of the maximal ensemble
algorithm, we recommend that the maximal ensemble algorithm be employed for state-space
reduction, even over the Geiger, et al. O(n2) algorithm.

4.3.4 Summary

Even though past efforts at state-space reduction have focused on finding groups of
isometries on the edges of the pedigree graph, it seems clear that efforts should focus on
finding groups of permutations of the inheritance vectors. Even though a group of isometries
operates on the edges of the pedigree graph, and would seem to be more efficient, it requires
enumeration of the inheritance vectors to obtain the orbits. Furthermore, computation

79

●●● ● ●●
●

●

●

●

●

●
●

● ●●●●

●

●
● ●

●
●●●

●
●
●

●

●

●
●●●●
●
●
●
●● ●

●

●
●

●

●● ●●●
●●● ●●●●●
●●● ●● ●

●
●

●

●

● ●●
●
●●

●
●●●●● ●●●
●
●
●

● ●● ●●● ● ●●●
●
●●

20 50 200 500 2000

0
10

0
20

0
30

0
40

0
50

0

Maximal Ensembles

Input State Space

E
ns

em
bl

e
S

ta
te

 S
pa

ce

●●

●
●

●● ●●●

●

●
●

●

●

●

●

●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●● ●
● ●●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●

●

Monogamous Simulation
Half−Sibling Simulation

Figure 4.8: Maximal Ensemble Algorithm Results. The y-axis is the original size of the
state space, and the x-axis give the number of ensemble states produced by the maximal
ensemble algorithm. All simulated pedigrees had two generations, n = 6 individuals per
generation, and Poisson mean λ = 2. The black points are for monogamous pedigrees and
the red points are for pedigrees with half-siblings.

of the transition probabilities according to Equation 4.1 seems to require enumeration of
the inheritance vectors. Therefore, it is not a disadvantage to consider using exponential
algorithms to find the maximal state-space reduction.

We demonstrate that maximal state-space reduction is obtained by considering per-
mutations of the inheritance vectors which is equivalent to considering partitions of the
inheritance vectors. By doing this, in practice, we can obtain exponential reductions in the
state-space required for an HMM likelihood calculation.

There are several open problems of interest. First, the computational complexity of the
optimal partition problem is open. Second, the computational complexity of the maximal
isometry group is also open. Third, another open problem is the computational complex-
ity of finding the transition rates after having determined the partition of the state space.
Although these problems intuitively seem NP-hard, it is unclear whether there are approx-
imation algorithms or polynomial-time algorithms for special cases.

80

Chapter 5

Algorithms for Pedigree
Reconstruction

Can we find the family trees, or pedigrees, that relate the haplotypes of a group of
individuals? Collecting the genealogical information for how individuals are related is a
very time-consuming and expensive process. Methods for automating the construction of
pedigrees could stream-line this process. While constructing single-generation families is
relatively easy given whole genome data, reconstructing multi-generational, possibly inbred,
pedigrees is much more challenging.

This chapter introduces a theoretical pedigree reconstruction method which essentially
gives an alternative definition for a pedigree in terms of descendant individuals rather than
parent-child relationships. This reconstruction method is currently of conceptual value due
to the inavailability of data describing descendant relationships.

In order to evaluate any pedigree reconstruction method for accuracy, we need to com-
pare two pedigrees, a correct one and an estimated one, on the same set of extant individuals
where the ancestral individuals are unobserved and therefore unlabeled. For example, per-
haps only the most recent generation has genetic data. There are two natural formulations
for comparing pedigrees: pedigree isomorphism and pedigree edit distance; this chapter
discusses both problems.

Then taking a more practical perspective, this chapter discusses reconstructing monog-
amous, regular pedigrees, where pedigrees are regular when individuals mate only with
other individuals at the same generation. This chapter introduces two multi-generational
pedigree reconstruction methods: one for inbreeding relationships and one for outbreeding
relationships. In contrast to previous methods that focused on the independent estimation
of relationship distances between every pair of typed individuals, here we present methods
that aim at the reconstruction of the entire pedigree. We show that both our methods out-
perform the state-of-the-art and that the outbreeding method is capable of reconstructing
pedigrees at least six generations back in time with high accuracy.

81

5.1 Introduction

Genealogical methods for producing pedigree graphs, or family trees, from birth records
are very expensive. To address this issue, the pedigree reconstruction problem was in-
troduced by Thompson [95] as follows: given genetic data for a set of extant individuals,
reconstruct relationships between those individuals that may involve unobserved ancestors.

Manual methods for constructing human pedigree graphs are very tedious. It requires
careful examination of genealogical records, including marriage records, birth dates, death
dates, and parental information found in birth certificates. Medical researchers then must
carefully check records for consistency, for instance making sure that two married individuals
were alive at the same time and making sure that children were conceived while the parents
were alive. Genealogical methods for constructing pedigrees can involve multiple sources of
information with contradictory or missing information. For example, it has been estimated
that between 2-10% of people do not know who their biological father is [46, 84]. This
manual process of constructing pedigrees is very time consuming. Despite the care taken,
there are sometimes mistakes [8, 67, 90].

For constructing non-human pedigrees, of diploid organisms, it is often impossible to
know the pedigree graph since there are no genealogical records [6, 10]. In this case it
is particularly important to develop methods of automatically generating pedigrees from
genomic data.

The problem of reconstructing pedigrees from haplotype or genotype data is not new.
The oldest such method that the author knows of is due to Thompson [95]. That approach
is essentially a structured machine learning approach where the aim is to find the pedigree
graph that maximizes the probability of observing the data under the pedigree model, also
called the likelihood of the pedigree. (That approach is directly analogous to maximum
likelihood methods for phylogenetic reconstruction which also try to find the phylogenetic
tree that maximize the likelihood.) Notice that this method reconstructs both the pedigree
graph and the ancestral haplotypes which is a very time-consuming step. Thus, this ap-
proach is limited to extremely small families, perhaps 8 people total, since the algorithms
for computing the likelihood of a fixed pedigree graph are exponential [61] and there are an
exponential number of pedigree graphs to consider [91].

The current state-of-the-art method is an HMM-based approximation of the number of
meioses separating a pair of individuals [87]. This approach dispenses with any attempt to
infer haplotypes of ancestral individuals, and instead focuses on the number of generations
that separate a pair of individuals. In this approach the hidden states of the HMM represent
the identity-by-descent (IBD) of a pair of individuals. Two individuals are identical-by-
descent for a particular allele if they each have a copy of the same ancestral allele. The
probability of the haplotype data is tested against a particular type of relationship. The
main draw-back of this approach is that it may estimate a set of pair-wise relationships that
are inconsistent with a single pedigree relating all the individuals.

Thatte and Steel [92] examined the problem of reconstructing arbitrary pedigree graphs
from a synthetic model of the data. Their method used an HMM model for the ancestry
of each individual to show that the pedigree can be reconstructed only if the sequences are

82

sufficiently long and infinitely dense. Notice that this chapter uses an unrealistic model
of recombination where every individual passes on a trace of their haplotypes to all of
their descendants. Kirkpatrick [49] introduced a more simple, more general version of the
reconstruction algorithm introduced by Thatte and Steel.

Attempts to construct sibling relationships are known to be NP-hard, and attempts to
infer pedigrees by reconstructing ancestral haplotypes are be NP-hard. Two combinatorial
versions of the sibling relationship problem were proven to be NP-hard, both whole- and
half-sibling problem formulations [6, 83]. If ancestral haplotypes are reconstructed in the
process of inferring a pedigree, as in Thompson’s structured machine learning approach,
then the inheritance probabilities of data must be computed on the pedigree graph. For
instance, we might want to compute the likelihood, or the probability of observing the data
given inheritance in the pedigree. This calculation is NP-hard for both genotype [76, 62]
and haplotype [48] data. This means that any efficient pedigree reconstruction method will
need to find ways to avoid both these hardness problems.

The novel contributions of this chapter are two-fold. First, we introduce a method for
evaluating the accuracy of pedigree reconstruction methods. This is important, because
existing evaluation methods cannot detect small differences between pedigrees. Second, we
introduce two practical pedigree reconstruction algorithms for genotype data.

Evaluating any reconstruction method requires running the method on an instance in
which the true pedigree is known and then comparing the results of the method to the known
true pedigree. Both the estimated pedigree and the true pedigree will have the same set of
extant individuals, but each may contain a different set of inferred ancestors. Since there
are no data to uniquely label the inferred ancestors, there is no way to directly compare the
estimated pedigree to the true one. As a result, the topology of the two pedigrees must be
compared in a fashion that respects the labels of the extant individuals.

There are two natural formulations for the pedigree comparison problem: pedigree iso-
morphism and pedigree edit distance. While the isomorphism problem only identifies pairs
of pedigrees whose topologies match exactly, the pedigree edit distance allows differences
between the pedigrees. Both isomorphism and edit distance are discussed in this chapter.

The contribution of this chapter to pedigree reconstruction is two algorithms that avoid
the exponential likelihood calculations. We do this by specifically not reconstructing an-
cestral haplotypes and by not trying to optimize sibling groups. We use estimates of the
length of genomic regions that are shared identical-by-descent. In two related individu-
als, a region of the genome is identical-by-descent (IBD) if and only if a single ancestral
haplotype sequence was the source of the sequence inherited in the two individuals. The
length of IBD regions gives a statistic that accurately detects sibling relationships at multi-
ple generations. We have two algorithms: one for constructing inbred pedigrees (CIP) and
one for constructing outbred pedigrees (COP). For our outbreeding algorithm the statistic
is testable in polynomial time. For our inbreeding algorithm, the statistic is computable
in time dependent on the number of meioses in the predicted pedigree. Our outbreeding
method works to reconstruct at least six generations back in time. Both methods are more
accurate than the state-of-the-art method by Stankovich et al. [87].

83

5.2 Pedigree Structure and a Simple Reconstruction

Algorithm

The work in this section was a novel contribution by the author [49] also appearing
in [54].

An alternative formulation of a pedigree would allow the hypothesis that a set of individ-
uals is descended from a common ancestor (called a descendant split), without specifying
the number of generations between each of the individuals and their common ancestor(s).
The presence or absence of a single descendant hypothesis may only change the closeness of
the relationship between a pair of individuals (perhaps from cousins to 2nd-cousins), rather
than removing the relationship entirely. This is in contrast to the traditional formulation of
a pedigree as a collection of parent-offspring edges, where a missing edge entirely changes
the nature of many relationships.

Definition 5.2.1. Let I be the set of individuals in a pedigree, and let X be a set of labeled
individuals. The descendant split (or d-split) of an individual i ∈ I is defined as a subset
of X:

Di(X) = {j ∈ X| j is descended from i}

where every individual is considered a descendant of itself. For a particular set of interest,
X, refer to the set of d-splits as DX = {Di(X) | i ∈ I}.

Each d-split specifies some relationship between all the individuals in Di. For the exam-
ple given in the left panel of Figure 5.1, when all individuals are labeled the list of d-splits,
DI , are: D1(I) = {1}, D2(I) = {2}, D3(I) = {1, 2, 3}, D4(I) = {1, 2, 4}, D5(I) =
{1, 2, 3, 5}, D6(I) = {1, 2, 3, 6}, D7(I) = {1, 2, 4, 7}, D8(I) = {1, 2, 4, 8}, D9(I) =
{1, 2, 3, 4, 5, 6, 7, 8, 9}, and D10(I) = {1, 2, 3, 4, 5, 6, 7, 8, 10}. Similarly, if we restricted our
attention to X = {1, 2}, then DX would contain {1}, {2}, and {1, 2}.

The term “descendant split” is deliberately chosen to evoke the image of a split in a
perfect phylogeny and to pay homage to phylogenetic reconstruction methods [82] which
are a source of inspiration for this work. Just as a set of splits determines a class of perfect
phylogeny trees that are compatible with the splits, a set of descendant splits specifies a
class of pedigree graphs that are compatible with the splits. We will formalize this idea with
several lemmas.

Lemma 5.2.1. Let DI = {Di(I) | i ∈ I} be the d-splits defined by a pedigree P . This set
can be used to construct a unique pedigree which is identical to pedigree P .

Lemma 5.2.2. Let DX = {Di(X) | i ∈ I} be the d-splits defined by a pedigree P and a set
X. This set of d-splits specifies a class of pedigrees compatible with the splits. Pedigree P is
one of the pedigrees compatible with the d-splits.

Consider the d-splits in DI . Any singleton d-split, Di(I) ∈ DI with |Di(I)| = 1, rep-
resents an individual that is childless. Therefore these d-splits represent individuals in the

84

most recent generation of the pedigree. Now, find some ancestor i1 and examine any di-
rected path descending from that individual, for example, i1 → i2 → ...→ ik−1 → ik, where
the arrow indicates a directed parent-offspring relationship. We see that the d-splits along
that descendant path are ordered Di1 ⊃ Di2(I) ⊃ ... ⊃ Dik(I). Indeed, the cardinality of
the d-split sets Dij(I) strictly decreases as we consider individuals lower in the path. These
two ideas result in a simple algorithm for constructing the pedigree.

Algorithm 3 GraphConstruction()

1: Heap := (Di0 , ..., Dik) where |Di0| ≤ |Di1| ≤ ... ≤ |Dik |
2: Create pedigree P with nodes {i0, i1, ..., ik}.
3: while Heap 6= ∅ do
4: Dij := pop(Heap)
5: Look for the smallest Dif and Dim , respectively the female and male splits, such that

Dij ⊆ Dif and Dij ⊆ Dim

6: if Dif and Dim are found then
7: add to P the edges im → ij and if → ij
8: else
9: ij is a founder and has no parents.

10: end if
11: end while
12: return P

Lemma 5.2.3. Let DI = {Di(I) | i ∈ I} be the d-splits defined by a pedigree P . This set
can be used to construct a unique pedigree which is identical to pedigree P .

Proof. of Lemma 5.2.1
Since we have a d-split for every individual, the algorithm will either assign founder status
or parents to every individual. Now, if we look at a single step in the algorithm, each
individual will be assigned the parents. Due to the strictly increasing cardinality of d-splits
as one moves up the pedigree (notice that this is due to an individual being contained in
their own d-split), these parents are represented by the unique two smallest descendant
splits.

Example. If we take the d-splits DI from pedigree in the left panel of Figure 5.1, we can
apply the algorithm to construct the pedigree. Figure 5.1 shows the d-splits using a Venn
diagram. Each step in the algorithm constructs a set of parent-child edges. This example
also illustrates the ambiguity of the d-splits when individuals in the pedigree are unlabeled.
As noted before, if only individuals {1, 2} are labeled, then many of the ancestral d-splits
are identical.

We can use the same algorithm when we consider d-splits on a subset of the individuals,
X ⊂ I. As long as we have a separate d-split for each individual in the pedigree, we will
know the number of generations in each lineage because all the parents at all generations
will be represented. The main difference is that each descendant path has non-decreasing

85

1 2

3 4

5 6 7 8

9 10

D3 D4

D1 D2

D5 D6 D7 D8

D3 D4

D1 D2

D9 D10

D5 D6 D7 D8

D3 D4

D1 D2

Figure 5.1: Constructing a Pedigree from the Full D-Splits. Given the d-splits in DI

for the set I of all the individuals in the pedigree on the left, we can use the construction
algorithm to recover the pedigree. These are the Venn diagrams of the construction at
three different steps in the algorithm. Each panel shows a full generation of algorithm
iterations, and right-most panel shows the complete construction. Each d-split is drawn as
a set containing the related individuals. Each set in the diagram is labeled with the name
of its d-split, and the names of the d-splits are arbitrary as long as they are distinct.

cardinality of d-splits as we move backwards in time. The missing information, now, is in
not knowing which d-split was generated by the parent versus a more distant ancestor. For
the example we gave above, if X = {1, 2}, then D9(X) and D7(X) are indistinguishable.

Lemma 5.2.4. Let DX = {Di(X) | i ∈ I} be the d-splits defined by a pedigree P and a set
X. This set of d-splits specifies a class of pedigrees compatible with the splits. Pedigree P is
one of the pedigrees compatible with the d-splits.

Proof. of Lemma 5.2.2
Again, since we have a d-split for every individual, the algorithm will either assign founder
status or parents to every individual. Now, if we look at a single step in the algorithm, each
individual will be assigned some parents, due to the non-decreasing cardinality of d-splits as
we consider d-splits for individuals in older generations. However, the construction will be
different for re-orderings of the d-splits. This means that we may not be able to resolve the
correct labels for individuals I \X in the interior of the pedigree. Even though we cannot
resolve the interior, if we run the algorithm once for each possible ordering of the d-splits,
we obtain a collection of pedigrees that are consistent with the d-splits. The actual pedigree
will be contained in this collection.

Notice that this idea of descendant splits is a general property of any directed acyclic
graph with fixed in-degree. This idea provides a core description of the pedigree reconstruc-
tion algorithm that Thatte and Steel proposed [92]. They proposed an artificial generative
model of inheritance in which every individual contributed some unique alleles with high
probability. These unique alleles then became markers for each d-split, allowing them to
piece together the lineages of multiple leaf individuals.

86

5.3 Accuracy Measurements

The work in this section appears in [54].
Evaluating any reconstruction method requires running the method on an instance in

which the true pedigree is known and then comparing the results of the method to the known
true pedigree. Both the estimated pedigree and the true pedigree will have the same set of
extant individuals, but each may contain a different set of inferred ancestors. Since there
are no data to uniquely label the inferred ancestors, there is no way to directly compare the
estimated pedigree to the true one. As a result, the topology of the two pedigrees must be
compared in a fashion that respects the labels of the extant individuals.

There are two natural formulations for the pedigree comparison problem: pedigree iso-
morphism and pedigree edit distance. While the isomorphism problem only identifies pairs
of pedigrees whose topologies match exactly, the pedigree edit distance allows differences
between the pedigrees. Both isomorphism and edit distance are discussed in this section.

5.3.1 Isometry between Pedigrees

For a certain class of pedigrees and individuals of interest, we can detect the isomorphism
of two pedigrees in O(n2 · |X|2) time where n = |I|. Following from the previous section,
there are certain instances where a pedigree and its individuals of interest, X ⊆ I with
|X| ≤ |I|, yield d-splits that uniquely determine the pedigree, rather than determining a
class of pedigrees, as in Lemma 5.2.2.

Definition 5.3.1. A pedigree P and its individuals of interest X is resolvable from its
d-splits if and only if every individual has a d-split that is either distinct from the d-splits of
all other individuals or identical to at most one other individual, who is the mating partner
in a monogamous pairing.

Lemma 5.3.1. Two resolvable pedigrees are isomorphic if and only if both pedigrees contain
the same list of descendant-splits.

Proof. Here we simply use Algorithm 3 and lean on the proof of Lemma 5.2.1. Notice that
in Lemma 5.2.2 different orderings of the d-splits yield different pedigrees from the Graph-
Construction() algorithm. By definition, a resolvable pedigree is one for which there is a
single non-decreasing ordering of the d-splits up to re-orderings of the splits for monoga-
mous mates. This means there is an ordering of the splits such that we can reconstruct a
unique pedigree graph from the list of splits, by Algorithm 3. Therefore, two graphs are
isomorphic if and only if they have the same d-splits and there is a unique pedigree which
can be constructed from the d-splits.

The algorithm for detecting isomorphic pedigrees proceeds to check the condition given in
the definition followed by the condition given in the lemma. Checking resolvability requires
checking equality of two descendant-splits, an order |X|2 operation. Since there are at most
n d-splits which need to be compared to each other, these operations have running time
O(n2 · |X|2) where n is the number of individuals in the pedigree.

87

5.3.2 Edit Distance between Pedigrees

In the previous section, we presented a method for determining whether certain pedigrees
are isomorphic. However, we are interested not only in determining whether two pedigrees
are isomorphic, but in how close they are to being isomorphic. Such a distance measure
would be useful for evaluating pedigree reconstruction methods; for example, it would allow
us to determine how good a predicted pedigree is by comparing it to a correct pedigree
graph.

Informally, given two arbitrary pedigree graphs, P = (I(P), E(P)) andQ = (I(Q), E(Q)),
we want to find the minimum number of parent-child edge additions/deletions required to
convert Q into P . We call this the edge edit distance between P and Q. Notice that it is
not necessary that |I(P)| = |I(Q)| because addition/deletion of edge-less nodes is free.

Let us define edge edit distance more formally. For an individual i ∈ I(·), let s(i) ∈
{m, f} indicate male and female gender, respectively. Define a matching of pedigrees between
P and Q to be a subset M of I(P)× I(Q) such that (i, j) ∈ M only if s(i) = s(j), and for
each i (respectively, j), there is at most one j (respectively, i) such that (i, j) ∈ M . Given
such a matching M and some i ∈ I(P), we define M(i) = j if (i, j) ∈ M and M(i) = λ
otherwise, where λ is a special symbol reserved for nodes that are not matched. We will
abuse notation and use M(j) to denote the analogous function for individuals in I(Q) as
well. With this notation, we define the match distance incurred by M as

d(M) = dP,Q(M) + dQ,P (M),

where dG,G′(M) = |{(i, j) ∈ E(G)|(M(i),M(j)) /∈ E(G′)}|. Here, dG,G′(M) is the number
of parent-child edges in the pedigree G that do not correspond under the matching M to
parent-child edges in G′.

Now, we can define a distance between pedigrees. Let the edit distance between pedigrees
P and Q be defined as the minimum matching distance:

DP,Q = min
M

d(M).

When we have a set of labeled individuals X which is a subset of both I(P) and I(Q)
(recall that this is a set of distinguishable individuals for which we may have data, for
example), we can force the distance to respect the labeled set by minimizing only over those
matchings for which (i, i) ∈ M for all i ∈ X. Notice that the dual optimization problem is
that of maximizing the number of matched edges. When convenient, we occasionally deal
with the dual.

The problem of finding the pedigree distance is a specific case of the well-studied problem
of inexact graph matching [19]. Inexact graph matching is not only NP-hard in general,
but MAX SNP-hard even when restricted to trees [103], and there is a extensive literature
on heuristics and algorithms for inexact graph matching. However, the hardness results
do not apply to pedigree distance—perhaps the hard cases of inexact graph matching are
non-pedigrees—and the algorithms do not take advantage of the structure of pedigrees. In
Section 4, we show that computing pedigree distance is APX-hard, and in Section 5, we
present several heuristics and algorithms for calculating pedigree distance in general and in
specific cases.

88

Hardness of Computing Pedigree Edit Distance

In this section, we show that calculating the edge edit distance between two pedigrees is
APX-hard for monogamous out-bred pedigrees (i.e. tree-like pedigrees), by reducing from
Minimum Common Integer Partition. For clarity, when applied to trees, we call the edge
edit distance cut-and-paste distance (cut/paste for short). A cut/paste operation involves
deleting (cutting) an edge x→ y and adding (pasting) a new edge z → y.

Given two minimization problems Y and Z, an L-reduction from Y to Z is a pair of
polynomial-time functions f, g and a pair of positive constants α, β meeting the following
conditions.

(1) For every instance y of Y , f(y) is an instance of Z with

opt(f(y)) ≤ α · opt(y),

(2) For a feasible solution z to f(y), g(z) is a feasible solution to y such that

|opt(y)− val(g(z))| ≤ β · |opt(f(y))− val(z)|.

Note that opt(y) is the value of the optimal solution to an instance y, while val(z) denotes
the value of solution z. With the above two properties, it is easily seen that the following
inequality on the relative errors of approximation holds:

|opt(y)− val(g(z))|
|opt(y)|

≤ αβ · |opt(f(y))− val(z)|
|opt(f(y))|

.

When the above conditions are satisfied, if it is NP-hard to approximate Y with a factor
of 1 + αβε, then it is NP-hard to approximate Z with a factor of 1 + ε. In particular, if

We reduce MCIP (Minimum Common Integer Partition) to MCPDT (Minimum Cut/Paste
Distance between Trees) with an L-reduction. Notice that the MCPDT is the pedigree edit
distance viewed as cut-and-paste operations on trees.

A partition of an integer n is a multiset {n1, n2, ..., nt} such that
∑

1≤i≤t ni = n. For
example, when n = 8, {3, 2, 2, 1} is a partition of n.

A partition of a multiset S = {x1, x2, ..., xp} is a multiset union of all the partitions P (xi),
i.e., ∪iP (xi). A multiset X is a common partition of two multisets S1 = {x1, x2, ..., xp}, S2 =
{y1, y2, ..., yq} if there are partitions P,Q with ∪iP (xi) = ∪jQ(yj) = X. For example, given
S1 = {8, 5}, S2 = {9, 4}, X = {5, 3, 2, 2, 1} is a common partition of S1, S2.

MCIP (Minimum Common Integer Partition)
Instance: Two multisets of integers S1, S2, integer k.
Question: Do S1, S2 admit a common partition of size k?

It was shown in [17] that MCIP is APX-hard.

MCPDT (Minimum Cut/Paste Distance between Trees)
Instance: Two directed rooted unlabeled trees T1, T2, integer k.
Question: Can T1 be converted into T2 using k cut/paste operations?

89

Note that the question in MCPDT is also equivalent to: Can T2 be converted into T1

using k cut/paste operations? Or, Can T1, T2 be converted into a tree T using a total of
k cut/paste operations? Or, Can T1, T2 be cut into a common forest F each using k edge
cuts?

The reduction is simple. Given S1 = {x1, x2, ..., xp}, S2 = {y1, y2, ..., yq}, we construct
two trees T1, T2 with roots r1, r2 such that the descendants of r1 (resp. r2) is composed of p
(resp. q) paths, each is of size xi (resp. yj), for 1 ≤ i ≤ p (resp. 1 ≤ j ≤ q). We need to cut
T1, T2 into a common forest, in which each tree, except the ones containing r1, r2, is a path.

Let opt(MCIP) and A(MCIP) be the values of the optimal and approximate solution
of MCIP, respectively. Let min = min{p, q}. Then the value of the optimal solution for
MCPDT is opt = opt(MCIP) − min. (In other words, we can conclude that S1, S2 has a
solution of size k if and only if T1, T2 each can be cut into a common forest with (k −min)
cuts.) Moreover, A(MCPDT) = A(MCIP) − min is the value of a feasible solution of
MCPDT. Clearly we have

(1) opt ≤ α · opt(MCIP), by setting α = 1.
(2) |opt(MCIP)− A(MCIP)| ≤ β · |opt− A(MCPDT)|, by setting β = 1.
To see (2), |opt−A(MCPDT)| = |opt−(A(MCIP)−min)| = |opt(MCIP)−A(MCIP)| ≥

|opt(MCIP)− A(MCIP)|.
Therefore, this reduction is an L-reduction. As MCIP is APX-hard, MCPDT is also

APX-hard. This implies that unless P=NP, there is no way to obtain a PTAS for MCPDT.
Since MCPDT is a special case of computing edge edit distance, this implies that edge edit
distance is APX-hard. This proof works for labeled pedigrees provided that the labels are
the same in the two pedigrees.

Algorithms for Computing Pedigree Edit Distance

We showed in the previous section that no polynomial time algorithm exists to determine
the pedigree distance unless P = NP . Indeed, even for monogamous pedigrees, there is no
PTAS unless P = NP . In this section, we present a polynomial time randomized heuristic
for calculating pedigree distance on general labeled pedigrees, a dynamic programming
algorithm which provides an optimal solution for a restricted set of pedigrees in time which
depends on distance between pedigrees, and we summarize a few other algorithms for general
and special cases.

Let a regular pedigree be one where every individual is monogamous and only individuals
of the same generation mate with each other. Consider the case of two regular pedigrees
both having the same set of labeled individuals, X.

Heuristic Random Matching Algorithm using D-Splits. The randomized matching
algorithm for regular pedigrees is exceptionally simple. At each generation, among individ-
uals of the same gender, choose a match-pair with probability proportional to the number of
same-labeled individuals, i ∈ X, in the descendant sets of the two pedigrees. If there were
separate paths from each leaf to the individual under consideration, then this algorithm
would give equal weight to each path. However, these paths share edges, so it is difficult to
analyze this heuristic.

90

This algorithm is polynomial, because at each generation it creates a n × n matrix of
individual match probabilities for each gender (where there are 2n individuals per gener-
ation). The matches are then drawn iteratively from these probability matrices (without
replacement of previously matched individuals).

Dynamic Programming Algorithm for Matched Generations. Suppose we have
two regular pedigrees P and Q, each of which is made up of g generations of m males and
m females each. If the pedigrees P and Q are similar enough and the youngest generations
of P and Q are entirely labeled with unique labels, we can use dynamic programming to
find an optimal matching between them in time exponential in the edit distance.

We will need some notation to describe the algorithm. First, let the generations of
pedigree P be numbered with the youngest generation being generation 1 and the oldest
generation being generation g. For a pedigree P and a subset S ⊆ 1, 2, ..., g, let P |S denote
the sub-pedigree containing the i-th generation of P for every i ∈ S. Let M(S) be the set
of all matchings from P |S to Q|S. For M ∈ M(S) and i such that i ≥ j for all j ∈ S, let
Bi(M) be the edit distance between P |{1,...,i} and Q|{1,...,i} with the restriction that the only
matchings considered when calculating the distance are those that agree with M where M is
defined. We will abuse notation a bit by letting M(i) denote M({i}) and letting P |i denote
P |{i}. Finally, for matchings M ∈ M(S) and T ⊆ S, let dT (M) be the edge edit distance
corresponding to M restricted to P |T .

Our algorithm rests on the following simple relation.

Lemma 5.3.2. For every i ∈ {2, . . . , g}, and for every M ∈ M({i, i− 1}), let Mi−1 be the
restriction of M to P |{i−1}. Then we have

Bi(M) = Bi−1(Mi−1) + d{i,i−1}(M) (5.1)

Lemma 5.3.2 gives rise to a simple dynamic programming algorithm. However, the
problem with this straightforward algorithm is that its run-time is factorial inm, the number
of males/females in each generation. For each value of i and each fixed matching Mi−1,
there are (m!)2 possible matchings M to process. Therefore, the run-time of this algorithm
is O((m!)2g).

We can improve this algorithm if we know that the two pedigrees under consideration
are sufficiently similar at each generation by realizing that there is no need to consider all
matchings for each generation. Suppose we are promised that the optimal matching M
of P to Q has d{i,i−1}(M) < k for every 1 < i ≤ g. Then in the algorithm above we
would only need to process, for each 1 < i ≤ g and each Mi−1 ∈ M(i − 1), the matchings
M ∈M({i, i− 1}) such that M restricted to P |i−1 equals Mi−1 and d{i,i−1}(M) < k.

The enumeration of the set {M ∈ M({i, i − 1}) : M |i−1 = Mi−1, d{i,i−1}(M) < k} can
be done recursively by choosing a node of P |i, matching it to a node in the i-th generation
of Q, and then recursively doing the same to another unlabeled node in P |i, all the time
keeping track of the accrued cost of the matching so far and not making any assignment
that will push that cost above k. The pseudo-code for this enumeration is given below.

In the pseudo-code, the function Process carries out the dynamic programming implied
by the recursion in Lemma 5.3.2. It takes as input a matching M of generations i and i− 1

91

Algorithm 4 EnumerateMatchings(Mi,Mi−1, cost)

input: Access to P,Q, pedigrees with g generations of m males/females each.
input: i specifies which pair of generations is getting matched.
1: if |Mi| = 2m then
2: Process(Mi,Mi−1)
3: RETURN
4: end if
5: u← a node of P |i unmatched by Mi

6: for a ∈ Q|i such that s(a) = s(u) and a is unmatched by Mi do
7: add u 7→ a to Mi

8: if d(Mi|{i,i−1}) ≤ k then
9: EnumerateMatchings(Mi,Mi−1, d{i,i−1}(Mi))

10: end if
11: remove u 7→ a from Mj

12: end for
13: RETURN

that is made up of a matching Mi of the i-th generation and a matching Mi−1 of the i−1-th
generation. With this matching, it does the following:

1. Calculates the distance d{i,i−1}(M) on the sub-pedigrees consisting of only generations
i and i− 1

2. Retrieves Bi−1(Mi−1)

3. Stores that Bi(Mi) equals Bi−1(Mi−1) + d{i,i−1}(M)

Step (1) is easily done in O(m2) time. For steps (2) and (3) to be efficient, the values of
B(−) must be stored efficiently. To do this, we define an ordering on the set M({i, i−1}) by
interpreting each matching as an m-digit m-ary number. We can then store the matchings
and their associated costs in a list sorted according to the ordering on the matchings, and
use binary search to insert and retrieve matchings while keeping the list sorted. This scheme
allows the Process function to run in time O(m) each time it is called.

But how many times is Process called? The following two lemmas together bound the
number of matchings processed by EnumerateMatchings.

Lemma 5.3.3. The number of matchings on which EnumerateMatchings will call the Pro-
cess function is at most T (m, k)2 where T is defined by the recurrence relation

T (n, c) = T (n− 1, c) + (n− 1)T (n− 1, c− 2)

with initial conditions T (1, c) = 1 and T (n, 0) = T (n, 1) = 1.

Proof. First, suppose that there are only m individuals of one gender to match. Initially,
EnumerateMatchings has m individuals whom it has to match and k “cost points” that it

92

can use up. In the best case, there is only one individual in Q|i to whom u can be matched
without using any cost points (increasing the cost of the matching). This follows from the
case with one child, where parent and child in one pedigree are matched to parent and
child in the other pedigree. Besides this option there are at most m− 1 other options, each
of which will increase the cost of the matching by at least 2 (since at least one edge will
have to be deleted and one edge will have to be added). This establishes the recurrence.
The initial conditions follow from the following facts: 1) when one individual is left to be
matched, there is only one possible way to complete the matching being built, and 2) when
the matching being built is already costing k (i.e. there are 0 cost points left), there is at
best only one way to complete the matching.

This bounds the number of matchings of each gender by T (m, k). Since this process
occurs independently for each gender, the number of total matchings is at most T (m, k)2.

Lemma 5.3.4. The recurrence T defined above satisfies T (n, c) = O(nC) where C is the
greatest even integer less than or equal to c.

Proof. We proceed by induction on c. The initial conditions of T give us our base case of
c = 0. The general case follows from bounding the difference between successive values of
T (·, c): the recurrence gives us that T (n, c)− T (n− 1, c) = (n− 1)T (n− 1, c− 2), which is
nO(nC−2) = O(nC−1) by the inductive hypothesis.

The run-time of this more efficient algorithm is dominated by its last step, in which all
the matchings between the oldest generations of P and Q are considered and the best one
is chosen. By lemma 5.3.4, the number of these matchings is at most O(m2k(g−1)) = O(m2d)
where d is the maximum possible distance between the two pedigrees. Thus, if k (the
distance between pairs of successive generations) and g (the number of generations) are
small, the algorithm can efficiently find a good edit distance. If no matching has distance
less than k between every two generations, the algorithm fails by returning the matching
found by the random heuristic. The algorithm is described in more detail in the appendix.

Heuristic Improvements to the Dynamic Programing Algorithm. We can turn
the DP algorithm into a heuristic by enumerating only some matchings that are obtained
as solutions to a matching problem. For each generation and for a fixed labeling of the
previous generation, similar to the two-generation matching problem, we can devise an
instance of the minimum-weight perfect matching problem for which we can enumerate the
k-best solutions. This can greatly improve the running-time of the EnumerateMatchings()
method. For each generation i and for some matching i − 1 of the previous generations,
generate the two-generation maximum-weight bipartite matching instance for each gender
with nodes IF (P) ∪ IF (Q) for the females and nodes IM(P) ∪ IM(Q) for the males. For
sex S, we convert this into an instance of the minimum-weight perfect matching problem
as follows. Create dummy vertices for half of the bipartite graph, where there is zero
cost to match any vertex to a dummy in the opposite half of the graph. For vertices
representing individuals in pedigree P we create |IS(Q)| dummy vertices which we call
DS(Q), and respectively for Q we have DS(P) where |DS(P)| = |IS(P)|. So we have vertices

93

V = IS(P) ∪ DS(Q) ∪ IS(Q) ∪ DS(P). with weights wS(i, j) = 0 for i ∈ DS(Q), j ∈ V
and for i ∈ V, j ∈ DS(P). Let m = maxi,j wS(i, j) be the maximum weight edge in the
graph. Now the weights xS(i, j) for the minimum-weight bipartite matching instance are
then xS(i, j) = m− wS(i, j) which yields non-negative weights.

Now, we have an instance of the minimum-weight perfect matching problem which we
can solve for the k-best matchings. Chegireddy and Hamacher give an algorithm for finding
the k-best perfect matchings [15].

Two-Generation Polynomial-Time Algorithm. When P andQ are both two-generation
pedigrees where the labeled individuals X entirely determine the matching of the most re-
cent generation, we have a polynomial-time algorithm. We construct two maximum-weight
bipartite matching instances, one for each gender, whose solutions gives us the best match-
ing. Notice that in doing this, we deal with the dual problem to the minimum edit distance,
which is the maximum number of matched edges.

Let IM(S) and IF (S) be the male and female individuals of pedigree S, respectively.
Let GM = (IM(P) ∪ IM(Q), E(GM)) be the bipartite graph for males and GF = (IF (P) ∪
IF (Q), E(GF)) the similar graph for females.

The edge weights for the male graph are wM(i, j) with (i, j) ∈ E(GM) and similarly,
wF (i, j) for (i, j) ∈ E(GF). Let s(i) be the gender of individual i. For every (i, j) ∈
I(P) × I(Q), we will have two nodes i ∈ Is(i)(P) and j ∈ Is(i)(Q). Edges are created as
follows:

1. For all i ∈ X, create edge (i, i) ∈ E(Gs(i)).

2. For all (i, j) ∈ I(P)× I(Q) where i /∈ X, j /∈ X and s(i) = s(j), if i and j each have
at least one common child c ∈ X, create (i, j) ∈ E(Gs(i)) with weight ws(i)(i, j) equal
to the number of children having the same label.

When we compute the maximum-weight matching on these graphs GM and GF , we will
obtain the matching of the parents of the labeled individuals that minimizes the number
of mis-matched child edges. Notice that labeled individuals are forced to match with the
corresponding individual with the same label in the other pedigree. This holds even for P
and Q which are each collections of families.

Branch and Bound Algorithm. An exact solution can be obtained by branching on
all the possible matchings for each generation before continuing recursively to consider
older generations. Indeed, this algorithm does not even require the generations in order
to branch, since it can simply branch on every possible node-paring. We implemented a
branch-and-bound algorithm that does this branching procedure and bounds the search if
it becomes clear that the current matching will have a worse score than the best found so
far. In the case of monogamy, we simply match monogamous couples rather than individual
parents. In the case of regular pedigrees we can bound the search by finding the best possible
matching via the two-generation algorithm. For each generation i and for some matching of
the previous generations, construct the two-generation maximum-weight bipartite matching

94

instance and solve it. The solution yields the maximum number of edges that can be shared
by any pairing of the nodes at generation i given the existing node-pairings for generation
i− 1. This number can be used to bound the search and by not following branches that are
certainly have worse matches than the best matching found so far.

Simulation Results

We evaluated the three most general algorithms on random pairs of pedigrees at a range
of distances. For each pair, the first pedigree graph was drawn from a Wright-Fisher simu-
lation where every generation has a fixed number of individuals, n, and each monogamous
parent-pair has a number of offspring drawn from the Poisson distribution with mean λ.
The second pedigree was chosen based on the first in one of two ways. To generate a monog-
amous second pedigree, a proportion x of non-founders chose a couple uniformly at random
to be their parents. To generate a non-monogamous second pedigree, a proportion x of
non-founders chose a parent of each gender uniformly and independently at random. This
proportion x, called the fraction of actual changes, takes values in the interval [0, 1]. In
both cases, only the most recent generation was labeled, to simulate the case where there is
genetic data available only for the most recent generation. Both simulated pedigrees contain
no inter-generational mating events.

We compared three different normalized distance estimates for pedigrees P and Q.

1. Simulated Edit Path Length: AP,Q/(|E(P)|+ |E(Q)|)

2. Random-Matching Heuristic Estimate: D̂P,Q/(|E(P)|+ |E(Q)|)

3. True Edit Distance: D∗
P,Q/(|E(P)|+ |E(Q)|)

4. DP Estimate: D̃P,Q/(|E(P)|+ |E(Q)|)

where AP,Q is the number actual edge changes in the simulation (often larger than the true
edit distance because the edit path taken in the simulation was longer than the shortest
edit path), D̂P,Q is edit distance as computed by the random matching heuristic, D∗

P,Q is

the true edit distance, computed by the branch-and-bound algorithm, and D̃P,Q is the edit
distance as calculated by the DP algorithm, modified so that it returns the random-matching
estimate when it does not find a matching within the required distance threshold, set here
to d = 8.

These distances are plotted in Figure 5.2 against the fraction of pedigree edges changed
x during simulation. Figure 5.2 also shows the difference between the random-matching
and true edit distances. (The monogamous pedigree results are not shown due to their
similarity to the half-sibling case.) The simulations were performed on small three gener-
ation pedigrees, so that the edit distance could be computed using the branch-and-bound
algorithm, which has exponential running time. From the simulations, it is easy to conclude
that both the heuristic algorithm and the DP algorithm provide reasonable estimates of the
edit distance. This is particularly true for a small fraction of actual changes, i.e. when the
two pedigrees being compared are very similar to each other.

95

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Three Generation Pedigrees with Half−Siblings

Fraction of Actual Changes

N
or

m
al

iz
ed

 D
is

ta
nc

e

●●●●
●●●

●●●
●● ●●

● ●
●●●

●●
●●

●●
● ●●

● ●● ●
● ●●

●● ●
●● ●

● ● ● ●
● ● ● ● ●

●

Simulated Edit Path
Heuristic Estimate
True Edit Distance
DP Estimate

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Three Generation Pedigrees with Half−Siblings

Fraction of Actual Changes

N
or

m
al

iz
ed

 D
is

ta
nc

e

●●●● ●●● ●
●● ●● ●●● ●

●
●●

●● ●● ●
●

● ●● ● ●● ● ● ●
●

●● ● ●●
●

● ● ●
●

● ●
● ● ●

● Difference of Heristic and True Edit Distance
Difference of DP and True Edit Distance

Figure 5.2: Comparing Different Distances Estimates. With n = 14 and λ = 3,
there were 2500 pairs of pedigrees simulated. Each point is an average of 50 simulations.
The values of n and λ were chosen such that the branch-and-bound algorithm would finish
computing the true edit distance. The random matching heuristic yields an estimated
edit distance which is fairly close to the true edit distance. The DP algorithm performs
nearly perfectly for small numbers of actual changes, while it returns the solution found by
the random-matching heuristic when it cannot find a solution for parameter k = 8. The
upper panel shows the accuracies of each algorithm. The lower panel shows the difference
in accuracy between the true edit distance and each distances returned by the random-
matching heuristic and DP algorithm.

96

Heuristic True DP

0.
00

0.
02

0.
04

0.
06

0.
08

Running Times

Algorithm

S
ec

on
ds

Figure 5.3: Running Times. These are box plots comparing the running times of the
three different algorithms: heuristic algorithm, branch-and-bound algorithm, and the DP
algorithm. The heavy line is the median, the rectangle indicates the first and third quartiles.
In this case the median is coincident with the first quartile for all three algorithms. The
outliers are not shown; specifically, there are a number of very long execution times for the
optimal algorithm.

97

Figure 5.3 shows the running times for the three algorithms. We see the random-
matching heuristic performs reasonably well, both in terms of accuracy and time, so we
recommend its use. The DP heuristic agrees with the true edit distance when that distance
is small, and agrees with the random-matching estimate otherwise, as expected.

5.4 Two Practical Algorithms for Reconstruction

The work in this section was done as a collaboration between the author, Li, Karp and
Halperin [53].

The principal innovation of this method is to reconstruct pedigree graphs without re-
constructing the ancestral haplotypes. This is the innovation that allows this algorithm to
avoid the exponential calculation associated with inferring ancestral haplotypes, and allows
the algorithm to be efficient.

The approach we employ is a generation-by-generation approach. We reconstruct the
pedigree backwards in time, one generation at a time. Of course if we make the correct
decisions at each generation, then we will construct the correct pedigree. However, since
we use the predictions at previous generations to help us make decisions about how to
reconstruct subsequent generations, we can accumulate errors as the algorithm proceeds
backwards in time.

Given a set of extant individuals with IBD information available, we want to reconstruct
their pedigree. We construct the pedigree recursively, one generation at a time. For example,
the first iteration consists of deciding which of the extant individuals are siblings. The next
iteration would determine which of the parents are siblings (yielding cousin relationships on
the extant individuals).

At each generation, we consider a compatibility graph on the individuals at generation g,
where the nodes are individuals and the edges are between pairs of individuals that could be
siblings. The presence or absence of edges will be determined by a statistical test, discussed
later. For the moment, assume that we have such a graph.

Now, we will find sibling sets in the compatibility graph. We do this by partitioning the
graph into disjoint sets of vertices with the property that each set in the partition has many
edges connecting its vertices while there are few edges connecting vertices from separate
sets in the partition. Of course any partitioning method can be used, and later we will
introduce a partitioning heuristic. For rhetorical purposes, we will now discuss how to use
a Max-Clique algorithm to partition the graph. The graph is partitioned by the following
iterative procedure. Iteratively, find the Max-Clique, for all the individuals in the Max-
Clique, make them siblings, by creating monogamous parents in generation g + 1. Remove
those Max-Clique individuals from the graph. Now, we can iterate, by finding the next
Max-Clique and again creating a sibling group, etc.

Next, we consider how to create the edges in the compatibility graph. Let individuals k
and l be in generation g. Recall that we have an edge in the compatibility graph if k and
l could be siblings. To determine this, we look at pairs i and j of descendants of k and l,
respectively. Let ŝij be the observed average length of shared segments between haplotyped
individuals i and j. This can be computed directly from the given haplotype data and

98

need only be computed once as a preprocessing step for our algorithm. Now, for a pair of
individuals k and l in the oldest reconstructed generation, Xi,j is the random variable for
the length of a shared region for individuals i, j under the pedigree model that we have
constructed so far. Later, we will discuss two models for Xi,j. For now, consider the test
for the edge (k, l)

vk,l =
1

|D(k)||D(l)|
∑

i∈D(k)

∑
j∈D(l)

(ŝij − E[Xij])
2

var(Xij)
(5.2)

where D(k) is the set of extant individuals descended from ancestor k, and D(k) is known
based on the pedigree we have constructed up to this point. We compute vk,l, making edges
when vk,l < c for all k, l in the oldest generation, g, for some threshold c. Notice that this
edge test is similar to a χ2 test but does not have the χ2 null distribution, because the
term in the sum will not actually be normally distributed. We choose the the threshold,
c, empirically by simulating many pedigrees and choosing the threshold which provides the
best reconstruction accuracy.

Now, we need to calculate E[Xi,j] and V ar(Xi,j). We propose two models for the random
variable Xij, the outbred model (COP) and the inbred model (CIP). The outbred, COP,
model only allows prediction of relationships between two individuals that are unrelated at
all previous generations. The inbred model, CIP, allows prediction of a relationship that
relates two individuals already related in a previous generation.

5.4.1 IBD Model for Constructing Outbred Pedigrees (COP)

To obtain the edges in the compatibility graph, we do a test for relationship-pairs of the
form shown in Figure 5.4. If a pair of extant individuals i and j are related at generation g
via a single ancestor at that generation, then the length of the regions they share IBD will
be distributed according to the sum of two exponential variables, specifically, exp(2(g−1)λ).
This is the waiting time, where time corresponds to genome length, for a random walk to
leave the state of IBD sharing. So, we have Xij = X1 +X2 where Xi ∼ exp(2(g− 1)λ). We
must consider the sum of the two exponential random variables, because Xi is the length of
the IBD region conditioned on starting at an IBD position. Therefore from an arbitrary IBD
position, we need to consider the length of the IBD region before arriving at that position,
X1, and the length after that position, X2.

Due to these random variables being exponentially distributed, we can quickly analyt-
ically compute E[Xij] and V ar(Xij). Of course, the edges created respect the outbreeding
constraint, such that a pair of individuals, k and l at the gth generation can only have an
edge between them in the compatibility graph if none of the extant individuals in D(k) and
D(l) are related to each other at a previous generation.

5.4.2 IBD Model for Constructing Inbred Pedigrees (CIP)

We will do a random-walk simulation to allow for inbreeding, resulting in an algorithm
with exponential running-time. The number of states in the IBD process is exponential

99

g generations
with 2g − 2 meioses
between i and j

i j

k l

Figure 5.4: Pair of Individual Related at Generation g. To test whether individuals
k and l are siblings at generation g, we look at the distribution on the length of genetic
regions shared IBD between all pairs of i and j descended from k and l, respectively.

in the number of meioses in the graph relating individuals i and j. So, the random-walk
simulation is exponential in the size of the inferred pedigree.

For individuals k and l in generation g, and their respective descendants i and j, we
consider the case given in Figure 5.5. The triangles represent the inferred sub-pedigree
containing all the descendants of the individual at the point of the triangle, and individuals
at the base of the triangle are extant individuals. Note that the triangles may overlap,
indicating shared ancestry at an earlier generation (i.e. inbreeding).

i j

k l

Figure 5.5: Test Case. Specific individuals in the pedigree are indicated with either circles
or squares. The triangle represents all the descendants of a particular individual. This
represents the case where individuals i and j are cousins via the oldest generation.

Brief Description of the IBD Simulation. Let Xi,j be the length of a shared region
based on the pedigree structure of the model. In order to estimate this quantity, we can
sample random walks in the space of inheritance possibilities. Specifically, consider the
inheritance of alleles at a single position in the genome. When there are n non-founder
individuals, define an inheritance vector as a vector containing 2n bits, where each pair
of bits, 2i and 2i + 1, represents the grand-parental origin of individual i’s two alleles.
Specifically, bit 2i represents the maternal allele and is zero if the grand-paternal allele
was inherited and is one otherwise. Similarly, bit 2i + 1 represents the paternal allele of
individual i. The set of possible inheritance vectors comprise the 22n vertices of a 2n-
dimensional hypercube, where n is the number of non-founders in the pedigree. A random
walk on the hypercube represents the recombination process by choosing the inheritance
vectors of neighboring regions of the genome.

100

Given an inheritance vector, we can model the length, in number of positions, of the ge-
nomic region that is inherited according to that inheritance vector. The end of that genomic
region is marked by a recombination in some individual, and constitutes a change in the
inheritance vector. The random walk on the hypercube models the random recombinations,
while the length of genomic regions are modeled using an exponential distribution. This
model is the standard Poisson model for recombinations. Details can be found below.

Poisson Process. Given a pedigree and individuals of interest i and j, we will compute
the distribution on the length of shared regions. Here we mean sharing to be a contiguous
region of the genome for which i and j have at least one IBD allele at each site.

We can model the creation of a single zygote (i.e. haplotype) as a Poisson process
along the genome where the waiting time to the next recombination event is exponentially
distributed with intensity λ = −ln(1 − θ) where θ is the probability of recombination per
meiosis (i.e. per generation, per chromosome) between a pair of neighboring loci. For
example, if we think of the genome as being composed of 3000 blocks with each block being
1Mb in length and the recombination rate θ = 0.01 between each pair of neighboring blocks,
then we would expect 30 recombinations per meiosis, and the corresponding intensity for
the Poisson process is λ = 0.01.

Now, we have 2n meioses in the pedigree, with each meiosis creating a zygote, where n
is the number of non-founder individuals. Notice that at a single position in the genome,
each child has two haplotypes, and each haplotype chooses one of the two parental alleles
to copy. These choices are represented in an inheritance vector, a binary vector with 2n
entries. The 22n possible inheritance vectors are the vertices of a 2n-dimensional hypercube.
We can model the recombination process as a random walk on the hypercube with a step
occurring each time there is a recombination event. The waiting time to the next step is
drawn from exp(2nλ), the meiosis is drawn uniformly from the 2n possible meioses, and a
step taken in the dimension that represents the chosen meiosis. The equilibrium distribution
of this random walk is uniform over all the 22n vertices of the hypercube.

Detailed IBD Simulation. Recall that we are interested in the distribution of the length
of a region that is IBD. Recall that IBD is defined as the event that a pair of alleles are
inherited from the same founder allele. For individuals i and j, let D be the set of hypercube
vertices that result in i and j sharing at least one allele IBD. Given x0 a hypercube vertex
drawn uniformly at random from D, we can compute the hitting time to the first non-IBD
vertex by considering the random walk restricted to D ∪ {d} where d is an aggregate state
of all the non-IBD vertices. The hitting time to d is the quantity of interest. In addition, we
also need to consider the length of the shared region before reaching x0, which is the time
reversed version of the same process, for the same reason that we summed two exponential
random variables for the outbred model in Section 5.4.1.

The transition matrix for this IBD process is easily obtained as Pr[xi+1 = u|xi = v] = 1
2n

when vertices u and v differ by exactly one coordinate, and Pr[xi+1 = u|xi = v] = 0
otherwise. Transitions to state d are computed as Pr[xi+1 = d|xi = u] = 1−

∑
v∈D Pr[xi+1 =

v|xi = u].

101

Now we can either analytically compute the hitting time distribution or estimate the
distribution by simulating paths of this random walk. Since the number of IBD states may
be exponential, it may be computationally infeasible to find eigenvectors and eigenvalues
of the transition matrix [24]. We choose to simulate this random walk and estimate the
distribution. This simulation is at worst exponential in the number of individuals.

5.4.3 Heuristic Graph Partitioning Method

The Max-Clique algorithm was only used to illustrate the graph partitioning method.
For both the COP and CIP algorithms we use an efficient heuristic for partitioning the
vertices of the compatibility graph. This method is beneficial, because it looks for densely
connected sets of vertices, rather than cliques, which allows for missing edges.

The algorithm is used to partition the vertices, V (Gg), of graph Gg, into a partition
P = {P1, P2, ..., PC}, where Pi ∩ Pj = ∅ for all i, j, and V (Gg) = ∪C

i=1Pi. For a given
partition set, let Ei be the edges of the subgraph induced by vertices Pi. We wish to find
a partition such that each set in the partition is a clique or quasi-clique of vertices. The
objective function is to find a partition that maximizes

∑C
i=1(a+1)|Ei|−

(|Pi|
2

)
where a = 0.1

is a parameter of the algorithm. This objective function is chosen, because it is equivalent

to
∑C

i=1 a|Ei|−
((|Pi|

2

)
− |Ei|

)
, where the term in parentheses is the number of missing edges

in the clique. Details of the partitioning method can be found in Karp and Li [45].
The running-time of this graph-partitioning heuristic largely determines the running-

time of the pedigree reconstruction algorithm. The partitioning algorithm runs in polyno-
mial time in the size of the graph, if the size of each set in the partition is constant. The step
of creating the graph is polynomial in the size of the previous generation graph. Clearly
it is possible, if no relationships are found, for the size of the graph at each generation
to double. So, in the worst case, this algorithm is exponential. However, in practice this
method performs quite quickly for constructing eight-generation pedigrees on large inputs.

5.4.4 Simulation Results

Pedigrees were simulated using a variant of the Wright-Fisher model with monogamy.
The model has parameters for a fixed population size, n, a Poisson number of offspring λ,
and a number of generations g. In each generation g, the set of ng individuals is partitioned
into ng/2 pairs, and for each pair we randomly decide on a number of offspring using the
Poisson distribution with expectation λ = 3.

The human genome was simulated as 3,000 regions, each of length 1Mb, with recombi-
nation rate 0.01 between each region and where each founder haplotype had a unique allele
for each region. The assumption here is that IBD information can be given as input to
our method. This is not highly restrictive, since if two individuals have some phasing of
their genotypes for which there is a common haplotype for a 1Mb region (typically 500
SNPs), they are likely IBD. Notice that Stankovich et al. require haplotypes as input to
their method [87], which can be thought of as a form of IBD input.

102

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multi−Generation Reconstruction n=10

Generation

A
cc

ur
ac

y

●

●

●

●

●

Reconstruction

CIP
COP
Random

Figure 5.6: Reconstruction under High Inbreeding. Here the pedigrees were simulated
with a fixed population size of n = 10 individuals per generation. Over multiple generations,
this results in a high level of inbreeding. The inaccuracy on the y-axis is measured by
computing the kinship distance. (Reconstruction accuracy of 50 simulated pedigrees were
averaged.)

In each experiment we end up having the true pedigree P generated by the simulation,
as well as an estimated pedigree Q. We evaluate the accuracy of the estimated pedigree
by using the random-matching heuristic estimate of the edit distance from the previous
section. Specifically, if D̂P,Q is edit distance as computed by the random matching heuristic,
the normalized edit accuracy is

1− D̂P,Q/(|E(P)|+ |E(Q)|).

This is the ’accuracy’ quantity plotted on the y-axis of the plots.

Selecting Parameters. Notice that there is some interaction between setting threshold
c for creating edges in the compatibility graph and the parameter a for how much the
quasi-cliques can differ from actual cliques. For a fixed choice of parameter a, we simulated
pedigrees and reconstructed them in order to choose the threshold c that gave the best
performance. There is competition between how much the quasi-cliques differ from cliques,
i.e. how large a is, and the permissiveness of the edge-creation threshold. The larger a is
the fewer edges must be created and the smaller c must be in order to maintain accuracy.

103

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multi−Generation Reconstruction n=50

Generation

A
cc

ur
ac

y

●

●

●

●

Reconstruction

CIP
COP
Random

Figure 5.7: Reconstruction under Less Inbreeding. Pedigrees here were simulated
with a population size of n = 50. The y-axis show inaccuracy measured by kinship distance.
(Reconstruction accuracy of 50 simulated pedigrees were averaged.)

(Data not shown.) However, for both algorithms we find that a = 0.01 and c = 0.7 yield
the best performance.

Accuracy of COP versus CIP. We compare the COP and CIP methods on inbred
pedigree simulations with high and moderate inbreeding, respectively n = 10 and n = 50,
in Figures 5.6 and 5.7. These figures show the kinship-based inaccuracy on the y-axis and
the number of generations in the reconstructed pedigree on the x-axis. As the depth of the
estimated pedigree increases the error in the kinship of the estimated pedigree increases.
However the accuracy is still much better than the accuracy of a randomly constructed
pedigree, which is the highest, i.e. worst, line in each figure. CIP performs better on more
inbred populations, which we would expect from the modeling assumptions. The running
time on the 50 replicates of the n = 50 pedigree was 455.32s for COP and 1818.56s for CIP
as a total running-time for all the simulated generation sizes.

Size of Reconstructed Pedigrees. Both the COP and CIP methods can reconstruct
pedigree with four generations. The COP method for outbred pedigrees can reconstruct
pedigrees going back to the most-recent common ancestor of the extant individuals. Pro-
vided with enough individuals, the method can construct pedigrees many generation deep.
For example, given 400 individuals the method can construct 6 generations. As Figure 5.8

104

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multi−Generation Reconstruction n=400

Generation

A
cc

ur
ac

y

●

Reconstruction

COP
Stddev
Random

Figure 5.8: Reconstruction for Deep Pedigrees. Pedigrees here were simulated with
a population size of n = 400. (Reconstruction accuracy of 50 simulated pedigrees were
averaged.)

shows, the performance relative to a random reconstruction method is very good and so is
the variance of the COP reconstruction method.

Comparison with GBIRP. We compare our two methods with the state-of-the-art
method, called GBIRP, by Stankovich et al. [87]. Since GBIRP is limited to small pedi-
grees, we compare the methods on three-generation simulated pedigrees with population size
n = 10. The simulated pedigrees are connected graphs, so we can look at two accuracy mea-
sures, relationships that are mis-specified and relationships that should have been predicted
but where not. GBIRP predicts meiosis distance, gij, between pairs of individuals, i, j, with-
out inferring pedigree relationships. In order to compare GBIRP with the actual pedigree,
we extract the minimum number of meiosis, aij, separating every pair of individuals i and j
in the simulated pedigree. From our predicted pedigrees, we again extract a minimum meio-
sis distance pi,j. Now can compute L1 distances between the actual and predicted meiosis
distances. These quantities are

∑
i<j:gi,j 6=∞ |ai,j−gi,j|, and

∑
i<j:pi,j 6=∞ |ai,j−pi,j|. This is the

number of meioses, or edges in the pedigree graph, which are wrong on paths connecting all
pairs of extant individuals. This is plotted in the left panels of Figures 5.9 and 5.10. Now,
for a pair of extant individuals, there is always some relationship in the simulated pedigree,
since it is a connected graph. But it is possible that one of the inference algorithms did not
predict a relationship. Specifically this quantity is

∑
i<j:gi,j=∞ 1, and

∑
i<j:pi,j=∞ 1, and it is

105

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●
●●

●
●

●
●
●●●

●

●

●

●

●●

●

●
●

●●●

●

●

GBIRP CIP COP

0
20

40
60

80
10

0
12

0
Inbred Three−Generation Reconstruction

Method

In
co

rr
ec

t M
ei

os
es

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

GBIRP CIP COP

0
5

10
15

20
25

Inbred Three−Generation Reconstruction

Method

M
is

se
d

R
el

at
io

ns
hi

ps

Figure 5.9: Comparison with GBIRP on Inbred Simulations. The three-generation
pedigrees here were simulated with n = 10 extant individuals, since GBIRP could not
process larger pedigrees. The accuracy of 1000 simulated pedigrees were computed and
plotted. Here the CIP method performs the best, i.e. closest to zero on both plots.

plotted in the right panel of both figures.
Figure 5.9 was done with the simulation method described above. However, in Fig-

ure 5.10, to obtain pedigrees with even more outbreeding, a large population size was sim-
ulated and a connected sub-pedigree with the desired number of extant individuals was
extracted from the large simulation. Notice that with more inbred pedigrees, under this
measure of accuracy, the CIP algorithm performs superior to both the COP and the GBIRP
methods. The accuracy of COP and CIP increase on the inbred data as compared to the
outbred data, perhaps because inbreeding increases the apparent IBD making relationships
easier to detect.

Relationships in the HapMap and Wellcome Trust Data. A recent paper by Pem-
berton et al. [75] reported many familial relationships among MKK individuals in HapMap
and few relationships among the CEU and YRI individuals. The method they used did
not reconstruct pedigrees, but estimated pair-wise relationships. As a follow-up to their
study, we ran our method on the parents of the CEU and YRI trios (for which Pemberton
et al. found no relationships) and on the unrelated MKK individuals (for which Pemberton,
et al. found 9 first degree relationships). Our results contradicted theirs in that we found
no evidence of first degree relationships among the MKK individuals and evidence of 2nd
and 4rd cousin relationships in the YRI and CEU, respectively. We also ran our method on
the Wellcome Trust individuals having at least 85% identity by state (IBS) and found that
some individuals look like 2nd cousins.

106

●
●

●

●

●

●●

●●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

GBIRP CIP COP

0
20

40
60

80
Outbred Three−Generation Reconstruction

Method

In
co

rr
ec

t M
ei

os
es

●

●

●

●

●

●●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

GBIRP CIP COP

0
5

10
15

20
25

Outbred Three−Generation Reconstruction

Method

M
is

se
d

R
el

at
io

ns
hi

ps

Figure 5.10: Comparison with GBIRP on Outbred Simulations. The three-
generation pedigrees here were simulated with n = 10 extant individuals, since GBIRP
could not process larger pedigrees. Here, the simulated pedigree relating the extant individ-
uals was outbred. The accuracy of 1000 simulated pedigrees were computed and plotted.
All methods perform better than they did on the inbred data set. Over all, the COP method
performs best on the outbred data.

Taking the data from the individuals of interest, between every pair of people we inferred
IBD states (0,1, or 2 alleles shared IBD) along the genome and gave those predictions as
input to our reconstruction method. To infer IBD, we used a method applied to consecutive,
non-overlapping 1Mb windows of the genome: if the two individuals are homozygous for the
same alleles across the window, then the IBD state is two shared alleles; if the two individuals
have some phasing of the window such that one haplotype can be shared in the region, then
the IBD state is one shared allele. Note, that since our reconstruction method takes the
IBD predictions as input, a more sophisticated method may be used, such as the HMM used
by Plink [78] or the hashing method used by GERMLINE [34]. However, we believe that
this simple method is sufficient, because it is unlikely for a pair of non-IBD individuals to
share a haplotype for a whole 1Mb region.

Our reconstruction method infers the average length of shared regions between every
pair of individuals from the input IBD states. For fixed IBD states, there are multiple sets
of shared segments that can explain the IBD states. However, if we assume that segments
can only begin and end at transitions from one IBD state to another, then the number
of shared segments is fixed. Since the sum of the lengths of the shared segments is also
fixed, the expected length of the shared segments is the same regardless of the particular
explanation chosen. The variance is not the same, but the edge test only depends on the
expectation. Therefore, the estimation of average length of shared regions from the IBD

107

states is straightforward.
For the MKK, CEU, and YRI HapMap individuals, we ran our COP reconstruction

method. For the MKK unrelated individuals, we found some individuals related who are
3rd cousins and related by a 5th generation ancestor. For the CEU individuals, we found
some individuals related by a 6th generation ancestor, meaning they are 4th cousins. For
the YRI individuals, we found 2nd cousins. These results are not consistent with the results
found by Pemberton et al [75]. This can be explained by possible errors in the inferences
made by the method of Pemberton et al., by our method, or both. We found that some of the
first-degree relatives predicted by Pemberton et al. in the MKK individuals did not pass close
inspection of the data. For example, true parent-child pairs must share a whole chromosome
by Mendelian inheritance, since the child inherits a chromosome from the parent. This
sharing happens regardless of the transmitted chromosome being recombinant. Several
parent-child pairs predicted by Pemberton et al. had many 1Mb regions in disagreement,
and had 30 disagreeing SNPs out of 500 SNPs in a typical window. Furthermore there is
a set of three individuals, two pairs of which they predicted to be full siblings, yet the third
pair of individuals was not predicted to be siblings. Since full sibling relationships must be
transitive, there is clearly an error in their prediction.

Taking the individuals from the Wellcome Trust data that have at least 85% identity-by-
state (IBS) with some other individual, we ran our IBD inference method on the genotypes
and ran the COP reconstruction method on the IBD inferences. We found some 2nd cousins,
meaning individuals related via some 4th generation ancestor.

For all these results, it should be noted that every relationship prediction method has
difficulty making reliable predictions. Our method is heavily dependent on accurate IBD
predictions and can be misled by genotyping errors. Such errors lead our method to under-
predict rather than over-predict relationships, since our simple determination of IBD is
disrupted by a single dis-agreeing SNP. Indeed, it is important not to phase the genotypes
before predicting IBD, since the phasing process can lead to incorrectly imputed missing
genotypes and disrupted IBD estimates. It is quite possible that all relationship predic-
tion methods are very sensitive to genotyping errors. Due to these difficulties, we believe
that these aspects of relationship prediction should continue to be investigated. Chapter 6
proposes potential future work relating both to IBD inference and pedigree reconstruction.

5.5 Discussion

In this chapter, we introduce a novel formulation for pedigree graphs based on the idea of
d-splits. We also introduce the problem of comparing pedigree graphs via an edge cut-and-
paste distance, and we show this problem to be APX-hard. We give several exact algorithms
and several heuristics for this problem. The heuristics were implemented and compared with
the optimal edit distance on simulated examples.

One interesting open problem is exploring an alternative definition of edit distance based
on fractional matchings. Instead of minimizing over all one-to-one matchings of nodes in
the two pedigrees, we could allow a node of P to be matched to multiple nodes in Q with
weights summing to one. Such a distance could be easier to compute, although the biological

108

interpretation is less clear. It would also be interesting to explore the relationship between
the definition presented in this chapter, and this alternate definition.

Another open problem of interest is how these algorithms work on non-regular pedigrees,
i.e. with inter-generational mating. The simulations used here were based on the Wright-
Fisher model and did not allow any inter-generational mating events. It may be of interest
to model the pedigrees using a birth-death model such as the Moran model where inter-
generational mating is allowed. Such a simulation would allow the evaluation of the distance
heuristics on non-regular pedigrees.

Also of great interest is understanding pedigrees having missing genealogical information,
where not all the parent-child edges or the descendant splits are known in one or both of
the pedigrees. There are two issues of interest. First, how robust is the descendant-split
formulation to missing information? Second, is there an edit distance between pedigrees
that can allow missing information?

Algorithms for comparing pedigrees are useful to researchers who currently build pedi-
grees manually. In particular it is quite possible to have multiple genealogical sources that
might produce different pedigrees. The ability to compare these pedigrees to find the dif-
ferences is essential. This chapter presents one such approach.

We note that our methods for pedigree reconstruction are limited to a restricted scenario
in which there is monogamy and the generations are synchronous. If monogamy is broken
then our approach will not work since the sibling relationships in the compatibility graph at
each level will not be a simple partition. It is plausible that a different graph formulation may
still provide an accurate solution to more complex pedigrees, however the exact formulation
that will resolve such pedigrees is currently unknown and is left as an open challenge.

There are significant open challenges with pedigree reconstruction. For example, it would
be nice to obtain confidence values on the inferred pedigree edges. However this seems very
difficult, even if we can draw pedigrees from the posterior distribution of pedigree structures
given the data. Since edges in a pedigree are not labeled, obtaining confidence values
for a pedigree P would translate to: drawing pedigree samples, Q, from the distribution,
identifying the edges in P and Q that provide the same relationships, and scoring the edges of
P according to the probability of pedigree Q. As discussed in Section 5.3.2, the second step,
identifying the edges in P and Q that provide the same relationships, is a hard problem.

109

Chapter 6

Conclusions

6.1 Progress on Motivating Questions

The work in this thesis is aimed at a number of important problems for both population
and family genetics. Issues of privacy, accuracy of association studies, estimates of recom-
bination breakpoints, and pedigree reconstruction have all been considered. The methods
used to approach these problems have been both statistical and computational.

In Chapter 2, we discussed models for population genetic data. Two problems were
introduced and solved. The first problem involved identifying individuals in the pooled
data of a genetic study. This has applications to the privacy of genetic data and underlines
the result of Sankararaman, et al. [81] that only pooled data from a small number of unlinked
loci can be released publicly without violating the privacy of the study participants. The
second problem was to efficiently enumerate the perfect phylogenies compatible with binary
partial characters. The general version of this problem is NP-hard, however, when the
data satisfy the rich data hypothesis the enumeration can be done efficiently. This has
applications to computing probabilities of data with missing values under the coalescent
with the infinite sites mutation model.

In Chapter 3, pedigree models for families of related individuals were introduced. Identity
by descent was introduced and used to compute inheritance probabilities. The Lander-Green
and Elston-Stewart algorithms were discussed, and the hardness of the pedigree likelihood
calculation given haplotype data was established. The hardness of this calculation is im-
portant due to the potential of next-generation sequencing methods to produce haplotype
data.

Inference under the pedigree model is challenging. In Chapter 4, three new algorithms
were introduced for inferring various quantities of interest. The Gibbs sampling algorithm
for a small number of sites was introduced to infer haplotypes for all the individuals in a
large pedigree. This algorithm is essentially a variant of the Elston-Stewart algorithm and
has applications to improving the accuracy of association studies on pedigree data sets. For
inferring recombination breakpoints from haplotype data, we discussed an HMM algorithm
that is a variant of the Lander-Green algorithm and implements the forward-backward
algorithm for HMMs. This algorithm is important due to the potential for next-generation

110

sequencing methods to produce haplotype data. The last algorithm introduced was a method
to reduce the number of IBD hidden state for the pedigree HMM. For certain pedigrees, an
exponential algorithm can reduce the state space exponentially resulting in HMM algorithms
with faster running times. Methods, such as this, for improving the efficiency of the pedigree
likelihood calculation are important due to the many and varied uses for pedigree likelihoods,
including linkage analysis, association testing, and IBD inferences.

In Chapter 5, three pedigree reconstruction algorithms were introduced along with sev-
eral algorithms for evaluating the accuracy of reconstruction estimates. The first pedigree
reconstruction algorithm was of theoretical interest. The second and third reconstruction
algorithms were of practical utility for inferring monogamous, regular pedigrees that relate
a set of extant individuals. In order to evaluate the accuracy of a reconstructed pedigree
under simulations, it is necessary to compare the simulated pedigree to the reconstructed
pedigree. Since only the extant individuals are labeled, somehow the ancestral individuals
in the two pedigrees must be mapped onto each other. This mapping yields an edit dis-
tance which measures the differences between the two pedigrees. Three algorithms were
introduced for computing exact and heuristic edit distances. Simulations showed that the
heuristic edit distance algorithm was both fast and reasonably accurate, and the heuristic
was used to evaluate the accuracy of the two practical pedigree reconstruction methods.

6.2 Future Problems

This section proposes a number of important and approachable problems. The goal will
be to discuss problems that are doable in the near future. These problems involve linkage
analysis, sequence data, pedigree reconstruction, combined population-genetic and family
models, and IBD estimates.

6.2.1 Pedigree Likelihood Calculations

The pedigree likelihood calculation appears almost everywhere there is an interesting
question about pedigrees. Due to the ubiquity of this likelihood, efficient methods for
calculating it are incredibly important. We will discuss a few places where this likelihood
can be used to solve important problems.

Linkage Analysis

In linkage analysis [95, 72], a position for a hypothetical disease locus is found in the
genetic map. Suppose that the positions of all the SNPs are known, S1, S2, ..., Sm; this
is called the genetic map. Now taking the hypothetical disease locus D, try placing it
between each pair of SNP markers Sj, Sj+1. Infer the recombination rate, θ, between D and
the neighboring SNP, Sj+1, using the pedigree HMM and the forward backward algorithm.
Once the most likely position for D and value for θ has been found, perform the following

111

likelihood ratio (LR) test
L(θ)

L(1/2)

Here L(θ) is the likelihood, or probability of the observations given a particular parameter
value θ. In the denominator, with θ = 1/2, the model is for the disease locus to be unlinked.
Very high values of the LR test indicate that a position of disease linkage has been found.
Experimental work examining the genes in that region of the genome can possibly yield a
gene that is related to the production of the disease phenotype.

It is possible that the composite likelihood [97] can be used to more efficiently estimate
a reasonable θ. Choose a subset of the data Gk by selecting some individuals or some
genotypes. Now approximate the likelihood as a product of the likelihood on each subset of
the data

L̃(θ) =
∏

k

L(θ;Gk).

It is clear that this approach would result in faster computation of the likelihood ratio score.
The questions, then, are whether this method would yield good accuracy and whether the
composite likelihood test is consistent and unbiased.

Sequencing Data

In Chapter 4, estimation of recombination rates from haplotype data was considered.
The assumption, there, was that one could obtain haplotypes for the whole chromosome. In
practice this is unlikely. From sequencing methods, one would expect to obtain a mixture
of haplotype fragments beginning and ending at unexpected positions in the genome.

This leads to a case of mixed haplotypes and genotypes. For this case to be interesting,
the ends of haplotypes must occur at different locations in different individuals in the pedi-
gree. Otherwise, the haplotypes that start and end at the same positions in all individuals
can easily be converted into multi-allelic genotypes, with an allele for each haplotype. The
mixed haplotype-genotype problem is not amenable to the hardness proof techniques used
in Chapter 3. However, the haplotype HMM in Chapter 4.2 can easily be revised to handle
the mixed case. This is important because the data produced by single-molecule sequencing
is more likely to resemble the mixed case than either the haplotype or the genotype cases.

Pedigree Reconstruction

The problem of constructing pedigrees from a set of extant individuals is well motivated,
as discussed in Chapter 5. However, in that chapter we considered a somewhat restricted
formulation of the pedigree reconstruction problem, i.e. monogomous, regular pedigrees.
Furthermore, the practical methods introduced in that chapter have the problem that they
may estimate a pedigree on which the probability of the data is zero; this is because the
reconstruction method does not compute the likelihood when estimating the pedigree. As
explained in that chapter, the likelihood calculation is exponential in the number of indi-
viduals in the pedigree and avoiding that calculation is the only way to obtain an algorithm
that performs efficiently. However, this leaves open the disturbing possibility of inferring a

112

pedigree on which the data could not possibly be inherited, because Mendelian constraints
were not considered. While this is not much of a problem for biallelic data on only extant
individuals, it presents a greater problem when trying to generalize the method in Chapter 5
to multi-generational or microsatellite data.

There are several potential research directions pertaining to pedigree reconstruction.
Each of the directions suggested here will involve slightly different formulations of the re-
construction problem.

It would be interesting to reconstruct pedigrees in the setting where there is data for
all of the individuals in the pedigree. Here, the goal is to find the pedigree graph that
maximizes the likelihood of the observed data. In this setting, the challenge would be to
correctly predict parent-child pairs in a set of people where all the parent-child pairs are
present. While this problem seems trivial at first glance, there is reason to believe that it is
both important and non-trivial. This problem formulation is important, because this is the
setting in which pedigree reconstruction can be performed most accurately. This problem
is non-trivial due to the computational complexity of the likelihood calculation and due to
known problems with inferring IBD (see Section 6.2.2 for complete discussion).

Another interesting formulation of the pedigree reconstruction problem is to predict
sibling groups in the setting where data is given for the children and not for the parents.
Again, the goal would be to find the pedigree graph that maximizes the likelihood of the
observed data. Again, due to the computational complexity of the likelihood calculation,
this problem is non-trivial. Importantly, this is the setting in which the edit-distance is
tractable using a 2-generation matching algorithm. This problem formulation is essentially a
statistical version of a similar combinatorial problem introduced for wild populations [83, 6].
The difficulty, here, would be to correctly infer sibling pairs, without access to the parental
genotype and still respect Mendelian inheritance.

One approach to both of the suggested problems would be to approximate the likelihood
using either variational machine learning approaches [3, 2] or perhaps a composite likeli-
hood [97]. Both approximations would present different potential problems, but both might
be more efficient than performing the full likelihood calculation.

Combined Population-Genetic and Pedigree Model

A very interesting direction for long-term work is to combine population-genetic and
family-based models in order to compute a joint likelihood of inheritance. Rather than
continuing the current research paradigm of doing either a population-genetic study or a
family study, the goal is to produce methods that combine the strengths of both models
and that can handle mixed data as input. Such a method would model recent population
structure using a known pedigree and would model ancient relationships using a coalescent.
Here the founder haplotypes of a pedigree would be drawn from a coalescent model and
then the haplotypes would be inherited in the pedigree according to the Poisson model for
recombinations.

This is a challenging problem, due to computational complexity. However, preliminary
investigations, as seen in Chapter 4 and in [51], suggest that such a combined model would
be more accurate than either model alone. The PhyloPed algorithm used a combined model

113

to infer haplotypes for short genetic regions. Additionally, the computational issues can be
addressed by making certain assumptions, for instance in Chapter 4 and in [48], it was noted
that if all the pedigree individuals are haplotyped, the combined model is computationally
feasible.

6.2.2 IBD Estimates

From the pedigree reconstruction work in Chapter 5, it became very clear that estimates
of IBD are both critical for successful pedigree reconstruction and inaccurate. The reasons
for the accuracy problems are two-fold. First, genotyping errors disrupt the IBD predictions
of methods that assume fidelity of the data and result in shorter regions of IBD than should
be predicted. Second, there is difficulty distinguishing between recent and ancient IBD.
Ancient IBD is the result of linkage disequilibrium in the population, but IBD prediction
methods desire to predict longer, more recent regions of IBD.

Pedigree IBD Estimates

The most accurate methods for predicting IBD use pedigrees. One can consider the
pedigree HMM with the IBD states as hidden states and use the Viterbi algorithm to
obtain the most probable path through the hidden states. This most probable path is the
IBD estimate at each SNP for all the individuals in the pedigree. However, this calculation
is exponential, due to the number of hidden states being exponential in the number of
non-founders in the pedigree.

Recent work by Li and Li took advantage of the pedigree structure to infer IBD, but they
considered pairs of genotyped individuals, rather than the whole pedigree at once [63]. Their
model is essentially an HMM on pairs of individuals with a hidden state for background IBD
sharing to account for more ancient IBD. It appears that they need the background IBD
state to help distinguish between recent and ancient IBD. They obtain good accuracy with
their polynomial-time algorithm.

One potential direction of future work would be to apply variational machine learning
methods to this problem. Cluster variational methods have been successfully applied to
the linkage analysis problem [3] discussed in Section 6.2.1 and to haplotype inference in
pedigrees [2]. It is quite conceivable that variational methods will work as well for IBD
inference as they do for haplotype inference in pedigrees.

Another potential direction is to allow for genotyping errors. The pedigree HMM model
is easily changed to have error probabilities on emission, meaning that the Gt states in
Figure 3.6 would have some probability of misrepresenting the alleles. This change to the
model would not change the running-time of the Viterbi calculation, and would result in
the algorithm continuing to be exponential in the number of non-founders.

A final modeling change that could result in more accurate predictions is to model re-
combination interference. It is well known that the distribution of recombinations along
the genome does not actually match the Poisson process [65]. In fact, the presence of a re-
combination at one position suppresses the probability of a nearby recombination, whereas

114

the Poisson process assumes that the relative positions of two recombinations are indepen-
dent. Finding a way to accurately model interference should improve the accuracy of IBD
predictions.

Population IBD Estimates

Population-level IBD estimates appear to be more difficult to predict and have less
accuracy than pedigree-based IBD estimates. There are roughly two classes of methods for
inferring IBD from populations of individuals, those methods applicable to large data sets,
such as GERMLINE [34] and fastIBD [11], and those methods having higher accuracy but
applied to smaller data sets, such as Plink [78]. Some of the former methods use hashing
while the latter methods often rely on HMMs to make IBD predictions.

One very obvious direction is to extend population-based IBD prediction methods to
allow for genotyping errors. This is very important because a single genotyping error can
interrupt an IBD region and result in shorter IBD segments than should have been predicted.
The population-based HMMs for IBD can be modified in a similar manner to that suggested
above for the pedigree IBD HMM. The emission probability can be changed to have some
probability of emitting an erroneous allele. The result of modeling genotyping errors should
be more accurate IBD predictions.

Another direction is to consider IBD inference from sequencing data. Because of the
resolution of genetic variation that can be observed with sequencing data, this requires also
modeling the possibility of novel mutations that might interrupt IBD regions. Mutations
would have a similar effect on IBD prediction accuracy as genotyping errors in that they
would interrupt the prediction of a longer IBD region. However, novel mutations might actu-
ally appear in multiple individuals, so their signature in the data would match a phylogeny,
rather than occurring independently in each individual as genotyping errors do.

One could also attempt to more accurately model IBD for inbred populations. When
there is inbreeding, it is no longer sufficient to describe the IBD states as 0, 1, and 2 alleles
shared. Instead, it is possible for two individuals to share all four alleles IBD. The condensed
identity states introduced by Jacquard [42] are the complete IBD classes for a pair of inbred
individuals. It would be interesting to create an HMM for a pair of inbred individuals that
infers the IBD state as one of the condensed identity states. The main question is whether
this additional model complexity produces more accurate IBD inferences than the simple
0,1,2-allele IBD HMM.

115

Bibliography

[1] GR Abecasis, SS Cherny, WO Cookson, and LR Cardon. Merlin-rapid analysis of
dense genetic maps using sparse gene flow trees. Nature Genetics, 30:97–101, 2002.

[2] C. A. Albers, T. Heskes, and H. J. Kappen. Haplotype inference in general pedigrees
using the cluster variation method. Genetics, 177(2):1101–1116, October 2007.

[3] Cornelis A. Albers, Martijn A. R. Leisink, and Hilbert J. Kappen. The cluster variation
method for efficient linkage analysis on extended pedigrees. BMC Bioinformatics, 7(S-
1), 2006.

[4] K. G. Ardlie, L. Kruglyak, and M. Seielstad. Patterns of linkage disequilibrium in the
human genome. Nature Reviews Genetics, 3, 2002.

[5] J.C. Barrett, S. Hansoul, D.L. Nicolae, J.H. Cho, R.H. Duerr, J.D. Rioux, S.R. Brant,
M.S. Silverberg, K.D. Taylor, M.M. Barmada, and et al. Genome-wide association
defines more than 30 distinct susceptibility loci for crohn’s disease. Nature Genetics,
40:955–962, 2008.

[6] T. Y. Berger-Wolf, S. I. Sheikh, B. DasGupta, M. V. Ashley, I. C. Caballero, W. Chao-
valitwongse, and S. L. Putrevu. Reconstructing sibling relationships in wild popula-
tions. Bioinformatics, 23(13):i49–56, 2007.

[7] H. Bickeboller and E. A. Thompson. Distribution of genome shared ibd by half-sibs:
Approximation by the poisson clumping heuristic. Theoretical Population Biology,
50(1):66 – 90, 1996.

[8] M. Boehnke and N. J. Cox. Accurate inference of relationships in sib-pair linkage
studies. American Journal of Human Genetics, 61:423–429, 1997.

[9] C. Bourgain, S. Hoffjan, R. Nicolae, D. Newman, L. Steiner, K. Walker, R. Reynolds,
C. Ober, and M. S. McPeek. Novel case-control test in a founder population identifies
p-selectin as an atopy-susceptibility locus. American Journal of Human Genetics,
73(3):612–626, 2003.

[10] D. Brown and T. Berger-Wolf. Discovering kinship through small subsets. WABI
2010: Proceedings for the 10th Workshop on Algorithms in Bioinformatics, 2010.

116

[11] Brian L. Browning and Sharon R. Browning. A fast, powerful method for detecting
identity by descent. The American Journal of Human Genetics, 88:173–182, 2011.

[12] S. Browning and B.L. Browning. On reducing the statespace of hidden Markov models
for the identity by descent process. Theoretical Population Biology, 62(1):1–8, 2002.

[13] S. R. Browning, J. D. Briley, L. P. Briley, G. Chandra, J. H. Charnecki, M. G. Ehm,
K. A. Johansson, B. J. Jones, A. J. Karter, D. P. Yarnall, and M. J. Wagner. Case-
control single-marker and haplotypic association analysis of pedigree data. Genetic
Epidemiology, 28(2):110–122, 2005.

[14] J.T. Burdick, W. Chen, G.R. Abecasis, and V.G. Cheung. In silico method for inferring
genotypes in pedigrees. Nature Genetics, 38:1002–1004, 2006.

[15] C. R. Chegireddy and H. W. Hamacher. Algorithms for finding the k-best perfect
matchings. Discrete Applied Mathematics, 18:155–165, 1987.

[16] W.-M. Chen and G.R. Abecasis. Family-based association tests for genomewide asso-
ciation scans. American Journal of Human Genetics, 81:913 – 926, 2007.

[17] X. Chen, L. Liu, Z. Liu, and T. Jiang. On the minimum common integer partition
problem. ACM Trans. on Algorithms, 5(1), 2008.

[18] Vanessa J. Clark, Susan E. Ptak, Irene Tiemann, Yudong Qian, Graham Coop,
Anne C. Stone, Molly Przeworski, Norman Arnheim, and Anna Di Rienzo. Combin-
ing sperm typing and linkage disequilibrium analyses reveals differences in selective
pressures or recombination rates across human populations. Genetics, 175(2):795–804,
2007.

[19] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 2004.

[20] G. Coop, X. Wen, C. Ober, J. K. Pritchard, and M. Przeworski. High-Resolution Map-
ping of Crossovers Reveals Extensive Variation in Fine-Scale Recombination Patterns
Among Humans. Science, 319(5868):1395–1398, 2008.

[21] MJ Daly, JD Rioux, SF Schaffner, TJ Hudson, and ES Lander. High-resolution hap-
lotype structure in the human genome. Nature Genetics, 29(2):229–32, Oct 2001.

[22] Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for perfect phylogeny
haplotyping. Journal of Computational Biology, 13(2):522–553, 2006.

[23] D. Doan and P. Evans. Fixed-parameter algorithm for haplotype inferences on general
pedigrees with small number of sites. WABI 2010: Proceedings for the 10th Workshop
on Algorithms in Bioinformatics, 2010.

117

[24] K. P. Donnelly. The probability that related individuals share some section of genome
identical by descent. Theoretical Population Biology, 23(1):34 – 63, 1983.

[25] John Durbin. Modern Algebra: An Introduction. John Wiley and Sons, Inc., 4th
edition, 2000.

[26] J. Eid and et al. Real-Time DNA Sequencing from Single Polymerase Molecules.
Science, 323(5910):133–138, 2009.

[27] R.C. Elston and J. Stewart. A general model for the analysis of pedigree data. Human
Heredity, 21:523–542, 1971.

[28] E. Eskin, E. Halperin, and R. Karp. Efficient reconstruction of haplotype structure via
perfect phylogeny. Journal of Bioinformatics and Computational Biology, 1(1):1–20,
2003.

[29] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for
general pedigrees. Human Heredity, 59:41–60, 2005.

[30] R. A. Fisher. The Genetical Theory of Natural Selection. Oxford University Press,
USA, 1 edition, April 1930.

[31] I Gallego Romero and C Ober. CFTR mutations and reproductive outcomes in a
population isolate. Human Genet, 122:583–588, 2008.

[32] D. Geiger, C. Meek, and Y. Wexler. Speeding up HMM algorithms for genetic linkage
analysis via chain reductions of the state space. Bioinformatics, 25(12):i196, 2009.

[33] Richard E. Green, Johannes Krause, Adrian W. Briggs, Tomislav Maricic, Udo Sten-
zel, Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-Yang Fritz,
Nancy F. Hansen, Eric Y. Durand, Anna-Sapfo Malaspinas, Jeffrey D. Jensen, Tomas
Marques-Bonet, Can Alkan, Kay Prfer, Matthias Meyer, Hernn A. Burbano, Jef-
frey M. Good, Rigo Schultz, Ayinuer Aximu-Petri, Anne Butthof, Barbara Hber, Bar-
bara Hffner, Madlen Siegemund, Antje Weihmann, Chad Nusbaum, Eric S. Lander,
Carsten Russ, Nathaniel Novod, Jason Affourtit, Michael Egholm, Christine Verna,
Pavao Rudan, Dejana Brajkovic, eljko Kucan, Ivan Guic, Vladimir B. Doronichev,
Liubov V. Golovanova, Carles Lalueza-Fox, Marco de la Rasilla, Javier Fortea, An-
tonio Rosas, Ralf W. Schmitz, Philip L. F. Johnson, Evan E. Eichler, Daniel Falush,
Ewan Birney, James C. Mullikin, Montgomery Slatkin, Rasmus Nielsen, Janet Kelso,
Michael Lachmann, David Reich, and Svante Pbo. A draft sequence of the neandertal
genome. Science, 328(5979):710–722, 2010.

[34] A. Gusev, J. K. Lowe, M. Stoffel, M. J. Daly, D. Altshuler, J. L. Breslow, J. M.
Friedman, and I. Pe’er. Whole population, genomewide mapping of hidden relatedness.
Genome Research, 19:318–26, 2009.

118

[35] Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient so-
lutions. In Proceedings of the 6th Annual International Conference on Research in
Computational Molecular Biology, pages 166–175, 2002.

[36] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:12–28,
1991.

[37] Eran Halperin and Richard M. Karp. Perfect phylogeny and haplotype assignment.
In RECOMB ’04: Proceedings of the eighth annual international conference on Com-
putational molecular biology, pages 10–19, New York, NY, USA, 2004. ACM Press.

[38] L. H. Hartwell, L. Hood, M. L. Goldberg, A. E. Reynolds, L. M. Silver, and R. C.
Veres. Genetics: From Genes to Genomes. McGraw-Hill, New York, 2nd edition,
2004.

[39] Dale Hedges, Dan Burges, Eric Powell, Cherylyn Almonte, Jia Huang, Stuart Young,
Benjamin Boese, Mike Schmidt, Margaret A. Pericak-Vance, Eden Martin, Xinmin
Zhang, Timothy T. Harkins, and Stephan Zchner. Exome sequencing of a multigen-
erational human pedigree. PLoS ONE, 4(12):e8232, 12 2009.

[40] Jotun Hein, Mikkel H. Schierup, and Carsten Wiuf. Gene Genealogies, Variation and
Evolution : A Primer in Coalescent Theory . Oxford University Press, USA, February
2005.

[41] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill
Muehling, John V. Pearson, Dietrich A. Stephan, Stanley F. Nelson, and David W.
Craig. Resolving individuals contributing trace amounts of dna to highly complex
mixtures using high-density snp genotyping microarrays. PLoS Genet, 4(8):e1000167,
08 2008.

[42] Albert Jacquard. Genetic information given by a relative. Biometrics, 28(4):1101–
1114, 1972.

[43] Tommi A. Junttila. A note on the computational complexity of a string orbit problem.
2001.

[44] Tommi A. Junttila. New orbit algorithms for data symmetries. Application of Con-
currency to System Design, International Conference on, 0:175, 2004.

[45] R. M. Karp and S. C. Li. An efficient method for quasi-cliques partition. Manuscript
in preparation, 2011.

[46] Anderson K.G. How well does paternity confidence match actual paternity? evidence
from worldwide nonpaternity rates. Curr. Anthropol., 47:513–520, 2006.

[47] J. F. C. Kingman. The coalescent. Stoch. Proc. Appl., 13:235–248, 1982.

119

[48] B. Kirkpatrick. Haplotypes versus genotypes on pedigrees. WABI 2010: Proceedings
for the 10th Workshop on Algorithms in Bioinformatics, 2010.

[49] B. Kirkpatrick. Pedigree reconstruction using identity by descent. Class project, Prof.
Yun Song, 2008. Technical Report No. UCB/EECS-2010-43, 2010.

[50] B. Kirkpatrick. Haplotypes versus genotypes on pedigrees. Alg. for Mol. Bio., 2011.

[51] B. Kirkpatrick, E. Halperin, and R. M. Karp. Haplotype inference in complex pedi-
grees. Journal of Computational Biology, 17(3):269–280, 2010.

[52] B. Kirkpatrick and K. Kirkpatrick. Pedigree state-space reduction preserving identity
by descent. manuscript in preparation, 2011.

[53] B. Kirkpatrick, S.C. Li, R. M. Karp, and E. Halperin. Pedigree reconstruction using
identity by descent. RECOMB 2011: Proceedings of the 15th Annual International
Conference on Research in Computational Molecular Biology, 2011.

[54] B. Kirkpatrick, Y. Reshef, H. Finucane, H. Jiang, B. Zhu, and R. M. Karp. Algorithms
for comparing pedigree graphs. CoRR, abs/1009.0909, 2010.

[55] B. Kirkpatrick, J. Rosa, E. Halperin, and R. M. Karp. Haplotype inference in com-
plex pedigrees. In RECOMB 2009: Proceedings of the 13th Annual International
Conference on Research in Computational Molecular Biology, pages 108–120, Berlin,
Heidelberg, 2009. Springer-Verlag.

[56] B. Kirkpatrick and K. Stevens. Efficiently constructing phylogenies from partial char-
acters. manuscript in preparation, 2011.

[57] Bonnie Kirkpatrick. Estimating haplotype frequencies from genotypes of pooled dna.
Master’s thesis, EECS Department, University of California, Berkeley, Dec 2007.

[58] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques (Adaptive Computation and Machine Learning). The MIT Press, August
2009.

[59] E.S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans.
Proceedings of the National Academy of Science, 84(5):2363–2367, 1987.

[60] Adam S. Lauring and Raul Andino. Quasispecies theory and the behavior of rna
viruses. PLoS Pathog, 6(7):e1001005, 07 2010.

[61] S. L. Lauritzen and N. A. Sheehan. Graphical models for genetic analysis. Statistical
Science, 18(4):489–514, 2003.

[62] J. Li and T. Jiang. An exact solution for finding minimum recombinant haplotype
configurations on pedigrees with missing data by integer linear programming. In
Proceedings of the 7th Annual International Conference on Research in Computational
Molecular Biology, pages 101–110, 2003.

120

[63] X Li, X-L Yin, and J Li. Efficient identification of identical-by-descent status in
pedigrees with many untyped individuals. Bioinformatics, 26(12):i191–i198, 2010.

[64] Louise Lorentsen and Lars Michael Kristensen. Exploiting stabilizers and parallelism
in state space generation with the symmetry method. Application of Concurrency to
System Design, International Conference on, 0:211, 2001.

[65] M S McPeek and T P Speed. Modeling interference in genetic recombination. Genetics,
139(2):1031–44, 1995.

[66] M.S. McPeek. Inference on pedigree structure from genome screen data. Statistica
Sinica, 12(1):311–336, 2002.

[67] M.S. McPeek and L. Sun. Statistical tests for detection of misspecified relationships
by use of genome-screen data. Amer. J. Human Genetics, 66:1076 – 1094, 2000.

[68] Gilean A. T. McVean, Simon R. Myers, Sarah Hunt, Panos Deloukas, David R. Bent-
ley, and Peter Donnelly. The Fine-Scale Structure of Recombination Rate Variation
in the Human Genome. Science, 304(5670):581–584, 2004.

[69] C. A. Meacham. A manual method for character compatibility analysis. volume 30,
pages pp. 591–600. International Association for Plant Taxonomy (IAPT), 1981.

[70] Ng MY, Levinson DF, and et al. Meta-analysis of 32 genome-wide linkage studies of
schizophrenia. Mol Psychiatry, 14:774–85, 2009.

[71] S. B. Ng, K. J. Buckingham, C. Lee, A. W. Bigham, H. K. Tabor, K. M. Dent,
C. D. Huff, P. T. Shannon, E. W. Jabs, D. A. Nickerson, J. Shendure, and M. J.
Bamshad. Exome sequencing identifies the cause of a mendelian disorder. Nature
genetics, 42(1):30–35, January 2010.

[72] Jurg Ott. Analysis of Human Genetic Linkage. Johns Hopkins University Press, 1999.

[73] Laxmi Parida. Ancestral recombinations graph: a reconstructability perspective using
random-graphs framework. Journal of computational biology : a journal of computa-
tional molecular cell biology, 17(10):1227–1252, October 2010.

[74] Itsik Pe’er, Tal Pupko, Ron Shamir, and Roded Sharan. Incomplete directed perfect
phylogeny. SIAM J. Comput., 33(3):590–607, 2004.

[75] T. J. Pemberton, C. Wang, J.Z. Li, and N.A. Rosenberg. Inference of unexpected ge-
netic relatedness among individuals in hapmap phase iii. Am J Hum Genet, 87(4):457–
64, 2010.

[76] A. Piccolboni and D. Gusfield. On the complexity of fundamental computational
problems in pedigree analysis. Journal of Computational Biology, 10(5):763–773, 2003.

121

[77] Alkes L. Price, Noah A. Zaitlen, David Reich, and Nick Patterson. New approaches to
population stratification in genome-wide association studies. Nature reviews. Genetics,
11(7):459–463, June 2010.

[78] S. Purcell, B. Neale, K. Toddbrown, L. Thomas, M. Ferreira, D. Bender, J. Maller,
P. Sklar, P. Debakker, and M. Daly. PLINK: A Tool Set for Whole-Genome Asso-
ciation and Population-Based Linkage Analyses. The American Journal of Human
Genetics, 81(3):559–575, September 2007.

[79] L. Rabiner and B. Juang. An introduction to hidden markov models. ASSP Magazine,
IEEE, 3(1):4 – 16, January 1986.

[80] Neil Risch and Kathleen Merikangas. The Future of Genetic Studies of Complex
Human Diseases. Science, 273(5281):1516–1517, 1996.

[81] S. Sankararaman, G. Obozinski, M.I. Jordan, and E. Halperin. Genomic privacy and
limits of individual detection in a pool. Nature Genetics, 41(9):965–967, 2009.

[82] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.

[83] S. I. Sheikh, T.Y. Berger-wolf, A. A. Khokhar, I. C. Caballero, M. V. Ashley, W. Chao-
valitwongse, C. Chou, and B. Dasgupta. Combinatorial reconstruction of half-sibling
groups from microsatellite data. 8th International Conference on Computational Sys-
tems Bioinformatics (CSB), 2009.

[84] Leigh W. Simmons, Rene E C. Firman, Gillian Rhodes, and Marianne Peters. Human
sperm competition: testis size, sperm production and rates of extrapair copulations.
Animal Behavior, 68:297–302, 2004.

[85] E. Sobel and K. Lange. Descent graphs in pedigree analysis: Applications to haplo-
typing, location scores, and marker-sharing statistics. American Journal of Human
Genetics, 58(6):1323–1337, 1996.

[86] Yun S. Song, Anand Patil, Erin E. Murphy, and Montgomery Slatkin. Average prob-
ability that a cold hit in a dna database search results in an erroneous attribution.
Journal of Forensic Sciences, 54(1):22–27, 2009.

[87] J. Stankovich, M. Bahlo, J.P. Rubio, C.R. Wilkinson, R. Thomson, A. Banks, M. Ring,
S.J. Foote, and T.P. Speed. Identifying nineteenth century genealogical links from
genotypes. Human Genetics, 117(2–3):188–199, 2005.

[88] M. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 1992:91–116, 1992.

[89] Michael R. Stratton, Peter J. Campbell, and P. Andrew Futreal. The cancer genome.
Nature, 458, 2009.

122

[90] L. Sun, K. Wilder, and M.S. McPeek. Enhanced pedigree error detection. Hum.
Hered., 54(2):99–110, 2002.

[91] B. D. Thatte. Combinatorics of pedigrees, 2006.

[92] B. D. Thatte and M. Steel. Reconstructing pedigrees: A stochastic perspective. Jour-
nal of Theoretical Biology, 251(3):440 – 449, 2008.

[93] The International HapMap Consortium. The international HapMap project. Nature,
426:789–796, 2003.

[94] Alun Thomas. A note on the four-colourability of pedigrees and its conse-
quences for probability calculations. Statistics and Computing, 3:51–54, 1993.
10.1007/BF00146954.

[95] E. A. Thompson. Pedigree Analysis in Human Genetics. Johns Hopkins University
Press, Baltimore, 1985.

[96] T. Thornton and M.S. McPeek. Case-control association testing with related indi-
viduals: A more powerful quasi-likelihood score test. American Journal of Human
Genetics, 81:321–337, 2007.

[97] Cristiano Varin, Nancy Reid, and David Firth. An overview of composite likelihood
methods. Statistica Sinica, 21:5–42, 2011.

[98] John Wakeley. Coalescent Theory: An Introduction. Roberts & Company Publishers,
1 edition, June 2008.

[99] David G. Wang, Jian-Bing Fan, Chia-Jen Siao, Anthony Berno, Peter Young, Ron
Sapolsky, Ghassan Ghandour, Nancy Perkins, Ellen Winchester, Jessica Spencer,
Leonid Kruglyak, Lincoln Stein, Linda Hsie, Thodoros Topaloglou, Earl Hubbell,
Elizabeth Robinson, Michael Mittmann, Macdonald S. Morris, Naiping Shen, Dan
Kilburn, John Rioux, Chad Nusbaum, Steve Rozen, Thomas J. Hudson, Robert Lip-
shutz, Mark Chee, and Eric S. Lander. Large-Scale Identification, Mapping, and
Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science,
280(5366):1077–1082, 1998.

[100] S. Wright. Evolution in Mendelian Populations. Genetics., 16(2):97–159., 1931.

[101] Yufeng Wu. Exact computation of coalescent likelihood under the infinite sites model.
In Proceedings of the 5th International Symposium on Bioinformatics Research and
Applications, ISBRA ’09, pages 209–220, Berlin, Heidelberg, 2009. Springer-Verlag.

[102] J. Xiao, L. Liu, L. Xia, and T. Jiang. Efficient Algorithms for Reconstructing Zero-
Recombinant Haplotypes on a Pedigree Based on Fast Elimination of Redundant Lin-
ear Equations. SIAM Journal on Computing, 38:2198, 2009.

123

[103] K. Zhang and T. Jiang. Some MAX SNP-hard results concerning unordered labeled
trees. Inf. Process. Lett., 49(5):249–254, 1994.

124

Index

allele, 2, 5, 13, 39
ancestral recombination graph (ARG), 10
association test, 43

case-control, 7, 64

branch and bound algorithm, 56, 93

cancer genetics, 8
character, 14

binary, 13
full, 15
partial, 9, 11, 15, 23, 109

chromatid, 1
chromosome, 1
coalescent, 10, 11, 13

infinite sites, 9, 12, 13, 35
color

bicolored, 26
monochromatic, 26

coloring character, 26
compatibility, 26
compatibility graph, 97
compatible, 14, 15, 23
composite likelihood, 111
condensed identity states, 72, 114
consistent, 6
constructing inbred pedigrees (CIP), 98
constructing outbred pedigrees (COP), 98
convex, 15
cut-and-paste distance, 88

data, 4
descendant split, 83
diploid, 2, 10
disease, 7, 8, 64
dynamic programming, 90

edit distance, 9, 82, 87, 102

effective population size, 12
elimination order, 43, 62, 68
Elston-Stewart, 43, 49, 68
epidemiology, 7, 11
expression, 7
extant individuals, 12, 38, 97

family tree, 36, 80, 81
forensics, 8
forward-backward algorithm, 45, 68, 109
founder, 37
founding pair, 44

gamete, 3
parental-type, 3
recombinant, 3

gene, 2, 11
genealogy, 10, 12, 13, 81
genotype, 4–6, 46
genotyping, 6

errors, 113, 114
Gibbs sampler, 53, 54, 59, 109
graph partitioning, 101
graphical model, 36, 43, 70

haploid, 10, 11
haplotype, 3–5, 7, 13, 46

frequencies, 19
inference, 8, 9, 56, 61, 62
maximum probability, 41
minimum, 41

haplotype orientation, 68
haplotyping, 4, 6
hardness, 9, 46, 82, 88
Hardy-Weinberg equilibrium (HWE), 19
heterozygous, 6

125

hidden Markov model (HMM), 45, 53, 67,
81, 113, 114

homologous chromosomes, 2
homozygous, 6
hypercube, 72, 99, 100

IBD class, 72
identity by descent (IBD), 38, 39, 72, 82,

99, 100
class, 72
condensed states, 72, 114
inference, 43, 113

inbreeding, 38, 99
individuals

extant, 12, 38, 97
related, 36, 80, 109
unrelated, 10, 109

inference, 53
infinite sites, 12, 14
inheritance, 1, 3, 36, 39

graph, 72
hypercube, 72, 99, 100
likelihood, 41, 81
Mendelian, 39
probability, 40–42
state, 38

interference, 38, 113
isometry algorithm, 74

junction-tree algorithm, 43

Kullback-Leibler divergence, 19

Lander-Green, 43, 45, 109
legal edge, 24
likelihood, 41, 43, 45, 46, 51, 110
likelihood ratio test, 18, 22, 43, 111
lineage decomposition, 55
linkage analysis, 7, 43, 110
linkage disequilibrium (LD), 3, 17, 18, 22
linked loci, 3
locus, 2

Markov property, 73
match distance, 87

matching, 87
maximal ensemble algorithm, 76, 78
meiosis, 3
Minimum Common Integer Partition, 88
Minimum Cut/Paste Distance, 88
monogamous founding pair, 43, 55
monogamous pedigree, 38
most recent common ancestor, 12, 14
mutation, 3, 10, 13

novel, 6, 8
recurrent, 14, 54

n-coalescent, 11, 12
non-founder, 37
non-lineage parent, 55

orbits, 73

parental-type gamete, 3
partition intersection graph, 23
paternity testing, 8, 81
pedigree, 36, 37, 46, 80, 81

edit distance, 80, 82, 87, 102
HMM, 45, 53, 113, 114
isomorphism, 80, 82, 86
likelihood, 110
monogamous, 38
regular, 38, 89

pedigree reconstruction, 9, 80, 81, 83, 84,
97, 110, 111

peeling algorithm, 43, 68
perfect phylogeny, 3, 9–11, 13, 16, 18, 19,

54, 57
haplotyping, 16

perfect phylogeny haplotyping, 16
pharmacogenomics, 7, 11
phase, 6
phenotype, 7
phylogenetic tree, 14, 23
Poisson process, 38, 72, 100
polymorphism, 2
pool, 16
population, 11, 17
population genetics, 8, 11

126

position, 2
privacy, 8–10, 16, 109
protein, 2, 7

random propagation, 60
recombinant gamete, 3
recombination, 3, 5, 36, 38, 40, 43, 100

inference, 9, 69
minimum, 41

regular pedigree, 38
relationship

inference, 8, 81, 97, 111
testing, 43

resolution, 15
resolvable, 86
rich data hypothesis (RDH), 23, 109
RNA

non-coding, 2, 7

sequencing, 6, 9
exome, 6
single-molecule, 6, 46, 67

single-nucleotide polymorphism (SNP), 2,
5

site, 2
sperm typing, 4, 8
splits-equivalence theorem, 23
statistical inference, 53
structured machine learning, 81
subtree intersection graph, 23
sum-product algorithm, 43, 49, 53

tree popping, 25, 26, 31
tree width, 43

unlinked loci, 3

variational methods, 112, 113
Viterbi algorithm, 113

Wright-Fisher model, 11–13

zygote, 3

